Point Clouds
Between Local and Global Approaches

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universtitat Berlin

vorgelegt von
Eric Zimmermann

Berlin 2023

Erstgutachter/in: Prof. Dr. Konrad Polthier
Zweitgutachter/in: Prof. Dr. Stefanie Hahmann

Tag der Disputation: 02.02.2024

“Before the mountains were brought forth,
or ever thou hadst formed the earth and the world,
even from everlasting to everlasting,
thou art God.”

Psalm 90, 2 (KJV)

Table of Contents

Introduction 1
Structure and Main Contributions 1
Publications Prior to the Thesis 3
Acknowledgments L 4

A Cloud Surfaces 5

1 Description of Cloud Surfaces 7
2 Generation and Dynamico 13
2.1 Generation from Pseudo-Surfaces 13
2.1.1 Probabilistic Sphere Models 13

2.1.2 Experimental Results. 17

2.2 Generation from Points L. 20
2.2.1 Cloud Surfaces and Coverings of the Euclidean Space 20

2.2.2 Experimental Results. 27

2.3 Cloud Dynamic oL 32
2.3.1 Surface Orientation and Update Schemes 32

2.3.2 Experimental Results. 35

2.4 Conclusion and Further Research 38

B Surface-like Structures 39
3 Description of Surface-like Structures 41
4 Segmentation and Simplification 43
4.1 Related Work 44
4.1.1 Segmentation 44

4.1.2 Meshing and Simplification 46

4.2 Segmentation Lo 47
4.2.1 The VSA Procedure for Surfaces and Surface Meshes 47

4.2.2 The VSA Procedure on Point Sets 48

4.3 Improved Segmentation Pipeline. 50
4.3.1 Example of Failed Convergence of the VSA Procedure 50

4.3.2 VSA with Guaranteed Convergence 51

4.3.3 User Controlled Level of Detail 54

4.3.4 Experimental Results. 5%

4.4 Simplification 60
4.4.1 Vertices for a Simplified Mesh 60

4.4.2 Faces for a Simplified Mesh 62

4.4.3 Experimental Results. 64

4.5 Conclusion and Further Research 68

C Inside a Cloud

5 Normal Weighted Neighborhoods
Related Work
5.1.1 Heuristics
5.1.2 Error Functionals
Sigmoids
Evaluation Model

5.1

5.2
2.3

5.4
3.9

6 Flatness Model
Description of Flatness Model . .
Experimental Results

6.1
6.2
6.3

Conclusion

Bibliography

5.3.1 Non-Degenerate Covariance Matrix
5.3.2 Degenerate Covariance Matrix

Experimental Results

Conclusion and Further Research

Conclusion and Further Research

69
70
70
71
71
72
74
74
76
76
86
88
88
89
96

97

Introduction 1

Introduction

The representation of a surface, which is a 2-dimensional entity, in space has various
solutions, when they are smooth as well as discrete. In all cases we ensure a 2-
dimensional appearance in the vicinity of each point of the surface in question.
Yet with the introduction of points as display primitives for the representation of
surfaces, which we call point sets, cf. [LW85], the mere utilization of point scanning
[JHPS21|, and the advantages of processing point sets, see [GP07], comes with the
price of missing connectivity among the points. This poses a major challenge to
their treatment namely the definition of vicinity or in its generalization connectivity
among points.

Point set processing led to a large variety of research always dealing with the
lack of connectivity, either practical approaches for point neighborhoods are used or
they receive focus and investigation in the determination supporting certain tasks
done on the surface. Often such approaches position themselves at the two extremes.
On the one hand there are local approaches in which every point in the point set
receives its individual neighborhood whereas inter-relations of these neighborhoods
are neglected (for instance in [HDD"92|). On the other hand global approaches
process the point set as a whole (for example [AB98|), sometimes setting a local
focus again, e.g. in [ABCO™03].

The goal of this thesis is to find a structure to represent point sets, i.e. using
a set of subsets! of points, such that they relate in such a way—recall the inter-
relations of point neighborhoods mentioned before—, that this structure carries the
basic idea of an atlas, with its subsets and charts describing a surface or manifold
more generally. The motivation to this goal is at least threefold: First, such a
structure would impose some kind of atlas to point sets representing a surface, giving
some notion of connectivity. Second, it positions itself between local and global
approaches for point sets allowing to be either one of them and providing access to
the incorporation of neighborhood inter-relations. Third, it allows a treatment of
point sets representing surfaces with detailed microscopic structures like tree bark
or skin in which the deviations of point positions are important and not the result
of undesired influences like noise caused by scanning processes, see [GP07].

Structure and Main Contributions

We are going to investigate possible descriptions for set systems applied to points
and thus called point clouds which then could be perceived similar to atlases for
manifolds. These investigations are partitioned in a macroscopic and microscopic
way. In the first we discuss two—under certain conditions—dual approaches and

!Later on we call these subsets point clouds.

2 Structure and Main Contributions

thus focus on the inter-relation of the clouds, i.e. subsets of the points, and the
properties we can derive when working with the points. In the latter we focus on a
cloud itself researching inter-point relations and how those could influence the choice
and treatment of a cloud.

We have created almost all implementations and resulting figures in JavaView
[PRYZ|, with implementation exceptions mentioned throughout the work.

Cloud Surfaces To find a suitable set system applied to a set of points and have
these sets relate in a manifold manner, we make use of the vast theory of simplicial
complexes and surfaces created of those. This enables us to define a set system on
objects? (cloud set) s.t. the underlying structure (an inherited cloud complex) is
preferably an (abstract) simplicial surface, i.e. a so called cloud surface, cf. Sec-
tion 1. Thus the pure knowledge on chosen subsets of points accompanied with
an inter-relation—in our case the intersection of subsets determines whether clouds
are neighbored or not—decides in a combinatorial manner whether our cloud set
is connected in a manifold way. In consequence each cloud represents a discrete
neighborhood for all the points it contains. After the description we investigate the
generation of cloud surfaces. At first, we start in a synthetic manner (Section 2.1),
i.e. starting with a simplicial surface, generating points and placing them in respec-
tive clouds so that the simplicial surface we started with already accounts for the
underlying structural object. Second, we make use of coverings to generate clouds
from points while at the same time preserving the desired topology of a 2-manifold,
see Section 2.2. The research on these coverings led to a couple of topological ques-
tions which we will further discuss. Following the generation, we set our focus on
an application scenario making use of the cloud surfaces namely cloud dynamics,
which shall allow point movements in space w.r.t. the underlying structure (Section
2.3). Here the simplicial surface, derived from the cloud surface, acts as a skeleton
whereas positional changes of surface points have an impact on the combinatorial
clouds and thus on the points they contain.

Surface-like Structures A dual perspective on such a set system is to treat a
subset of points (a cloud) as a 2-dimensional entity, thus acting dual to the approach
of cloud surfaces, where a cloud was represented by a single vertex in the underlying
cloud complex. Here we describe structures and conjectures so that they possibly
behave like 2-manifolds, thus we call them surface-like in Section 3. Following the
description we discuss a possible generation of a surface-like structure using a point
segmentation approach based on k-means clustering (Section 4), which is published
in [SZP20]. As such the dependency on the number of seed points and placement of
those is crucial, which we are able to overcome introducing splitting and merging of
clouds (or regions). Additionally, we propose a switch operation to show guaranteed
convergence of the energy accompanied with the clustering approach. As an appli-
cation we generate a simplified mesh® out of the segmentation we obtained before.
To do so we generate points while we extend variational tangent plane intersection
to the point set setting and connect those points to form polygonal faces, i.e. the

2The derivation is done so that it applies for more general objects, yet we set our focus on
points in Euclidean space.
3Such a mesh could be thought of a polygonal surface as a generalization of a simplicial surface.

Introduction 3

2-dimensional entities of a polygonal surface. As the underlying surface-like struc-
ture is a complex, whereas each cloud might get bounded by multiple topologically
closed curves, we are able to generate polygonal faces for not even simply connected
regions and thus responding to an open question in [SZP20].

Inside a Cloud The investigation of the microscopic behavior of a cloud is split
in two parts. At first we elaborate on an optimal shape of a cloud in Section
5, which is also published in [SZ21]. To find such a shape we incorporate point
normal information in a sigmoid-weighted covariance matrix and investigate on a
large scale the parameter space of the used weighting function and neighborhood
sizes. The quality of a neighborhood is evaluated by an energy model using feature
classification entities. In the second part (cf. Section 6) we propose a feature
classification model, called flatness model, based on the eigenvalues of a covariance
matrix. This model shall measure how planar or not planar a neighborhood is,
therefore we would allow some curvature if the distribution of the points resembles
a 2-dimensional, topological disk instead of the shape of a curve or volumetric extent.
The motivation is to find a feature entity on points that decides whether the point
has a surrounding neighborhood which we would assume to be 2-dimensional and
thus playing towards a surface, or not. The energy connected to the flatness model
provides a smooth (C*°) model, which we incorporated in a point set denoising
pipeline, similar to [YRST18], yet our model is using an iterative scheme of energy
determination (feature classification) and point update, without the requirement of
point normals.

Publications Prior to the Thesis

The following list contains publications by this author prior to this thesis. The
parts which have already been published (|[SZP20]* and [SZ21]) and discussed in
this work are further mentioned above and in the respective sections they appear.
Works which do not deal with point set processing are [RZP18| and [SRZ21|.

[RZP18| Two-Layer Woven Surfaces with Planar Faces
Ulrich Reitebuch, Eric Zimmermann, and Konrad Polthier
In: Proceedings of Bridges 2018: Mathematics, Art, Music, Architec-
ture, Education, Culture, 2018

[YRST18] Constraint-based point set denoising using normal voting tensor and
restricted quadratic error metrics
Sunil K. Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmermann,
and Konrad Polthier
In: Computers & Graphics, vol. 74, 2018

[SZP19] Variational Shape Approximation of Point Set Surfaces
Martin Skrodzki, Eric Zimmermann, and Konrad Polthier
In: IGS 2019 International Geometry Summit — Poster Proceedings,
2019

4The preceding poster [SZP19] and the work [SZP20] itself received the best poster award of the
International Geometry Summit (IGS) 2019 and the third place best paper award granted for the
special issue on Computational Geometric Design of Computer Aided Design 2021, respectively.

4 Acknowledgments

[SZP20] Variational shape approzimation of point set surfaces
Martin Skrodzki, Eric Zimmermann, and Konrad Polthier
In: Computer Aided Geometric Design, vol. 80, 2020

[SZ20] Large-scale Fvaluation of Neighborhood Weights and Sizes
Martin Skrodzki and Eric Zimmermann
In: Joint SPM/SMI 2020 Conference — Poster Proceedings, 2020

[SZ21] A Large-Scale Evaluation Of Shape-Aware Neighborhood Weights And
Neighborhood Sizes
Martin Skrodzki and Eric Zimmermann
In: Computer-Aided Design, vol. 141, 2021

[YSZP21| Surface Denoising Based on Normal Filtering in a Robust Statistics
Framework
Sunil K. Yadav, Martin Skrodzki, Eric Zimmermann, and Konrad
Polthier
In: Proceedings of the Forum “Math-for-Industry” 2018, 2021

[SRZ21] Investigations of structures in the parameter space of three-dimensional
Turing-like patterns
Martin Skrodzki, Ulrich Reitebuch, and Eric Zimmermann
In: AUTOMATA2021, 2021

Acknowledgments

First and foremost, I want to thank my advisor Prof. Dr. Konrad Polthier for pro-
viding the opportunity to become a doctoral candidate and his continuous support
of my research. I am also grateful to him for giving me the chance to adequately
balance my work and family. In addition I am thankful that I could take part
in the development of JavaView [PRYZ|, gaining experience and using this geom-
etry processing environment to develop most of the algorithms, experiments, and
visualizations in this thesis.

Second, I am grateful for the funding I received by the Deutsche Forschungsge-
meinschaft (DFG - German Research Foundation) - Project-ID 195170736 - TRR109,
and thus being part of the project C05 in the collaborative research cluster Dis-
cretization in Geometry and Dynamics. The cluster with their offered workshops,
talks, annual meetings, summer schools, and lively exchange laid a foundation for
new and great research results and still continues to do so.

Third, T thank my (former) colleagues Dr. Konstantin Poelke who encouraged me
to do my PhD, Dr. Martin Skrodzki for all the work and achievements we conducted
together, further Dr. Sunil Yadav, Ulrich Reitebuch, Henriette Lipschiitz, and Jakub
Rondomanski for successful collaborations and fruitful discussions.

Finally, and most importantly, I thank my family and friends, especially my wife
and children, for their enduring patience, never ending love, and valuable assistance.

Chapter A. Cloud Surfaces d

Chapter A

Cloud Surfaces

Using points to represent surfaces is an ill-posed task, as surfaces inherit the prop-
erty in which each point has a 2-dimensional neighborhood. Points in contrast
are all independent from each other without any connectivity. However, either the
utilization of points as display primitives ([LW85]) or their use to solve various prob-
lems on surfaces represented by them led to a broad field of research. To overcome
the missing connectivity approaches are mostly applied locally or globally to the
point set, i.e. local means that solving a specific task at a point demands a local
neighborhood, thus we first find a subset of the points counting as an individual
neighborhood for that point in question. A global approach in contrast would deal
with the point set at once even in the case of focusing on a specific point. An example
of point set treatment is surface reconstruction surveyed in [BTS*17]. For instance
in [HDD"92] we can find tangent plane estimation carried out via subsets account-
ing as local neighborhoods. In [ABCO™03| the authors make use of the moving
least squares method to compute and render point set surfaces. The method itself
uses weight functions without compact support but often with a controllable decay.
Thus the points are considered all at once with points being farther away receiving
effectively zero weight. This is something the authors mentioned and trimmed their
algorithm to. On the very other end the algorithm in [AB98| generates a piecewise-
linear approximation of a finite set of points supposed to be taken from a smooth
surface using Voronoi diagram and Delaunay triangulation applied to the whole set
of points at once. These shall count as examples in one discipline dealing with points
representing surfaces and they neither mark the beginning of such approaches nor
the end, as in the following years researchers needed to find solutions to the problem
of missing connectivity. The terminology found in [HDD'92| speaking of unorga-
nized points describes it aptly and leads to the question whether we can impose
a structure to organize the points in a rough way, so that we can inherit surface
properties. Hence, we are building a kind of discrete atlas on the points, with our
focus on the selection of subsets included in the charts (see Chapter A and B) and
then use these organization on the points to perform specific tasks.

The creation of point neighborhoods for various methods was treated as a neces-
sity, but some works were also dedicated to investigate the controlability and hence
quality of such neighborhoods to serve certain goals in point processing, for instance
in optimal size analysis for 3d lidar point sets, c¢f. [DMDV11], to use them for point
feature classification in [WJM14]. Another example is to generate additional infor-
mation like point normals in [MNGO4] and at the same time elaborating on the effect

of various neighborhood sizes. In contrast, whenever further information is given,
they might be included in the neighborhood determination and account as weights
like done in [SZ21] which is discussed in more detail in Section 5. In general finding
optimal neighborhoods is related to certain tasks, thus optimality refers to a specific
measure or purpose. In our scenario, in which we want to select a subset of the
power set of the points we are given, such results could guide our choices. Chapter
B for instance has a measure to generate subsets of the points where the points
within each subset have less point normal deviation. Such a subset could be valid
as a neighborhood for all the points it contains and applies to be used in a discrete
atlas. In Chapter C we discuss a microscopic perspective on clouds, i.e. addressing
subset selections which on one hand could account locally, i.e. an individual subset
for every point, or on the other hand a broader selection to inherit a surface beyond.

The tasks to be solved in point processing include for instance surface reconstruc-
tion, meshing, or denoising. Notions of differential entities on point sets, which we
know from smooth surfaces, are then either a byproduct of the proposed approaches
or investigated at their own right. A task we are going to address with a cloud
surface is to use the clouds as a rough representation of the points they contain and
with positional changes applied to the structure, we want to inherit corresponding
changes applied to the points. The advantage of a cloud surface is its underlying (ab-
stract) simplicial surface which acts as a control structure and from which we inherit
notions already known. We discuss the idea of point dynamics w.r.t. motions of the
control structure. This relates to the research area of skinning used in character an-
imation, cf. [Yan22|, were deformations of geometries represented mostly by meshes
are performed using an underlying skeleton and approaches dealing only with point
sets seem rare. The authors in [FCD21| propose a method directly working on point
sets encoding the points by a sphere-mesh model which is also used as the skeleton
for deformation, yet they focus on the update and referring to other works for the
generation and calibration of such model. Similar to this approach and in contrast
to other works we also do not incorporate point weights. However, using our control
structure, we can use surface entities derived from the geometric realization of the
skeleton for the deformation. The intent for cloud dynamics was to find a more
simple representation using a control structure which itself might represent a large
number of points and apply motions to the structure and possibly on the points on
demand. Such operations then are used in character animation and skinning. Hence
we propose a generation of a skeleton for points in our scenario and discuss possible
update schemes, both without the requirement of further information.

To conclude the contributions of which some are mentioned above we get:

e Definition of a cloud surface, i.e. a set system on abstract vertices which
induces an abstract simplicial surface as underlying structural object.

e Generation and results of a cloud surface from a simplicial surface via proba-
bilistic sphere models.

e Generation and results of a cloud surface from points in R3. Discussion of the
influence of sampling properties towards the generation results.

e Topological discussion on coverings used for the generation of a cloud surface.

e Description and discussion of point dynamics w.r.t. the underlying structure.

Chapter A. Cloud Surfaces 7

1 Description of Cloud Surfaces

We are going to derive the basis for cloud surfaces starting with a general notion
of clouds which are subsets of some given set. Such set appears to be abstract, an
index set for instance, mapping itself to other objects, e.g. points in a Euclidean
space. We first agree on the following notation.

Remark 1. For a countable set X and an arbitrary set I we write X; = {x;}
thus X1 becomes a family.

i€l

Definition 1. Let V' denote a countable set called abstract vertices (or abstract
vertex set) and an element v € V' is called an abstract vertex.

Definition 2. Let V' be an abstract vertex set and X a space. A map ¢ : V — X
is called a vertex map and its image P = (V') points.

Definition 3. Let V' be an abstract vertex set. A countable set C of subsets of V is
called a cloud set (or clouds), abbreviated C(V') or C, and an element in C is called
a cloud.

Example 1. i) The edge set of a graph is a cloud set.
i) An abstract simplicial complex (see Definition 4) is a cloud set.

iii) Let Viy be an abstract verter set, ¥ : Vy — N, v; — i a vertex map and
CN = {Ci}ieN with

i—2
CZ-:{<Z]'>+1+k\k:0,...,z’—1}.
j=1

Then Cy is a cloud set in which every two consecutive clouds have non-empty

intersection and every successor has one more element than its predecessor.
For instance Cy = {1}, Cy = {1,2}, and C3 = {2, 3,4}.

iv) Let (X,d) be a metric space, V' an abstract vertex set, and) : V — X a vertex
map with P = (V). Further let r € R>g. The geometric neighborhood of
x € X 1is the subset of P w.r.t. r given by

NI(P,z,r)={p€ P|d(z,p) <r}.
A cloud set C on V' then can be given as a subset of

{v~ " (NY(P,p, T))}pEP for r € Rxy.

v) Let (X,d) be a metric space, Vi an indezed abstract vertex set for an index
set I, and ¢ : Vi — X a wvertex map which is additionally bijective with
Pr =1(V;). Further let k € Ny with k < # {P;}'. The combinatorial neigh-
borhood of = € X is the subset of Pr w.r.t. k given by

N¢(Pr,xz,k) = argmin Z i with

NeN(Pr,z,k) pieN

N(P;,z,k) = argmin Zd(pi,x)
per P |

!Let # {A} denote the cardinality of a set A.

8 1. Description of Cloud Surfaces

Pa

Figure 1.1: A choice for k = 4 yields that ps belongs to the combinatorial neighbor-
hood of x but not ps, thus it provides a unique selection.

A cloud set C on Vi then can be given as a subset of

U{v (N @Prpik)) | for ke Nok < # {71}

icl

Remark 2. The last two examples in Example 1 are common approaches to obtain
nearest neighbors in a point set. Nonetheless, looking for a natural amount of neigh-
bors does not provide unique subsets in general. In the example however, N(P[, z, k)
holds all possible candidates, yet N°(Py,x, k) provides a unique representative, see
Figure 1.1.

The clouds are up to this point just a collection of sets without further structure.
We build an underlying skeleton for the clouds achieved from an abstract simplicial
complex which in addition fulfills the property of being an abstract version of a
simplicial surface. We define an abstract simplicial complex similar to the one in
[Lee00] as follows:

Definition 4. A collection K of non-empty finite sets is called an abstract simplicial
complex if for o € K we have that every subset of o is in K. If K is such a complez,
a set 0 € K is called a simplex (or d-simplex, also denoted o, with d = # {o} —1)
and K9 C K denoting the subset containing all d-simplices for d € No. A non-
empty subset of a simplex o is called a face of .

Now we set up a bijection to identify the clouds with some abstract vertex set which
gives us the opportunity to define a cloud complex.

Definition 5. Let C be a cloud set and V a set of abstract vertices with # {V} = # {C}.
Then a bijection W : C — V is called a cloud vertex map and the set)V cloud vertices.

Definition 6. Let C; be a cloud set of finite clouds, V a cloud vertex map, and Vy
the resulting cloud vertices. Then we define a compler K on Vi with elements

o™ =A{viy, ..., v, } € K(V) <~ ﬂ U (v;,,) # O for m € Ny,
k=0

This complex is called a cloud complex.

Chapter A. Cloud Surfaces 9

Figure 1.2: Note that all drawings shown here are realizations (cf. Definition 10)
of abstract entities. (a) The three clouds Cy,Cy, C3 on 7 abstract vertices cause
three cloud vertices vy, v, v3 and with the relation mentioned in Remark 3 i) we
do not achieve an abstract simplicial complex. (b) Shown are three clouds and a
realization of the 2-simplex they cause. Due to the definition of a cloud complex we

have C’lﬂC’Q = ClﬂCQﬂC3.

Proposition 1. The complex defined in Definition 6 is an abstract simplicial com-
plex of dimension

max {#{C'}}.
c'cc
nCec’ C#0

Proof. Let K be a cloud complex and 0% € K. Then by Definition 6 all subsets
of 0% must have non-empty intersection via W~! thus constituting a face of ¢¢ and
therefore being contained in K. As all clouds are finite we have that K is an
abstract simplicial complex. The dimension follows from the simplex of highest size
and as the size of a simplex corresponds to the number of clouds having non-empty
intersection. O

Remark 3. i) A cloud complex is defined to use the intersection of sets to decide
whether sets are related or not®. A similar object is the nerve of a cover, see [Hat10)],
which yields a simplicial complex with a vertex for each element in the cover and a k-
simplex if the corresponding k+1 elements of the cover have non-empty intersection.
However, this works on topological spaces and our clouds as a cover deals with a
discrete set without an equipped topology. It is something we could do, but is neither
necessary nor advisable in our scenario. Especially as we may want to have more
flexibility in the choice of cloud relation besides the intersection, it is also not of
importance in the upcoming discussion. For instance, imagine we vary Definition 6
in terms of its elements, i.e.

o ={viy, ..., 0, F € K(V) < Z#{\P_l(vik)} > N for m, N € Ny.

k=0

This example would not give us an abstract simplicial complex, as larger elements in
K not necessarily contain its subsets, see Figure 1.2(a). Such a relation on clouds
coupled with the resulting complexes could be a direction for future investigation.
i) The definition of a cloud complex does not provide a unique identification be-
tween abstract vertices (sitting inside the clouds) and the simplices they cause in the
cloud complex. In Figure 1.2(b) we have an example in which we do not find abstract

2Constructing a graph out of this property would yield an intersection graph, see [Wes01].

10 1. Description of Cloud Surfaces

vertices lying only in the intersection of C1 and Cy. Thus by definition, vertices in
all three clouds cause the 2- and 1-simplex at once omitting an identification. In our
scenario this generalization is valid and gets treated properly in Section 2.3 when an
unique reference for each abstract vertex is needed. If necessary, we could restrict
the definition on cloud complexes and add the condition that a simplex does only
exist if the respective clouds have elements in their intersection which do not appear
i any other cloud.

With the complex to serve as an underlying structure, we proceed to demand an
important property, namely that it appears to be a surface. Therefore, we turn to
the following definition, see [BNPS17].

Definition 7. Let K be an abstract simplicial complex on abstract vertices V' with
#{V} < 00, i.e. K is finite. Let KM and K®?) denote the sets of 1- and 2-simplices,
resp. We call K an abstract simplicial surface if the following conditions hold:

i)V =U,zexe 0’
ii) any 1-simplex in K is contained in at most two 2-simplices in K@, and

iii) for any O-simplex v € V' the set of all 2-simplices containing v can be arranged
in a sequence (07,...,02) s.t. of and o7, have a 1-simplex in common, for
i=1,....,n—1.

It 1s called closed if any 1-simplex belongs to exactly two 2-simplices.

Observe that the third property seeks to mimic the behavior of manifolds with
boundaries, which are in their basic topological form (for a d-manifold) second
countable Hausdorff spaces in which each point has a neighborhood homeomorphic
to either an open subset of Euclidean space of dimension d, or to an open subset of
the closed d-dimensional upper half space, see [Lee00]. Thus having such sequence
of 2-simplices around a 1-simplex shall preserve that property of a 2-dimensional
manifold. For the interior of 2-simplices it is fulfilled by definition and also for the
interior of 1-simplices as we allow up to two 2-simplices to contain such 1-simplex
as a face, despite the fact that we do not know by now what the interior of a 1- or
2-simplex means, but the abstract combinatorial setup lays ground for the geometric
appearance later on.

Definition 8. A finite cloud set is called a cloud surface if its cloud complex is an
abstract simplicial surface.

Currently we focus on abstract simplicial complexes and its surface analogues, be-
cause we want to use them as an underlying structure for point data. Thus from
the three defining properties of simplicial complexes provided in [Lee00, §5] we still
keep that every face of a simplex (which is a subset of that simplex) in a complex K
belongs to K (by Definition 4) and that K is a locally finite collection. The latter
is guaranteed, as we only deal with at most countable sets of data (see Definition
1). However, the point data we work with later is finite. The only property we miss
is that the intersection of any two simplices is either empty or a face of each. But
this property is not important to us at the moment. Later we will work with the
interior of simplices, but to do so we will use combinations of the simplex’ vertices
or indeed their geometric representation on which we will focus on next.

Chapter A. Cloud Surfaces 11

Figure 1.3: Left shows one highlighted cloud (Jl]). The center image colors every
point w.r.t. to the number of clouds it belongs to, i.e. either one ([]), two ([_]), or
three (Jl]). (More than three are not possible as we set our focus on cloud surfaces).
Right then gives a geometric realization of the respective cloud complex.

Definition 9. Let C be a cloud complex, V its cloud vertices, X a space, and
YV — X a vertex map. Then we call P := (V') cloud points.

The cloud points provide a geometric interpretation of a cloud complex and it uses
the vertex map from Definition 2. However, to address the cloud complex together
with its cloud points at a later stage we make use of the geometric realization of
a simplicial complex described in [Lee00|, here stated without the necessity that
simplices intersect only in their faces.

Definition 10. Let K be an abstract simplicial complez and ¢ : KO — R? q vertex
map, d € Ny. The geometric realization of a simplex o € K, denoted |o|, is the
convex hull of the cloud points referring to o, i.e.

lo| = conv{y(v) |vea}.

The geometric realization of a collection of simplices K is the union of the geometric
realizations of all the simplices it contains, i.e.

K1 = Ulol.

ceK

If K is an abstract simplicial surface, we call |K| a (simplicial) pseudo-surface, with
|o| called o vertex, edge, and triangle if it is of dimension 0, 1, or 2 and o is a 0-,
1-, or 2-simplex, respectively.

Applying the geometric realization on a collection of simplices allows us to either
have a realization of an abstract simplicial complex, or to have a subset of it like
KM ie. the set of 1-simplices in K.

Example 2. Consider points representing a cube in R® with siz clouds, where each
cloud reflects one face of the cube with a slight overlap. Figure 1.8 represents a
choice of clouds and a coloring for the points reflecting the number of clouds they
belong to as well as a geometric representation of the inherited cloud complex.

All notions covered so far can be summarized as follows (see Figure 1.4): From a set
of abstract vertices V' corresponding to points P via the vertex map 1) we take a set
of subsets C, i.e. instantiate a set system, which we call clouds. Note that this set
coupled with V induces the same set system on P. These can be considered objects

12 1. Description of Cloud Surfaces

Figure 1.4: Illustrates interrelations of the introduced objects abstract vertices V,
points P, clouds C, cloud vertices V, cloud points P, cloud complex K, and its
geometric realization |K|. Further, we find the vertex map v (here two times with
different domains in general) and the cloud vertex map W. Note that the clouds
taken on V' also provide an induced set system on P via 1.

of their own right, thus via a cloud vertex map ¥ we obtain cloud vertices V and
geometric interpretations, i.e. cloud points P via a similar vertex map v again. The
clouds together with the cloud vertices induce a complex K, called cloud complex,
which is an abstract simplicial complex and possibly an abstract simplicial surface.
The geometric realization |K| of such (induced by P and K) then serves as an
underlying control structure for the clouds C (and the points P they contain).

Chapter A. Cloud Surfaces 13

2 Generation and Dynamic

One natural question following the introduction of cloud surfaces, besides their ap-
plications, is how we can construct them. Due to their property carrying less in-
formation like connectivity the choice of subsets of points having that they form an
underlying surface-like structure is difficult. To achieve examples to work with, we
first investigate the reversed direction, i.e. we take a simplicial surface and generate
points in a probabilistic manner and assign them to clouds corresponding to the
structure encoded in the simplicial surface, cf. Section 2.1. The second approach
takes points in R? (also R?) and cut them out by balls attached to a scaled grid,
whereas this covering provided by these balls tries to mimic the property describing
the cloud surfaces themselves (cf. Definition 8), see Section 2.2. The geometric
realization of a cloud surface accounts for some type of skeleton, i.e. changing cloud
point positions shall then have an impact on the points the clouds contain. We
investigate this in Section 2.3.

2.1 Generation from Pseudo-Surfaces

For the generation of points and clouds containing those, we at first consider pseudo-
surfaces and present three probabilistic models applied to scaled spheres attached
to the surfaces’ vertices. These models then get used in an algorithm for which we
discuss experimental results in Section 2.1.2.

