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Abstract
More and more diseases have been found to be strongly correlated with disturb-
ances in the microbiome constitution, e.g., obesity, diabetes, and even some types
of cancer. Advances in high-throughput omics technologies have made it possible
to directly analyze the human microbiome and its impact on human health and
physiology. Microbial composition is usually observed over long periods of time and
the interactions between their members are explored. Numerous studies have used
microbiome data to accurately differentiate disease states and understand the dif-
ferences in microbiome profiles between healthy and ill individuals. However, most
of them mainly focus on various statistical approaches, omitting microbe-microbe
interactions among a large number of microbiome species that, in principle, drive
microbiome dynamics. Constructing and analyzing time-evolving graphs is needed
to understand how microbial ecosystems respond to a range of distinct perturbations,
such as antibiotic exposure, diseases, or other general dynamic properties. This be-
comes especially challenging due to dozens of complex interactions among microbes
and metastable dynamics.

The key to addressing this challenge lies in representing time-evolving graphs
constructed from microbiome data as fixed-length, low-dimensional feature vectors
that preserve the original dynamics. Therefore, we propose two unsupervised ap-
proaches that map the time-evolving graph constructed from microbiome data into
a low-dimensional space where the initial dynamic, such as the number of metastable
states and their locations, is preserved. The first method relies on the spectral ana-
lysis of transfer operators, such as the Perron–Frobenius or Koopman operator, and
graph kernels. These components enable us to extract topological information such
as complex interactions of species from the time-evolving graph and take into account
the dynamic changes in the human microbiome composition. Further, we study how
deep learning techniques can contribute to the study of a complex network of micro-
bial species. The method consists of two key components: 1) the Transformer, the
state-of-the-art architecture used in the sequential data, that learns both structural
patterns of the time-evolving graph and temporal changes of the microbiome sys-
tem and 2) contrastive learning that allows the model to learn the low-dimensional
representation while maintaining metastability in a low-dimensional space.

Finally, this thesis will address an important challenge in microbiome data, spe-
cifically identifying which species or interactions of species are responsible for or
affected by the changes that the microbiome undergoes from one state (healthy) to
another state (diseased or antibiotic exposure). Using interpretability techniques of
deep learning models, which, at the outset, have been used as methods to prove the
trustworthiness of a deep learning model, we can extract structural information of
the time-evolving graph pertaining to particular metastable states.
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Zusammenfassungen
Immer mehr Krankheiten stark mit Störungen in der Mikrobiom-Konstitution korrelieren sind,
z. B. Fettleibigkeit, Diabetes und einige Krebsarten. Fortschritte in der Hochdurchsatz-omik-
Technologie haben es möglich gemacht, das menschliche Mikrobiom und seine Auswirkungen
auf die menschliche Gesundheit und Physiologie direkt zu analysieren. Mikrobielle Gemeinsch-
aften werden in der Regel über lange Zeiträume hinweg beobachtet und die Zusammenhänge
zwischen ihren Mitgliedern erforscht. In zahlreichen Studien wurden Mikrobiomdaten ver-
wendet, um Krankheitszustände genau zu differenzieren und die Unterschiede in den Mik-
robiomprofilen von gesunden und kranken Menschen zu verstehen. Die meisten von Studien
konzentrieren sich jedoch hauptsächlich auf verschiedene statistische Ansätze und lassen die In-
teraktionen zwischen Mikroben und Mikroben einer großen Anzahl von Mikrobiomarten außer
Acht, die im Prinzip jedoch die Dynamik des Mikrobioms bestimmen. Um die Reaktionen der
Mitglieder einer mikrobiellen Gemeinschaft auf eine Reihe von Störungen wie Antibiotikaex-
position, Krankheiten und allgemeine dynamische Eigenschaften zu verstehen, muss der sich im
Laufe der Zeit entwickelnde Graph der menschlichen mikrobiellen Gemeinschaften erstellt und
analysiert werden. Dies ist aufgrundder zahlreichen komplexen Wechselwirkungen zwischen
den Mikroben und der metastabilen Dynamik eine besondere Herausforderung.
Der Schlüssel zur Bewältigung dieser Herausforderung liegt in der Darstellung der sich zeit-
lich entwickelnden Graphen als niedrigdimensionale Merkmalsvektoren fester Länge, die die
ursprüngliche Dynamik erhalten. Daher schlagen wir zwei unüberwachte Ansätze vor, die den
aus Mikrobiomdaten konstruierten zeitlichen Graphen in einen niedrigdimensionalen Raum
abbilden, in dem die ursprüngliche Dynamik, wie die Anzahl der metastabilen Zustände und
deren Orte, erhalten bleibt. Die erste Methode stützt sich auf die Spektralanalyse von Trans-
feroperatoren, wie dem Perron-Frobenius- oder Koopman-Operator, und Graphkerneln. Diese
Komponenten ermöglichen es uns, topologische Informationen wie die komplexen Interaktionen
von Arten aus dem sich zeitlich entwickelnden Graphen zu extrahieren und die dynamischen
Veränderungen des menschlichen Mikrobioms zu berücksichtigen. Außerdem untersuchen wir,
wie Deep-Learning-Techniken zur Untersuchung des komplexen Netzwerks mikrobieller Arten
beitragen können. Die Methode besteht aus zwei Schlüsselkomponenten: 1) einem Transformer,
einer hochmodernen Architektur, die in den sequenziellen Daten verwendet wird und die sowohl
strukturelle Muster des sich zeitlich entwickelnden Graphen als auch zeitliche Veränderungen
des Mikrobiomsystems erlernt, und 2) kontrastivem Lernen, das es dem Modell ermöglicht, die
niedrigdimensionale Repräsentation zu erlernen und gleichzeitig die Metastabilität in einem
niedrigdimensionalen Raum zu erhalten.
In dieser Arbeit wird eine wichtige Herausforderung in Bezug auf Mikrobiomdaten angegangen,
nämlich die Identifizierung, welche Spezies oder Interaktionen von Spezies für die Veränder-
ungen, die das Mikrobiom von einem Zustand (gesund) zu einem anderen Zustand (krank oder
Antibiotikaexposition) erfährt, verantwortlich sind oder davon betroffen sind. Mithilfe von
Interpretierbarkeitsverfahren für Deep-Learning-Modelle, die ursprünglich als Methoden zum
Nachweis der Vertrauenswürdigkeit eines Deep-Learning-Modells verwendet wurden, können
wir strukturelle Informationen eines sich zeitlich entwickelnden Graphen extrahieren, die sich
auf bestimmte metastabile Zustände beziehen.
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2 Chapter 1 Introduction

1.1 Human Microbiome and its Analysis

Approximately every second cell in our body is a microbial cell. We are colonized
by a diverse community of bacteria, archaea, and viruses jointly referred to as the
microbiome. About 1.5 kg of microbes live almost everywhere on and in the human
body as symbionts, e.g., on the skin, in the mouth, or in the gut. They have a
strong influence on both their hosts and environments. For example, more and more
diseases have been found to strongly correlate with disturbances in the microbiome
constitution, e.g., obesity (Hjorth et al., 2018; Menni et al., 2017; Kincaid et al.,
2019), diabetes (Qin et al., 2012), and some cancer types (Sánchez-Alcoholado et
al., 2020; Gopalakrishnan et al., 2018). Recent studies have also revealed that the
gut microbiome also has a huge impact on brain functions and is related to disorders
such as Alzheimer’s disease (Xu and Wang, 2016). Despite the fact that the microbial
communities that live in the human gut have a significant impact on our overall health
and well-being, we have a limited understanding of the mechanisms that govern this
complex ecosystem.

Most of the studies that develop methods for the analysis of the microbiome
or those that make conclusions about processes occurring in the microbiome utilize
statistical analyses such as correlation or dissimilarity-based methods. Moreover,
inferred conclusions are often made based on methods that can capture only linear
correlations. Recently, it has, however, been revealed that although the constitu-
tion of the microbiome is constantly changing throughout our lives (in response to
environmental factors), a healthy human microbiome can be considered as a meta-
stable state lying in a minimum of some ecological stability landscape (Shaw et
al., 2019). Several studies of host-associated and environmental microbiota have
revealed cases of complex dynamics, including periodicities, chaos, and alternative
stable states (Faust and Raes, 2012). Therefore, the dynamic processes that happen
in the microbiota are the essential parts that must be considered when making con-
clusions about the impact of perturbations on the microbiome composition. Another
aspect that is usually ignored during the analysis of the microbiota is the interactions
between species presented in the composition of the microbiota. The reason is as
follows: 1) Primarily, it is unclear which species interact with each other and how
to track their interactions over time, and 2) The absence of methods for analysing
such high-dimensional complex data. In the case of the former, more and more stud-



1.1 Human Microbiome and its Analysis 3

ies have been exploring how to identify interactions between species and how these
interactions can be tracked over time. They will be discussed further in the thesis.
However, the latter is still under development. Those methods or models that are
proposed to capture the interactions between species can only apprehend pairwise
interactions ignoring more complex interactions of the microbiome.

We start the chapter with a discussion about what the microbiome is, how mi-
crobiome data is collected, and which methods and approaches exist dedicated to
the analysis of the microbiome. Considering the challenges of the analysis and the
complexity of the microbiome we then explore methods for the reduction of the
microbiome complexity. This chapter finishes with the thesis’s main objective and
research questions.

1.1.1 What is the microbiome?

A microbiome is a composition of bacterial communities present in different envir-
onments such as the human body. Common approaches to characterize the human
microbiome profile are to use 16S rRNA amplicon sequencing or shotgun metage-
nomics. Microbiome samples are collected from different body sides such as skin,
mouth, or gut. Then, the genome sequence data is obtained through sequencing mi-
crobial samples, and the sequence data are processed using programs such as QIIME.
The 16S rRNA gene sequences are clustered into groups, the so-called operational
taxonomic unit (OTU). Since 90% of microorganisms in the metagenomic data are
unknown at present (Song et al., 2018), the OTU grouping can be obtained by using
a reference database to align sequences or not having a reference sequence which
is a de novo approach. Reference-based OTU clustering does not assign sequences
that are not aligned to references. Therefore, the two-step OTU clustering approach
re-clusters the unassigned sequences in the de novo method. When OTU clusters
are identified, taxonomic information is assigned to the representative sequences of
each OTU to determine the evolutionary relationships or the phylogeny. Despite
the introduction of analytical methods that utilize representative sequences of 16S
rRNA, such as those presented by Asgari et al., 2018, OTU cluster-based variables
remain the most commonly employed input features in the microbiomes and host
trait analysis. The overview of the microbiome analysis workflow is shown in Figure
1.1.

These differences in sequence filtering, clustering, and taxonomy assignment chal-
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16S rRNA
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Sequence
read quality check and

filtering

Statistical analysis

Diversity analysis
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Functional analysis
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Figure 1.1: Overview of the microbiome analysis workflow. The first step is to gather
sample collections from various locations in the body. Once the samples are collected,
the laboratory workflow includes DNA extraction, amplification and sequencing. The
final sequence data is pre-processed and clustered. Statistical analysis is the last step,
which includes a comparison of alpha and beta diversity, correlations between taxa
and metadata, and the analysis of microbiome dynamics.

lenge cross-study comparison and reproducibility. Moreover, the human microbiome
is incredibly diverse and dynamic, with different populations of microorganisms in-
teracting with each other and with the host in complex ways. Other challenges for
current approaches to analysing microbiome data are discussed in (Armstrong et al.,
2022):

• Curse of dimensionality. Microbiome data is high-dimensional with thousands
of species. This leads to a situation where a feature table, commonly referred
to as an OTU table, contains a significantly larger number of features com-
pared to the number of samples available. Therefore, this poses a challenge for
classical statistical approaches potentially causing overfitting due to the curse
of dimensionality.

• Sparsity. The microbiome data or a resulting feature table is typically very
sparse due to the fact that most microbes are not found in most samples,
even of the same biospecimen type. This poses problems for most statistical
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methods.

• Compositionality. In microbiome research, the compositionality issue arises
due to the nature of high-throughput sequencing, where the number of reads
obtained from a sample is limited and subject to randomness during sample col-
lection. In traditional ecological data, various species can coexist in a sample,
and their counts are often independent. However, in microbiome data, micro-
bial counts are not independent due to the normalization process. The relative
abundance of one microbial feature in a sample is inversely related to the
abundance of other features in that same sample (Gloor, 2017). Therefore, the
classical dimensionality reduction methods, such as principal component ana-
lysis(PCA) and other statistical methods such as Pearson correlation usually
fail to capture the right correlation in the data. Recently, there have been a lot
of efforts made to develop methods robust to this limitation, such as SparCC
(Friedman and Alm, 2012) and CCLaso (Fang et al., 2015).

• Feature importance. The analysis of microbiome data is largely motivated by
finding microbial biomarkers associated with changes in microbial composi-
tion. Methods that are not developed particularly for microbiome data but
provide a possibility to extract feature importance often fail to account for
compositionality.

• Complex patterns. Microbiome data is assumed to have clusters and be non-
linear. However, many conventional methods for complexity reduction and
overall analysis of the microbiome dynamic are designed to capture only linear
correlations in the data.

All these challenges and the complexity of microbiome data require the develop-
ment of approaches that can handle them. The standard procedure is to use different
statistical methods for the analysis of microbiome data which is usually based on lon-
gitudinal or time-series data. In recent years, mathematical modelling and network
analysis have been gaining much attention since they provide a more comprehensive
analysis of microbiome data and can tackle some of the above-mentioned challenges.
Later, we will dive deeper into some existing methods for the analysis of microbiome
data.
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1.1.2 Dynamics of microbiome

The temporal changes in host-associated microbial communities are of growing in-
terest due to their relevance to human health. Normally, human microbiota remains
stable for months, and possibly even years (David et al., 2014; Faith et al., 2013).
However, some research suggests that microbial communities are in fact not static
over time. A change in the community state can be triggered by changes in ex-
ternal conditions (e.g. diet), by a direct modification of the microbial community
(antibiotic exposure), or by a transient perturbation that pushes the system into an
alternative state. Healthy microbiome communities however tend to evolve towards
a stable composition. Therefore, several studies apply the idea of a potential or
energy landscape to microbiome research. Potential landscape formalism considers
a high-dimensional phase space, in which coordinates represent system states, and
system dynamics correspond to trajectories through phase space. For instance, the
approach proposed in (Chang et al., 2020) is based on this idea of potential land-
scapes. Although one can argue that the idea based on the potential landscape may
not be directly applicable to microbiomes due to the open nature of the system,
the authors claim that the local maxima of the data density could form a basis for
inferring the feasibility of metastable states of microbiome composition. To imple-
ment it, the authors used the Mapper algorithm which represents the underlying
data distribution in a metric space as an undirected graph. In this graph, each
vertex comprises a non-exclusive subset of data points spanning a phase space. An
edge is drawn between a pair of vertices that share at least one data point. They
experimented with three microbial time series datasets of human gut microbiomes.

The metastability phenomena is a big part of the dynamical systems theory and
it goes back to the work of Freidlin and Wentzell in the early 1970s. They mainly
considered the setting of finite dimensional dynamical systems perturbed by weak
additive noise (Bovier, 2006). In terms of microbiome research, the idea of applying
a stability landscape paradigm to the microbiome dynamics was taken from classical
ecological theory. The definition of stability or metastability from dynamical system
theory may be different from how it is understood in the microbiome field. In the
dynamical system theory, metastability can be observed when for short timescales,
the system appears to equilibrate, but at larger time scales, undergoes some trans-
itions from one metastable state to other metastable states (Bovier, 2006). This
phenomenon occurs in dynamical systems of various structures, including systems
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with vector-valued states and systems represented as time-evolving graphs. As we
propose to construct a time-evolving graph from the microbiome data in this thesis,
the metastability in time-evolving graphs means that the graph structure is stable
for a relatively long time (up to small perturbations) before the system undergoes a
critical transition — e.g. when it reaches a tipping point — and shifts to a different
metastable state (the structural patterns of the time-evolving graph dramatically
change).

Since stability is a focus area of many works in ecology and other relative domains,
there have been many definitions of stability proposed. (Gonze et al., 2018) gives a
good overview of four different types of “stability”, which are also commonly used
in research on the microbiome data:

• Linear asymptotic stability. If the composition of a microbial community re-
turns to its initial (steady) state following a perturbation, this state will be
stable. On the contrary, if the microbial composition diverges from its initial
state, this state is unstable.

• Persistence and permanence. Both terms imply that irrespective of the size of
the perturbation, the system always maintains its initial composition of species.
However, permanence means that if any species’ density is approaching zero,
it will begin to grow. So, theoretically, no species can become extinct.

• Temporal stability and robustness. If the system of species tends to remain
constant over time or across parameter changes, which usually describe envir-
onmental changes, it will be considered more stable. On the other hand, if the
abundance of some species is sensitive to parameter changes, the system will
be considered less stable. This concept of stability is a measure of robustness
to noise and to parameter values.

• Structural stability. This type of stability implies that the coexistence between
several species is maintained over a larger range of parameter values.

In this sense, linear asymptotic stability is the closest definition to the metastabil-
ity defined in the dynamical system theory. Temporal stability and robustness are
defined with regard to different parameters in the equations used to describe the
dynamic of the microbiome. Persistence, permanence, and structural stability im-
ply the initial conditions of a dynamical system supported by biological justification
presented in different studies.
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Other works that use the stability landscape to study the microbiome dynamics
include (Lahti et al., 2014; David et al., 2014; Hsiao et al., 2014; Shaw et al., 2019;
Zaura et al., 2015). The study of (Lahti et al., 2014) utilized potential analysis
to detect alternative states in intestinal bacteria. This approach is based on the
theory of stochastic dynamical systems. They assume that an underlying stochastic
dynamical system of the microbiome can be described with the following equation

dz = −U(z)dt+ σdWt, (1.1)

where U(z) is the potential function, z is the state variable (the microbe
log10(abundance)), σ is the noise level and dW is a Wiener process. In particu-
lar, the authors proposed to employ a potential function:

U = −σ2log(pd)
2 (1.2)

where pd is the empirically estimated probability density function of the state variable
z. The minima of the potential function corresponds to a stable state of the system.
They further estimate the probability density of bacteria abundance with a Gaussian
kernel. They also used the number of local minima of the potential function to
quantify the number of distinct states.

The work from (Shaw et al., 2019) follows the same approach as the previously
mentioned study by considering the gut microbiome as lying in a stability landscape.
They derive a mathematical model to investigate whether it could provide insights
into the effect of antibiotics on the gut microbiome. The visualization of their ap-
proach is shown in Figure 1.2. They treat the local stability landscape as a harmonic
potential, with a ’restoring’ force proportional to the displacement x from the equi-
librium position (−kx). They also consider the presence of a “frictional” force acting
against the direction of motion −bx. Finally, the system is equivalent to a damped
harmonic oscillator with the following equation of motion:

d2x

dt2
+ b

dx

dt
+ kx = 0. (1.3)
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Figure 1.2: The figure is taken from (Shaw et al., 2019) and illustrates the idea of
a stability landscape of the gut microbiome. (A) The healthy human microbiome
is thought to rest in a state of equilibrium within the stability landscape of all
possible states of the microbiome. Different perturbations can displace it from this
equilibrium value into alternative states. (B) It is assumed that there are only two
states: the healthy baseline and an alternative stable state. (C) Perturbation to the
microbiome (in this case by antibiotics) is modelled as an impulse.

Since antibiotic treatment may lead not just to displacement, but also to new
equilibria, the authors propose a solution to Equation 1.3:

x2(t) = Deϕ1eϕ2

eϕ2 − eϕ1
·

(
e−eϕ1 t − e−eϕ2 t

)
+ A ·

(
1 − e−eϕ1 t

)
, (1.4)

with the initial conditions x(0+) = 0 and ẋ(0+) = D, b = eϕ1 + eϕ2 , k = eϕ1+ϕ2 . D
is an impulse of magnitude or how strong the perturbation and A is a new equilib-
rium state. Afterwards, the proposed model is validated with an empirical dataset.
They base their experiment on data from (Zaura et al., 2015), where 30 individuals
received a ten-day course of either a placebo, ciprofloxacin or clindamycin. They
found support for a long-term transition to an alternative community state one year
after the antibiotic exposure. Their results also imply that a single treatment of
antibiotics not only reduces the diversity of the gut flora for up to a year but also
potentially alters its composition. (David et al., 2014) studied gut and salivary mi-
crobiota dynamics of two individuals over the course of one year. One result of the
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study suggests that overall microbial communities are stable for months. However,
rare events such as travelling from the developed to the developing world lead to a
nearly two-fold increase in some bacteria taxa. Another event, namely enteric in-
fection, resulted in the permanent decline of most gut bacteria taxa. (Hsiao et al.,
2014) conducted a time-series metagenomic study of the faecal microbiome collected
during the acute diarrhoeal and recovery phases of cholera in a cohort of Banglade-
shi adults living in an area with a high rate of cholera. The study noted taxa that
consistently changed in abundance between the start and end of the diarrhoea phase.
Moreover, they identified a set of bacterial species that strongly correlate with a pro-
cess in which the perturbed gut bacterial community in adult patients with cholera
is restored to a configuration found in healthy Bangladeshi adults.

Modelling the microbiome as a stability landscape provides new insights into the
dynamical properties of the microbiome and associations between the microbiome
constitution and different external or internal perturbations such as diseases or an-
tibiotic exposure. Yet, this also presents further challenges with the analysis of the
microbiome dynamics, especially if we also aim at accounting for the multiple inter-
actions between species. Given the challenges with microbiome data, thousands of
complex interactions and its metastable behaviour we need to develop approaches
that can deal with all these hardships to extract valuable insights from the microbi-
ome data.

1.2 Related work

Over the years, approaches for analysis of the microbiome data have been extens-
ively developing. These approaches mainly originate across different domains with
different goals and the types of data used in the analysis of microbiome dynamics.
In this section, we will give an overview of different methods used to analyze the
microbiome dynamics. We can divide them into several groups based on the data
types and properties of the microbiome dynamics which these methods are able to
capture. The first category is a statistical analysis of longitudinal or time-series data
that still aims at extracting insights from the microbiome data but ignores multiple
interactions and temporal changes. Later, it was realized that taking into account the
interactions between species is crucial for understanding the microbiome dynamics.
Therefore, there have been approaches proposed based on mathematical models such
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as the Lorka-Volterra model, that consider pairwise interactions, and other external
associations with the microbiome. However, afterwards, it was discovered that more
complex interactions than just pairwise interactions are inherent to the microbiome
which resulted in the development of approaches that utilize network analysis such
as probabilistic graphical models or dynamical graphs.

1.2.1 Statistical analysis of longitudinal data

High-throughput experimental methods enable comprehensive analysis of the micro-
biome over time which opens up opportunities to provide insights into fundamental
questions about microbiome dynamics. These methods facilitate the creation of a lot
of longitudinal and time-series data which have the property of order and time. A
broad overview of studies and open questions of the analysis of the microbiome dy-
namics from longitudinal data is presented in (Gerber, 2014). It is worth mentioning
that in the microbiome community, the terms longitudinal data and time-series data
are often used interchangeably. However, the big difference is that in a time series
we measure the overall change in the measurement over time while in a longitudinal
analysis, the researcher conducts several observations of many subjects at different
time points.

The main concern with the analysis of longitudinal data is that a lot of studies
attempt to answer all questions related to microbiome dynamics with simple analyt-
ical tools. However, if these tools ignore temporal aspects of data, the results can
be extremely misleading (Gerber, 2014). (Caporaso et al., 2011) assess the degree of
variation over time in the microbiota of different body sides of healthy adults based
on principal coordinates analysis of unweighted UniFac distances between communit-
ies, a measure of community dissimilarity based on OTU presence or absence. (Gajer
et al., 2012) investigate the changes in the vaginal microbiota over time based on a
longitudinal study. They used the Jenson-Shannon metric to measure dissimilarity
between community states. After that, to analyze the temporal dynamics of the
vaginal microbiota they used a linear mixed-effects model.

Some studies explore the dynamic response of the microbiome to internal per-
turbations using statistical analysis. (Dethlefsen and Relman, 2011) recruited three
healthy subjects who received two 5-day courses of oral ciprofloxacin during a 10-
month study period. To measure similarities and dissimilarities between the mem-
bership of the distal gut microbial communities between the first and second courses
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of antibiotics, researchers used Principal Coordinate Analysis (PCoA) of unweighted
UniFrac distances. (Pérez-Cobas et al., 2013) studied the effects of antibiotics on the
microbiome of a single human subject using a multi-omics approach. After generat-
ing time series from 16S rRNA gene sequences, they conducted a statistical analysis
using Principal Component Analysis, and Spearman’s correlation analysis and iden-
tified the changes in the microbiome constitution after the antibiotic treatments.

These studies have a common pattern in the analysis: they start with sample
collection, then DNA extraction, sequencing, and taxonomic classification and they
finish with statistical analysis to make conclusions about the microbiome dynamics
and differences in samples. Some of the above-mentioned studies include metagen-
omic sequences and proteomic analysis but still, the last step is statistical analysis.
In general, the analysis of longitudinal microbiome data presents certain challenges.
One challenge lies in a poorly designed longitudinal study which in an ideal case
requires close collaboration between biologists and computational experts. Another
challenge is directly connected to the desire to obtain “quick answers” with simple
analytical tools or statistical methods. If these methods or tools ignore the tem-
poral aspect of longitudinal or time-series data, it can result in incorrect conclusions
(Gerber, 2014).

1.2.2 Interactions accountability with mathematical model-
ling

Studies that use statistical analysis for inferring microbiome dynamics omit the large
variety of complex microbe-microbe and host-microbe interactions. In order to tackle
this problem, many studies in the microbiome domain have been making attempts
to describe the microbiome dynamic with various mathematical models. The most
popular model is the Lotka-Volterra model and its variations (Momeni et al., 2017;
Stein et al., 2013; Fisher and Mehta, 2014). The model is based on inferring the
network of underlying pairwise interactions between taxa by calculating the inverse
covariance matrix from time series data. The model can be used to predict 1) how
changes in the abundance of one microbial taxon affect the abundance of other
taxa and 2) how the overall stability of the microbiome is impacted by different
perturbations.

(Stein et al., 2013) employed a dynamical system model for analysing microbiome
time-series data. They used a model based on generalized Lotka-Volterra (gLV) non-
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linear differential equations. Their model uses the following equation, which extends
the gLV equations to include terms for externally applied perturbations such as
antibiotic treatment:

dxi(t)
dt

= µixi(t) + xi(t)
D∑

j=1
αijxj(t) + xi(t)

P∑
k=1

βikck(t), (1.5)

where xi(t) is a concentration of species i at time t, µi represents its intrinsic growth-
rate, αij is the effect if species j on species i, and βik represent the effect of time-
dependent perturbation ck(t) on species i.

While the previous study does not account for the compositionality of the mi-
crobiome and describes dynamics in terms of absolute densities of taxa, (Joseph
et al., 2020) proposes a new approach to modelling microbial dynamics using the
Compositional Lotka-Volterra framework. This approach takes into account the
compositionality of the microbiome by using the additive log-ratio transformation in
the gLV equation 1.5

d

dt
log πi(t)

πD(t) ≈ µ̄i +
D∑

j=1
ᾱijπj(t) + xi(t)

P∑
k=1

β̄ikck(t),

where πi(t) = xi(t)
N(t) , N(t) = ∑D

j=1 xj(t), E [N(t)] = 1, P is a number of external
perturbations, D is the chosen scale of the concentration of taxon i, and µ̄i = µi−µD,
ᾱij = αij − αDj, β̄ik = βik − βiD are relative growth rates, relative interactions, and
relative external effects respectively.

Although mathematical modelling methods, such as the Lotka-Volterra model,
can be valuable tools for assessing the stability of bacterial communities over time,
they may not be suitable for handling microbiome time series data that are both
temporally sparse and high-dimensional (Lugo-Martinez et al., 2019). The majority
of these methods also remove any taxa that have a relative abundance profile con-
taining a zero entry (Lugo-Martinez et al., 2019). Moreover, since this approach is
based on pairwise interactions, it ignores more complex interactions. We can sum-
marize the limitation of this model in the following list provided by (Gonze et al.,
2018):

• It only describes pairwise interactions and thus fails to capture more complex
interactions between microbes.

• Interaction strengths are not supposed to change over time.
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• Interactions are assumed to be bilinear meaning that the growth rate of a
species will change proportionally to the abundance of its connected neighbour.

• It does not take into account environmental factors such as variable temperat-
ure or antibiotic exposure.

All these limitations might be acknowledged by considering more complex interac-
tions in the microbiome constitution that are changing over time. For this reason,
the next section will give insights into how network analysis has been used to study
microbiome dynamics.

1.2.3 Network perspective on microbiome

Methods discussed above mainly focus on statistical constitution analysis (longitud-
inal analysis or time-series analysis), omitting the large variety of complex microbe-
microbe and host-microbe interactions, or on mathematical modelling that only ac-
counts for pairwise interactions. However, it is known that the microbiome contains
a lot of complex interactions that have to be considered. That is why, the network
perspective gives a more comprehensive approach to the analysis of microbiome dy-
namics than mathematical modelling with Lotka-Volttera, especially the analysis
based on statistical methods. The main focus from the network perspective of the
microbiome is on how to construct a network from the microbiome data, especially a
network for tracking changes over time, which is crucial in the analysis of microbiome
dynamics.

Several methods are available for constructing microbial networks, ranging from
permutation tests and correlation to approaches dealing with compositionality or
multiple factors influencing taxon abundance (regression). The simplest approach
for building microbiome networks is based on similarity and dissimilarity meas-
ures. These methods use a pairwise dissimilarity index such as the Bray–Curtis
or Kullback–Leibler indices. Other methods are more complex and include more
substantial approaches to constructing networks from microbiome data.

Correlation networks

Correlation-based techniques for constructing microbiome networks detect significant
pairwise interactions between OTUs using a correlation coefficient such as Pearson
correlation coefficient or Spearman’s nonparametric rank correlation coefficient. The
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basic assumption of this approach is that a non-random pattern is shaped by ecolo-
gical processes driving coexistence or exclusion. However, the nature of this pattern
is usually not defined (Riera and Baldo, 2020). (Faust and Raes, 2012) analyzed eco-
logical interactions among bacteria in the human microbiome using a co-occurrence
network. The network was constructed using similarity and dissimilarity measures
and generalized boosted linear models which describe predictive relationships.

Pearson and Spearman correlation coefficients are not however robust to compos-
itionality. Hence, several construction methods have been proposed to deal with the
compositionality of microbiome data. Sparse Correlations for Compositional Data
(SparCC) is one of these methods. SparCC was developed by (Friedman and Alm,
2012) and it was proven to work accurately on simulated and real-world datasets.
This method employs log transformations which are required to eliminate zero val-
ues from datasets or they can be replaced with small values known as pseudocounts.
Another method for inferring correlations from compositional data is Correlation
inference for Compositional data through Lasso (CCLasso) (Fang et al., 2015). It
uses the least squares with an L1 penalty after log ration transformation for raw
compositional data to identify the correlations among microbes. Molecular Ecolo-
gical Network Analysis Pipeline (MENAP) (Deng et al., 2012) is a random matrix
theory-based method that is developed for tackling the issue of arbitrary choice of
thresholds used to include or exclude interaction from the networks.

