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Abstract 

Pediatric solid tumors represent a unique challenge for cancer therapeutics, due to their 

unique genetic background. Despite advances in cancer treatment, some forms of pedi-

atric cancer continue having a poor outcome. Here we look at the effectiveness of ATR 

inhibitors in two pediatric solid tumors, alveolar rhabdomyosarcoma and MYCN-amplified 

neuroblastoma. ATR inhibitors showed a strong antitumor activity in alveolar rhabdomy-

osarcomas, observed as an accumulation of DNA damage and genomic instability that 

resulted in cell death. Using phosphoproteomics, we identified BRCA1, and more broadly 

homologous recombination, as being compromised upon ATR inhibition, and hypothesize 

that defects in DNA repair are responsible for sensitivity to ATR inhibitors. We also iden-

tified PAX3-FOXO1, a fusion oncoprotein characteristic of alveolar rhabdomyosarcoma, 

as a factor that increases replication stress and sensitizes alveolar rhabdomyosarcomas 

to ATR inhibition. Because resistance to therapy is frequently the cause of treatment fail-

ure, we looked at potential mechanisms of resistance to ATR inhibitors and identified the 

FOS family genes as candidates for ATR inhibitor resistance in alveolar rhabdomyosar-

coma. Finally, we looked at the efficacy of ATR inhibitors in patient-derived xenograft 

models of alveolar rhabdomyosarcoma as a monotherapy and in combination with the 

PARP1 inhibitor olaparib. ATR inhibitors as a monotherapy were sufficient to achieve 

stable disease in alveolar rhabdomyosarcoma with minimal side effects, while the com-

bination with olaparib resulted in total remission of the tumors. In MYCN-amplified neuro-

blastoma, together with Prof. Dr. Martin Eilers, we looked at the combination of ATR in-

hibitors to Aurora A kinase inhibitors. Previously, they identified Aurora A kinas as an 

interaction partner of MYCN important for MYCN activity regulation. Inhibition of Aurora 

A kinase resulted in increased replication stress, which we hypothesized could be further 

exacerbated by adding ATR inhibitors. Our result show a strong antitumor effect of the 

combination thanks to the recruitment of immune cells to the tumor site. Together, both 

studies demonstrate the potential of ATR inhibitors as a novel therapy in pediatric solid 

tumors. 
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Zusammenfassung 

Pädiatrische solide Tumore stellen aufgrund ihrer einzigartigen genetischen Komposition 

eine besondere Herausforderung für die Krebstherapie dar. Trotz der Fortschritte in den 

Therapieansätzen sind die Behandlungsergebnisse bei einigen Formen von Kinderkrebs 

nach wie vor unzureichend. Hier untersuchen wir die Wirksamkeit von ATR-Inhibitoren 

bei zwei pädiatrischen soliden Tumoren, dem alveolären Rhabdomyosarkom und dem 

MYCN-amplifizierten Neuroblastom. ATR-Inhibitoren zeigten bei alveolären Rhabdomy-

osarkomen eine starke Antitumoraktivität, die sich in einer Anhäufung von DNA-Schäden 

und genomischer Instabilität äußert, welche zum Zelltod führen. Mithilfe der Phosphopro-

teomik haben wir BRCA1 und damit die homologe Rekombination als durch ATR-Inhibi-

tion beeinträchtigt identifiziert. Dadurch stellen wir die Hypothese auf, dass Defekte in der 

DNA-Reparatur für die Empfindlichkeit gegenüber ATR-Inhibitoren verantwortlich sind. 

Wir haben außerdem PAX3-FOXO1, ein für alveoläre Rhabdomyosarkome charakteristi-

sches Fusionsonkoprotein, als einen Faktor identifiziert, der den Replikationsstress er-

höht und alveoläre Rhabdomyosarkome für eine ATR-Inhibition sensibilisiert. Da Thera-

pieresistenz häufig die Ursache für ein Versagen der Behandlung ist, untersuchten wir 

mögliche Resistenzmechanismen gegen ATR-Inhibitoren und identifizierten die Gene der 