2.1.1 Probabilistic Sphere Models

Suppose we are given a pseudo-surface in R3. As by Definition 6 and Proposition 1
a triangle (or edge) in the geometric realization of a cloud surface is caused by the
intersection of three (or two) clouds, cf. Definition 6, we use these now to generate
points belonging to respective clouds. Therefore, for each triangle of the pseudo-
surface we attach to each of its vertices a 3-ball with a radius, s.t. each ball includes
the barycenter of the triangle in question. Then we equip each ball with density
functions w.r.t. the parametrization of the ball and create point samples via a
probabilistic model. These samples are then distributed into clouds which we call
responsible for the triangle and its faces.

Two density functions will interact with the parametrization of a ball, namely
one horizontally (6") and one vertically (V). The only information we take from
a triangle is the angle o between the two edges incident to the vertex the ball is
attached to, see Figure 2.1. Therefore, we can simplify the approach. Consider
a triangle |0%| with its three vertices vy, v, v3 of the pseudo-surface in question.
Recall that a vertex here is the geometric realization of an abstract vertex belonging
to the surface’s underlying complex (cf. Definition 10). Then we take the following

14 2. Generation and Dynamic

Figure 2.1: Shows a triangle lying in the zy-plane with v; at the origin and v,
aligning with the z-axis. The left then shows the sphere put at vertex v; with
spanning angle a between the two incident edges. The right illustrates the top view
of how the angles distribute starting at a;/2 for the density function generation.

parametrization for a ball attached to vertex vy, i.e.

f:[0,R] x [0,27) x [0,7] — R?
cos(s) sin(t)
(r,s,t) — r | sin(s)sin(t) where
cos(t) (2.1)

3

1)

3 E (U mln{va - UlHQ) Hvd - Ul“z}>
i=1

is the range s.t. the ball includes the triangles’ barycenter but not one of the other
vertices.

The two density functions 6" and 6% shall act in the following way: The horizontal
function applies to the angular parameter of the parametrization above, i.e. it gives
1 as long as it stays inside the triangle and otherwise it decreases towards a value
larger or equal 0 at m + «/2, see Figure 2.1. The vertical function deals with the
height and offers a decrease from 0 to 1 starting at the origin going up and down.
Note, that the superscript v in §” means vertical and does not refer to a vertex. We
give the following examples:

Example 3. i) Piecewise linear density functions for ¢ > 0 and « € [0,7) can

be given as

2t) t< X
50,7 = 0,1, tedT o 2 and

- =3

1 if s<a
otif0.2m) +[0,1], s ar =z (§+7—9)+c) f a<s<Gim.

1 1
c+1 w—% (S

%—W)—l—c if $H+7T<s

i) Piecewise trigonometric density functions for ¢ > 1 and o € [0, 7) can be given

Chapter A. Cloud Surfaces 15

0.8 0.8
06 06
0.4 0.4
0.2 0.2 —_—c=1la=1
c=2,a=7%
0 0
0 0 1 2 3 4 5 6

S

Figure 2.2: Plots of possible density functions 0 and 6% provided in Example 3.

Figure 2.3: Tllustrates the second model where angle o of the triangle at v; causes
a cone in which the density receives value 1 and from the boundary from the cone
towards the opposite point 4 on a circular arc the density decreases linearly.

as

05 :[0,7] — [0,1], ¢+ sin(t) and

h 1 if s<a
0y :0,27) = [0,1], s—=<¢ e _ :
C+—1(c+cos<7r+w_% (5+7r—s))> if a<s

Both yield combined density functions n; = 6 - 0%, i = 1,2. Ezamples of function
plots for 6! are illustrated in Figure 2.2 and of n; in Figure 2.5 in Section 2.1.2.
Note that with ¢ > 0 we get 6% > 0 for all s, whereas 6% > 0 for ¢ > 1 for all s.

Observe that with 6" approaching 0 yields the multiplication of both densities §"
and ¢" leaves narrow probability for the existence of points if those are not above or
below the triangle in the ball, see Figure 2.5(a) and 2.5(c) in the experiments. By
an abuse of notation concerning §" and §” we provide another model.

Suppose again the ball centered at vy, i.e. the origin, and an opening angle
a, cf. Figure 2.3. Now consider the line bisecting o in the zy-plane with @ the
intersection of that line with the boundary of the ball at distance R. We want the
density to be 0 at that point. Thus, we let the horizontal density 6" decrease from
starting at v; going on the line towards u. Now let p # 0 be a point in the ball
with r = ||p]|, the distance to v;. Then we find a circle of radius r including p and
intersecting the bisecting line in two points which we call u (lying in the triangle)

16 2. Generation and Dynamic

U3
U3
m
2 e
b H
*
v my V2 vy Y, V2
G B, By

(a) (b)

Figure 2.4: Left shows that a cloud at a vertex contains the vertex itself, the barycen-
ter and edge midpoints of the adjacent triangle and edges respectively. Right illus-
trates how the new point in question, generated in the ball By at v; also belongs to
the cloud belonging to v,.

and 4. Now we want the vertical density 0" to pass the arc of the circle starting in
u going towards u. Then we set the arc length between u and p in relation to m and
apply a decreasing function. Note that instead of considering the arc length we can
use the angle between vector p and u, because the ball is attached to the origin and
the influence of radius r on the arc length can be ignored, as it scales the lengths
between u and p and u and @ similarly. Further we let o operate in such a way that
it has the form of a cone (rotating the triangle around the bisection line) which is
then reflected in the corresponding density function as well.

Example 4. Let p € R*, r = |]p|l, < R, ¢, >0, ¢, > 0, and « € [0,7) with R
introduced in Equation (2.1). The two density functions then can be given as

05 10,7 — [0,1 t+— ! vt
: cy—1)+m—cp s .
3 [)] [)]) t(co i) ToCd gf C; <

2

<

)

~ N[

s [0, R] — [0,1], s»—>—s<1;;h> 1

with combined density function n3 = 0% - 6. Ezamples of function plots of nz are
shown in Figure 2.6 in Section 2.1.2.

Algorithm 1. To generate a point p, we draw random numbers in the ball (Equa-
tion (2.1)). This can be done by three random values in [0,1] to get a point, normal-
ize, and scale it with another random wvalue in [0, R]. The point p then exists with
probability n(s,t) with (r,s,t) = f~1(p) for functions in Example 3 or s = ||p|l, =7
and t = cos™ (pu/r?) with u = f(r,a/2,7/2) for functions in Ezample 4. Observe
that u is of length v and rotated by /2 around the z-axis.

To generate clouds we set up an empty cloud for each vertexr in the pseudo-
surface. To achieve a cloud surface, we fill in each cloud the barycenters of the
triangles incident to the corresponding vertex, as such points exist with probability 1
anyway (see Figure 2.4(a)). Afterwards, we generate random points for each vertex
and triangle, fill them wn the respective clouds and also in the clouds attached to the

Chapter A. Cloud Surfaces 17

o 88 L

(a) c=0 (b) ¢ =2 (c)e=1 (d) e=3

Figure 2.5: Shows plots of n; (two on the left) and 7, (two on the right) as given in
Example 3 from low (Jl]) to high ([]) values. The angle o = 7/3 is marked with
its half as a triangle.

e a8 s

(a) ¢y, =0,¢, =0 (b) e, =1,¢, =0 (¢)ep=2,¢,=0 (d) ¢ =04,¢c, =1

Figure 2.6: Shows plots of 73 as given in Example 4 from low () to high (])
values. The angle v = 7/3 is marked with its half as a triangle.

other two vertices if they lie in their respective balls, see Figure 2.4(b). Note that
all computations can be carried out in the xy-plane as the vertex the ball is attached
to 1s the origin, one edge uy aligns with the x-axis and the other edge uy in such
a way that the product u; X ug points in positive z direction. Then we are able to
transform the sample points to their respective locations in R3 using the triangles’
vertex information.

2.1.2 Experimental Results

In the following we are going to discuss three experiments on the generation of
clouds from pseudo-surfaces, i.e. the three proposed combined density functions
from Examples 3 and 4, their application to geometries using Algorithm 1, and an
incorporation of geometric properties into the generation of such clouds.

Combined Density Functions We proposed three different models to generate
points covered in clouds upon a pseudo-surface. All three provide freedom how
fast the densities shall decrease or if at all. Tllustrative examples are shown for all
models in Figures 2.5 and 2.6. The model there is a sphere with some slice cut-off
highlighting the three axes and half the angle of a obtained from placing the sphere
at one of the triangles’ vertices. The color coding then ranges as combined density
from low probability in blue to high in orange.

The first two, namely the linear and trigonometric models given in Example 3,
are fairly similar in their behavior. By definition they assign value 1 to the angle
caused by the triangle and then decrease towards to the opposite, which is m +
a/2. Especially setting ¢ in either case to the lower bound causes a direct jump
in density when leaving the triangle behind the vertex the sphere is attached to.

18 2. Generation and Dynamic

A more continuous transition can be obtained by increasing c in both cases, yet still
preserving the small density jump. This might be beneficial when we want to focus
the generation of points above or below the triangle and possibly a bit across the
edges. However, the pseudo-surface is not flat in general at such a vertex, thus, due
to the curvature, there might be a conical volume from all the triangles meeting
at the vertex in which we would then obtain less points inserted into clouds. To
enhance this, our third example provides a more flexible and continuous transition.
In Figure 2.6 especially the first and fourth show the conical extension, which is
preserved with density 1, where the two in the center provide a continuous decrease.
Thus, the before mentioned areas which are not met above or below the triangles in
normal directions achieve a higher probability for the point generation.

Combined Density Functions on Geometries A first example is the applica-
tion of the linear model from Example 3 with ¢ = 0 to the Cube model with 386
vertices and a number of 10 randomly selected points. In a second one we use the
trigonometric model from Example 3 with ¢ = 1 on the Hand model with 1,577 ver-
tices and a number of 5 randomly selected points. This model contains a boundary
at the wrist. Respective results are illustrated in Figures 2.7 and 2.8.

Each of the figures show in the center row the surface the model is applied to
above and below a geometric realization of the cloud complex obtained from the
generated clouds which in both cases is again a simplicial surface. Something which
is not obvious from the alignment of the generated (colored) points reflecting the
clouds displayed in the right column in each of the figures.

This provides several directions for further investigation. First, we have forced
in Algorithm 1 that a triangles’ barycenter belongs to each cloud reflected by the
triangles’ vertices. Here we do not extend it to the edges which is not necessary
but might be important for other considerations. This refers to Remark 3 ii) with
the missing unique identification. Second, the placement of points does not reflect
the spatial behavior of the cloud (compared to for example results discussed in
Section 2.2). This is mainly due to the probabilistic behavior of the models and an
exploration of those could be linked to the investigation of the combined density
functions themselves. Third, at the moment the generation of clouds from surfaces
gives a possibility to generate such objects in a synthetic way to work with them.
However, obtaining a triangular mesh from the clouds raises the question whether
other polygonal meshes could be obtained and thus providing the possibility for
re-meshing into quads for instance.

Incorporation of Geometric Properties The process of point generation can
be steered by several geometric attributes. Here we incorporate discrete versions of
Gaussian and mean curvature as implemented in [PRYZ] of the pseudo-surface, i.e.
the randomly generated points from Algorithm 1 at each vertex in the pseudo-surface
are normalized, i.e. re-scaled w.r.t. the minimal and maximal value of curvature
found at vertices of the pseudo-surface. As this is a first attempt to incorporate
information of this kind, another direction could be to define a function on the
pseudo-surface reflecting the curvature, for instance Gaussian or mean, and let this
further influence the combined density model. Results are shown in Figure 2.9.

Chapter A. Cloud Surfaces 19

(a) (b) (c)

Figure 2.7: Shows cloud generation on a cube mesh with 386 vertices where (a)
represents the generated points (JJf), (b) illustrates the initial mesh on top and a
geometric realization of the cloud complex below, and (c) displays coloring of points
according to Example 2.

(a) ()

Figure 2.8: Shows cloud generation on a hand mesh with 1,577 vertices where (a)
represents the generated points (JJ), (b) illustrates the initial mesh on top and a
geometric realization of the cloud complex below, and (c¢) displays coloring of points
according to Example 2. Note that the mesh is not closed, i.e. both meshes in (b)
have a boundary at the respective bottoms.

Figure 2.9: Shows cloud generation on a cube mesh with 386 vertices using 1 from
Example 4 normally (a), respecting Gaussian (b), or mean curvature (c).

20 2. Generation and Dynamic

2.2 Generation from Points

A cloud surface contains a structure we can find almost equally in coverings of
the Euclidean space respecting certain conditions. In the following subsection we
investigate coverings of the Euclidean space and some of the necessary conditions for
our setup which raise other topological questions. With direct covering constructions
for the spaces R? and R?® we obtain an algorithm and thus discuss experimental
results afterwards in Section 2.2.2.

2.2.1 Cloud Surfaces and Coverings of the Euclidean Space

Now suppose the contrary direction of the generation from pseudo-surfaces discussed
before. We are given a set of points in Euclidean space which we in our case assume
to originate from a topological manifold of dimension 2 embedded in R3. (On the
way we also discuss constructions which allow to treat l-manifolds in R?). We
want to select clouds (subsets) of these points such that the cloud set is a cloud
surface reflecting a coarse approximation of the manifold

in question. The idea here is to use the property defining

a cloud surface or moreover the necessary cloud complex

(cf. Definitions 6 and 8), i.e. the intersection of clouds

cause simplicies to exist and we never allow more than

three clouds to have a non-empty intersection. Thus, if

we can find a covering® of the space with balls the points

live in, such that the sets of the covering share the same

property a cloud surface has, we could use these sets to

act as clouds with the points naturally lying in them, see image above. We start
our observations using open balls in R2.

Proposition 2. For every cover of R? consisting of open balls exists a point in R?
which is contained in at least 3 balls of the cover.

Proof. Let B be a cover of R? with B € B denoting an open ball, B its clo-
sure, and OB its boundary. Let By, By € B be two balls with B; N By # 0. If
we assume that this intersection is empty and it would hold for all pairwise ele-
ments in B, then this cover would consist of a sequence of balls where a successor
contains its predecessor and as all radii are in R but not infinite, we find such
point lying in all balls, i.e. more than two. Now let p € 9B; N 0B, be a point
lying on both boundaries. As p is not in B; and By there

is a B3 with p € Bs. As Bj is open there is an ¢ > 0

s.t. the e-ball B, around p is contained in B;. But as p PN PN

is on the boundary of the other two, B, has non-empty / /‘\\ . \\
intersection with By and B,. Now choose ¢ € B; N By '\ '\ o |
and as By N By is convex the line L starting in ¢ going \ N /

to p (but not including p) lies in By N By as well. But
then points on B3N L lie in all three balls By, By, and B3
which proves the statement. 0

3Let X be a topological space. A collection I of subsets of X is a cover of X if each point
x € X lies in at least one set U € U, see [Lee00].

Chapter A. Cloud Surfaces 21

C 1 Frr
L 4 LLL
P S——

(TN
\X/

G————

Figure 2.10: Left shows a covering of [—1,1] via [-1,0] U {[+,1] | n € N} where
the point 0 only lies in one set. This example could serve as an abstraction for the
covering of a real line or even for balls in R? as through a point on the boundary
we can fit this line and find a sequence of balls from the complement of the ball
to achieve the same behavior. Right illustrates a covering of R? with closed balls,
where at first we place balls with equal radius at all integer coordinates intersecting
in a single point or not at all. This procedure continues as a sequence where we fit
in every uncovered space a ball intersecting again in at most single points with all
already existing balls. This then should cover R?, yet it seems that there are no
points lying in more than two balls.

The considerations become more difficult passing to higher dimensions or in the
case when we use closed balls for the covering. Figure 2.10 illustrates two examples
using closed balls in R? where the property that a point lies in d + 1 balls does not
hold. But as we are going to utilize balls* in our construction we agree on a list of
properties inherent in our construction. We want our cover to be finite. Necessary
in practice this also simplifies considerations on closed balls and higher dimensions
and it bounds the balls’ radii. Such finite subcover can be directly obtained from
compact subsets which we generate to surround our points later. Another property
is that each ball is necessary in the covering, thus excluding redundant balls or single
points.

Definition 11. A cover U of X is called irreducible if for every set in U exists a
point x € X not contained in any other element in U.

Assumption 1. Let A C R?, d € N, be a compact set. Then we assume to have an
irreducible open cover B of R? consisting of balls in R? with at least one ball B € B
s.t. BNA =10 and B C A, with B denoting the closure of B.

Thus with a cover meeting Assumption 1 we limit our derivations on a finite (i.e. a
finite subcover of B covering A), irreducible cover of balls with fixed radii fulfilling
the desired properties.

Proposition 3. Let B, A, and d = 2,3 be according to Assumption 1. Let B* be
a finite irreducible subcover of B covering A. Then each point in A is contained
in at most d + 1 balls of B*. The same holds true making B a closed cover, i.e.

B*={BCR*|BeB}.

4Such sets can be treated experimentally without further obstacles by applying the geometric
or combinatorial neighborhoods explained in Example 1 iv) and v).

22 2. Generation and Dynamic

Proof. First observe that B* can be irreducible w.r.t. RY but not necessarily
w.r.t. A, i.e. yielding the covering of A by intersecting the balls in B* with A.
As an example consider the gray ball illustrated on the
right. However, it can be made irreducible w.r.t. A re-

moving balls from the finite collection B, s.t. it fulfills A
the property w.r.t. A. Let us assume B* to be a covering
of A irreducible w.r.t. A. 7@ B

Let B* be an open cover. For d = 2 we refer to
Proposition 2. In the case d = 3 we make use of the
follow up Lemma 1. According to this, we find a point
p on the intersection of the boundaries of three balls in
B*. With this point we apply the same argumentation used in Proposition 2 and
the fact, that the intersection of convex sets is convex.

As the closed balls are generated by taking the closure of the open balls for which
the statement holds, it follows for the closed versions in both dimensions as well. []

Lemma 1. Let B, A, and d = 3 be according to Assumption 1 with B* a finite
irreducible subcover of B covering A. Let By denote the ball contained in A (As-
sumption 1). Then there erists By € B* with By N By # (0 s.t. 0By N 0By ¢ B for
all B € B*.

Proof. A note on B* being irreducible can be taken from the proof of Proposition 3.
To continue here assume contrary. Then each intersecting circle, i.e. the non-empty
intersection of the boundaries of two balls B; and B, in R?, needs to be included in
some ball in B*. As B* is finite and all intersections with B; need to be included in
a ball it follows that Bj is covered by these balls (which include all the intersecting
circles caused on By). But this contradicts that B* shall be irreducible, thus it is a
contradiction. O

The restrictions or properties we set up are suitable for our construction, however,
they lead to open questions, which we only conjecture, one concerning the restriction
of Lemma 1 to the compact set A and another one allowing more general open sets
in arbitrary dimension without all these properties.

Conjecture 1. Let B be an open cover of R3. Then there exists By, By € B with
BN By #0 s.t. 90ByNOBy ¢ B for all B € B.

Conjecture 2. For every cover of RY, d € N, consisting of simply connected® open
subsets of R ezists a point in R? which is contained in at least d + 1 elements of
that cover.

Ideas for a possible proof for the latter statement could be to make use of the nerve
complex of the cover, cf. Remark 3, and the argument that the existence of a d-
simplex proves the statement, as then d + 1 elements of the cover need to have
a non-empty intersection. Another approach could be to use the argument of a
surrounding compact set once more to make use of a finite subcover, yet meaning to
bound the sets. A third way could be to consider the cover as an atlas (yet lacking

5A path connected space with trivial first fundamental group is called simply connected, see
[Lee00].

Chapter A. Cloud Surfaces 23

Figure 2.11: A 2-ball in the center and a sequence of (d—1)-spheres of some thickness
provide a covering of R?, s.t. each point is in at most 2 sets.

the maps in the charts) describing R? as a topological d-manifold and drawing a
conclusion on the intersection of charts.

Note that besides the natural treatment of balls (cf. Example 1 iv) and v))
dropping convexity would mean a sequence of blown up (d—1)-spheres with increased
radii together with a d-ball sitting at the origin yields that a point sits in at most 2
sets for d > 1, see an example in Figure 2.11. Leaving out boundedness would even
yield that just one set covers the entire space and allowing that the sets consist of
single points would provide the possibility to choose each point in space as a ball
of dimension 0, closed in the natural topology of R?. But then each point sits in
exactly one ball and we do not obtain any connection via intersection whatsoever.

Now we want to construct a covering such that we only face non-empty inter-
sections of at most d + 1 clouds, for d = 2,3, and these intersections consist of
single points so that we minimize the occasions in which a point sits in d 4 1 clouds.
Therefore, we propose the following:

Proposition 4. The Euclidean space R, d = 2,3 can be covered by convez, compact
sets, s.t. every x € R? lies in at least one and at most d + 1 of those sets.

Proof. Let d = 3 and B(c,r) = {x € R?* | |[c — z||, < r} C R? be a closed ball with
center ¢ and radius . Now we claim that the collection B = B; U By with

\/g 3
Blz{B<c,7 |c€ZS/\ZC¢:0 mod 2 and

=1

\/g 3
BQZ{B<C,? |c€Zg/\;cz-:1 mod 2

with ¢; the i-th coordinate of ¢ yields a covering with the desired property.

Observe that all sets are bounded and convex. W.l.o.g. we may restrict our
consideration to the unit cube [0,1]* for which we have four balls in each B; and
Bs (dlsplayed with gray squares and white circles see 1nset image). We denote these
subsets By and Bs, resp. This is valid as both radii %2 and \[are smaller 1 and no
other ball, not in By or B, would intersect the Cube.

24 2. Generation and Dynamic

We need to show that each € [0, 1]% lies in a) at least one ball and b) at most four

balls. @) For the convex hull on centers of B; we have conv {{Ci}le} cU.,B (ci, ‘/7§>
Then, w.l.o.g. we consider the pyramid ABCD with
A=(0,0,0), B=(1,0,1), C = (0,1,1),D = (0,0,1),
G=3(A+B+C), and point P = ¢£(1,1,5). The
small cube bounded by D and P is included in the
ball in B, attached to D as P fulfills the equa-

tion 22 + 92 + (z — 1?2 < 3 = <ﬁ>2 It re-
= 36 6

mains to show that the pyramid without the small

cube is contained in the 3 balls in B; attached to A, B, and C. Or

that one of the three similar pieces (one in orange see the inset image)

is contained in one ball, here in the ball attached to A. Note that AP = */73 which

is the radius of the ball at A. Distances a = \/75, b= %, c=AE = AF = @, and

d=AG = ‘/Té are all smaller then AP and the orange piece is convex, thus the piece
is contained in the ball attached at A.

Therefore, each of the three pieces is contained in one
of the balls at A, B, and C and the small cube in the ball
at D. This holds for all pyramids and thus every point
in the cube is contained in one ball in [5'1 U l§2.

b) All balls in B, intersect in only one point, i.e. the

center of [0, 1]? for which the claim is fulfilled, as no ball AR
in B, reaches it. A point—not the center of the cube—
then lies in at most three balls of B;. As all balls in Bs A

have a pairwise empty intersection, such point may lie in
at most four balls (an additional ball from B,) which fulfills our claim.

The case d = 2 follows by the same construction by fixation of one coordinate,
for instance consider the xy-plane. 0

Note that the covering in Proposition 4 is constructed in such a way, that if four balls
in R? have non-empty intersection, then they intersect in a single point. Figure 2.12
provides an illustration for a unit cell and the attached balls. Thus using it as a
scheme to generate clouds from sample points minimizes the possibility of a sample
point lying in four balls. Further, we can conclude that in R? with d > 3 the same
construction is not applicable anymore, as we used the half of the diameter of [0, 1]d

for the larger balls. But then \/Tg > 1 and thus centers of balls would be included
in other balls. In addition, a variable choice for the radii, especially for those of the
larger balls is not possible, as otherwise the four large balls would not only intersect
in the barycenter of the grid cell but a larger non-empty set. The case R? however

allows a more general construction with a variable choice for the radii of the balls.

Proposition 5. The following two constructions allow a covering of R? with balls
s.t. each point lies in al most three balls:

i) Consider the tiling® {3,6} of R* with vertices V and edges E. Let radius r be
at least the distance of a vertex to the barycenter of an incident triangle and at

most e - cos(m/6) with edge length e. Then B = {B(p,r) | v € V'} is a covering
of R2.

SRegular tiling of R? given here with its Schlifli symbol.

Chapter A. Cloud Surfaces 25

Figure 2.12: Shows a unit grid cell in R? and four (left) or eight (right) attached
balls to the grid points. The left version with fewer balls shall support visibility.
The ball-to-ball intersections are highlighted as circles (Jll) which causes convex
subsets whenever two or three balls have non-empty pairwise intersection. The case
in which more than three intersect non-empty leads to a single point and this occurs
five times, namely one in the center of the grid cell for the four larger balls and the
other four occurrences are when three larger and one smaller ball intersect.

ii) B =B, UB, with r € (%,1),%:%—,/73—% with

2
By = {B(c,r)|c€ZQ/\Zci:O mod 2} and

i=1

2
By = {B(c,f)|c€Z2/\Zci:1 mod 2},

i=1

where B(c,r) denotes the closed ball with center ¢ and radius r and ¢; the i-th
coordinate of c.

Proof.
i) Observe that the upper limit for r gives the distance
of a vertex to the opposite edge in the triangle and thus E
each triangle intersects only with the balls attached to
its vertices for all r in the prescribed range. Thus each
point in R? lies in at most three balls. Further, the tri- 7“ ¢
angle ABC (see inset image) lies in B(A,r) and thus by
symmetry of triangle ABC in triangle ADE follows that
every point in R? is covered by B.

i1) We restrict our considerations to the unit square. Observe that only the
balls attached to the four corner points intersect [0, 1]%.
Show that a) B is a covering and b) each point in R? lies =
. C - B
in at most three balls.

a) By symmetry we restrict to the triangle ABC.
Note that we can obtain P by B(A,r) N B(C,7), i.e.

P = (\/d/Q,d/Z) with d = r? — 72, Then the square .
bounded by P and C is contained in B(C,7). W.l.o.g. A

A B D

26 2. Generation and Dynamic

i T
) e
LA

Figure 2.13: Left shows the bounding box covering points in the first quadrant.
Right gives an illustration in 2d of the scaled grid (grid points in orange) and four
exemplary placed balls in the center. The blue points in both images mark the given
points which we want to cover with clouds.

we can conclude that the 4-gon in blue, see inset, has (interior) lengths a = d/2,
b =r, and ¢ = 1/v/2 all smaller or equal to r € [1/y/2,1) and thus all inside the
4-gon is covered by B(A,r). Hence, B is a covering of R?.

b) As 7 = 1/v/2—/r? — 1/2 < 1/4/2 we have that B ((0,1),7)NB ((1,0),7) =0

and thus each point is in at most three balls. O]

Remark 4. The coverings in the previous proposition are constructed in the way,
that the non-empty intersection of three balls is a single point in i) if the radius r is
the distance of a vertex to the barycenter and in ii) in general.

Remark 5. A covering using a tiling as done in Proposition 5 cannot be translated
right away to one in R, as we would need a reqular tiling of R? where there is only
one with cubes having a Schlifli symbol {4,3,4}. But in such we would require the
radius to be at least \/3/2 to contain the cubes’ center where all eight balls intersect
i a singleton. But four balls located at the vertices of each quadrilateral face would
have an intersection consisting of more than a single point.

The generation of clouds from points using the covering in Proposition 4 can be
carried out by the following algorithm.

Algorithm 2. Given points in R3. At first we translate them s.t. they all sit in
the first quadrant of a Cartesian coordinate system. The bounding box of the newly
located points then has the origin and a point b € R3 as representing points, see
Figure 2.13. For a value s € Ry we scale the integer grid used in Proposition 4, as
well as the radit used for the balls attached to the grid points. We solve for every of
the three coordinates individually. If © denotes the i-th coordinate, then we take all
natural numbers 7 =0, ..., [bﬂ, b; s the i-th coordinate of b, to set coordinate v of a
center of a ball to be s-j. The radii from Proposition 4 are scaled by s accordingly.
Finally, we use the geometric neighborhood (see Example 1 iv)) of these centers and
radii to search the given points. Fach of such neighborhood, if non-empty, gives rise
to a cloud.

Chapter A. Cloud Surfaces 27

Figure 2.14: Left shows points in blue taken from a curve and placed in a grid with
balls of two sizes. Right illustrates the geometric realization of the 1-dimensional
cloud complex.

2.2.2 Experimental Results

Up to this point we built a relation between the subsets of points (punched out via a
finite covering) encapsulated in a box in R? or R?, depending on whether it represents
a 1- or 2-dimensional object in R? or R?, and the geometric realization of the complex
created on these subsets. This relation shall serve as a way to encode and control the
points, which approximate (or interpolate) an object in question, by a simpler object.
However, this has some restrictions to it, for example the necessary combinatorics
entailed in a cloud surface, i.e. the clouds themselves need to be designed s.t. no
more than three have a non-empty intersection. Something which does not arise yet
but already earlier when we introduced them. At this moment it is more so reflected
in the way how the balls are arranged (see Propositions 4 and 5) to cut them out.
Another restriction or rather consideration we need to face is the existence of points
representing curves or surfaces which can be correctly processed into subsets by
these balls delivering correct topology in the geometric realizations. Here we need
to take into account point distributions respecting densities or geometric objects like
the medial axis as further tools.

However, we want to investigate some first examples addressing the generation
of clouds from points. We start with the generation from 2-dimensional data, cf.
Proposition 5, reflecting curves to emphasize the idea and discuss the difficulty of
sampling criteria afterwards. Then we build examples on points representing pseudo-
surfaces in R? with and without noise. In all experiments we recall that s denotes
the grid scale parameter mentioned in Algorithm 2.

Curve Reconstruction Let P be a set of points in R? representing a curve in
the same space, see Figure 2.14. For this example we do not define a 1-dimensional
analogue of the simplicial surface in R*—our curve parametrized by ¢ € [0, 27) via
t +— (cos(t),sin(2t)) is not differentiable at (0,0)—, as we do not need it later. Ob-
serve further that we restrict ourselves to R? and did not consider curves in R3 using
the same construction as in Proposition 4, because the non-empty intersection of
three balls shall cause a triangle which is not suitable for a curve. Thus representing
curves in R3 need another treatment.

