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Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and super-
conducting states as characterized by switching and retrapping currents. Here, we develop a theory
for diode-like effects in the switching and retrapping currents of weakly-damped Josephson junctions.
We find that while the diode-like behavior of switching currents is rooted in asymmetric current-
phase relations, nonreciprocal retrapping currents originate in asymmetric quasiparticle currents.
These different origins also imply distinctly different symmetry requirements. We illustrate our
results by a microscopic model for junctions involving a single magnetic atom. Our theory provides
significant guidance in identifying the microscopic origin of nonreciprocities in Josephson junctions.

Introduction.—The nonreciprocal behavior of diodes
constitutes a central element of electronics [1, 2]. Nonre-
ciprocity is also central to microwave and radio-frequency
technology [3]. It is clearly a question of both applied
and fundamental concern, whether nonreciprocal behav-
ior can be realized in superconductors. Recent experi-
ments on superconductors [4–11] as well as related the-
ory [12–16] indicate that the critical current can indeed
depend on the current direction.

These experiments have been extended to Josephson
junctions, which are particularly promising for device ap-
plications for instance in the context of superconducting
qubits. A variety of current-biased junctions have been
found to exhibit nonreciprocal behavior [17–25]. Many
junctions are in the weak-damping regime, where the
voltage response is hysteretic (Fig. 1a) and the nonrecip-
rocal behavior can occur in multiple characteristic cur-
rents. When increasing the bias current, the junction
switches into the resistive state at the switching cur-
rent Isw. Conversely, when reducing the current bias,
the junction will retrap into the supercurrent state at
a smaller retrapping current Ire. The switching and re-
trapping currents are in general different from one an-
other and from the critical current Ic of the junction, the
maximal supercurrent that the junction can in principle
support [26]. While the dominant nonreciprocity is typi-
cally in the switching current [17, 21, 23, 25], it is in the
retrapping current in a recent experiment [27].

Theoretical work [28–36] has largely focused on ex-
ploring scenarios in which the current-phase relation and
hence the critical current are asymmetric. Here, we
present a general discussion of nonreciprocities in the var-
ious characteristic currents of current-driven Josephson
junctions. Focusing on the low-damping limit with well-
developed hysteresis, we show that nonreciprocities in the
switching and retrapping currents have different micro-
scopic origins and require different sets of broken sym-
metries. While dominant nonreciprocity in the switching
current results from an asymmetric current-phase rela-
tion, dominant nonreciprocity in the retrapping current
originates in asymmetric quasiparticle dissipation. We il-

lustrate our results by a microscopic calculation for junc-
tions including a single magnetic atom. Our results give
important guidance for the design and interpretation of
experiments on nonreciprocal Josephson junctions.
Model.—The dynamics of Josephson junctions is con-

ventionally described within the model of a resistively
and capacitively shunted Josephson junction (RCSJ) [26].
This model assumes that the junction carries capacitive
(IC), dissipative (Id), and noise (δI) currents in parallel
to the supercurrent (I0). Current conservation implies
that these currents sum to the bias current Ib (Fig. 1b),

IC + I0 + Id + δI = Ib. (1)

The conventional RCSJ model assumes a sinusoidal
current-phase relation I0 = Ic sinϕ, Ohmic dissipation
Id = V/R by a shunt resistance R, and a capacitive cur-
rent IC = CV̇ . Johnson-Nyquist noise associated with
the shunt resistor introduces a fluctuating current with
correlator 〈δI(t1)δI(t2)〉 = 2T

R δ(t1 − t2) at temperature
T . The Josephson relation V = ~ϕ̇/2e turns Eq. (1) into
a Langevin equation for the stochastic dynamics of the
superconducting phase difference ϕ across the junction.

In its conventional form, the RCSJ model predicts re-
ciprocal characteristic currents. Nonreciprocal behavior
can in general be introduced by modified capacitive, dis-
sipative, or supercurrent terms. Misaki and Nagaosa [31]
showed that nonreciprocal behavior can originate in non-
linear contributions to the quantum capacitance. This
mechanism requires different carrier densities on the two
sides of the junction and applies to junctions joining two
different superconducting materials.

The recent experiments [17, 21, 23, 25, 27] were per-
formed on junctions made of a single superconductor. For
this reason, we concentrate on nonreciprocities originat-
ing in the supercurrent I0 and the dissipative current Id.
To this end, we allow for general current-phase relations
I0(ϕ) and dissipative currents Id = Id(V ). Using Eq. (1)
and the Josephson relation, the phase dynamics is then
described by [38, 39]

(~C/2e)ϕ̈+ Id(~ϕ̇/2e) + I0(ϕ) + δI = Ib. (2)
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Figure 1. RCSJ model for weakly damped Josephson junc-
tions. (a) Hysteretic dependence of time-averaged voltage on
bias current (T = 0: red, dashed; T 6= 0: green) and char-
acteristic currents. Trace generated for asymmetric current-
phase relation I0(ϕ) (left inset) and dissipative current Id(V )
(right inset). Dotted traces in insets show corresponding
curves used in the conventional RCSJ model. (b) Equiva-
lent circuit of the RCSJ model. (c) Phase-space diagram of
the deterministic junction dynamics with coexisting trapped
(orange) and running (green) solutions. Parameters: [37].

The correlator 〈δI(t1)δI(t2)〉 = K(V = ~ϕ̇/2e)δ(t1 − t2)
of the current fluctuations is related to the dissipative
current by the fluctuation-dissipation theorem. In the

limit of low temperatures, this implies K(V ) = 2T Id(V )
V

(for a detailed discussion, see the Supplementary Ma-
terial [37]). Equation (2) describes the dissipative mo-
tion of a phase particle in a tilted washboard potential
U(ϕ) = U0(ϕ)−(~/2e)Ibϕ with I0(ϕ) = (2e/~)(dU0/dϕ).
For definiteness, we restrict our attention to (periodic)
potentials U0(ϕ) with a single minimum (ϕmin

0 ) and max-
imum (ϕmax

0 ) per period.

Nonreciprocity and symmetries.—The nonreciprocity
in the switching and retrapping currents have distinctly
different origins. This can be seen by directly simulating
the Langevin dynamics for a weakly damped junction.

Resulting histograms for the switching and retrapping
currents are shown in Fig. 2. The histograms are inde-
pendent of the direction of the bias current Ib for the
conventional RCSJ model (Fig. 2a). Only the switch-
ing current is nonreciprocal, when the junction has an
asymmetric current-phase relation, I0(ϕ) 6= −I0(−ϕ),
but symmetric dissipative current, Id(V ) = −Id(−V ).
In contrast, only the retrapping current is nonreciprocal
for asymmetric Id(V ), but symmetric I0(ϕ).