Probabilistic graphical models (PGMs)

PGMs, with Bayesian and Markov networks being the most popular graphical mod-
els, bring together probability theory and graph theory to deal with uncertainty
and complexity. Bayesian networks are considered directed graphical models, while
Markov networks are considered undirected graphical models. Directed graph mod-
els can be represented by a graph with its vertices serving as random variables and
directed edges serving as dependency relationships between them. In the case of
Bayesian networks, the directed edge represents conditional distributions. For ex-
ample, if the values of the vertices are binary, the conditional distributions may be
Bernoulli distributions. In the case of continuous values, the conditional distribu-
tions may be Gaussian. Markov random fields (MRFs) or Markov networks also use
a graph to describe dependencies between random variables, but in this case, MRFs
use undirected edges instead of directed edges. This difference implies what type of
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relationships each of these methods can capture. Bayesian networks are better suited
for modelling causal relationships, while MRFs can be used for modelling spatial and
temporal dependencies. Depending on whether there is temporal information or not,
one can use static or dynamic PGMs.

In terms of microbiome dynamics, PGMs can be used to model relationships
between different microbial taxa. Edges between OTUs represent symmetric undir-
ected associations. These models can capture the underlying stochastic processes
that govern the dynamics of the microbiome. PGMs also can be used to model
the interactions between the microbiome and host factors which allows identifying
key host-microbe interactions that influence the composition and function of the
microbiome (Hernández-Rocha et al., 2021; Lugo-Martinez et al., 2019).

Other methods for constructing networks include regression-based methods. The
regression-based methods are based on multiple regression analysis to infer the
abundance of one species from the abundance of another species. Unlike correla-
tion networks or co-occurrence-based methods, regression analysis is able to cap-
ture more complex forms of interactions. As with all machine learning methods,
regression-based methods suffer from overfitting, the curse of dimensionality, and
the interpretation of results may become more difficult. For example, the predicted
links might not always mean that there is a biological association between species
(Layeghifard et al., 2017).

Network analysis and the Lotka-Volterra model are two commonly used ap-
proaches for studying the dynamics of microbial communities in the human mi-
crobiome. Both approaches can give insights into the interactions between different
microbial taxa and how these interactions contribute to the overall stability of the mi-
crobiome. Although these approaches are two different complementary approaches,
they can be combined to provide a more comprehensive understanding of the dy-
namic of microbial communities in the human microbiome.

1.3 Microbiome and complexity reduction

To address the challenge posed by the high dimensionality of microbiome data, nu-
merous studies employ various dimensionality reduction techniques to reduce the
complexity of data. Therefore, dimensionality reduction is one of the main steps
used in the analysis of the microbiome data. In this Section, we will explore different
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dimensionality reduction methods that are used both in the microbiome community
and in other domains.

1.3.1 Dimensionality reduction

Dimensionality reduction is a technique used in machine learning to reduce the num-
ber of features or variables in a dataset, while still retaining as much information as
possible. This can be useful for a variety of reasons, such as reducing the computa-
tional complexity of a model, improving the interpretability of results, and mitigating
the curse of dimensionality. Moreover, the dimensional reduction methods can also
be useful for visualizing high-dimensional data and identifying patterns or clusters.
One of the most common dimensionality reduction techniques is principal component
analysis (PCA).

PCA is a classical dimensional reduction method used in data analysis and ma-
chine learning. The idea of PCA is to find a new set of variables, the so-called
principal components, that are linear combinations of the original variables, and
that capture the most important patterns and variations in the data. PCA is lim-
ited by certain assumptions, namely, it can capture linear correlations between the
features but fails when this assumption is violated. Moreover, traditional PCA is
not suitable for large datasets or online computing. Several variations of PCA have
been developed to address these challenges.

• Kernel PCA (Schölkopf et al., 2005) is a nonlinear dimensionality reduction
technique. The basic idea behind it is to first map data to a higher-dimensional
space with a kernel function with more separable data. Then, the principal
components are calculated in this new high-dimensional space. However, ker-
nel PCA can be computationally expensive and requires tuning of the kernel
parameters, which is time-consuming and prone to errors.

• Sparse PCA (Zou et al., 2006; Shen and Huang, 2008) produces sparse prin-
cipal components by introducing a sparsity constraint on the coefficients of the
eigenvectors. This variation is useful in cases where only a small subset of the
original features are relevant for explaining the variance in the data.

• Multi-Block PCA (Bair et al., 2006) can handle data that is inherently divided
into multiple blocks or groups by decomposing each block separately and then
combining the results.



18 Chapter 1 Introduction

• Incremental PCA (RossD, LimJ et al., 2008) which allows for the computation
of principal components in a streaming or online fashion. Instead of computing
all principal components all at once on static data, incremental PCA updates
the principal components incrementally as new data is observed. The main
advantage of this PCA variation is that it can handle very large datasets that
cannot fit into memory. One limitation of Incremental PCA is that it may not
produce the same results as traditional PCA if the data distribution changes
over time.

• Robust PCA (Wright et al., 2009; Candès et al., 2011) was developed to tackle
challenges such as the presence of outliers and noise in the data. This is done
by decomposing the data into a low-rank component and a sparse component
that captures the outliers.

• Non-negative PCA (Lee and Seung, 1999; Hoyer, 2004) produces non-negative
principal components which can be useful in cases where the data is naturally
non-negative, such as image data or spectral data. The non-negative principal
components are achieved by imposing non-negativity on the loading matrix,
which represents the contribution of each variable to each non-negative prin-
cipal component.

• Probabilistic PCA (Tipping and Bishop, 1999; Lawrence and Hyvärinen, 2005)
outputs the principal components as a probabilistic distribution which allows
for the incorporation of prior knowledge and uncertainty about the data. The
probabilistic formulation of PCA is obtained from a Gaussian latent variable
model.

Each of these variations has its own advantages and disadvantages. Choosing which
algorithm to use depends mainly on the specific requirements of the problem at hand,
such as data type or computational feasibility.

Another dimensionality reduction approach is t-distributed stochastic neighbour
embedding (t-SNE) (Maaten and Hinton, 2008; Van Der Maaten, 2014). Even
though t-SNE was initially proposed for the visualization of high-dimensional data in
a lower-dimensional space, typically 2D or 3D, (Van Der Maaten, 2009) later intro-
duced a parametric t-SNE as an unsupervised dimensionality reduction technique.
The idea is to represent each data point as a high-dimensional probability distribu-
tion and then find a low-dimensional embedding that preserves the pairwise simil-
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arities between the data points as much as possible. This is achieved by minimizing
the Kullback–Leibler divergence between the high-dimensional and low-dimensional
distributions.

Other dimensionality reduction techniques are non-negative matrix factorization,
autoencoders, linear discriminative analysis etc. Non-negative matrix factorization
is a technique that factorizes a non-negative matrix into two lower-dimensional non-
negative matrices. Autoencoders are neural networks that have a bottleneck which
is a compressed knowledge representation of the original input. These two methods
are often used in image and text processing.

1.3.2 Graph representation learning

If we consider the network perspective on the microbiome, then graph representa-
tion learning may be a better choice for the reduction of microbiome complexity.
Therefore, since we will use not only the “dimensional reduction” term, which has
been extensively used in microbiome research but also “graph representation”, we
believe it is worth explaining what graph representation is and shedding light on the
difference between these two terms in the context of graph-structure data.

Graph representation learning is a process of learning a low-dimensional vector
representation, the so-called embedding, of nodes in a graph while preserving their
structural information. Note that graph representation learning can be done not only
for nodes but also for the entire graph. In this case, the task is more challenging since
it requires capturing the global properties of the graph such as its overall topology,
and community structure, while still maintaining a low-dimensional representation.
Graph representation learning has gained a lot of attention in recent years due to
the wide range of applications such as social network analysis, and recommendation
systems (Ying et al., 2018a; Wang et al., 2019; Wang et al., 2020a)

We can broadly categorize methods for graph representation learning into semi-
supervised or unsupervised methods and methods for static or time-evolving (dy-
namic) graphs. A good overview of the current state of methods for time-evolving
and static graph representation techniques can be found in (Kazemi et al., 2020;
Barros et al., 2021; Cui et al., 2019; Zhang et al., 2020a). The most recent survey on
both time-evolving graphs and static graphs is presented in (Khoshraftar and An,
2022).



20 Chapter 1 Introduction

Static graph representation

Approaches for static graph representations can be classified into two categories –
those that learn the representation of nodes and sub-structures of the graphs. The
first category tends to encode nodes of the graph in a low-dimensional space such
that their topological properties are reflected in the new space (node2vec (Grover
and Leskovec, 2016), DeepWalk (Perozzi et al., 2014)). Most studies are focused on
node representation learning, and only a few learn the representation of the whole
graph (graph2vec (Narayanan et al., 2017)).

Representing an entire graph using node embeddings is challenging because pool-
ing a graph into a vector representation usually introduces an extreme information
bottleneck. Simple approaches to this problem aggregate all node embeddings (e.g.,
sum or average) or create a “master node” that is connected to all the other nodes
in the graph. Recent graph pooling operations can learn hierarchical representations
that significantly reduce the size of a graph. For instance, the authors in (Ying et al.,
2018b) propose a differentiable graph pooling module called DiffPool that learns to
assign nodes to clusters, resulting in a gradual pooling of the graph. Further im-
provements to hierarchical pooling can potentially reduce the number of parameters
and the complexity of the operator, and they might increase the overall performance.
For instance, SAGPool (Lee et al., 2019) proposes the self-attention mechanism using
graph convolution in the graph pooling, and HGP-SL (Zhang et al., 2019) introduces
a structure learning mechanism. In contrast to these approaches, we leverage the
self-attention mechanism of a Transformer (Vaswani et al., 2017) in our model and
we add a master node that attends to every node in the graph. This simple graph
pooling only marginally increases the number of parameters and the computational
complexity of the model. Furthermore, we use the initial representation of the master
node to inject the topological information of the time-snapshot graph at a previous
time step.

Dynamic graph representation

Representing a time-evolving or dynamic graph in a low-dimensional space is an
emerging topic that is still being investigated. Some methods are the extension of
the methods for static graphs and are based on matrix factorization (Yu et al., 2017;
Zhang et al., 2018b; Zhu et al., 2016). These methods factorize the similarity matrix
to generate node embeddings over time. Among recent approaches, DynGEM (Goyal
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et al., 2018) uses the learned representation from the previous time step to initialize
the current time step representation. Such initialization keeps the representation at
the current time step close to the learned representation at the previous time step.
The extension of the previous method is dyngraph2vec (Goyal et al., 2020), where
authors have made it possible to choose the number of previous time steps that are
used to learn the representation at the next time step. Moreover, dyngraph2vec uses
recurrent layers to learn the temporal transitions in the graph. Several approaches
perform random walks on each snapshot of a time-evolving graph (Mitrovic and De
Weerdt, 2018; De Winter et al., 2018; Zhou et al., 2019), however generating ran-
dom walks for every timestamp is too computationally expensive. Therefore, other
approaches have been proposed that first generate embeddings for the initial time
step using static random walk, and then they gradually update node representation
(Mahdavi et al., 2018; Heidari and Papagelis, 2020; Sajjad et al., 2019; Khoshraftar
et al., 2019).

Graph Neural Networks

Graph Neural Networks are a class of machine learning methods for processing data
that can be represented as graphs. GNNs aim to generalize the concept of con-
volutional neural networks to graph data by introducing an aggregation function
that aggregates information from neighbouring nodes. All GNNs usually utilize
the following fundamental layers: permutation equivariant, local pooling and global
pooling. The permutation equivariant layer maps a representation of a graph into
an updated representation of the same graph. Usually, it is implemented by pairwise
message passing between nodes of the graph, which implies updating node represent-
ation through aggregating messages received from its immediate neighbours. Local
pooling is done similarly to convolutional neural networks and is used to increase
the receptive field of a GNN. Global pooling provides a fixed-size representation of
the whole graph. We further discuss some most commonly used types of GNNs.
According to (Wu et al., 2020), they can be divided into the following main groups:

• Recurrent graph neural networks: aims to learn node representation with recur-
rent neural network architectures. The main assumption in Recurrent GNNs
is that nodes in the graph constantly exchange information with their neigh-
bours. They apply the same set of parameters recurrently over nodes in a
graph to extract high-level node representation. The earlier research on this
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type of GNNs includes (Sperduti and Starita, 1997; Micheli et al., 2004; Li
et al., 2015).

• Convolutional graph neural networks: use a specific type of aggregation func-
tion (i.e. graph convolutional) to update node representation. The main dif-
ference with recurrent graph neural networks is that they use multiple graph
convolutional layers to extract high-level node representations. Two major
types of GCNs are Spatial Graph Convolutional Networks (Danel et al., 2020)
and Spectral Graph Convolutional Networks. Usually, models based on spatial
convolution are chosen over models based on spectral convolution due to effi-
ciency, generality and flexibility (Wu et al., 2020). Spatial convolution improves
on the classical GCN (Kipf and Welling, 2016a) by taking into account the or-
dering of node neighbours and it extracts properties of a target node based
on its k local neighbours. GraphSAGE (Hamilton et al., 2017) is an example
of spatial GCN. It leverages node feature information to generate inductive
node embeddings for previously unseen data. They train a set of functions
that learn to aggregate feature information from a node’s local neighbourhood
by incorporating a different number of hops or search depths. Another ex-
ample of spatial convolution is Graph Attention Network (Velickovic et al.,
2017). It uses an attention mechanism to selectively attend to different nodes
in the graph using masked self-attentional layers. Attention-based node em-
bedding aims to assign an attention weight to neighbourhood nodes of a target
node. The attention mechanism allows efficient and scalable computation of
node representation from neighbours most relevant for a particular node. An
improvement to Graph Attention Network is done in Gated Attention Net-
works (Zhang et al., 2018a), where a self-attention mechanism computes an
additional attention score for each attention head. Message Passing Neural
Networks (Gilmer et al., 2017) outlines a general framework of spatial-based
GNNs. The basic idea is to consider graph convolutions as a message-passing
process in which the latent representation of a target node is done by passing
messages between nodes along edges. The architecture consists of two key com-
ponents: a message function and a node update function. The former takes the
latent representation of two nodes and computes a message to be sent from one
node to the other. The latter takes the current latent representation of a node
and messages it has received from its neighbours and computes a new latent
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representation of that node. Spectral Convoluiton performs an eigendecom-
position of the Laplacian matrix of the graph. An analogy of this approach
is PCA where the eigendecomposition of the feature matrix is performed to
understand the variance of data. However, in the case of spectral convolution
smaller eigenvalues explain the structure of the graph better. Examples of
methods based on spectral convolution include (Bruna et al., 2013; He et al.,
2022; Kipf and Welling, 2016a)

• Graph autoencoder: is a set of unsupervised learning methods which map nodes
or graphs into a latent feature space and then decode graph information from
latent representation. These methods are used for learning graph embeddings
and graph generative distributions. This category includes models such as
Structural Deep Network Embedding (SDNE) (Wang et al., 2016), which uses
a stacked autoencoder to learn the node’s first-order proximity and second-
order proximity. Variational Graph Autoencoder (VGAE) (Kipf and Welling,
2016b) is a framework based on a variation autoencoder which is able to learn
interpretable latent representation for undirected graphs.

• Spatial-temporal graph neural networks: All methods discussed above are
mainly meant to work with static graphs. However, many real-world applica-
tions utilize the concept of dynamic or time-evolving graphs. Spatial-temporal
GNNs are built in a such way that they are capable of capturing temporal
patterns alongside spatial patterns. Most RNN-based approaches are able to
capture spatial-temporal dependencies (Zhang et al., 2018a; Seo et al., 2018;
Li et al., 2017; Wu et al., 2019). EvolveGCN (Pareja et al., 2019) applies
the graph neural network for static graphs to dynamic graphs by introducing
a recurrent mechanism to update the network parameters. The authors focus
on the graph convolutional network and incorporate a recurrent neural net-
work to capture the dynamics of the graph. DynSAT (Sankar et al., 2020)
which learns a dynamic node representation by considering topological struc-
ture (neighbourhood) and historical representations following the self-attention
mechanism.

Overall, dimensionality reduction and graph representation learning are both
techniques used in machine learning to reduce the complexity of data, but they
operate in different domains and have different goals. Dimensionality reduction is
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Figure 1.3: The visual comparison of dimensionality reduction (a) and graph repres-
entation (b). The former aims at reducing the number of dimensions while preserving
the most important information. The latter, in turn, is objected to learning a map-
ping that embeds nodes, or entire graphs as points in a low-dimensional vector space
while considering relationships between nodes.

typically applied to datasets that are represented as vectors in a high-dimensional
space, where each dimension represents a feature or variable. Graph representation
learning, on the other hand, is concerned with learning a graph embedding that
preserves some notion of structure or connectivity between the nodes. However,
graph representation learning can be also applied to learning an embedding of the
whole graph, instead of a single node. In this case, dimensionality reduction and
graph representation learning have the same objective. In Figure 1.3 we visually
illustrate the difference between dimensionality reduction (PCA and t-SNE) and the
classical understanding of graph representation learning (the method is from (Epasto
and Perozzi, 2019).

1.3.3 Complexity reduction of microbiome

Microbiome data is high-dimensional data with numerous OTU cluster variables.
Therefore, dimensionality reduction has become a common choice to facilitate the
exploration and visualization of community similarity and distribution across sample
populations.

In the microbiome community, PCA and principal coordinate analysis (PCoA) are
two commonly used dimensionality reduction methods. However, PCA is generally
better suited for identifying the features that explain the most variance in the data
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and despite its limitations and challenges associated with microbiome data discussed
in Section 1.1, it has widely been used in microbiome analysis. For example, it
was used to derive complex gut microbiota patterns associated with diet and body
composition (Leong et al., 2020). (Stanaway et al., 2023) applied PCA to identify
microbiome clusters and test their association with pesticides. As it was mentioned
above, compositionality and sparsity induce PCA to produce misleading results on
microbiome data (Morton et al., 2017). (Morton et al., 2019) proposed to adopt
Robust PCA to microbiome data which has shown a lot of successful applications
in various biological contexts (Beauchamp-Walters et al., 2023; Bali et al., 2021;
Parbie et al., 2021). The generalized version of this method proposed in (Martino
et al., 2021), called compositional tensor factorization, has shown that it is possible
to detect microbial changes associated with specific phenotypes across both time and
space.

PCoA is mainly applied to microbiome data and used to analyze and display
distance matrices, which characterize how different or similar microbial communities
are based on their taxonomic or functional profiles. In order to preserve the original
distances as much as possible, PCoA converts the high-dimensional distance matrix
into a lower-dimensional space, usually a two- or three-dimensional space. Some
studies have revealed microbiome-disease associations using PCoA (Campbell et al.,
2020). However, both PCA and PcoA are usually used as input to other statistical
methods such as regression and machine learning or for visualization.

Few studies have shown the application of t-SNE to the microbiome data. (Xu
et al., 2020) proposed a method to classify microbiome samples using t-SNE embed-
dings. They utilized the Aitchison distance for modifying the conditional probabil-
ities in t-SNE to consider the compositional nature of microbiome data.

Other methods that are popular in microbiome data analysis are canonical cor-
respondence analysis (CCA) (Ter Braak, 1986), non-metric multidimensional scaling
(nMDS) (Clarke, 1993) and uniform manifold approximation and projection (UMAP)
(McInnes et al., 2018). CCA is the most commonly used method for feature inter-
pretation in microbiome data analysis. The reason for the wide usage of this method
is its ability to incorporate sample metadata into the low-rank embeddings. nMDS is
a non-linear method widely used in microbiome data analysis due to the possibility
of incorporating an arbitrary dissimilarity measure. Like t-SNE, UMAP is mainly
used for the visualisation and exploration of microbial community and diversity as
well as identifying potential associations between microbial data and environmental
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variables. Moreover, one advantage of UMAP is that it can handle non-linear rela-
tionships between microbiome features, which is beneficial considering the complex
non-linear interactions in microbiomes. Moreover, it is worth mentioning that the
classical practice in microbiome data analysis is to use a feature table as an input to
dimensionality reduction methods which omits the important interactions between
microbes, even though recently presenting the microbiome data as a network instead
of a feature table (or OTU table) has been gaining some attention.

In terms of graph representation learning, it has not been commonly applied to
analyzing microbiome dynamics. Most of these works utilize graph neural networks
for predicting different associations, for example, between microbiome and drugs
(Long et al., 2020). Therefore, to the best of our knowledge, this thesis is unique
and unprecedented in its attempt at combining microbiome analysis and graph rep-
resentation learning.

1.4 Thesis Overview

This thesis aims to enhance the analysis of microbiome data by developing methods
that address the challenges discussed in Section 1.1, the complexity of multiple in-
teractions of species presented in the microbiome data and finally, take into account
the metastable behaviour of the microbiome compositions. We believe that it is cru-
cial to represent the microbiome as a time-evolving graph to account for thousands
of interactions between species and consider the metastable nature of the microbi-
ome during its analysis. We propose to construct a series of correlation networks
at different time points. In this case, nodes will represent species and edges will
be determined as interactions between two species at the current time step. Con-
structing a correlation network on each time step has a major advantage. First of
all, it can reveal temporal patterns in the community structure and help to identify
species that are driving community dynamics. Second, it can help to determine the
important biomarkers (species and interactions between species) that are affected by
a temporal perturbation such as diet, disease, or medication.

Furthermore, unlike other methods that utilize the concept of networks, we be-
lieve that to gain a better understanding of the high-dimensional microbiome data,
it is essential to reduce the data dimensionality in such a way that increases in-
terpretability while simultaneously minimizing information loss. That is why, this
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thesis proposes a new approach to the analysis of microbiome dynamics. Namely,
instead of analysing the dynamic in the high-dimensional space, which is typical for
microbiome data, we suggest first projecting it to a lower-dimensional space retaining
the metastable behaviour and accounting for the complex interactions, we analyze its
dynamical properties in this new space. In order to facilitate the finding of microbial
biomarkers or interactions between microbes that are associated with transitions of
the microbiome composition from one state to another, we complement our methods
with interpretability approaches. We aim to address the following research questions:

1. RQ1: How can the microbiome metastability and a large number of interac-
tions between species be accounted for in a method?

2. RQ2: How can data-driven dimension reduction techniques for dynamical sys-
tems be used to project the time-evolving graph constructed from microbiome
data into a low-dimensional space while preserving its metastable properties?

3. RQ3: How effective is the use of deep learning technologies in learning
the low-dimensional representation of time-evolving graphs while retaining the
metastable behaviour of the microbiome?

4. RQ4: How can the identification of keystone species and interactions between
them that play a key role in the transition of microbiome constitution from one
state to another under various perturbations such as diet, disease, or antibiotic
exposure be improved?

So far, we have discussed what the microbiome is and why it is important to
analyze the microbiome, the challenges associated with microbiome data, and the
current methods used for the analysis of microbiome dynamics. In Section 1.3, we
have presented the difference between dimensionality reduction and graph represent-
ation learning. For each of these, we also reviewed state-of-the-art methods both in
general and specific to microbiome data. The chapters 2, 3 and 4 will focus on the
following analysis:

Exploring graph kernels and dynamical system theory as methods to ana-
lyse the human microbiome dynamics: In Chapter 2, we present an approach,
which we call graphKKE and which is based on the spectral analysis of transfer op-
erators, such as the Perron–Frobenius or Koopman operator, and graph kernels. We
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explore the idea of analysing the microbiome dynamics by projecting it in a low-
dimensional space so that there is no need to analyze the microbiome data in the
high-dimensional space where the microbiome usually exists. We will show that the
method is able to preserve the metastability properties in the low-dimensional space
such as the number of metastable states and their location. The proposed method
enables both the possibility of representing the microbiome data as a time-evolving
graph and incorporating the energy landscape paradigm. Furthermore, Chapter 2
will present the microbiome and simulated datasets used in this thesis.

Deep learning for the analysis of the microbiome dynamic: Chapter 3
will investigate how deep learning technologies can be used to study the complex
network of microbial species. We will utilize the state-of-the-art architecture in the
sequential data analysis, the so-called transformer, and combine it with contrastive
learning. The former allows us to learn the low-dimensional representation of the
time-evolving graph while contrastive learning ensures that a new space contains the
same dynamical properties as the high-dimensional space.

Extracting high-impacting structural graph patterns from the time-e-
volving graph: In Chapter 4, we address an important challenge in microbiome
analysis which is feature importance. We will study how using two presented meth-
ods in the previous chapters, we can extract hubs and modules of the time-evolving
graph that relate to each particular metastable state. From a biological point of
view, we want to identify keystone species and interactions between them that play
a central role, either as a driver or as a consequence, in the fluctuations of the mi-
crobiome composition under the influence of various factors such as diet, disease, or
medication.
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The human body is a remarkable ecosystem where microbial life thrives, with
approximately one out of every two cells being a microbial cell. This diverse com-
munity of bacteria, archaea, and viruses, collectively known as the microbiome, col-
onizes various parts of our body, including the skin, mouth, and gut, making up
an astonishing 1.5 kg of symbiotic organisms. The presence of these microorganisms
profoundly impacts both their host and the surrounding environment. Therefore, the
influence of the microbiome on human health and disease has garnered significant
attention in recent years. While efforts to understand the differences in microbi-
ome profiles between healthy and ill individuals are underway, many studies have
primarily focused on statistical constitution analysis, pairwise interactions, or static
networks of species interactions. Unfortunately, such approaches often overlook more
complex microbe-microbe and host-microbe interactions, which play pivotal roles in
shaping the microbiome’s dynamics and its impact on the host. Furthermore, as
discussed in the previous chapter, the composition of the microbiome can be likened
to a stability landscape, featuring a stable state representing a healthy microbiome
and alternative states that emerge in response to various disturbances. In this thesis,
we will refer to this phenomenon as metastable behavior.

The existing methods do not only ignore more complex interactions between spe-
cies and temporal changes in the microbiome composition but also usually suffer
from the curse of dimensionality, and overfitting due to the high dimensionality and
complexity of the microbiome. Therefore, as the first step in the analysis of the
microbiome, we propose modelling the microbiome as a set of correlation networks,
a so-called time-evolving graph, constructed at each time step, which allows us to
analyze the metastable behaviour and determine the species or interactions associ-
ated with the fluctuations of microbiome composition. To the best of our knowledge,
we are the first who consider the metastable behaviour in graph-structured data. As
an illustration of a time-evolving graph that lies in an energy landscape with two
metastable states, consider the time-evolving microbiome interaction graph shown
in Figure 2.1, where vertices represent the concentrations of bacteria species and
edges pairwise associations between them. In this example, a disease can be thought
of as a perturbation that displaces the microbiome composition from its equilibrium
(healthy) state, which we call an alternative state. The consequence of this dis-
placement is the reduction of the concentration in some vertices and the removal of
corresponding edges. Given an evolution of the graphs (in this example, the evolu-
tion of the microbe interactions), we aim to analyze dynamics occurring in the graph
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Figure 2.1: An example of a time-evolving graph of microbe interactions with
two metastable states: healthy and alternative state. Two metastable states cor-
respond to different structural graph features. For example, the stable state
(healthy) is characterized by removed edges between the following node (species)
pairs: {(1, 6), (2, 4), (3, 6)}. The alternative state, in turn, is characterized by re-
moved edges between the following node (species) pairs: {(1, 5), (2, 3), (3, 4)}.

over time, namely, extracting the number of metastable states and their locations,
substructures of a graph, which characterize the state space (e.g., the difference in
the microbe interactions between the healthy or stable state and alternative state).

This proposed overlook on the microbiome data requires an approach that will be
able to capture both temporal and topological patterns of time-evolving networks.
To capture both, we propose learning the low-dimensional representation of the time-
evolving graph which can then be used to analyze the metastable properties of the
microbiome. In such a way, during learning of the low-dimensional representation, we
can account for both temporal and topological patterns of the time-evolving graph.

In order to capture the temporal or dynamical properties of the time-evolving
graph while learning the low-dimensional representation, we make use of the transfer
operators theory. The approximation of transfer operators and their eigenfunctions
has important applications in molecular dynamics, fluid dynamics, control theory,
and many other areas. Transfer operators propagate probability densities or observ-
ables. Since these operators are infinite-dimensional, they are typically projected
onto a space spanned by a set of predefined basis functions. Fortunately, the in-
tegrals required for this projection can be estimated from training data, resulting
in methods such as extended dynamic mode decomposition. The finite-dimensional
approximation of the transfer operator can be obtained by different kernel-based
empirical estimates in two different ways: using explicitly the feature amp repres-
entation of the kernel and the second one is based on the kernel evaluations. This is
where we propose to use graph kernels for both approximating the transfer operators
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and extracting the topological information from the time-evolving graph.
To set the stage, in Section 2.1 we will first present the theory behind the trans-

fer operators, how it can be used to learn the low-dimensional representation, and
which data-driven methods exist to approximate the transfer operators. The fol-
lowing section 2.2 will introduce the concept of graph kernels, how they are used
to measure the similarity of graph or the so-called graph isomorphism, and which
main categories of graph kernels exist. In Section 2.3, our approach for learning the
low dimensional representation of a time-evolving graph with metastability will be
presented. Finally, in Section 2.4 and Section 2.5 we will discuss synthetic and real-
world data used to evaluate our method and the main findings and results. However,
before introducing the main components of our approach, we first define necessary
notations and definitions that will be used throughout this thesis.

Definition 2.0.1. A finite graph G(V,E) is defined by

• a set of nodes (states, vertices) V(G), and

• a set of edges (links, connections) E(G) ⊆ V (G) × V between nodes.

If for two nodes u, v ∈ V (G) there exists an edge, then we say that u and v
are neighbours. In the graph theory, the order of a graph is its number of vertices
|V | = n and the size of a graph is its number of edges |E|. We will refer to V (G)
and E(G) as sets of vertices and edges associated with graph G, respectively.

Depending on the nature of interactions in the system, a graph can be directed
and undirected. For instance, a directed graph can be used to describe associations
when one species influences another species but not the other way around. On the
other hand, an undirected graph can represent cases where we do not know which
species influences other species but we know that they have an association. In this
case, we make no distinction between (u, v) and (v, u).

Another special case is formed by a simple graph having n vertices, with each
vertex being adjacent to every other vertex. This graph is also known as a complete
graph.

Definition 2.0.2. The degree of a vertex, def(v) is the number of edges that are
incident with the vertex.
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2.1 Transfer operators and microbiome dynamics

In this section, we will introduce the transfer operator theory and how it can be
used to study microbiome dynamics. We start with defining a reproducing kernel
Hilbert space, what the transfer operators are and which data-driven methods for
the approximation of transfer operators exist.

2.1.1 Reproducing kernel Hilbert space

Definition 2.1.1. Let X be as a set and H a space of functions f : X → R. Then H

is called a reproducing kernel Hilbert space (RKHS) with corresponding dot product
⟨·, ·⟩H and induced norm ∥ f ∥H= ⟨f, f⟩1/2

H if there is a function k : X × X → R such
that

1. ⟨f, k(x, ·)⟩H = f(x) for all f ∈ H;

2. H = span{k(x, ·)|x ∈ X}.

The function k is called a reproducing kernel of H. The first requirement im-
plies that ⟨k(x, ·), k(x′, · · · )⟩H = k(x, x′) and is called a reproducing property of
H. Moreover, we can regard k(x, ·) as a feature map ϕ(x) of x in H such that
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. Thus, the reproducing kernel k is a kernel in a usual
sense. A feature map ϕ exists if and only if k is a positive-semidefined function. For
instance, one of the most commonly used kernels is the Gaussian RBF kernel with

k(x, y) = exp − ∥ x− y ∥2
2

2σ2 (2.1)

for x, y ∈ X and σ being a bandwidth parameter. In this Section, we will present
a list of well-known graph kernels that are more suitable for graph-structured data.
However, in the experiment section we will show that if we treat an adjacency matrix
of a graph as a vector, it is possible to apply the Gaussian RBF kernel, even though
the Gaussian RBF kernel will most likely omit the topological structure of the graph.