FOS-Familie als Kandidaten für die ATR-Inhibitorresistenz bei alveolären Rhabdomy-

osarkomen. Schließlich untersuchten wir die Wirksamkeit von ATR-Inhibitoren in von Pa-

tienten abgeleiteten Xenotransplantationsmodellen des alveolären Rhabdomyosarkoms 

als Monotherapie und in Kombination mit dem PARP1-Inhibitor Olaparib. ATR-Inhibitoren 

als Monotherapie reichen aus, um bei alveolärem Rhabdomyosarkom eine stabile Er-

krankung zu erreichen und rufe dabei nur minimale Nebenwirkungen hervor. Die Kombi-

nation mit Olaparib führt zu einer vollständigen Remission der Tumore. Beim MYCN-

amplifizierten Neuroblastom haben wir zusammen mit Prof. Dr. Martin Eilers die Kombi-

nation von ATR-Inhibitoren mit Aurora-A-Kinase-Inhibitoren untersucht. Zuvor hatte seine 

Arbeitsgruppe Aurora-A-Kinasen als Interaktionspartner und Regulatoren von MYCN 

identifiziert.  Die Hemmung der Aurora-A-Kinase führte zu einem erhöhten Replikations-

stress, der, so unsere Hypothese, durch die Zugabe von ATR-Inhibitoren noch verstärkt 

wird. Unsere Ergebnisse zeigen eine starke antitumorale Wirkung der Kombinationsthe-

rapie auf Grund der Infiltration von Immunzellen in den Tumor. Beide Studien zusammen-

genommen zeigen das Potenzial von ATR-Inhibitoren als neuartige Therapie bei pädiat-

rischen soliden Tumoren. 
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1. Introduction 

1.1. Pediatric solid tumors 

Cancer is a disease predominantly associated with age, but can also happen during the 

first two decades of life, coinciding with the active growth and development phase. Around 

40% of early life cancers are leukemias and lymphomas, with the rest being pediatric 

solid tumors(1). Of those, the most common are tumors affecting the central nervous 

system (CNS), neuroblastoma (NB) and soft tissue sarcomas, including rhabdomyosar-

coma (RMS), Ewing sarcoma (EWS) and osteosarcoma(2). In this work, I focus on two 

pediatric solid tumor types, RMS and NB, as both provide unique clinical and research 

challenges. 

 

1.1.1. Rhabdomyosarcoma 

Rhabdomyosarcoma (RMS) is a cancer of the muscle that is presumed to arise from 

muscle progenitor cells(3, 4). It has an incidence of 4.5 new cases per 1,000,000 children 

per year, being the most common soft tissue sarcoma in childhood and the third most 

common pediatric solid tumor(5). There are two major subtypes of the disease, embryo-

nal and alveolar RMS. Embryonal rhabdomyosarcomas (ERMS) represent 75% of the 

RMS cases, with a better overall survival (70-90%)(6, 7). Alveolar rhabdomyosarcomas 

(ARMS) are less common, about 20% of all cases, but have much worse prognosis, with 

a five-year survival of 30%(6, 7). 

Molecularly, ERMS and ARMS are driven by different oncogenes and biological path-

ways. Most ERMS present mutations in the RAS and PI3K pathways, with up to 30% of 

ERMS having an NRAS mutation(8). ARMS on the other hand present a balanced chro-

mosome translocation between chromosomes 2 and 13, which creates a fusion oncopro-

tein involving the PAX3 and FOXO1 genes(9-11). Other translocations that appear in 

ARMS are PAX7-FOXO1 and PAX3-NCOA1, but the specific differences between them 

are uncharacterized(10). Besides the fusion translocation, ARMS present amplifications 

of MYCN and CDK4(8). About 20% of ARMS do not present the fusion oncoprotein. 

These tumors resemble ERMS at the molecular level, suggesting that classification of 

RMS based on their genotype is more precise than the traditional histological ap-

proach(12). 
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RMS are treated according to their risk assessment. Low-risk RMS are treated with a 

combination of vincristine, actinomycin D and cyclophosphamide (VAC, in the USA) or 

ifosfamide (IVA, in Europe), whereas high-risk RMS have additionally cixutumumab or 

temozolomide(13). Despite advances in cancer therapeutics, RMS treatment has re-

mained unchanged over the last four decades. New approaches for treatment of RMS 

are being developed(14), with the most promising ones being BRD4 and CHD4 inhibi-

tors(15, 16), which disrupt transcription of PAX3-FOXO1 targets. A phase I clinical trial 

for histone deacetylase (HDAC) inhibitors in pediatric solid tumors recently showed good 

tolerability, but the effectiveness in RMS treatment remains uncertain(17). Similarly, in-

hibitors against receptor tyrosine kinases (RTK), RAS and PI3K pathways, which are fre-

quently mutated in RMS, are under study, but show limited efficacy, due to the high re-

dundancy and cross-talk among these factors(18-20). Immunotherapy approaches have 

also shown limited efficacy in RMS, partly due to the lack of neoantigens and accessibility 

of immune cells(21, 22). Taken together, novel approaches are urgently needed, partic-

ularly for ARMS, which have dismal survival with current chemotherapy treatments. 