This difference between switching and retrapping cur-
rents reflects that switching and retrapping are due to
different underlying physics. Switching is caused by es-
cape from a minimum of the tilted washboard potential
U(ϕ), thus requiring asymmetry in the U0(ϕ) and hence
I0(ϕ). In contrast, retrapping back into a minimum of
U(ϕ) is induced by frictional energy loss, which depends
directly on the dissipative current Id(V ) for the particu-
lar bias direction. This also implies that nonreciprocities
in the switching and retrapping currents have different
symmetry requirements. Asymmetries in the current-
phase relation require breaking of both time-reversal and
inversion symmetry [4, 34]. In contrast, asymmetries of
the dissipative current, Id(V ) 6= −Id(−V ), require break-
ing of particle-hole symmetry (in the normal-metal sense)
and inversion symmetry, while time reversal need not be
broken (as for conventional diodes). The dissipative cur-
rent has contributions from the quasiparticle current of
the junction as well as the electromagnetic environment.
While the latter is typically symmetric, the quasiparticle
current is generically nonlinear and asymmetric in the
absence of inversion and particle-hole symmetry.
Fokker-Planck description.—To develop an analytical

theory, we follow standard considerations to convert Eq.
(2) into the Fokker-Planck equation [40, 41]

∂p

∂τ
=

(
−v ∂

∂ϕ
+

∂

∂v

[
u′(ϕ) + id(v) +

1

2

∂

∂v
k(v)

])
p (3)

for the time evolution of the probability density p(ϕ, v; τ)
as a function of the phase ϕ and its velocity v = ϕ′. Here,
we have defined a dimensionless time variable τ = Ωpt
in terms of the plasma frequency Ωp = [4e2EJ/~2C]1/2,
where EJ = d2U0(ϕmin

0 )/dϕ2 is the Josephson energy.
(This implies U0(ϕ) = −EJ cosϕ for a sinusoidal current-
phase relation.) Also defining dimensionless currents
i = (~/2e)I/EJ and potentials u = U/EJ , the Langevin
equation (2) becomes ϕ′′ + id(ϕ

′) + i0(ϕ) + δi = ib,
where primes denote derivatives with respect to dimen-
sionless time τ . The noise correlator 〈δi(τ1)δi(τ2)〉 =
k(ϕ′)δ(τ1 − τ2) involves k(v) = 2θid(v)/v in terms of the
reduced temperature θ = T/EJ .

At zero temperature, the Johnson-Nyquist noise van-
ishes, δi = 0. Then, the dynamics of the phase variable
becomes deterministic, with two types of solutions. For
small bias currents, the phase is locked to a minimum
ϕmin of the washboard potential u(ϕ) and the junction
supports supercurrent flow, ib = i0(ϕmin). For large bias
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Figure 2. Histograms of retrapping (ire,±) and switching
(isw,±) currents for bias currents ib of both signs (±). (a)
Conventional RCSJ model. (b) Asymmetric current-phase
relation I0(ϕ) and symmetric dissipative current Id(ϕ). (c)
Symmetric I0(ϕ) and asymmetric Id(ϕ). Parameters: [37]

currents, there is a running solution corresponding to a
resistive state of the junction. In this state, the phase
variable moves in a fixed direction at all times and the
energy gain due to the current bias is compensated by
the friction induced by the dissipative current.

For weak damping, the two types of solutions coexist
at intermediate bias currents, see the phase-space dia-
gram in Fig. 1(c). Then, the junction transitions between
the two types of solutions due to Johnson-Nyquist noise
and exhibits hysteresis. The nonreciprocal behavior of
Josephson junctions is controlled by the transition rates
between the trapped and running states, which we now
derive for general current-phase relations and dissipative
currents.

Switching rate.—We first consider the switching rate
out of the trapped into the running state. For weak
damping, the energy - and consequently the action –
of the undamped motion are slowly-varying variables.
Then, the Fokker-Planck equation can be reduced to a
drift-diffusion equation for the distribution function p(J)
of the action J =

∮
dϕ v (here,

∮
denotes an integral over

one period of the trapped motion) [42, 43]. Using the
general drift-diffusion equation ∂τp = ∂J [−vDp+D∂Jp]
and deducing the drift velocity vD = −

∮
dϕ id(v) as well

as the diffusion coefficient D = 2πθ
ω(J)

∮
dϕ id(v) from the

Langevin equation, we obtain (see [37] for details)

∂p

∂τ
=

∂

∂J

{
εd(J)

[
1 +

2πθ

ω(J)

∂

∂J

]}
p. (4)

Here, we introduced the (dimensionless) energy εd =∮
dϕ id(v), which is dissipated per period. The current-

phase relation and the bias current also enter via the
angular frequency ω(J) = 2π dh(J)/dJ of the trapped

motion, where h = 1
2v

2 + u(ϕ) is the Hamiltonian of the
undamped junction.

Deriving the transition rate from the trapped into
the running state is now an escape problem out of a
metastable well [41]. In the low-temperature limit, we
find the (dimensionless) activation rate (see [37])

γsw =
εd(JB)ω0

2πθ
exp

{
−εB
θ

}
. (5)

The transition rate depends exponentially on the activa-
tion barrier εB = h(JB)−h(J = 0) out of the metastable
well. (Here, JB is the action of the undamped separatrix
motion beginning and ending at the unstable maximum
ϕmax, see red dashed contour in Fig. 1(c), and J = 0
corresponds to the phase particle at rest in the stable
minimum ϕmin.) Dissipation only affects the preexpo-
nential attempt frequency through εd(JB), the limit of
the dissipated energy per period as the separatrix be-
tween running and trapped motion is approached. ω0

is the oscillation frequency in the minimum of the tilted
washboard potential u(ϕ).
Retrapping rate.—We now consider the retrapping rate

from the running into the trapped state. For weak damp-
ing, the retrapping current is parametrically smaller than
the critical current and proportional to the strength of
dissipation. We can thus restrict attention to small
bias currents implying a weakly-tilted washboard po-
tential. Under these conditions, we focus on the ac-

tion J =
∫ 2π sgn(v)

0
dϕ v evaluated for the Hamiltonian

h0 = 1
2v

2 + u0(ϕ) of the unbiased junction. Note that
the action J is now defined as an integral over all ϕ, as
appropriate for the running state. The action is again
slowly varying with time and satisfies a drift-diffusion
equation [44]. The drift involves a contribution from
the bias current ib in addition to the dissipative term,

vd = −
∫ 2π sgn(v)

0
dϕ id(v)+2π|ib|. The diffusion constant

becomes D = 2πθ
ω(J)

∫ 2π sgn(v)

0
dϕ id(v). This gives [37]

∂p

∂τ
=

∂

∂J

{
εd(J)− 2π|ib|+ εd(J)

2πθ

ω(J)

∂

∂J

}
p (6)

for p = p(J). Here, εd(J) =
∫ 2π sgn(v)

0
dϕ id(v) is the

dissipated energy per period in the running state.
Following analogous steps as for the switching rate, we

obtain the (dimensionless) retrapping rate [37]

γre =

√
i′d(v)

id(v)/v

[|ib| − ir0,±]2

2πθ

× exp

{
− 1

2θ

1

i′d(v) id(v)v

[|ib| − ir0,±]2

}
. (7)

Here, we define the retrapping currents ir0,sgnv =
1
2π

∫ 2π sgn(v)

0
dϕ id(v(JB)) in the absence of fluctuations,

where JB is the action of the separatrix beginning and
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Figure 3. Microscopic model of Josephson junction with magnetic impurity. (a) I-V characteristics of quasiparticle current
due to YSR state associated with magnetic impurity for different potential scatterings K. (b-d) Histograms of switching
and retrapping currents corresponding to I-V characteristics in (a) (note color-coded box), emphasizing the importance of
particle-hole symmetry. Parameters: [37].

ending at neighboring unstable maxima ϕmax
0 . The av-

erage phase velocity v is the solution of ib = id(v) and
the upper (lower) sign applies for ib > 0 (ib < 0). The
expression for the retrapping rate is valid at low tem-
peratures and for bias currents sufficiently far from ir0,±.
For Ohmic friction and sinusoidal current-phase relation,
our result reduces to the classic expression of Ben-Jacob
et al. [45].