In order to evaluate a kernel k, we need to have the inner product between
ϕ(x) and ϕ(x′) in H. However, in most applications, the kernel is normally not
defined by an explicit representation of ϕ, but instead, each kernel implicitly defines
a potentially infinite-dimensional mapping ϕ. This means that the kernel trick allows
us to evaluate it directly without constructing ϕ.



34 Chapter 2 A graph kernel-based approach for human microbiome analysis

2.1.2 Transfer operators

Transfer operators play a fundamental role in understanding the evolution of prob-
ability distributions and observables over time, enabling the investigation of the
long-term behaviour of dynamical systems. These operators find wide-ranging ap-
plications across various scientific and engineering disciplines. For instance, they
have proven invaluable in the analysis of molecular dynamics (Nuske et al., 2014;
Schwantes and Pande, 2015), shedding light on the intricate motions of molecules
and the underlying kinetics involved. Similarly, in the domain of fluid dynamics
(Schmid, 2010), transfer operators help reveal complex flow patterns and provide
insights into turbulence and stability phenomena.

The spectral properties of transfer operators are of paramount importance. They
encapsulate key characteristics of the dynamical system under study. By analyzing
the spectrum of these operators, one can discern essential information such as dom-
inant modes of behaviour, stability, and long-term trends in the system. Moreover,
eigenvalues and eigenvectors of transfer operators furnish vital clues about the sys-
tem’s metastable states, attracting regions, and the underlying connectivity between
different states. These spectral properties are instrumental in understanding the sys-
tem’s overall behaviour and formulating effective low-dimensional representations, as
will be demonstrated in the graphKKE approach. However, before presenting a novel
method for the analysis of microbiome dynamics, the necessary definitions will be
discussed.

Definition 2.1.2 (Time-homogeneous or stationary process). A stochastic process
Xt≥0 is called a time-homogeneous, or stationary, if it holds for every t ≥ s ≥ 0 that
the distribution of Xt conditional to Xs = x only depends on x and (t-s).

Definition 2.1.3 (Transition density). The transition density function pτ : X×X →
[0,∞] of a time-homogeneous stochastic process Xt≥0 defined on the bounded state
space X ∈ Rd is expressed as

P[Xt+τ ∈ A|Xt = x] =
∫

A
pτ (x, y)dy, (2.2)

for every measurable set A. In other words, pτ (x, y) is the conditional probability
density of Xt+τ = y given that Xt = x, for every measurable set A.

Definition 2.1.4 (Transfer operator). Let pt be a probability density, ft ∈ L∞(X) an
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observable of the system, and ut(x) = π(x)−1pt(x) ∈ L1
π(X) is a probability density

with respect to the equilibrium density π.

• The Perron–Frobenius operator Pτ : L1(X) → L1(X) is defined by

Pτp(x) =
∫

X
pτ (y, x)p(y)dy. (2.3)

• The Koopman operator Kτ : L∞(X) → L1(X) is defined by

Kτf(x) =
∫

X
pτ (x, y)f(y)dy = E[f(Xt+τ )|Xt = x]. (2.4)

The time-homogeneity of the stochastic process {Xt}t≥0 implies the semigroup
property of the operator, i.e., Pt+τ = PtPτ and Kt+τ = KtKτ (Klus et al., 2018b).
This property is crucial because it ensures that the evolution of observables or prob-
ability densities in a dynamical system follows consistent and well-behaved patterns.
Particularly, it implied that these operators describe time-stationary Markovian dy-
namics. The Koopman operator describes the evolution of arbitrary observables
while the Perron-Frobenous operator describes the evolution of densities.

Another aspect of understanding the statistical properties and stability of dy-
namical systems is equilibrium densities. The study of equilibrium densities involves
finding the fixed points or invariant measures of the dynamical systems. These fixed
points represent the states that do not change under the dynamics of the system.
More formally, the equilibrium density can be defined as follows.

Definition 2.1.5. A density π is called an invariant density or equilibrium density
if Pτπ = π. That is, the equilibrium density π is an eigenfunction of the Perron-
Frobenius operator Pτ with corresponding eigenvalue 1.

Then, the Perron-Frobenous operator with respect to the equilibrium density can
be expressed as:

Definition 2.1.6. The Perron–Frobenius operator with respect to the equilibrium
density Tτ is defined by

Tτut(x) =
∫

X

π(y)
π(x)pτ (y, x)ut(y)dy. (2.5)
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The operators Pτ and Tτ are often referred to as forward operators, while Kτ

is referred as backward operator. As said, the spectral properties of the transfer
operator play an important role in the dynamical systems. Let Tτ and Kτ be the
Perron-Frobenous operator and the Koopman operator, respectively. Then, we are
particularly interested in computing eigenvalues λl(τ) and eigenfunctions φl of trans-
fer operators, i.e.:

Tτφl = λl(τ)φl (2.6)

for the Perron-Frobenous operator, or

Kτφl = λl(τ)φl (2.7)

if we are interested in the Koopman operator. Given the eigenvalues and eigenfunc-
tions of transfer operators, we can predict the evolution of the dynamical system.
Furthermore, we assume that our dynamical system is reversible:

Definition 2.1.7 (Reversibility). A system is considered to be reversible if the de-
tailed balance condition

π(x)pτ (y|x) = π(y)pτ (x|y) (2.8)

holds for all x, y ∈ X.

In a reversible dynamical system, the transfer operator has a specific property
known as adjointness. The adjoint of an operator is a concept similar to the transpose
of a matrix but adapted to the space of probability distributions. Moreover, if the
system is reversible, the operators’ eigenvalues λl are real and the eigenfunctions
φl constitute an orthogonal basis with respect to the corresponding scaler product.
Consequently, the eigenvalues can then be sorted in descending order so that 1 =
λ1 > λ2 ≥ λ3 ≥ . . . (Klus et al., 2019a). For many applications, the dynamics in
full-phase space are known to be reversible (Klus et al., 2018b). Yet, the reversibility
of microbiome dynamics remains poorly understood.

The Perron-Frobenious operator maps densities pt to densities pt+τ , while the
Koopman operator maps an observable function f to its expected value function
E[f(Xt+τ )|X+ t = .]. Furthermore, both the Koopman operator Kτ and the Perron–
Frobenius operator Pτ are linear, infinite-dimensional operators, which are adjoint
to each other and, therefore, it should not matter which one we choose to study the
behaviour of the system. Although they are typically defined on the function spaces
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L1 and L∞, we assume that the operators are well-defined on L2 (for details, see
Klus et al. (2016)).

The information about the long-term behaviour of the dynamical system is en-
coded in the spectral properties of these operators such as eigenvalues and eigen-
functions (Klus et al., 2019a). More precisely, eigenfunctions with eigenvalues close
to 1 of both Koopman and Perron–Frobenius operators contain information about
the locations of metastable states in the state space X.

In order to compute the eigenfunctions of transfer operators numerically, the
infinite-dimensional operators are projected onto a finite-dimensional space. Sev-
eral methods have been proposed to approximate the transfer operator eigenvalue
problem. We will discuss them further in this chapter.

2.1.3 Data-driven methods for approximation of transfer op-
erators

This part of the thesis will describe different data-driven methods for approximating
transfer operators. For a more elaborated description and the overarching connec-
tions between the various methods discussed, please refer to (empty citation).

Let (x(i), y(i))m

i=1 be data with y(i) = Θτ (x(i)) and Θτ is the flow map associated
with the dynamical system. We start by giving the definitions of a covariance oper-
ator and a Gram matrix. Let k denote a positive define kernel on X × X which can
be interpreted as the feature map ψ(x) of x so that k(x, x′) = ⟨ψ(x), ψ(x′)⟩H.

Definition 2.1.8. The covariance operator CXX : H → H and cross-covariance
operator CY X : H → H are defined as

CXX =
∫
ψ(X) × ψ(X)dµ(X) and CY X =

∫
Kψ(X) × ψ(X)dµ(X). (2.9)

Since covariance operators cannot be analytically computed, we will consider
empirical estimations from training data:

ĈXX = 1
n

ΦΦT = 1
n

n∑
i=1

ϕ(xi) × ϕ(xi), (2.10)

ĈY X = 1
n

ΨΦT = 1
n

n∑
i=1

ψ(yi) × ϕ(xi), (2.11)

where Φ = [ϕ(x1), . . . , ϕ(xn)] and Ψ = [ψ(x1), . . . , ψ(xn)] are feature matrices.
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Another definition that will be used further in the section is the Gram matrix.

Definition 2.1.9. The Gram matrix GXX ∈ Rn×n and time-lagged Gram matrix
GY X ∈ Rn×n are defined as

GXX = ΦT Φ = [k(xi, xj)]ni,j=1 and GY X = ΨT Φ = [k(yi, xj)]ni=1.

Time-lagged independent component analysis

The time-lagged independent component analysis (TICA) is a widely used dimen-
sion reduction method for time-series data. The method was first introduced in
(Molgedey and Schuster, 1994) as a solution to the blind source separation problem.
In dynamical systems, TICA is usually used as a preprocessing step to reduce the
size of the state space by projecting the dynamics onto the main coordinates. Let
us assume the dynamical system is reversible, then the TICA coordinates are eigen-
functions of Kτ and Pτ projected onto the space spanned by linear basis function.
Let CXX and CY X be covariance and cross-covariance matrices defined in Eq. 2.9.
Solving the following eigenvalue problem, we can obtain the time-lagged independent
components

CXY φl = λlCXXφl (2.12)

or
C+

XXCXY φl = λlφl, (2.13)

where C+
XX denotes the Moor-Penrose pseudo-inverse of CXX .

The time-lagged independent components refer to statistically independent pat-
terns or features that are extracted from time-series data.

Dynamic mode decomposition

Dynamical mode decomposition (DMD) is a data-driven method for extracting spa-
tial and temporal patterns from multi-dimensional time series data and found its
application in various fields such as mechanics, robotics, and neuroscience (Wu et
al., 2021). Dynamical mode decomposition was developed as a tool to identify co-
herent structures in fluid flows (Wu et al., 2021). The basic idea behind DMD is to
decompose a given time-series data into a set of spatial patterns (modes) that evolve
dynamically over time. These modes capture the dominant coherent structures and
oscillatory behaviour present in the system
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In DMD we assume that there exists a linear operator M such that yi = Mxi.
Since the underlying dynamical system is in general nonlinear, this equation cannot
be fulfilled exactly and we want to compute the matrix M in such a way that the
Frobenius norm of the deviation is minimized:

min ∥ Y −MDMDX ∥F . (2.14)

The solution to this minimization problem is given:

MDMD = Y X+ = (Y XT )(XXT )+ = CT
Y XC

+
XX = MT

T ICA. (2.15)

The eigenvalues and eigenvectors of MDMD are called DMD eigenvalues and modes,
respectively. In order to obtain DMD eigenvalues and modes, we need to solve the
following equation:

MDMDφl = λlφl. (2.16)

Variational approach of conformation dynamics

The variational approach of conformation dynamics (VAC) is a generalization of
the frequently used Markov state modelling framework that allows arbitrary basis
functions. In addition to data, VAC requires a set of basis functions ψ, often called
dictionary. The variational approach computes eigenfunction of Tτ or Kτ . Using the
definition of the covariance and cross-covariance matrices in Eq. 2.9, we define a
VAC matrix as MV AC = C+

XXCXY . The matrix MV AC can be regarded as a finite-
dimensional approximation of Kτ . Eigenfunctions of the Koopman operator can be
then approximated by the eigenvectors of the matrix MV AC . Let ξl be an eigenvector
of MV AC :

MV ACφl = λlφl (2.17)

and ϕl(x) = φ∗
l ϕ(x), where * denoted the conjugate transpose.

Extended dynamic mode decomposition

Extended dynamic mode decompositions (EDMD) is a generalization of DMD and
can be used to compute finite-dimensional approximations of the Koopman operator,
its eigenvalues, eigenfunctions, and eigenmodes (Williams et al., 2015). EDMD can
also be used to approximate eigenfunctions of the Perron-Frobenius operator with
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respect to the density underlying the data points. Moreover, EDMD does not require
a dynamical system to be reversible, unlike VAC. With the notation of the covariance
and cross-covariance above, the minimization problem can be written as follows

min ∥ ΨY −MEDMDΨX ∥F . (2.18)

The solution is then given by:

MEDMD = ΨyΨ+
x = (ΨY ΦT

X)(ΨXΨT
X)+ = CT

Y XC
+
XX = MT

V AC . (2.19)

EDMD aims at finding a linear relationship between the transformed data matrices
ΨX and ΨY instead of assuming a linear relationship between the data matrices X
and Y .

Kernel-based discretization of eigenvalue problem

Unlike previous methods that are based on approximating the eigenvalues problem
with covariance matrices, (Klus et al., 2018a) propose using kernel evaluations of
training data for the numerical solution of the transfer operator eigenvalue problem.
In fact, all previous methods discussed here can be regarded as special cases of
this approach. One of the main advantages of this approach is instead of explicitly
constructing high-dimensional feature space, kernels can be defined implicitly.

We first assume that the Perron-Frobenius operator and the Koopman operator
are defined on L2

X. Kernel transfer operators follow then from the assumption that
densities and observables in L2

X can be represented as elements of the RKHS H (for
more details see (Klus et al., 2018a)). Let us consider the original transfer operator
eigenvalue problem Kφ = λφ. Then, we aim at finding functions φ̃ ∈ H such that:

KEkφ̃ = λEkφ̃, (2.20)

where Ek is the embedding operator Ek : L2(µ) → L2(µ). In order to obtain an
eigenfunction we set φ = Ekφ̃. After a set of operations, we have an approximation
of the transfer operator eigenvalue problem that can be solved numerically:

GY Xφ̃X = λGXXφ̃X , (2.21)

where φ̃X = [φ̃(x1), . . . , φ̃(xn)].
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2.2 Graph kernels for microbiome network

2.2.1 What is graph kernel?

Graph kernels have become an established and widely-used machine learning tech-
nique for solving various tasks on graphs. Due to the abundance of graph-structure
data, particularly in chemo- and bioinformatics domains, and the empirical success
of kernel-based methods for learning from such data, many works in this area exist.
Graph kernels are a family of algorithms used to compare and measure the similarity
between graphs. Moreover, transforming graphs into feature vectors with graph ker-
nels allows the use of machine learning methods on graph-structured data. Graph
comparison is a fundamental problem with numerous applications in many different
domains (Nikolentzos et al., 2021). Two graphs with identical structures are called
isomorphic. However, the problem of graph isomorphism is very computationally
demanding requiring a lot of computational resources, especially in the case of large
graphs. Graph kernels try to tackle this issue in the most efficient way while also
capturing the topological patterns in the graph. Intuitively, graph kernels can be
considered as a bridge between graph-structure data and machine learning which, in
most cases, are dedicated to work on vector-structure data and are not able to cap-
ture the topological complex interactions graphs. Another reason for the empirical
success of graph kernels is that they allow the large family of kernels to work directly
on graphs (Nikolentzos et al., 2021).

Over the past 20 years, many graph kernels have been proposed that can broadly
be divided into two groups: (1) those that compare nodes in a graph and (2) those
that compare graphs. Moreover, there exist many different criteria that can be
used to divide graph kernels into different groups. For example, graph kernels can
be divided into groups based on which structural aspects of graphs, such as walks,
subtrees, paths, or subgraphs, they use to measure similarity. Another option is to
group graph kernels based on their ability to handle unlabeled graphs, node-labelled
graphs, or edge-labelled graphs. It is worth noting that even state-of-the-art graph
neural networks follow a neighbourhood aggregation scheme similar to many graph
kernels, and they can be combined in the same framework (Feng et al., 2022; Morris
et al., 2019). For further reading, we refer to overviews of graph kernels provided in
(Nikolentzos et al., 2021; Kriege et al., 2020).

In the context of the microbiome, graph kernels can be used to analyze the
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relationships between different species. As we discussed in Chapter 1, it is very
important to represent the microbiome as a time-evolving graph which makes graph
kernels a logical choice to study the microbiome structural patterns and relationships
between different microorganisms. Also, to understand the difference between the
healthy state and the alternative state of the microbiome composition, we need to
measure the similarity between graphs at different time steps.

We start the section by giving the formal definition of a kernel function. Then,
we will give an overview of the most popular graph kernels that are categorized based
on which structural components of the graph they operate on. In this thesis for our
method, we will use a neighbourhood aggregation graph kernel, the 1-dimensional
Weisfeiler–Lehman kernel since it is proven to be the most computationally efficient.
However, one can potentially use other graph kernels, which can be tailored to specific
applications and graph types.

𝜙(𝐺1)

𝜙(𝐺2)
𝜙(𝐺3)

ℍ

𝔾

𝐺1

𝐺2

𝐺3

Figure 2.2: Illustration of mapping graphs into a Hilbert space H with a feature map
ϕ. After graphs are mapped into the Hilbert space, a kernel on a space of graphs G
can be defined as an inner product k(G1, G2) = ⟨ϕ(G1), ϕ(G2)⟩.

2.2.2 State-of-the-art graph kernels

In Section 2.1 we have given a definition of positive semidefined kernel, Gram matrix,
and Hilbert space. These definitions are commonly used not only in the transfer
operate domain but also in graph kernels-related fields. Kernel-based methods are
machine learning algorithms that operate on input data after they have been mapped
into an implicit feature space using a kernel function. The main advantage of kernel
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methods is that they can be applied to very general types of data such as graphs
or texts as long as we can find a mapping ϕ : X → H, where H is an RKHS. The
illustration of mapping graphs into an RKHS is demonstrated in Figure 2.2. However,
the kernel function is normally not defined by an explicit representation of ϕ, but
instead, each kernel implicitly defines a potentially infinite-dimensional mapping ϕ.

All graph kernels can be divided into categories based on how they measure the
similarity of graphs, whether they use node and edge label information, and on which
structural features of the graph they are based. Since in the microbiome domain
graphs can be constructed with different properties such as directed or undirected,
unlabeled or node-labels/edge-labeled, we will describe each category and present
some examples of graph kernels for each category.

Kernels based on subgraphs patterns

Graph kernels that are based on subgraphs patterns view graphs as bags of vertices
and edges by ignoring global structure. These kernels work by counting the number
of times a particular subgraph pattern appears in each graph and then computing
a similarity score based on the frequency of occurrence of these subgraph patterns.
For example, the vertex histogram kernel or vertex label kernel compares graphs only
at the level of similarity between all pairs of vertex labels from two different graphs:

k(G,G′) = ⟨fG, fG′⟩, (2.22)

where fG = (f 1
G, . . . , f

d
G) such that f i

G =| {v ∈ V (G) : l(v) = i} |, ∀i ∈ Σ and Σ
being a set of node labels with d =| Σ |, l : V → Σ. Similar to the vertex histogram
kernel, the edge histogram kernel is based on counting the number of occurrences of
each label in an edge set of the graph. Unlike the vertex histogram kernel, the edge
histogram kernel is able to capture the structural information of the graph. These
two graph kernels are considered to be simple.

A downside of vertex and edge label kernels is that they ignore the structural
properties of graphs and are completely uninformative in the case of node labels or
edge labels being absent. Instead of considering a graph as a bag of vertices and
edges, we can see them as bags of subgraphs patterns. Motivated by the graph
reconstruction conjecture which states that a graph is determined uniquely by its
subgraphs, (Shervashidze et al., 2009) proposed a graphlet kernel. It decomposes
graphs into graphlets, where graphlets are small subgraphs with k ∈ {3, 4, 5} vertices
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and counts matching graphlets in the graphs:

k(G,G′) = fT
GfG′ ,

where fG and fG′ are vectors of the occurrence of each graphlet of size k. From
the above definition, the graphlet kernel is computed using explicitly defined feature
maps (Nikolentzos et al., 2021). One of the limitations of the graphlet kernel is that
it does not work with node labels or edge labels. Moreover, the graphlet kernel can
be computationally expensive, especially for large graphs. Subgraph matching kernel
(Kriege and Mutzel, 2012) is another example from this category which counts the
number of matching between subgraphs of bounded size in two graphs. This graph
kernel can be applied to graphs that contain node labels, edge labels, node attributes
or edge attributes.

Kernels based on paths and walks

In order to tackle a challenge of the subgraph pattern kernels which is the choice
of a set of patterns or a subgraph size, there has been proposed an alternative of
comparing the sequences of vertex or edge attributes that are encountered through
traversals through graphs. One of these kernels is a shortest-path kernel. The idea
of kernels based on shortest paths is to compare the attributes and lengths of the
shortest paths between all pairs of vertices in two graphs.

Definition 2.2.1 (Shortest path). A shortest path from vertex v to vertex u of a
graph G is a path from v to u such that there exists no other path between these two
vertices with a smaller length.

The first step of the shortest-path kernel is to transform the graphs into shortest-
path graphs. The shortest-path graphs have the same set of nodes as an original
graph but a different set of edges. Formally, given two graphs G and G′ with label
function l : V (G) ∪V (G′) → Σ and let d(u, v) be the shortest path distance between
the vertices u and v in the same graph. Then, the kernel is defined as

k(G,G′) =
∑

(u,v)∈V (G)2,u̸=v

∑
(u1,v1)∈V (G′)2,u1 ̸=v1

k((u, v), (u1, v1)), (2.23)
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where

k((u, v), (u1, v1)) = kL(l(u), l(u1)) · kL(l(v), l(v1)) · kD(d(u, v), d(u1, v1). (2.24)

kL and kD are a kernel for comparing vertex labels and shortest-path distance, re-
spectively.

Another example of graph kernels that travel through the graph is kernels that
are based on random walks. The first graph kernels based on random walks were
proposed by (Kashima et al., 2003; Gärtner et al., 2003b). The idea behind these
graph kernels is that they count the number of walks that two graphs have in com-
mon. (Kashima et al., 2003) followed a probabilistic view of kernels and based his
method on so-called marginalized kernels. The feature space of the kernel consists of
all possible label sequences produced by random walks. In this version of the random
walk kernel, the length of the walks is unbounded, which leads to the feature space
being of infinite dimension. The computation of this random walk kernel is based
on finding the stationary state of a discrete-time linear system. Graph kernels based
on random walks, however, suffer from so-called tottering, which means that random
walks may visit the same vertex several times. These repeated consecutive vertices
do not provide useful information and may even bring unnecessary noise into simil-
arity measures. That is why the marginalized graph kernel was extended to avoid
tottering by replacing the underlying first-order Markov random walk model with a
second-order Markov random walk model (Kriege, 2015).

Unlike the method discussed above, (Gärtner et al., 2003b) introduced a method
based on the direct product graph of two labelled input graphs, which is defined as

Definition 2.2.2. Direct product graph For two labeled graphs G and G′, the direct
product graph is denoted by G×G′ = (V , E), where
V = {(v, v′) ∈ V × V ′ | l(v) = l(v′)}
E = {(u, u′), (v, v′) ∈ V | (u, v) ∈ E ∧ (u′, v′) ∈ E ′ ∧ l(u, v) = l(u′, v′)}.

Then, the direct product kernel is

KRW (G,G′) =
|V|∑

i,j=1

[ ∞∑
l=0

λlA
l
×

]
ij
, (2.25)

where A× is the adjacency matrix of G×G′ and λ is a sequence of weights such that
the above sum converges. (Vishwanathan et al., 2010) proposed a generalization
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framework for the random walk. Given an edge kernel kE on attributes from the
set A. let ψ : A → H be a feature map. For an attributed graph G, the feature
matrix Ψ(G) is defined as [Ψ(G)]ij = ψ(vi, vj) if (vi, vj) ∈ E(G) and 0 otherwise.
The proposed kernel is then defined as follows.

KRW (G,G′) =
∞∑

l=0
µlqT

x Wl
xpx (2.26)

with qx, px being stopping and initial probability distribution, respectively. µl are
coefficients such that the sum converges and Wx = Ψ(G) ⊗ Ψ(G′) is a weight matrix
of the direct product graph G×G′.

All above mentioned random walk kernels allow taking walks with unbounded
length, which leads to infinite dimensional feature space. Several graph kernels based
on random walks were proposed that use a certain length of walks. However, these
kernels are application-related such as protein function (Borgwardt et al., 2005) or
image classification (Harchaoui and Bach, 2007).

Neighborhood aggregation kernels

Neighbourhood aggregation approaches work by assigning an attribute to each vertex
based on a summary of the local structure of its neighbourhood. For each vertex,
the attributes of its neighbours are aggregated to compute a new attribute for the
target vertex. The idea is that if two vertices have the same local structure, then
their new attributes will match. One of the most popular and efficient graph kernels
in this class is the Weisfeiler-Lehman kernel (WL) (Shervashidze et al., 2011). This
graph kernel has many variations such as the Weisfeiler-Lehman edge, the Weisfeiler-
Lehman shortest-path kernel or generalised Weisfeiler-Lehman kernel (Schulz et al.,
2022).

After more than one decade, the WL kernels are still among the most prevalent
graph kernels due to their predictive performance and time complexity. Therefore,
we will use the original WL kernel in our method and discuss it in this section.
Let G and Ĝ be graphs and l(0) be a set of unique original vertex labels of G and
Ĝ. The key idea of this kernel is to augment each vertex label by the sorted set of
neighbouring vertex labels, and then compress the augmented label into some new
label using a hash function f . That is, at each iteration h = 1, . . . the 1-dimensional
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Weisfeiler–Lehman kernel computes a new set of vertex labels l(h) such that

l(h)
v = f

(
l(h−1)
v + (l(h−1)

u0 + ...+ l(h−1)
uk

)
)
, {u0, ..., uk} ∈ sorted(N (v)),

∀v ∈ V (G) ∪ V (Ĝ) and where the symbol “+” denotes the concatenation of strings,
N (v) the set of neighbours of a vertex v, and sorted(N (v)) means that vertex labels
need to be sorted before concatenation. The hash function f is chosen in such a way
that f(l(h)(v)) = f(l(h)(v′)) if and only if l(h)(v) = l(h)(v′), v, v′ ∈ V (G) ∪V (Ĝ). The
next step is to compute a feature vector for each graph G and Ĝ at each iteration h:

φ(h)(G) = (C(h)(G, l(h)
0 ), ..., C(h)(G, l(h)

|l(h)|)),

where l(h) = {l(h)
0 , l

(h)
1 , . . . , l

(h)
|l(h)|} denotes the set of compressed vertex labels at iter-

ation h and C(h)(G, l(h)
i ) is the number of occurrences of a label l(h)

i in the graph G

at iteration h.

Finally, the Weisfeiler–Lehman kernel for two graphs G and Ĝ is defined as:

k(G, Ĝ) = ⟨φ(0)(G), φ(0)(Ĝ)⟩ + ...+ ⟨φ(h)(G), φ(h)(Ĝ)⟩.

We chose the WL kernel because it outperformed other kernels in terms of runtime in
our experiments. According to (Shervashidze et al., 2011), the WL subtree kernel on
a pair of graphs can be computed in time O(hm), where h is the number of iterations
and m the number of edges, whereas the random walk kernel (Gärtner et al., 2003a)
on a pair of graphs has the runtime complexity O(n6), where n is the number of
nodes. Moreover, it is also competitive in terms of accuracy with state-of-the-art
kernels. But, as mentioned above, one could use other graph kernels as well. The
optimal choice depends strongly on the dataset.

In many real-world applications, the microbiome, in particular, nodes in a graph
may have continuous labels such as numerical values or vectors. However, as it is
clear from the graph kernels described above, they are mainly designed to work with
discrete labels such as categorical labels or binary values. To address this challenge,
researchers have developed various techniques for incorporating continuous node la-
bels into graph kernels. Some of these techniques are to transform the continuous
node labels into discrete labels before applying a traditional graph kernel or one can
use kernel functions that are specifically designed to handle continuous data, such
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as the Gaussian kernel or the Laplacian kernel. In one of our experiments in this
thesis, we will apply the Gaussian kernel directly to a time-evolving graph. Further,
we will discuss graph kernels that can work with continuous node attributes in more
detail.

Graph kernels with continuous labels

Neighbourhood aggregation kernels, kernels based on pattern counting or kernel
functions based on walks and paths measure similarity between graphs by considering
only discrete node or edge attributes. However, many real-world graphs contain
continuous real-valued node attributes. Unfortunately, designing graph kernels for
graphs with continuous node labels is a much less studied problem than graph kernels
for unlabeled graphs or for graphs with discrete node labels. However, recently this
problem started drawing more and more attention. As mentioned above there are two
possible approaches to handling graphs with continuous node labels: 1) graph kernels
that are specifically developed to handle this type of graphs or 2) using discretization
of node labels before employing existing graph kernels that operate on graphs with
discrete node labels. An example of an approach from the second category is a hash
graph kernel proposed by (Morris et al., 2016). The authors introduce a generic
method that iteratively hashes continuous labels to discrete labels.

The examples of graph kernels designed to work on graphs with continuous node
labels are subgraph matching kernel (Kriege and Mutzel, 2012), which has been
mentioned earlier in this section. The GraphHopper kernel (Feragen et al., 2013)
can operate on both discrete node labels and continuous attributes. The idea of the
GraphHopper is similar to the shortest path kernel where it compares the shortest
paths between node pairs from the two graphs but using a different path kernel.
Further examples of graph kernels that can handle graphs with continuous labels
include Propogation Kernel (Neumann et al., 2016), Graph Invariant kernel (Orsini
et al., 2015), Multiscale Laplacian graph kernel (Kondor and Pan, 2016).
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2.3 Novel unsupervised approach for time-
evolving graph embedding based on graph
kernel and transfer operators

Microbiome dynamics play a crucial role in understanding changes occurring in the
microbiome constitution that undergoes transitions from the health state to an al-
ternative state. However, the high dimensionality of microbiome data makes the
analysis of microbiome dynamics challenging. Therefore, in this section, we will
present a dimensionality reduction method for time-evolving graphs which is based
on transfer operator theory and graph kernels. Graph kernels are used to extract the
structural properties of time-snapshot graphs such as complex interactions between
species in the microbiome and approximating the transfer operator such as the Koop-
man operator or Perron-Frobenious will allow us to learn the dynamics occurring in
a time-evolving graph. In our experiment, we demonstrate how to use our method on
real-world microbiome data. In order to evaluate our method, we construct synthetic
data that will represent a time-evolving graph with metastable behaviour. We begin
the section by formulating the problem. An illustration of the proposed method is
shown in Figure 2.3.

2.3.1 Problem Formulation

Given a time-evolving graph G as a sequence of T graphs G = (G0, . . . , GT −1) at
the consecutive time points {0, . . . , T − 1} for some T ∈ N. We call Gt a time-
snapshot graph of G at time t. We focus, in particular, on the metastability of
the time-evolving graph, that is, the property of being stable for a long time, and
occasionally undergoing critical transitions from one state to another state with a
significant change in the structure of the time-evolving graph.

Definition 2.3.1. The time-evolving graph G exhibits metastable behavior if G can
be partitioned into s subsets G = G0 ∪ · · · ∪ Gs−1 for some s ≪ T such that for each
time point t ∈ {0, . . . , T − 1}

P (Gt+1 ∈ Gi | Gt ∈ Gj) ≪ 1, if i ̸= j
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Figure 2.3: The illustration of the proposed method. (a) Constructing a time-
evolving graph from the microbiome. (b) Approximating spectral properties of
transfer operators using graph kernels, where k(·, ·) is a graph kernel and Kk is
the Koopman operator. (c) In the learned embedding space it is possible to analyze
the microbiome dynamics such as detecting metastable states and determining dis-
tinct substructures.
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and

P (Gt+1 ∈ Gi | Gt ∈ Gj) ≈ 1, if i = j.