 

1.1.2. Neuroblastoma 

Neuroblastoma (NB) is an embryonal tumor that typically develops in the adrenal medulla 

or paraspinal ganglia. The cell of origin is a precursor cell derived from neural-crest tis-

sue(23). It has an incidence of 10.2 cases per million children, being the most common 

solid tumor in childhood. According to the Surveillance, Epidemiology and End Results 

database (SEER), the survival rate for NB has increased to 80%, mainly due to the im-

proved treatment of the more benign forms of NB. High-risk NB, however, have a survival 

rate of 50%(24, 25). 

Molecularly, NB present few somatic mutations, but frequent copy number altera-

tions(26). Among them, MYCN amplifications are the most important prognostic factor for 

poor outcome(27). MYCN is a neuronal paralog of the c-MYC transcription factor that can 

bind to multiple promoter and enhancers and promote gene expression(28). MYCN am-

plification can co-occur with ALK mutations and amplifications(29). ALK is a receptor ty-

rosine kinase that can activate the RAS-MAPK and PI3K-AKT pathways(30). Tumors har-

boring both MYCN amplifications and ALK alterations are a particularly high-risk sub-

group(29, 31). Additionally, telomere maintenance mechanisms are activated in NB. In 
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high-risk, MYCN-non amplified NB, alternative lengthening of telomeres (ALT) is present, 

usually due to mutations in the epigenetic regulator ATRX(32-34). Alternatively, telomer-

ase upregulation is achieved by chromosomal rearrangements that drive TERT overex-

pression(35, 36). 

NB treatment varies according to the risk group. Some NB spontaneously regress(37), 

particularly in patients under one year of age, and therefore only monitoring is required. 

For intermediate and high-risk NB, a combination of surgery and chemotherapy is re-

quired, followed by myeloablative chemotherapy and autologous stem cell transplanta-

tion(38). Nonetheless, relapses remain frequent, urging for novel, targeted therapies. An-

tibodies against the glucoside GD2, frequently expressed in NB, have shown efficacy 

against high-risk NB(39). Similarly, a CAR-T cells against GD2 are currently under inves-

tigation(40). ALK inhibitors are currently being studied in NB with ALK aberrations(41, 

42), and are expected to be included in the current therapy regimes. Targeting MYCN is 

an attractive albeit challenging approach. Aurora A is an interaction partner of MYCN that 

stabilizes it, while also controlling MYCN-dependent expression during S-phase(43). Au-

rora A kinase inhibitors have been shown to promote MYCN destabilization and degra-

dation(44, 45) and are currently in a phase II clinical trial in combination with chemother-

apy(46). Future research could help improve current and developing treatments to in-

crease the survival rate of neuroblastoma. 

 

1.2. DNA damage and cancer 

Genome stability is critical to support survival and reproduction. However, DNA is sub-

jected to mutations, either caused by external agents (UV light, radiation) or as a product 

of their own metabolism (reactive oxygen species, errors introduced during DNA replica-

tion). DNA damage can severely affect the normal activity of biological processes, either 

by creating structures that interrupt or block DNA replication and transcription, or by in-

troducing mutations in the DNA sequence that affect the protein function.  As such, cells 

are equipped with sophisticated regulatory pathways, the DNA damage response (DDR) 

to ensure that upon detection of the DNA damage, the cell cycle is stopped until the DNA 

is repaired, and if the damage is too severe to be fixed, the cell is removed from the tissue 

through cell death.  
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1.2.1. The DNA damage repair pathways 

There are multiple DNA repair pathways that will respond to specific types of DNA dam-

age and are active at different phases of cell cycle. When the damage affects the DNA 

base, but not the strand, three main DNA repair pathways can be activated, depending 

of the type of damage. Base excision repair (BER) responds to modifications of a single 

nucleotide base, such as oxidation or alkylation, by removing the base and introducing 

the new one using the complementary strand as a template. Nucleotide excision repair 

(NER) responds to more bulky lesions such as pyrimidine dimers formed by UV light. The 

affected nucleotides and their surrounding will be removed to allow the synthesis of a 

repaired strand using the complementary strand as a template. Mismatch repair (MMR) 

responds to post-replicative mismatch bases that can occur when the wrong nucleotide 

is introduced or after polymerase slippage. The damaged strand will be open, cut, and 

the new strand will be synthesized using the complementary strand as a template.  