Nonreciprocity of switching and retrapping currents.—
With these preparations, we are in a position to discuss
nonreciprocity in weakly-damped Josephson junctions in
rather general terms. First consider the nonreciprocity
properties of the switching rate. If u0(ϕ) is symmetric
about ϕ = 0 [and thus i0(ϕ) = −i0(−ϕ)], Eq. (4) gov-
erning the switching rate is explicitly symmetric under
sign changes of the bias current ib. This follows since
the dissipation parameter εd and the frequency ω(J) are
expressed as integrals over a full period of the trapped
motion, in which the phase velocity v changes sign [37].
This conclusion remains true even if the dissipative cur-
rent id(v) is asymmetric in v. We thus find that as for
the critical current, nonreciprocal switching rates require
breaking of time reversal symmetry, such that u0(ϕ) is
no longer symmetric under ϕ → −ϕ and the barrier εB
becomes dependent on the sign of the bias current ib.

Equation (6) governing the retrapping rate is explicitly
symmetric under sign changes of ib as long as the dissi-
pative current id(v) is symmetric. This is true for any
potential u0(ϕ). A nonreciprocal retrapping rate origi-
nates in asymmetry of id(v), which leads to ir0,+ 6= ir0,−.
Thus, a nonreciprocal retrapping rate requires breaking
of particle-hole symmetry (in the normal-metal sense), so
that the contribution of the quasiparticle current to id(v)
can be asymmetric. In contrast, breaking of time-reversal
symmetry [asymmetric u0(ϕ)] is not required.

The switching and retrapping rates allow one to de-
rive expressions for the average switching and retrapping
currents. We assume a bias-current ramp ib(τ) = aτ
with rate a. Then the switching current isw can be de-
fined through Pt(isw) = 1

2 , where Pt is the probability

to be in the trapped state. Using the switching rate
(5), one finds that the shift in the switching current
∆isw,± = isw,± − ic,± relative to the critical current is
equal to [37]

∆isw,±
ic,±

≈

{
θ

εB0
ln

[
εd(JB0)

2πa ln 2
∣∣ϕmax

0 − ϕmin
0

∣∣
±

]} 1
µ±

, (8)

where JB0 is the action of the separatrix in the
absence of damping and bias current and µ± =∣∣ϕmax

0 − ϕmin
0

∣∣
±ic,±/εB0,. Similarly, we find that fluctu-

ations shift the retrapping rate away from ir0,± by [37]

∆ire,± ≈

{
θ i′d(v)

id(v)

v
ln

[
θ(i′d(v))

3

2π(a ln 2)2
id(v)

v

]} 1
2

, (9)

where the right hand side is evaluated for ib = ±ir0,±.
These expressions make the nonreciprocities of the av-
erage switching and retrapping currents explicit. While
Eqs. (8) and (9) assume sufficiently high barriers as well
as smooth drift and diffusion of the action [37], our qual-
itative results are valid more widely as indicated by the
numerical results in Fig. 3. We also note that while our
analytical results focus on the regime of thermally acti-
vated switching and retrapping, quantum tunneling may
become relevant at sufficiently low temperatures. This
will affect explicit temperature dependences, but leaves
our qualitative results unaffected.
Yu-Shiba-Rusinov junctions.—We illustrate the impor-

tance of particle-hole symmetry for the retrapping cur-
rent by microscopic results for a Josephson junction host-
ing a magnetic adatom coupled to one of the electrodes
(for a recent experiment, see [27]). The spin of the
adatom couples to the electrode electrons via both ex-
change scattering J and potential scattering K, with the
latter being nonzero only when particle-hole symmetry
is broken [46]. These couplings induce Yu-Shiba-Rusinov
(YSR) resonances within the superconducting gap, which
are symmetric in energy, but in general asymmetric in in-
tensity for nonzero potential scattering. This provides a
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microscopic model for an asymmetric quasiparticle cur-
rent (Fig. 3a) accompanied by a symmetric current-phase
relation. Consistent with our general theoretical analysis,
a simulation of the junction dynamics based on a stan-
dard model for YSR states [47–50] (see [37] for details)
exhibits asymmetric retrapping currents for nonzero po-
tential scattering K, with the direction of the asymmetry
dependent on the sign of K (Fig. 3b and c). Symmet-
ric retrapping currents are observed for K = 0, when
particle-hole symmetry is preserved (Fig. 3d).

Conclusions.—We have developed a general theory of
nonreciprocity in current-biased Josephson junctions, fo-
cusing on the hysteretic behavior for weak dissipation
(high quality factor). We have shown that a nonrecip-
rocal switching current originates from nonreciprocity of
the supercurrent. In contrast, a nonreciprocal retrapping
current originates from quasiparticle dissipation which is
asymmetric under a sign change of ib. Moreover, these
different sources of nonreciprocity have different symme-
try requirements. While nonreciprocal switching currents
require breaking of time reversal symmetry, nonreciproc-
ity of the retrapping current requires breaking of particle-
hole symmetry, but not of time reversal symmetry. Re-
cent experiments on weakly damped Josephson junctions
revealed dominant nonreciprocities in both, the switch-
ing and the retrapping current. Our theory implies that
these nonreciprocities have fundamentally different mi-
croscopic origins.

We gratefully acknowledge funding by Deutsche
Forschungsgemeinschaft through CRC 183 (project C03)
as well as CRC 910 (project A11).
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SUPPLEMENTARY INFORMATION

Numerical simulation and parameter values

All our Langevin simulations employ the Euler-Maruyama algorithm with time step dτ = 0.01. In order to obtain
hysteretic behaviour, we sweep the bias current from ib = −0.7 to ib = 0.7 [ib = −1.5 to ib = 1.5 in Fig. 1a and
ib = −0.9 to ib = 0.9 in Fig. 2b] and back at a rate r = |di/dτ | = 10−5. The time-averaged voltage is calculated for
500 points in each direction. Switching and retrapping currents are extracted as maxima of the discrete derivative of
the time-averaged voltage data. For the histograms we run 1000 sweeps.