The 2-dimensional example allows us to represent the balls, the grid points, and

28 2. Generation and Dynamic

(a) (b)

Figure 2.15: Left column shows points in blue taken from an ellipse and placed in
a grid with balls with two grid sizes s = 0.3 and s = 1.4, from top to bottom. The
blue line represents an approximation of the medial axis of the original ellipse. Right
column illustrates the respective geometric realizations of the complexes, whereas
in the top we face missing information and in the bottom false information. Note
that all grid balls have one radius, as we set r = 1/4/2 in Proposition 5 and thus
both radii are equal.

how the curve points are covered by those. The right image in Figure 2.14 gives
a geometric realization of the 1-dimensional cloud complex caused by the balls.
Here the grid scale s accurately reflects the curves’ appearance acting as a control
structure below the clouds. However, the example also illustrates the sensitivity of
point data to grid scale, a circumstance we could theoretically capture with sampling
criteria.

Sampling Criteria In our scenario we have balls with up to two different radii in
R? or R? and a grid scale adjusting them. This raises the question whether we can
find certain criteria for our points taken from either curves or surfaces, i.e. topologi-
cal 1- or 2-manifolds (cf. |Lee00]) in such a way that the geometric realization of the
resulting cloud complex is homeomorphic to the respective manifold the points were
taken from. In the following we consider two sampling criteria. Besides the desired
topology a geometric realization of a cloud complex might have, i.e. it is homeomor-
phic to the manifold the points were taken from, we could either miss information
or construct false information, i.e. connections which should or should not be there,
respectively (cf. Figure 2.15). Both have an impact on the combinatorics and thus
topology. The following criteria are discussed in terms of the possible construction
of false information.

Chapter A. Cloud Surfaces 29

A first notion could be a global criterion as mentioned in [BSW09| where we
restrict ourselves to d-dimensional manifolds in R4 for d = 1,2, as we are consid-
ering curves and surfaces at the moment. Suppose our point set P is a so called
e-sampling for an ¢ € Ry, of a manifold M, which means that any point p € P
shall lie in M and for any € M we find a ¢ € P such that ||z — ¢||, <e. We could
think of relating the two ball radii to e, especially the one we choose, because the
smaller one depends on the larger radius. But as we want each of these balls to cut
out a component from the manifold which is homeomorphic to a disk of dimension
1 (curves) or 2 (surfaces) we need an additional condition. As otherwise the balls
might couple points into a cloud which come from two disconnected components.
Thus, in addition to the e-sampling we demand that B(z,)N M is homeomorphic to
D4, for all z € M C R**! with B(z,¢) € R closed balls of radius € around z, and
D? the closed unit disk in dimension R?. With this given, we choose a radius r to
be used in Propositions 4 and 5 fulfilling r < £/2, so that we can ensure the disk-like
subsets to be cut out by the balls. Thus, a grid ball either cuts out nothing from
the manifold or one component which means in consequence that points distributed
into clouds by such a ball belong to a component, if they are not empty. What is
left as a future direction is an investigation to look further into crucial connections
and the preservation of topology.

A second criterion could be an e-sampling” as introduced in [AB99]. This is
a local criterion as it takes the medial axis of the manifold into account and thus
states that P is an e-sampling of M if for each point p € P there is a point x € M
s.t. ||p— ||, < e-1Us(p). The function Ifs describes the local feature size at a point,
i.e. the smallest distance from that point to the medial axis. As we need to set a
global value for the grid ball radius » we have to find a global value from all the
feature sizes. One could be the infimum p of all local features sizes. This directly
implies p > 0 and therefore we have to work with smooth manifolds sampled by our
points which is another restriction. But taking a value r < p (equality could lead to
the problem that a closed ball intersects M in disconnected components again), also
ensures not to construct false information, yet missing connections might occur more
frequently. For instance when we consider the curve in Figure 2.15 for the example
with s = 0.3 then this satisfies r < p. What the image already illustrates is that
parts in the complex are missing. Even more so as we only related it to p, giving
a lower limit to all local feature sizes, hence parts with larger distance towards the
medial axis are even less sampled and thus will not get caught by the grid balls.

In consequence, both approaches could provide a construction without causing
false connections, while missing information remains an open question, even more
so for the local criterion.

Cloud Surfaces from Points For an example in R? we consider a Sphere model
with 10,000 vertices. Two results are illustrated in Figure 2.16 for the two different
scales s = 0.8 and s = 1. The left example contains three boundary components
highlighted in the geometric realization of the cloud surface. Here the grid scale s =
0.8 and placement of the points in the bounding box do not ensure that the respective
three clouds have non-empty intersection (cf. Figure 2.16(a) for an example as there
is a portion of blue points missing in the framed rectangle to cause the desired

"It is actually introduced as r-sampling which is changed here so that we do not confuse it with
the grid ball radius.

30 2. Generation and Dynamic

/ b
G] y ~ A
» | » 3\
G e | ,
8 J \‘“ // ';
l \ / Y
S -

(a) (b) () (d)

Figure 2.16: Shows cloud generation on 10,000 points representing a sphere with
s =0.8 (a) and s = 1 (c) where one example of the missing non-empty intersection
of three clouds is framed () in (a). For the coloring we refer to Example 2. In (b)
and (d) are the respective geometric realizations of the cloud complexes. Note that
in (b) we have three boundary cycles (Jl]), while in (d) we obtain a closed cloud
surface.

(a) (b) (©) (@)

Figure 2.17: (a) and (c) show cloud generations on noisy Sphere and Dodecahedron
models, respectively. (b) and (d) illustrate the respective geometric realizations of
the resulting cloud complexes.

triangle). The example with s = 1 provides a geometric realization of a closed cloud
surface.

The approach in R? according to Proposition 4 operates with fixed radii instead
of the flexibility in R2, but nonetheless it carries the same obstacles of balancing
point set density against grid scale and point set placement inside the bounding
box. The dependency on density, grid scale, and placement is a future direction to
investigate.

Cloud Surfaces from Noise In the last example we consider the Sphere and
Dodecahedron models represented by 10,000 and 3,842 points, respectively. We
equipped both with Gaussian noise in normal direction with an amplitude of 50%
(Sphere) and 25% (Dodecahedron) of the average neighbor distance taken as av-
eraged sum over all points and their 12 nearest neighbors, see visual results in
Figure 2.17. The grid scales were set to s = 1 for the Sphere and s = 1.9 for the
Dodecahedron. Note that the second example relates to the paragraph discussing
the noisy Dodecahedron in Section 4.4.2 in the second chapter. However, here we
had to increase the density thus having more points available to construct the cloud
complex.

Both examples show that deviations in the points caused by noise do not neces-
sarily affect the outcome and therefore yield the desired topology in the geometric
realization of the cloud complex. The grid balls themselves offer some spatial free-

Chapter A. Cloud Surfaces 31

dom in which the points possibly lie. As mentioned in the previous paragraph, the
contribution and tuning of the grid scale and model placement in space are future
directions. For this experiment we received values from a run through, were we
gave a range for s with some stepsize and checked whether the geometric realization
of the cloud complex is homeomorphic to a topological 2-manifold (cf. [Lee00]).
Therefore, we obtained s = 1.9 in the second example as a valid grid scale. Fur-
thermore, rotating the model might benefit the outcome. Note that translations
and scalings will not have an impact as we proceed with all considerations with the
models’ bounding box, yet rotations change spatial positions inside this box. The
Sphere in our example was rotated beforehand providing us a valid grid scale s = 1.

32 2. Generation and Dynamic

I — [Ilv X, .1'3]

Figure 2.18: Left shows an example of simplices respecting their orientation and
the induced orientations of their faces by the boundary operator. Right illustrates
two adjacent triangles with their orientations and the normals obtained by Equa-
tion (2.2).

2.3 Cloud Dynamic

Now we want to use the geometric realization of a cloud surface, perceivable as a
skeleton, to introduce some sort of point dynamic. Here we make use of information
contained in an abstract simplicial complex, more so we ask for orientability. From
the combinatorics of clouds we further derive influence areas, i.e. a distinction
of individual point updates respecting the clouds they belong to. This leads to
an algorithm allowing reversible point updates and a discussion of experiments in
Section 2.3.2.

2.3.1 Surface Orientation and Update Schemes

Following the discussion about the generation of cloud surfaces, we now want to put
them to application. The cloud surfaces’ underlying pseudo-surface acts as a control
structure where positional variations of the vertex positions shall cause the points
in the respective clouds to change their positions too. Each triangle can be treated
as a local coordinate system with the third direction caused by a natural choice of
a normal for that triangle.

Definition 12. Given a pseudo-surface |K| in R3. Then n : |K|\ |[KW|+— S? with
p — n(p) assigns to each point p a so called normal (up to sign), s.t. n(p) is
orthogonal to the triangle |0?| it belongs to.

Observe that we only assign normals to points sitting in the interior of triangles,
thus we do not have normals along edges or at vertices at all, as there is no natural
unique (up to sign) choice compared to the interior of triangles.

Changing a vertex position let the normals of incident triangles undergo some
rotations. Hence we agree on an orientation of our pseudo-surface. The following
definition is taken from |Toel7| working with simplicial manifolds, yet it applies to
our abstract simplicial surfaces as well. For an illustration see Figure 2.18(a) also
showing an example for the orientation of simplices as a recreation of an example in

[ToelT].

Chapter A. Cloud Surfaces 33

Definition 13. The sequence® of abstract vertices in a d-simplex 0@ = {v, ..., vq}
defines its orientation. All even permutations® T on the index set define the same
orientation {UT(O), e ,UT(d)} of . Changing two abstract vertices gives the oppo-
site orientation of o, denoted — {vy,...,vq}. Each orientation {vy,...,vs} of 0@
induces via a boundary operator

d
0{vo, ..., va} =Y (1) {vo, .., G, ..., va}
=0

where v; leaves out entry v;, an orientation on the faces of 0. Two d-simplices are
neighbors if they share a (d — 1)-face. Two d-simplices have coherent orientation
if they have induced opposite orientations on their shared face via the boundary
operator.

As the orientation of simplices are defined on the abstract vertices without further
requirements, we deviate from the definition applied to combinatorial (or simpli-
cial manifolds) as provided in [Toel7] and define it directly on abstract simplicial
complexes from which the abstract simplicial surfaces inherit that property.

Definition 14. An abstract simplicial complex is orientable if all 2-simplices can
receive an orientation s.t. all neighbored 2-simplices have coherent orientation.

Proposition 6. Given a pseudo-surface |K| in R® and K an oriented abstract sim-
plicial complez. Then for the oriented 2-simplex o* = {v;,v;,v,} € K the normal

n(p) for all p € \002\ can be given by

(o3| = i) < (loe] = Jvil)
(lvgl = fwil) > (Jog] = [wil)ll,

n(e) = (2.2)

with X denoting the cross product (cf. Figure 2.18(b)) and |v.| the geometric real-
wzation of v..

Proof. As we only ask for a normal attached to the interior points of a triangle which
is perpendicular to that triangle it suffices to take the normalized cross product of
its edges, as they span the 2-dimensional affine subspace representing the points in
the triangle. Thus we get a unique normal up to sign. O

Now we introduce a time parameter ¢ € [0, 1] and denote P, the points (Definition 2)
and |K;| the pseudo-surface (Definition 10) w.r.t. time ¢. Note that an abstract
vertex set, the abstract simplicial complex or a cloud set do not need an additional
subscript, as they only provide references and do not change. As a reminder, we are
interested in how the points P change w.r.t. the positional variation of |K|. Such
motion can be carried out via a map

Q: |K(O)| —>R3,v|—><p(v), (2.3)

acting on the vertices of |K]|.

8Rather then using common sequence notation we stick to the curly brackets and emphasize
whenever the orientation is of importance.
9See |Toel7] for a brief introduction.

34 2. Generation and Dynamic

Vg

(a) (b) (c)

Figure 2.19: (a) Shows the influence determination. A point in the intersection of
three clouds Cj, C}, C}, in the gray region is represented by the one triangle. A point
only in the intersection of two, say C};, C} in the blue region is represented by the two
triangles incident to that edge. The remainder in the orange region respects all inci-
dent triangles. (b) Illustrates the calculation of ratios of the projected point g w.r.t.
the triangle |{v;,v;, v }|. Here we are interested in the ratios ||v; — el|, / ||vi — vkl|,
and [|b — ¢l|, / ||b — e]|, with triangle barycenter b and intersection e of the edge and
ray starting in b towards ¢. (c¢) Calculation of ratio ||b — ¢l|, / ||b — vi]|, to find the
updated projection ¢. Note that we use angle o between the edge normal and vector
q — p to get the updated point p.

Assumption 2. Let |K;—o| be a pseudo-surface with K;—q oriented and |K;—1| ob-
tained by p(|Ki=o|), from Equation (2.3). Note that K;—1 has the same orientation
as Ki—q, because it was defined on the underling abstract stmplicial complex and the
realization does not change. We assume that ¢ preserves d-dimensional simplices
for d=10,1,2 and the sign of normals (Equation (2.2)).

To investigate how the points change under ¢ we first find out how points are
influenced. The idea is that when a cloud changes its position controlled by the
respective vertex in the pseudo-surface the point inside the cloud should move as
well. Such change could mean a translation and rotation of the local coordinate
system the point lives in as well as new coordinates in that system. As we have a
natural choice for normals inside a triangle but not on edges or vertices of a pseudo-
surface, we are free to propose certain choices for these (done in the upcoming
algorithm). The points themselves are updated w.r.t. the clouds they belong to, see
Figure 2.19(a). That means a point in the intersection of three clouds—reflecting
a triangle—is represented and influenced by that triangle only. Next, a point in
the intersection of two clouds excluding the triangle points—reflecting an edge—
is influenced by the triangles incident to that edge which are at most two. The
remaining points solely sitting inside a cloud—reflecting a vertex—are influenced
by all triangles attached to that vertex. We propose the following algorithm as an
example of an update scheme for a single point.

Algorithm 3. At first we set the normals at vertices and edges of the pseudo-surface
to be the weighted mean normals of incident triangles to the vertex or the edge in
question, resp. As weights we choose the areas of the triangles. All of the following
stances are considered at time t = 0, whereas an object o at time t = 1 1s denoted

0.

Chapter A. Cloud Surfaces 35

For the movement of a point w.r.t. to a triangle (sitting inside three clouds) we
do the following (cf. Figure 2.19(b)). Letp € R3 and |0?| = |{vi, vj, v }| be a triangle
with n the constant normal for all points in |002\ according to Equation (2.2). We
are interested in p. Therefore, we project p orthogonally onto |0?| getting q. With
this we get the edge with endpoints, say v; and vy, which intersect the ray starting
b in direction q in e. Then we take the ratios

—b
Cmd Hq H2
HUk_UiHQ ||€_b”2

le = vill,

(2.4)

with b the triangle’s barycenter. Note that we can obtain these ratios by the law of
sines as

lle = willy = [lvi = bllysin ()" sin (8) and le = bll, = [vi — bll, sin (v) " sin (a)

with «, 8, and v the angles at the vertices of the triangle spanned by v;, b, and e,
resp. Now we determine § preservering the ratios in the triangle |02 = o(|0?]).

Afterwards we obtain

p=q+wlp—dlyn, (2.5)
where w € R s some weight influencing the height above the triangle. A natural
?|

choice could be to set w = area(|0?|) /area (|0?]), i.e. the ratio of areas of the

triangle before and after the movement.

Similarly to the previous case, we move a point w.r.t. to an edge (sitting inside
two clouds), see Figure 2.19(c). At first we obtain the projection q of point p € R?
onto the line described by the barycenter b and unit direction u obtained by the edge
with endpoints v;, v;. Then we select the edge endpoint lying on the same side
compared to b as q, say v;, and obtain the ratio ||q —b||, / ||vi — b|l,. The projected
point q then preserves the ratio on the edge with endpoints v;, v;. First we express p
according to Equation (2.5), with a possible weight w to be the length of |ot| divided
by the length of |o!|. But as it does not necessarily lie in direction of the edge normal
n, we further rotate it by —« around the direction u, where o = Z,(n,q — p).

To change the point position of p € R® w.r.t. a vertex v (lying in a single cloud),
we apply a translation from v to v and rotation sending the vertex normal n to n.

Observe that with the scheme in Algorithm 3, which relies on intrinsic ratios and
a simplex and orientation preserving map ¢ (Equation (2.3)), the point position
updates are reversible.

2.3.2 Experimental Results

To exemplify Algorithm 3 we chose two sets of points, i.e. a planar quadrangular
region consisting of 4,225 points and a Cube model with 1,538 points. Clouds are
generated via Proposition 4 with grid scales s = 0.25 (Quadrilateral) and s = 1
(Cube). Tllustrations can be seen in Figures 2.20 and 2.21. Edge and vertex normals
are estimated via weighted means of adjacent triangle normals. For the Quadrilateral
we manually changed all cloud points which do not appear at the boundary and
lifted them up. The points in the respective clouds changed accordingly. For the
Cube model we normalized all cloud points in the geometric realization of the cloud
complex so that they live in the unit 2-sphere and consequently the corresponding
clouds disassemble.

36 2. Generation and Dynamic

(a) (b) (©) (@)

Figure 2.20: Shows clouds on planar points (a) with the corresponding complex
illustrated in (b). In (c¢) a change of cloud point coordinates is applied and thus the
resulting movement of points in the clouds is shown in (d). Coloring of cloud points
is according to Example 2.

(a) (b) () (d)

Figure 2.21: Shows clouds on points taken from a Cube model (a) with the corre-
sponding complex illustrated in (b). In (c) a change of cloud point coordinates is
applied, i.e. all got normalized to sit in the unit 2-sphere, and thus the resulting
movement of points in the clouds is shown in (d). Coloring of cloud points is ac-
cording to Example 2.

n;
n L
aai
L
nj p
(a) (b) (c) (d)

Figure 2.22: (a) Illustrates a side view of two connected triangles with their normals
n; and n;, the mean normal n used at the edge and p which is going to be updated
w.r.t. the edge. (b) After we have changed the triangle vertices all new normals
point up and p lies inside the triangle. (c) Shown is the side view of two connected
triangles with two reference angles, i.e. dihedral angles between triangles and the
plane spanned by the edge and the connecting vector of p and the edge. Here the
references are chosen depending whether the point lies outside (p) or inside (p’)
assuming our surface is closed. (d) Shown are three triangles attached to vertex v
with the arrows indicating the triangle normals attached to v. Thus p and p’ lie
in the cones spanned by the normals or triangle edges, respectively. These cones
intersect with the unit 2-sphere as well as the rays from v through p and p’ where
the latter could be expressed with barycentric coordinates w.r.t. spherical polygons
caused by the cones. The treatment of p” not sitting in such cone remains an open
question.

Chapter A. Cloud Surfaces 37

The algorithm gives a first way to incorporate reversible cloud dynamics. How-
ever, especially in Figure 2.20 it can be seen that a more continuous transition would
be desirable and natural. Note that points only influenced by one triangle as respec-
tive tangent space receive a somehow understandable update. The problem occurs
whenever multiple triangles influence updates whereas points sitting only in one
cloud need to be represented by all triangles attached to the corresponding cloud
point. At the moment we only treat those by translation and rotation so that both
approximating spaces represented by cloud points and estimated normals are trans-
ferred to each other and thus the points in the clouds accordingly. As these points
make up a majority compared to edge or triangle instances in our experiments, the
results appear rather disassembled. Which is not only visually unsatisfying but it
complicates the notion of vicinity even more.

In addition to this, we might want to control the updates more naturally w.r.t.
where the points lie. For instance in Figures 2.22(a) and 2.22(b) the illustrated point
gets moved to lie inside the triangle. From a current standpoint this is not favorable
as we would assume that ratios of angles a point has towards the two respective
triangles (if we consider an edge point) be preserved accounting for a more natural
dynamic. Further, as a consequence points lying inside the space reflected by a
triangle would stay in that space, which is not the case at the moment.

An open direction and idea is to incorporate so called reference angles to account
for the angle ratios. For a point which needs an update according to an edge we con-
sider the configuration displayed in Figure 2.22(c). Here a point causes two dihedral
angles and their sum. Assuming that our surface is closed and oriented, we could
decide whether a point lies inside or outside w.r.t. the triangle normals and further
we know which angles we need to use. For instance, a point p outside the surface
has angles «; and «; and thus one ratio R; = «;/(c; + «;) it has towards triangle
|o?|, and the other ratio analogously. After changing cloud point positions of the ge-
ometric realization the triangle normals update accordingly. Then &; = R; - &, with
& dihedral (outer) angle spanned by |57] and |67, is the new angular position for the
updated point (&; analogously). Angular means that we further could incorporate a
change in radial direction w.r.t. some ratio respecting edge lengths or triangle areas
as weights.

A similar route could be considered for a point which sits in only one cloud and
gets thus influenced by multiple triangles. In Figure 2.22(d) we have an example
with three different locations for such a point p. Suppose such a point lies in the cone
spanned by either the triangle normals or the triangle edges (depending on whether
it lies inside or outside the closed oriented surface), and assume for a moment we
focus on the first case (as the second is analogue). Then we attach a unit 2-sphere at
cloud point v so that the normals spanning the cone give us points on that sphere,
and connecting them in the order of the adjacent triangles provides a spherical
polygon. Now the line through v and p gives us another point on the sphere for
which we seek (spherical) barycentric coordinates inside the spherical polygon. Then
after an update these barycentric coordinates should determine at least the angular
placement on the 2-sphere in the cone spanned by the updated triangle normals.
Besides the details for both update cases!® the treatment of a point not sitting in
any cone is open, and thus both are future directions.

0These are point updates corresponding to an edge (influenced by 2 triangles) and the other to
a cloud point (influenced by more than 2 triangles).

38 2. Generation and Dynamic

2.4 Conclusion and Further Research

In this section we investigated possible ways of generating cloud surfaces either
synthetically from surfaces or from points in space. With these at hand we consid-
ered such cloud surface as a control structure to introduce point updates respecting
changes in the control structure. Cloud surfaces are one way to think of an atlas-like
structure set up on points, not necessarily putting emphasis on local neighborhoods
around a point or respecting all at once in a global manner. Their advantage lies in
the strengths of thoroughly investigated (abstract) simplicial surfaces, yet causing
some restrictions. Some of those provide future directions for research comprised in
the following list.

e Currently the generation of cloud surfaces from pseudo-surfaces can be used
as a starting point to have cloud surface examples to work with. However,
as such points and clouds entail the desired structure we could think of us-
ing the procedure in terms of remeshing into polygonal meshes (triangular,
quadrilateral, etc.) of certain quality.

e For both, the sphere models introduced in Section 2.1.1 and their contained
parameters, it could be investigated how they influence generation results.

e In Section 2.2.1 we introduced coverings suitable for the determination of cloud
surfaces from points. As mentioned above, the underlying structure is a simpli-
cial surface which forces restrictions on the combinatorics of cloud complexes.
The generation from points now suits this direction, however here an in-depth
investigation of what we can expect and achieve from such ball configurations
in R? and R3 remains open, yet first steps were taken to consider certain
sampling criteria.

e Again about the determination of cloud surfaces from points (cf. Section
2.2.1) an open direction is to extend those in terms of adaptivity to work
in multiscale scenarios. Especially in situations with non-uniform samplings
individual parts could be processed with other grid-scales. However, a proper
gluing along the boundaries of multiple scales preserving the topology is a
challenging question.

e In Section 2.3.1 we introduced update schemes leading to a reversible dynamic.
In the experiments we started a discussion about a more continuous point
update to reflect dynamics more fluently. At the moment we have direct
updates at time steps t = 0 and ¢ = 1 where we could also think of continuous
or even differentiable functions for the dynamics (preferably reversible).

e The cloud dynamic assumes a closed cloud surface to work with. Here the
treatment of boundaries, especially necessary for points relating to edges, could
be interesting, as it opens a possibility to cut and flatten surfaces and with
them the respective points.

Another way to think of a set system applied to points, yet entailing some struc-
ture, is in some sort the dual—here to cloud surfaces—perspective discussed in the
next chapter.

Chapter B. Surface-like Structures 39

Chapter B

Surface-like Structures

Having the structure of simplicial complexes at hand and using them as an un-
derlying basis provides the possibility to take over a well studied machinery onto
subsets of points, i.e. clouds. However, the clouds themselves may carry data from
2-dimensional surface patches and thus letting each of them get represented by a
2-dimensional entity in a complex seems natural. A motivation to further investi-
gate such surface-like structures came from segmentation results of point sets, see
Figure 2.1.

Under certain conditions such a structure (or complex) which is at most of di-
mension 2 and shall reflect manifold behavior suggests to be dual® to cloud surfaces.
A necessary requirement for duality then is the restriction that no more than three
clouds cause a vertex in the structure. This is because in the dual this vertex need to
represent a triangle as it then belongs to a cloud complex. Here we already deduce
that we do not want to rely on duality, rather we want to achieve it under certain
circumstances.

Being dual or not, another viewpoint to encode such structures could be a CW
complex. But in them the basic object is a k-cell, £ € Ny, which needs to be
homeomorphic to the open k-dimensional unit ball, see [Toel7|, thus, the boundary
of its closure is homeomorphic to the unit sphere of dimension k-1. This might
be plausible whenever a segment seems to have one bounding cycle, but we would
like to allow multiple (disjoint) cycles to bound a segment (see Figure 2.1(b)) yet
violating the definition of a CW complex.

Therefore, we are going to discuss a way of thinking about surface-like structures
acting dual under certain conditions to cloud surfaces and present a generation of
such structure utilizing point set segmentation and how they act beneficial in a
subsequent application, i.e. simplification.

Parts of the work that follow are published in [SZP20], whereas Section 3 and the
paragraph about general faces in Section 4.4.2 are extensions. Especially the latter
shall provide a solution to the third comment risen in the further research in [SZP20]
addressing the treatment of planar patches which are not star convex. Further, some
results of the paper have been presented as a poster at the International Geometry
Summit 2019 in Vancouver, Canada and have been published in the corresponding
poster proceedings, see [SZP19]. Changes were made to Figures 4.6 (except the
center one), 4.9 (only our examples), 4.10, 4.11, and 4.14 in visual representation
to match with the coloring used throughout this thesis, as well as minor textual

!In the context when identifying 0- and 2-dimensional entities, and vice versa.

40

r------

Figure 2.1: Each of both examples shows a segmentation of a point set into colored
(disjoint) segments on the respective left and a complex obtained from the segmen-
tation on the right. The complex has a vertex where more than two segments are
close by and an edge where exactly two are close by. The colored cycles on the
respective right illustrations represent the boundaries of the segments on top.

changes. The experimental results and discussions were split and placed in the
corresponding sections dealing with segmentation and simplification, respectively.
A further discussion about the interpretation of parameter n was placed in the
experimental results section instead of an appendix.

Note in Section 3 we elaborate on another definition of a complex where we use
the terminology of clouds to build such complex. However, throughout Section 4
we use the notion of region instead of cloud to address a subset of the given points
to represent a segment as a 2-dimensional entity, because we want to stick to the
terminology used in [SZP20|. Another reason is, that we deal with a disjoint seg-
mentation in Section 4 for which a cloud complex would only include O-simplices but
none of higher dimension with its current definition, see Definition 6 and Remark 3
i). Further we use the strength of a cloud complex on the neighborhood of regions
to obtain the desired new complex.

Chapter B. Surface-like Structures 41

3 Description of Surface-like Structures

For a given set of clouds C; on an index set I, we build
I = {fg] | #{f} ZS/\ﬂiejCi#@}

which is a set of all subsets of I for which the intersection of the respective clouds
is not empty. From this we keep

I:{fe[*]fgl’ vz’ez*\{f}}, (3.1)

i.e. the inclusion maximal subsets. From now on we use Z and Z; for an index set J
interchangeably with emphasis on the latter if the indexing is important. Observe
that Z is a cloud set built on I and together with a cloud vertex map ¥ : Z; — V),
we obtain the cloud complex K w.r.t. Z. Here we denote £ = KM to be the set of
abstract edges.

By an abuse of notation (orientation of simplices) we are going to reflect the
boundaries of a 2-dimensional object as oriented d-simplices. Every cloud C; € C;
causes such a 2-dimensional object (which we call an abstract face) and one bound-
ary component can be represented by a sequence of abstract vertices in Vj, i.e.

{vjg,...,v;,} for n = 2,3,...st. I, € Z; and {szv } e KO for

[=0,...,n. Further, we require the induced subgraph? on these vertices from the
graph caused by V; and € to be a cycle?®, so that we can ensure that each boundary
component has the correct topology, i.e. it is homeomorphic to the 1-sphere. The
set of cycles bounding the abstract faces is denoted F*. Then we set up a complex
K’ as

Uj(l+1) mod n

K =V;UEUF. (3.2)

See Figure 3.1 for an example. Observe that we can read off information of the
contributing clouds in all instances sitting in the three subsets V;, &€, and F. For
instance, intersecting clouds (in cloud set Z) of the two abstract vertices sitting in
an abstract edge give the indices which refer to the original clouds (or one cloud)
having this edge as a boundary component. We could do the same for objects in
F. To look for those cycles corresponding to cloud C; we need to find all cycles in
F where i appears in every cloud (in cloud set Z) corresponding to the respective
vertex in the sequence.

The complex K’ (Equation (3.2)) is again an abstract combinatorial object. Now
we could think of relating it to a topological 2-manifold in the same way we did to
get a cloud surface in Definition 8. We recall that neighborhoods around points
in a 2-manifold are Euclidean of dimension 2. If we have interior points of an
abstract face—and it is again not defined what interior means, but it should be
considered on an abstract level—, we assume them to have the desired property.
For abstract edges we require each edge to be the boundary component of at most

2An induced subgraph is a subgraph obtained by deleting a set of vertices, see [Wes01].

3A cycle is a graph with an equal number of vertices and edges whose vertices can be placed
around a circle so that two vertices are adjacent if and only if they appear consecutively along the
circle, see [Wes01].

4One entry does not reflect one abstract face in general. The set contains boundaries so that
multiple elements in here might bound an abstract face with possible holes.