DNA damage affecting the complete strand are more severe, as the DNA sequence is 

interrupted. It can affect only one strand (single strand break, SSB) or both (double strand 

break, DSB) and can be repaired through two pathways: non-homologous end joining 

(NHEJ) and homologous recombination (HR). NHEJ is active thorough the cell cycle, but 

HR is preferred after DNA replication, when a sister chromatid is available as a template 

for repair(47, 48). 

There are three kinases that orchestrate the response to SSB and DSB: DNA protein 

kinase (DNA-PK), Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related 

(ATR). The three of them share a similar structure and preferentially phosphorylate serine 

and threonine amino acids followed by glutamine (S/T-Q)(49-51). This means that many 

of their substrates can be phosphorylated by all three kinases, and therefore there is an 

overlap between their function. Nonetheless, each kinase responds to a specific stimulus 

and have unique targets, thus increasing the specificity and complexity of the DDR. DNA-

PK responds predominantly to DSBs and promotes NHEJ(52). ATM also responds pre-

dominantly to DSBs(53, 54), but it is capable of recruiting factors for NHEJ(55, 56) and 

HR(57-60). ATR on the other hand responds primarily to SSBs, which can occur after 

replication stress(61) and are also an intermediate step in DSB repair(62). Unlike DNA-

PK and ATM, ATR is an essential protein(63-65). Mice without ATR fail to develop, indi-

cating that ATR has a fundamental role in some of those processes. Furthermore, mice 
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with reduced levels of ATR are also more resistant to tumor development, indicating that 

ATR can protect cells from mutagenesis(66, 67). 

Because of its critical role in genome stability maintenance, mutations in genes of the 

DDR are common in cancer, as it allows for the accumulation of mutations that promote 

cancer development. At the same time, cancer cells rely on the DDR to sustain the in-

creased DNA damage induced by their metabolism, particularly replication stress, thus 

making the DDR promising targets for anticancer drug development. 

 

1.2.2. DNA Damage response as a therapeutic option for cancer 

Despite the differences among cancer types, there are some characteristics that are com-

mon to all cancers. These characteristics, termed hallmark of cancer by Douglas Hana-

han, were first described in the year 2000 and revisited in 2011 and 2022 to incorporate 

the growing knowledge of cancer biology(68-70). One of those hallmarks is genomic in-

stability, as a higher mutation rate favors the acquisition of pathogenic mutations that 

promote proliferation and survival of tumor cells. Genomic instability is frequently ac-

quired by impairing the activity of the DDR and avoiding the safeguards in place when a 

lesion occurs. Loss of function of many genes important for DDR are associated with 

cancer and syndromes with increased cancer susceptibility, such as loss of TP53(71, 72) 

(associated with Li Fraumeni syndrome and mutated in almost 50% of tumors), 

BRCA1(73) (associated with hereditary breast and ovarian cancer), and ATM (associated 

with breast cancer and ataxia-telangiectasia syndrome)(74, 75). Additionally, some on-

cogenes can induce DNA damage as a consequence of their activity. Overexpression of 

cyclines, important for cell division and proliferation, induces dormant origin firing(76-78). 

Some transcription factors, such as MYCN or EWS-FLI1, also induce replication stress 

by disrupting the transcription and replication machinery(79, 80). Oncogene-induced rep-

lication stress has recently been proposed as a cancer-specific vulnerability with thera-

peutic potential. These types of stressors typically generate DNA damage repaired by 

ATR, making ATR-dependent DNA repair the most therapeutically interesting pathway 

for cancer treatment.  

There are many ATR inhibitors currently in preclinical and clinical trials with a similar mo-

lecular structure. The most advanced in clinical trials are AZD6738 (ceralasertib), cur-
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rently in clinical trials for both solid tumors and leukemia, in combination with chemother-

apy, PARP1 inhibitors or immunotherapy (NCT05450692, NCT04417062, NCT03682289 

and others), and BAY 1895344 (elimusertib), for which recently it was reported the first-

in-human clinical trial(81) and is currently in phase I/II for other tumors, including pediatric 

solid tumors (NCT05071209, NCT03188965, NCT04616534 and others).  