In Figs. 1 and 2 we use the phenomenological current-phase relation

i0(ϕ) = c1[sin(ϕ− ϕ̃)− c2 sin(2ϕ)], (S0.10)

where c1 is fixed such that (∂2u0/∂ϕ
2)|ϕmin

0
= (∂i0/∂ϕ)|ϕmin

0
= 1, see the top inset in Fig. 1a. This type of current-

phase relation arises, e.g., in Ref. [36]. For the dissipative current we use the current-voltage characteristic

id(v) =
v

Q

[
1 + c3

v

δv
exp

{
−1

2

(
v2

δv2
− 1

)}]
, (S0.11)

see the bottom inset in Fig. 1a. The exponential factor in the asymmetric term serves to give Ohmic behavior at large
voltages. As parameters we use Q = 10 and θ = 0.1 throughout Figs. 1 and 2. For the asymmetric current-phase
relation [Figs. 1a and 2b] we use φ̃ = 0.6 and c2/c1 = 0.2. For the asymmetric current-voltage characteristic [Figs.
1a and 2c] we use c3 = 0.3, δv = 5. For the symmetric current-phase relation [Figs. 2a and 2c] we use c2 = 0 = ϕ̃
s.t. i0 sinϕ. For the symmetric current-voltage characteristic [Figs. 2a and 2b] we use c3 = 0 = δv, s.t. id(v) = v/Q.
Finally, in Fig. 1(c) the bias current is ib = 0.3.

In Fig. 3 we use the following parameters: tip and substrate gap ∆ = 2~Ωp, temperature T = 0.01∆, dimensionless
exchange scattering α = πν0J = 1.5, dimensionless tip-substrate coupling γ = πν0T = 0.2, broadening η = 0.1∆ and
dimensionless potential scattering β = πν0K ∈ {±α, 0} (for details see App. below).

Deterministic junction dynamics

We review the deterministic junction dynamics in the absence of the Langevin term (Fig. 1c of the main text). We
systematically work in dimensionless units. With the exceptions of time t (dimensional) and action J (dimensionless),
lower (upper)-case quantities are in dimensionless (dimensional) units. The phase-space trajectories obey the equations
of motion

dϕ

dτ
= v ,

dv

dτ
= −u′(ϕ)− id(v). (S0.12)

Combining the two equations of motion, we obtain

d

dϕ

[
1

2
v2 + u(ϕ)

]
= −id(v) (S0.13)

for the phase-space trajectories v = v(ϕ) as illustrated in Fig. 1c of the main text. In the absence of fluctuations,
trapped solutions correspond to the stable fixed point ϕ = ϕmin and v = 0 in phase space (orange point in Fig. 1c).
The running solution (thick green trace in Fig. 1c) is the only periodic solution v = v(ϕ) of Eq. (S0.13), for which the
dissipated energy per period is balanced by the energy provided by the bias current,

2πib =

∫ 2π

0

dϕ id(v). (S0.14)

Neglecting fluctuations, the switching currents is0,± are equal to the critical currents ic,±, at which the minima of
the tilted washboard potential cease to exist. In the weak-damping limit, the retrapping current can be obtained as
follows. We consider the phase-space trajectories v(ϕ) of the running solutions in the absence of bias current and
damping, which obey

h0 =
1

2
v2 + u0(ϕ), (S0.15)
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with the reduced energy h0 of the phase-space trajectory. Below (above) the energy εB = u0(ϕmax
0 ), all trajectories

are trapped (running). The separatrix motion between these two classes of trajectories begins and ends at neighboring
unstable fixed points (ϕmax

0 , v = 0)). As a consequence of the time reversal symmetry of the undamped motion, there
are two separatrix solutions v±(ϕ) with opposite signs of the velocity. Now, the retrapping current follows by equating
the energy dissipation along the separatrix to the energy gain due to the bias current,

ir0,± =
1

2π

∫ ±2π
0

dϕ id(v
±(ϕ)). (S0.16)

Note that the retrapping currrent is proportional to the strength of the dissipation and thus parametrically small
compared to the switching current. Importantly, the retrapping current is asymmetric in the bias direction for
asymmetric dissipative currents, id(v) 6= −id(−v).

Stationary solution of the Fokker-Planck equation and detailed balance

Detailed balance implies a relation between k(v) and id(v) in the Fokker-Planck equation

∂p

∂τ
=

(
−v ∂

∂ϕ
+

∂

∂v

[
u′(ϕ) + id(v) +

1

2

∂

∂v
k(v)

])
p (S0.17)

for p = p(ϕ, v; τ) given in the main text. There, we quoted this relation in the limit of low temperatures. Here, we
give a more general derivation.

The Fokker-Planck equation can be viewed as a continuity equation in phase space ∂τp = −∇ · j with the current
density

jϕ = vp , jv = −
[
u′(ϕ) + id(v) +

1

2

∂

∂v
k(v)

]
p. (S0.18)

We separate the current density into a reversable and an irreversable contribution, j = jrev + jirr, with

jrevϕ = vp , jrevv = −u′(ϕ)p (S0.19)

and

jirrϕ = 0 , jirrv = −
[
id(v) +

1

2

∂

∂v
k(v)

]
p. (S0.20)

The stationary solution p(ϕ, v) satisfies ∇ · j = 0. In contrast to the one-dimensional Fokker-Planck equations, we
cannot conclude that j = 0 in equilibrium. However, detailed balance requires that the irreversible contribution to
the current vanishes by itself, jirr = 0. Thus, detailed balance demands[

id(v) +
1

2

∂

∂v
k(v)

]
p = 0. (S0.21)

This is easily integrated to give

p(ϕ, v) =
A(ϕ)

k(v)
exp

{
−
∫ v

0

dv′
2id(v

′)

k(v′)

}
, (S0.22)

where A(ϕ) is an arbitrary integration constant. This solution can be written as

p(ϕ, v) = exp{−[T (v) + U(ϕ)]} (S0.23)

with

T (v) =

∫ v

0

dv′
[

2id(v
′) + k′(v′)

k(v′)

]
. (S0.24)

Of course, this way of writing the solution is motivated by the Boltzmann distribution.
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Inserting the solution in this form into ∇ · jrev = 0 gives

U ′(ϕ)

u′(ϕ)
=
T ′(v)

v
. (S0.25)

This can only be satisfied if both sides of the equation are individually equal to a constant, say 1
θ . Integrating both

sides, we find the expected expressions

U(ϕ) =
u(ϕ)

θ
+ const, T (v) =

v2

2θ
+ const, (S0.26)

so that we can identify θ with temperature, reproducing the Boltzmann distribution.
Consistency with Eq. (S0.24) implies

T ′(v) =
v

θ
=

2id(v) + k′(v)

k(v)
(S0.27)

or

k′(v)− vk(v)

θ
+ 2id(v) = 0. (S0.28)

This equation is readily solved to give

k(v) = 2ev
2/2θ

∫ ∞
v

dv′e−v
′2/2θid(v

′), (S0.29)

which is the desired relation between k(v) and id(v). Here, we have specified an integration constant such that k(v)
reduces to the familiar result for the case of Ohmic friction.