42 3. Description of Surface-like Structures

R
IS
PU—
.-
)
R
-—0

(a) (b) (c)

Figure 3.1: a) Shown are six clouds and drawings of abstract vertices and edges. Two
of such vertices are for instance {1,2,3} C I and {1,3,4} C I as their respective
clouds have non-empty intersection. Both cause an edge running between C; and
(3. To get the boundary cycle of the abstract face we could (for example) start at
the vertex belonging to {1,2,3} and continue to the vertex representing {1, 3,4} as
they are connected. Continuation of this process provides a sequence as bounding
cycle of the abstract face for cloud C;. b) Sketches an example in which an edge
for the abstract face for cloud C; bounds only one face. ¢) Illustrated is a piecewise
planar approximation of the torus as a possible geometric realization of a surface-like
structure. The top consists of two faces bounded by two cycles, one of each with
highlighted vertices v and v having sequences of cycles with the desired property
(see Conjecture 3). At the bottom there is an example of a face bounded by more
than one cycle displayed in orange.

two abstract faces, i.e. they are present in two cycles at the most. What remains is
to treat neighborhoods around abstract vertices. We conjecture a definition similar
to Definition 7, with an example in Figure 3.1(c).

Conjecture 3. A complex K' according to Equation 3.2 is called a surface-like
structure of

i) each abstract vertez is in at least one cycle bounding an abstract face,

ii) each abstract edge is contained in at most two cycles bounding abstract faces,
and

iii) for each abstract vertexr all cycles containing it can be arranged in a sequence,
s.t. consecutive entries in the sequence have an abstract edge in common.

Conjecture 4. A closed cloud surface K on C; is dual to a surface-like structure
K’ on Cy if every abstract edge in £ is contained in exactly two cycles in F, each

abstract face is bounded by one cycle, and #{1:} =3 forall I € I, i.e. each
inclusion mazimal subset of I is of size 3.

The terminology in Conjecture 3 will not get investigated further, as we set our
focus on the generation and application of the complex derived in Equation (3.2),
yet it marks a possible direction for future work, whether it is well defined, carries
desired 2-manifold properties, and could be of potential interest.

®Dual means that we identify 0- and 2-dimensional objects and vice versa. The 1-dimensional
entities update accordingly.

Chapter B. Surface-like Structures 43

4 Segmentation and Simplification

In the following section we discuss a method to generate a complex as given in
Equation (3.2) and its application. Such generation can be achieved via point set
segmentation.

In many applications, large parts of the point set carry redundant information.
For example, a flat area of a surface can be sampled sparsely without—compared
to an area of high curvature—loosing information. In several applications, it is
not even necessary to consider all details carried by the point set. For instance, in
architecture—for a first draft—the rough outline of a building suffices and there is
no need to send more detailed geometries. In general, when transmitting geometries
e.g. to give an overview of a certain portfolio, the general outlines of the geometries
suffices and sending only these saves on bandwidths during transmission. In this
sense, algorithms are necessary that reduce a complex geometry to several basic
shapes that still retain the most important features of the input. Towards this
end, [CSADO4| proposed their Variational Shape Approximation (VSA) for meshes.

The VSA procedure segments a mesh into a given number of flat proxy regions,
see Section 4.2. Finally, a simplified surface is obtained with only one element for
each region, see Section 4.4. A translation of the VSA method to the setting of
point sets was done by |[LB16| with the explicit goal of feature curve extraction.
While VSA is able to provide an easy to implement simplification of any geome-
try, it also has several downsides. First, it is dependent on the number of proxies
which has to be chosen a priori. Second, in the previous publications, the quality
of the result depends heavily on the manual placement of the starting seeds for
the proxies ([CSADO04, LB16, YLWO06|). Towards this end, two manual operations
were proposed, which allow for splitting proxy regions of high error and merging
neighboring ones with a combined low error [CSADO04, Sec. 3.5|. In the context
of meshes, these operations have been automatized [YLWO06, Sec. 3.1]. Third, the
previous publications were not able to construct a VSA algorithm with guaranteed
convergence. This work closes these gaps. Our main contributions are (with the last
one extending [SZP20]):

e Providing an example of a growing error during the run of the VSA algorithm
which applies to meshes and point sets alike.

e Presentation of a modified VSA procedure including the switch operation and
proof of its guaranteed convergence.

e Inclusion of the two operations, split and merge, as automatic parts in the point
set processing pipeline, making the initial choice of a fixed proxy number and
the manual selection of seeds unnecessary.

e Extension of variational tangent plane intersection to the setting of point sets
and inclusion of the procedure in the VSA pipeline for simplification.

e Formulation of the segmentation as a cloud complex together with cycle infor-
mation as face boundaries and their usage in non-star convex face generation.

44 4. Segmentation and Simplification

4.1 Related Work

The VSA procedure was introduced by [CSADO04] as a method for concise, faithful
approximation of complex three-dimensional meshes. It does so by fitting a set of
planar proxies to the input mesh. We will provide a detailed discussion of the
procedure in Section 4.2. As the resulting elements are oriented corresponding
to all associated faces of the original mesh, the effects of simplification are less
drastic as in the classical approach of [GH97|. A next step towards even better
approximations consisted of the inclusion of more than just planar shapes. In the
work of [WKO05]|, also e.g. cylinders and spheres are used as proxies to even better
approximate the input shape. This was generalized even further by [YLWO06| who
utilized general quadrics as proxies to be fitted to the input. However, all these
methods are implemented in the setting of surface meshes.

A translation of the VSA procedure to the setting of point sets was performed in
an article by [LB16|. The authors studied the problem of computing smooth feature
curves from CAD type point cloud models. Their reconstructed curves arise from
the intersections of developable strip pairs which approximate the regions along both
sides of the features. The generation of the developable surfaces is in turn based
on VSA. While the presented results are convincing, it remains unclear whether the
approach of fitting developable surfaces works outside of the CAD realm. Further-
more, the work does not provide details on how to obtain the used linear planar
approximations or how to construct a watertight mesh from them. These aspects
motivate the present research.

Our proposed approach incorporates two different areas of point set processing.
On the one hand, we aim at segmenting the input into several flat—i.e. planar—
parts for which we will discuss related segmentation approaches. On the other
hand, we want to construct a simplified mesh on the basis of the found flat surfaces
patches. Therefore, we will present corresponding work on mesh generation and
simplification.

4.1.1 Segmentation

Segmentation of point clouds is the process of classifying the input into multiple
homogeneous regions, where points in the same region will have the same prop-
erties. In real-world applications—Ilike intelligent vehicles, autonomous mapping,
and navigation—the problem is challenging because of high redundancy, uneven
sampling density, and lack of explicit structure in the input data. Methods for
point set segmentation can roughly be classified as follows: edge-based, region-based
(seeded/bottom-up or unseeded/top-down), attribute-based, model-based, graph-
based, or machine-learning-based, see [NL13|, [GMR17]. Following this terminol-
ogy, the VSA procedure is a seeded, region-based method, which is characterized
by starting the segmentation process from seed points and letting regions grow by
adding neighbors if they satisfy certain conditions—Ilike normal similarity. We refer
to the survey of [NL13] for a discussion of several corresponding methods. In this
work, the authors draw the following conclusion on seeded region-based methods:

[They| are highly dependent on selected seed points. Inaccurate choosing
seed points will affect the segmentation process and can cause under or
over segmentation.

Chapter B. Surface-like Structures 45

The survey paper of [GMR17| draws a similar conclusion for the corresponding set
of discussed methods. Hence, in contrast to the procedures covered in the mentioned
surveys, we put an emphasis on the independence of both the number and placement
of seed points. See Section 4.3.3 for a corresponding discussion.

Point cloud segmentation can be considered either from a semantic or from a
geometrical perspective. The former aims at separating a model into its parts:
A chair should for instance be segmented into four legs, a seating surface, and a
backrest. The geometric approach is to segment the model into different primitives
as-well-as-possible. A recent survey paper of [XTZ20| provides a comprehensive list
of methods following both approaches. In the terminology used in this paper, the
VSA approach creates a “plane point cloud segmentation”. While we cannot discuss
all works mentioned, we will consider two popular approaches in the following and
refer to the survey of [XTZ20] for a thorough discussion of other related work.

Note that fitting different planar segments to a model can be considered as a
natural approach in order to render the model with a reduced set of planar patches.
Naturally, those models are captured well that are comprised of mostly planar surface
parts. The presence of spherical or cylindrical shapes will cause for larger distor-
tions when approximating only with planar parts. Thus, a next step—after planar
fitting—is the usage of other geometric primitives, like spheres, cylinders, cones, or
tori. Each of these primitives then require their own fitting. As the VSA approach
only fits planes, we briefly discuss different fitting concepts for this primitive. Note
at this point that the method of [WKO05| utilizes the exact same procedure for fitting
of planes as the original VSA paper by [CSADO4].

To fit a planar patch, the approach of [SWKO07| considers points p;, p;, pe € P
from an input point set P and computes a normal of the plane spanned by these
points. This normal is then compared to the respective normals at p;, p;, and p,.
A fitting plane is introduced if all three normal variations stay below a user-given
angle. Clearly, the results of this approach heavily depends on the choice of the
three points.

In contrast, the approach of [AP10] places a plane at the weighted barycenter b
of a considered subset {p;} C P of the input point set P. A weighted covariance
matrix is used to determine a normal n and the fitting error is computed as a
weighted least-squares formulation. However, this computation neglects the normal
information at the points p;.

Another choice for the segmentation of point clouds is the algorithm presented
in [RVDHVO06|. It is popular because of its easily accessible implementation in the
widely used Point Cloud Library (PCL) by [RC11]. This method can be seen as a
reduced version of the VSA approach. Regions are also grown from seeds according
to normal information. However, the growing process is only executed once and not
repeated from a different set of seeds, like in VSA (see Section 4.2). Thus, the result
is even more dependent on the initial seeding than in other, comparable techniques.

For the give reasons, the discussed methods have their respective downsides.
Contrasting the presented algorithms, in our translation of the VSA approach, we
include the entire normal information of the input point set. Furthermore, we have
a setup of the pipeline that ensures independence of the initial seed points, which
eliminates the major disadvantage of seed-based region growing methods.

46 4. Segmentation and Simplification

4.1.2 Meshing and Simplification

As stated in the beginning of Section 4, the ultimate goal of our VSA procedure for
point sets is to create a simplified mesh from a set of planar proxy regions. That is,
a set of mesh vertices has to be created from the intersection of the proxy planes.
Then, these vertices have to be connected to represent face elements for the proxies
respectively. While three pairwise non-parallel planes intersect in a unique point,
this is not necessarily the case for more than three planes in R3. In the context of
planar panelization of freeform surfaces, [ZCHK12| confirm this statement, asserting
that tangent plane intersection is numerically not stable enough to obtain reliable
results. The authors proceed to present a variational approach and a corresponding
minimization problem in order to obtain a planar representation of a given mesh
structure. This method improves the approach of [CW07| for constrained planar
remeshing of architectural geometries, which is itself based on VSA. Therefore, we
turn to the work of [ZCHK12] to make the calculation of a simplified mesh from the
input point set as-robust-as-possible. See Section 4.4 for a discussion of the technical
details of the optimization and also for our translation to the setting of point sets.

Aside from VSA, there are other approaches to obtain a simplified mesh from
an input point set. For instance, a possibility is to first mesh the input point set
and then simplify the created mesh. An overview of methods for meshing of point
sets is presented in the survey of [BTST17]. Several methods are available for the
subsequent simplification of the mesh. These mostly collapse edges in the mesh to
reduce its complexity. By using quadric error metrics, it can be assured that the
collapses remove elements that carry the least amount of feature information, see
|GH97]. This simple approach can be improved by adjusting the position of the
vertex resulting from an edge collapse according to the local curvature information,
see [HHL15, YHXL15]. However, as these methods perform their operations in
a greedy manner, they do not provide reliable results when performing a drastic
number of simplifications. Also, these approaches require a costly meshing operation
on the unfiltered point set, which can introduce topological failures, like a surface
of wrong genus or flipped triangles.

Another possibility to obtain a simplified mesh from an input point set is to first
simplify the point set and to then create a mesh from this. A brief introduction
and (error) analysis of different point set simplification algorithms can be found
in the work of [PGKO02|. Important attributes in real-world applications are the
performance and quality of the rendering process. This requires a specific focus
on features represented by the point sets. By utilizing a bilateral filtering, both
Euclidean distances and normal information can be taken into account throughout
a simplification process on a point set to best preserve both the large-scale geometry
and small-scale features, in [SFC10]. While these methods are feature-preserving,
they are not robust in the presence of outliers or noise. Also, the construction of the
mesh cannot use the full information of the input point set anymore, as the majority
of points will have been removed during the simplification step.

Because of the downsides of both the approaches, we aim at taking all points of
the input into account when creating planar proxies. From these, we then create a
mesh by completely creating new vertices and connections on them without going
through a costly meshing operation on the original input, see Section 4.4.

Chapter B. Surface-like Structures 47

4.2 Segmentation

In this section, we will present the Variational Shape Approximation (VSA) as
introduced by [CSADO04] and as used by [YLWO06] for surfaces and surface meshes.
Also, we present a translation of the procedure to the setting of point sets, similar
to the work of [LB16].

4.2.1 The VSA Procedure for Surfaces and Surface Meshes

The VSA procedure of [CSADO04| acts on a surface S C R3. The goal is to parti-
tion S into m disjoint regions R; C .5, URi =S, where each region is associated
a linear proxy (C;, N;) with a center C; € R? and a unit-length normal N; € R?,
i € {1,...,m}. The authors propose two different metrics to find the optimal shape
proxies, with the first metric based on the £? measure

L’z(Ri,Ci,Ni):/ e =@ de, (A1)
reER;

where 7;(-) denotes the orthogonal projection of the argument on the plane with
normal N; centered at C;. Thus, the integral (4.1) measures the squared error
between points in the region R; and its linear approximation given by (C;, N;).

A second metric, denoted by £*! is based on the £2 measure when evaluated on
the normal field. Tt is given by

L2 (R, N,) = / lnfe) = N (1.2)
TER;

where n(z) denotes the normal of the surface at point 2 € S. As [CSADO04] conclude
that the £2! metric is more effective, we will reduce the following discussion to this
formulation.

In the discrete setting, the surface S is given by a finite set of 7' € N (triangular)
elements t;, j € [T] and the centers C; are found by randomly choosing a triangle ¢;
as center C;. Therefore, the second smooth formulation (4.2) can be discretized to

L2 (R, Noy = Y Inty) = Nill3 - [t51, (4.3)

t;ER;

with n(¢;) the normal and |¢;| the area of the element ¢; respectively.

The actual minimization of expression (4.3) with respect to the segmentation of S
into regions R; and with respect to the proxies (C;, N;) is then performed iteratively.
For this, a variation of Lloyd’s fixed point iteration given by [L1082] is used. The

first step is to pick a user-given number m of center elements C1, ..., C,, randomly
from the set of triangles {¢; | j € [T]}. The normals N; are set to the normals of
corresponding center triangles C; and the regions are initialized as R; = {t;}. The

neighbors of the chosen center triangles are collected in a priority queue Q sorted
increasingly with growing £!-distance between neighboring triangle and center tri-
angle: [|n(t;) — NZ||§ Then, the following three steps are performed iteratively until
convergence:

1. Flood: As long as the queue Q is not empty, pop the first element ¢; from Q.
Ignore it, if it has already been assigned to a region. If it is not assigned yet,

48 4. Segmentation and Simplification

assign it to the region R; that pushed it into the queue and push all neighboring
elements of ¢; into Q, noting that they have been pushed by R;. Without loss
of generality, we assume S to be connected. If that is not the case, the algo-
rithm can simply be run on each connected component of S. For a connected
surface S, after the queue Q has been emptied, all elements {¢; | j € [T} have
been assigned to some region respectively.

2. Prozxy Update: The proxy normals NN; are updated according to
thERi t]’n(t])
|2 e, ts1n(t5)

where it is ensured that the updated N; are unit-length normals. Note that
as the surface will be segmented into a large enough number of locally flat
patches, the denominator of this expression will never be zero in practice.

Ni:

9
‘ 2

3. Seed: For each region R;, find some element ¢’ € R; such that
2 2
In() = Nilly < lIn(t;) = Nilly

for all t; € R;. This ensures that the flooding in the next iteration is started
from regions that best reflect the current proxy normals.

Finally, the iteration is stopped, when no region changes from one step to the next.
From the converged regions R; and assigned proxies (C;, N;), a simplified mesh
with corresponding m surface elements is constructed. Respective results are shown

in [CSADO4].

4.2.2 The VSA Procedure on Point Sets

We will now proceed to present a translation of the VSA procedure to the setting
of point sets. A corresponding reformulation can be found in [LB16|, while we
include weights to obtain a more general setup. Compared to the VSA on meshes,
several details have to be adjusted for the method to work on point sets. At first,
consider the partition problem as stated in Section 4.2.1. In the context of point
sets, not elements, but the points themselves have to be assigned to the proxies.
That is, the given point set P = {py, ..., px} will be partitioned into disjoint subsets
U?;Pi = P, m € N. Therefore, in the following expressions, the centers C; denote
points from the point set P, while the normals /N; at the respective center point are
those obtained from a normal field imposed on the point set. The normals of the
points p; € P will be denoted by n; respectively.

Consider the energy as defined in Equation (4.3). For proxies obtained from
point sets, the area term |¢;| cannot be used. Thus, we replace it by a weighting
term w; € R>o which is to approximate the area represented by the point p; € P. We
obtain the following energy of a single proxy and the resulting energy formulation
on the set of all proxies

L(PN) = Y wjllng = Nill;. (4.4)

p;EP;

B{(P N [i=1,.om}) = 3 L2 (P, ;). (4.5)

Chapter B. Surface-like Structures 49

An approximation of the area term can be obtained by

wi= Y llpe—pill; (4.6)

LeN(j)

where N (j) C P denotes the neighborhood of p; in P, see Example 1 v). Including
weights reflecting the area are of interest because of varying densities. Therefore,
another possible weighting scheme could be the incorporation of directional density
measures proposed in [SJP18]. This could be coupled in a bilateral manner together
with the Euclidean distances mentioned before. In contrast, weight determination
via normal deviations should not be used, as the energy is defined upon these, i.e.
weighting these terms in the same fashion seems counterproductive.

The initial seeding as outlined above can still be done in the point cloud setting,
but instead of triangles, now, m € N points p; € P are chosen for the initial position
of the center points C;. Also, those points from P are pushed to the priority queue Q
that are neighbors, but not identical, to the chosen center points C;. For this
neighborhood relation, any neighborhood concept such as combinatorial k-nearest
neighborhoods or geometric neighborhoods of radius r can be used (cf. Example 1
iv) and v)). Denote the neighborhood of p; by N(i) C P. Again, the points in Q
are sorted increasingly with £2-distance between their own normal and the normal
of the proxy that pushed them into the queue: ||n; — Nz||§ The following three
iteratively applied steps remain almost unchanged:

1. Flood: As long as the queue Q is not empty, pop the first element p from Q.
Ignore it, if it has already been assigned to a subset P;. If it is not assigned yet,
assign it to the subset P; that pushed it into the list and push all neighboring
points p; € N(i) into Q, noting that they have been pushed by P;. As we
assume S to be connected via the imposed neighborhood relation (see above),
after the queue Q has been emptied, all elements of P have been assigned to
some subset P;.

2. Proxy Update: The proxy normals N; are updated according to

g Wil ;
p;€P; 77
Ni = A

Hzpjepi win;||,

Y

where we once again obtain unit-length normals and will not encounter a
denominator equal to zero (see above).

3. Seed: For all subsets P;, find some p, € P;, ¢ € [X], such that
Ine = Nill < llny = Nill3

for all p; € P;. Again, this ensures that the next flooding step starts from
regions that best reflect the current proxy normals.

Finally, once the subsets P; do not change anymore over two iterations, the process
is stopped. From the converged subsets P; and assigned proxies (C;, N;), a simplified
mesh with corresponding m surface elements is constructed. Respective results are
shown in [LB16], while our corresponding approach will be discussed in Section 4.4.

50 4. Segmentation and Simplification

-1
Ly
|
™1 point A A

Prittttttt=
(b) Segmentation (c) Segmentation
(a) Setup for growing error functional. after first flood. after second flood.

Figure 4.1: Example for a growth in the error measure after a flood and proxy
update.

4.3 Improved Segmentation Pipeline

Having described the VSA procedure for both meshes and point sets, we now turn
to our contributions for this pipeline. First, we will establish by an example that
convergence of neither the meshed nor the point set version is guaranteed. Following
up on this, we propose an alternative formulation of VSA with guaranteed conver-
gence. Furthermore, we turn to a different issue of the VSA procedure. Namely, it
is highly depended on both the number of initial seeds and their placement at the
beginning of the procedure. We circumvent this dependency by including two more
operations in the point set pipeline that have already been used manually [CSADO4]
and automatically [YLWO06] in the context of meshes.

4.3.1 Example of Failed Convergence of the VSA Procedure
Concerning the convergence of their algorithm, [CSADO04] state:

[-..] Lloyd’s algorithm always converges in a finite number of steps, since
each step reduces the energy E: the partitioning stage minimizes E for
a fized set of centers c;, while the fitting stage minimizes E for a fized
partition.

While this statement holds for the original algorithm of Lloyd as presented in [L1082],
it does not hold for neither the VSA procedure on meshes as presented in [CSADO04,
YLWO06| nor for the translation to point sets as given by [LB16]. This is already rec-
ognized in the paragraph Convergence of Section 3.5 in [CSADO04|. We will demon-
strate this with the following concrete example, which is to the best of our knowledge
the first explicit example presented.

Consider the two-dimensional setup shown in Figure 4.1(a). It is given by n

points connected on a line with normal \%(711) next to a line of n points with nor-

mal (?) At the right end of the second line, there is a single point with normal (_01)

and another single point with normal N given by the equation

TR +1-01> N, (@ i (_01) *N)

which solves to N = \/néiﬂ(_nl) Now, two proxies will act on this example, with
their initial seeds shown in yellow and blue in Figure 4.1(a). They each start on
one of the two lines of n points respectively. The result after a flood is shown in

Figure 4.1(b), where each line is completely covered by the proxy starting on it and

Chapter B. Surface-like Structures 51

the two single points are associated to the proxy with normal ((1]) After updating
the proxy normals, the yellow proxy has normal \%(‘11) while the blue proxy has
normal N given by the equation above. Thus, the yellow proxy starts from an
arbitrary point on its line while the blue proxy starts from the rightmost point. The
error after this first flood and proxy update is given by

| () -+ (2) -

where only the blue proxy contributes to the error, because the normals correspond-
ing to the yellow proxy coincide with their proxy normal and cancel out in energy
E;. Starting from the new seed points, a second flood results in the situation shown
in Figure 4.1(c). Here, almost all points except for the rightmost one are associated
to the yellow proxy with former normal \/LE (_11) Its new normal after a proxy update

v i-<zl>+i~<°>+<-;>)'<%'(§1)+”'<?)+<51))’

2
=-=2(vn?+1—-n-1),
2

V2 1

which amounts to an error after the second flood and proxy update given by

1 (/-1 . 0 A7 —1 .
a5 () = e |) -], C)
Note that the error term for the blue proxy cancels out, as the one representative
corresponds to the normal of the proxy it belongs to. Choosing n = 100 points on
each of the two lines, we obtain F; ~ 1.9900, but F,; ~ 31.6782. Furthermore, the
corresponding error value after the flood is also growing. Thus, convergence cannot
be proven by an always shrinking error functional.

Note that this example is described as a curve in 2D, where neighborhood selec-
tion is generally more involved than for surfaces in 3D. However, the example can
easily be extended to a surface in 3D space, see Figure 4.2. There, we also close
the loop and thereby cause the original VSA algorithm to run infinitely long. For
the given example, the crucial step as depicted in Figure 4.1(c) can be resolved via
a manual (JCSADO04]) or automatic ([YLWO06]) split of the large proxy. Thus, this
example only applies to the VSA procedure as described above.

2

+n-
2

2

2

4.3.2 VSA with Guaranteed Convergence

The example presented above highlights the main deficiency of the VSA procedure as
used in [CSADO04, YLWO06, LB16]. Namely, if an outlier causes a proxy normal to be
distorted, the new proxy seed can end up to be a border point that does not actually
reflect the normal behavior of the majority of points in the proxy. In other words,
the change of seeds before flooding is a problematic step. Thus, in the following,
we aim at altering the VSA procedure in a way such that no new seeds need to be
found, but proxies can still move and alter. In particular, proxies should be able to
take over the original seed points of other proxies if necessary. These changes should
finally lead to an alternative VSA procedure with guaranteed convergence. In order
to achieve this goal, we propose to alter the steps of the algorithm as follows.

52 4. Segmentation and Simplification

Figure 4.2: A regular 10-gon, built from the shape shown floating on top, which is
a three-dimensional extension of the setup shown in Figure 4.1(a).

First, we perform an initial seeding and one flood step and proxy update as
explained in Sections 4.2.1 and 4.2.2 above. Instead of the seeding step in the
following iterations, we perform a different procedure:

4. Switch: Consider the neighborhoods N (i) C P for all points p; € P. Assume
that p; is assigned to subset P,. If any point p; € N (i) is assigned to another
subset Py, compute the change of the error measure (4.5) resulting from reas-
signing p; from P, to P,. Compare it to the current best known reassignment.
After iterating through all points p € P, reassign the point such that the error
measure is reduced maximally.

This new switch step replaces the seed step and the flood step described in Sec-
tions 4.2.1 and 4.2.2 above. That is, it is only iterated together with the proxy
update. The iteration is continued until no further switch operations can be per-
formed. For this alternate procedure, we can prove the following statement.

Theorem 1 (Error reduction by switch and proxy update). Given a point set
P ={p1,...,px} with a neighborhood structure, such that the neighborhood graph
on P is connected and normals ny, ... ,ng on P. Then, each prory update step and
each switch step as defined above leads to proxies (P;, C;, N;) with a smaller error
measure in Equation (4.5).

Proof. Concerning the proxy update step, consider

VE{(P,N;) | i € [m]}) =V > L (P, N)

=1

=> "> Vuw;n; — Nil|;

= Z Z 2wj(n; — N;).

=1 ijPi

Chapter B. Surface-like Structures 53

ZP@GP,L' wette

Setting N; = S we obtain
ppEP;

Z p, Welye
3 2y) = 3 2 - 3 2 g
PeER;

P EP; P EP; P EP;
D peep, 2wene
= E win; — | ——=—| - E w;
D peep, We
p;EP; PP p;EP;
= E 2win; — E 2weny = 0.
p;EP; peEP;

Thus, at the chosen updated proxy normal, the energy reaches a (local) minimum.
As the energy is convex as sum of norms, which are convex, the found minimum is
indeed its global minimum for the current choice of segmentation.

Concerning the switch step, only those points are reassigned which reduce the
value of error measure (4.5). Thus, trivially, after a switch operation the error is
smaller. O

Finally, we note that there are only finitely many ways to partition the Y points
of the point set P into m subsets. This fact, together with Theorem 1 proves the
convergence of our modified VSA procedure.

Consider the application of this alternative VSA version to the setup in Fig-
ure 4.1(a). After a first flood, which would still result in the proxies shown in
Figure 4.1(b), the only possible switch could be performed at the border between
the blue and the yellow region. However, a switch would already lead to an increase
of the energy functional. Thus, the proxies remain as they are after the first flood
and the example converges immediately.

By replacing seed and flood with the switch operation, we can ensure convergence
of the algorithm. While this result is theoretically pleasing, it is not necessarily of
practical value. Finding an ideal pair of points for a switch operation requires to
iterate at least over all points on the border of proxy regions. Depending on the
number of proxies and on the shape of the geometry, one such switch can reach the
same time complexity as a flood operation while only altering a single point’s proxy
assignment. Thus, in practice, utilizing the switch operation causes a significantly
longer runtime as trade-off to the guaranteed convergence.

Furthermore, iterated application of the switch operation can tear a proxy apart,
see Figure 4.3. A converged state of the algorithm might therefore include proxy
regions that are not connected. In order to have a sensible result, a final step
has to be included that re-interprets connected regions as proxies and that might
increase the number of proxies doing so. However, a disconnectedness only arises if
another proxy better reflects the local shape. Thus, a corresponding higher number
of connected proxy regions is desirable in order to faithfully approximate the input
geometry.

The presented swilch operation provides one possible way to obtain guaranteed
convergence. It remains as open question whether another operation or alteration
of the VSA procedure provides the same result while coming with a lower runtime.

54 4. Segmentation and Simplification

(a) A geometry after initial selection of (b) The same geometry after several switch
seeds as indicated and flooding. operations. The blue proxy split the other
proxy in two components.

Figure 4.3: A proxy being torn apart by another proxy under the repeated applica-
tion of the switch operation.

4.3.3 User Controlled Level of Detail

The requirements of proper seed placement and prescribed seed number naturally
demand for a variable proxy-treatment in terms of splits and merges. Both concepts
were introduced in [CSADO04] as means for manual adjustments by the user. For
meshes, these two operations are incorporated into the pipeline described in [YLWO06].
In the following, we propose a translation to point sets. With both operations, we
aim at adaptability of the constructed flat pieces towards user input. That is, the
user should be able to control the level of detail obtained from the flat regions.
However, in contrast to [CSADO4], this control should be realized via a single input
parameter instead of a time-consuming manual interaction with the modeling pro-
cess. For this, we use a user-given parameter 77 € R>, which controls the maximum
deviation of a subset P; from its flat approximation. It can be thought of as control-
ling the maximum bending of a segment. This parameter is used in the following
two steps:

(a) Split: Given a subset P; C P such that £*1(P;, N;) >n. We use weighted
principal component analysis by [HBC11| to compute the most spread direc-
tion of P,. The set P; is then split at the center of this direction into two

new sets P, = P'UP?. The new normals are chosen as N} = 1 2"
Pl ijepil wj

and N? respectively. The new centers C} and C? are then placed at those
points of P! and P? that have least varying normals from N} and N? respec-
tively.

Note that the reasoning of Theorem 1 holds for this case, too. Thus, the pro-
cedure outlined above, with an additional split step does continue to converge.

(b) Merge: Consider a pair P;, P; of neighboring subset with their respective
normals N;, N;. If the subset P’ = P, U P; with normal

—1
|Pi| - Ni + | Pj|N;
|Pi| + | Pl

O LR RS

1P| + | Pyl

Chapter B. Surface-like Structures 55

achieves an Energy (4.5) strictly less than 7, the two subsets are replaced by
their union P, with normal N’ and a chosen center C’ € P’ with its normal
least deviating from N’.