 

1.3. Hypothesis 

Given the fundamental role of ATR and the effectiveness of ATR inhibition for treating 

several types of cancer, we wanted to investigate whether pediatric solid tumors could 

benefit from small molecule inhibitors. Of note, recent publications show that EWS re-

sponds well to ATR inhibitors. EWS is, similar to RMS, a soft tissue sarcoma driven by a 

fusion oncoprotein. These reports show that this fusion oncoprotein induce replication 

stress. It is tempting to speculate that the same would also be true for ARMS. Additionally, 

MYCN has been shown to increase replication stress due to its role as a transcription 

activator. Thus, MYCN-amplified NB could also be a candidate for ATR inhibition. 

During my PhD, my group and I have been focusing on developing ATR inhibitors as a 

therapeutic option for pediatric solid tumors, providing a rationale for their use and looking 

for biomarkers that predict response to ATR inhibition. We focused mainly on two tumor 

entities, NB, through a collaboration with Prof. Dr. Martin Eilers in the university of Würz-

burg, which led to a publication in Nature Cancer(82), and ARMS, the main focus of my 

PhD that was published in Nature Communications(83). Furthermore, we provide an in-

sight on potential resistance mechanisms to ATR inhibitors that could emerge in ARMS, 

and start a preclinical trial of elimusertib in mice, which serves as a proof of concept to 

launch a clinical trial (NCT05071209) in the US with our collaborators in Memorial Sloan 

Kettering Cancer Center (MSKCC) in New York. 
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2. Methods 

All methods are described in detail in Dorado García et al. (83) and Roeschert et al. (82). 

 

2.1. Cell culture 

Cells were grown in RPMI-1640 or DMEM (Thermo Fisher) supplemented with 10% fetal 

calf serum (Thermo Fisher) and penicillin/streptomycin (Thermo Fisher). The absence of 

Mycoplasma sp. was assesed using MycoAlert system (Lonza).  

Human primary myoblasts were derived from muscle biopsies from healthy donors. My-

oblast isolation was done at the HELIOS Hospital Berlin Buch with approval by the regu-

latory agencies (Ethics committee of Charité Universitätsmedizin Berlin, in compliance 

with the Declaration of Helsinki, approval number EA2/175/17) and consent from the pa-

tients. Cells were grown in Skeletal Muscle Growth Medium (Provitro) without antibiotics. 

 

2.2. Lentiviral transduction 

To produce virus, HEK293T cells were transfected using TransIT-LT1 (Mirus), following 

the manufacturer’s protocol, with pMD2.G, psPAX and the lentiviral plasmid of interestat 

a 1:1:2 ratio. Viral supernatant was collected, pooled and filtered 2 to 3 days after trans-

fection. To transduce mammalian cells with the lentivirus, a mixture of lentivirus with 

8 µg/mL polybrene (Sigma Aldrich) was added for 24 hours. Selection was carried out 

with the corresponding antibiotic. 

 

2.3. CRISPRa screening and sequencing 

Cells were sequencially transduced with the lentiMPH v2 plasmid (Addgene #89308) and 

an sgRNA library targeting the promoter of 20,000 genes at a multiplicity of infection (MOI) 

of <0.3. Cells were divided into a group incubated with AZD6738 at 750 nM and a mock-
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treated control group. The sgRNA sequences were isolated and amplified from the ge-

nomic DNA and prepared for sequencing. Sequencing was performed on a NextSeq500 

with Mid Output. Samples were demultiplexed and analyzed using MAGeCK.  

 

2.4. Cell viability 

Cell viability was assessed using CellTiter-Glo (Promega). 1000 cells were seeded in 

white 96-well plates one day before adding the drugs. After 72h of drug treatment, lumi-

nescence was measured after incubation with CellTiter-Glo, following the manufacturers’ 

protocol. To evaluate synergistic relationships between drugs, cells were simultaneously 

treated with a range of drug concentrations, and the synergism score was calculated us-

ing the R package SynergyFinder. 

 

2.5. Immunoblotting 

Proteins were extracted from frozen cells using Radioimmunoprecipitation assay buffer 

(RIPA) supplemented with cOmplete Protease inhibitor (Roche) and PhosphStop 

(Roche). Concentration of protein was measured by bicinchoninic acid assay (BCA, 

Thermo Fisher). For electrophoresis, 10µg of denaturated protein (diluted in Laemmli 

buffer and boiled for 5 minutes) were loaded onto 16% or 10% Tris-Glycin gels (Thermo 

Fisher). Proteins were transferred onto Polyvinylidene fluoride (PVDF) membranes 

(Roche) for 90 minutes at 90V. The membranes were blocked with 5% dry milk for 1 h, 

and incubated with primary antibodies overnight at 4 °C, then secondary antibodies con-

jugated with peroxidase for 1 h at room temperature. Using Enhanced chemilumines-

cence (ECL) Western Blotting Substrate (Thermo Fisher), chemoluminescent signal was 

measured in a Fusion FX7 imaging system (Vilber Lourmat). 