We call G0, . . . ,Gs−1 metastable states of the time-evolving graph G and each
Gt, t = 0, . . . , T −1, belongs to exactly one of the states Gi. In most cases, each state
Gi has to be characterized by a certain pattern in the graph structure such as node
or edge clusters. We define our problem as follows: Given a time-evolving graph
G = (G0, . . . , GT −1) with assumed metastable behaviour, we aim to represent each
time-snapshot Gt as a vector in a low-dimensional space Rm, where m is a number
of embedding dimensions, retaining the metastable behaviour of G.

Commonly, the number of embedding dimensions m is a hyperparameter that
has to be tuned in order to obtain a good performance For our approach we will
however show that the number of embedding dimensions m is defined by the number
of states s, which eliminates the need to optimize this hyperparameter.

2.3.2 GraphKKE: Graph kernel Koopman Embedding for
Human Microbiome Analysis

In order to address the problem defined above, we need to account for both struc-
tural information and temporal changes in a time-evolving graph. In the case of
the microbiome, the structural information corresponds to the complex interactions
between species that are impacted by the transition from one state to another, for ex-
ample, from the period of antibiotic exposure to the period of recovery. The temporal
changes, in turn, represent the transition from one state to another and respective
changes in the structure of the time-evolving graph. In our approach, we propose
to use transfer operator theory to capture the temporal changes and graph kernels
to understand the structural patterns of the time-evolving graph. Our approach is
inspired by kernel EDMD discussed in Section 2.1.3.

As it was discussed in Section 2.1, transfer operators, both the Koopman op-
erator and Perron–Frobenious are infinite-dimensional, therefore it is necessary to
find a suitable finite-dimensional subspace. It was shown that the initial eigenvalue
problem on L2 can be approximated by an eigenvalue problem defined on the re-
producing kernel Hilbert space H utilizing only kernel evaluations. Assume we have
measurement data given by a time-evolving graph G = (G0, ..., GT −1), where each
Gt is a time-snapshot graph of G at time point t and Ĝ is a set of graphs mapped
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forward for a time lag τ , that is, Ĝt = Gt+τ . It was shown for vector-structure data
in Section 2.1.3 that in order to find eigenfunctions of transfer operators, we need to
solve auxiliary matrix eigenvalue problems which are formulated as follows.

K−1
GGKĜGφ̃ = λφ̃ (2.27)

and
K−1

GGKGĜφ̃ = λφ̃, (2.28)

where [KGG]ij = k(Gi, Gj), [KĜG]ij = k(Ĝi, Gj) denote Gram matrices, k(·, ·) is a
graph kernel, and KGĜ = K⊤

ĜG
. The equations (2.27) and (2.28) approximate the

Koopman operator and Perron–Frobenius operator, respectively. This eigenvalue
problem is closely related to kernel canonical correlation analysis (kernel CCA),
see (Klus et al., 2019b). Kernel CCA computes eigenfunctions of the forward-
backward dynamics to identify so-called coherent sets. Coherent sets are a general-
ization of metastable sets and are regions of the state space that are not distorted
over a certain time interval.

Additionally, in order to evaluate the eigenfunctions of these operators at a given
graph, we set

φ = Ψφ̃,

if φ̃ is the solution of the eigenvalue problem (2.27).
Otherwise, if φ̃ is the solution of the eigenvalue problem (2.28), we set

φ = ΨK−1
GGφ̃,

where Ψ = [k(·, G0), . . . , k(·, GT −1)] is called a feature matrix.
We assume that KGG is non-singular or otherwise we replace the inverse by its reg-

ularized version (KGG + ηI)−1, where η ≥ 0 is a ridge parameter. This regularization
is known as Tikhonov regularization.

Furthermore, if k(·, ·) is a graph kernel, then we apply the following normalization:

knorm(Gi, Gj) = k(Gi, Gj)√
k(Gi, Gi) k(Gj, Gj)

,

for all i, j = 0, . . . , T − 1. The same normalization is applied to both G and Ĝ.
In our experiments, we will use a neighbourhood aggregation kernel — the
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Weisfeiler–Lehman (WL) kernel — for graphs with discrete vertex labels discussed
in Section 2.2. However, depending on the type of node labels and edge labels, one
has to choose the right graph kernel that is able to capture the necessary information
present in the time-evolving graph.

The number of states s in the time-evolving graph G is determined by the number
of dominant eigenvalues close to 1. That is, if we have s dominant eigenvalues close
to 1, then the time-evolving graph can be divided into s subsets G = G0 ∪ · · · ∪ Gs−1.
Moreover, all information about the long-term behaviour of the time-evolving graph
G is contained within the eigenfunctions associated with s dominant eigenvalues
close to 1. All things considered, the dominant eigenvalues can be used to determine
the number of states s in the data and the dimension of a new low-dimensional
space. The eigenfunctions associated with the dominant eigenvalues close to 1 are
considered as a low-dimensional representation of the time-evolving graph G (Melnyk
et al., 2020). The implementation of the proposed method can be found in https:
//github.com/k-melnyk/graphKKE.git.

2.3.3 Evaluation

To evaluate the ability of the method to learn a low-dimensional representation of
time-evolving graphs while maintaining metastability, we will use the following evalu-
ation process. We first apply graphKKE to a time-evolving graph. We treat approx-
imated m dominant eigenfunctions of the Koopman operator or Perron-Frobenious
operator as a low-dimensional representation of the time-evolving graph. As was
said above, a dimension of the new low-dimensional representation is defined by the
number of dominant eigenvalues close to 1. Finally, we use the k-means clustering to
identify clusters of points of the low-dimensional representation. In an ideal scenario,
the resulting clusters should align with the metastable states observed in the initial
time-evolving graph. As an evaluation metric, we will use the Adjusted Rand Index
(ARI) which will be discussed in more detail further in this section. The utilization
of the ARI allows us to evaluate and compare different approaches, parameter set-
tings, or variations of the method in terms of their ability to capture and represent
the metastable dynamics of time-evolving graphs accurately.

It is worth mentioning that our method works in an unsupervised manner and
even though in our experiment we have ground-truth metastable states, in prac-
tice finding the number of metastable states and their location is what we aim at

https://github.com/k-melnyk/graphKKE.git
https://github.com/k-melnyk/graphKKE.git
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obtaining from a low-dimensional representation.

k-means clustering

k-means clustering is one of the simplest and most popular unsupervised machine
learning algorithms. The k-means clustering is based on the idea of identifying k

numbers of centroids and then allocating every data point to the nearest cluster
while keeping the centroids as small as possible.

Formally, the k-means clustering algorithm starts with choosing the number of
clusters k. Then we initialize k cluster centroids randomly and each centroid repres-
ents the centre point of a cluster. Based on their distance we assign each data point
to the nearest centroid. By computing the mean of all data points assigned to each
cluster, we recalculate the centroid. We repeat the two last steps until convergence
or until a stopping criterion is met. Note that k-means clustering is sensitive to the
initial centroid positions. To mitigate this issue, we will run the algorithm several
times with different random initializations. As a final result, we will average all runs
of k-means.

Evaluating the performance of the clustering algorithm is not the same as in su-
pervised learning where you have labelled data and can calculate accuracy, precision
or recall. In the evaluation of the clustering algorithm, the objective is to obtain high
intra-cluster similarity and low inter-cluster similarity. There are several clustering
evaluation metrics available such as the Dunn index or Silhouette score which do
not require any ground-truth labels for clusters. However, F-Measure, Rand Index
or Adjusted Rand Index are evaluation metrics that require ground-truth labels. In
our case, we have ground-truth labels for both synthetic data and real-world data,
therefore we will use the Adjusted Rand Index which will be explained in more detail
in the next paragraph.

Adjusted Rand Index

The Adjusted Rand Index (ARI) compares the similarity of two data clusterings or
divisions. It considers both the agreement and the chance agreement between the
clusters, yielding a score between −1 and 1, where 1 represents a perfect match, 0
indicates random clustering and negative values imply a disagreement worse than
chance. The ARI compares the pairs of samples in the two clusterings. It measures
the agreement in terms of three types of pairs: pairs that are in the same cluster in
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both clusterings (true positives), pairs that are in different clusters in both clusterings
(true negatives), and pairs that are in the same cluster in one clustering but in
different clusters in the other clustering (false positives and false negatives). Before
discussing the Adjusted Rand Index in more detail, it is necessary to first explain
the Rand Index.

The Rand Index (RI) is defined as follows:

RI = TP + TN

TP + FP + TN + FN
, (2.29)

where TP is the number of true positives or the number of data point pairs that are
clustered together in the predicted portion and in the ground-truth partition, TN is
the number of true negatives, FP is the number of false positives or the number of
data point pairs that are clustered together in the predicted partition but not in the
ground truth partition and FN is the number of pairs of false negatives.

The Adjusted Rand Index is a correction of the Rand Index that measures the
similarity between two clusterings by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted and true
clusterings. ARI is defined as:

ARI = RI − ExpectedRI

max(RI) − ExpectedRI

(2.30)

After we have defined our evaluation procedure which we will use in the experi-
ments through the thesis, in the next section we will discuss synthetic and real-world
data.

Comparative analysis

As a part of our evaluation procedure, we will also conduct a comparative analysis of
the proposed method with other dimensionality reduction methods. The proposed
approach is compared with one deep learning-based method, graph2vec, and the
Weisfeiler-Lehman graph kernel. Graph2vec is an approach proposed to learn a low-
dimensional representation of the entire static graph and it has been explained in
Section 1.3. The Weisfeiler-Lehman graph kernel has been discussed in Section 2.2.
Moreover, we will consider two variations of our approach: one with the WL graph
kernel and one with the Gaussian kernel.
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2.4 Synthetic data and Results

Most of the benchmark datasets such as those from chemo- and bio-informatics
domains (Morris et al., 2020), can be represented only by static graphs. Since they
do not contain time information and metastable behaviour, these datasets are not
appropriate for our experiments. Therefore, we propose synthetic data that will be
used to evaluate our method. The aim of this section is to explain how we construct
the synthetic data with a comprehensible structure and known metastable states to
estimate the performance of the proposed method. At the end of the section, we
also present and discuss the results obtained with our method based on the evolution
procedure mentioned above.

Energy potential

An energy potential, also known as a potential energy function or simply a potential,
is a mathematical representation of a physical system’s stored energy. It specifies how
the system’s energy varies as a result of its configuration or condition. A system’s
potential energy is critical in defining its equilibrium states, mobility, stability, and
general behaviour. Physicists may examine the dynamics, forces, and interactions
inside a system and anticipate its behaviour by evaluating potential energy. This
concept will be utilized to generate synthetic datasets with metastable behaviour.
When generating synthetic data, we will consider two different potential functions:
double-well potential and lemon potential functions. The potential functions will
be used as a base to incorporate metastable behaviour with different numbers of
metastable states into a time-evolving graph. Let us consider a molecular-dynamics-
inspired problem given by the stochastic differential equation

dXt = −∇V (Xt)dt+
√

2β−1dWt (2.31)

describing diffusion in the potential energy landscape given by V (x). Here, β is
the inverse temperature that controls the transition between states. The higher β,
the less likely the transition from one state to another is. Wt is a standard Wiener
process (Brownian motion). As was said above, we will utilize two following potential
functions.
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Double well potential

First, we will consider a time-evolving graph with two metastable states. In the
context of the microbiome, it is frequently observed to have two metastable states,
which can be understood as periods of illness and subsequent periods of recovery. To
simulate a time-evolving graph with two metastable states, we consider the diffusion
presented by Eq. 2.31 with a potential function

V (x) = x4

4 − x2

2 . (2.32)

Figure 2.4 depicts an example of a trajectory of a particle in the double-well potential
from Eq. 2.32. We will describe how we utilize this trajectory to construct a time-
evolving graph with two metastable states later in the section, but first, we will
present the second potential function, the so-called lemon potential that is used to
incorporate more than two metastable states.

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
X1

1.5
1.0
0.5
0.0
0.5
1.0
1.5

X 2

Figure 2.4: An example of a trajectory of a particle in the double-well potential.
Points indicate the positions of the particle at time t and the blue lines show the
movement of the particle from time point t to t+ 1.
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Lemon potential

In order to simulate time-evolving graphs with more than two metastable states, we
will consider the diffusion defined by Eq.2.31 in the so-called lemon potential

V (x) = cos(s arctan(x1, x2)) + 10
(√

x2
1 + x2

2 − 1
)2
. (2.33)

See (Klus et al., 2019b) for more details. Here, s denotes the number of wells or
metastable states. The particle stays in one of the s wells for a relatively long time
and then jumps to one of the neighbouring wells. An example of a particle trajectory
in the lemon potential with five metastable states can be found in Figure 2.5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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finish

Figure 2.5: An example of a trajectory of a particle in the lemon potential with five
metastable states. Points indicate the positions of the particle at time t and blue
lines show the movement of the particle from time point t to t+ 1.

By leveraging the concepts of the diffusion process in the double-well potential
or in the lemon potential, we can effectively introduce metastable behaviour into a
time-evolving graph. Further, it will explain how we simulate synthetic data.
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2.4.1 Simulating synthetic data

As previously stated, there is a limited availability of datasets for evaluating our
method. Therefore, we propose to generate synthetic data with metastable behaviour
and ground-truth labels. In this section, we will outline the process of simulating
synthetic data.

𝑡 = 6

𝒚

𝒙 𝒙
𝒚

𝒙 𝒙

𝒚

𝒙 𝒙

𝑡 = 7

𝑡 = 52

𝒙 𝒙

𝒚
𝑡 = 51

(a) (b)

(c) (d)

Figure 2.6: An illustration of the synthetic dataset with two metastable states at
times (a) t = 6, (b) t = 7, (c) t = 51, and (d) t = 52. For each figure, the right
subfigure depicts a particle in the double-well potential defined in Eq. 2.32, while
the left subfigure shows the corresponding time-snapshot graph. The blue edges
are randomly chosen and removed from the corresponding time-snapshot graphs.
The node clusters in the rectangle are considered to be a structural graph pattern
associated with a corresponding metastable state.

• First, we generate a trajectory S = {(x(i)
1 , x

(i)
2 )}T

i=1 using SDE (Eq. 2.31), and
the corresponding potential function, the double-well potential (Eq. 2.32) or
the lemon potential (Eq. 2.33).

• Then, we choose the number of nodes n, and assign random coordinates
(aj, bj), j = 1, . . . , n to each of these nodes. The reason behind this is to
determine the location of the discriminating characteristics associated with
metastable states during the evaluation process.
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• In the final step, we define discriminating structural features of the time-
evolving graph for each state. Let G0 be a complete time-snapshot graph at
time t = 0. In the case of the s-well potential, we generate Gt, ∀t, t = 1, . . . , T
by drawing a circle with the center at (xt

1, x
t
2) ∈ S and the radius r and ran-

domly removing edges between nodes that are inside the current circle. In
addition, to address the noise in the real-world data, we also remove edges
outside the current circle. For double-well potential, we remove edges between
nodes, which satisfy bj >

1
T

∑T
i=1 x

i
1.

Figure 2.6 and Figure 2.7 illustrate examples of time-evolving graphs generated
based on the above-mentioned process with the double-well potential (Eq. 2.32)
and the lemon potential (Eq. 2.33), respectively. Figure 2.6 presents four time-
snapshots graphs at different time points with a particle moving in the double-well
potential. The edges in the blue colour are removed from the corresponding time-
snapshot graph and are considered to be structural patterns of the time-evolving
graph at the corresponding time point that are associated with each metastable
state. Additionally, Figure 2.7 depicts two time-snapshots graphs at different time
points. The edges within the circular regions are removed from the corresponding
time-snapshots graphs, and the clusters of nodes within the circles are regarded as
structural patterns of the time-evolving graph linked to metastable states. In the
right images, it can be seen positions of a particle moving a lemon potential with
five metastable states.

2.4.2 Experiments and Results

After we have introduced our method in Section 2.3, defined the evaluation process
in Section 2.3.3 and explained the idea behind synthetic data in Section 2.4, we
will finally introduce our results. In this section, we aim to evaluate the proposed
method on synthetic time-evolving graphs with metastability. Our main objective
is the following. Given a time-evolving graph, the ultimate goal is to find a num-
ber of metastable states and their locations in time-evolving graphs. Besides, we
conduct a comparison of our method with the Weisfeiler-Lehman kernel and deep
learning-based method graph2vec. Moreover, we investigate what impact various
graph kernels such as WL or Gaussian kernels have on the performance of the pro-
posed method.
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Figure 2.7: An illustration of the presented synthetic data with five metastable states
at times (a) t = 0, (b) t = 256. For both (a) and (b), the right images are positions
of a particle in the 5-well potential, which are clustered into 5 sets with k-means
and the left images show time-snapshot graphs G0 and G256. The edges in the red
colour are removed from the graph. The nodes and removed edges in the circles are
considered graph patterns associated with corresponding metastable states.

Experimental setup

In order to test the performance of the method proposed in Section 2.3 and compare
the result to other baselines models, we generate the synthetic data described in
Section 2.4 with different configurations of interest such as the number of vertices n,
the number of time steps T , and the number of states s. The datasets are summarized
in Table 2.2. For each dataset, we set the out-state probability to 0.1. The out-state
probability is the probability of removing edges outside the corresponding circle.
For the analysis of metastable behaviour, we apply graphKKE with the Weisfeiler–
Lehman graph kernel with a number of iterations h = 1 and regularization parameter
η = 0.1. In order to have ground truth labels/states of G, we apply k-means clustering
to the realization S of SDE defined in Eq. 2.31. For the Weisfeiler–Lehman kernel,
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Table 2.1: Hyperparameters for graphKKE used in the comparative analysis, where
σ is the bandwidth of Gaussian kernel, h the number of iterations in the WL kernel,
and η the regularization parameter of Tikhonov regularization.

Dataset σ h η

pos 5DynG-100 10 1 0.1
pos 5DynG-200 100 1 0.5
pos 3DynG-300 100 1 0.1

MovingPic 100 1 0.5

Table 2.2: Statistics of each dataset used in the Chapter 2.

Name #Vertices #Edges (avg.) ± std. #Time steps #States
pos 5DynG-100 100 4851±43.68 500 5
pos 5DynG-200 200 19516±119.54 1000 5
pos 3DynG-300 300 44051±219.05 500 3

MovingPic 919 10602±7266.39 658 2
CholeraInf 96 106±41.28 34 2

the initial set of vertex labels l0 is defined to be {0, 1, 2, . . . , n}.

In the comparative analysis, as was already mentioned, we aim to compare
graphKKE to several state-of-the-art representation learning and graph clustering
approaches. The proposed approach with two different graph kernels — Gaussian and
Weisfeiler–Lehman kernels — is compared with graph2vec (Narayanan et al., 2017)
and the original WL kernel (Shervashidze et al., 2011). The main idea of graph2vec
is explained in Section 1.3 and the WL kernel is discussed in Section 2.2. Since the
analysis is done for the graph clustering task, we apply k-means to the resulting em-
bedding vectors of every approach. The embedding dimensions of {5, 64, 128, 1024}
were chosen for graph2vec. The final embedding is chosen based on the best model
run. The hyperparameters of graphKKE were chosen empirically1 and can be seen
in Table 2.1. The choice of σ for the Gaussian kernel is critical for the performance
of graphKKE. The theoretical justification of applying the Gaussian kernel to the
graphs-structured data and the optimal choice of σ is beyond the scope of this thesis.

1The combinations of hyperparameters with the biggest spectral gap were used.
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Figure 2.8: The eigenvalues of the Koopman operator approximated by graphKKE
for pos 5DynG-100 dataset. The large spectral gap after the fifth eigenvalue reveals
the presence of the 5 metastable states in the dataset.

Analysis of metastability

We visualize approximated eigenvalues and eigenfunctions only for the pos 5DynG-
100 dataset. The eigenvalues of the Koopman operator approximated with
graphKKE are shown in Figure 2.8. A spectral gap after the fifth eigenvalue indicates
that the time-evolving graph G contains s = 5 metastable states and G = G0∪· · ·∪G4.
Since all information about the long-term behaviour of the time-evolving graph is
contained within the eigenfunctions of the Koopman operator associated with s

dominant eigenvalues close to 1 (in our case s = 5), the final dimension m of a
low-dimensional vector is defined by the number of these eigenfunctions. Thus, for
the pos 5DynG-100 dataset, each time-snapshot graph of G is embedded into a new
vector space Rm with s = m = 5. An illustration of the embedded time-series data
φ(G), where φ(G) = ∑4

i=0 ciφi(G) with c0 = 0, c1 = 1
2 , c2 = 1

8 , c3 = 1
8 , c4 = 1

4 , is
shown in Figure 2.9.The coefficients are chosen to make the visualization of the five
metastable states clear and distinguishable.

After we obtain the low-dimensional representation of the time-evolving graph, it
can serve as an input for various machine learning approaches or to further analyze
the dynamics of the time-evolving graph by constructing a Markov State Model in
which the main metastable states form the states of a Markov chain. By employing
this lower-dimensional representation, we can explore a broader spectrum of machine
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learning methodologies that can leverage the insights gained from the reduced space.
This can include tasks such as clustering, classification, or even anomaly detection.
Additionally, the reduced representation maintains the essential characteristics of the
initial dynamics of the time-evolving graph while potentially reducing the complexity
of computations.

𝒢

𝜑
(𝒢
)

Figure 2.9: An illustration of the embedded time-evolving graph, where φ(G) =∑4
i=0 ciφi(G) and φi(G) are dominant eigenfunctions of the Koopman operator ap-

proximated by graphKKE. There are 5 distinct level sets corresponding to the 5
metastable states.

Table 2.3: Adjusted Rand Index (ARI) for the comparative analysis on the graph
clustering task for the synthetic datasets. Higher ARI corresponds to greater accuracy
in correctly identifying the ground truth states. It can be seen that the combination
of graphKKE with the Weisfeiler-Lehman kernel outperforms other methods.

Dataset graph2vec WL kernel (graphKKE, WL) (graphKKE, Gk)
pos 5DynG-100 0.49 0.36 0.99 0.96
pos 5DynG-200 0.20 0.49 0.92 0.87
pos 3DynG-300 0.22 0.40 0.96 0.94
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Comparative analysis

The key aim of the comparative analysis is to show how the low-dimensional repres-
entation can be used for the further analysis of microbiome dynamics. Here, we try
to find the location of metastable states using the low-dimensional representation or
eigenfunctions. This problem can be formulated as a clustering.

The result of the comparative analysis can be found in Table 2.3. For graph2vec
the embedding dimension of five was used as a dimension with the best ARI to com-
pare its result with the results of other approaches. We observe that both graph2vec
and WL kernel perform poorly on the synthetic datasets. One reason for the poor
embedding is that these two methods do not take into account the time information
which is crucial in time-evolving graphs with metastability.

Additionally, the high ARI scores of graphKKE indicate that it can learn a low-
dimensional representation in such a way that the metastable behaviour is main-
tained in a lower-dimensional space. The result of clustering on a low-dimensional
representation obtained with graphKKE with the Gaussian kernel indicates that the
Gaussian kernel can be used to graph-structure data. However, in cases of more
complex changes in the graph structure, the Gaussian kernel might not be able to
capture them.

2.5 Microbiome data and Results

The microbial communities living in the human intestine can have a profound im-
pact on our well-being and health. However, we have a limited understanding of the
mechanisms that control this complex ecosystem. Moreover, microbial communities
are not static over time as we discussed in Introduction 1.1.2. Therefore, the analysis
of the microbiome dynamics is essential for a better understanding of processes oc-
curring in the microbiome constitution. In the previous section, we demonstrated the
capability of our method to identify metastable states in synthetic data. Through
a comparative analysis, we also established that graphKKE surpasses specific other
methods in graph clustering tasks, which are relevant to locating metastable states
in the time-space domain. In this Section, our aim is to show that it is feasible to
apply our method to understand these mechanisms that control complex microbiome
ecosystems. One of our main objectives in this thesis is to make the analysis of the
microbiome easier by embedding a time-evolving graph constructed from the micro-
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biome into a low-dimensional representation. This low-dimensional representation
can further be used to analyze the microbiome dynamics.

We begin this Section by introducing microbiome datasets and their prepro-
cessing. Specifically, we will employ the MovingPic dataset, which comprises samples
from various body sites, as well as the CholeraInf dataset, consisting of periods of
cholera infection and subsequent recovery in multiple individuals. The subsequent
section will provide a more comprehensive overview of each dataset. Finally, we will
present our results following the same structure as it was discussed in Section 2.3.3.

2.5.1 Microbiome datasets

MovingPic dataset

T
im

e

OTUs

T
im

e

Figure 2.10: A visualization of the real-world MovingPic dataset, where columns are
the concentrations of particular species over time. The darker colour specifies the
higher concentration. Top: shows the original MovingPic dataset and Bottom: the
dataset with added 5% noisy signal.

The MovingPic dataset was first presented in (Caporaso et al., 2011). In this
study, two healthy subjects, one male and one female, were sampled daily at three
body sites (gut, skin, and mouth) for 15 months and for 6 months, respectively. This
study aimed at identifying differences in microbiota between body sites and individu-
als. Their results showed that despite relatively stable differences between body sites
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and individuals, there was, however, variability in an individual’s microbiota across
months, weeks, and days. It is interesting that according to their results, only a
small amount of the total taxa found within a single body site appear to be present
across all time points. For our experiments, we use the microbiome profile only from
the skin. Moreover, since the MovingPic dataset does not have any perturbations
such as antibiotics exposure or diseases, we add an artificial noisy signal to incor-
porate metastable behaviour. A practical justification for adding noise to the signal
is that the human microbiome might react not only to major perturbations such
as diseases or antibiotics exposure but also to some short-term daily fluctuations
such as changes in lifestyle or stress. Moreover, the noise will be added to test the
robustness of graphKKE.

We will start by explaining the operational taxonomical unit (OTU) table. The
OTU table is a tabular representation of microbial diversity data obtained through
high-throughput sequencing techniques. It provides information about the abund-
ance or presence of different taxa in a given sample. Formally, we define it as a
D ∈ NT ×p matrix with T being the number of time points and p being the number
of OTUs. Next, we will explain how we preprocess the OTU table, integrate a signal
and finally, construct a time-evolving graph. Let di = [d0

i , d
2
i , . . . , d

T −1
i ] be the T -

dimensional column vector of OTU counts of the ith species. OTUs with less than
30% of total reads are removed from the matrix D. Then, we randomly choose 100
OTUs that are used to add the noisy signal. The vector of length T is constructed
using a sine wave function:

z = R sin
(2πt
ω

)
and then for each i, i = 0, . . . , 100, we compute new OTU counts di

di = di + max(0, z + ϵwz),

where w ∼ N (0, 1) and ϵ is the level of Gaussian noise. We set ϵ to one of {0, 0.05, 0.3}
and will report results for each ϵ. Also, let dt = [dt

1, d
t
2, ..., d

t
p] be the p-dimensional

row vector of OTU counts at time point t, t = 0, ..., T − 1. The raw OTU counts
are typically normalized by the total cumulative count ct = ∑p

i=1 d
t
i in order to

account for the different sequencing depths (Lo and Marculescu, 2019). Thus, the
normalization of dt by the total cumulative count results in the relative abundance
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vector:
xt =

[
dt

1
ct
,
dt

2
ct
, . . . ,

dt
p

ct

]
for each time point t, t = 0, . . . , T − 1.

OTU Table Pearson correlation 

coefficients to construct an 

initial graph

For each time step we remove edges if one 

of node has the concentration close to 0.

…

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 𝑇

Figure 2.11: The construction of a time-evolving graph from the OTU table. 1)
Pearson correlation coefficients are computed in order to construct an initial co-
occurrence graph at t = 0. 2) ∀t, we remove edges from the initial time-snapshot
graph if the concentration of a species is close to zero.

Given the OTU table D, the next step is the construction of a time-evolving
graph G = (G0, ..., GT −1). The overview of the construction of a time-evolving graph
from the microbiome data can be found in Figure 2.11. First of all, we compute
the Pearson correlation coefficients for each pair of OTUs (di, dj), with i, j = 1, ..., p
in order to define an initial co-occurrence graph. It is worth noting that in Section
1.1, we have highlighted different challenges that the microbiome analysis usually
encounters. One of these challenges is compositionality which is not captured by
Pearson correlation coefficients. However, since the key focus of this thesis is not
how to construct a time-evolving graph from the microbiome, but rather to propose
methods for the analysis of the microbiome data, we choose not to explore various
approaches for constructing networks from the microbiome. We select a threshold of
0.5 such that edges with the Pearson coefficient greater than 0.5 or less than −0.5
are considered to be strongly correlated and remain in G0. Edges with the Pearson
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correlation coefficient in the range [−0.5; 0.5] are removed from the initial graph.
Furthermore, in order to construct time-snapshot graphs for each t = 0, . . . , T − 1,
we use the OTU table D. If the OTU count for the current vertex is zero, we
remove edges connecting this vertex and its neighbouring vertices. The statistics of
the pre-processed data can be seen in Table 2.2. Moreover, we define Ĝt = Gt+τ .
That is, for the chosen lag time τ (in our case τ = 1), G = (G0, . . . , GT −2) and
Ĝ = (G1, . . . , GT −1). From the two time-evolving graphs G and Ĝ, we compute the
Gram matrices KGG and KGĜ using the Weisfeiler–Lehman kernel.

Cholera infection

Another real-world microbiome data that we analyze in this section originates from
a study about recovery from Vibrio cholerae infection (Hsiao et al., 2014). Fecal
microbiota was collected during acute diarrhea and recovery periods of cholera in a
cohort of seven Bangladeshi adults. In our experiments, we chose one patient, since
there is variation in the constituents of the gut microbiota among individuals (Durack
and Lynch, 2019) and thus, it can bias the result of detecting the metastable states
such as diarrhea and recovery periods. Moreover, we will conduct our experiments
on a smaller cholera infection dataset. The original dataset contains around 343
different species after filtering and rarefaction and will be left for future work. The
pre-processed OTU table was obtained from Zackular et al. (2015). The aim is to
determine if there are metastable states in this data and if possible, the number of
metastable states and their locations.

The time-evolving graph from the given OTU table is constructed in the same
way as for the MovingPic dataset using the relative abundance vector and Pearson
correlation coefficients. In the real-world microbiome dataset, perturbations do not
always shift OTU counts to zero. Therefore, the question of how to properly con-
struct time-evolving graphs such that both metastable behaviour and associations
between microbes are taken into consideration needs to be considered in future work.

2.5.2 Experiments and Results

Experimental setup.

We define Ĝt = Gt+τ . That is, for the chosen lag time τ = 1, G = (G0, . . . , GT −2)
and Ĝ = (G1, . . . , GT −1). From the two time-evolving graphs G and Ĝ, we compute
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𝜆
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Figure 2.12: The eigenvalues of the Koopman operator approximated by graphKKE
for different percentages of Gaussian noise added to the MovingPic dataset. The
spectral gap after the second eigenvalue indicates the presence of 2 metastable states.

the Gram matrices KGG and KGĜ using the Weisfeiler–Lehman kernel. In the case
of the MovingPic dataset, we set the number of iterations to be h = 1 and the
regularization parameter to be η = 0.9. In the case of the Cholera infection dataset,
the number of iterations is 5 and the regularization parameter is 0.1. The statistics
of each real-world dataset can be found in Table 2.2.