Note that we could allow only those pairs of neighboring regions to merge such
that

LEYP, Ny) + L2 (P, Ny) > L2Y(P',N').

Then, the energy would not increase and termination of the algorithm would be
guaranteed by Theorem 1. However, this would result in neighboring regions
not observing the user-given n threshold. Therefore, we accept an increase of
the global energy in favor of a better region layout®.

Both operations alter the number m of proxies. Thereby, a significant disadvantage
of the algorithm of |L1082] is eliminated as the user does not have to choose m a
priori. It is replaced by the user’s choice of 7, providing a semantic guarantee on the
regions being built by the algorithm. The user can prescribe a value of 1 based on
the curvature and number of points within a proxy. In the experiments we discuss
a more detailed interpretation of 7.

The possible presence of noise in the point set P gives yet another reason to refute
Energy (4.1). For points distributed around the xy-plane, with normals (0,0, 1)
and just slight deviation from the plane, this energy would create larger values for a
growing number of points, while the Energy (4.5) does not suffer from this. Hence,
with the chosen energy, noise on the point positions is handled more robustly.

In the merge process outlined above, we asked for two neighboring regions. More-
over this is important for our complex to be generated, cf. Equation (3.2). However,
we have not defined any relation on the regions yet. In the meshed case discussed
in Section 4.2.1, two regions are neighbors if and only if they share an edge in the
mesh. In the context of point sets, we cannot rely on this, thus we have used the
following approach.

Remark 6. For every prozy and each of its points, we query k of the point’s nearest
neighbors and use the distance to the farthest of them for a geometric neighborhood
determination. From all the neighbors gathered that way, we ask for their proxy
assignment. If the current center point is assigned to a different proxy than its
neighbors, we consider the two proxies to be neighbors.

This finishes the whole pipeline, including the additional two steps merge and split.
In addition, it provides the possibility to obtain a complex K (Equation (3.2)) from
the segmentation of the point set using the neighborhood of segments outlined in
Remark 6. See Figure 4.4 for an illustration of the complete pipeline.

4.3.4 Experimental Results

In the following experimental section we evaluate parameter choices regarding the
segmentation and provide a quantitative comparison of the segmentation results. In
addition, we discuss the interpretation of parameter 7.

6Note that the equation for N’ in this description of the merge procedure deviates from the
equation given in the published version of the article in Computer Aided Geometric Design 2020,
Vol. 80. The formulation given here is more general and works in particular if P; and P; are
of different sizes. Furthermore, in the published version, the inequality on £*' was given in the
wrong direction, which is corrected here.

56 4. Segmentation and Simplification

Iteration

Initial Seeding Initial Flooding Proxy Update (Split) (Merge) Switch Qutput

Figure 4.4: The whole pipeline contains an initial random seed selection and an
initial flooding. From there, a proxy update, one or more optional splits and/or
merges, and a switch are iterated until no further switches can be applied. After-
wards, we deduce a simplified model according to the proxies, which can also be
considered as a simplified surface reconstruction from the initial point set.

Quantitative Comparison In all our experiments, we processed models with
quite uniform samplings. Hence, for simplicity, we utilized equal weights w; =1 in
Equation (4.4). We proceed similarly with the weight assignment in the optimization
problem formulated in Equation (4.11) and set @ = 1. We use neighborhoods to
both propagate a proxy during the flood step and establish neighborhood relations
between the different proxies. For the first purpose, we use a combinatorial k-
nearest neighbors approach. When determining the proxy neighborhoods, we turn
to a combination of the combinatorial and geometric approach based on the same k
(see end of Section 4.3.3). In all our experiments, we use k = 8. Deviations from
the default parameters are indicated.

For a large scale experiment, we chose 600 models from the repository used in
the work [HZGT18]. For all these models, we used the mesh information to generate
an oriented vertex normal field. Furthermore, we translated the models and scaled
them uniformly to fit into the unit cube. Finally, we performed our experiments on
the point cloud given by the mesh vertices, disregarding the connectivity information
and the triangular faces.

We compared four different approaches. The first one was the segmentation
algorithm of [RVDHV06| as implemented in the Point Cloud Library of [RC11]. As
parameters, we turned to the ones described in the original paper, see [RVDHV06].
We will refer to this experiment by PCL. Second, with these results at hand, we took
the final numbers of proxies given by PCL for each geometry. This number served
as number of proxies to be sought by the variational shape approximation algorithm
of |LB16|. Here, no splits or merges are applied, thus we refer to this experiment
by —s/m. Third, we took the total £*>!-error (Equation (4.5)) of each geometry,
as produced by the PCL experiment, and divided it by its final number of proxies.
This division provides an initial guess for a local, geometry-dependent value 7. In
this third experiment, we allowed splits as well as merges. Also, we started with an
initial seed number of m = N, i.e. each point was a seed at the start. Because of
the n-threshold and merge-processes, the number of proxies reduced drastically over
the run of the experiment. We will refer to this as local n s/m. Fourth and finally,
without any priors, we set n = 25 and allowed splits and merges. Furthermore, we
once more started with every point as a seed. The choice of 1 is motivated from
previous experiments. We will refer to this fourth experiment as global n s/m. The
terminology local or global indicates whether 7 is chosen with respect to the geometry
or globally for all geometries. Observe that the experiments —s/m and local n s/m
are dependent on the results of PCL, while only global n s/m is independent.

Chapter B. Surface-like Structures

o7

PCL —s/m local n s/m global 1 s/m
min MSE | 2.75E-09 7.31E-07 6.95E-11 2.11E-06
max MSE | 1.12E-01 2.98E-02 4.15E-02 1.04E-02
avg MSE || 1.59E-02 2.88E-04 6.40E-04 4.50E-04

sd MSE || 2.12E-02 1.90E-03 2.47E-03 8.15E-04
min m 1.00 1.00 2.00 1.00
max m || 1,103.00 1,103.00 393.00 135.00
avg m 174.17 174.17 55.05 33.20
sd m 163.10 163.10 58.41 20.69

Table 4.1: Statistical evaluation of error MSE and proxy number m taken over all
499 geometries. We give the minimum, maximum, mean, and standard deviation.

We are interested in gaining insight into the relationship between the obtained
proxy-number m and the quality of the induced flat proxy-regions. Besides the
L% -measure of Equation 4.5, we focus on the mean squared error (MSE) caused by
point-to-proxy-plane distances to evaluate the region quality. The MSE is given as

MSE{(PN) |i=1,0om}) = = 3 oy — 70,3 (4.7

ijPi

where 7(p;) denotes the orthogonal projection of p; onto its related proxy plane,
given by normal N; and base point C;.

From the 600 chosen models, we obtained 499 that offered segmentation results
in all four experiments. For 27 models, PCL was unable to provide a valid segmen-
tation, because it assigned a zero proxy-normal to at least one region (for instance
a region holding only two antipodal normals). These models were excluded for the
subsequent experiments. The variational shape segmentation of [LB16] did not re-
port a complete segmentation on additional 72 models. Here, some points are not
assigned to any proxies, because they cannot be reached from the proxy centers dur-
ing a flood when traversing the nearest neighbor graph. Increasing the parameter k
alleviates this problem. Similar failures occurred on one additional model in exper-
iments local n s/m and global n s/m respectively. Even though these experiments
started with seed numbers equal to the geometries’ points, they reduced the number
of regions via merge operations. Due to proxy updates and new seed selection, it
is possible that seeds travel away from sparsely sampled areas, where they do not
reach all formerly assigned points in the neighborhood graph during the next flood.
This reduced the number of models by a total of 101 failures to 499 feasible models.
All reported experimental values are taken over this set of 499 models.

For the following analysis, we turn to Table 4.1. There, we give statistics on both
the MSE as obtained from experiments on our model set. Regarding the average
MSE over all experiments, we see that all three experiments——s/m, local n s/m,
and global n s/m—outperform PCL by two orders of magnitude. A direct com-
parison between the MSE obtained for the models reveals that local n s/m and
global n s/m outperform —s/m in roughly 8.5% of all experiments. Note that the
minimal MSE error obtained over all geometries is up to five orders of magnitude
smaller for local n s/m when compared with the other experimental setups.

Aside from the MSE results, Table 4.1 also reports statistics on the number of
proxies obtained by the different experiments over all geometries. Recall that we are

58 4. Segmentation and Simplification

100000
10000

1000

10

0 20 40 60 80 100 120 140

PCL as/m localn s/m globalns/m

Figure 4.5: Histogram over all proxy-sizes up to 131 among all 499 geometries for all
four experiments. The upper bound of 131 is given by the sum of the mean (11.74)
and corresponding standard deviation (120.27) regarding cluster sizes obtained from
PCL. Note the logarithmic scale on the y-axis.

not only interested in small error values, but also in representations of the geometry
that reduce its complexity, i.e. that have a low number of proxies. Towards this end,
it is remarkable that local n s/m and global n s/m attain MSE values comparable
to those of —s/m while only using 31.6% and 19.1% of the proxies on average,
respectively. The close error results are especially of interest for global 1 s/m, as
this runs without any dependency or information provided by PCL, as a global
parameter is applied to all geometries equally. Hence, the assignment of points
to proxies is on one hand optimized in terms of the MSE errors measure, while
providing significantly fewer proxies on the other hand. Note that the lowest (and
therefore optimal) MSE of 0 is given for a segmentation in which every point is
represented by its own proxy.

We proceed to further investigate the proxies obtained by the different exper-
iments. In Figure 4.5, we show a histogram over the attained proxy-sizes taken
over all geometries in the experiment. Note that the y-axis has a logarithmic scale.
We show all proxy sizes up to 131, where this bound is given by the sum of the
mean (11.74) and corresponding standard deviation (120.27) regarding proxy sizes
obtained from PCL. We can see that both PCL and —s/m create a significantly
larger number of small proxies when compared with the segmentation results of lo-
cal n s/m and global n s/m. In fact the average proxy sizes are 11.74 (PCL,~s/m),
37.15 (local n s/m), and 64.00 (global n s/m). As segmentation—in our setup—
should create few regions that still reflect the geometry attributes, extremely small
regions as exposed by PCL and —s/m are undesirable. The availability of splits
and merges in local n s/m and global n s/m results in a bell-curve-like behavior
in Figure 4.5, as both curves first increase and show a small descent with minor
oscillations after their peaks. Hence, in the critical area of small sized proxies, the
availability of splits and merges not only reduces their required number, but also
balances their sizes, causing for more uniformly sized proxies.

To summarize the quantitative analysis of the segmentation part, we conclude:

e The proposed method outperforms the segmentation approach of [RVDHV06]
as well as variational shape approximation without splits and merges, as used

Chapter B. Surface-like Structures 59

by |LB16| in regard of MSE.

e Without any knowledge of seed numbers or error values, a globally set 7,
availability of splits as well as merges, and treatment of all points as initial
seeds provides segmentation results that have MSE comparable to [RVDHV06,
LB16] but a significantly reduced number of proxies.

e The availability of splits and merges not only optimizes for small proxy num-
bers, but also causes more uniform region sizes.

Interpretation of parameter n In Section 4.3.3, we introduced the user-chosen
parameter 7. It relates to the energy £*! as presented in Equation (4.4). From the
definition of £*!, it is clear that two factors contribute to the value £>(F;, N;) a
given proxy P; can achieve. These are:

e The number of points p; assigned to the proxy and

e the Fuclidean distance of the proxy normal N; to the respective point nor-
mals n;.

That is, a proxy can achieve a low energy by either exhibiting low deviation in its
normals or by containing a low number of points. In particular the latter aspect
highly depends on the number of points and the point densities in the considered
model. Therefore, no general values of can be presented in this work, but the user
has to choose an appropriate value for the given setup. In the following, we present
a simple heuristic how to make an (initial) choice for 7.

Any point on a smooth surface can be approximated via a quadric, i.e. a (hyper-
bolic) paraboloid [DN98|. As we handle mostly (locally) convex objects, we consider
an elliptic paraboloid as a simple model for a curved surface, parameterized as

u? 0P

7) = (U,U,g—i— b_2)7
then it has mean curvature
a? + 02+ 4 4

H(u,v) = - —.
a2/ (1+ 42 4+)

A normal to P at (u,v) is given as

1 0 —2u/a?
P, X P, = 0 X 1 = —2v/bp?
2u/a’ 20 /b? 1

Hence, after normalization, the point parameterized at (u,v) contributes the follow-
ing value to £2!, when assuming that the points are distributed uniformly on the
paraboloid and therefore the proxy normal is just N; = (0,0,1)7:

2

1 —2u/a* 0

—20/0> | =1 0

VAuRfat + 402 /bt + 1 1 1
2

2 — .
VAauJat + 402 /bt + 1

60 4. Segmentation and Simplification

Placing a number X; of points regularly on the domain [—1, 1] x [—1, 1], i.e. choosing
u=j/v, v="~_L/y; for j L =1,... v and v; := [@L we can compute the total
value of L*! for these points, depending on the curvature prescribed by (a,b) as

L2Y(PN;) = 2(2v; +1)? Z Z ! . (4.9)

2 4 2 1
e <m2> +(m) t1

Now Equation (4.9) provides a heuristic to compute an (initial) value of n: A
user of the algorithm first chooses a desired curvature, to be covered by the proxies.
From this choice and a distribution on the two main curvature directions, via Equa-
tion (4.8), the parameters (a, b) can be computed. As the user also knows the models
to which the algorithm will be applied and therefore the resolution, i.e. the number
of points to be included, a second choice is the number of points N; that is roughly
to be covered by a single proxy. From these two choices, using Equation (4.9), a first
estimate for n can be computed. If the output of the algorithm is not satisfactory,
the user is of course free to tune the parameter towards the desired result.

4.4 Simplification

We will now investigate the creation of a simplified mesh based on the segmentation
generated before. Both works of [CSAD04| and [LB16] present simplified meshed
geometries with m faces, one representing each proxy. The work of [YLWO06| also
presents simplified meshes, utilizing their proxy quadrics. However, the approaches
of [CSADO04| and [YLWO06| are not suitable for our context as they work on meshes.
The authors of [LB16] do not elaborate on the computation of their meshes. They
only state that

(-..) a polygonal mesh is easily generated by computing intersections of
proxy planes of neighboring clusters of data points.

In the following, we will see that only simple cases allow for this approach while
the general case is more involved. First, we will discuss the creation of vertices for
the simplified mesh (Section 4.4.1). Subsequently, we will connect these vertices to
faces in order to obtain the complete mesh (Section 4.4.2). In both sections we also
address corresponding challenges as-well-as-possible solutions.

4.4.1 Vertices for a Simplified Mesh

The intuitive way to determine simplified mesh vertices is the intersection of neigh-
boring proxies, as used by [LB16]. In the following, we will use the notion of neigh-
borhood for proxies as introduced in Remark 6 in Section 4.3.3.

Intersecting Planes A first naive solution for the creation of vertices for the
simplified mesh is to consider the intersection of neighboring proxies and the con-
struction of vertices in these intersection points. In the general case, where ¢ > 3
proxy planes meet, we cannot simply consider the intersection as it will be mostly
empty.

We call such a situation obtained via the proxy-neighborhood relation a q-tuple.
Let I be the index set labeling the proxies given by subset P; C P, proxy center C;,

Chapter B. Surface-like Structures 61

and proxy normal N;. Then we build a set of subsets Z on I as in Equation (3.1)
in Section 3 w.r.t. the neighborhood relation on proxies mentioned in Remark 6.
Now a g-tuple is an element in Z; = {I;},_; for an index set J holding inclusion
maximal candidates for intersection points with proxy indices contributing to the
intersection.

Now, for the case of ¢ > 3, we select for each tuple three indices at random,
intersect them, and make the resulting vertex known to all proxy members of the
tuple. As this might cause degenerate faces in the face creation stage—as the vertex
does not lie within all of the proxies it is associated to—, we use a triangulation of
all created faces (see Section 4.4.2) to obtain triangles, which are planar.

Intersecting Point Optimization A second, more involved solution for the cre-
ation of simplified mesh vertices is based on optimization. The intersection of
more than three planes is numerically unstable as discussed above. In the work
of [ZCHK12|, the authors turn to a variational approach, start from a triangle mesh,
and aim at computing the intersection points z; of the vertex tangent planes of all
triangles. Thus, exactly three tangent planes—corresponding to each of the three
vertices v; of a triangle—contribute to an intersection point. Denoting the normal
at v; by n;, they solve the following minimization problem

minimize: Z Z |z; — vz||§
b \nety (4.10)
subject to: n! (v; —z;) =0 Vt;, Vu; €t

(2

I3 =1 W,

where the normals are variables in the minimization. Note that the original normals
at the vertices are not taken into account at all during the minimization. The
requirement of unit-length normals is necessary, however, as otherwise n; = 0 would
trivially satisfy all conditions.

We generalize this approach in the following way to our setup. First of all, we
use the concept of and notation for ¢-tuples introduced in the previous paragraph.
Then, we consider the following energy

F({ay.) =) | Do llzy = Gilly | + Y@ 1N = all3, (4.11)

jeJ \icl; iel

with sought-for intersection points x; for each maximal tuple I;, known proxy-
centers C;, weighting terms w; € R>(, unknown normal deviations 7n;, and known
proxy-normals N; for all proxies ¢ € I. Ultimately, we want to solve

minimize: F({z,...,2;})
subject to: @l (z; —C;) =0 Vje€J Vi€l (4.12)

7]l =1 Viel

This generalizes the problem of [ZCHK12| as stated in Equation (4.10) in several
ways. First, we allow for more than three, namely for an arbitrary number of planes
to intersect. This arises already at a simple geometry like the octahedron, which

62 4. Segmentation and Simplification

(a) Intersection of more (b) top: star-convex; (¢) Reconstructing a
than three proxies bottom: barycenter NOIN-CONVEX Proxy

Figure 4.6: (a) Illustration of point optimization with deviation allowance (repre-
sented by 1) of ny,...,ny to find the optimal mesh vertex z; satisfying the con-
straints (C; — z;,7;) = 0 and ||;]|5 = 1 for i = 1,...,4. The C; are the normal-
corresponding proxy-centers and n; the original proxy normals. (b) Star-convex
proxy (front part of the Fandisk, Figure 4.11). Top shows an ordering of the ver-
tices around a star-convex center point, bottom shows the corresponding ordering
around the barycenter.

(c) Bottom: Segmentation of the Torus with 24 final proxies. Middle: Non-convex
proxy representing the upper part of the torus after projection of the points onto
their proxy plane. Top: Resulting mesh face after connecting the vertices.

has valence 4 vertices, see Figure 4.6(a) for an illustration. Second, we do allow the
normals n; to deviate from the proxy normals NV;, but a large deviation is punished,
where the severity can be steered by the weights w;.

In contrast to the first naive solution, this approach guarantees all vertices of the
mesh to lie within the proxies that they are derived from. That is, if the optimization
problem (4.12) yields a feasible point, after correcting the proxy normals from n;
to n; all vertices associated to a planar proxy lie completely within the corrected
proxy plane.

4.4.2 Faces for a Simplified Mesh

After creating the mesh vertices, we need to connect them in order to generate faces
for the mesh. In [SZP20] we focused on star-convex faces which we will discuss
next. Afterwards we use the complex presented in Section 3 obtained from the
segmentation to treat non-convex faces.

Star-convex Faces The general idea is to represent every proxy region with a
single star-convex face. All vertices associated to a proxy are sorted around the
barycenter of the proxy w.r.t. an arbitrary reference direction. This yields correct
results, when the barycenter of the proxy is also a star-convex center point, see Fig-
ure 4.6(b). If we sort the vertices with a non-star-convex center, they are connected
in wrong order and the resulting faces will degenerate. This approach obviously fails
if a proxy represents a non-convex part of the geometry, see Figure 4.6(c).

General Faces We want to use the information encoded in the complex set up
in Equation (3.2), especially the cycles per region, to construct even non-convex

Chapter B. Surface-like Structures 63

Figure 4.7: The pipeline illustrates how we start with a segmentation (a) and retrieve
a graph representation (b) from the segmentation. Then we send all cycles belonging
to a region to a local coordinate system (here top two cycles), generate a constrained
triangulation respecting the cycles’ information (c¢), using a bipartition argument to
find the final face (the one in orange) (d) and send this information back to the
graph representation. Applying this to all regions yields our final simplified mesh

(e).

"y N

(a) (b) () (d)

Figure 4.8: (a) Mapping of representation of cycles to proxy plane preserving topol-
ogy. (b)-(d) Decision on segment consisting of triangles counting as final face. The
cycle edges are displayed in orange and edges caused by the (convex) triangulation in
black. The blue (disjoint) segments do not provide the final faces as their boundary
edges do not agree with the whole set of cycle edges, yet the orange bounded white
areas do.

faces per region. Figure 4.7 demonstrates the whole pipeline. Suppose we are
given a complex K = V U E U F representing a segmentation. Then according to
Section 4.4.1 we obtain vertices for the simplified mesh using the respective regions
contributing to a vertex v € V), i.e. the indices in ¥~'(v) € Z.

As each region shall reflect a face we collect the corresponding cycles in F,
i.e. all which include a vertex in V for which its pre-image under U~ includes
the region’s index, see Section 3. These cycles are mapped to the linear proxy
associated to the region in such a way that the topology of each cycle is preserved,
see Figure 4.8(a). Afterwards we apply a constrained triangulation in the proxy
plane, i.e. a triangulation in 2d respecting the edges of the mapped cycles.

As we might have multiple cycles bounding a regions’ face, we need to decide
which triangles belong to the face. It is even the case for just one cycle, as the
triangulation yields a convex set but the face in question does not need to be convex.
The cycle information now provides a possibility to split the triangles into segments,
i.e. a segment is bounded by the cycles, see Figure 4.8(b)-4.8(d). As our face consists
of a single component possibly including several holes we select the one segment
whose boundary edges are equal to the set of all cycle edges.

Finally we pull back the triangles belonging to the segment of the final face to
the related vertices in R3. Applied to every region gives us the final simplified mesh.

64 4. Segmentation and Simplification

(a) (b) (c)

Figure 4.9: A visual comparison of the output of (a) [CSAD04| showing a segmenta-
tion of the half-sphere into six proxies, (b) [LB16] with a segmentation of the sphere
into 12 proxies, and (c¢) the results of our algorithm applied to the sphere deducing
12 proxies.

4.4.3 Experimental Results

In the following, we present different experiments regarding the simplification as
obtained from the proxy segmentation. Each experiment addresses different aspects
of the simplification pipeline. First, we consider how the parameter n influences the
obtained simplification. Next, on the one hand we turn to the Fandisk model, to
discuss difficulties arising due to face generation in terms of star-convex faces and
on the other hand we present results dealing with general faces. The last experiment
deals with a noisy geometry and robustness of our algorithm.

Throughout our experiments, in order to solve the minimization problem in
Equation (4.12), we turn to the build-in solver of Matlab. Note that the minimiza-
tion problem has a non-linear target function with non-linear constraints and can
thus not be solved by any LP or even ILP solver. Hence, we follow the example from
the Matlab manual [MM], which is supported by all versions newer than R2019b".
The solver asks for starting points from which to run the optimization. We initial-
ize the normals n; by the proxy normals N;. As first guesses for any intersection
point z;, we chose the barycenter of the centers C; of those proxies that contribute
to this intersection.

Threshold 7-dependency on the Sphere Model Our first simplification model
is a sphere sampled with N = 5,122 points. We chose this model as it also appears
in [CSADO04, LB16|. By running our algorithm with 12 initial centers without split
and merge we obtain a segmentation into 12 planar faces, shown together with the
simplification done by optimization in Figure 4.9 coupled with results of [CSADO04,
LB16].

In Figure 4.10, we show segmentation and simplification results w.r.t. different
values of n taken from {500,200, 100, 50,25}. The utilized geometry is the sphere
used above. The simplification points are calculated via both approaches introduced
in Section 4.4, i.e. via intersection of the proxy planes and via the optimization
problem given in Equation (4.12). All results are obtained from the same set of
six randomly selected seed points. For the optimization case n = 500 we increased
the weight w; = 3, as otherwise the simplification points would have produced a
smaller version of the cube. Hence, in this case we forced the optimization putting
more emphasis on less proxy normal deviation. Figure 4.10 also shows the amount
of final proxies in correspondence to the chosen value of 7. Tt is not surprising that

"The reference directs to the updated version of release R2023a compared to the one mentioned
in [SZP20].

Chapter B. Surface-like Structures 65

4

XX
e ne

00 =100 =50 n=125

n = 500
m==6

Figure 4.10: The segmentation and simplification for different n values. The first
row shows the segmented point sets, the second and third rows the meshes deduced
via optimization and plane intersection, respectively.

with a decreasing number of 7, the number of proxies increases as this decreases the
error measure (4.5) in order to meet the prescribed threshold. Note further that
the resulting meshes contain vertices where more than three proxies meet, see the
fourth and fifth column in Figure 4.10. While it is not problematic in this case, it
does cause problems for a different model, see Section 4.4.3.

Face Reconstruction on the Fandisk Model We proceed to discuss a more
involved geometry, namely the Fandisk model (CAD) with W = 38,840 vertices,
shown in Figure 4.11. Here, we started the segmentation with 36 manually selected
seeds, n = 75, and without using splits or merges. We consequently obtained m = 36
proxy regions, shown in Figure 4.11(a).

Reconstructing this model is challenging to our algorithm in two aspects. First,
our simplification procedure could use star-convex faces, see Section 4.4.2. How-
ever, the orange front plate of the Fandisk model is not star-convex with respect
to its barycenter (Figure 4.6(b), bottom) and thus a first automatic reconstruction
is slightly faulty (Figure 4.11(b)). These errors are easily identified and fixed by
assigning a correct order to the contributing face vertices. The second challenging
aspect is caused by the sensitivity of neighborhood notions for different densities
in the point set. For example, the blue region fits between the dark-blue and gray
and hence, they see each other (Figure 4.11(c), right mark). However, their planes
are almost parallel, and so their intersection appears as an outlier. This could be
avoided, if we forbid intersection points built by almost parallel planes or if we forbid
those intersections that lie too far away from either one of the proxies. The behavior
of a misplaced intersection point is also the case for the one produced by the beige,
blue, and dark-blue proxies (Figure 4.11(b) left mark), whereas in consequence a gap
results between the blue and gray areas, which should not be there, according to the
segmentation. As before, we manually removed faulty intersection points and reset
face incidences to obtain a clean mesh for visual representation (Figure 4.11(d)).

66 4. Segmentation and Simplification

(a) Initial (b) Faulty Vertex (¢) Faulty Proxy (d) Corrected
Segmentation Order in Faces Intersection Points Simplification

Figure 4.11: Segmentation and simplification (plane intersection) of the Fandisk.

Figure 4.12: Left: Segmentation result from 11 manually selected seeds. Center:
The complex’ graph representation with the top and bottom cycle highlighted in
orange. Right: Simplification obtained by the complex information.

Note that these challenges are unique to the setting of point sets. In the context of
meshed geometries, the intersection vertices can simply be ordered along the bound-
ary of their respective proxy region, yielding a feasible face. Also, neighborhood
relations in the mesh setting can be computed via shared edges and do not require
an additional neighborhood parameter k. Hence, the works of [CSADO04, YLWO06]
did not have to tackle these issues, while the work of [LB16| does not contain any
description of how they solved these problems.

Face Reconstruction for General Faces For the reconstruction of general faces
we used three geometries to showcase two different directions. The first one uses the
segmentation of the point set on a Torus model with X = 13,503 vertices with 11
manually selected seeds and without splitting or merging see Figure 4.12. A correct
determination of cloud neighborhoods is crucial to identify the cycles bounding faces,
where in this example a fairly large number of points and a manual seed selection
supports our goal. But with it we are able to generate faces with non-trivial first
fundamental group, i.e. punctured regions, as can be seen in the top face of the
simplification shown in Figure 4.12.

The second direction shows two simplification results on manually selected re-
gions on a 2-torus model (X = 3,838) and the Fandisk model (X = 6,475), see
Figure 4.13. The coloring of the region representation is chosen w.r.t. Example 2.

All of the simplification results are simplicial pseudo-surfaces. In our case they
don’t even have non-trivial intersection, i.e. only in their faces.

Robustness against Noise on the Dodecahedron Model As our final ex-
periment, we consider the simplification of a Dodecahedron model equipped with

Chapter B. Surface-like Structures 67

Figure 4.13: Shows face generation examples on 2-torus (top row) and Fandisk
(bottom row). Left column: Region representation of manually selected regions.
Center column: The complex’ graph representation (top row shows top and bottom
cycles highlighted in orange). Right column: Simplification obtained by the complex
information.

Gaussian noise in normal direction with an amplitude of 25% of the average neigh-
bor distance (taken as averaged sum over all points and their 12 nearest neighbors.).
This geometry is not easily translated into a clean mesh and therefore, the methods
of [CSAD04, YLWO06] cannot be applied here straightforward. The model consists
of N = 962 and we started with 12 randomly chosen seeds and a threshold of n = 50.
Here, in contrast to the other experiments, we use a neighborhood size of k = 12,
because of the involved noise components. The otherwise used value of k = 8 caused
points to not be associated to any proxies. Furthermore, we allowed for splits and
merges. The algorithm converged after 8 iterations with m = 11 final proxies, see
Figure 4.14. Observe that the faces reflecting the top proxy in the third image are
not planar, which is a possible occurrence outlined in the intersection of planes when
finding the simplified mesh vertices. In contrast, the optimization provides planar
patches (rightmost image).

The segmentation reflects the different parts of the geometry correctly. This
probably results from the normal differences caused by the noise still being smaller
than the normal differences between the different faces of the Dodecahedron. Hence,
if the noise level and its influence in normal deviation still lies beyond the normal
deviation of neighboring geometry regions, its segmentation will reflect the geometric
structure well. However, this still depends on initial seed placements and therefore
also on performing splits and merges.

With a segmentation reflecting the correct structure of the geometry, the sim-
plification should not cause any additional issues, as it is the result of proxy plane
intersections. Only the neighborhood relation between proxies might be more in-
volved, as point locations now deviate more because of additional noise components.

68 4. Segmentation and Simplification

Figure 4.14: Noisy Dodecahedron, its segmentation and simplifications (planar in-
tersection and optimization).