In the limit of small θ, this general result can be further evaluated as

k(v) = 2

∫ ∞
v

dv′e−(v
′2−v2)/2θid(v

′) ' 2θ
id(v)

v
, (S0.30)

which is the expression given in the main text. Note that as advertised, this just involves the conductance in the
usual way when specifying to the Ohmic limit. We note in passing that the choice of k(v) in Ref. [39] is inconsistent
with detailed balance.

Escape from the trapped state

Fokker-Planck equation in weak-damping limit

We now consider fluctuation-induced transitions out of the trapped state in the limit of weak friction. In the absence
of friction and noise, we can describe the deterministic motion within the metastable minimum using action-angle
variables (J,w)

J =

∮
dϕ v = const (S0.31)

and w = ω(J)
2π τ + w0. The Hamiltonian h = h(J) and the frequency of the trapped motion are related through

ω(J)
2π = ∂h(J)

∂J . Note that here, we consider the trapped motion in the tilted washboard potential and the integrals are
over one period of the periodic motion in the absence of friction, i.e. the Hamiltonian is given by

h =
1

2
v2 + u(ϕ). (S0.32)

In the weak-friction limit, the angle is quickly varying, while the action variable changes only slowly. For this
reason, one can average the motion over the fast phase variable and reduce the Fokker-Planck equation to an equation
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for a distribution function p ' p(J), which depends only on the action. Friction along with the fluctuations will make
the action drift and diffuse, so that the action satisfies a drift-diffusion equation

∂p

∂τ
=

∂

∂J

[
−vDp+D

∂p

∂J

]
. (S0.33)

The diffusion coefficient D = D(J) and the deterministic drift velocity vD = vD(J) can themselves depend on the
action. To determine the drift velocity, we consider the time derivative of the action,

J̇ =
∂J

∂h
ḣ. (S0.34)

This yields

J̇ =
∂J

∂h
v [v̇ + u′(ϕ)] = −∂J

∂h
v id(v). (S0.35)

Averaging over one period τ0 = 2π/ω(J), we obtain the drift velocity

vD = 〈J̇〉T =
1

τ0

∫ τ0

0

dτ J̇ = −ω(J)

2π

∫ τ0

0

dτ
∂J

∂h
vid(v) = −

∮
dϕ id(v) (S0.36)

of the action.
The diffusion of the action arises from the Langevin term

δTJ =
∂J

∂h
δTh =

∂J

∂h

∫ τ0

0

dτ vδv̇ = −τ0
∫ τ0

0

dτ vδi(τ). (S0.37)

Here, δ indicates a fluctuating Langevin contribution and δT that the quantity is integrated over a period τ0. We can
then compute the variance

〈(δTJ)2〉 = τ20

∫ τ0

0

dτ v22θ
id(v)

v
= 2θτ20

∮
dϕ id(v) (S0.38)

Using that

〈(δTJ)2〉 = 2Dτ0, (S0.39)

we find the diffusion coefficient

D =
2πθ

ω(J)

∮
dϕ id(v) (S0.40)

of the action.
Combining these results, we obtain the drift-diffusion equation

∂p

∂τ
=

∂

∂J

{
εd(J)

[
1 +

2πθ

ω(J)

∂

∂J

]}
p. (S0.41)

This generalizes the familiar result for the Ohmic case [41] to general current-phase relations and non-Ohmic dissipative
currents.

Friction enters into the drift-diffusion equation only via εd =
∮
dϕ id(v). Note that here, the integral is over one

period of the trapped motion of the phase particle in the absence of friction. The parameter εd is the average energy
dissipated per period of the trapped motion (in dimensionless units). Indeed, we have

εd =

∮
dϕ id(v) =

1

Ic

∮
dϕ Id(V ) =

2e

~Ic

∮
dt V (t)Id(V ) =

Ed
EJ

, (S0.42)

where Ed is the dissipated energy per period in dimensional units.
Writing a differential equation for the distribution function p(J) requires that p(J) be smooth on the scale of

the dissipated energy εd per period. Provided we consider configurations sufficiently close to equilibrium, this is
guaranteed as long as εd � θ.
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Symmetry under sign change of bias current

The drift-diffusion equation is invariant under sign changes of the bias current, provided that the untilted washboard
potential u0(ϕ) is symmetric, u0(ϕ) = u0(−ϕ).

To see this, we note that the phase-space trajectory v = ±v(ϕ) of energy ε is given by

v(ϕ) =
√

2[ε− u0(ϕ) + ibϕ]. (S0.43)

Without loss of generality, let’s assume that the trapped motion is taking place in the minimum around ϕ = 0 between
the turning points ϕL and ϕR, where −π < ϕL < 0 and 0 < ϕR < π. The turning points solve

ε = u0(ϕ)− ibϕ. (S0.44)

We note that

v(ϕ; ib) = v(−ϕ;−ib) (S0.45)

and

ϕL(ib) = −ϕR(−ib) ; ϕR(ib) = −ϕL(−ib). (S0.46)

We first note that the action J is invariant under sign changes of ib. In fact,

J(ib) = 2

∫ ϕR(ib)

ϕL(ib)

dϕ v(ϕ, ib) = 2

∫ −ϕL(ib)
−ϕR(ib)

dϕ v(−ϕ, ib) = 2

∫ ϕR(−ib)

ϕL(−ib)
dϕ v(ϕ,−ib) = J(−ib). (S0.47)

This implies that the relation ε = ε(J) is symmetric as is the frequency ω(J). Moreover, the disspation parameter
εd =

∮
dϕ id(v) is also independent of the sign of the bias current. We have∮

dϕ id(v) =

∫ ϕR

ϕL

dϕ id(v) +

∫ ϕL

ϕR

dϕ id(−v) =

∫ ϕR

ϕL

dϕ [id(v)− id(−v)], (S0.48)

so that

εd(ib) =

∫ −ϕL(−ib)
−ϕR(−ib)

dϕ [id(v(−ϕ;−ib))− id(−v(−ϕ;−ib))]

=

∫ ϕR(−ib)

ϕL(−ib)
dϕ [id(v(ϕ;−ib))− id(−v(ϕ;−ib))] = εd(−ib). (S0.49)

These results imply that the drift-diffusion equation does not depend on the sign of ib.