Analysis of metastability

The eigenvalues detected by graphKKE for the MovingPic dataset with different
percentages of Gaussian noise are shown in Figure 2.12. The gap after the second
eigenvalue and the values of these eigenvalues close to 1 implies the presence of two
states in the time-evolving graph G. The spectral gap after the fourth eigenvalue
indicates the presence of four states but we are not aware of the biological interpreta-
tions of the second two states since the original study does not mention any potential
perturbations. Future work can be focused on the analysis of these other two meta-
stable states. The experiment also shows that graphKKE is robust to the noise in
the data since regardless of the noise level in the data the method detects two meta-
stable states. In order to find the location of the states, we cluster time-snapshot
graphs into two states using k-means applied to the two normalized eigenfunctions
associated with two dominant eigenvalues with the number of clusters set to 2. Fig-
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Figure 2.13: The approximated eigenvectors of the Koopman operator associated
with two dominant eigenvalues for different levels of noise added to the MovingPic
dataset: (a) without noise (b) with 0.05 noise and (c) with 0.3 noise.

ure 2.13 depicts two eigenvectors associated with two dominant eigenvalues close to
1 for each level of Gaussian noise. We can see that graphKKE is relatively robust to
the noise in the data. Moreover, the first eigenvector has a constant value close to
0 and the second eigenvector indicates the presence of two states: one in 0.04 and
another one in −0.04.

For the CholeraInf dataset, the resulting eigenvalues are shown in Figure 2.14.
Two dominant eigenvalues close to 1 imply that the time-evolving graph G contains
two metastable states. In the comparative analysis, we will show that these two
metastable states correspond to the ground truth infection/recovery periods of the
dataset. Moreover, the eigenfunctions associated with these two dominant eigenval-
ues (Figure 2.14 (Right)) contain all information about the long-term behaviour of
the time-evolving graph G and using them as a low-dimensional representation we
can further analyze the cholera dataset with the aid of time-series methods which
work with vector-structured data. For example, one can cluster the data into two
clusters, predict the state at the next time point or we can find the probability of
G returning to the diarrhea state if a person continues living in this area, however,
this is out of scope of this thesis.
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Figure 2.14: Left: The large spectral gap after the second eigenvalue of the Koopman
operator approximated by graphKKE indicates that the CholeraInf dataset consists
of 2 metastable states. Right: The approximated eigenvectors of the Koopman
operator associated with two dominant eigenvalues.

Comparative analysis

For the comparative analysis, we will utilize the dominant eigenfunctions of transfer
operators for both datasets. Applying k-means to eigenfunctions associated with two
dominant eigenvalues, we can find the location of metastable states in G. Moreover, in
order to estimate whether the resulting low-dimensional representation maintains the
dynamics of the time-evolving graph, we will compare the metastable states, which
we obtained by clustering eigenfunctions, with the initial time periods of diarrhea
and recovery. The ARI is shown in Table 2.4 for both datasets. Similar to the
results on synthetic datasets, graph2vec, and WL kernel perform poorly compared
to both graphKKE with WL and graphKKE with Gaussian kernel. It is interesting
that ARIs for graphKKE with WL kernel and graphKKE with Gaussian kernel are
almost the same.

Table 2.4: Adjusted Rand Index (ARI) for the comparative analysis on the graph
clustering task for the real-world datasets. Higher ARI corresponds to greater accur-
acy in correctly identifying the ground truth states. It can be seen that the combin-
ation of graphKKE with the Weisfeiler-Lehman kernel outperforms other methods.

Dataset graph2vec WL kernel (graphKKE, WL) (graphKKE, Gk)
MovingPic 0.42 0.56 1 0.99
CholeraInf 0.29 0.66 0.88 0.87
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2.6 Discussion

The large variety of species and complex interactions in the microbiome makes it
challenging for researchers to analyze the responses of the microbiome to different
perturbations such as diseases or antibiotic exposures and its influence on human
health. However, most studies aiming at understanding these dynamics are primarily
focused on statistical constitution analysis ignoring more complex interactions that
can be described in the form of a time-evolving graph. One solution is to represent
each time-snapshot graph of the time-evolving graph as a fixed-length feature vector
instead of trying to analyze the complex metastable dynamics of the microbiome
composition in the high-dimensional space. However, many existing approaches learn
the embedding either of the static graphs or of the substructures such as nodes, edges,
or subgraphs, whereas for some systems it is of great importance to embed the entire
time-snapshots of the time-evolving graph into a low-dimensional space preserving
the global temporal mechanisms such as metastability.

Therefore, in this Chapter, we introduced an unsupervised approach (i.e., class
labels of a single time-snapshot graph are not required to learn the embedding) for
learning a mapping that embeds a time-snapshot graph of a time-evolving graph
exhibiting metastable behaviour as points in a low-dimensional vector space. The
proposed method utilizes two key concepts, namely, transfer operators and graph
kernels. Transfer operators help to capture the dynamical properties of the ini-
tial high-dimensional complex system (time-evolving graph in this case) and graph
kernels extract the structural properties associated with each time-snapshot graph.
Both concepts help us to learn a low-dimensional representation of the time-evolving
graph in such a way that the initial dynamics such as metastability are preserved in
a new space. Furthermore, we introduced synthetic datasets that make use of the
concept of potential functions. We were able to construct synthetic time-evolving
graphs with different configurations such as the number of metastable states, and
the number of nodes/edges. Finally, we presented real-world microbiome datasets
for which we aim to extract new biological insights using the proposed method.

Our experiments on the synthetic and real-world data have shown that our ap-
proach is capable of learning a low-dimensional representation of the time-evolving
graph that preserves the metastable behaviour. The points of the low-dimensional
representation can then be clustered in order to identify the location of metastable
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states (e.g. time points corresponding to cholera or recovery period). Moreover, one
can also analyze the dynamics occurring in the time-evolving graph (e.g., the prob-
ability of jumping from one state to another or the probability that the graph will
return to one of the states) and apply different machine learning techniques. Since
we are dealing with graph-structured data, which usually represents the interac-
tions between objects, we can extract structural information pertaining to particular
states. The latter is beneficial in the case of biological interactions such as micro-
biome data, where it is crucial to understand the differences between states (e.g.,
healthy or ill). To this end, experimental results have shown that our approach can
outperform several state-of-the-art methods for the representation learning of graphs.
For instance, the comparative analysis has shown that applying only the Weisfeiler–
Lehman kernel to the time-evolving graph is not sufficient to capture the underlying
dynamical graph patterns and consequently, to detect the metastable sets.

We have shown that graph kernels are not only a powerful tool for analyzing static
graphs but also for analyzing time-evolving graphs. The transfer operator approach
in combination with graph kernels yields a method capable not only of extracting
structural information in each time-snapshot graph of the time-evolving graph but
also of identifying the evolution patterns, which may exist in time-evolving graphs
with metastability over long periods of time.

In conclusion, it is important to acknowledge the limitations of our proposed
method. One significant limitation is an inability to extract structural graph fea-
tures that are linked to each metastable state. This is crucial for understanding
changes occurring in the microbiome compositions under the influence of external
perturbations. We will discuss this in more detail in a later chapter.
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Understanding and analyzing complex systems such as the microbiome with

a large number of interactions and high dimensionality is a challenging task. In
Chapter 2, we proposed a method that simplifies the analysis of such complex sys-
tems, in particular the system of microbial species, by learning a low-dimensional
representation of a time-evolving graph while maintaining the metastable behaviour
in a new space. However, the complexity of interactions, the large number of time
steps, and high dimensionality require not only alternative approaches such as the
embedding of the system of microbial into the low-dimensional space but also ex-
tracting microbial biomarkers such as edge or node clusters which are associated with
changes in microbial composition as it was mentioned in Section 1.1. Unfortunately,
the graphKKE method introduced in the previous chapter does not allow transition-
ing from a low-dimensional space back to the space of the time-evolving graph. This
means that it is impossible to extract microbial biomarkers while learning a low-
dimensional space. In Chapter 4 we will propose an approach that might be used
for this purpose, however in case of more complex structural features of the time-
evolving graph associated with changes in microbial compositions, this approach will
not work.

In this chapter, we will continue studying how to embed the time-evolving graph
into a low-dimensional space while maintaining the metastable behaviour. However,
here we study the application of modern deep learning techniques to resolve the prob-
lem stated above. Our approach begins by utilizing the Transformer architecture
to compute the embedding of a time-snapshot graph. The Transformer’s attention
mechanism allows us to capture the relationships and dependencies between different
nodes or edges in the graph, enabling a comprehensive representation of the system’s
dynamics at a particular time point. Furthermore, to ensure that the representations
of consecutive time-snapshot graphs, which exhibit similar metastable behavior, are
close to each other, we employ contrastive learning. Contrastive learning allows
us to emphasize the similarities and differences between time-snapshot graphs, en-
abling the extraction of crucial information related to metastable states. In addition
to presenting our proposed approach, we also provide a comparative analysis with
the kernel-based method presented in Chapter 3. By contrasting the performance
and efficacy of our interpretable graph representation model with the kernel-based
method, we aim to showcase the advantages and novel insights that can be gained
through the application of modern deep learning techniques.

Our main contribution is presenting a model that learns a low-dimensional rep-
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resentation of the time-evolving graph with metastable behaviour in an unsupervised
manner. We show in experiments that the metastability governing the time-evolving
graph is preserved by the model. By interpreting the output of the model with re-
spect to the input, we demonstrate that it is feasible to extract topological features of
the time-evolving graph, which define each metastable state. These features can be
used to identify a set of microbes that drive the microbiome constitution to undergo
transitions from one metastable state to another.

3.1 Transformer

The Transformer is a deep learning architecture that has had a large impact on
various natural language processing (NLP) tasks. It was introduced in the paper
“Attention Is All You Need” by (Vaswani et al., 2017), and it revolutionized the way
NLP models process and understand sequential data. Moreover, the Transformer has
been attracting much attention in other domains such as computer vision (Dosovit-
skiy et al., 2020) and graph representation learning (Velickovic et al., 2017; Dwivedi
and Bresson, 2020).

Before transformers were invented, the traditional approaches for sequential data
included recurrent neural networks (RNNs) and long short-term memory networks
(LSTM) which are costly and time-consuming to train on large datasets. These
approaches suffer from sequential processing bottlenecks, causing limitations in cap-
turing long-range dependencies efficiently. In order to overcome these limitations, at-
tention and self-attention mechanisms have been proposed. These components allow
more efficient parallel processing, making it possible to scale the speed and capacity
of sequential deep-learning models. In technical details, a transformer architecture
consists of an encoder and a decoder, both of which are made up of multiple lay-
ers of self-attention and feed-forward neural networks. The encoder takes the input
sequence and produces a fixed-length context vector, which is then used by the de-
coder to generate the output sequence. The key innovation of the transformer is the
use of self-attention mechanisms, which allow the model to weigh the importance of
different parts of the input sequence when making predictions. For instance, in the
context of natural language processing, this allows the model to learn relationships
between words in a sentence, regardless of their position in the sentence.
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3.1.1 Transformer Architecture

In this section, we discuss each of the key components of the Transformer, the mo-
tivation behind the creation of the Transformer, and why the Transformer has had
such success. The Transformer is introduced as a novel encoder-decoder architecture
built with multiple blocks of a self-attention mechanism. Figure 3.1(a) depicts the
original architecture of the Transformer.

As most competitive neural sequence transduction models have an encoder-
decoder structure (Vaswani et al., 2017), the Transformer is not an exception. The
encoder takes an input sequence (x1, . . . , xn) and maps it to a continues-values se-
quence z = (z1, . . . , zn). Given z, the decoder then generates an output sequence
(y1, . . . , yn) of symbols one element at a time. This is a common structure of all
neural machine translation models. However, the architecture of the Transformer
has three components that make it successful. We will discuss them further in the
thesis and begin with the encoder proceeding with each component of the Trans-
former step by step.

Encoder Decoder

(a) (b)

Figure 3.1: (a) The architecture of original Transformer. The image is taken from
(Vaswani et al., 2017). (b) The Switch Transformer. Image from the original paper
(Fedus et al., 2022).
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Encoder

The encoder is responsible for transforming the input sequence into a latent repres-
entation. The encoder of the original Transformer is composed of a stack of N = 6
identical layers. Each layer has two sub-layers (the encoder is shown in Figure 3.1
on the left). One sub-layer is a multi-head self-attention mechanism, which will be
discussed later, and the second sub-layer is a fully connected feed-forward network.
Each of the two sub-layers is followed by a residual connection (He et al., 2016) and
layer normalization (Ba et al., 2016).

Decoder

The decoder is designed to generate the target sequence, leveraging the information
processed by the encoder. The decoder is also composed of a stack of N = 6 identical
layers. In addition to the two sub-layers similar to the encoder, the decode has a
third sub-layer which performs multi-head attention over the output of the encoder
stack. This layer is also called “encoder-decoder attention” and it enables the decoder
to access information from the input sequence through the attention mechanism.
Residual connections and layer normalization are employed after each sub-layer as
it is done in the encoder. To prevent the decoder from attending future positions
during training, a masking technique is applied to the self-attention mechanism in
the decoder part. The masking ensures that each position can only attend previous
positions in the sequence.

Positional Encoding

The Transformer does not contain any recurrence layers that could capture the order
of words in a sentence. Therefore, information about the relative or absolute position
of words in the sequence must be injected to make use of the order of the sequence.
The authors employ absolute positional encoding (PE) to the input embeddings
before the encoder and decoder stacks. The positional encodings have the same
dimension as the embedding. The original Transformer uses sine and cosine functions
of different frequencies:
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ppos,2i = sin ( pos

10000
2i

dm

) (3.1)

ppos,2i+1 = cos ( pos

10000
2i

dm

),

where pos, i and dm denote the position of the node in the time-snapshot graph,
the dimension in the positional encoding, and the dimension of node embedding,
respectively.

Various strategies for positional encoding have been proposed. For example, one
way of representing absolute positions is to learn a set of positional embeddings
for each position (Devlin et al., 2019). Learned positional embeddings are more
flexible in a way that position representation can adapt to a specific task during
backpropagation. An alternative approach to accounting for the order in sequences
is to inject relative positional encoding. Relative positional encoding encodes the
position of a word in relation to other words in the sentence (Shaw et al., 2018).
The motivation behind this is that self-attention could benefit more from pairwise
positional relationships between input elements.

Since sequential position encoding is usually not suitable for processing graphs,
(Kreuzer et al., 2021) define a Laplacian positional encoding for graphs. Their
primary aim is to investigate how eigenfunctions of the Laplacian can be used to
define absolute and relative positional encodings in graphs. If we want to draw an
analogy with a sine/cosine positional encoding in Eq. 3.1, in Euclidean space, the
Laplacian operator corresponds to the gradient divergence and its eigenfunctions are
sine/cosine functions, with the squared frequencies corresponding to the eigenval-
ues. Moreover, the authors introduce principles from spectral graph theory which
should be considered when constructing PEs for graphs. This includes normalization,
eigenvalues, multiplicities, variable number of eigenvectors, and sign invariance.

Feed-forward network

A feed-forward network is one of the first neural network architectures and the
simplest type of neural network. It consists of an input layer of nodes, one of a
couple of hidden layers, and an output layer. Hidden layers comprise nodes, weights,
and activation functions. Weights are defined as Θ = {W,B}, where W is a set of
connections between different nodes, and B is a set of biases. In this type of neural
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network, information moves only in one direction — from the input layer, through
the hidden layers, and to the output layer. The sum of the products of weights and
the inputs is calculated in each node. This linear combination is then passed to an
activation function σ(·) to generate the output.

f(x) = σ(wTx+ b). (3.2)

The typical activation function is the sigmoid function that takes a real-valued
x and gives an output between 0 and 1:

f(x) = 1
1 + exp (−x) . (3.3)

Hyperbolic tangent function is another common activation function that takes a
real-valued number and outputs a value between −1 and 1:

than(x) = exp (x) − exp (−x)
exp (x) + exp (−x) (3.4)

Both the hyperbolic tangent and sigmoid activation functions map large negative
and positive inputs into [−1; 1] or [0, 1], which causes saturation in practice.

Another most used activation function right now is Rectified Linear Unit (ReLU):

f(x) = max(0, x). (3.5)

The last common activation function is the softmax activation function which is
used to convert the output to a probability distribution:

f(x)k = exp (xi)∑K
j=1 exp (xj)

, (3.6)

where K is the number of classes in the multi-class classifier.

3.1.2 Attention mechanism

According to psychology, attention is the cognitive process of selectively concentrat-
ing on one or a few things while ignoring others. Similar to how neural networks
attempt to mimic human brain actions in a simplified manner, the attention mech-
anism is also an attempt to implement the same action of selectively concentrating
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on a few relevant things while ignoring others in deep neural networks.

The attention mechanism emerged as an improvement of the encoder-decoder-
based neural machine translation system in Natural Language Processing (NLP).
This mechanism, and its variations, was later used in other applications, including
computer vision, speech processing, etc. (Bahdanau et al., 2014) first proposed the
attention mechanism as a way of improving recurrent neural networks (RNNs) or
Long Short-Term memory (LSTM), which were the most popular approaches for
neural machine translation at that time. The authors claimed that a potential issue
with a family of encoder-decoder approaches was that a neural network needed to
be able to compress all the necessary information of a source sentence into a fixed-
length vector. This made it difficult for such models to cope with long sentences,
especially those that are longer than the sentences in the training set. The authors
of (Cho et al., 2014) have shown that encoder-decoder models suffer from a significant
drop in translation quality when translating long sentences. Even though LSTM is
supposed to capture the long-term dependencies better than the RNN, it tends to
become forgetful in specific cases. Another problem with LSTM or RNN is that
there is no way to give importance to some of the inputs compared to others while
translating the sentence. So, considering all these drawbacks of encoder-decoder
models, the elegant idea of (Bahdanau et al., 2014) has made the most valuable
breakthroughs in deep learning research.

In order to address the bottleneck problem that arises with the use of a fixed-
length encoding vector, where the decoder would have limited access to the inform-
ation provided by the input, the authors of (Bahdanau et al., 2014) propose a new
encoder-decoder architecture, where an encoder is a bidirectional RNN and a de-
coder that imitates the process of searching through the original source sentence
while generating a translation. Let x = (x1, x2, . . . , xT ) be the input sequence and
{y1, . . . , yt−1} be the previously predicted words. The authors (Bahdanau et al.,
2014) propose a decoder that models the following conditional probability

p(yi|y1, . . . , yi−1,x) = g(yi−1, s1, ci), (3.7)

where si is an RNN hidden state for time i computed as si = f(si−1, yi−1, ci) and ci

is a context vector that depends on a sequence of annotations (h1, . . . , hT ) to which
the encoder maps the input sequence. The context vector is then computed as a
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weighted sum of annotations:

ci =
T∑

j=1
αijhj. (3.8)

The weight αij of each annotation hj is defined as αij = softmax(eij) with eij =
a(si−q, hj) being an alignment model. In the original paper, a is parameterized as a
feed-forward network.

The aforementioned formulation can be interpreted as an attention mechanism,
which can be further generalized (Brauwers and Frasincar, 2021). The input of the
general attention mechanism is the matrix of feature vectors X = [x1, . . . ,xn] ∈
Rdf ×m, the query q ∈ Rdq , the keys matrix K = [k1, . . . ,km] ∈ Rdk×m, and the
values matrix V = [v1, . . . ,vm] ∈ Rdv×m. Comparing these three components to the
attention mechanism discussed above the query would be analogous to the previous
decoder output st−1, and the values would be analogous to the encoder inputs hi.
The keys and values are the same vectors in (Bahdanau et al., 2014). The general
way to obtain matrices K, V and Q is via a linear transformation of F using some
weight matrices WK ∈ Rdk×df and WV ∈ Rdv×df :

K = WKX and V = WV X (3.9)

The weight matrices are usually learned during the training. They can be initialized
in different ways such as the identity matrix to retain the original feature vectors or
using completely separate inputs for the keys and values (Brauwers and Frasincar,
2021).

The query q and the keys matrix K are used to calculate the attention score
vector e = [e1, . . . , em]:

ei = score(q,ki) (3.10)

with ei ∈ R1×1, q ∈ Rdq×1 and ki ∈ Rdk×1. The different types of existing score
functions and their advantages are discussed further in the section. Moreover, the
attention score ei indicates how important the information contained in the key
vector ki is according to the query and the query vector serves as a request for
information (Brauwers and Frasincar, 2021).

After we have calculated the attention sore, we proceed further to an alignment
layer. The alignment layer is used to normalize the attention score which can gener-
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ally have a wide range outside of [0, 1]:

ai = align(ei; e) (3.11)

with e ∈ Rm×1. A variety of the align functions is also discussed further in this
section. The intuition behind the alignment layer is how important each feature
vector is relative to the others for the particular problem.

Finally, the vector of attention weights allows us to compute a context vector
c ∈ Rdv×1:

c =
m∑

i=1
aivi, (3.12)

where vi ∈ Rdv×1. The context vector is then used in the further layers of the model.
For instance, it can be translated directly into an output prediction with a softmax
layer.

Due to the big success of the attention mechanism in machine translation, it
has become extended into other fields of deep learning such as computer vision
and graph representation learning. In order to adapt the attention mechanism to
different problems, researchers have been exploring various forms of score functions,
which have their own advantages and disadvantages. We begin the discussion of the
most used attention score functions.

Attention scoring

The attention score function in Eq.3.10 is an important component of the attention
mechanism. The most popular choices for the score function are the multiplicative
(dot-product) score function (Luong et al., 2015) in Eq. 3.13 and the additive score
function (Bahdanau et al., 2014) in Eq. 3.14 due to their simplicity.

e = qTki, (3.13)

e = wTσ(W1q + W2ki) (3.14)

where σ is an activation function, w ∈ Rdw , W1 ∈ Rdw×dq , and W2 ∈ Rdw×dk are
trainable parameters.

One of the advantages of the multiplicative score function is computational ef-
ficiency due to highly optimized matrix operations. However, when the dimension
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of the key matrix K, dk is too large, the vector e in Eq. 3.10 becomes also large in
magnitude. When the softmax function in the alignment step is applied, the gradient
will become very small which results in the vanishing gradient problem. To tackle
this problem, (Vaswani et al., 2017) proposed to scale the dot-product attention by
the factor 1√

dk
.

The choice of a scoring function is most often based on empirical experiments.
However, if computational efficiency is more important, then the dot-product func-
tion and scaled dot-product function is typically the best choice. For instance,
(Vaswani et al., 2017) uses the scaled dot-product function since the Transformer is
generally computationally expensive.

Attention alignment

The alignment layer in Eq. 3.11 determines to which parts of the input data the
model will attend. The most popular function for the alignment layer is a simple
softmax function, which is also used by (Vaswani et al., 2017) in the Transformer:

al = exp el∑m
j=1 exp ej

, (3.15)

where e is the attention score vector calculated in the previous step.
Due to the nature of the softmax function, every part of the input receives some

amount of attention (Brauwers and Frasincar, 2021). Moreover, the probabilistic
interpretation of the softmax function makes it easier to understand which parts of
the input are important to the output prediction. This alignment method is often
referred to as deterministic soft alignment (Xu et al., 2015). The interpretation of the
soft alignment can be seen as the model attending to all feature vectors. Stochastic
hard alignment (Xu et al., 2015) tries to archive a more focused form of the alignment
and can be interpreted as the model attending to one feature vector. Instead of using
all weights a1, . . . , anf

for computing a context vector in Eq. 3.12, we consider a value
m ∈ R1 which is drawn from a multinomial distribution parametrized by {ai}. Then,
the context vector is computed as c = vm, where v is again a values vector. The main
drawback of the stochastic hard alignment is that it is non-differentiable which means
that it is impossible to use the standard gradient decent for the model optimization.
(Xu et al., 2015) train a model with stochastic hard attention by maximizing an
approximate variational lower bound or by using a reinforcement learning technique
REINFORCE (Williams, 1992).
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The other two types of the alignment layer are local alignment (Luong et al.,

2015) and reinforced alignment (Shen et al., 2018). They are a compromise between
hard and soft alignment. Local alignment implements a softmax distribution, similar
to soft alignment. However, the softmax distribution is computed based only on
a subset of the input. To determine the subset of the input, the authors use a
window placed on the input. Reinforced alignment computes the soft alignment on a
subset of the feature vector. But unlike local alignment, reinforced alignment uses a
reinforcement learning agent, similar to hard alignment, to choose a subset of feature
vectors. Soft alignment is typically regarded as the standard alignment function in
attention models.

In the original Transformer (Vaswani et al., 2017), the multi-head attention mech-
anism can be written as follows

MultiHead(Q,K, V ) = Concat(h1, . . . , hH)WO, (3.16)

with
hi = a(QWQ

i , KW
K
i , V W

V
i ) (3.17)

a(Q,K, V ) = softmax
( QKT√

(dk)

)
V. (3.18)

3.1.3 Variations of the Transformer

A wide variety of models have been proposed based on the original Transformer
which can be divided into three groups: types of architecture modification, pre-
training methods, and applications. A more detailed survey on various transformers
can be found in (Lin et al., 2022). We will highlight several works that we find
interesting and have some connections to our work. We first discuss the adaptation
of Transformer architecture to graph-structure data. Even though we intended to use
the original Transformer architecture, one can claim that we use Graph Transformer
because we also leverage graph connectivity and update an attention matrix based
on the local neighbourhood of each node. Another set of methods will concern
the computational complexity of the vanilla Transformer. They try to reduce the
complexity of the attention mechanism. In the case of our application, in order to
observe metastable behaviour it is necessary to have many time points of a time-
evolving graph, which might increase the training time of our method. Therefore, it
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is worth mentioning these variations of the Transformer.

Graph Transformer

Since the original Transformer was designed for natural language processing pur-
poses, it operates on all connections between words in a sequence. Such architecture
does not leverage graph connectivity, and it can perform poorly when the graph
structure is important and has not been used during the model training. Therefore,
several works have been proposed to adopt the transformer to graph-structure data.
(Dwivedi and Bresson, 2020) introduce the Graph Transformer Layer and Graph
Transformer Layer with edge features. They claim that there are two main aspects
in the development of a Graph Transformer which are sparsity and positional encod-
ing. They suggest utilizing Laplacian eigenvectors as a positional encoding. They
closely follow the original transformer architecture, however, the node update is
defined in such a way so that the graph topology is taken into account:

hl+1
i = Ol

h∥H
k=1

( ∑
j∈Ni

wk,l
ij V

k,lhl
j

)
, (3.19)

where
wk,l

ij = softmaxi

(Qk,lhl
iK

k,lhl
j√

dk

)
, (3.20)

and Qk,l, Kk,l, V k,l are the keys, values and queries matrices, H denotes the number
of attention heads, and ∥ is a concatenation operation.

Another work (Li et al., 2019) suggests using the attention mechanism to all nodes
in the graphs instead of a local neighbourhood of a specific node with the purpose of
capturing global information in the graph. (Zhang et al., 2020b) introduce Graph-
BERT for graph representation learning. They propose to use batches of linkless
subgraphs sampled from the original graph.

Switch Transformer

Switch Transformer (Fedus et al., 2022) is another variant of the Transformer and
one of the first trillion-parameter models. They use a modified version of a mixture-
of-experts (MoE) paradigm that was developed by (Jacobs et al., 1991). The idea
is that instead of activating multiple experts and combining their output, Switch
Routing chooses a single expert to handle a given input. This allows training a model
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on different GPUs while reducing communication costs. In order to implement it,
they replaced the standard FFN layer in the original transformer with a switch feed-
forward neural network. The illustration of a Switch Transformer encoder block is
depicted in 3.1(b). When each token passes through this layer, it first passes through
a router function which then routes the token to a specific expert. This results in
high sparsity of the model meaning that not every parameter is utilized for every
token.

Moreover, in order to take advantage of data- and model-parallelism, the Switch
Transformer utilizes the newly introduced Mesh-TensorFlow (Shazeer et al., 2018).
It is a language for specifying a general class of distributed tensor computations. In
the Mesh-TensorFlow, a user can specify any tensor dimensions to be split across any
dimensions of a multi-dimensional mesh of processors. The authors of the Switch
Transformer experimented with different dimensions and they found that the most
efficient dimension for scaling was the number of experts.

Scaling the attention mechanism

There are several attempts made to increase the computation efficiency of the atten-
tion mechanism. The complexity of the vanilla Transformer increases quadratically
with the number of tokens in the input sequence and this is due to the estimation of
regular (softmax) full-rank attention. For example, Linformer (Wang et al., 2020b)
proposes to approximate the stochastic matrix formed by self-attention with a low-
rank matrix. They decompose the original scaled dot-product attention into multiple
smaller attentions through linear projections. In this way, the combination of these
operations results in a low-rank factorization of the original attention.

Routing Transformer (Roy et al., 2021), in turn, relies on sparsity of the attention.
It introduces the idea that was also used in Switch Transformer. The idea lies in the
clustering of attention. Each attention module considers a clustering of the space:
the current time step only attends to context belonging to the same cluster.

Another approach is called Performers (Choromanski et al., 2020). Instead of
introducing sparsity in the attention or using low-rankness, they accurately estimate
(softmax) full-rank attention of only linear space and time complexity. They propose
a new method called fast attention via the positive orthogonal random features
mechanism. This method consists of several parts. The first part, the FA-part,
represents queries and keys as matrices of the form A(i, j) = K(qi,ki), where qi and
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ki represent the ith and jth query/key row-vector in Q and K respectively. Then, a
kernel k Rd × Rd → R+ with a feature map ϕ : Rd → Rr

+ as:

k(x, y) = E[ϕ(x)Tϕ(y)]. (3.21)

We can now define new matrices of queries and keys Q′, K ′ ∈ RL×r with rows given
by ϕ(qT

i )T and ϕ(kT
i )T . Finally, the original attention mechanism defined in Eq. 3.18

can be rewritten as:
Att(Q,K, V ) = D̂−1(Q′((K ′)TV )), (3.22)

with
D̂ = diag(Q′((K ′)T 1L)). (3.23)

Another part is the R-part which approximates the softmax kernel by using trigo-
nometric functions that are then regularized using positive random features. The
last part is the O-part which tries to entangle samples to be orthogonal using the
Gram-Schmidt orthogonalization procedure. This is done to reduce the variance of
the softmax of the estimator.

3.2 Contrastive representation learning

3.2.1 Problem formulation

Conventional supervised learning methods heavily rely on the availability of annot-
ated training data. However, the scarcity of annotations has prompted researchers to
explore alternative approaches that can effectively utilize unlabeled data. Contrast-
ive learning addresses this problem by learning useful representations from unlabelled
data which means that contrastive learning is a type of unsupervised learning tech-
nique. The goal of contrastive learning is to maximize the similarity between similar
instances while minimizing the similarity between dissimilar instances.

Contrastive learning originated from the concept proposed in (Chopra et al.,
2005). They introduced a method for training a similarity metric from data for
face recognition and face verification applications. The idea was to find a function
that maps input patterns into a target space such that a distance (e.g. the Euclidean
distance) in the target space approximates the “semantic” distance in the input space.
Formally, given a family of the function Fθ(x) parameterized by θ, the objective is
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to find a value of the parameter θ such that the similarity metric Eθ(x1, x2) =∥
Fθ(x1) − Fθ(x2) ∥ is small if x1 and x2 belongs to the same class, and large if they
belong to different classes. The motivation was that methods that require known
labels in advance are not suitable for applications where the number of classes is
very large but the number of samples for each class is small.

The task of dimensionality reduction can also be seen as an application of con-
trastive learning. We need to map a set of high-dimensional input points into a
low-dimensional manifold so that “similar” points in input space are mapped to
nearby points on the manifold. Therefore, (Hadsell et al., 2006) used a concept of
contrastive learning for solving a dimensionality reduction problem. They formu-
late the problem in the following way. Given a D− dimensional vector, it aims to
find a parametric function that transforms this vector into a d−dimensional vector,
where d ≪ D, while preserving as much information as possible. The authors place
the following constraints on the function: (i) the distance measures in the output
space should approximate the neighbourhood relationship in the input space; (ii) it
should be able to learn invariances to complex transformations; (iii) it should remain
accurate even for samples with unknown neighbourhood relationships. To find this
parametric function, the authors propose to use contrastive loss where the input is
pairs of samples (x1,x2) with y being a binary label assigned to the pair. If x1 and
x2 are similar, y = 0, otherwise y = 1. In order to define pairs of samples, it is sug-
gested to use some prior knowledge or manual labelling etc. These pairs of similar
or dissimilar samples are called positive and negative pairs.