4.5 Conclusion and Further Research

We have shown that variational shape approximation is an effective approach to ob-
tain a simplified mesh not only from meshed input, but also from geometries sampled
by point sets. The presented example for non-convergence of the VSA method as
used in [CSADO04, YLWO06, LB16] was successfully circumvented by the introduction
of a new switch operation for which we proved convergence. Furthermore, by two
more operations in the pipeline, namely split and merge, we eliminate the depen-
dency of both the number and placement of initial seed points. Finally, we give a
detailed description on how to obtain a simplified mesh from the segmented point
set by building on the method of tangent plane intersection as well as constructing
faces for regions which are not necessarily star convex using an underlying complex.
This addressed the third direction of future work outlined in [SZP20]|, namely that
up to this point only star-convex regions could be handled. The face generation
however raises a more basic challenge, i.e. the determination of neighborhoods of
regions outlined in Remark 6. But as this is the same problem points and their lack
of connectivity entail, it remains an ill posed one. Other open directions are listed
in the following.

e On a theoretical level, we have shown that the introduction of the switch oper-
ation results in guaranteed convergence. However, it remains unclear whether
other alterations of the pipeline exist that came with the same result and do
not affect the runtime of the algorithm as heavily as the switch operation does.

e Concerning the parameters, we currently do not provide any theoretical rea-
sons for the choice of weights w; in Equation (4.4) or weights @; in Equa-
tion (4.11). A better understanding of these weights, aside from the exper-
imental values used in the work, is desirable. Similarly, the sum of normal
differences 7 is not directly related to the curvature of a proxy, as it depends
on the number of points contributing to the sum. Here, a threshold should be
found that is independent of the number of points.

e We have presented an experiment on a noisy point set. We assume that the
treatment of meshes equipped with noise should be equally possible and yield
even better results because of the explicit connectivity. To investigate this
behavior is also left as future work.

Chapter C. Inside a Cloud 69

Chapter C
Inside a Cloud

So far we investigated clouds on a macroscopic level and how they interact to form
larger systems with certain properties. In this chapter we are going to discuss some
aspects inside a cloud, i.e. a microscopic viewpoint. As a cloud consists of multiple
instances, in our case points, we can explore the points’ behavior inside the cloud
to obtain insights or guide contributions to certain tasks.

A cloud could be perceived as the neighborhood of the points it contains, not
only from a topological point of view!, but also from the discussion of how a local
perspective and the ill posed problem of point neighborhoods lead to the approach
of selecting a neighborhood for each point, see Chapter A. These are then used to
steer certain processes for that specific point. Clouds are therefore versatile, as they
might contain a subset for each point reflecting its local vicinity or they contain way
less sets, such that points rely on the same cloud.

Something we can make use of is the distribution of points inside a cloud where
the points are possibly equipped with normal information. This distribution can be
evaluated via Principal Component Analysis (PCA) (cf. [WJM14]). For example a
cloud reflecting the vicinity of a point might appear planar and thus the point could
be treated differently compared to a volumetric extended neighborhood. We are
researching the influence of sigmoid-weighted point normals on the extend of point
distributions—which we then call normal weighted neighborhoods—, obtained via
PCA in Section 5 in a large scale experiment, which is published, see [SZ21]. We
included minor changes in text and layout to improve the readability.

The necessity of point normals in the normal weighted neighborhoods and the
fact that certain layouts got favored brought up the question whether we could gain
insights solely on the point distribution and its PCA (leaving out point normals)
with an entity which reflects a desired surface-like appearance. These considerations
are covered in Section 6.

'In the sense of open sets a neighborhood of a point is an open set (w.r.t. the spaces’ topology)
containing that point, see [Lee00].

70 5. Normal Weighted Neighborhoods

5 Normal Weighted Neighborhoods

Many definitions of point neighborhoods, combinatorial or geometric, with global or
local parameters, have been proposed and discussed (see Section 5.1). Furthermore,
the concept of weighting neighboring points is not new. For example, the pure
selection of a neighborhood causes an equal treatment of all neighbors. Aside from
this, isotropic weighting is one common way, evaluating Euclidean distances via a
Gaussian weighting function. This provides closer points with higher influence (see,
e.g., [ABCO™01]). Additionally, other point set information can be incorporated,
like density or distribution (see, e.g., [PLL12] or [SJP18]). The inclusion of normal
deviation in the area of anisotropic weighting has also been considered and discussed
before (see [YRST18, Skr19]).

The research work presented here aims at investigating anisotropic weighting
terms in a broad framework, which includes usual weighting choices such as equal
weights or sharp cut-off weights? (Section 5.2). Our evaluation is processed via a
Shannon entropy model (Section 5.3), which is based on the work of [DMDVII,
WJIM14]. Furthermore, we aim at evaluating the weighting scheme on a large scale.
This is to prevent over-interpretation of findings obtained from a very small set of
models. Overall, the contributions of this work are:

e Definition of a shape-aware neighborhood weighting utilizing sigmoid function
weights based on normal variation.

e Presentation of a Shannon entropy evaluation model that can be proven to be
non-degenerate on our inputs.

e Large scale experimental evaluation of the proposed neighborhood weighting
concept.

e Discussion of the results with respect to both neighborhood weighting and
neighborhood sizes.

While the content of this work is deeply routed in the field of traditional computer-
aided design, in our concluding Section 5.5, we will provide an outlook and several
thoughts on the application of the presented techniques within the context of ma-
chine learning.

5.1 Related Work

Neighborhoods are very important in point set processing, as almost all algorithmic
approaches rely on them. A common choice is to use heuristics to determine sufficient
notions like the size of a combinatorial or metric neighborhood. In the following,
we recall works discussing heuristic neighborhood definitions. Several works have
advanced from simple heuristics and derive more involved notions for better fitting
neighborhood definitions in different contexts. These are mainly obtained from error
functionals, which we will also discuss.

2We consider the case of cut-off weights if starting from a given deviation, all points with greater
or equal deviation are attributed weight 0.

Chapter C. Inside a Cloud 71

5.1.1 Heuristics

Most works consider either a combinatorial k-nearest neighborhood N (+) or a metric
ball B,(-) inducing a neighborhood, see Examples 1 iv) and v). Both of these notions
have parameters to be tuned, namely the number of neighbors &k or the radius r of
the neighborhood. Several works have been presented introducing heuristics to find
appropriate values for k or r in different scenarios. The authors of [ABCO™01]
for instance use a global radius and change it to affect the running time of their
algorithm. In [PGKO02|, the authors fix a combinatorial number & of neighbors to be
sought. Then, for each point p; from the considered point set P, these k neighbors
are found, which fixes a radius r; to the farthest of them. Finally, the neighbors
within radius 7;/3 are used. Therefore, their approach resembles the geometric
neighborhood in a local manner.

The method used in [PKKGO3| is more involved. The authors recognize that
both a too large or too small radius r lead to problems and thus aim for a local
adaption like [PGKO02|. A local density estimate ¢; around each point p; € P is
computed from the smallest ball centered at p;, containing Ny (p;), where k is found
experimentally to be best chosen from {6,...,20} C N. Given the radius r; of this
ball, the local density is set to be d; = k/r?. In a second step, a smooth density
function ¢ is interpolated from the local density estimates d;, hence this weighting
involves the incorporation of density-information into the weight assignment.

In the context of surface reconstruction, the authors of [FRO1] discuss several
choices for neighborhoods and corresponding weights. While two of the three pre-
sented methods simply use geometric neighborhoods, the third method takes a differ-
ent approach. Namely, the authors collect all neighbors of p; in a “large” ball (|[FRO1,
page 7|) around p;. Then, they fit a plane to this preliminary neighborhood and
project all neighbors and p; onto this plane. On the projections, a Delaunay trian-
gulation is built and the induced neighborhood of the triangulation is used in the
following computations, which localizes their approach and respects different point
distributions.

A completely different route is taken by [BL12]. The authors first calculate
features of a point set based on differently sized neighborhoods. Then, they use a
training procedure to find the combination of neighborhood sizes that provides the
best separation of different feature classes.

The inclusion of normal deviation and hence anisotropic weighting into neigh-
borhood concepts is part of the work [YRST18]. The approach of the authors is
to use a weighted principal component analysis, which fits our evaluation model.
However, they rely on a global neighborhood size and assign sharp cut-off weights
while we allow for changing neighborhood sizes and smooth weighting terms.

5.1.2 Error Functionals

While the approaches presented above are based on heuristics, some works try to
deduce an optimal k for the k£ nearest neighborhoods based on error functions. For
instance, the authors of [LCOLO06] work in the context of the Moving Least Squares
(MLS) framework (see [ABCO101, Lev98, Lev04, SL16]) for function approximation.
The authors perform an extensive error analysis to quantify the approximation error
both independent and depending on the given data. Finally, they obtain an error
functional. This is then evaluated for different neighborhood sizes k. The neighbor-

72 5. Normal Weighted Neighborhoods

hood N} yielding the smallest error is finally chosen to be used in the actual MLS
approximation.

In contrast, the authors of [MNGO04| deduce an error bound on the normal esti-
mation obtained from different neighborhood sizes. Utilizing this error functional,
they obtain the best suited neighborhood size for normal computation. The work
of [LCOLO06| heavily depends on the MLS framework in which the error analysis is
deduced, while the work of [MNGO4| depends on the framework of normal compu-
tation.

The authors of [WJM14] take a more general approach in the context of segmen-
tation of 3D point sets. They also use the concept of combinatorial neighborhoods,
going back to results of [LP01, DMDV11]. In order to choose an optimal value for k,
the authors turn to the covariance matrix, which is symmetric and positive-semi-
definite. Thus, the matrix has three non-negative eigenvalues. Following an idea
of [HDD%92], in the work of [PKKGO03], the authors grow a neighborhood and con-
sider a surface variation as a measure to grow a neighborhood around each point p;.
The same quantity is used by [BL0O6]. However, the authors of [PKKGO03| do not
grow a neighborhood, but choose a size k for it according to a consistent curvature
level. The authors of [WJIM14| do not stop at these information, but proceed to
consider three more quantities derived from the eigenvalues of the covariance ma-
trix reflecting point set features, see [DMDV11, WIM14]. Afterwards, following the
concept of entropy by Shannon [Sha48§|, they evaluate combinatorial and geometric
neighborhood sizes via two error measures (see Section 5.3 for a detailed discussion).

5.2 Sigmoids

In contrast to the works listed above, our approach aims at integrating the shape
of the geometry, i.e., the normal information, into the neighborhood definition. We
will do so by enriching a given combinatorial neighborhood with a set of weights
that are dependent on the normal variation within the neighborhood. To ensure a
smooth transition of weights, we apply a sigmoid function to the angle deviation of
the normals.

Given a set of points P = {p; | 7 € [n]}, n € N and [n] = {1,2,...,n}, correspond-
ing oriented unit-length normals n; € S?, and local neighborhoods N; C [n] for ev-
ery i € [n], see Example 1 v). For a given weighting function

¢ : [0, 7] — [0, 1], (5.1)
we obtain the following weights
wij = ¢ (L(ni,ny)) fori € [n], jeN. (5.2)

The argument of ¢ is the deviation of the normals measured by their angle, which
ranges from 0 to m. We turn to this formulation, because it has an obvious geo-
metric interpretation. In order to have an efficient implementation of the presented
techniques, the scenario can be reformulated in terms of the scalar product of the
normals, which avoids the costly computation of arccos.

Note that by the symmetry of the angle, the weights are symmetric, i.e., w;; = wj;.
The weighting function ¢ shall assign non-negative weights between 0 and 1. These
weights should correspond to the similarity of the corresponding normals, i.e., a

Chapter C. Inside a Cloud

73
1 &mmy
.
0.8 1
T 06 :
3 04|
lllla:3ﬂ'/4’b:ﬂ' -‘l-
0.2 a=0,b=m7 s
— = b = 27/3 K
0 ; : : 1 ' hd
0 05 1 1.5 2 25 3
x
Figure 5.1: Plots of the sigmoid sig®%
main [0, 7).

a,b

(x) for three parameter choices on the do-

small angle should result in weights close to or equal 1, while a large angle should
yield weights close to or equal 0.

Our choice for the weighting function is a sigmoid. A sigmoid function is visually

characterized by its shape of an “S™-curve, even though it is mirrored in our scenario,
see Figure 5.1. We will consider a family of sigmoid functions that provide different
interpolations between 1 and 0. The family is based on the trigonometric cosine

function. It is related to the sigmoid used in [MGMAIO6], however, we alter it to
be a monotonic falling curve between 1 and 0 on the interval [0, 7].

Definition 15 (Cosine-Sigmoid). Consider two given thresholds a € [0,7] and
b€ a,n].
as

Then, we define the sigmoid weighting function sig

COS

a,b : [Oa’ﬂ] — [071]
1 if 0<zx<a
T %COS(%)%—% if a<z<b
0

(5.3)
if b<ax<m.

Note that for a # b this function is C! and smoothly transitions from 1 to 0. In par-
ticular, both boundary values are included, i.e., points can be given both weights 1
and 0, which corresponds to fully taking them into account or to not taking them

into account at all. The threshold parameter a € [0, 7] translates the curve along

the z-axis and controls where the cosine curve starts. Similarly, the threshold pa-
rameter b € [a, 7| controls where the cosine curve ends, i.e., the curve’s decline is
inga =

controlled by the distance between these two thresholds. In particular, when choos-

= m, all inputs obtain uniform weight 1 while for a = b, the function models
a sharp cut-off at the chosen threshold. This allows us to relate our weights to the
respectively.

uniform weights used in [WJM14] and to the sharp cut-off weights of [YRS*18§],

74 5. Normal Weighted Neighborhoods

5.3 Evaluation Model

Having presented the set of neighborhood weights in Equation (5.2) and the cor-
responding weighting function in Equation (5.3) in the previous section, we will
now describe the mathematical background of our evaluation process. For this, we
turn to the information measures originally introduced by Shannon [Sha48]. Specif-
ically, we will use a variation of the quantities derived in [DMDV11, WJM14| as
we will present in Section 5.3.1. First, we will establish the necessary notation and
preliminary results.
Consider the covariance matrices C; € R3*3 given by

CZ' = Z wij(pj — ﬁi)(pj - ﬁi)T7 (54)
JEN;

with ¢ € [n], where p; = ﬁ > jen; Pj is the barycenter of the neighborhood of p;,
thus (p; — p;) is a column vector in R?® and (p; — p;)* € R its transpose, i.e., a
row-vector. The weights w;; are chosen according to Equation (5.2). The covariance
matrix C}; is symmetric and positive-semi-definite. Thus, it has three non-negative
eigenvalues, which in the following we will denote by

A >AP> A >0, (5.5)

Depending on the neighborhood N; and the assigned weights w;;, we can prove the
following theorem about the covariance matrix C;.

Proposition 7 (Non-degenerate Covariance Matrix). For P = {p; | i € [n]} a set
of points, fix a point p; € P and its neighborhood N; C [n|, and consider the func-
tion siggy from Equation (5.3) as well as the covariance matriz C; given in Equa-
tion (5.4). Assume there are 1,0y € Nj, {1 # Uy such that pe, # pe, and ng, # —ng,.
Then, for a value b € [a,], the sum of all eigenvalues of C; is strictly positive,

independent of the choice of a € [0,].

Note that a non-degenerate covariance matrix can trivially be obtained by setting
a = w. However, the proposition makes an even stronger statement, namely that
degeneracy can be obtained independent from the choice of a. Its proof follows from
the observation that the weights w;; are non-negative, as are all eigenvalues of C;
since C; is positive semi-definite. Thus, the sum of the eigenvalues is 0 if and only
if all eigenvalues are. By a case distinction on the zero set of the function sigg’, we
can then prove that there exists a value b € [a, 7| which results in strictly positive
weights, which proves the proposition.

5.3.1 Non-Degenerate Covariance Matrix

Given the assumptions of Proposition 7, we can assume that C; # 0 € R3*3. There-

fore, we can derive certain quantities from the eigenvalues of the covariance matrix.

In our context, we will consider the linearity L), planarity P\, and scattering 5.
These are given by

sz)\’l/_l)\?, PiA:A?/\—lA?, S?:i_z’

i

3 7

(5.6)

Chapter C. Inside a Cloud 75

0 02 04 06 08 1
i

Figure 5.2: Plot of the summand —x In(z) from Equation (5.7) for = € [0,1] as all
arguments L}, P}, and S} are taken from [0, 1].

and represent 1D, 2D, and 3D features in the point set, respectively. See [DMDV11]
for a derivation and a detailed explanation of these quantities. As C; # 0, we
have A\ # 0, therefore the quantities in Equation (5.6) are well-defined. Further-
more, because of the ordering of the eigenvalues given in Equation (5.5), we have
L}, P} S} € [0,1]. Hence, as

L} + P} + S} =1,

each of these three quantities can be interpreted as the probability of the considered
point to be part of an intrinsic 1D, 2D, or 3D part of the geometry. The authors
of [DMDV11, WJM14] consider the error

Edm — _LMn(LY) — P In(P) — S} n(S7). (5.7)

See Figure 5.2 for a plot of each summand of the equation. Note that while
lim, o In(z) = oo we have lim, ,oxIn(z) = 0, which follows from rewriting it as
quotient and applying L’Hopital’s rule. Practically, the error measure E{™ assesses
to what extent the neighborhood N; indicates a corner, an edge point, or a planar
point of the geometry. In particular, the extreme cases

(AL AL A € {(p,0,0), (p,p,0), (0, p,p) | p € Rsp} (5.8)

all obtain E™ = (. That is to say that if a point p; can be clearly classified as part
of a linear, planar, or scattered segment of the point cloud, the classification error
Edm will indicate this.

Note that in general applications, these extreme cases are unlikely to occur. In
particular in the presence of noise, the quantities L}, P, and S; will generally not
satisfy Equation (5.8). Thus, the classification error E&™ will be larger and therefore
indicate that the point could not clearly be classified as part of a linear, planar or
scattered segment of the point cloud.

We will use the classification error (5.7) in our quantitative experiments in Sec-
tion 5.4. Aiming for as-clear-as-possible classification of points, we pursue as-small-
as-possible values of E4™, However, the above discussion depends on the assump-
tions provided in Proposition 7. In the following we will discuss cases in which these
assumptions are not satisfied.

76 5. Normal Weighted Neighborhoods

5.3.2 Degenerate Covariance Matrix

In practical applications, the assumptions of Proposition 7 are not always satisfied.
Note here that the classification error E&™ is evaluated on a single point p; of the
point set P. The following reasons can hinder the correct evaluation:

i) If the point set contains multiple duplicates of a point, more than the sought-
for number of neighbors k, all points in the reported neighborhood collapse
into a single point equal to the barycenter of the neighborhood. Thus, C;
becomes 0.

it) If a point p; has a flipped normal in comparison to all its neighboring points p;,
the argument x in the weight equation w;; = sig;; («) becomes 7 and therefore,
all weights degenerate to 0. This happens in particular for very small or thin

geometries as well as for faulty normal fields.

iii) Even if the assumptions of Proposition 7 are satisfied, it only states the exis-
tence of a suitable parameter b € [a, w|. Therefore, choosing parameter b too
small can cause all weights in the covariance matrix (5.4) to degenerate to 0.

In the following evaluation, we prevent case i) by requiring the point sets to only
contain distinct points. Furthermore, we orient the normal field to prevent case ii).
Concerning a too small parameter b, we report a failure in the computation of the
error values for the point p; if Z?:1 A\ = 0. By including the choice a = 7 for the
parameters, we ensure that each model has at least one correctly evaluated error
value E™ at each point p; € P.

5.4 Experimental Results

In this section, we present our quantitative evaluation of the weights presented
in Equation (5.2). For the evaluation, we utilize the classification error E4™ as
defined in Equation (5.7). Our clean models are taken from a data set described
in [HZG"18]. The authors provide ten thousand clean and manifold surface meshes,
which are obtained by exporting only the boundary of the tetrahedral meshes used
in [HZG*18]. From these, we randomly select a subset of 1,000 meshes with uniform
probability. Furthermore, we use 100 meshed models each from the real-world object
scans provided by [CZMK16| and by |[BRLB14|. Finally, to test the scalability of
our approach, we also include the model “Pan et Oursons” from [Lar12].

For all these models, we use the mesh information and its manifold property to
obtain oriented face normals. From these, we compute vertex normals and then use
these and the vertices as point sets for our experiments. For each such point set P,
we consider the parameter sets

for the choice of a and b, respectively, where we ensure that a <b. We choose
this range as a reasonable trade-off between complexity of the experiments and
exploration of the parameter space. Note that in the application scenario at the
end, we consider parameter values that are reasoned there. We use the combinatorial

Chapter C. Inside a Cloud 77

neighborhood notion, so that for every pair (a,b) € 2 x 8B and every point p; € P,

we calculate its E4™ value over the range of k, taken from

R:=1{6,...,20}.

We assume this range for k, as it reflects typical, heuristic choices for neighborhood
sizes in the area of point set processing, see the works discussed in Section 5.1, in
particular [PKKGO3|. For each point p; in each point set P, we obtain an optimal
parameter triple (af, bl k¥) as

1771

(af,b},k7) = argmin Ef™ (5.9)
(a,b,k)EAXBx K

Following the discussion from Section 5.3.2, we set E&™ = oo if the covariance ma-
trix C; for the point p; € P degenerates for all choices (a,b, k) € A x B x K.

See Figure 5.3 for an illustration of the classification error E4™ on the Fandisk ge-
ometry as well as for a comparison of different parameter choices (a,b). The top row
shows the classification error ES™ from Equation (5.7) on each point of the geome-
try, colored from low error to large error. Note that when fixing parameters (a, b),
it is possible that the covariance matrix C; degenerates for every choice & € K. This
happens for the specific choice a = b = arccos(0.9) as used in [YRS'18]. We have
colored the respective points red. The optimal triple from Equation (5.9) achieves
significantly lower classification error E™ than the equal weights of [WJM14] or
the cut-off weights of [YRS™18]. The observed fluctuation in planar areas is due
to (a) the utilization of combinatorial neighborhoods, which do not always provide
symmetrically shaped neighborhoods on a synthetic geometry like the Fandisk, as
well as to (b) the sensitivity of E&™ to slight changes in the covariance matrix.

The bottom row of Figure 5.3 shows a feature classification according to the max-
imum value out of linearity, planarity, and scattering as defined in Equation (5.6).
Note how the equal weights of [WJM14| classify almost all elements as planar and
fail to identify edge structures. In contrast, the cut-off weights of [YRST 18] identify
all edges, but over-pronounce them. The optimal weight choice from (5.9) takes a
middle ground between these two extremes, on the cost of identifying several clearly
planar points as linear. Again, this stems to a certain extend from processing a
synthetic geometry. Observe that the equal weights and the optimal weights do
identify scattered points (one example being the topmost corner of Fandisk) while
the cut-off weights rather fail to create a covariance matrix at corner points.

The images in Figure 5.3 summarize our following experiments. In order to
compare with the findings of [WJM14], we compute the classification error E{&™
for each point of every point set of the three chosen model repositories [HZG118,
BRLB14, CZMKI16| as well as of the single, large model from [Larl2].

In the following we report and interpret our findings.

Global (a,b, k) Analysis

We analyze the total amount of (a, b, k) choices for all model repository selections.
Here, we count all points of all point sets with their respective optimal parameter
triple (a*,b*, k*). The corresponding four global histograms for the three model
repositories and the model from [Lar12] are given in Figure 5.4. There, each point
of each geometry contributes one unit in the histograms, which report the number

78 5. Normal Weighted Neighborhoods

0
L] Cz fail

mlinear
oplanar

mscatter

n(C; fail

(a) Equal Weights: (b) Cut-Off Weights: (c) Optimal af, b}, k; for
a=b=m, as a = b= arccos(0.9) ~ each point p; according
in [WJM14] 0.451 as in [YRS*18], to Equation (5.9)

red points show

degenerate covariance

matrix

Figure 5.3: The effect of the different parameters on the Fandisk model. The top
row shows the classification error E&™ from Equation (5.7) for each point of the
model, from low ([]) to high error (JJij). Note how the optimal weights from Equa-
tion (5.9) have drastically reduced error in comparison to both equal weights (used
by [WIM14]) and sharp cut-off weights (used by [YRS™18]). The red points indi-
cate elements of the point set, for which the covariance matrix from Equation (5.4)
degenerates given the chosen weights.

Bottom row shows a feature classification according maximum value out of linearity
(), planarity ([]), and scattering (Jjff) as defined in Equation (5.6). Note how
equal weights fail to consistently identify edge structures. The cut-off weights man-
age to identify planar areas well while over-pronouncing edge structures. These are
identified well by the weights from Equation (5.9).

Chapter C. Inside a Cloud 79

[l = =
ERERGENS

12000000

©°8

= =
0 G 2
a

(a) Applied to 1,000 geometries randomly (b) Applied to 100 geometries taken

selected from the data set used from |[CZMK16|, with 25,929,256 total
in [HZG"18|, with 7,213,429 total points. points.

///

'L
BE 8T

fus fus s s
0 G 3 2 6
a

(¢) Applied to the 100 geometries from the (d) Applied to the “Pan et Oursons” scan
data set presented in [BRLB14|, with from |Larl2|, with 1,199,992 total points.
17,918,016 total points.

Figure 5.4: Histograms of preferred sigmoid parameters (a*, b*, k*) (Equation (5.9))
with respect to minimal error values for E4™ (Equation (5.7)) over the range & when
applied to several large model repositories. Each point of the respective point set(s)
corresponds to one unit in the histogram. Additionally, each such bar is colored
according to the chosen optimal neighborhood size k, from the lowest at the bottom
to the highest at the top.

of points that choose a parameter combination (a,b), with a on the z-axis and b on
the y-axis. Additionally, each such bar is colored according to the chosen optimal
neighborhood size k, from the lowest at the bottom to the highest at the top. In
summary, the classification error acts similar on all data sets, i.e., in the comparison
between clean and real-world models.

On the large scale of 1,000 point sets with a total of 7,213,429 points (Fig-
ure 5.4(a)), we observe, that on average, a small choice for parameter a and a
similarly choice for parameter b are preferred. This can be interpreted to say that
it is desirable to take only normals into account that exhibit a small deviation. In
particular, Figure 5.4(a) suggests that the majority of points from the clean models
choose a neighborhood without any room for normal deviation (a = b = 0). This is
one notable difference to the histograms on scanned models, Figures 5.4(b) to 5.4(d),
where these drastic weights are almost never chosen.

It is particularly noteworthy that almost no points chose equal weights a =b =7
which highlights the benefit of our approach over that chosen by [WJM14|. Fur-
thermore, choosing a sharp cut-off along the lines of [YRS'18], by a = b = 7/6,
occurs for about a quarter of the points. However, about 38% rather go with a softer

80 5. Normal Weighted Neighborhoods

‘ H min, (E&H™) ‘ ~ Zf\;l Edm | max; (B8 | sd; (EBdm)
Clean [HZG118] | Weights [WJM14] || 0 0.6309891 1.071584 0.1896867
7,213,429 points | Ours, Eq. (5.9) 0 0.2477968 1.012825 0.1882686
Scanned [CZMK16] | Weights [WJM14] 2.946194-107% | 0.3348262 1.071796 0.1967012
25,929,256 points | Ours, Eq. (5.9) 0 0.2526083 0.9649821 0.1569379
Scanned [BRLB14| | Weights [WIM14] || 0.001344446 0.2497551 1.048021 0.1144664
17,918,016 points | Ours, Eq. (5.9) 0 0.2109502 0.9379431 0.09631257
Scanned [Lar12] | Weights [WJM14] || 0.003978099 0.3827366 0.9805029 0.1456077
1,199,992 points | Ours, Eq. (5.9) 0 0.3200202 0.7774453 0.1337365

Table 5.1: Quantitative comparison of the classification error E&™ computed over
different model repositories with weights by [WJM14| and our weights from Equa-
tion (5.9). Note that our weighting scheme always obtains lower minimal, average,
and maximum error as well as a lower standard deviation.

decrease by choosing a = 0,0 = 7/6. A localized, i.e., model-depended, discussion
about the possibility to increase a and b for better results is given in the upcoming
paragraph.

In terms of scanned real-world models (Figures 5.4(b) to 5.4(d)), we analyzed 100
point sets from each [CZMK16, BRLB14| and one large model from [Larl2]. In
comparison to the clean models, we do observe a different behavior. Namely, while
small values for a and b are still favored, the choice of a = 0, which was most
prominent on clean models, is almost never made for scanned models. The chosen
weights indicate that mostly neighborhoods with a normal deviation of up to 7/6
are taken into account. These are either all weighted uniformly (a = 7/6) or with
gradually deteriorating weights (¢ = 0). We interpret the parameter b to reflect
the noise components caused by the acquisition process. Therefore, choosing the
lowest possible choice of b causes several points p; € P to have degenerate covariance
matrices C;, independent of the chosen neighborhood size k. We will give a more
detailed discussion on this in one of the following paragraphs.

In conclusion, we see that weight-determination generally favors a narrow window
between parameters a and b. This corresponds to using a neighborhood with an
overall small normal deviation. The value b however depends on the geometry. Clean
models mostly attain smaller error values for very small values of b, whereas real-
world models require slightly larger values of b to obtain non-degenerate covariance
matrices. All models from all repositories have in common that they almost never
report equal weights as preferred weight assignment. Hence, when regarding the
classification error E4™ the equal weighting scheme of [WJM14] is inferior to the
family of weights presented here. This becomes obvious when comparing the values
obtained from our experiments, see Table 5.1. The classification error computed
with our weights in Equation (5.9) has lower minimum, average, maximum, and
standard deviation than the error computed with the equal weights of [WJM14].

Sharp cut-off weights are only chosen as optimal weighting by a subset of the real-
world scans. As [YRST18] used sharp cut-off weights in the context of denoising,
our results hint that this weight set might be beneficial in the presence of noise.
However, for about 75% of the scanned models, when considering the classification
error E&™ our weighting family still chooses weights superior to the cut-off weights.