 

2.6. Immunofluorescence 

Cells were grown on a glass coverlid for 24 h (micronuclei quantification) and treated with 

1000 ng/mL doxycycline for another 48 h. Cells were washed with PBS and fixed for 
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10 min with 4% paraformaldehyde, washed again and permeabilized with PBS containing 

0.1% Triton-X100. Cells were blocked with 5% BSA in PBS and incubated overnight at 

4 °C with the primary antibody. The next day, cells were carefully washed three times with 

PBS-T (0.05% Tween-20 in PBS), incubated for 1 h with the secondary antibody in the 

dark and room temperature, washed three times with PBS-T and mounted with DAPI-

containing mounting media. For micronuclei detection, cells were directly mounted on a 

slide with DAPI-containing mounting media after fixation. 

 

2.7. Fluorescence-activated cell sorting (FACS) 

The different flow cytometry-based assays were performed with the kits Click-IT EdU 

Alexa Fluor 488 Flow Cytometry Assay kit (Thermo Fisher), APO-BrdU TUNEL Assay Kit 

(Thermo Fisher) and CellEvent Caspase3/7 Green Flow Cytometry kit (Thermo Fisher), 

according to the manufacturer’s descriptions. The measurements were done at BD LSR 

Fortessa flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). 

 

2.8. Patient-derived xenograft (PDX) treatment 

All experiments were in accordance to the institutional animal protocols and the national 

laws and regulations and approved by the Charité University Medicine. Fragments from 

RMS or NB patients were transplanted into NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac (Ta-

conic, Rensselaer, NY, USA) or NSG-H (NOD.Cg-Prkdcscid Hprtem1Mvw 

Il2rgtm1Wjl/MvwJ; for the PAX7-FOXO1 ARMS PDXs) mice. Caliper measurements were 

conducted to follow tumor growth, and the volume was calculated with the formula length 

x width2/2. Mice were randomly split into four groups with at least 3 mice to receive 

AZD6738 (50 mg/kg day, oral), olaparib (50 mg/kg day, oral), MLN8237 (7.5 mg/kg 5 days 

on/2 days off), a combination of AZD6738 and olaparib, a combination of AZD6738 and 

MLN8237 or vehicle. For the BAY 1895344 study, mice were administered 40 mg/kg body 

weight on a 3 days on/ 4 days off regime twice daily (orally). Ifosfamide was administered 

intravenously at a 50 mg/mL concentration up to 80 mg/kg body weight per day twice 

weekly. Vincristine was administered daily intravenously at 1 mg/mL up to 1 mg/kg body 

weight per day. Solutions in which the drugs were dissolved were used as vehicle controls 
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respectively. Mice were sacrificed by cervical dislocation once the tumor volume ex-

ceeded 2000 mm3 or body weight loss was higher than 10%. For the toxicity study, blood 

was drawn, and blood count was analyzed by Synlab. Organ tissue was collected, fixed 

with formalin and embedded into paraffin, sliced, and stained with hematoxylin & eosin 

following the standard diagnostics protocol. For immunohistochemistry staining of 

cleaved caspase 3 and Ki67, snap frozen tumor fragments were cut and stained following 

the standard protocol. 

 

2.9. RNA-seq of ATR inhibitor resistant cells 

Cells were cultured with increasing concentrations of ATR inhibitors over the course of 

four months. Resistant cells were collected and prepared for RNA-seq using TruSeq 

Standard mRNA library prep, according to the manufacturer’s instructions. Samples were 

sequenced (pair ended 2x75bp reads, using a NextSeq500 mid output). And processed 

using trimGalore!, STAR and HTSeq, and the hg19 genome as a reference. 
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3. Results 

3.1. Dorado García et al. Therapeutic targeting of ATR in alveolar rhabdomyosar-

coma 

In Dorado Garcia et al.(83), we first assessed the effectiveness of the ATR inhibitors 

AZD6738 and BAY 1895344 in a set of pediatric solid tumor cell lines, including ARMS, 