Switching rate in the weak-damping limit

Computing the switching rate in the weak-damping limit is now a standard escape problem from a metastable well
and requires one to solve the stationary drift-diffusion equation for p(J) with the boundary condition that p(JB) = 0
[41]. Here, JB is the action of the separatrix between trapped and running solutions in the absence of damping (red
dashed contour in Fig. 1c). The boundary condition arises with the assumption that any trajectory that reaches the
separatrix switches into a running solution. Due to the finite switching rate, the probability current

j = −εd(J)

[
1 +

2πθ

ω(J)

∂

∂J

]
p (S0.50)

is nonzero. This equation for p(J) is readily solved,

p(J) =

∫ JB

J

dJ ′ exp

{∫ J′

J

dJ ′′
ω(J ′′)

2πθ

}
ω(J ′)

2πθ

j

εd(J ′)
. (S0.51)
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The switching rate from the trapped to the running state (in dimensionless units) can be found as the ratio of the
current j out of the trapped state and the total probability to be in the trapped state,

γsw =
j∫ JB

0
dJ p(J)

. (S0.52)

Note that the denominator is finite despite the logarithmic divergence of p(J) at J = 0 (due to εd(J) ∼ J at small
J). Inserting the solution for p(J), we find for the inverse rate

(γsw)−1 =

∫ JB

0

dJ

∫ JB

J

dJ ′ exp

{∫ J′

J

dJ ′′
ω(J ′′)

2πθ

}
ω(J ′)

2πθ

1

εd(J ′)
. (S0.53)

Using that ω(J) = 2π dh(J)dJ with the Hamiltonian h(J) of the motion, the exponent integrates to∫ J′

J

dJ ′′
ω(J ′′)

2πθ
=

1

θ
[h(J ′)− h(J)], (S0.54)

so that

(γsw)−1 =

∫ JB

0

dJ exp

{
−h(J)

θ

}∫ JB

J

dJ ′ exp

{
h(J ′)

θ

}
ω(J ′)

2πθ

1

εd(J ′)
. (S0.55)

The J ′ integral can be converted into an integral over h, which, in the limit of small temperatures, is dominated by
the upper limit,∫ JB

J

dJ ′ exp

{
ε(J ′)

θ

}
ω(J ′)

2πθ

1

εd(J ′)
=

∫ h(JB)

h(J)

dh′ exp

{
h′

θ

}
1

θ

1

εd(J(h′))
' exp

{
h(JB)

θ

}
1

εd(JB)
. (S0.56)

Note that this expression is independent of J , so that the J integration now involves only∫ JB

0

dJ exp

{
−h(J)

θ

}
' 2πθ

ω(J = 0)
exp

{
−h(J = 0)

θ

}
. (S0.57)

Here, we used that the integral is dominated by the lower limit. Insertion into the expression for the switching rate
gives

γsw =
εd(JB)ω0

2πθ
exp

{
−εB
θ

}
, (S0.58)

where εB = h(JB) − h(J = 0) is the barrier height and ω0 = ω(J = 0). Reverting to dimensional parameters, this
becomes

Γsw =
Ed(JB)Ω0

2πT
exp

{
−EB
T

}
. (S0.59)

Note that Ω0 is the oscillation frequency about the minimum of the tilted washboard potential and is thus different
from the plasma frequency Ωp.

Switching current

When ramping up (or down) the bias current ib from zero (ramp rate a > 0),

ib(τ) = ±aτ, (S0.60)

the junction will eventually escape from the trapped state and abruptly switch into the running state. The bias levels
at which this is happening are the switching currents isw,±. The probability Pt for the system to be in the trapped
state satisfies the rate equation

dPt
dτ

= −γsw(τ)Pt. (S0.61)
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The escape rate γsw(τ) from the trapped to the running state depends on time, as the barrier height depends on the
bias current. Solving for Pt(τ) with initial condition Pt(τ) = 1 gives

Pt(τ) = exp

{
−
∫ τ

0

dτ ′ γsw(τ ′)

}
. (S0.62)

In view of Eq. (S0.60), we can replace the time argument by current,

Pt(ib) = exp

{
∓1

a

∫ ib

0

di′b γsw(i′b)

}
= exp

{
−1

a

∫ |ib|
0

di γsw(±i)

}
. (S0.63)

This expression can be used to define the average switching currents isw,± > 0 through

Pt(ib = ±isw,±) =
1

2
, (S0.64)

so that ∫ isw,±

0

di γsw(±i) = a ln 2. (S0.65)

Inserting the escape rate γsw in Eq. (S0.58), this becomes

a ln 2 =

∫ isw,±

0

di
εd(i)ω0(±i)

2πθ
exp

{
−εB(±i)

θ

}
. (S0.66)

Due to the exponential factor, the integrand increases rapidly with increasing i due to the decreasing barrier, so that
the integral is dominated by bias currents i ∼ isw,±. This allows us to approximate

a ln 2 ' θ
[∣∣∣∣ dibdεB

∣∣∣∣γsw]
ib=±isw,±

. (S0.67)

This yields

εB(±isw,±) = θ ln

(
εd(isw,±)ω0(±isw,±)

2πa ln 2

∣∣∣∣ dibdεB

∣∣∣∣
ib=±isw,±

)
. (S0.68)

To make analytical progress, we approximate the bias-current dependence of the barrier as

εB(ib) = εB0

(
1∓ ib

ic,±

)µ±
, (S0.69)

where ic,± > 0 refers to the critical current for positive/negative bias and µ± =
∣∣ϕmax

0 − ϕmin
0

∣∣
±ic,±/εB0, with∣∣ϕmax

0 − ϕmin
0

∣∣
± = limib→0±

∣∣ϕmax − ϕmin
∣∣. This expression interpolates between εB0 at zero bias and εB = 0 at the

critical current, and correctly reproduces the linear term in the small-ib expansion. It is moreover a rather accurate
approximation to set isw,± ' 0 under the logarithm (so that ω0 ' 1 in particular). We then find

isw,± ≈ ic,±

1−

[
θ

εB0
ln

(
εd(JB0)

2πa ln 2
∣∣ϕmax

0 − ϕmin
0

∣∣
±

)]1/µ± , (S0.70)

where JB0 is the action of the separatrix in the absence of damping and bias current. In dimensionful units, this is

Isw,± = Ic,±

1−

[
T

EB
ln

(
(2e/~)ΩpEd

2πA ln 2
∣∣ϕmax

0 − ϕmin
0

∣∣
±

)] (2e/~)EB

|ϕmax
0 −ϕmin

0 |±Ic,±

, (S0.71)

where we defined the dimensionful barrier EB = EJεB0, dissipation Ed = EJεd(JB0), and ramp rate A = dIb/dt =
(2eEJ/~)Ωpa.
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Escape from the running state

Fokker-Planck equation in the weak-damping limit

We now consider the escape rate from the running state. For weak friction, the retrapping current is small, so that
we can restrict attention to the limit of small bias currents ib and thus of a weakly tilted washboard potential. In this
case, we can consider the action variable for the untilted washboard potential u0(ϕ) as slowly varying and satisfying a
drift-diffusion equation. The phase variable is then equivalent to a pendulum in rotational motion, so that the action
variable is given by

J =

∫ 2π sgnv

0

dϕ v. (S0.72)

The velocity is expressed in terms of the Hamiltonian

h0 =
v2

2
+ u0(ϕ) (S0.73)

excluding the tilt. Note that the definition of the action differs from the definition in the context of the switching
current. First, we now consider running solutions, so that the integral is over the full interval [0, 2π]. Second, the
action is evaluated for the deterministic motion in the absence of the current bias.