Chapter C. Inside a Cloud 81

H a=0 a— —a— b=a b— —b— ‘ # Points
Clean [HZG 18] 60.19% 39.81% 0% | 36.80% 25.49% 37.72% | 7,213,429
Scanned [CZMK16] || 54.30% 45.70% 0% | 43.50% 14.21% 42.29% | 25,929,256
Scanned [BRLB14] | 62.44% 37.56% 0% | 36.86% 21.03% 42.11% | 17,918,016
Scanned [Lar12] 60.70% 39.30% 0% | 37.33% 20.46% 42.21% | 1,199,992

Table 5.2: Distribution of (a*,b*) choices into the three cases of (a) an attained
minimum (a = 0,b =a), (b) a possible decrease of the parameter without fail-
ure (a—,b—), and (c) impossibility of decreasing the parameter because it would
cause a degenerate covariance matrix (—a—, —b—).

Local (a,b) Analysis

In this paragraph, we will discuss the (a*, b*) choices presented in the previous para-
graph from a local, i.e., point-set-dependent, perspective. The respective results
are presented in Table 5.2. There, the first row corresponds to the clean models
from [HZG'18] while the other three rows correspond to the scanned real-world
models from [CZMK16, BRLB14, Lar12|. The columns present information about
the amount of points accepting minimal value a = 0, allowing (a—) or forbidding
(—a—) a decrease of a, accepting minimal value b = a, and allowing (b—) or forbid-
ding (—b—) a decrease of b. In this scheme, the columns —a— and —b— denote the
percentage of those points for which a decrease of the respective parameter results
in a degenerate covariance matrix C;, see Section 5.3.2. Observe that we cover all
possible cases. For easy comparability, we provide the respective case numbers in
percent, with the total number of points for the respective repository given in the
last column.

Having all values in one chart, we directly observe the behavior assessed for
parameter a in the previous paragraph. There, we stated that especially in the case
of clean models, an as-small-as-possible value for a is favorable over larger values
for a. Indeed, Table 5.2 confirms this statement, as almost® none of the points
allows for an decrease of parameter a (cf. column —a—). This justifies the small
values for a attained in the real-world scenarios presented in Figures 5.4(b) to 5.4(d)
when compared to the values of a attained in the clean scenarios in Figure 5.4(a).
Semantically, this opts for including just enough neighbors in the computation to
make it feasible, i.e., to prevent a degenerate covariance matrix, but focus on those
that are as-similar-as-possible with regard to the normal field.

The reported numbers on the parameter b also support the observation drawn
before. It is chosen to be as-small-as-possible, i.e., as close to the chosen a without
creating a degenerate covariance matrix. Over all repositories, b is chosen to create
a sharp cutoff (b = a) in about 36% of the considered points. A notable exception
is the scanned data set [CZMK16], which allows for 43.5% of the points to choose a
sharp cut-off. This is possibly due to lower noise levels and different geometry types
in this data set when compared to the other scanned data sets [BRLB14, Larl2.
Furthermore, in about 42% of the scanned points and 37% of the clean points, b is
at least chosen to be as-close-as-possible to a, i.e., the weighting scheme is chosen to

3There are < 0.01% for each scanned repository that would allow for a decrease, which is not
shown here due to rounding.

co
[\]

5. Normal Weighted Neighborhoods

Il Clean models [HZG 18]
IBScanned models [CZMK16]
1 Scanned models [BRLB14]
I8 Scanned models [Lar12]

0.1

Points w/ nhd size k [%)]
@]
[\
[

6 v 8 9 10 11 12 13 14 15 16 17 18 19 20
Neighborhood (nhd) Size k

Figure 5.5: Histogram of preferred neighborhood sizes k* with respect to minimal
error value E&™, To ensure compatibility over the different data repositories, we
normalize by the total number of points and report the percentage of points choosing
the respective neighborhood size.

be as-close-as-possible to a sharp cut-off, which cannot be realized because a further
decrease of b would cause a degenerate covariance matrix. These observations justify
the general weighting choice of sharp cutoff, as chosen by [YRST18|, although the
particular chosen values only prove to be most effective in about one fourth of all
models from the data set used here.

Summarizing the global and local analysis of the parameter choices (a*,b*), we
draw the following conclusions:

e The utilized classification error favors weight determination with as-small-as-
possible values for both parameters a and b. That is, only points with as-
similar-as-possible normals are considered, but out of these, all are allowed to
influence the computation as-evenly-as-possible.

e Equal weights (a = b =), as used by [WJM14], are never chosen as optimal
parameters to obtain a minimal classification error F3™,

e Sharp cut-off weights as widely used in the literature, e.g., in [YRST18], attain
minimal classification error for 36.8% of the clean points and for up to 43.5%
of the scanned points. This proves their relevance in particular for real-world
scenarios.

Global k Analysis

As stated in the beginning of Section 5.4, for each point in the utilized point sets,
we also obtain a preferred neighborhood size £* € R yielding smallest classification
error E&™ among all choices (Equation (5.9)). In Figure 5.5, we present a histogram
plotting this data, i.e., for each neighborhood size k € K, we show what percentage
of points from the respective model repository use this k.

Note that the plot for the clean models shows a favor for an as-small-as-possible
neighborhood size k over larger neighborhoods. In contrast, the scanned models
show a different behavior. Whereas the repository [CZMK16| also attains its peak
at k = 6, it is more equally distributed among the whole range, with a notable
second peak at & = 11. The models in [BRLB14|, however, exhibit an almost

Chapter C. Inside a Cloud 83

Standard deviation
S

Clean [HZG'18] Scanned [CZMK16] Scanned [BRLB14]

Figure 5.6: Box-whisker plot for the standard deviations obtained by the differ-
ent models. Each model contributes its own standard deviation as a data point
for the diagram. Therefore, the leftmost column represents 1,000 data points
(from [HZG18]), the center column represents 100 data points (from [CZMK16]),
and the rightmost column represents 100 data points (from [BRLB14]).

Gaussian bump around their maximal value £ = 18. Finally, the results for the
model chosen from |Larl2| are almost uniform over the entire range, with a slight
increase for growing values of k.

In order to investigate scalability effects, we have included one significantly larger
model from |[Larl2| in our analysis. Note that the general observations as made on
Figure 5.4, Table 5.1, Table 5.2, and Figure 5.5 particularly hold for this model.
Furthermore, despite the fact that [WJM14| focuses on these large-scale models, our
weighting approach from Equation (5.9) still provides smaller classification errors as
indicated in Table 5.1. Thus, we cannot report any scaling issues.

For the clean models, we obtain an average neighborhood size of k = 10.55 with
a standard deviation of 0 = 4.77. For the scanned models, those quantities are:

o k=12.09489, o = 4.618431 ([CZMK16|),

o k= 14.22883, 0 = 4.487704 ([BRLB14]),

e and k = 13.54247, o = 4.398983 (|Lar12]).

These findings suggest that variable neighborhood sizes yield smaller error values
with regard to the classification error E&™. If a global neighborhood size has to
be chosen, then the average values provided by this analysis serve as reasonable
choices, as they provide a good trade-off between a fixed neighborhood size and
a low classification error. In order to further investigate the benefit of varying
neighborhood sizes, in the following paragraph, we turn to a point-set-dependent
perspective.

Local k£ Analysis

We will now consider the standard variation of the neighborhood sizes taken over a
single model for E4™, We aim to better understand and investigate the hypothesis
formulated above, i.e., the statement that a variable neighborhood size contributes
to lower classification error.

In order to interpret the neighborhood sizes, we consider a box-whisker plot over
all standard deviations within the respective models in Figure 5.6. That is to say,

84 5. Normal Weighted Neighborhoods

the boxes indicate the first, second (median), and third quartile of the standard
deviations of neighborhood sizes for the indicated model repository. In particular,
most approaches in the literature use—and are evaluated on—a setting with a fixed
neighborhood size k. In our analysis, this would correspond to a standard deviation
around 0, indicating no or small changes to the neighborhood size within a geometry.
However, it is obvious from Figure 5.6 that all standard deviations are located well
away from 0. Even considering the minima, i.e., the lower whiskers of the boxes,
they reside at 2.7, 4.1, and 4.4, respectively, indicating that at least these small
variations in neighborhood size are necessary to minimize the classification error.
Note that the variation of neighborhood size is most notable for the clean model
repository, where the standard deviation of chosen neighborhood sizes goes up to
5.46. This is in contrast to the scanned data from [BRLB14|, where the models are
not very diverse, which is reflected in the almost uniform standard deviation of the
chosen neighborhood sizes.

In summary, from the global and local analysis of the obtained neighborhood
sizes k, we draw the following conclusions:

e All standard deviations lie well above 0, i.e., the considered classification error
favors variable neighborhood sizes over constant-size neighborhoods.

e This behavior is more pronounced for scanned models (see [CZMK16] and
[BRLB14]) than for clean models (see [HZGT18]).

e The classification error favors smaller neighborhood sizes for clean models,
however for scanned models this behavior is not preserved.

Application Scenario

Building on the observation from the previous paragraph that varying neighborhood
sizes can contribute to better performance and in order to evaluate our proposed
methodology in an application scenario, we turn to the normal filtering stage of the
point set denoising algorithm proposed in [YRST18]. This first stage is part of a
larger, iterative process of three stages that removes noise from an input geome-
try. We focus on the first stage to not have the effect of our weighting scheme be
confounded by procedures within the more complex pipeline (we provide the names
of the parameters of the algorithms in brackets in the following). In each itera-
tion (parameter p), a weighted covariance matrix is built. The algorithm is using a
sharp cut-off weight function (parameter p), optimizes the eigenvalues of the covari-
ance matrix (parameter 7), and uses those to update the respective point normals
afterwards.

For the experiment, we followed the experimental pipeline of the original article
[YRST18|. Namely, we took the four geometries (Cube, Fandisk, Octahedron, Rock-
erarm) as discussed in the original publication [YRS*18], together with three more
geometries (Bearing, Sharp Sphere, Fertility), see Figure 5.7. The models were given
as meshes and provided the oriented point normals, as they were obtained from the
mesh information as weighted vertex normals that served as ground truth normals
in the experiment. Afterwards, we applied Gaussian noise in normal direction with
amplitudes 0.3¢ and 0.6/, where ¢ denotes the mean of all distances from points to
their respective six nearest neighbors. To measure the deviation from the ground

Chapter C. Inside a Cloud 85

(a) () (d) () (f) ()

(b)

Figure 5.7: Geometries from left to right with number of vertices in brackets: Cube
(1,906), Bearing (3,475), Fandisk (6,475), Sharp Sphere (8,354), Fertility (9,239),
Octahedron (16,395), and Rockerarm (24, 106).

truth normals, we make use of the mean squared error (MSE) given as

MSE(N, N) Zum |2, (5.10)

where N = {n; | p; € P} are the ground truth and N = {n; | p; € P} are the
changed normals of the geometry P.

The default values for the normal filtering were taken from [YRS'18] and the
parameters (p, p, 7) are set as follows:

o Cube with (150,0.95,0.3),

e Fandisk with (150,0.9,0.3),

e Octahedron and Rockerarm with (80,0.9,025),

e and Bearing, Sharp Sphere, and Fertility with (100, 0.9, 0.25).

For the allowed neighborhood range, we first let the default normal filtering of
[YRST18]| identify the neighborhoods. Then, for each point p;, we took the number
of neighbors k; identified and let K; := {k; — 10, ..., k; +10}. If this caused negative
values, we omitted them. Afterwards, each point chose a neighborhood according
to the least error (Equation (5.7)) before and in each iteration. We set parameters
a = b = arccos(p) w.r.t. the processed geometry, as this algorithm is tailored to ben-
efit from a sharp distinction. In the cases where the covariance matrix degenerates
as all weights become 0, we use the default neighborhood size and equal weights for
such points.

This allows us to study the effect of including our weighting scheme into a larger
application by comparing to the results obtained by [YRS*18]. Furthermore, we
can compare both the original results of [YRS*18] and the results of our enhanced
weighting pipeline to the ground truth normals provided by the noiseless models.
In Table 5.3, the MSE results are shown, where MSE(Noise) compares ground truth
and noisy input, MSE([YRST18]) compares ground truth and the result of [YRS™18§]
with its default parameters, and MSE(R) compares ground truth and the result of
the enhanced normal filtering pipeline.

From Table 5.3, an immediate observation is that allowing individual neighbor-
hood ranges reduces the overall error compared to the default values used in the
normal filtering. This becomes obvious as all values in the column MSE(R) are
smaller than those in column MSE([YRST18]). Thus, the algorithm benefits from

86 5. Normal Weighted Neighborhoods

0.3¢ 0.6¢
MSE(Noise) MSE([YRS*18]) MSE(ours) || MSE(Noise) MSE([YRS*18]) MSE(ours)
Cube 0.01817 0.00472 0.00381 0.06778 0.04101 0.01718
Bearing 0.01914 0.09220 0.06311 0.08796 0.10588 0.09971
Fandisk 0.01598 0.04710 0.03304 0.05907 0.06702 0.05285
Sharp Sphere 0.03395 0.15219 0.12499 0.09194 0.16233 0.14309
Fertility 0.13404 0.22036 0.19741 0.23215 0.25364 0.25100
Octahedron 0.28785 0.28234 0.27533 0.30471 0.27754 0.27162
Rockerarm 0.01715 0.08137 0.06715 0.06368 0.08407 0.07817

Table 5.3: Mean squared errors (MSE) for several models corrupted by noise 0.3¢
and 0.6 with ¢ being the mean distance of all distances among six nearest neighbors.
Our approach outperforms that of [YRST18] in all examples considered.

individual neighborhood ranges as discussed in the previous paragraphs, instead of
setting one global neighborhood size parameter.

One interesting observation can be made by incorporating the MSE(Noise) values
into the comparison. For most of the models considered, these values outperform
the normal filtering results. To explain this, consider that the point normals are
influenced by the mesh properties, i.e., the faces and their areas affect the normals
provided as ground truth. The filtering procedures thus sometimes worsens the
results as it tries to clearly arrange normals corresponding to points which represent a
planar area, whereas points lying on (sharp) edges in a mesh receive normals neither
belonging to the areas meeting at that edge. This points towards future work and
improvements of [YRST18], but is irrelevant in the context of this work as the main
message to be taken from these experiments is that utilizing optimized neighborhood
selection over a wider range of k does positively influence the performance of the
algorithm.

5.5 Conclusion and Further Research

We investigated a family of weights (Equation (5.2)) for point set processing. These
weights are based on the normal similarity. The family includes common choices
such as equal weights or sharp cut-off weights at a given threshold. Furthermore, we
presented an evaluation model for neighborhood weights based on a Shannon entropy
classification error (Equation (5.7)). We have performed a large-scale evaluation of
our weight family on four data sets. The first set consisted of 1,000 clean surface
meshes from the work of [HZG18]. The second and third set consisted of 100 real-
world scans taken from each [CZMK16| and [BRLB14]. Additionally, we included a
scanned model from [Larl2| with over one million points.

A statistical analysis revealed that the optimal weight parameters should lead
to a neglect of non-similar normals, yet include mid-range normal points with a low
weight. Specifically, equal weights, as used in the literature discussed in Section 5.1
and in particular in [WJM14| do not obtain minimal error values. Furthermore,
sharp cut-off weights as used, e.g., by [YRST18] do perform well on certain scanned
models, but are also generally inferior to more flexible weighting terms. Finally, it
became obvious in the evaluation that neighborhood sizes have to be variable over
a point set as only these variable sizes attain minimal error values. The potential of

Chapter C. Inside a Cloud 87

this variability of neighborhood sizes was shown by incorporating point-wise neigh-
borhood size ranges within a normal filtering stage in a point denoising algorihtm
([YRS™18]), yielding smaller mean squared errors compared to the original pipeline.

While this work addresses a variety of possible weighting choices and neighbor-
hood sizes, to cover the most widely used versions from the literature, several aspects
are left as future work. Further research consists of running the large-scale analysis
on a broader range of neighborhood sizes, comparable to [WJM14].

Not only with the publication of the versatile PointNet architecture, machine-
and deep learning techniques gradually conquered the realm of point set process-
ing [QSMG17|. Subsequently, a wide variety of publications arose that tackle several
problems related to point set processing. These touch on multiple areas discussed
in this work. For instance, the PointCleanNet architecture was designed for de-
noising and outlier removal of point sets [RLBG*20]. Another representative of
machine learning technology for point sets is the NormNet architecture, which de-
rives point-wise normal estimations for three-dimensional point sets [HLKD19|. A
problem naturally approached using normal information on a point cloud is (se-
mantic) segmentation. In a sense, our optimized neighborhood weights do segment
the point set into several, small parts with consistent normal information. In con-
trast, large-scale segmentation approaches via machine learning are available, e.g.,
utilizing edge-convolution networks [CD19]. All these machine learning approaches
have in common that they depend on large sets of well labeled training data. In
its generality, our approach can add to these developments in many ways. Aside
from improving the (semi-)automated generation of training data, it can support
the selection of neighborhood weights and sizes that serve as architecture input.
Additionally, the direct incorporation of normal information on the neighborhood-
level supports topological consistence, outlier resistance, and coherence of both the
considered point set as well as the algorithmic procedure applied to it. Investigating
these potentials of our methodology in the machine learning context is, however, left
for future work.

As a closing remark, we would like to point out that several algorithms developed
within the geometry processing community are heavily dependent on one or more
parameters. These parametric values are often fine-tuned during an experimentation
phase that is run on a small and limited data set. Our large-scale analysis in this
work highlights the importance of a systematic setup for parameter evaluation. In
particular, we were able to show that the usually globally chosen neighborhood size
parameter yields better results when used within a bilateral weighting scheme that
incorporates normal information and varying neighborhood sizes. We hope that
this work encourages further research on the applicability of algorithms and their
parameters “in the wild” to ensure applicability and robustness of the developed
methods.

88 6. Flatness Model

6 Flatness Model

In the previous section we investigated shape-aware neighborhoods in terms of size
and incorporation of weighted point normals. In this process we made use of the
three point classification types linearity, planarity, and scattering. These three en-
tities are a kind of measure to elaborate on spatial extent of points while describ-
ing three different appearances and there are more feature classification types see
[WJM14]. In the shape-aware neighborhoods we pushed the decision towards a cer-
tain feature type by utilizing point normal weights, so that the feature gets attained
more clearly. Thus the classification of a feature at a point could tell us something
about the local vicinity of that point inside the point set.

In the following we want to present the flatness model applied to a (subset of a)
point set. The motivation is to evaluate a points’ vicinity and as we are interested in
points taken from surfaces, we want the model either to tend to surface appearance
or not. Such an appearance would include bend or irregular shaped 2-dimensional
regions and not distributions representing curves or volumes. Thus besides the
utilization for point feature classification the model helps us to find a point neigh-
borhood for a point in question with 2-dimensional extent. The contributions are
therefore:

e Definition of the flatness model as a continuous model ranging between 2-
dimensional and non 2-dimensional point distributions.

e Discussion of results in terms of point feature classification.

e Incorporation of the model into an iterative point set denoising algorithm.

6.1 Description of Flatness Model

Despite a possible weighting of the covariance matrix’ entries done in Section 5.2
and the follow-up analysis on the entities built from the eigenvalues, we want to
discuss another energy model based on the eigenvalues and its behavior. As they
might reflect point distributions from dimensions 0 up to 3, we are interested to
set them in relation so that 2-dimensional distributions are favored as these shall
reflect portions of a surface. From the three eigenvalues \; > Ay > A3 > 0 of the
covariance matrix built on a set of points in R? (cf. Section 5.3) we therefore want
A1 > 0 (to guarantee the upcoming model and prevent degeneracy), Ay tending to A\
(to achieve two major distribution directions), and A3 going to 0 (thus diminishing
volumetric extend). Observe further that we could incorporate weights into the
setup of the covariance matrix, yet we do not need to as we do not rely on point
normal information anymore compared to the setting in Section 5.2. The flatness
energy is given by

)\ mi)\ mo
EMo,) =(1-22) +1-(1-22) | my,me e 2N,. (6.1)
)\1)\1

The idea is to use A; as a normalization factor and let A\ and A3 depend on it, as the
eigenvalues are all sorted. Then the first term (blue curves in Figure 6.1) favors flat
behavior, as a value of Ay closer to \; receives smaller energy values. In contrast,
the right term (orange curves) has a reversed appearance forcing A3 going to 0.

Chapter C. Inside a Cloud 89

Figure 6.1: Shows function plot of energy FE(Aq, A\3), here denoted E, given in Equa-
tion (6.1) for values m; = my = 2. The blue curves illustrate the first term of F
with values m; € {2,4,6,8} where larger values let the curves decrease faster and
consequently causing smaller errors for a wider range of A\y. In contrast the orange
curves represent the second term of E with ms in the same range with the difference
that the curves’ slope increases which narrows the choices for A3 providing small
energies in F.

The parameters m; and ms influence the focus on strengthening the surface-like or
weaken the volumetric behaviors.

Observe further that each term of the form (1—x)™ lies in [0, 1] with m € 2N; and
z € [0, 1] thus bounding the energy F in [0,2]. We do not introduce normalization
here, as in the experiments we will face other entities not necessarily bound between
0 and 1 and even the visual representation will range between minimal and maximal
energy values for better perception.

6.2 Experimental Results

In the following discussion we want to focus on several aspects of the flatness model.
At first glance those energies could provide insight into a local points’ neighborhood
marking the surface behavior in its vicinity. For instance a point with large energy
has a neighborhood with high curvature. Thus these energies could be used to dis-
tinguish and treat points differently. In the first paragraph we focus on a parameter
analysis on the two exponents arising in the energy m; and ms and their influence
on energy value distribution. In the second paragraph we want to figure out flatness
energy values taken from various point distributions and compare them to other
entities relying on eigenvalues. Third, we want to compare the flatness energies on
a model with other energy entities relying on eigenvalues and which could be used
to lead to a similar point distinction on the geometry. Fourth, we discuss the in-
fluence of noise towards the generation of the flatness energy. Fifth and finally, we
incorporate the energy into an application dealing with point set denoising.

As all eigenvalues are taken from a covariance matrix we chose a combinatorial
neighborhood of size k = 14 (cf. Example 1 v))*, with deviations mentioned, to

4This size shall provide a small counteract to symmetric point distributions.

90 6. Flatness Model

(a) (2,2) (d) (8,8)

Figure 6.2: Top row shows function plots of energies given in Equation (6.1) for
values (my, my) described in the respective caption. The linear subspace with normal
(—1/4/2,1/+/2,0) displayed in gray shall represent how the energy behaves along the
line when \; = A3 and the grid at the bottom represents the A\;\3-plane. The labels
of the coordinate axes are equal to those shown in Figure 6.1. The bottom row
shows respective color plots on the Fandisk model ranging from low (|]) to high
(M) energy interpolating between the minimal and maximal obtained values. The
orange circles in (d) set focus on the ridge (left) and curvy edge (right).

determine a point distribution around each point and assign an energy value per
point and color it accordingly for visual representation.

Parameter Analysis We consider the Fandisk model on 6,475 points and the
energy written in Equation (6.1) with four choices of (my,ms). Plots of the energy
and respective color coded representations are illustrated in Figure 6.2. Note that
with a larger m; we put emphasis on planar behavior which means in contrast
that we widen the range of point distributions which then would be counted as
planar. See for instance the examples for the choices (8,2) and (8, 8) where the bent
regions at the front of the Fandisk receive small energy values compared to the other
choices. Increasing the value my instead narrows the choices of point distributions
being accounted as planar, really increasing the energy value of spatial distributions
even more, which can be seen that along the feature lines, i.e. areas of high mean
curvature, of the Fandisk the points receive larger energies. The change of energy
value distributions is shown in Figure 6.3, where we can observe how energy value
distributions change w.r.t. m; and my either get pulled to or pushed from value 0,
respectively. This is due to the fact that higher values in m; allow us to forgive a
point distribution not being totally flat, and thus working towards planarity, whereas
a higher my narrows spatial distributions being perceived as planar. This might give
a possibility to cut at a certain threshold and extract points whose neighborhoods
account for a certain error above or below that threshold.

Energies on Point Distributions In this experiment we deviate from k = 14
points for the combinatorial neighborhood, but use all points in the distributions
shown in Figure 6.4. They shall reflect possible (yet synthetic) distributions on

Chapter C. Inside a Cloud 91

4,000 11(2,2)
g 00(2,8)
23,000)
g 11(8,2)
=
£2.000 Uu(8,8)
5
21,000

ol

o0 01 02 03 04 05 06 07 08 09 1.0
Energy ranges

Figure 6.3: Shows distributions of energy values of examples presented in Figure 6.2
within energy ranges, for instance bars at 0.0 represent the number of points within
range [0.0,0.1). The last bin refers to energy equal to 1. Note all maximal energies
are lower or equal to 1 for this experiment. The energy ranges are normalized w.r.t.
the maximal energy value of the respective type, i.e. 0.929 (J), 1.211 ([_]), 0.895

(W), and 0.999 ().

Figure 6.4: Shows point distributions in R3.

which we want to investigate how flatness behaves and also compare it to the three
entities linearity, planarity, and scattering introduced in Equation (5.6). Our pri-
mary goal is to see how these entities could encode a feature point with its energy,
i.e. whenever such distributions reflect a points’ vicinity. For the flatness model we
set m; = mo = 8 and we would assume that it produces small energy values for the
cases (b) and (c), as these represent planar regions, while all other point distribu-
tions should cause larger energies. In Table 6.1 we find all energy values where we
observe the desired behavior and it supports our motivation for the flatness energy
mentioned in the introduction, as we can see how the entities linearity, planarity,
and scattering work towards certain distributions more strictly, while the flatness
energy majorly tries to distinguish two cases: being flat or not. We also did the
calculation of the three competitors without point normal information, as we really
wanted to measure how they behave on the given distributions and we did not focus
on an energy like the one given in Equation (5.7), as this model was needed to decide
about combinatorial neighborhood sizes as well as sigmoid parameters while keeping
a low mixture of linearity, planarity, and scattering.

In terms of feature classification we refer back to Figure 5.3 as comparison where
we either report too few points as features which should be and too many in almost
planar regions are recorded as features which should not. In addition, some points
might have not been classified due to covariance matrix degeneracy because of the
point normal weights. The flatness model outweighs these challenges, i.e. better
represents whether a point belongs to a feature or not, does not incorporate weights
or normal information, and therefore causes no degenerate cases as long as A\; > 0.

92 6. Flatness Model

@ ® (0 (@ (e) (f) (8)
Flatness 1.0 0.10830 0.0 0.70701 0.58412 0.92815 0.93434
Linearity 1.0 0.75740 0.0 0.49232 0.86968 0.51985 0.02799
Planarity 0.0 0.24259 1.0 0.36667 0.09388 0.20614 0.68348
Scattering || 0.0 0.0 0.0 0.14100 0.03642 0.27400 0.28852

Table 6.1: Energy values for Flatness (cf. Equation (6.1) with m; = my = 8), Lin-
earity, Planarity, and Scattering (cf. Equation (5.6)) applied to point distributions
shown in Figure 6.4.

(a) (b) () (d)

Figure 6.5: Shows results of energies Flatness (a) (cf. Equation (6.1) with
my = my = 8), Omnivariance (b), Anisotropy (c), and Change of Curvature (d) (cf.
Equation (6.2)) on the Fandisk model ranging from low ([]) to high (Jll) energy
interpolating between the minimal and maximal obtained values. The orange circles
in (a) set focus on the ridge (left) and curvy edge (right).

Feature Classification Comparison For the comparison in terms of feature
classification we consider the three entities omnivariance O,, anisotropy A,, and
change of curvature C) all mentioned in [WJM14], i.e.

€1 — €3

Oy = Jejeqes, Ayx=1-— , and ()=

)
€1 €1+62+€3

€3

(6.2)

where e; is the normalized eigenvalue e; = X\; /(A + Ao + A3), A1 > Ay > A3 > 0 and
A1 > 0. Note that we reversed the anisotropy (compared to the one in [WJM14])
to streamline (visual) comparisons. From a visual perspective the flatness energy
with values m; = my = 8 is able to capture feature lines while holding flat areas,
even if they are bent, with lower energy. Also the ridge and edges without sharp
cuttings are highlighted, cf. Figure 6.5(a). The other entities also capture important
features yet either with much more emphasis (cf. ridge or bent flat regions in Figure
6.5(b)) or even less (cf. edges in Figures 6.5(c) and 6.5(d)). Note that the color
interpolation ranges between the minimal and maximal determined values, therefore
lighter blue tones are really to be perceived as lower energy values.

In Figure 6.6 we count points in the geometry lying within some energy range,
where all of these ranges are normalized w.r.t. the maximal recorded error value
(the minimal values are close to 0). This normalization is done, because flatness
ranges up to 2 while change of curvature is smaller 1 and therefore we can extract
how energies are distributed among the whole range. A direct comparison between
two entities in contrast seems not advisable, but for instance from the behavior of

Chapter C. Inside a Cloud 93

4,000 | I Flatness
g 00 Omnivariance
53,000 - i Anisotropy
E2,000 i lIChange of Curvature
jan}
21,000 |
0 ﬂ .:!* = T

I
o0 01 02 03 04 05 06 07 08 09 1.0
Energy ranges

Figure 6.6: Shows distributions of energy values of examples presented in Figure 6.5
within energy ranges, for instance bars at 0.0 represent the number of points within
range [0.0,0.1). The last bin refers to energy equal to 1. The energy ranges are nor-
malized w.r.t. the maximal energy value of the respective type, i.e. 0.999 (flatness),
0.329 (omnivariance), 0.676 (anisotropy), and 0.271 (change of curvature).

R

oy o
F e ok f"”‘”@f {
‘i R g ’g 3& ; L
I i
N W
(a) (b)

Figure 6.7: Shows results of flatness energy (cf. Equation (6.1) with m; = my = 8)
with three scales for the combinatorial neighborhood k € {14,28,56} (fl.t.r.) on
the noisy Dodecahedron model ranging from low ([]) to high (Jll) energy.

the flatness values we can see that a large portion falls into low energies in [0,0.1)
with a larger increase in the area around [0.5,0.8). This might be of interest when
we want to decouple features by energy values w.r.t. a threshold and it could further
lay the starting point for segmentation, i.e. here grouping connected® points into a
segment lying in some energy range. Omnivariance shows a similar behavior, yet
being normalized by a rather small maximal value. For the last two entities such a
clear gap for distinction does not arise, because their bars somehow decrease without
a further bump later.