ERMS and EWS (as a positive control), compared to five human untransformed myogenic 

cells (Figure 1a-d). In all cases, tumor cells were more sensitive to ATR inhibitors than 

untransformed myogenic cells, underscoring the potential of ATR inhibitors as a cancer 

treatment option. Of note, ARMS were more sensitive to ATR inhibitors than ERMS, and 

had a similar response as EWS’s. Encouraged by this finding, we focused on ARMS, as 

it represents the most urgent clinical challenge. In response to ATR inhibitors, ARMS cell 

lines showed increased levels of DNA damage and genomic instability, as shown by 

TUNEL and micronuclei formation (Figure 1e, 1f). Because ATR is a key regulator of the 

intra-S and G2/M checkpoints, we looked at the cell cycle distribution of cells in response 

to ATR inhibitors, and found that most cells were stuck in mitosis, as shown by Histone 3 

Serine 10 phosphorylation, a marker specific of mitosis, and consistent with the abroga-

tion of the cell cycle checkpoints controlled by ATR (Figure 1g). Cells also showed higher 

levels of apoptosis after ATR inhibition (Figure 1h), which we hypothesize is caused by 

the accumulation of unrepaired DNA damage in mitosis, leading to improper missegre-

gation of chromosomes and micronucleation. 
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Figure 1. ATR inhibition has antitumor activity in ARMS cell lines. (a) Dose-response curves of cell viability 

for ARMS cell lines (red) and primary myoblasts (greyscale) in response to the ATR inhibitor AZD6738. (b) 

Comparison of the IC50 concentration for AZD6738 in different pediatric solid tumors, including EWS (pur-

ple), ARMS (red), ERMS (blue) and primary myoblasts (black). (c) Dose-response curves of cell viability 

for ARMS cell lines (red) and primary myoblasts (greyscale) in response to the ATR inhibitor BAY 1895344. 

(d) Comparison of the IC50 concentration for BAY 1895344 in different pediatric solid tumors, including EWS 

(purple), ARMS (red), ERMS (blue) and primary myoblasts (black). (e) TUNEL signal in cells treated with 

AZD6738 for 72 hours. (f) Micronucleation in cells treated with AZD6738 for 72 hours. (g) Western im-

munoblot of histone 3 phosphorylation at serine 10 (S10) in six ARMS cell lines treated with AZD6738 (top) 

or BAY 1895344 (bottom). (g) Apoptosis signal in cells treated with AZD6738 for 72 hours. Figure modified 

from Dorado García et al.(83). 

 

To confirm the on-target activity of AZD6738 in ARMS, we performed phosphoproteomics 

in response to short-term treatment with AZD6738 (Figure 2a). We identified that the ATR 

pathway was the most hypophosphorylated pathway, consistent with on-target inhibition 

of ATR (Figure 2b). When looking at specific targets, we found BRCA1 and TP53 to be 
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hypophosphorylated at Serine 1524 and 15, respectively (Figure 2a). Because of its crit-

ical role controlling HR, we looked at what effects ATR inhibitors have in HR activity. After 

treatment, there was a strong reduction in HR activity, which could in part explain the 

accumulation of DNA damage (Figure 2c). Because of this, we sought to investigate the 

combination of ATR inhibitors and the PARP1 inhibitor olaparib. To varying degrees, the 

combination was synergistic (Figure 2d), suggesting the potential of a combination with 

ATR and PARP1 inhibitors in treating ARMS. 

 

Figure 2. ATR inhibition leads to homologous recombination deficiency in ARMS cells. (a) Volcano plot 

showing changes in peptide phosphorylation after 2 hours incubation with AZD6738. Known ATR targets 

marked in red. (b) Pathway enrichment analysis based on phospho-peptide abundance after two hours of 

treatment with AZD6738. (c) Relative HR activity in two ARMS cell lines with and without AZD6738. (d) 

Synergistic score of a combination of the ATR inhibitors BAY 1895344 and AZD6738 with the PARP1 

inhibitor olaparib. Figure modified from Dorado García et al.(83). 
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We then looked at which factors could render ARMS more sensitive to ATR inhibitors. 

Only MYCN correlated with ATR inhibitor sensitivity. Because MYCN is a target of PAX3-

FOXO1, and previous reports showed that a similar fusion oncoprotein, EWS-FLI1, in-

creased sensitivity to ATR inhibitors in EWS, we looked at whether PAX3-FOXO1 could 

increase sensitivity to ATR inhibitors. Indeed, PAX3-FOXO1 overexpression in a mouse 

myoblast cell line, C2C12 (Figure 3a), increased sensitivity to both ATR inhibitors (Figure 

3b, 3c), and similarly, PAX3-FOXO1 knockdown in ARMS cell lines reduced it (Figure 

3d). We observed that after PAX3-FOXO1 overexpression, cells had high levels of 

γH2AX, an early marker of DNA damage, indicating that these cells could be more de-

pendent on DNA damage repair. Consistently, RPA32 T21 levels were much higher in 

PAX3-FOXO1 overexpressing cells after ATR inhibition (Figure 3a). Together, our data 

suggests that PAX3-FOXO1 increases DNA damage and dependency on DNA repair 

pathways, therefore making cells more vulnerable to ATR inhibition. 