There are now two contributions to the drift of the action J , one due to friction and a second due to the tilt of the
washboard potential,

vd = −
∫ 2π sgnv

0

dϕ id(v) + 2π|ib|. (S0.74)

Let us assume for definiteness that the bias current is positive. Then, v as well as id(v) are positive, so that the
friction force is negative. The opposite situation of negative bias currents follows by obvious changes of sign. Note
again that unlike in the equation for the trapped state, the integral for the frictional contribution is over the interval
[0, 2π].

The diffusion follows as in the equation for the trapped state,

〈(δTJ)2〉 = τ20

∫ τ0

0

dτ v22θ
id(v)

v
= 2θτ20

∫ 2π sgnv

0

dϕ id(v). (S0.75)

Here, the only change is in the integration range over ϕ, so that

D =
2πθ

ω(J)

∫ 2π sgnv

0

dϕ id(v). (S0.76)

We can now combine these results into the drift-diffusion equation

∂p

∂τ
=

∂

∂J

{
εd(J)− 2π|ib|+ εd(J)

2πθ

ω(J)

∂

∂J

}
p, (S0.77)

where we defined

εd(J) =

∫ 2π sgnv

0

dϕ id(v). (S0.78)

We will show in the next section that this Fokker-Planck equation reproduces the standard results for the retrapping
rate of Ben-Jacob et al. [45]. Provided that the dissipative current is asymmetric, id(v) 6= −id(−v), the dissipated
energy in Eq. (S0.78) and the drift-diffusion equation (S0.77) are now manifestly asymmetric under ib → −ib.

By a similar argument as for the drift-diffusion equation for the trapped states, we find that the validity of Eq.
(S0.77) requires

(εd − 2πib)
2

εd
� θ. (S0.79)
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Retrapping rate

In the absence of fluctuations, damping in the running state it is∫ 2π sgnv

0

dϕ id(v) = 2π|ib|. (S0.80)

Evaluating this for the (undamped, untilted) separatrix at action JB yields the retrapping current in the absence
of fluctuations as obtained in Eq. (S0.16). (Note that JB as defined here coincides with JB0/2 as defined in the
calculation of the switching rate.) The retrapping current becomes small in the limit of weak damping, justifying our
focus on small bias currents.

We now solve the stationary drift-diffusion equation by using conservation of the probability current,

j = −
{
εd(J)− 2π|ib|+ εd(J)

2πθ

ω(J)

∂

∂J

}
p. (S0.81)

The stationary probability distribution with absorbing boundary condition at the separatrix, p(JB) = 0, becomes

p(J) = −
∫ J

JB

dJ ′′
j

εd(J ′′)

ω(J ′′)

2πθ
exp

{∫ J′′

J

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)}
. (S0.82)

Note that the probability current is negative (flow to smaller J), so that p(J) is positive as it should.
The retrapping rate now follows as

γre =
−j∫∞

JB
dJ p(J)

, (S0.83)

so that

(γre)
−1 =

∫ ∞
JB

dJ

∫ J

JB

dJ ′′
1

εd(J ′′)

ω(J ′′)

2πθ
exp

{
−
∫ J

J′′
dJ ′

ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)}
(S0.84)

We will now simplify this expression in the low-temperature limit.
The evaluation can proceed with the following considerations: (We present this derivation in some detail since it

does not seem to be standard in the literature.)

• At low temperatures θ, the integral over J ′′ is dominated by the minimum of∫ J

J′′
dJ ′

ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)
(S0.85)

in the integration range J ′′ ∈ [JB , J ]. As a function of J ′′, this expression has an extremum at εd(J0) = 2πib.
The action J0 is just the stationary action in the limit of vanishing fluctuations, i.e., the action of the trajectory
for which the energy gain due to the bias current and the frictional energy loss just compensate. We anticipate
that even in the presence of weak fluctuations (low temperature), the distribution p(J) is sharply peaked around
J = J0, so that the J integration is dominated by J of the order J0.

• The integrand in the exponent is negative for J ′′ � J0 and positive for J ′′ � J0. Thus, as J ′′ increases from
JB , the integral in the exponent increases and the extremum is a maximum. (Note that J ′′ enters the exponent
as the lower integration limit.) Thus, the J ′′ integral is dominated by one of the integration limits, JB or J . In
the first case, J ′′ ∼ JB , the exponent is equal to

−
∫ J

JB

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)
(S0.86)

to leading order. This grows with J and is positive as long as J < J0. In contrast, in the second case, J ′′ ∼ J ,
the exponent is equal to zero to leading order. The J ′′ integral is thus dominated by J ′′ ∼ JB , implying also
that the J integral is dominated by J ∼ J0 as anticipated above.
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• Expanding the exponent about J ′′ = JB to linear order gives

−
∫ J

J′′
dJ ′

ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)
' −

∫ J

JB

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)
+
ω(JB)

2πθ

(
1− 2π|ib|

εd(JB)

)
(J ′′ − JB). (S0.87)

Thus, the J ′′ integration gives

(γre)
−1 =

1

εd(JB)

−1

1− 2π|ib|
εd(JB)

∫ ∞
JB

dJ exp

{
−
∫ J

JB

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)}
. (S0.88)

• The J integral is now done by a standard saddle-point integration. Introducing the abbreviation

F (J) =
ω(J)

2πθ

(
1− 2π|ib|

εd(J)

)
, (S0.89)

we have

(γre)
−1 =

1

εd(JB)

−1

1− 2π|ib|
εd(JB)

√
2π

F ′(J0)
exp

{
−
∫ J0

JB

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)}
. (S0.90)

Remember that 2π|ib| = εd(J0) and 2πir0,+ = εd(JB).

We finally bring this expression into a more compact form. First consider the exponent,

−
∫ J0

JB

dJ ′
ω(J ′)

2πθ

(
1− 2π|ib|

εd(J ′)

)
= −

∫ J0

JB

dJ ′
ω(J ′)

2πθ

εd(J
′)− εd(J0)

εd(J ′)

' − ω(J0)

2πθ

1

εd(J0)

1

dεd(J0)/dJ

∫ εd(J0)

εd(JB)

dεd [εd − εd(J0)]

' ω(J0)

2πθ

1

εd(J0)

2π2

dεd(J0)/dJ
[ib ∓ ir0,±]2. (S0.91)

Here, we used that in the weak-damping region, the retrapping rate is appreciable only in a narrow region near
the retrapping current. Assuming that |ib| is not too close to the retrapping current ir0,±, we can employ a large-ε
expansion. Up to corrections of order 1/ε2, we find

J0 = 2π
√

2(ε0 − u0), ω(J0) =
√

2(ε0 − u0), εd(J0) = 2πid

(√
2(ε0 − u0)

)
,
dεd(J0)

dJ
= i′d

(√
2(ε0 − u0)