Flatness on Noisy Geometries Here we want to investigate the impact of noise
towards the flatness energy. We assume that small spatial variations in the distri-
butions cause significant deviations in the error values which therefore makes the
distinction into flat and non-flat parts worse. In Figure 6.7 we visually represented
the energy values on a Dodecahedron model with 3, 842 points equipped with Gaus-
sian noise in normal direction with an amplitude of 25% of the average neighbor
distance (taken as averaged sum over all points and their 12 nearest neighbors). For
the energy we took m; = my = 8 and let the combinatorial neighborhood size &
range among 14, 28, and 56. Respective energy distributions can be seen in Fig-

SHere connection can be again thought of w.r.t. the local vicinity around a point.

94 6. Flatness Model

800 | fik=14
g lok=28
z 600 - Ink—56
= 400
8=
~ 200

0

00 01 02 03 04 05 06 07 08 09 1.0
Energy ranges

Figure 6.8: Shows distributions of energy values of examples presented in Figure 6.7
within energy ranges, for instance bars at 0.0 represent the number of points within
range [0.0,0.1). The last bin refers to energy equal to 1. The energy ranges are
normalized w.r.t. the maximal energy value of the respective size, i.e. 0.984 (k = 14),
0.919 (k = 28), and 0.826 (k = 56).

ure 6.8. Here our assumption is confirmed, i.e. lower portions of point distributions
with more spatial deviations due to noise have a greater impact on energy ranges.
But a way to counteract it is to increase the points to be considered, therefore a size
of k = 56 still does not recover (almost) flat regions with low energy, but it somehow
decouples flat from non-flat points more clearly (see energy distribution histogram
and also the visual representation) compared to lower sizes. Here it seems to be a
balance between amplitude of noise versus sampling density plays a major role into
a more reliable usage of the flatness energy, i.e. larger amplitudes demand for more
dense samplings so that we can increase the distribution sizes we take the energies
from.

Flatness in Denoising After a brief investigation in the behavior on noisy ge-
ometries we want to think of an application scenario, namely the denoising of point
set geometries. As the flatness energy could be used as a continuous model for fea-
ture classification, we want to recall what we have done in the point set denoising
algorithm [YRST18]. This iterative scheme consists of three stages with a point
normal filtering, feature detection, and point update w.r.t. classified features. We
already did an experiment to improve the results of the normal filtering, see the ap-
plication scenario in Section 5.4. With the flatness energy being a continuous model
without any necessity of point normals we do not want to improve on the feature
classification in that algorithm, as normals are provided there and using those for
a cut-off in terms of feature detection is natural. We aim to couple all steps into
two, i.e. determine energies and update w.r.t. to these energies, and try to use less
parameters with a significant impact.

Suppose we are given the points P of our noisy geometry. In an iterative scheme
we determine the energy value E, (cf. Equation (6.1)) for each p € P w.r.t. the
combinatorial neighborhood (cf. Example 1 v)) and then send

p=p+e(n(2—E,)(=dus)+ (1 —n)E,(p—p)). (6.3)

Thus we add to the point p a sum of weighted terms scaled with € € R to adjust
the distance of movement. The left term shall send the point p towards the plane

Chapter C. Inside a Cloud 95

e

(a) (b) () (d)

Figure 6.9: Top row shows points representing a Dodecahedron with the respective
mesh representation below. The first column gives the noisy model and the other
columns display results after 60 iterations with £ = 14,8,28 and n = 0.5,0.5, 1 from
(b) to (d), respectively. The color interpolation is done w.r.t. the flatness energy
(cf. Equation (6.1) with m; = my = 8) ranging from low ([]) to high (Jll]) energy.

represented by the barycenter b of the combinatorial neighborhood and normalized
eigenvector U3 to eigenvalue A3 (used for the flatness energy), thus d is the signed
distance w.r.t. this plane. The right term sends p towards p, which is the orthog-
onal projection of p onto the line given by b and the normalized eigenvector v; to
eigenvalue A\;. The first term is scaled by (2 — E,), i.e. if the energy is lower we
consider the point to belong to a flat region, thus we send it towards the plane,
otherwise it is higher and we send it with the weight E, onto the line. Additionally
we artificially weight both terms with n € [0, 1].

Figure 6.9 shows examples on a noisy Dodecahedron model with 3,842 points
equipped with Gaussian noise in normal direction with an amplitude of 25% of the
average neighbor distance (taken as averaged sum over all points and their 12 nearest
neighbors.). For the flatness energy we set m; = mgy = 8, ¢ = 0.1, and apply 60
iterations. One such iteration determines a new combinatorial neighborhood for the
values k € {8, 14, 28}, the flatness energy for every point, and then sends every point
according to Equation (6.3). After an iteration all points are updated to the new
points. In Figure 6.9(b) we used a medium size of neighbors (k = 14), deviating
from the insights gained in the previous analysis on noisy geometries. With a larger
number of iterations we can see that with n = 0.5, i.e. weighting both terms equally,
points in feature regions are slowly moved towards each other, i.e. tangential drift,
causing holes in the point set. This effect can be narrowed selecting an even smaller
size k = 8 in Figure 6.9(c). Here for some points of the Dodecahedron we can
observe the behavior of tangential drift. In contrast, with n = 1, i.e. we ignore the
second term in the update and send points only towards the plane, an even larger
size k = 28 generates updates of better quality without moving points towards each
other, see Figure 6.9(d). Thus, at the moment n = 1 provides the possibility to
make use of higher neighborhood sizes k which are important when dealing with
noisy geometries.

Note that while we have some parameters (iterations, k, my, mso, 1, and &),

96 6. Flatness Model

currently only k£ and 7 might have a more significant impact and yet only if n # 1.
Thus this scenario incorporating the flatness energy continuously into an denoising
scheme acts as a first step and future directions could be the following: First, the
second term in the update is sensitive to neighborhood sizes and causes tangential
drift. Here we could change the update to apply dynamically, i.e. we start with
larger neighborhood sizes k and a focus on the first term (7 = 1), decreasing n and
k while the number of iterative steps increase. Second, currently feature regions are
not reconstructed with sharp creases if those were originally present in the ground
truth model. Thus, making the update scheme sensitive to these geometric details
is another open question.

6.3 Conclusion and Further Research

In this section we proposed the flatness model working as an energy and consisting
of eigenvalues taken from a covariance matrix generated by a distribution of points
in R3. This energy uses the latter two eigenvalues normalized by the first and sets its
emphasis on flat or non-flat appearances. As such it applies for feature classification
or a continuous model for point set denoising without the necessity of point normals
or influential thresholds. Some open questions are comprised in the following list.

e The parameter analysis and respective histogram results gave some insight
of the distributions of energies and a possible way to introduce thresholds to
cut-off ranges and work towards point segmentation. Here we can assume
that points close to each other do not provide a large deviation in energy in
general and as the energy measures flatness the approach is similar to the one
discussed in Section 4. Hence, we could think of incorporating the flatness
energy into a segmentation algorithm without the necessity of (oriented) point
normals. Such segmentation could be achieved after a single step as energies
do not change. However, reassignments at region boundaries could benefit a
regions’ total energy, the latter is yet to be defined.

e We have seen first examples on feature classification. An open question is
the quality and benefits the flatness energy model can achieve thoroughly
compared to other classification entities and application scenarios.

e We incorporated the flatness energy into a point set denoising algorithm. The
partition into 2- and 1-dimensional update schemes seems necessary to account
for surface-like and feature line regions, respectively. The point update model
introduces tangential drift whenever we put an emphasis on point updates to-
wards the 1-dimensional affine subspaces, at least when the point distributions
are larger. Thus a future direction is a proper movement of points reflecting
features of the geometry.

Chapter C. Inside a Cloud 97

Conclusion

In this thesis we investigated set systems on geometric point data in Euclidean space
from a macroscopic (first two chapters) and microscopic (last chapter) perspective.

In Chapter A we described cloud sets, which are set systems build on points
which give rise to simplicial complexes as control structures. The preferred instance
of such structure is a simplicial surface (making the cloud complex a cloud surface),
so that the system of clouds mimics the properties of a collection of subsets we find
in an atlas describing a 2-manifold. We discussed the generation of cloud surfaces
on one hand starting with a simplicial surface, generating points, and placing them
in clouds. On the other hand we focused on the reverse direction, obtaining the
clouds from a point set which led to topolgical questions on coverings. In practice
we used the cloud surfaces’ underlying simplicial surface as a skeleton to perform
point motions in Euclidean space.

In Chapter B we derived a second set system which is dual to the one in the
first chapter under certain conditions. For the resulting complex we conjectured
them to be surface-like, i.e. having combinatorial properties so that each point
has at least an abstract vicinity which is perceivable to be 2-dimensional. For their
construction we presented a k-means clustering approach for point sets coupled with
an application of generating a simplified polygonal surface out of the segmentation
also reconstructing polygonal faces which are not necessarily simply connected.

In Chapter C we partitioned the microscopic investigation inside a cloud in two.
First we set up a large scale evaluation to determine a neighborhood around a point
accounting as an approximation of a 2-dimensional vicinity using an energy model
on feature classification entities built from eigenvalues obtained by a weighted point
distribution analysis. The evaluation explores the parameter spaces of the weighting
function and combinatorial neighborhood sizes of the point distributions. Secondly
we proposed the flatness model as a feature classification entity favoring point dis-
tributions which appear to be 2-dimensional and not curve-like or volumetric. This
continuous model then is incorporated into a point set denoising application to eval-
uate its potency using less parameters and preserving geometric features without
the necessity of point normal information.

Chapter C. Bibliography I

Bibliography

[ABYS]

[AB99)

[ABCO*01]

[ABCO*03]

[AP10]

[BLOG]

IBL12]

[BNPS17]

|[BRLB14]

Nina Amenta and Marshall Bern. Surface reconstruction by voronoi
filtering. In Proceedings of the Fourteenth Annual Symposium on Com-
putational Geometry, SCG 98, pages 39-48, New York, NY, USA,
1998. Association for Computing Machinery.

Nina Amenta and Marshall Bern. Surface reconstruction by voronoi
filtering. Discrete €& Computational Geometry, 22:481-504, 12 1999.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman,
David Levin, and Claudio T. Silva. Point Set Surfaces. In VIS’01:
Proceedings of the conference on Visualization '01, pages 21-28. IEEE
Computer Society, 2001.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman,
David Levin, and Claudio T. Silva. Computing and rendering point set
surfaces. IEFE Transactions on Visualization and Computer Graphics,
9(1):3-15, 2003.

Marco Attene and Giuseppe Patané. Hierarchical structure recovery of
point-sampled surfaces. In Computer Graphics Forum, volume 29 (6),
pages 1905-1920. Wiley Online Library, 2010.

David Belton and Derek D. Lichti. Classification and segmentation of
terrestrial laser scanner point clouds using local variance information.
The International Archives of the Photogrammetry, Remote Sensing,
and Spatial Information Sciences, 36(5):44-49, 2006.

Nicolas Brodu and Dimitri Lague. 3D terrestrial lidar data classifica-
tion of complex natural scenes using a multi-scale dimensionality cri-
terion: Applications in geomorphology. ISPRS Journal of Photogram-
metry and Remote Sensing, 68:121-134, 2012.

Karl-Heinz Brakhage, Alice Niemeyer, Wilhelm Plesken, and Ansgar
Strzelczyk. Simplicial surfaces controlled by one triangle. Journal for
Geometry and Graphics, 21:141-152, 01 2017.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black.
FAUST: Dataset and evaluation for 3D mesh registration. In Pro-
ceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 3794-3801, Piscataway, NJ, USA, 6 2014. IEEE.

IT

[BSW09]

[BTSH17]

[CD19

[CSADO4]

[CW07]

[CZMK16]

[DMDV11]

[DNOS]

[FCD21]

[FRO1]

[GHYT]

|GMR17]

Mikhail Belkin, Jian Sun, and Yusu Wang. Constructing Laplace Oper-
ator from Point Clouds in RY, pages 1031-1040. Society for Industrial
and Applied Mathematics, 2009.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez,
Gaél Guennebaud, Joshua A. Levine, Andrei Sharf, and Claudio T.
Silva. A survey of surface reconstruction from point clouds. Comput.
Graph. Forum, 36 (1):301-329, 2017.

Jhonatan Contreras and Joachim Denzler. Edge-convolution point net
for semantic segmentation of large-scale point clouds. In IGARSS 2019
- 2019 IEEFE International Geoscience and Remote Sensing Sympo-
sium, pages 5236-5239, 2019.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
Shape Approximation. In ACM Transactions on Graphics (TOG), vol-
ume 23 (3), pages 905-914. ACM, 2004.

Barbara Cutler and Emily Whiting. Constrained planar remeshing for
architecture. In Proceedings of Graphics Interface 2007, pages 11-18,
2007.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A
large dataset of object scans. arXiw:1602.02481, 2016.

Jerome Demantké, Clément Mallet, Nicolas David, and Bruno Vallet.
Dimensionality based scale selection in 3D lidar point clouds. The

International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXVIII-5/W12:97-102, 2011.

Min Dai and Timothy S. Newman. Hyperbolic and parabolic quadric
surface fitting algorithms—comparison between the least squares ap-
proach and the parameter optimization approach. Technical report,
University of Alabama, 1998.

Tong Fu, Raphaélle Chaine, and Julie Digne. Baseline skinning for
point sets of articulated bodies. arXiw:2106.0351/, 2021.

Michael S. Floater and Martin Reimers. Meshless parametrization and
surface reconstruction. Computer Aided Geometric Design, 18(2):77—
92, 2001.

Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 209-216, 1997.

Eleonora Grilli, Fabio Menna, and Fabio Remondino. A review of point
clouds segmentation and classification algorithms. The International
Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLII-2 (W3):339-344, 2017.

Chapter C. Bibliography I11

IGPOT]

[Hat10]

[HBC11]

[HDD*92)

[HHL15|

[HLKD19]

[HZG 18]

|JHPS21]

[Lar12]

[LB16]

[LCOLO6]

[Lee00]

[Levog

Markus Gross and Hanspeter Pfister, editors. Point-based graphics
[electronic resource] / edited by Markus Gross and Hanspeter Pfister.
The Morgan Kaufmann series in computer graphics. Morgan Kauf-
mann, Amsterdam, 1st edition edition, 2007.

Allen Hatcher. Algebraic topology / Allen Hatcher, Cornell University.
Cambridge University Press, Cambridge, first published, 13. printing
edition, 2010.

Paul Harris, Chris Brunsdon, and Martin Charlton. Geographically
weighted principal components analysis. International Journal of Ge-
ographical Information Science, 25(10):1717-1736, 2011.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface Reconstruction from Unorganized Points. In
Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, pages 71-78. ACM, 1992.

Zhen Hua, Zilong Huang, and Jinjiang Li. Mesh simplification using
vertex clustering based on principal curvature. International Journal
of Multimedia and Ubiquitous Engineering, 10(9):99-110, 2015.

Janghun Hyeon, Weonsuk Lee, Joo Hyung Kim, and Nakju Doh. Norm-
net: Point-wise normal estimation network for three-dimensional point
cloud data. International Journal of Advanced Robotic Systems, 16(4),
2019.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. Tetrahedral meshing in the wild. ACM Trans.
Graph., 37(4), 2018.

Mohd Javaid, Abid Haleem, Ravi Pratap Singh, and Rajiv Suman. In-
dustrial perspectives of 3d scanning: Features, roles and it’s analytical
applications. Sensors International, 2, 2021.

Oliver Laric. http://threedscans.com/, 2012. Online, accessed 14
September 2023.

Kai Wah Lee and Pengbo Bo. Feature curve extraction from point
clouds via developable strip intersection. Journal of Computational
Design and Engineering, 3(2):102-111, 2016.

Yaron Lipman, Daniel Cohen-Or, and David Levin. Error Bounds and
Optimal Neighborhoods for MLS Approximation. In Proceedings of the
fourth Eurographics symposium on Geometry processing, pages 71-80.
Eurographics Association, 2006.

John M. Lee. Introduction to topological manifolds / John M. Lee.
Graduate texts in mathematics 202. Springer, New York [u.a.]|, 2000.

David Levin. The approximation power of moving least-squares. Math-
ematics of Computation, 67(224):1517-1531, 1998.

http://threedscans.com/

1Y

[Lev04|

[L1082]

ILPO1]

[LWS85]

[MGMAIO6]

[MM]

[MNGO4]

[NL13]

[PGKO02|

[PKKGO3]

[PLL12]

[PRYZ]

[QSMG17]

David Levin. Mesh-independent Surface Interpolation. In Guido Brun-
nett, Bernd Hamann, Heinrich Miiller, and Lars Linsen, editors, Ge-
ometric modeling for scientific visualization, pages 37-49. Springer,
2004.

Stuart P. Lloyd. Least squares quantization in pcm. IEEFE transactions
on information theory, 28(2):129-137, 1982.

Lars Linsen and Hartmut Prautzsch. Local Versus Global Triangula-
tions. In Proceedings of EUROGRAPHICS, volume 1, pages 257-263,
2001.

Marc Levoy and Turner Whitted. The use of points as a display prim-
itive. Technical report, University of North Carolina, Department of
Computer Science, Chapel Hill, NC, USA, 1985.

Matthew R. Marler, Philip Gehrman, Jennifer L. Martin, and Sonia
Ancoli-Israel. The sigmoidally transformed cosine curve: a mathemati-
cal model for circadian rhythms with symmetric non-sinusoidal shapes.
Statistics in medicine, 25(22):3893-3904, 2006.

Mathworks and Matlab. Solve a constrained nonlinear prob-
lem, problem-based. https://de.mathworks.com/help/optim/ug/
solve-nonlinear-optimization-problem-based.html. Online, ac-
cessed 14 Septembers 2023.

Niloy J. Mitra, An Nguyen, and Leonidas Guibas. Estimating Surface
Normals in Noisy Point Cloud Data. International Journal of Compu-
tational Geometry € Applications, 14(04n05):261-276, 2004.

Anh Nguyen and Bac Le. 3d point cloud segmentation: A survey. In
2013 6th IEEE Conference on Robotics, Automation and Mechatronics
(RAM), pages 225-230, 2013.

Mark Pauly, Markus Gross, and Leif Kobbelt. Efficient simplification
of point-sampled surfaces. In Proceedings of the conference on Visual-
wzation’02, pages 163-170. IEEE Computer Society, 2002.

Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus Gross. Shape
Modeling with Point-Sampled Geometry. ACM Transactions on Graph-
ics, 22, 3:641-650, 2003.

Min Ki Park, Seung Joo Lee, and Kwan H Lee. Multi-scale tensor
voting for feature extraction from unstructured point clouds. Graphical
Models, 74(4):197-208, 2012.

Konrad Polthier, Ulrich Reitebuch, Sunil K. Yadav, and Eric Zimmer-
mann. Javaview 5.03.003. www.javaview.de. Online, accessed 14
September 2023.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In

https://de.mathworks.com/help/optim/ug/solve-nonlinear-optimization-problem-based.html
https://de.mathworks.com/help/optim/ug/solve-nonlinear-optimization-problem-based.html
www.javaview.de

Chapter C. Bibliography V

[RC11]

[RLBG*20]

[RVDHV06]

[RZP18]

ISFC10]

[Sha4§]

[SJP18]

[Skr19]

[SL16]

[SRZ21]

[SWK07|

Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652-660, 2017.

Radu Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
IEEE International Conference on Robotics and Automation (ICRA),
pages 6324-6328, 05 2011.

Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J
Mitra, and Maks Ovsjanikov. Pointcleannet: Learning to denoise and
remove outliers from dense point clouds. In Computer Graphics Forum,
volume 39, pages 185-203. Wiley Online Library, 2020.

Tahir Rabbani, Frank Van Den Heuvel, and George Vosselmann. Seg-
mentation of point clouds using smoothness constraint. International

archives of photogrammetry, remote sensing and spatial information
sciences, 36(5):248-253, 2006.

Ulrich Reitebuch, Eric Zimmermann, and Konrad Polthier. Two-
layer woven surfaces with planar faces. In Eve Torrence, Bruce Tor-
rence, Carlo Séquin, and Kristof Fenyvesi, editors, Proceedings of
Bridges 2018: Mathematics, Art, Music, Architecture, Education, Cul-
ture, pages 147-154, Phoenix, Arizona, 2018. Tessellations Publish-
ing. Available online at http://archive.bridgesmathart.org/2018/
bridges2018-147.pdf.

Batchimeg Sosorbaram, Tadahiro Fujimoto, and Norishige Chiba. Sim-
plification of point set surfaces using bilateral filter and multi-sized
splats. The Journal of the Society for Art and Science, 9 (3):140-153,
2010.

Claude E. Shannon. A Mathematical Theory of Communication. The
Bell System Technical Journal, 27:379-423, 1948.

Martin Skrodzki, Johanna Jansen, and Konrad Polthier. Directional
density measure to intrinsically estimate and counteract non-uniformity
in point clouds. Computer Aided Geometric Design, 64:73-89, 2018.

Martin Skrodzki. Neighborhood Data Structures, Manifold Properties,
and Processing of Point Set Surfaces. PhD thesis, Freie Universitit
Berlin, Berlin, Germany, 8 2019.

Barak Sober and David Levin. Manifold Approximation by Moving
Least-Squares Projection (MMLS). arXiv:1606.07104, 2016.

Martin Skrodzki, Ulrich Reitebuch, and Eric Zimmermann. Investiga-

tions of structures in the parameter space of three-dimensional Turing-
like patterns. In AUTOMATA2021, Marseille, France, 7 2021.

Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac
for point-cloud shape detection. In Computer graphics forum, volume
26 (2), pages 214-226. Wiley Online Library, 2007.

http://archive.bridgesmathart.org/2018/bridges2018-147.pdf
http://archive.bridgesmathart.org/2018/bridges2018-147.pdf

VI

SZ20]

[SZ21]

SZP19]

SZP20]

[Toel7]

[Wes01]

[WIM14]

[WKO5]

[XTZ20]

[Yan22|

[YHXL15]

[YLWO6]

[YRS*18|

Martin Skrodzki and Eric Zimmermann. Large-scale Evaluation of
Neighborhood Weights and Sizes. In Joint SPM/SMI 2020 Conference
— Poster Proceedings, pages 14-17, 2020.

Martin Skrodzki and Eric Zimmermann. A large-scale evaluation of

shape-aware neighborhood weights and neighborhood sizes. Computer-
Aided Design, 141, 2021.

Martin Skrodzki, Eric Zimmermann, and Konrad Polthier. Variational
Shape Approximation of Point Set Surfaces. In IGS 2019 International
Geometry Summit — Poster Proceedings, pages 54-57, 2019.

Martin Skrodzki, Eric Zimmermann, and Konrad Polthier. Variational
shape approximation of point set surfaces. Computer Aided Geometric
Design, 80, 2020.

Fridtjof Toenniessen. Topologie : ein Lesebuch von den elementaren
Grundlagen bis zur Homologie und Kohomologie / Fridtjof Toen-
niessen. Springer Spektrum, Berlin, Germany, 2017.

Douglas B. West. Introduction to graph theory / Douglas B. West.
Prentice Hall, Upper Saddle River, NJ, 2. ed. edition, 2001.

Martin Weinmann, Boris Jutzi, and Clément Mallet. Semantic 3D scene
interpretation: a framework combining optimal neighborhood size se-
lection with relevant features. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 11-3:181-188, 2014.

Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational
surface approximation. In Computer Graphics Forum, volume 24 (3),
pages 277-284. Wiley Online Library, 2005.

Yuxing Xie, Jiaojiao Tian, and Xiao Xiang Zhu. Linking points with
labels in 3d: A review of point cloud semantic segmentation. [FFFE
Geoscience and Remote Sensing Magazine, 8(4):38-59, 2020.

Yanan Yang. The skinning in character animation: A survey. Academic
Journal of Computing & Information Science, 5 (4):4-17, 2022.

Li Yao, Shihui Huang, Hui Xu, and Peilin Li. Quadratic error metric
mesh simplification algorithm based on discrete curvature. Mathemat-
ical Problems in Engineering, 2015.

Dong-Ming Yan, Yang Liu, and Wenping Wang. Quadric surface ex-
traction by variational shape approximation. In Myung-Soo Kim and
Kenji Shimada, editors, Geometric Modeling and Processing - GMP
2006, pages 73-86, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

Sunil Kumar Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmer-
mann, and Konrad Polthier. Constraint-based point set denoising using
normal voting tensor and restricted quadratic error metrics. Computers
& Graphics, 74:234-243, 2018.

Chapter C. Bibliography VII

[YSZP21]

[ZCHK12]

Sunil Kumar Yadav, Martin Skrodzki, Eric Zimmermann, and Kon-
rad Polthier. Surface denoising based on normal filtering in a robust
statistics framework. In Jin Cheng, Xu Dinghua, Osamu Saeki, and To-
moyuki Shirai, editors, Proceedings of the Forum “Math-for-Industry”
2018, pages 103-132, Singapore, 2021. Springer Singapore.

Henrik Zimmer, Marcel Campen, Ralf Herkrath, and Leif Kobbelt.
Variational tangent plane intersection for planar polygonal meshing.
In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Bal-
dassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in
Architectural Geometry 2012, pages 319-332. Springer, 2012.

Declaration of Authorship

Name: Zimmermann
First name: Eric

I declare to the Freie Universitdt Berlin that I have completed the submitted dis-
sertation independently and without the use of sources and aids other than those
indicated. The present thesis is free of plagiarism. I have marked as such all state-
ments that are taken literally or in content from other writings. This dissertation
has not been submitted in the same or similar form in any previous doctoral proce-
dure. T agree to have my thesis examined by a plagiarism examination software.

Date: Signature:

Zusammenfassung

In dieser Arbeit werden Punktmengen, welche wie in unserem Fall zumeist von
Fléchen im 3-dimensionalen Raum stammen und als Repréisentation fiir diese Flichen
dienen, mit einer Struktur versehen und zwei Perspektiven untersucht.

Die erste ist dabei eine makroskopische Sichtweise. Im ersten Kapitel werden
Punkte derart durch ein Mengensystem (genannt Wolken oder Punktwolken) organ-
isiert, dass eine simpliziale Fliche als Kontrollstruktur abgeleitet werden kann. In
der Praxis betrachten wir zwei Mdoglichkeiten der Generierung einer solchen Kon-
trollstrutkur: zum einen startend von einer simplizialen Fliche, bei der wir Punkte
erzeugen und in Wolken verteilen, zum anderen ausgehend von Punkten im Raum,
bei der wir Teilmengen gegebener Punkte durch eine Uberlagerung ausschneiden,
um die simpliziale Flache zu erhalten. Die Wolken erinnern durch ihre Beziehung
zueinander an Teilmengen der Karten eines Atlas fiir eine Mannigfaltigkeit und mit
dieser Struktur untersuchen wir im Bereich der Anwendungen, inwiefern Bewegun-
gen der Punkte im Raum durch Positionsdnderungen einer Einbettung der Kontroll-
struktur im Raum hervorgerufen werden kénnen, wobei der Einfluss auf die Punkte
durch die Wolken gesteuert wird. Im zweiten Kapitel betrachten wir ein zweites
Mengensystem, welches sich unter Umstédnden dual zum ersten verhdlt. Hierbei
werden in der Kontrollstruktur Wolken nicht durch Punkte reprisentiert, sondern
durch 2-dimensionale Entitdten berandet durch moglicherweise mehrere Kurven.
Die Generierung eines solchen Mengensystems erreichen wir durch eine Segmen-
tierung der Punkte, welche orientierte Punktnormalen respektiert. Im Bereich der
Anwendung betrachten wir die Erzeugung eines polygonalen Netzes fiir die Kontroll-
struktur, sodass wir eine simplifizierte Représentation und somit Approximation der
Punkte erhalten.

Die zweite Perspektive untersucht eine mikroskopische Sichtweise. Im Gegensatz
zur Betrachtung der Verbindung der Wolken untereinander, konzentrieren wir uns
hier auf eine Wolke und die Punkte, die sie enthélt. Dabei betrachten wir eine Wolke
in diesem Sinne als eine Nachbarschaft der Punkte, die sie enthélt und zumeist
in einem lokalen Szenario, sodass fiir einen Punkt gezielt nach einer individuellen
Nachbarschaft gesucht wird. Im ersten Teil wird eine solche Nachbarschaft bewertet
durch eine Energie basierend auf geometrischen Merkmalen und zusatzlich gewichtet
durch Punktnormalen. Der Parameterraum fiir die Gewichtung und Groéfen der
Nachbarschaften wird dann in einem breit, d.h. basierend auf einer Vielzahl von
Modellen, angelegten Experiment analysiert. Der zweite Teil widmet sich einer
Beschreibung einer neuen Energie im 3-dimensionalen Raum zur Ermittlung von
geometrischen Merkmalen. Diese ist fiir Punkte in Flachen konzipiert, wobei flichige
Regionen durch niedrige Energiewerte bevorzugt und kurvige oder volumetrische
Regionen durch hohe Energiewerte ausgesondert werden. Das daraus enstehende
kontinuirliche Modell wird folgend integriert in eine Anwendung zum Entrauschen
von Punktmengen ohne weitere Informationen wie zum Beispiel Punktnormalen.

	Introduction
	Structure and Main Contributions
	Publications Prior to the Thesis
	Acknowledgments

	Cloud Surfaces
	Description of Cloud Surfaces
	Generation and Dynamic
	Generation from Pseudo-Surfaces
	Probabilistic Sphere Models
	Experimental Results

	Generation from Points
	Cloud Surfaces and Coverings of the Euclidean Space
	Experimental Results

	Cloud Dynamic
	Surface Orientation and Update Schemes
	Experimental Results

	Conclusion and Further Research

	Surface-like Structures
	Description of Surface-like Structures
	Segmentation and Simplification
	Related Work
	Segmentation
	Meshing and Simplification

	Segmentation
	The VSA Procedure for Surfaces and Surface Meshes
	The VSA Procedure on Point Sets

	Improved Segmentation Pipeline
	Example of Failed Convergence of the VSA Procedure
	VSA with Guaranteed Convergence
	User Controlled Level of Detail
	Experimental Results

	Simplification
	Vertices for a Simplified Mesh
	Faces for a Simplified Mesh
	Experimental Results

	Conclusion and Further Research

	Inside a Cloud
	Normal Weighted Neighborhoods
	Related Work
	Heuristics
	Error Functionals

	Sigmoids
	Evaluation Model
	Non-Degenerate Covariance Matrix
	Degenerate Covariance Matrix

	Experimental Results
	Conclusion and Further Research

	Flatness Model
	Description of Flatness Model
	Experimental Results
	Conclusion and Further Research

	Conclusion
	Bibliography