Another formulation for contrastive representation learning can be viewed as
learning by comparing. Thus, the goal is to find a low-dimensional space where
samples from the same instance are pulled closer and samples from different instances
are pushed apart. Formally, given a vector of input samples xi, i = 1, . . . , N with
corresponding labels yi ∈ {1, . . . , C} with C being a number of classes, contrastive
learning aims to learn a function fθ(x) that encodes xi into an embedding vector such
that examples from the same class have similar representations and samples from
different classes are far away from each other in a new space. However, it is worth
mentioning that in contrastive learning representation, we do not have ground-truth
labels or classes.

All above mentioned definitions of contrastive learning are facing a similar chal-
lenge — how to define positive and negative pairs if we know in advance that our
data is not labelled. Therefore, since one of the key components of contrastive rep-
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resentation learning is a contrastive loss, there have recently been proposed many
contrastive losses that propose different ways of defining positive and negative pairs.
We will further discuss some of the most popular contrastive losses and how they
split the training data into negative and positive pairs.

3.2.2 Contrastive loss

Contrastive loss is one of the earliest training objectives used for deep metric learning
in semi-supervised and unsupervised settings. In early versions of contrastive loss
functions, only one positive and one negative sample are involved. These types of
contrastive losses suffer from slow convergence (Sohn, 2016). However, there has
been a recent shift in the trend, where many contrastive objectives now incorporate
multiple positive and negative pairs within a single batch. We will focus on the latest
state-of-the-art contrastive objectives as this field is rapidly advancing.

Triplet Loss

The most common approach to contrastive learning was proposed in (Ying et al.,
2018b; Schroff et al., 2015) as a part of FaceNet, a deep convolutional network, that
learns face recognition of the same person at different poses and angles. By using
contrastive learning, the network is trained such that the squared L2 distances in the
embedding space directly correspond to face similarity. The idea of the triplet loss
is the following. Given one anchor input x, we select one positive sample x+ and one
negative x−. This means that x and x+ belong to the same class and x− is sampled
from another class than x. Triplet loss aims to minimize the distance between the
anchor x and x+ and maximize the distance between the anchor x and x− at the
same time in the following way:

L(x, x+, x−) =
∑
x∈X

max (0, ∥f(x) − f(x+)∥2
2 − ∥f(x) − f(x−)∥2

2 + ϵ). (3.24)

In order to improve contrastive learning, the negative sample should be challenging.
Generating all possible triplets would result in many triplets that are easily satisfied,
therefore, they would not contribute to the training. The authors proposed to use
hard positive and hard negative samples by sampling them, within a mini-batch.
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NCE

Noise Contrastive Estimation (NCE) is a method for estimating parameters of a
statistical model, proposed by (Gutmann and Hyvärinen, 2010). The idea is to use
logistic regression to separate the target data from noise. Given the target sample
x ∼ P (x|C = 1, θ) = pθ(x) and a noise sample x̃ ∼ P (x̃|C = 0) = q(x̃). The
logit of a sample x from the target data distribution is modelled instead of the noise
distribution using the logistic regression:

lθ(x) = log pθ(x)
q(x) = log pθ(x) − log q(x). (3.25)

The logits are then converted into probabilities with the sigmoid function and the
cross-entropy loss is applied:

LNCE = − 1
N

N∑
i=1

[
log σ(lθ(xi)) + log

(
1 − σ(lθ(x̃i))

)]
, (3.26)

where the sigmoid function σ(·) is defined as

σ(x) = 1
1 + exp (−x) . (3.27)

In the original paper, the NCE loss works only with one positive and one noise
sample. However, this is addressed in more recent works on contrastive learning by
introducing the comparison with multiple negative or noise samples.

InfoNCE

Another contrastive loss, InfoNCE, has been proposed by (Oord et al., 2018) and
inspired by NCE. It uses categorical cross-entropy loss to identify the positive sample
among a set of unrelated noise samples. Given a set of N random samples containing
one positive sample p(xt+k|ct) and N − 1 negative samples from some distribution
p(xt+k), we optimize:

LInfoNCE = −E
[

log fk(xt+k, ct)∑
xj∈X fk(xj, ct)

]
, (3.28)

where ct is called a context vector and f(x, c) ∝ p(x|c)
p(x) which is the estimation of

the density ratio and it has a connection with mutual information optimization.
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The paper claims that when predicting future information we encode the target x
(future) and context c (present) into compact distribution vector representations in
a way that maximally preserves the mutual information of the original x as

I(x, c) =
∑
x,c

p(x, c) log p(x|c)
p(x) . (3.29)

Other contrastive losses include Lifted Structured Loss (Oh Song et al., 2016),
N-pair Loss (Sohn, 2016), which introduces the comparison with multiple negative
pairs, and Soft-Nearest Neighbors Loss (Frosst et al., 2019).

3.2.3 Strategies to successful contrastive learning

Based on various empirical experiments, different studies have proposed strategies
on how to improve contrastive learning.

Batch Size and longer training

(Chen et al., 2020) has shown that the large batch size and longer training are key
ingredients in the success of many contrastive learning methods, especially when it
relies on in-batch negatives. When the batch size is big enough, the contrastive loss
can cover a diverse collection of negative samples which allows the model to learn
meaningful representation to distinguish different examples.

Bigger models

It has been shown that contrastive learning improves significantly with increasing
the depth and width of a model. For supervised models, this statement holds as
well (He et al., 2016), however, unsupervised learning benefits more from the bigger
models than supervised models as shown in (Chen et al., 2020).

Hard negative sampling.

The idea of hard negative sampling appears in the context of triple loss defined in
Section 3.2.2. The performance of triplet loss is highly dependent on the triplet
selection strategy. The problem with triplets is that for a large part of the optim-
ization, most triplet candidates already have the anchor much closer to the positive
than the negative. Hard negative sampling, however, refers to the sampling where
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triplets include an anchor sample where the positive sample from the same class
is less similar than the negative sample from a different class (Xuan et al., 2020).
Several works proposed approaches to how to define hard negative pairs (Robinson
et al., 2020; Tabassum et al., 2022).

Other strategies for improving contrastive representation learning include
memory banks of features from previous batches, online and offline mining (dy-
namically selecting hard negative samples during or before training), and adaptive
weighting (assigning different weights to positive and negative pairs).

3.3 Novel unsupervised approach for embedding
of time-evolving graphs with metastability

3.3.1 Problem formulation

Given a time-evolving graph G as a sequence of T graphs G = (G0, . . . , GT −1) at the
consecutive time points {0, . . . , T − 1} for some T ∈ N. We assume that the time-
evolving graph exhibits metastable behaviour and each metastable state is character-
ized by a certain structural pattern of the graph such as node clusters, edge clusters,
or walks. Then, the problem can be divided into two sub-problems and they can be
defined as follows: Given a time-evolving graph G = (G0, . . . , GT −1) with assumed
metastable behaviour, (i) we aim to find a mapping f : G → S that learns a low-
dimensional representation of G such that the metastable properties in Def. 2.3.1
holds in a new lower dimensional space S, (ii) and given a low dimensional space
S, we aim at finding a set of graph features X ∈ G (node clusters, edge clusters, or
walks) which are associated with the graph transitioning from one metastable state to
another. Unlike the method proposed in the previous chapter, the dimensionality of
a new space S is a hyperparameter that has to be tuned in order to obtain a good
performance.

The problem definition of this chapter is similar to the problem formulated in
Section 2.3.1. However, here we are aiming to develop a method that can be used
not only to learn a low-dimensional representation of a time-evolving graph but also
we will be able to extract microbial biomarkers that are associated with transiting
between different metastable states.

In the following sections, we will provide details about each component of the pro-
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posed deep learning-based model. The chapter will finish by evaluating experiments
and results.

3.3.2 Input

Let G = {G1, ..., GT } be a time-evolving graph with node features {xv
t }v∈V (Gt),

t = 1, . . . , T . The input node features of each time-snapshot graph Gt are embedded
to dm-dimensional latent features via a linear projection and added to pre-computed
node positional encodings. Moreover, each time-snapshot graph Gt has a corres-
ponding adjacency matrix At. In order to capture the topological structure of a
single time-snapshot graph Gt, we feed an adjacency matrix At to the Transformer
as a mask, and we set attention weights to 0 whenever the corresponding adjacency
matrix entries are 0. In such a way, we account for the neighbourhood properties of
each time-snapshot graph.

Input

Input

Dynamics
inference

Other
downstream

tasks

Figure 3.2: Overview of the method proposed in Chapter 3. The input to the model is
two sets of consecutive time-snapshot graphs {Gt−l, . . . Gt} and {G(t−l)+1, . . . Gt+1}.
For ah of this time-snapshot graph, we obtain a low-dimensional representation zτ ,
which is mapped with a projection head where contrastive learning is implemented.
The contrastive learning in the proposed method measures the similarity between
two consecutive time-snapshot graphs.

3.3.3 Model architecture

In this section, we provide details about the model architecture and its components
that play an essential role in learning a low-dimensional representation of a time-
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evolving graph with metastability. The overall idea of our model can be found in
Figure 3.2. The key component of our model is the Encoder of the Transformer,
which has been discussed in Section 3.1.1 and contrastive learning discussed in Sec-
tion 3.2. Further, we will explain how we learn a low-dimensional representation of
a time-evolving graph while maintaining metastability in more detail.

Let T = {tk}B
k=1 be a set of randomly sampled time points, and GT =

{Gt1 , . . . , GtB
} be a mini-batch of time-snapshot graphs sampled from G with a

mini-batch size B. The first key ingredient of the model is that we share the em-
bedding of a time-snapshot graph with the consecutive time-snapshot graph in the
temporal sequence to facilitate learning of temporal changes. We pass the resulting
low-dimensional representation zt of the entire Gt with the time-snapshot graph Gt+1

as an additional input to the model. We control the number of historical represent-
ations with the hyperparameter l.

The next key component of our model is a master node. Similar to the natural
language application, we defined a special node, which we call a master node. The
master node is connected to all nodes in the time-snapshot graph. Initially, the
master node is represented as a learnable, randomly initialized vector. (Gilmer
et al., 2017) also incorporated a similar trick with a latent master node which is
connected to every input node in the graph with a special edge type. It serves
as a ”station” to which each node reads from or writes on every step of message
passing. The Transformer computes the embedding of the master node, which we
regarded as a final low-dimensional representation of the time-evolving graph. This
graph embedding is then passed as the initial master node to the consecutive time-
snapshot graph in the temporal sequence. Moreover, since we connect the master
node with all other nodes in each time-snapshot graph, the size of the adjacency
matrix changes, At ∈ R(n+1)×(n+1). The reasoning behind this is that originally, the
Encoder of the Transformer learns the embedding of nodes, we, however, aim at
learning the embedding of the entire time-snapshots graphs. Therefore, we consider
the embedding of the master node as an embedding of a corresponding time-snapshot
graph. Formally, we update the graph embedding zt of the time-snapshot graph Gt
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recursively as follows:

z1 = R(z0, x1, A1),
z2 = R(z1, x2, A2),

. . .

zt = R(zt−1, xt, At), (3.30)

where R is the Encoder of the Transformer that updates embedding of nodes, zt ∈
Rdm is a master node, xt is a vector of node features and At ∈ R(n+1)×(n+1) denotes
an adjacency matrix of Gt.

Finally, we project the graph embedding zt ∈ Rdm of the time-snapshot graph Gt

into the space with the dimension d via a linear projection. This embedding will be
considered a final low-dimensional representation of the time-evolving graph G that
can further be used for downstream tasks. We denote the final embedding of the
time-snapshot graph with ĝt ∈ Rd:

ĝt = Wzt + b,

where W and b are learnable parameters.
We use two hidden layers and a non-linear activation function in order to project

the mini-batch of resulting low-dimensional vector representations ĝtk
and ĝtk+1 into

the space where contrastive learning is conducted, as it is done in (Chen et al., 2020):

gtk
= W (2)σ(W (1)ĝtk

) (3.31)

where W (1), W (2) are learnable parameters, ĝtk ∈ Rd, gtk ∈ R
dm

2 and σ is an activa-
tion function. The projected vectors gtk

and gtk+1 are used to optimize a contrastive
loss. Algorithm 1 summarizes the proposed method.

Furthermore, we explain how we use contrastive learning to make embeddings
of consecutive time-snapshots graphs to preserve the metastable behaviour in the
low-dimensional space.

3.3.4 The choice of contrastive loss

In the previous section, we have highlighted the intuitive and formal ideas of contrast-
ive learning and state-of-the-art contrastive objectives that work with one positive
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Algorithm 1: Main learning algorithm
Input:
l: the number of historical representations;
G = {G1, . . . , GT }: a time-evolving graph such that each time-snapshot
graph Gt = (xt, At);
zinit: a randomly initialized learnable master node; R: the Transformer;
W,W (1),W (2), b: parameters of the model;
L = 0;
for sampled mini batch of indices {tk}B

k=1 do
zcurr = zinit; znext = zinit

for j = 1 to l do
#time-snapshot graphs at time t
Select time-snapshot graphs {Gtk+j}B

k=1
zcurr = R(zcurr, xtk+j, Atk+j)
#time-snapshot graphs at time t+1
Select time-snapshot graphs {G(tk+1)+j}B

k=1
znext = R(znext, x(tk+1)+j, A(tk+1)+j)
#final graph embeddings
ĝcurr = Wzcurr + b
ĝnext = Wznext + b

#projection head for contrastive learning
gcurr = W (2)σ(W (1)ĝcurr)
gnext = W (2)σ(W (1)ĝnext)
#pairwise similarity
sim = gT

curr·gnext

∥gcurr∥·∥gnext∥

L = L + ∑B
i=1 − log

( exp
(

simi,i/τ

)
∑B

j=1 exp
(

simi,j/τ

))
end

end
return L



3.3 Novel unsupervised approach for embedding of time-evolving graphs with
metastability 99
and one negative as well as multiple positive and negative samples. Here, we will ex-
plain how to apply contrastive learning for time-evolving graphs with metastability.

At the beginning of Chapter 3.2, we discovered that the first application of con-
trastive learning was in dimensionality reduction. Since our goal is to obtain the
low-dimensional representation, or embedding, of the time-evolving graph, while
preserving as much information about microbiome dynamics as possible, we will ap-
ply contrastive learning to our problem as well. However, we will present a new way
of defining positive and negative pairs necessary for contrastive learning based on
the following assumption.

Assumption 3.3.1. According to the definition of metastability (2.3.1), the probab-
ility of two consecutive time-snapshot graphs Gt and Gt+1 being similar is close to 1
and so should be the probability for their graph embeddings ĝt and ĝt+1.

In other words, we consider a pair of low-dimensional representations (ĝtk
, ĝtk+1)

as a positive pair and pairs (ĝtk
, ĝtk+τ ), τ = 2, . . . , N as negative pairs, where τ is

randomly sampled. It is possible for negative samples to be of the same metastable
states but at different time points. Finally, given low-dimensional vector representa-
tions gtk and gtk+1 as the output of our model, we define the following loss function.
First, we compute the similarity between gtk and gtk+1

sim(gtk ,gtk+1) = gtk
T · gtk+1

∥ gtk ∥ · ∥ gtk+1 ∥
. (3.32)

With the above assumption, diagonal elements of sim(gtk ,gtk+1) represent pos-
itive pairs and off-diagonal elements represent negative pairs. Then, the similarity
score is fed to the NCE loss function:

L =
N∑

i=1
− log

( exp
(
sim(gtk ,gtk+1)i,i/τ

)
∑N

k=0,k ̸=i exp
(
sim(gtk ,gtk+1)i,k/τ

))
. (3.33)

where τ is a temperature hyperparameter. The experiments from (Wang and Liu,
2021) have shown that the temperature hyperparameter is important in controlling
the local separation and global uniformity of the embedding distribution. Minimizing
the loss function in Eq. 3.33 forces the parameters of the model to be tuned such
that graph embeddings of two consecutive time-snapshot graphs appear to be as
close as possible.
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Figure 3.3: The example of a time-evolving graph with metastability whose two
states A and B are difficult to distinguish since they are topologically the same. Red
dashed edges are removed from the time-evolving graph G.

We have presented the method, which is based on the Transformer and con-
trastive learning, to learn the low-dimensional representation of the time-evolving
graph. Through a set of various experiments in the next section, we demon-
strate on synthetic and real-world datasets that our method is capable of learn-
ing the low-dimensional representation of the time-evolving graph. The second
part of the problem formulation defined in Section 3.3.1 will be explored in a
separate chapter. The implementation of the proposed method can be found in
https://github.com/k-melnyk/deep-metastability.git.

3.3.5 Positional encoding

In Section 3.1.1 we have discussed the importance of positional encoding in the
transformer and different positional encodings for sequence data. We also highlighted
that positional encoding used in sequence data is not suitable for processing graphs.
Despite this fact, we will utilize the positional encoding defined in Eq. 3.1. Even
though some papers have shown that using the graph Laplacian eigenvectors as
a positional encoding is promising for graph-structure data, we were not able to
demonstrate the effectiveness of the Laplacian positional encoding for our problem.

However, we would like to highlight the importance of positional information for

https://github.com/k-melnyk/deep-metastability.git
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Table 3.1: Statistics of each dataset used in the Chapter 3.

Name #Nodes #Edges #Time steps #States
npos 2WellGraph 150 10821 10000 2
pos 2WellGraph 100 4109 10000 2
pos 3WellGraph 150 10869 10000 3

CholeraInf 96 106 34 2
MovingPic 919 10602 658 2

our problem. In order to illustrate this, we will demonstrate a straightforward toy
example (Melnyk et al., 2023). Figure 3.3 presents a scenario in which different
state structural characteristics are challenging to differentiate, posing difficulty for
the method in discerning between metastable states within the evolving graph. We
observe two states, denoted as A and B, within the time-evolving graph G. These
states are characterized by the removal of edges in different regions of G. Despite
the topological similarity between the states, leading to the same points in the low-
dimensional space, distinguishing their structural characteristics proves challenging
for our method. The same challenge applies to our synthetic dataset presented
in Section 2.4.1, where the nodes within the circles represent metastable states,
and the neighbourhoods of these nodes exhibit almost identical characteristics for
the model. Therefore, we suggest that using positional encoding for the proposed
model to understand the differences between structural graph features associated
with different metastable states is crucial. We will extend the synthetic data with a
case where we will have well-defined graph structural features. We will show in our
experiments that in the case when we have clear separable graph features associated
with metastable states, the model will perform well without introducing positional
encoding to the model.

3.3.6 Training and evaluation

We divide each dataset into training and validation sets where each of the sets has
a number of consecutive time-snapshot graphs. For each dataset, the node feature
vectors are defined as a number of neighbours of nodes. The training is based on
mini-batch gradient descent using the Adam optimization algorithm with the default
parameters. The model was implemented in Python 3.10 using PyTorch.

In order to evaluate the proposed method in its ability to learn a low-dimensional
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representation of a time-evolving graph while maintaining metastability, we will fol-
low the same steps as in Section 2.3.3. However, we chose the best model based on
the best ARI score during the training.

3.4 Synthetic data and Results

3.4.1 Synthetic data

In Section 2.4.1 we introduced the synthetic data used throughout this thesis. The
idea was based on using a trajectory generated from a stochastic process with a
certain potential function and removing edges between nodes that are falling in the
corresponding circle at random. We will call this data positional synthetic data since
it requires positional encoding as we discussed in the previous section. As we already
said, we will introduce another synthetic data which is based on the same idea but
this time we remove edges not randomly. This particular data type exhibits a distinct
structural pattern compared to positional data. Instead of randomly removing edges
between nodes within the circular region during the third step, we remove edges in
a manner that ensures each node has a specific number of neighbours. The number
of removed neighbours for each node is defined arbitrarily and varies across different
states. We will call this data non-positional as it does not require a positional
encoding in the model.

Using this idea of generating synthetic data, we will generate two positional
datasets — pos 2WellGraph and pos 3WellGraph, and we will generate one non-
positional data — npos 2WellGraph. The data statistics can be found in Table 3.1.

3.4.2 Experiments and Results

In this part of the thesis, we will evaluate the proposed method on a synthetic
time-evolving graph with a dynamical property such as metastability. This chapter
focuses on the first sub-problem defined in Section 3.3.1. Namely, we want to learn
a time-evolving graph in a such way so that we can analyze microbiome dynamics
in a low-dimensional space. As it was stated above, it is infeasible to extract the
number of metastable states and their location using the proposed method, unlike
the method from Chapter 2.

This section will be divided into similar paragraphs as in the previous chapter. We
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(a) (b)

Figure 3.4: The evolution of the graph embedding of the time-evolving graph
G during the training of the proposed model on (a) npos 2WellGraph and (b)
pos 3WellGraph. The points are colour-coded according to ground-truth labels.

start with the analysis of how well the proposed method can learn graph embedding
while maintaining metastable states. Then, we will compare our method with some
other methods for the analysis of graph-structure data. We also demonstrate the
impact of a temperature parameter of the contrastive loss in Eq. 3.33.

Experimental setup

For the analysis of metastability, we chose the number of embedding dimensions to
be two. The hyperparameter of the history length l is set to be three. We train the
model during 200 epochs. We use the Adam optimizer with the default parameters
and a batch size of 64. By trial and error in architecture selection, the number
of heads in the Transformer is four and the number of layers N = 3. We have
conducted an additional analysis on choosing the temperature parameter which will
be discussed further in this thesis.

In the comparative analysis, we compare the performance of our model with –
node2vec, PCA, graph2vec, and Weisfeiler-Lehman kernel. For all models including
the model proposed in this chapter, we set the number of dimensions of graph embed-
ding to 32. We use the original implementations of node2vec and graph2vec with the
default hyperparameters. Since node2vec is developed to learn node representations,
we average node embeddings of each time-snapshot graph to obtain embeddings of
the entire time-snapshots graph. Moreover, in order to evaluate how well the model
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(a) (b)

Figure 3.5: The comparison of an initial trajectory sampled from the SDE (Eq.
2.31) with a corresponding potential function (top) and the final graph embedding
(bottom) for: (a) the npos 2WellGraph dataset and (b) the pos 3WellGraph data-
set.
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can capture metastable behaviour, we cluster points of resulting graph embeddings
with k-means clustering method.

(a)

(b)

Figure 3.6: The graph embeddings of the time-evolving graph G for (a)
npos 2WellGraph and (b) pos 3WellGraph. From left to right: PCA on adjacency
matrices, PCA on eigenfunctions of graphKKE, and the proposed method from this
Chapter.

Temperature parameter

To understand the importance of the temperature τ in the contrastive loss, we
train the model with different temperature values on npos 2WellGraph. The val-
ues between 0.05 and 1.0 have been chosen. According to (Wang and Liu, 2021),
the model with a small temperature tends to generate a more uniform distribution
of graph embeddings and be less tolerant to similar samples. In our case, we have
not noticed any dramatic changes in the performance. The ARI score for different
temperature values can be seen in Figure 3.7. We can see that when the temperature
parameter has a value of 0.5, the ARI on the training set decreases but the ARI on
the test set has not changed dramatically in comparison to other temperature values.
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Figure 3.7: Adjusted Rand Index on the model trained on npos 2WellGraph with
different temperature values of the contrastive loss. The red line corresponds to the
ARIs on a training set and the green line indicates the ARIs on a test set.

Analysis of metastability

We will conduct the analysis of metastability in three steps. The first step is that we
will plot a state of a low-dimensional representation of graph embedding at different
epochs and colour-code the points based on the ground truth labels. The second step
will include the comparison of a low-dimensional vector obtained by our model with
the results of several other models. The first method will be PCA applied directly
to adjacency matrices and the second method will be PCA applied to eigenfunc-
tions obtained with graphKKE, a method proposed in Chapter 2. The third step
is based on the comparison with the initial trajectories generated from SDE 2.31
with corresponding potential functions. For this experiment, we will set dm = 1 for
npos 2WellGraph and dm = 2 for pos 3WellGraph.

The evolution of the graph embedding during the training for both synthetic
datasets — npos 2WellGraph and pos 3WellGraph — are illustrated in Figure 3.4.
The visualization demonstrates that during the training, our model tends to capture
the underlying metastable structure in the time-evolving graph. Moreover, at the end
of the training, we see that our model learns the graph embedding maintaining the
initial metastable dynamics with two clear clusters for npos 2WellGraph and three
clusters for pos 3WellGraph. Since the initial SDE trajectory has points that are
located on the boundary between two metastable states, we can see for two datasets
that some points are overlapping.

Furthermore, we compare the initial SDE trajectory and the final graph em-
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Table 3.2: Adjusted Rand Index (ARI) for the comparative analysis on the graph
clustering task for the synthetic datasets. ARI close to 1 corresponds to greater
accuracy in correctly identifying the ground truth states, and an ARI value close to
0 stands for random clustering. The results are presented for the synthetic data.

Dataset graphKKE WL kernel graph2vec node2vec PCA Model
npos 2WellGraph 0.99 0.98 0.90 0.00 0.95 0.96
pos 2WellGraph 0.97 0.97 0.05 0.00 0.94 0.82
pos 3WellGraph 0.93 0.11 0.00 0.00 0.36 0.80

bedding obtained from our model. The result for npos 2WellGraph is presented
in Figure 3.5(a) which shows that two trajectories are almost identical. The same
result can be observed for pos 3WellGraph in Figure 3.5(b). These results indicate
that the model is capable of extracting the underlying metastable dynamics in the
time-evolving graph.

Finally, the visualization of a time-evolving graph embedding obtained from dif-
ferent methods is presented in Figure 3.6. It can be seen that PCA + adjacency
matrices and graphKKE + PCA fail to produce a low-dimensional representation
of a time-evolving graph with clearly separated metastable states in the case of
pos 3WellGraph. For npos 2WellGraph, PCA + adjacency matrices and our method
output the best-separated clusters.

Comparative analysis

Here, we will present more quantitative results by comparing the ARI of our method
with several other methods. Table 3.2 demonstrates the ARI score for three syn-
thetic datasets obtained with graphKKE, WL kernel, graph2vec, node2vec, PCA
and our model. From the table can also be seen that the graphKKE method outper-
forms our model in the case of the pos 2WellGraph and pos 3WellGraph datasets.
However, if we aim to have a lower dimensionality of the graph embedding, then
this method will fail to produce the same clustering accuracy. It is worth reminding
that graphKKE has a big advantage compared to any other methods as it is able to
output the number of metastable states in a time-evolving graph. With other meth-
ods, we need to apply k-means clustering without knowing the number of clusters in
advance. Moreover, considering the results of other graph representation learning,
node2vec fails completely to learn the graph embedding of the time-evolving graph
and graph2vec performs poorly on all synthetic datasets except npos 2WellGraph.
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It remains unclear whether graph2vec struggles to identify states in the positional
data because states do not have unique topological patterns, or because this method
is not meant to capture temporal changes.

The experiments and results have shown that our model is able to learn a low-
dimensional representation that can further be used for the analysis of dynamics. In
the next section, we will show the real application of our model to the microbiome
data.

3.5 Microbiome data and Results

3.5.1 Microbiome datasets

We start the section by discussing real-world microbiome datasets that will be used
in this Chapter. We will use two microbiome datasets presented in Section 2.5.1.
The first dataset comes from (Caporaso et al., 2011) and we call it MovingPic. In
this study, one male and one female were sampled daily at three body sites (gut,
skin, and mouth) for 15 months and for 6 months, respectively. In order to obtain
a time-evolving graph, we pre-process Operational Taxonomic Units (OTU) that
contain the number of 16S rDNA marker gene sequences that are observed for each
taxonomic unit in each sample. Let D ∈ RT ×p be an OTU table, where T is the
number of time points and p is the number of OTUs. As this data has no obvious
perturbations such as antibiotics exposure or diseases, which could potentially create
a metastable structure, an artificial noisy signal is added to the data. The Pearson
correlation between two OTUs is computed and then the initial time-snapshot graph
is constructed. In order to construct time-snapshot graphs at each time step, we use
the OTU table to remove edges between nodes. If the OTU count for a particular
node is zero, then the edge is removed between this node and its neighbouring nodes.

The second real-world dataset is called CholeraInf and has been introduced in
a study about the recovery from Vibrio Cholera infection (Hsiao et al., 2014). In
this study, faecal microbiota were collected from seven cholera patients from disease
(state 1) through recovery (state 2) periods. Moreover, in our experiment, we use
the microbiome of one patient, since the variation in the microbiome constitution
among individuals can have an impact on the result of the model. The time-evolving
graph is obtained in the same way as it has been done for the MovingPic dataset,
and more details can again be found in Section 2.5.1.



3.5 Microbiome data and Results 109

3.5.2 Experiments and Results

Experimental setup

As in the case of simulated data, we will focus on the analysis of metastability and
the comparative analysis. For the analysis of metastability, we chose the number of
embedding dimensions to be two. The hyperparameter of the history length l is set
to be three. Since the sizes of the real-world datasets are small, we train the model
for 50 epochs with a batch size of 32 for MovingPic and 8 for CholeraInf. We use
the Adam optimizer with the default parameters and a batch size of 64. By trial
and error in architecture selection, the number of heads in the Transformer is four
and the number of layers N = 3.

In the comparative analysis, we compare the performance of our model with the
performance of the same model as we used in the case of synthetic data, namely
PCA, graphKKE, WL kernel, node2vec, and graph2vec.

Figure 3.8: The evolution of the graph embedding of the time-evolving graph G
during the training of the proposed model on MovingPic. The points are colour-
coded according to ground-truth labels.
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Figure 3.9: The evolution of the graph embedding of the time-evolving graph G
during the training of the proposed model on CholeraInf. The points are colour-
coded according to ground-truth labels.

Analysis of metastability

Similar to the analysis of metastability for synthetic data, we will split this part into
exploring graph embedding during training and the comparison with other methods.

The evolution of the graph embedding during the training for MovingPic and
CholeraInf is presented in Figure 3.8 and Figure 3.9, respectively. As it was in
the case of synthetic datasets, our method is also able to identify the metastable
behaviour in the time-evolving graph and preserve it in the new space. It can be
seen that the low-dimensional representation of MovingPic has two clear-separated
clusters, indicating the presence of two metastable states, the period of cholera in-
fection and the period of recovery. For CholeraInf we have added time points from
the original dataset to see if the low-dimensional space has the same time order as
it was in the original, high-dimensional space. We can see on the bottom right plot
that the points of the low-dimensional representation mimic the time order of the
time-snapshot graphs. However, we have noticed that the order of points in a low-
dimensional space changes when retraining the model which is an indication that the
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(a)

(b)

Figure 3.10: The graph embeddings of the time-evolving graph G for (a) MovingPic
and (b) CholeraInf. From left to right: PCA on adjacency matrices, PCA on eigen-
functions of graphKKE and the result of the proposed method.

size of the dataset is too small. In this case, it is worth exploring transfer learning
or fine-tuning.

If we compare graph embeddings from other methods with the graph embedding
obtained from our model, it can be seen in Figure 3.10 that all methods give relatively
similar low-dimensional representation. However, for the CholeraInf (Figure 3.10(b))
our model preserves consecutive time points in the new space which indicates that
one metastable state (healthy) follows an alternative state (ill).