)
, (S0.92)

where ε0 is related to the bias current through

ib = id

(√
2(ε0 − u0)

)
. (S0.93)

Here, u0 is the average value of u0(ϕ). Further introducing the average phase velocity v = ω(J0), we can express the
exponent as

1

2θ

1
id(v)
v i′d(v)

[ib ∓ ir0,±]2. (S0.94)

The preexponential factor in γre can be evaluated in the same manner and we finally find

γre =

√
i′d(v)

id(v)/v

[ib ∓ ir0,±]2

2πθ
exp

{
− 1

2θ

1
id(v)
v i′d(v)

[ib ∓ ir0,±]2

}
(S0.95)

for the retrapping rate with ib = id(v). One readily finds that for Ohmic dissipation and sinusoidal current-phase
relation, this reduces to the retrapping rate as obtained by Ben-Jacob et al. [41, 45].
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Retrapping current

The retrapping currents ire,± may be defined in a similar manner as the switching currents, see Sec. . The bias
current is now ramped down (up) from a sufficiently large starting value ±i0 with i0 � ire,±, i.e.

ib(τ) = ±(i0 − aτ). (S0.96)

The average retrapping currents are defined as the bias level at which the probability for having retrapped reaches
1/2. This gives

1

2
= exp

{
1

a

∫ ±ire,±
i0

di γre(±i)
}
, (S0.97)

Due to the exponential factor in γre the main contribution to the integral stems from ib ∼ ire,±. This allows one to
approximate

a ln 2 ' 1√
2πθ

√[
i′d(v)

id(v)/v

]
ib=±ire,±

∫ ∞
ire,±

di (i∓ ir0,±) exp

−
[

1
id(v)
v i′d(v)

]
ib=±ire,±

(i∓ ir0,±)2

2θ

 (S0.98)

=

√
θ

2π

[
id(v)

v
(i′d(v))

3

]
ib=±ire,±

exp

−
[

1
id(v)
v i′d(v)

]
ib=±ire,±

(ire,± − ir0,±)2

2θ

. (S0.99)

Setting ire,± → ir0,± in the preexponential factor and solving for ire,± gives

ire,± = ir0,± +

{
θ
id(v)

v
i′d(v) ln

[
θ

2π(a ln 2)2
id(v)

v
(i′d(v))

3
]}1/2

ib=±ir0,±
. (S0.100)

In dimensionful units, this becomes

Ire,± = Ir0,± +

{
T

C

Id(V )

V
I ′d(V ) ln

[
1

2π(ln 2)2
T

C3A2

Id(V )

V

(
I ′d(V )

)3]}1/2

Ib=±Ir0,±
, (S0.101)

where A = dIb/dt is the dimensionful ramprate.

Yu-Shiba-Rusinov Josephson junction

We consider a Josephson junction formed by a superconducting scanning tunneling microscope tip, labeled L, and
a superconducting substrate in the presence of a magnetic impurity, labeled R. The magnetic impurity induces Yu-
Shiba-Rusinov (YSR) bound states in the superconducting gap of the substrate. Importantly, the spectral weight
for tunneling of electrons and holes into the YSR state is not equal, leading to asymmetric dissipative tunneling and
hence a physical mechanism for asymmetric friction.

Junction Hamiltonian and YSR bound state

We assume that tunneling of strength T is local at the site of the impurity. The Hamiltonian of the system is

H =
∑

j=L/R

Hj +Htun, (S0.102)

Hj =

∫
dr
{∑
σσ′

ψ†j (r)Hjψj(r) + ∆
[
ψ†j,↑(r)ψ†j,↓(r) + h.c.

]}
, (S0.103)

Htun = T
∑
σ

[
eiϕ/2ψ†L,σ(r0)ψR,σ(r0) + h.c.

]
, (S0.104)



18

with normal state single-particle Hamiltonians

HL = ξ(−i∇), HR = ξ(−i∇) + (K − J σz)δ(r− r0). (S0.105)

We assume that the superconductors are identical up to the presence of the magnetic impurity (characterized by
exchange scattering J and potential scattering K). We choose a gauge such that the pairing ∆ is real in both the tip
(L) and the substrate (R), such that the phase difference ϕ enters the tunneling Hamiltonian. We define the local
retarded Green functions of the tip and substrate as

GL(E) = 〈r0| {E+ − ξ(−i∇)τz −∆τx}−1 |r0〉 = −πν0
E+ + ∆τx√

∆2 − E2
+

, (S0.106)

GR(E) =
{

[GL(E)]−1 + J −Kτz
}−1

= −πν0
E+ + ∆τx + (α+ βτz)

√
∆2 − E2

+

(1− α2 + β2)
√

∆2 − E2
+ − 2αE+

, (S0.107)

where ν0 is the normal density of state at the Fermi level, E+ = E + iη, with quasiparticle broadeningη. The
dimensionless exchange and potential scattering strengths are α = πν0J > 0 and β = πν0K.

The magnetic impurity induces a YSR bound state in the superconducting gap with energy

EYSR = ∆
1− α2 + β2

D
, D =

√
(1− α2 + β2)2 + 4α2 > 1 (S0.108)

manifesting as a subgap pole in the substrate Green function. Importantly, the spectral weight differs for electron
and hole parts as can be seen by expanding around EYSR,

GR(E) ' 2πν0∆

E+ − EYSR

(
u2 uv
uv v2

)
; u, v =

√
α[1 + (α± β)2]

D3
. (S0.109)

RCSJ model for YSR tunnel junction

We now discuss the phase dynamics of this YSR junction. In the tunneling limit,

γ ≡ (πν0T )2 � 1, (S0.110)

the equation of motion for ϕ is given by Eq. (2), with I0(ϕ) = 2e
~ EJ sinϕ and the quasiparticle tunneling current

Id(V ) =

∫
dE

2eRtun

[
nF
(
E − eV

2

)
− nF

(
E + eV

2

)][
AeL
(
E − eV

2

)
AeR
(
E + eV

2

)
+AhL

(
E + eV

2

)
AhR
(
E − eV

2

)]
, (S0.111)

in terms of the Fermi distribution function nF and the normal state tunneling resistance (w/o impurity) Rtun =

h/(8γe2). Ae/hL/R is the (electron/hole) BCS density of states defined as

Ae/hL/R(E) = − 1

πν0
Im
[
G
e/h
L/R(E)

]
. (S0.112)

For α, β 6= 0, electron and hole tunneling have different weight as AeR 6= AhR. At the same time, inversion symmetry

of the junction is broken, Ae/hL 6= Ae/hR . As a consequence, Id(V ) 6= −Id(−V ). Finally, the Josephson energy in the
presence of the impurity is given by

EJ =
γ

D
∆, (S0.113)

This gives the plasma frequency as

Ωp =

√
π

D

√
∆/~
RtunC

. (S0.114)

The parameters of the model are ∆, T, η,Ωp, γ, α and β. We evaluate the quasiparticle current numerically and use
that as an input for the Langevin dynamics as prescribed by the RCSJ model.
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