Comparative analysis

The second part of this experiment aims to compare our model with other dimen-
sional reduction methods on the clustering task. From Table 3.3, it is evident that
our model performs significantly better than WL kernel, graph2vec, and node2vec.
Node2vec performs poorly across all real-world datasets similar to the synthetic data-
sets, which is the result of a lower-order substructure embedding method meaning
that it can model only local similarities and fails to learn global topological simil-
arities. Yet, graphKKE has a similar performance as the model proposed in this
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Chapter. Interesting that the WL kernel performed as well as our model on the
synthetic datasets, however, on the real-world datasets its performance is worse.

Table 3.3: Adjusted Rand Index (ARI) for the comparative analysis on the graph
clustering task for the real-world datasets. ARI close to 1 corresponds to greater
accuracy in correctly identifying the ground truth states and an ARI value close to
0 stands for random clustering.

Dataset graphKKE WL kernel graph2vec node2vec PCA Model
MovingPic 0.99 0.56 0.42 0.08 0.54 0.99
CholeraInf 0.88 0.65 0.29 -0.02 0.77 0.87

3.6 Discussion

This chapter aimed to further our study of learning a low-dimensional representa-
tion of a time-evolving graph with metastability. We addressed the challenges of the
analysis of microbiome dynamics such as the complexity of interactions presented
in the microbiome. We believe that representing the microbiome as a time-evolving
network is crucial to understanding its dynamics and its impact on human health.
This, however, requires approaches that will be able to deal with data that has tem-
poral and structural aspects to be analyzed. Therefore, we proposed an unsupervised
deep learning-based method to facilitate the analysis of the microbiome dynamics.
The method aims at learning a low-dimensional representation of a time-evolving
graph while maintaining dynamics. This representation can be further used to ana-
lyze the dynamics of the microbiome such as the probability of jumping from one
state (healthy) to another (ill) or for further analysis with Transition Path Theory or
Markov State Models to identify biologically relevant metastable sets or connecting
paths between them, tipping points, or changes in complexity.

We formulated two main challenges of the microbiome dynamics analysis: 1) The
complexity of microbial interaction and the temporal aspect of it and 2) Extracting
the important microbial biomarkers that are associated with differentiation of stable
microbiome composition (healthy) and the microbiome composition in alternative
states (under external perturbations such as a disease or antibiotic exposure). The
focus of this chapter is on the first sub-problem which will lead to tackling the second
sub-program. In order to efficiently learn a low-rank representation of a time-evolving
graph constructed from thousands of interactions of the microbiome, we leverage a
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state-of-the-art model, the so-called Transformer. This model captures the temporal
dependencies and changes in the graph structure by using an attention mechanism.
We described the key parts of the Transformer and gave an extensive description
of the idea behind the attention mechanism. Moreover, the Transformer updates
node representations over time adapts to changing graph topologies, and propagates
information through graph edges. The node representation is a common task in the
machine learning task, however, in this work we are interested in learning the graph
representation. For this reason, we integrate a special node, which we call a master
node, that is connected to all other nodes in the graph. The low-rank representation
of the master node is considered to be a low-rank representation of the whole time-
snapshot graph. In order to make the model maintain the original dynamics of the
microbiome, such as metastability, we propose to combine the Transformer with con-
trastive learning. The idea of contrastive learning is to encourage the model to bring
similar data points closer in the learned representation space while pushing dissimilar
data points apart. The common challenge of contrastive learning is defining positive
and negative pairs, therefore we proposed an assumption for our problem based on
the definition of metastability. Finally, we discussed the importance of positional
encoding for our problem by bringing an example of a case where it is difficult for
the model to distinguish different metastable states without positional encoding.

For our experiments, we continued working with the same datasets that we used
in the previous chapter. However, we extended the synthetic data with one use
case to show that if different metastable states have distinguishable graph features,
the model does not require positional encoding. Therefore, we had three synthetic
datasets with different configurations such as the number of nodes, the number of
time steps, and the number of metastable states, and two real-world microbiome
datasets. Through an extensive set of experiments on both synthetic and real-world
datasets, we have demonstrated that our approach is capable of projecting a time-
evolving graph into a low-dimensional space retaining the metastable properties of
the system. We evaluated our results based on visual assessment and comparative
analysis using an ARI metric. We compared the performance of our model with other
dimensionality reduction methods and graph representation models. Moreover, we
have illustrated the application of the proposed approach to microbiome data that
enhances the analysis of metagenomic data in a way that takes into account a huge
number of interactions among species.

There are several limitations of our model that should be mentioned here. The
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first limitation is that we impose a heavy assumption on the dynamical properties of
a time-evolving graph. The time-evolving graph has to display metastable behaviour
as it is our main assumption in the contrastive loss: the current time-snapshot graph
is more similar to the consecutive time-snapshot graph than to the time-snapshot
graphs at any other time points. Moreover, we have not explored the importance
of the history length parameter which can influence the training procedure since we
use the accumulative gradient approach over to speed up the computation.

One of the future works is to investigate the fine-turning approach in the case
when the size of data is small as it was in the case of the CholeraInf dataset. We
noticed that the results for the CholeraInf changed from iteration to iteration. One
solution for that can be to train a model on a large dataset, for example, the syn-
thetic data with presumably two metastable states, and then fine-turn the model
on the CholeraInf. Furthermore, throughout our experiments, we observed that the
computational time required for other graph neural networks is considerably longer
when compared to our proposed model, however, this requires a more vast set of
experiments which can be done in future work. Another direction for future work
can be the investigation of other dynamics such as coherent sets.
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An improved understanding of how the microbiome contributes to health and

well-being can drive and accelerate the development of microbiome-based treatments.
Yet, with the large variety of species, their complex interactions, and overall chal-
lenges of the microbiome dynamic analysis, it is rigorous for researchers to analyze
the responses of the microbiome to different perturbations such as diseases or an-
tibiotic exposures and their influence on human health. Up to this point, we have
proposed two unsupervised methods which, first of all, take into account both mul-
tiple interactions of species of the microbiome and their temporal changes and second
of all, put forth a strategy of simplifying the extraction of the microbiome dynamics.
The underlying idea of our approaches to the analysis of the microbiome data is
that instead of learning its dynamics in a high-dimensional space, we suggest pro-
jecting it onto a low-dimensional space in such a way that it is feasible to analyze
the dynamics in this new space. To do so, the first method proposed in Chapter
2 utilizes the transfer operator theory and graph kernels to analyze temporal and
structural changes in a time-evolving graph that represents the microbiome. The
deep learning-based method introduced in Chapter 3 is based on the Transformer
architecture and contrastive learning that also facilitates the extraction of temporal
and structural properties of the time-evolving graph.

However, one of the most important questions, which has not yet been answered,
is which species or interactions of species might be responsible for or affected by the
changes that the biological interaction network undergoes from one state (healthy)
to another state (diseased or antibiotic exposure). The presence of such valuable
information can improve modern treatments of various diseases significantly. Fur-
thermore, Section 1.1 presented the challenges that the microbiome analysis faces
and it was mentioned that feature importance is an important component of the
analysis. Finding microbial biomarkers that are associated with changes in a micro-
bial composition is greatly connected to microbiome dynamics. Therefore, we aim
to extend our methods proposed in previous chapters by introducing approaches for
identifying graph structural features (or microbial biomarkers) that are associated
with the transitions between metastable states. Although both our methods have
their own advantages and limitations, which will be discussed in the next chapter,
this chapter will focus on one of the key advantages of our proposed deep-learning
method.

Conventional machine learning methods are claimed to be black boxes and thus,
it is difficult to interpret the results of these methods. Moreover, as machine learning
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models get more complicated and find their way into important areas like the field
of medicine, it is essential to be able to interpret their outcomes to gain insights into
how they are making predictions and to ensure their reliability and fairness. A large
variety of methods have been proposed to explain and interpret the decision-making
of machine learning-based methods. Although the key objective of the interpretab-
ility of machine learning is to gain insights into the internal workings of the model,
understand the factors that contribute to its output, and be able to provide mean-
ingful explanations for its behaviour, we will use interpretability methods as an
approach to obtain the important biological components of the microbiome. This
will improve our understanding of which species of the human microbiome are re-
sponsible for its transition from a stable state to an alternative state (under the
influence of different perturbations e.g. diseases, and antibiotic exposure). For the
approach proposed in Chapter 2, since most of the graph kernels use feature map-
ping that cannot be defined explicitly, it is impossible to go from the low-dimensional
space back to the space of the time-evolving graph and extract structural features
associated with metastable states. Therefore, we will use a simple averaging over
time-snapshot graphs belonging to one metastable state. Since we have a finite set of
metastable states and according to the definition of metastability 2.3.1, the structure
of graphs within one metastable state should be similar. With this simple method,
we will not be able to uncover more complex structural patterns such as walks. We
leave it for future work.

This chapter will first discuss the main idea behind interpretability and some
state-of-the-art methods. Then, we will present two approaches that we use to ex-
tract structural patterns of a time-evolving graph associated with metastable states.
Finally, through a set of experiments on both synthetic and real-world datasets, we
demonstrate the performance of the proposed approaches.

4.1 Model interpretation

With the massive success of machine learning (ML), there has been a need for in-
terpreting these models, especially in the medical domain where decision-making
significantly impacts human health and life. Gaining a better understanding of ML
problem-solving strategies provides better communication so that we, as humans,
can trust the model prediction. Moreover, trusting individual predictions is essential
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to measure the robustness of the model before deployment.

The terms interpretation and explanation are sometimes used interchangeably.
However, recent studies differentiate these terms by what kind of information they
provide. The explanation is thought to generate outputs on the level of the system
so that it provides more information as meaningful as it is possible for humans to
comprehend. Interpretation in turn provides information on the level of the model,
for example, which features contribute to a specific output. The interpretation out-
put is not always understandable from the user’s perspective (Hanif et al., 2021). In
this thesis, we focus on interpretation methods rather than on explanation methods.
To this end, an evaluation is done using accuracy metric or other metrics on the val-
idation dataset. However, this raises a question of how we can trust this metric when
the model is deployed. How can we be sure that the validation dataset contains all
real-world cases and is generalized enough so that we can trust the decision-making
of the model in real settings? If the interpretability explains that the model makes
an individual prediction according to relevant variables, we can more reliably take
actions according to the prediction. In general, interpretability is not needed in two
situations (Saeed and Omlin, 2023): 1) if the results that are unacceptable do not
lead to severe consequences and 2) if the problem has been studied in-depth.

Every year a large number of studies on AI interpretability are published.
Moreover, various review studies are published covering a range of general and spe-
cific questions of XAI (Saeed and Omlin, 2023; Islam et al., 2021; Doshi-Velez and
Kim, 2017; Hanif et al., 2021; Chaddad et al., 2023; Carrillo et al., 2021). The need
for the XAI approaches can be viewed from five different perspectives: end-user, reg-
ulatory perspective, scientific, model development, and industrial perspective. All
these consider the need for the XAI from different dimensions. We consider our work
as a part of a scientific perspective since we aim at discovering novel concepts.

Even though the main reason for the successful development of the interpretabil-
ity of machine learning models relates mainly to the trustworthiness and accuracy of
the prediction, we utilize this approach to detect modules in the time-evolving graph.
We make an assumption that relevant topological patterns of the time-evolving graph
for the model are the modules of the time-evolving graph that are unique for each
metastable state. Namely, when learning a low-dimensional representation the deep
learning model should take into account the topological or attribute patterns of each
metastable state.

Recently, different post-hoc explainable methods have been developed. The fol-
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lowing subsection defines and introduces various post-hoc explanation methods. In
this thesis, we will use the terms interpretability and explainability interchangeably,
despite many articles that have attempted to differentiate these two terms.

4.1.1 What is an Interpretation?

The primary aim of the interpretation is to understand and explain the decisions,
predictions, and behaviours of machine learning models. Since machine learning
models become more complex and are used in critical applications, it is essential
to be able to interpret their outcomes to gain insights into how they are making
predictions and to ensure their reliability and fairness. All interpretation techniques
can be divided into those that are inherently explainable methods (linear regres-
sion, decision tree-based models, generalized linear models), and those that require
additional approaches to be interpretable. The latter can be further divided into
model-agnostic methods, which allow the explanation method to be compatible with
a variety of models, and example-based explanations which use specific data samples
from the input data to explain the behaviour of the model in a model-agnostic way
(Islam et al., 2021).

Furthermore, the model-agnostic interpretation approaches can be split into local
and global methods. The local model-agnostic models describe the model behaviour
in a target neighbourhood and measure if single predictions are made for the right
reasons. For instance, in the binary classification problem, a local interpretability
method should highlight discriminating features of the input between samples of two
groups to show whether the reasoning of the models is right or wrong. Regarding our
application, these discriminating features of the input are related to the perturbation.
Moreover, if we do not know the discriminating features of metastable states, the
explanation of the model can give insight into the unknown topological patterns
in the time-evolving graph. The global surrogate models approximate the overall
behaviour or decisions made by a more complex or black-box model. For example,
deep neural networks or complex ensemble models are considered to be black-box
models which are difficult to interpret due to a large number of parameters. Global
model-agnostic methods are simplified and interpretable methods that approximate
the behaviour of the aforementioned black-box models. It is important to note that
using global surrogate models comes at the cost of potentially losing some accuracy or
performance compared to the original black-box model. For instance, the behaviour
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of a Random Forest can be approximated with classification and regression trees
(Islam et al., 2021).

This thesis elaborates on the concepts above by adopting the local explanation
methods for extracting important microbial features that are associated with the
transition from a stable state to an alternative state. By employing local explanation
methods, you aim to identify and highlight the crucial microbial features responsible
for driving this transition. This could potentially provide valuable insights into the
underlying mechanisms and factors influencing these microbial shifts. First, we will
discuss different local and global interpretation methods for machine learning models.

Siliency map-based approaches

Saliency maps are visualization techniques to gain insights into the decision-making
of machine learning methods. They were first proposed to generate an understand-
able visualization of deep convolutional network classification models.

The first gradient-based approach for saliency map visualization was introduced
in (Simonyan et al., 2013). This method investigates how much a unit change in an
input dimension induces in the output. Let f be a function that maps the input
data x ∈ Rd to the output y ∈ RC , where C is the number of classes in the standard
classification task. The salience map takes the gradient of class-specific logit with
respect to the input i. (Springenberg et al., 2014) proposed a new method, Guided
backpropogation, for image recognition using the deconvnet layer for activation fea-
ture visualization. They found that without max-pooling, the visualization of the
discriminative features does not work very well using a deconvolutional network.

Another well-known method is Class activation mapping (CAM) proposed by
(Zhou et al., 2016). They argue that global average pooling, which was thought
to act as a regularize, with small turning, makes the network retain its localization
ability until the final layer. Gradient-weighted Class Activation Mapping or Grad-
CAM (Selvaraju et al., 2017) is another method for saliency map visualisation. The
idea is to use the gradient of any target class flowing into the final convolutional
layer to produce a coarse localization map that highlights the important regions in
the image for predicting the concept. Formally, the final activation map can be
expressed as follows:

Lc = ReLU
( ∑

k

αc
kA

k
)

(4.1)
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with a neuron importance weight:

αc
k = 1

Z
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∑
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∂yc

∂Ak
ij

, (4.2)

where the index c is a class, the index k denotes the index of the feature map for
target class c, and Ak is a feature map activations of a convolutional layer.

All these gradient-based methods suffer from a saturation problem (Shrikumar
et al., 2017). Using the ReLU activation function results in that the gradient coming
into a ReLU during the backward pass becomes zero if the input to the ReLU during
the forward pass is negative. Due to zeroing out of negative gradients, the gradient-
based will most likely identify neurons with saturated activation as non-important.

Finally, it is worth mentioning that although all these approaches have been
proposed mainly for the interpretation of a model consisting of convolutional layers
on image data, there have been done several studies that apply these methods to
other deep learning architectures such as graph convolutional layers (Arslan et al.,
2018; Pope et al., 2019).

Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) (Bach et al., 2015) is the family of ex-
planation methods that leverages the layered structure of the network. The initial
variation of this method can also potentially be attributed to the saliency map-based
methods as it also produces a visualization of image features that contributes to the
decision-making of the model. It explains the prediction of a neural network classifier
by backpropagating the neuron activation on the output layer to the previous layers
until the input layer is reached. Such redistribution results in the attribution of the
predictions to the different input features. This propagation procedure is subject to
a conservation law, where what has been received by a neuron must be redistributed
to the lower layers in equal amounts:

f(x) = · · · =
∑

d∈l+1
R

(l+1)
d =

∑
d∈l

R
(l)
d = · · · =

∑
d

R
(1)
d , (4.3)

where f is the classifier, the index l indicates a layer, R(l)
d is a relevance score on the

layer l. Formally, LRP can be defined in the following way. Given j and k neurons
at two consecutive layers of the neural network, the relevance score at the layer l is
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computed in the following way:

Rj =
∑
K

zjk∑
j zjk

Rk, (4.4)

with zjk being the quantity that models the extent to which neuron j has contributed
to make neuron k relevant.

There are several different LRP rules for feedforward networks, which find their
mathematical foundation in Deep Taylor Decomposition (DTD) (Montavon et al.,
2017).

Basic rule (LRP-0). (Bach et al., 2015). This rule involves redistributing contri-
butions proportionally from each input to the activation of the neuron

Rj =
∑

k

ajwjk∑
0,j ajwjk

Rk. (4.5)

It can be shown that for ReLU-activated neural networks (defined in Eq. 3.5),
the LRP-0 rule produces an explanation equivalent to Gradient × Input discussed
in Section 4.1.1. However, as it was said the gradient-based methods suffer from
shattered gradients and adversarial examples (Montavon et al., 2019).

Epsilon rule (LRP-ϵ). (Bach et al., 2015). This rule was proposed to improve
the LRP-0 rule which consists of adding a small positive term ϵ in the dominator:

Rj =
∑

k

ajwjk

ϵ+ ∑
0,j ajwjk

Rk. (4.6)

The idea of the term ϵ is to absorb some relevance, when the contributions to the
activation of neuron k are weak or contradictory. When ϵ is larger, only the most
silent explanation relevance scores survive the absorption.

Gamma rule (LRP-γ). (Bach et al., 2015). This is another enhancement that
was introduced to prioritize the influence of positive contributions over negative
contributions:

Rj =
∑

k

aj (̇wjk + γw+
jk)∑

0,j aj (̇wjk + γw+
jk)
Rk. (4.7)
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The parameter γ controls how much positive contributions are prioritized. With
increasing γ, the negative contributions disappear. This helps to develop more stable
explanations.

Alpha-beta rule (LRP-αβ). (Bach et al., 2015). Similar to the LRP-γ rule, it
allows controlling the importance of positive and negative values.

Rj =
∑

k

(
α

(ajwjk))+∑
0,j(ajwjk) − β

(ajwjk)−∑
0,j(ajwjk)−

)
Rk. (4.8)

Here, the non-negative α parameter permits a weighting of relevance distribution
towards activations and inhibitions and the commonly used value of α is one. The
parameter β is given implicitly such that α+β = 1. Moreover, empirically, it has been
shown that the LRP-αβ rule demonstrates robustness against gradient shattering and
produces visually pleasing attribution maps (Kohlbrenner et al., 2020).

Initially, this redistribution-based approach with different rules was primarily sug-
gested for networks based on feedforward or convolutional architectures. Recently,
the LRP paradigm has been extensively applied to other neural network architec-
tures such as graph neural networks (Xiong et al., 2023; Xiong et al., 2022; Schnake
et al., 2021), Transformers (Ali et al., 2022; Chefer et al., 2021b), similarity models
(Eberle et al., 2020), recurrent neural networks (Samek et al., 2022) and LSTM (Ar-
ras et al., 2019), which also enables explaining different data structures like graphs,
text or time-series data. Therefore, since the focus of this thesis is mainly on graph-
structured data, we think it is worth discussing the LRP explanation method for
GNN. As a reminder, GNNs are typically constructed by stacking several interac-
tion blocks. Each block computes a node representation Hb ∈ Rn×db , where b is an
index of a block, n is the number of nodes in the input graph and db is the num-
ber of dimensions of a node representation vector. The whole input-output relation
implemented by GNN can be defined as:

f(Λ;H0) = g(HB(Λ, HB−1(Λ, . . . , H1(Λ, H0)))), (4.9)

where Λ is the input graph given as an adjacency matrix of size n × n, g is a
readout function (Gilmer et al., 2017), and H0 is an initial state. Then, the relevance
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propagation rule for a graph convolutional network can be expressed as:

Ra
JKL... =

∑
b

λJKh
a
Jw

∗
ab∑

J,a λJKha
jw

∗
ab

Rb
KL... (4.10)

with wab denoting the element of the matrix W that links neuron a to neuron b and
w∗ = w + γw+. However, similar explanation rules can be defined for other GNNs.
The big advantage of this method is that it can identify not only relevant node or
edge attributes, but it can also extract more complex structural features like walks.

Local Model-Agnostic Methods

This category of explanation methods does not make any assumptions about the
internal structure of the model and can be applied to any machine learning method.
The first method from this category is a local interpretable model-agnostic explana-
tion (LIME) (Ribeiro et al., 2016) is a so-called local surrogate model that approx-
imates the prediction of the underlying black-box model. The intuitive idea of LIME
is the following. Given only the black-box model without the training data, LIME
tests what happens in the prediction of the model when you give variations of data.
It generates new data with perturbed samples and the corresponding predictions
of the black-box model. It then trains an interpretable model on the new dataset,
which is weighted by the proximity of the sampled instance to the instance of in-
terest. The interpretable model should be a good approximation of the predictions
of the black-box model locally, but it does not have to approximate well globally.
Formally, LIME can be defined as follows:

R(x) = argmin
g∈G

L(f, g, πx) + Ω(g), (4.11)

where x is a data instance for which we want to obtain an interpretation, g is an
interpretable model, f is a black-box model, Ω(g) is the model complexity which we
want to keep as low as possible, and G is a family of possible explanations. Finally,
πx is a proximity measure that says how large the neighbourhood of the instance x
is that we consider for the interpretation.

Another method is SHapley Additive exPLanations (SHAP) (Lundberg and Lee,
2017). This method uses Sharpley values to explain the output of the model and
is attributed to the class of additive feature attribution methods. This method can
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be considered to be both global and local. The goal of the method is to explain
the prediction of an instance x by computing the contribution of each feature to the
prediction. Let g be the explanation model, z′ ∈ {0, 1}M is the “simplified features“,
then the explanation can be expressed as:

g(z′) = ψ0 +
M∑

j=1
ψjz

′
j, (4.12)

where ψ is the feature attribution for a feature j or the Shapley value.

Global Model-Agnostic Methods

Global explanations are designed to explain the complete and average behaviour of
a given model to provide a bird-eye-view of the model. Instead of producing an
explanation of one specific model prediction or one instance of input data, global
explanation methods propose an approach how to generate an explanation, for ex-
ample, for all model predictions. One of the first methods from this category was
introduced in (Craven and Shavlik, 1995). It is a surrogate model which meant that
it proposes another interpretable method to explain the original model. Particularly,
they use a decision tree to approximate a trained network.

Testing with Concept Activation Vectors (TCAV) (Kim et al., 2018) is another
global method that provides an explanation of an internal state of a neural network
model in terms of human-friendly. It uses derivatives to estimate to which extent a
user-defined idea is important to the model prediction. The first step of TCAV is to
define a set of instances with ”concepts” of interests that TCAV aims at learning.
The objective of the second step is to find a concept activation vector. It is done
by learning a linear classifier to distinguish between the activation produced by a
concept’s examples and examples in any other layer. Then a concept activation vector
is defined as the normal to a hyperplane separating examples without a concept and
examples with a concept in the model’s activation. Finally, directional derivatives
are calculated to measure the sensitivity of the concept.

(Yang et al., 2018) introduced a Recursive Partitioning method for the global
interpretation of black-box models. They suggest a compact binary tree to expli-
citly represent the most important decision rules that are implicitly contained in
the black-box machine learning models. This tree is learned from the contribution
matrix that consists of contributions of each input variable to the predicted score
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for each prediction made by the model. To generate a compact binary tree, they
propose a unified process that recursively partitions the input space by maximizing
the difference in the average contribution of the split variable between the divided
spaces.

4.2 New Feature Extraction Methods for Micro-
biome Data

In this section, we will discuss interpretability methods that we use to obtain the asso-
ciated graph features for metastable states. The first method will be the LRP-based
method from (Chefer et al., 2021b). We follow this method with some adjustments
that will be discussed further in the chapter. Another method is the attention-based
method. It has been proved that the attention weights can be considered a faithful
explanation of the model prediction.

4.2.1 Problem formulation

Given a time-evolving graph G as a sequence of T graphs G = (G0, . . . , GT −1) at
the consecutive time points {0, . . . , T − 1} for some T ∈ N. We assume that the
time-evolving graph exhibit metastable behaviour and each metastable state is char-
acterized by a certain structural pattern of the graph such as node clusters, edge
clusters, or walks. Moreover, let f be a function that learns a low-dimensional rep-
resentation of the time-evolving graph G such that f(G) = g, where g = {g1, . . . , gT }
with gi ∈ Rd and each gi ∈ Gs with s being the number of metastable states. We
assume that the function f is represented by one of our methods, graphKKE from
Chapter 2 or deep learning-based method from Chapter 3. We can formulate the
problem in the following way: Given a low dimensional space S, we aim at finding
a set of graph features X ∈ G (node clusters, edge clusters, or walks) which are
associated with transitioning from one metastable state to another

This chapter will be mainly related to the deep learning-based method, however,
we will also propose a simple approach to extracting relevant graph features for
graphKKE.
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4.2.2 LRP-based approach for biomarkers extraction

There are not many contributions that explore the interpretability of Transformer-
based architectures. In order to explain the output, pave the way for a better ex-
planation of our model, and obtain graph features associated with metastable states,
we follow the idea of explaining Transformer-based models introduced in (Chefer
et al., 2021b). They employ a class-specific visualization of self-attention models
by computing the final relevance scores by multiplying the relevance score of each
Transformer layer with the gradient of the corresponding attention matrix summed
up across the “head“ dimension. Moreover, the authors address the lack of conserva-
tion property in the attention mechanism because of matrix multiplication and the
numerical issues of the skip connections by applying a normalization to the computed
relevance score.

In order to address the lack of conservation in the attention mechanism and
skip connections, (Chefer et al., 2021b) apply normalisation to the relevance of two
feature map tensors, skip connection and attention matrix as:

R̄u(n)

j = Ru(n)

j

∣∣∣∣ ∑
j R

u(n)
j

∣∣∣∣∣∣∣∣ ∑
j R

u(n)
j

∣∣∣∣ +
∣∣∣∣ ∑

k R
v(n)
k
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∑
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j
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whereRu(n)
j = D(u, v, R(n−1)) andRv(n)

k ) = D(v, u,R(n−1)) are the generic deep Taylor
decompositions on two tensors u and v. The index j corresponds to elements in the
input of layer L(n) with n = 1, N as the layer index in the model.

Let A(b) be the attention matrix of a Transformer block b. We first compute the
weighted attention relevance as follows:

Ā(b) = I + Eb(▽A(b) ⊙R(nb)). (4.13)

Then, the final relevance score of the method is defined as:

R = Ā(1) . . . Ā(B), (4.14)
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(a) State 1

(b) State 2

Figure 4.1: Fully-connected graphs for the npos 2WellGraph dataset with nodes
colour-coded based on attention weights for each of four heads in the Transformer.
Attention weights are extracted from the model while learning the low-dimensional
representation of each time-snapshot graph and summed across two states. The
locations of two states are obtained by clustering points of the final low-dimensional
representation via k-means.

where ⊙ is the element-wise product, B is the number of heads in the Transformer,
Eh is the mean across the “heads” dimension. The identity matrix I is added to
account for the skip connections in the Transformer block. The attention weight
matrix A(b) is normalized with softmax so that ∑

ij Aij
(b) = 1.

Unlike original LRP and (Chefer et al., 2021b), where the decomposition starts
from the classifier output corresponding to the target class, we have a similarity
model that measures how similar resulting low-dimensional representations of the
time-snapshot graphs Gt and Gt+1 are. For this reason, we start the redistribution
from the layer, where we have computed the low-dimensional representation ĝt, that
is:

f(x) = ĝt,

then we redistribute using Eq.4.4 until the input layer is reached, and the final
relevance R(1) is computed.

After having obtained a low-dimensional representation of the time-evolving
graph, we cluster each point of it with k-means clustering. We then compute a
relevance score for each time-snapshot graph in the test set. In order to obtain dis-
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Table 4.1: Statistics of each dataset used in the Chapter 4.

Name #Nodes #Edges #Time steps #States
pos 5WellGraph 100 4851 500 5
npos 2WellGraph 150 10821 10000 2

CholeraInf 96 106 34 2

criminating features of the whole state, we sum up relevance scores of time-snapshot
graphs of each state:

Rs = 1
|Ts|

∑
i∈Ts

R
(1)
i ,

where s is an index of the state, Ts is a set of indices of time-snapshot graphs from
the state s, R(1)

i is a matrix of final relevance scores of the i-th time-snapshot graph.

4.2.3 Attention as interpretability

One of the critical components that make the Transformer architecture so successful
is the attention mechanism. The introduction of attention mechanisms has greatly
improved the performance of neural network models in handling sequences of vari-
able lengths, allowing the model to focus on relevant parts of the input during the
computation. Due to the attention mechanism, the Transformer architecture has
revolutionized the field of NLP and has been widely adopted due to its ability to
capture long-range dependencies in sequences more effectively than traditional re-
current neural networks. Moreover, it is worth noting that the success of attention
mechanisms is not limited to NLP alone. They have also been applied in other do-
mains such as computer vision, where they have been used to improve tasks like
image captioning, visual question answering, and object detection.

In Chapter 3 we have given a vast overview of how the attention mechanism
emerged and what makes the attention mechanism so effective. Knowing the idea
behind attention and its revolutionized impact on the machine learning domain,
it becomes imperative to explore whether the attention matrix can enhance the
interpretability of deep learning models or if it can be used to extract important
features from the input data and conduct the so-called feature importance analysis.
In the case of the microbiome and, in general, in the medical domain, which involves
high-risk decisions that impact human health and life, it is essential to know if and
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when to trust model predictions.

There have been published a lot of controversial papers on whether or not the
attention weights can be considered as an explanation. The first work arguing that
the attention mechanism cannot be utilized as a way to explain the decision-making
of the model is (Jain and Wallace, 2019). They give insight into whether some
relationship between the attention weights and model outputs exists. Throughout
their experiments, they find that in fact, there is no association between attention
weights and model outputs. The first experiment analyzes the correlation between
gradient-based feature importance scores and learned attention weights. Based on
this experiment, they have not found any strong agreement of attention weights
with standards feature importance scores. The second experiment includes randomly
permuting attention weights and recording corresponding changes in model outputs.
The results of the second experiment indicate that learned attention weights are
uncorrelated with gradient-based measures of feature importance, and it is possible
to define any other attention distributions which will yield almost the same model
prediction. Another work (Serrano and Smith, 2019), which supports the previous
work, bases its experiments on removing intermediate representations to explore
whether attention weights can be used to explain the relative importance of the
inputs to the attention layer itself. As a result, they find that attention does not
necessarily corresponds to importance.

The following set of publications (Clark et al., 2019; Wiegreffe and Pinter, 2019;
Hao et al., 2021; Chefer et al., 2021a; Chefer et al., 2021b) is challenging the res-
ults discussed in the previous paragraph by arguing that in fact, attention can be
considered as an explanation of the decision-making of the model. For instance,
(Wiegreffe and Pinter, 2019) claim that the assumptions made in (Serrano and
Smith, 2019) depend on a definition of explanation, and testing if the attention
can be considered as an explanation requires taking into account all elements of the
model. Their set of experiments shows that even in the case of adversarial attention
distribution they do not perform as well as original attention weights which implies
that we cannot disprove the usefulness of the attention mechanism for interpretabil-
ity of the model. Other above-mentioned works focus on developing interpretability
methods that use the attention mechanism. On the contrary, it has been shown that
the gradient in a Transformer reflects the function only locally and thus, fails to
identify the contribution of input to the prediction (Ali et al., 2022). In turn, they
demonstrate that attention and LayerNorm are components of the Transformer that
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lead to unreliable explanations.
Some works try to answer the question of why attention might not be suitable for

interoperability. (Bai et al., 2021) claims that the problem of attention mechanism
as a way of interpretability is the combinatorial shortcuts. The main assumption
for the effectiveness of attention-based interpretability is that the attention mech-
anism carries only information from the highlighted parts of V . However, since the
attention mechanism contains the products of the masks and V , the masks can carry
extra information. (Liu et al., 2022) explores the problem of the polarity of feature
impact: features with higher attention weights may not necessarily contribute to
the model prediction. The main idea of this paper evolves around the faithfulness
of an explanation that has to fulfil the following: 1) importance correlation and 2)
polarity consistency. They propose a faithfulness violation test which assesses if fea-
tures with the largest explanation weights demonstrate consistent polarity. Further,
we will discuss how we use the attention weights to extract important microbial
biomarkers associated with each metastable state.

The research on this topic has not reached the level of maturity yet and although
some works have shown that attention may not be a good way of interpretability of
the model, we will nevertheless utilize it as a method of extracting important graph
features that are associated with the transitions of the time-evolving graph from
one metastable state to another. Moreover, the interpretability via attention will be
compared to the results obtained with the LRP-based method.

We will follow the following procedure to obtain an attention-based explana-
tion. Similar to the experiments with the LRP-based method, we first train the
Transformer-based model presented in Chapter 3 on a time-evolving graph. We
define a test set of time-snapshot graphs {Gt, . . . , Gt+i}, where i ∈ N such that
t + i <= T and so that the test set contains time-snapshots graphs from all meta-
stable states. Moreover, each point of the resulting low-dimensional representation
of the test set is then assigned a label based on the k-means clustering. Finally, for
each t, we extract a corresponding attention matrix Ht from the model. In order to
obtain graph features associated with each metastable state, we compute the average
attention weight matrix for each metastable state as follows:

Ĥs = 1
Ts

Ts∑
i=1

Hi,

where s is an index of the current metastable state, Hi ∈ R(n+1)×(n+1) is an attention
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(a) State 1

(b) State 2

Figure 4.2: Fully-connected graphs for the npos 2WellGraph dataset with nodes
colour-coded based on (Right) the relevance scores of the LRP-based method that
are summed across 2 states and (Left) on the averaging method 4.15 for graphKKE.
The locations of 2 states are obtained by clustering points of the low-dimensional
representation of the time-evolving graph via k-means.

matrix extracted from the model with the input of the time-snapshot Gi and Ts is
the number of time-snapshot graphs in the state s. Since Ĥs ∈ R(n+1)×(n+1), where
the (n + 1)th node is the master node which we use as a graph embedding of the
entire time-snapshot graph, we assume that this node encapsulates an explanation
of the whole time-snapshot graph. The (n+ 1)th entry of the matrix Ĥs is employed
to colour-code nodes in a fully-connected graph G0.

4.3 Experiments and Results

In this section, we will present how well the interpretability methods discussed in
Section 4.2 can extract relevant graph features associated with metastable states.

4.3.1 Experimental setup

First, we will apply both graphKKE from Chapter 2 and a deep-learning-based
model from Chapter 3 in order to obtain a low-dimensional representation of the
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Figure 4.3: Fully-connected graphs for the pos 5WellGraph dataset with nodes color-
coded based on the relevance scores of the LRP-based method that are summed
across 5 states. The locations of five states are obtained by clustering points of the
resulting low-dimensional representation via k-means.

time-evolving graph. For experiments in this chapter, we will use synthetic datasets
from previous Chapters and one real-world dataset for both methods. For synthetic
datasets, we will generate pos 5WellGraph and npos 2WellGraph, and for a real-
world dataset, CholeraInf is utilized. The dataset statistics can be found in Table 4.1.
After the low-dimensional representation for a corresponding time-evolving graph is
obtained, k-means clustering is applied in order to identify the location of metastable
states in the time-evolving graph.

In order to understand if graphKKE presented in Chapter 2 can also associate
each metastable state with some graph features, we will propose a straightforward
method for extracting these graph features. However, it is worth noting that this
method will not be able to capture complex graph features such as walks. With this
strategy, we also aim to compare the capabilities of the two methods presented in
this thesis.
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Applying k-means to the eigenfunctions associated with the five dominant ei-

genvalues results in the five clusters. Since each state of the time-evolving graph
is characterized by some common pattern in the topological structure, we average
the adjacency matrices of each state. Thus, if we have a time-evolving graph with
s states G = G0 ∪ · · · ∪ Gs−1 and {A0, . . . ,As−1} is a set of corresponding subsets of
adjacency matrices, then

Aavg
i = 1

|Ai|

|Ai|−1∑
j=0

Aj
i , (4.15)

where Aj
i ∈ Ai, i = 0, . . . , s − 1. Each average adjacency matrix Aavg

i is associated
with the average graph Gavg

i .
It is worth noting that the method described above does not produce the graph

features that are associated with metastable states or graph features that are import-
ant for the model to learn a low-dimensional representation. It outputs an average
degree matrix and in the case of more complex relevant graph structural features,
which is often the case for microbiome, the result of this method will not be reliable.
On the contrary, the interpretation method proposed in Section 4.2 is able to produce
graph features that are relevant to the model’s decision-making. We assume that as
they are relevant for the model, these graph features are the ones that differentiate
metastable states.

4.3.2 Results: Synthetic data

In this part, we assess the interpretation results for the synthetic dataset. We begin
with the results of the interpretation for the npos 2WellGraph dataset. The average
attention matrix of each head obtained while learning a low-dimensional represent-
ation with the deep learning method proposed in Chapter 3 is given in Figure 4.1.
As is evident from the visualization, the model focuses on both the upper and lower
parts of the time-snapshot graph. These areas are also discriminating for us as hu-
mans to distinguish structural patterns of time-snapshot graphs in both states. It is
interesting that the attention matrix of one state contains the information of another
state, which is different in the case of LRP.

In the case of the LRP-based approach for npos 2WellGraph, the results are
presented in Figure 4.2(Right). The interpretation when predicting state two (Fig-
ure 4.2(Right)(a)) highlights the upper part of the time-snapshot graph, which is a
ground-truth graph feature associated with state 2 that was defined when generating
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the dataset. However, the interpretation of state 1 (Figure 4.2(Right)(b)) shows only
four importance nodes in the lower part of the time-snapshot graph.

Figure 4.2 (Left) demonstrates node clusters associated with metastable states
when learning the low-dimensional representation with graphKKE. We can see the
presence of the two node clusters: one in the upper part of the graph and another
located in the lower part of the graph. For state two (Figure 4.2 (Left)(b)), the
majority of nodes in brown colour are located in the lower part, while all nodes
in brown colour for the experiment with the LRP-based method are located in the
upper part. The difference is that in the case of the LRP-based model, we extract
graph features that have the highest degree of association with metastable states. For
the averaging method of graphKKE, however, we compute an average graph across
each state that is defined by removing edges between certain nodes. Therefore, in
this case, the cluster of nodes in the light colour indicates the graph feature that is
associated with the corresponding state.

Let us examine the result of the last synthetic dataset which is pos 5WellGraph.
As before, we discuss first the result of visualizing attention matrices, the result of
the LRP-based method, and the result of the averaging method in Eq. 4.15. Fig-
ure 4.4 shows attention matrices of four heads for each of five states. As it was
with npos 2WellGraph, the visualization of attention weights shows the presence of
five different clusters of nodes, and some heads have information about the loca-
tions of discriminating graph features of other states as well. Unlike the result for
npos 2WellGraph, the interpretation via the LRP-based method for pos 5WellGraph,
shown in Figure 4.3, highlights five node clusters (brown) that are associated with
each metastable state.

Figure 4.5 illustrates the result of the averaging method of graphKKE. We can
also observe five different node clusters (light). Yet, these node clusters represent
nodes with the lowest number of neighbours and not the importance of each of these
node clusters for the model to learn a low-dimensional representation.

There is necessary to mention that we have modelled synthetic datasets in such a
way that we know the location of relevant graph features associated with metastable
states. In the real-world setting, we do not have the ground-truth relevant graph
features and consequently, visualizing the interpretation results becomes challenging.
These situations require further investigation in future studies. Additionally, it is
noteworthy that the approach discussed in this chapter can offer valuable insights
into novel biological aspects when applied to real-world microbiome data.
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(a) State 1

(b) State 2

(c) State 3

(d) State 4

(e) State 5

Figure 4.4: Fully-connected graphs for the pos 5WellGraph dataset with nodes
colour-coded based on attention weights for each of four heads in the Transformer.
Attention weights are extracted from the model while learning the low-dimensional
representation of each time-snapshot graph and summed across states. The loca-
tions of five states are obtained by clustering points of the resulting low-dimensional
representation of the time-evolving graph via k-means.
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Figure 4.5: Fully-connected graphs for the pos 5WellGraph dataset with nodes
colour-coded based on the averaging method in Eq. 4.15 for graphKKE. The loca-
tions of five states are obtained by clustering points of the resulting low-dimensional
representation of the time-evolving graph via k-means.
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Table 4.2: The results of the LRP-based approach obtained in Chapter 4. The list of
microbial species that are associated with a period of cholera infection and a period
of recovery in the CholeraInf dataset.

Node index Microbial species
Period of cholera infection

19 Proteobacteria-Acetobacteriaceae
20 Firmicutes-Veillonellaceae
22 Proteobacteria-LS4-241
30 Proteobacteria-SM2D12
32 Firmicutes-Bacillus
46 Proteobacteria-Methylococcaceae
64 Proteobacteria-Syntrophobacteraceae
76 Firmicutes-Thermoanaerobacteraceae
82 NPL-UPA2-unclassified
83 Thermodesulfobacteria-Thermodesulfobacteriaceae
90 Proteobacteria-Methylobacteriaceae

Period of recovery
51 Verrucomicrobia-Opitutaceae
66 Firmicutes-Family XIV Incertae Sedis
70 Proteobacteria-Methylocystaceae
79 Proteobacteria-LWSR-14
80 Proteobacteria-Sorangiineae
81 Spirochaetes-Leptospiraceae
95 Bacteroidetes-SB-1
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(b) Period of recovery

(a) Period of Cholera infection

Figure 4.6: Co-occurrence interaction graphs of CholeraInf dataset with nodes
colour-coded based on attention weights for each of four heads in the Transformer.
Attention weights are extracted from the model while learning the low-dimensional
representation of graph-snapshot graphs and summed across each state. The loc-
ations of states are obtained by clustering points of the resulting low-dimensional
representation of the time-evolving graph via k-means. The dark brown colour in-
dicates nodes with the highest attention weights.

4.3.3 Results: Microbiome data

We have assessed the interpretation of the approach proposed in this Chapter on the
synthetic dataset, and now we focus on obtaining the interpretation of the model’s
decision for the real-world dataset, namely, CholeraInf, which has been described in
Section 3. Unlike the synthetic dataset, we do not know the ground-truth discrim-
inating features for this data. Moreover, in order to visualize the interpretation, we
use a correlation matrix that has been computed based on the OTU table (see more
details about how this data has been pre-processed in Section 2.5.1). This dataset
contains two metastable states: a period of cholera infection and a period of recov-
ery. The ground-truth locations of metastable states are known from both original
datasets and from the results obtained with the two methods proposed in this thesis.
We begin the discussion of results with attention weights.

Figure 4.6 shows the interpretation assessment through the attention matrix. We
can see that the attention weight of the first head of the Transformer differs from
the attention weights of other heads. The attention weights of the second, third,
and fourth heads are identical. It is evident that there are some nodes that are
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(a) Period of Cholera infection

(b) Period of recovery

Figure 4.7: Co-occurrence interaction graphs of CholeraInf dataset with nodes
colour-coded based on (Right) relevance scores of the LRP interpretation which
are summed across each state and (Left) the averaging method for graphKKE. The
locations of states are obtained by clustering points of the resulting low-dimensional
representation of the time-evolving graph via k-means. The dark brown colour in-
dicates nodes with the highest importance for the decision-making of the model.



4.4 Discussion 141

different in their importance between Figure 4.6(a) and Figure 4.6(b). For example,
nodes {1, 33, 58, 76} have different importance when learning the low dimensional
representation of time-snapshot graphs from different metastable states.

Figure 4.7(Left) depicts the result of the averaging method for graphKKE, which
simply shows an average graph across metastable states. The results of the LRP-
based method for both metastable states are presented in Figure 4.7(Right), where
we have obtained two clear clusters of nodes. It can be seen that there are different
nodes for both metastable states that have the highest importance for the model.
For instance, nodes {32, 46, 65, 82, 90} have the highest importance for a metastable
state of cholera infection, while for the period of recovery, nodes {51, 70, 81, 79, 95}
are of the highest importance. We consider these node clusters as the ones that are
associated the most with corresponding metastable states. Table 4.2 demonstrates a
list of microbial species that are represented by above mentioned associated nodes.
We believe that these results might provide new knowledge into which species or
interactions of species might be responsible for or affected by the changes that the
biological interaction network undergoes from the period of cholera infection to a
period of recovery.

To gain a better understanding of the biological significance of these interpreta-
tions, it is necessary to delve deeper into the results. For example, previous studies
(Langdon et al., 2016) have extensively focused on statistical analysis to determ-
ine the bacteria or species that are influenced by or influence shifts in microbiome
compositions. By leveraging the identified species from these studies, we can com-
pare them with the nodes that have exhibited the most significant impact on the
model’s output, as determined by the LRP approach. Furthermore, from Table 4.2
we see that a lot of species that are associated with the period of cholera infection
are Proteobacteria. This result is supported by recent funding that Proteobacteria is
a possible microbial signature of intestinal diseases (Rizzatti et al., 2017). However,
we strongly believe these results must be explored further in depth.

4.4 Discussion

This chapter introduced a novel approach for extracting important and relevant
microbial biomarkers associated with transitions of microbiome composition from
a stable state to an alternative state. This knowledge can contribute to a com-
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prehensive understanding of how the microbiome contributes to human health and
well-being. Ultimately, we were able to answer a fundamental question about which
species or interactions of species are responsible for or affected by changes in the bio-
logical interaction network from a healthy state to a diseased or antibiotic-exposed
state. The proposed method provides not only valuable biological insights but also
can serve as a method to validate the reliability of our proposed methods in Chapter
2 and Chapter 3 which are developed to simplify the analysis of microbial dynam-
ics. Furthermore, the development of this approach is motivated by the challenges
presented in the analysis of microbiome dynamics (discussed in Section 1.1), namely,
emphasizing the importance of feature importance for identifying microbial biomark-
ers associated with changes in microbial composition.

In this chapter, we aimed to extend the methods proposed in Chapter 2 and
Chapter 3. The underlying idea behind our approach is to simplify the extraction
of microbiome dynamics by projecting it onto a low-dimensional space. This al-
lows for the analysis of dynamics in this reduced space, avoiding the complexities
of high-dimensional data. However, when we reduce the dimensionality of graph-
structured data, we lose important information such as graph structural features
(node or edge clusters, walks) that pertain to metastable states. The first method,
graphKKE, is based on graph kernels that utilize feature mapping that cannot be
explicitly defined. Consequently, it is impossible to reverse the process from the low-
dimensional space back to the space of the time-evolving graph and extract structural
features associated with metastable states. To address this limitation, we will employ
a simple averaging method over time-snapshot graphs belonging to one metastable
state. Since we have a finite set of metastable states, and according to the definition
of metastability, the graphs within one metastable state should exhibit similarities
in structure. While this simple method may not uncover more complex structural
patterns, such as walks, we leave the exploration of such patterns for future work.

The second proposed method is a deep-learning method and they are often cri-
ticized for being ”black boxes,” making it difficult to interpret their results. There-
fore, many interpretability methods have been proposed to gain insights into the
decision-making processes of these models and which extend well beyond the mere
interpretation of the model’s results. While the primary objective of interpretab-
ility in machine learning is to understand the internal workings of the model and
the factors contributing to its output, we leverage interpretability methods as an
approach to identify the important biological components of the microbiome. This
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enhances our understanding of which species of the human microbiome are respons-
ible for transitioning from a stable state (as discussed in Chapter 1) to an alternative
state under the influence of different perturbations, such as diseases or antibiotic ex-
posure. Thus, the results produced in this chapter are mainly related to the extension
of the deep-learning-based method.

We first provided an overview of explanation methods that utilize different con-
cepts and explain different levels of deep learning-based models. These methods aim
to provide explanations at either the individual feature level or provide insights into
the overall or average behaviour of the model. The methods that we propose to use
to extract relevant graph features belong to the first group of methods. The first
method utilizes the attention matrix and the second method is based on layer-wise
relevance propagation, a state-of-the-art explanation method. There are numerous
studies showing that the attention weights do not contain the necessary information
for the explanation of the deep learning model. On the other hand, there are studies
that argue the statement mentioned above. We utilize this method for our purposes
for the sake of experiments and comparison. We consider the main result to be from
the LRP-based approach. We introduced several changes to the original LRP-based
method in that we propagated relevance score not from the classification layer, but
from the project head space. This is done due to the fact that most explanation
methods focus on the explanation of the classification models, where the last layer
outputs a class/label. In our case, we work with contrastive learning which implies
that the output of the last layer indicates how similar two time-snapshot graphs are.

Finally, we conducted experiments on both synthetic and real-world data. In
the case of synthetic data, we have ground-truth graph features which we defined
during the construction step. Therefore, the experiments on synthetic data aim to
understand the decision-making of the model and how reliable it is. We assume that
if the model uses human-defined graph features, which are unique for each meta-
stable state, then the low-dimensional vector produced by the model is reliable. Our
experiments on the synthetic data have shown that the model proposed in Chapter
3 uses the relevant graph features, in this case, node clusters. Moreover, the findings
obtained from both the attention weights and the LRP-based method align with each
other. In terms of the real-world microbiome data, we do not have any ground-truth
graph features that are associated with each metastable state. Therefore, we con-
sider the results obtained from the experiments on real-world microbiome data to be
novel. In the experiments, we also compared the attention-based method, the LRP-
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based method, and the averaging approach for graphKKE. Each of these methods
produced node clusters that are potentially associated with the time-evolving graph
transitioning from the period of cholera infection to the period of recovery. Since the
averaging approach for graphKKE showed the presence of two clear node clusters
that are unique for two metastable states based on the average degree matrix, we
did not consider the results of this method as final. Moreover, for the LRP-based
method, we listed the names of microbial species that are associated with each meta-
stable state. These results can be further explored in terms of biological meaning.
In order to enhance our comprehension of the biological importance of these inter-
pretations, it is crucial to delve further into the outcomes. For instance, we can
utilize previous studies that identify bacteria or species affected by or influencing
changes in microbiome compositions and compare them with the results obtained in
this chapter.
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It is a well-known fact that the microbiome has a strong influence on both its host
and environment. Recent studies show large-scale perturbations in the microbiome
constitution are heavily correlated, whether as a driver or a consequence, with differ-
ent clinical diseases. Therefore, the analysis of microbiome data is crucial for gaining
a better understanding of how the microbiome responds to these perturbations. This
thesis introduced a new paradigm in the field of the analysis of microbiome dynamics
and the unsupervised methods that facilitate this analysis.

5.1 Discussion and Conclusion

The high dimensionality and complexity of microbiome data are challenging to ana-
lyze with conventional methods due to the curse of dimensionality, overfitting, and
various limitations that those approaches have. Furthermore, existing methods for
analysing microbiome data often ignore either temporal changes or multiple in-
teractions between species. Therefore, the first contribution of this thesis to the
field is modelling the microbiome as a set of correlation networks constructed at
each time step that allows analysis of temporal changes and identifying the species
or interactions associated with the fluctuations of microbiome composition. The
second contribution of the thesis is that we provide a novel method for analysing
the microbiome in a lower-dimensional space while retaining its metastable beha-
viour and complex interactions. Analyzing the microbiome’s dynamical properties
in this new space is a step beyond the typical approach, which analyses the microbi-
ome in high-dimensional space, thereby missing out on the critical information our
method retains. This however requires an approach that can capture simultaneously
both temporal and topological patterns of time-evolving networks and learn a low-
dimensional representation simultaneously. This thesis has presented two approaches
that address the above-mentioned objectives. Another important question that we
aimed to answer in this thesis is the extraction of important microbial biomarkers
that are associated with transitions of microbiome compositions from a stable state
to an alternative state under the influence of different perturbations. Therefore, the
final contribution of this thesis is the extension of these two approaches with their
ability to obtain these important microbial biomarkers. Overall, we believe that four
research questions defined in Chapter 1 have been answered by this thesis.

In Chapter 1 we discussed the importance of the analysis of microbiome data
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and that recent studies have shown that microbiomes are not static over time. The
main challenges of microbiome data, such as the curse of dimensionality, sparsity,
compositionally, and feature importance, have been discussed. We presented com-
mon approaches for the analysis of microbiome data along with their limitations.
Moreover, we discussed the current approaches for modeling the microbiome as a
network to account for multiple complex interactions between species.

Chapter 2 presents the first method for learning a low-dimensional representation
of a time-evolving graph. To capture the temporal changes in the time-evolving graph
we propose using transfer operator theory. The idea is that spectral properties of
transfer operators contain information about the global dynamical properties of the
system. However, since the transfer operators are infinite-dimensional linear operat-
ors, it requires their approximation in a finite-dimensional space. Several data-driven
methods have been proposed for which it is necessary to have a kernel-based estim-
ation. Therefore, our method approximates transfer operators with graph kernels.
Using graph kernels allows us to transform graphs into feature vectors without expli-
citly constructing high-dimensional feature space. We have also presented synthetic
and real-world datasets, which have been used in further chapters throughout the
thesis. The synthetic dataset is based on energy potential which introduces meta-
stable states into a time-evolving graph. The time-evolving graph is constructed
using 1d and 2d realizations of stochastic differential equations with corresponding
potential or energy functions. For real-world data, we used two well-known micro-
biome datasets. The first one presents microbial compositions from different body
parts. We added an additional Gaussian noise to the data in order to have metastable
behaviour. The second dataset is the cholera infection of one individual. We used the
Pearson correlation coefficient to construct an initial correlation network, which is
not the best way to construct a network from a microbiome as we know from Chapter
1, since it does not address the compositionality of the microbiome. We conducted
several experiments with both synthetic and real-world datasets. We projected the
time-evolving graphs to a lower-dimensional space using the presented method. The
k dominant eigenvalues of approximated transfer operators indicate the presence of k
metastable states in the time-evolving graph. The resulting low-dimensional vector
is represented by the eigenfunctions corresponding to this k dominant eigenvalues of
transfer operators approximated with the proposed method. In the next experiment,
which is comparative analysis, we have shown how this low-dimensional vector can be
used for further analysis. For instance, the low-dimensional vector can be clustered
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to identify the location of each metastable state. The vector can also be used with
other machine learning methods, transition path theory, etc. In the case of micro-
biome data, we were able to identify a period of cholera infection and a period of
recovery. Overall, we have shown that the combination of graph kernels and transfer
operators allows us to extract important information about microbiome dynamics
and to produce a low-dimensional vector that can be used for further analysis of
microbiome dynamics.

In Chapter 3 we continue exploring how to embed a time-evolving graph onto
a lower dimensional space while maintaining original dynamics. In particular, we
studied how deep learning techniques can help to study the complex network of mi-
crobial species. We suggest that the proposed deep learning method is not only able
to learn a low-dimensional representation but also we can combine it with inter-
pretability methods to extract important graph features associated with microbiome
composition transitioning from one state to another. This is the main advantage of
this method over the method proposed in Chapter 2. We incorporated two main
components in the proposed method: the state-of-the-art model for sequential data,
Transformer, and contrastive learning. The Transformer architecture is widely used
in large language models and has proven to be the most powerful class of architec-
tures invented to date. Since we do not have ground-truth labels in our problem,
we leveraged the unsupervised method, the so-called contrastive learning. It uses
the principle of contrasting samples against each other to learn common attributes
between time-snapshot graphs. One of the challenges in contrastive learning is that
we need to define positive and negative pairs. We discussed different contrastive
losses that employ various strategies for defining positive and negative pairs. For
our problem, we based contrastive learning on the assumption that the current time-
snapshot graph is the most similar to the consecutive time-snapshot graph (the
definition of metastability). Furthermore, most of the graph representation learn-
ing methods focus on learning node embeddings, we, however, aim at obtaining a
low-dimensional representation of the whole time-snapshot graph. Therefore, we
integrated a so-called master node, which is connected to all other nodes in each
time-snapshot graph. After the training, the master node at each time point is con-
sidered a low-dimensional representation of a corresponding time-snapshot graph.
This Chapter also extends the synthetic data by proposing a time-evolving graph
with different structural features. By doing so, we want to show that for our problem
it is important to have positional information incorporated in the model to differ-
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entiate graph structural features associated with metastable states. We presented
a set of experiments that include the visual assessment of a low-dimensional rep-
resentation as well as a quantitative assessment of the performance of the proposed
method. We showed that during the training the model was able to detect differ-
ent numbers of metastable states in the time-evolving graph. Since the proposed
synthetic datasets are based on the realization of stochastic differentiated equations
with a potential/energy function, we compared the initial trajectories that were
used to construct the time-evolving graphs and the resulting low-dimensional rep-
resentations. The results indicated that trajectories match almost identically. The
quantitative assessment showed that our method outperforms other dimensionality
reduction and graph representation learning methods in the clustering task. We also
used the same real-world datasets to demonstrate that the proposed method was able
to learn a low-dimensional representation while maintaining the original metastable
behaviour. However, in the case of the real-world data the training was not stable
due to the size of datasets. Transfer learning might be a solution that we leave for
future work.

The main advantage of the method proposed in Chapter 2 is that we can identify
the dimensionality of a new space with k dominant eigenvalues of approximated
transfer operators close to one. In the deep learning method in Chapter 3, in turn,
the number of dimensionality is a hyperparameter, which can influence the final
result. Moreover, another advantage of the graphKKE method is that the number
of metastable states in the time-evolving graph equals the number of dominant ei-
genvalues close to one. The deep learning-based method is, in turn, similar to any
clustering method where the number of clusters has to be chosen. Yet, the deep
learning-based method allows us to extract relevant graph structural features that
are associated with metastable states, while in the case of graphKKE we define a
feature space implicitly and we cannot extract relevant graph features. Chapter 4
was dedicated to exploring the possibility of extracting graph features in more detail.
To the best of our knowledge, this chapter suggested a novel model in the microbi-
ome field for extracting important microbial biomarkers associated with transitions
of microbiome composition from a stable state to an alternative state under the
influence of various perturbations. We proposed to use two different explanation
approaches as a way of extracting associated graph features. Originally, the explan-
ation methods are proposed to explain ”black-box” machine learning models in order
to prove that these models are reliable and trustworthy. In our case, we use it to ad-
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dress one of the challenges in the microbiome analysis, namely feature importance.
The first approach is based on attention weights. Since the deep learning-based
method utilizes the attention mechanism, we extract attention weights to visualize
the important graph features such as node clusters. Another approach is layer-wise
relevance propagation, the state-of-the-art explanation technique, that allows ex-
tracting important features of the input space that help the model make predictions.
We conducted experiments on both synthetic and microbiome data. We visualized
the important and relevant graph structural features. In terms of microbiome data,
we presented a table of species that according to our method are associated with
the microbiome composition transitioning from the period of cholera infection to the
period of recovery. We think that we obtained novel results which help to reveal
underlying disease patterns in the data. Further study of these results is needed
to investigate if these interpretations have biological meaning and the alignment of
these results with results from previous studies.

We believe that the proposed methods in this thesis enhance the analysis of
microbiome data by taking into account a huge amount of interaction between species
and complex microbiome dynamics. On top of these methods, we have shown that
by using various explanation techniques we can find what makes the model arrive at
a certain low-dimensional representation. In terms of microbiome data, this means
that our method, coupled with a proper interpretation strategy, can help reveal
underlying disease patterns in the data.

5.2 Future Direction

Finally, we suggest potential future research directions that are related to the analysis
of microbiome dynamics. We split the future directions into two parts: the one that
explores future work in connection with the proposed method and another one that
explores future directions in terms of microbiome data and network construction
from the microbiome data.

Directed and attributed time-evolving graphs. Our experiments have in-
cluded only an undirected time-evolving graph without any node and edge attributes.
Yet, in real-world settings, especially in the microbiome community, there might be
additional information about species and interactions that can be included as attrib-
utes to time-evolving graphs. Moreover, the dynamics of competitive and cooperat-
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ive relationships between species can be modelled as a directed time-evolving graph,
which poses an additional challenge to the analysis of microbiome dynamics. There-
fore, future work may include an investigation of how well the proposed methods
are capable of learning a low-dimensional representation of directed time-evolving
graphs.

Transfer learning for real-world microbiome data. In our experiments, we
have trained the model on small microbiome datasets, and in general, it is usually
challenging to collect large datasets in biology. Training the model on a small dataset
can result in overfitting and bad generalization. Transfer learning and fine-tuning
can help to overcome this problem by leveraging knowledge gained from solving one
problem and applying it to a different but related problem. In transfer learning, we
can train a model on synthetic data and then use this pre-trained model on the small
microbiome dataset.

Construction of a time-evolving graph from the microbiome data. How to
construct a time-evolving graph from the microbiome data is a research question in
itself. The thesis has not addressed this question which, therefore, might be a future
direction. In this thesis, the Pearson correlation coefficient was used as a method
to construct an initial correlation graph, which is not robust to the compositionality
of the microbiome data (discussed in Chapter 1). We explored other existing ap-
proaches for constructing networks that address the limitation of the Pearson and
Spearman correlation coefficient and can be used to construct an initial correlation
graph. Furthermore, future work might also include the construction of a time-
snapshot graph at each time point. In this thesis, we used a very simple approach in
which we removed an edge if the concentration of a particular species was close to
zero. However, this information had been already used when constructing the initial
correlation matrix which might bias the results.

Thorough biological analysis of the results obtained from the interpretab-
ility of the model. The results presented in Chapter 4 lack a biological interpret-
ation. We believe that this is an essential step for obtaining a better understanding
of whether the proposed methods are reliable. This is especially important in the
explanation method that reveals relevant graph features associated with metastable
states. For instance, the study from (Hsiao et al., 2014) presents an extensive over-
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view of bacterial taxa that are involved in recovery from cholera infection. So, the
knowledge presented in this study can be compared with our results.

Reveling more complex graph features associated with metastable states.
So far we have considered synthetic time-evolving graphs only with simple graph fea-
tures associated with metastable states and in Chapter 4 we extracted simple graph
structures from the microbiome dataset such as node and edge clusters. Future work
might include learning a low-dimensional representation of a time-evolving graph
with more complex graph structural features such as walks and the extraction of the
explanation using methods discussed in the previous Chapter. Walks represent se-
quences of nodes or edges in a graph and can capture higher-order dependencies and
temporal patterns within the graph. Instead of focusing only on pairwise interac-
tions of species in the microbiome, extracting walks can shed light on more complex
interactions between species
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