 

Figure 3. PAX3-FOXO1 is sufficient to increase sensitivity to ATR inhibition. (a) Western immunoblot in 

C2C12 cells modified to induce PAX3-FOXO1 upon doxycycline treatment, showing levels of PAX3-FOXO1 

and RPA32 phosphorylation at T21 after treatment with AZD6738. Hydroxyurea (HU) served as a control 

of replication stress. (b-c) Cell viability of C2C12 cells expressing PAX3-FOXO1 in response to AZD6738 

(b) or BAY 1895344 (c). (d) Dose-response curves in Rh4 cells modified to express shRNA targeting PAX3-

FOXO1 (or a mock control) in response to doxycycline, and treated with AZD6738. Figure modified from 

Dorado García et al.(83). 



Results 17 

To identify mechanisms of resistance that can emerge after using ATR inhibitors, we used 

two independent approaches. We used a genome-wide CRISPR-based activation 

screen, that allows us to identify genes that confer an advantage while cells are exposed 

to ATR inhibition (Figure 4a). We identified FOSB, FOSL1 and FOSL2 as genes that 

increase resistance to ATR inhibitors (Figure 4b). These genes belong to the FOS family 

and are part of the AP-1 transcription factor. We validated that overexpression of FOSB, 

FOSL1 and FOSL2 led to higher resistance to ATR inhibitors, and that cells with high 

levels of those genes presented less DNA damage, as shown by RPA32 T21 phosphor-

ylation (Figure 4c). The second approach is long-term exposure of cells to increasing 

concentrations of ATR inhibitors, in order to isolate colonies that are naturally resistant to 

the drugs (Figure 4d). Using both AZD6738 and BAY 1895344, we cultured ARMS cells 

over four months and collected the surviving population for gene expression analysis. We 

identified the RAS/MAPK pathway to be more active in cells exposed to the drugs after 

four months (Figure 4e) and validated the results by measuring phosphorylation of key 

MAPK pathway factors, such as ERK1/2 T202/T204 phosphorylation and c-Raf S338 

(Figure 4f). Interestingly, the FOS family genes are also regulated by the RAS/MAPK 

pathway (Figure 4f). We confirmed that FOSB protein levels were higher in cells exposed 

to the drug, providing a second line of evidence that AP-1 is important for ATR inhibitor 

resistance in ARMS. 



Results 18 

 

Figure 4. FOS family gene activation is important for ATR inhibitor resistance. (a) Schematic representation 

of the genome wide CRISPRa screen experimental design. (b) Waterfall plot showing the positive robust 

rank aggregation (RRA) score of sgRNAs in Rh4 cells incubated in the presence of AZD6738 for 9 days 

compared to DMSO treated cells as analyzed using MAGeCK. (c) Western immunoblot of RPA32 phos-

phorylation at T21 in Rh4 cells expressing sgRNAs targeting FOS family members FOSB, FOSL1 or 

FOSL2. (d) Schematic representation of the generation of ATR inhibitor-resistant cells by long-term expo-

sure to increasing doses of the ATR inhibitors AZD6738 and BAY 1895344. (e) (Positive) enrichment score 

of hallmark pathways in cells resistant to ATR inhibitors. (f) Western immunoblotting of RAS-MAPK pathway 

members c-Raf and ERK1/2 (and their phosphorylated forms), as well as FOSB, in cells resistant to 

AZD6738 (left) or BAY 1895344 (right) compared to treatment-naïve cells.  Figure modified from Dorado 

García et al.(83). 
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Encouraged by our findings in vitro, we tested the potential of ATR inhibition in a patient-

derived xenograft model for ARMS (Figure 5a, 5b). This model was derived from a patient 

suffering from a third ARMS relapse at the Charité University Medicine. Both AZD6738 

and elimusertib greatly inhibited tumor growth, but the combination of AZD6738 with 

olaparib achieved total regression of the tumor (Figure 5a). We also treated with 

elimusertib mice harboring a two PDX model from a PAX7-FOXO1 ARMS patient. These 

PDXs were derived from a primary tumor, and a relapse from the same patient that pre-

sented an additional MYCN amplification. In both cases, elimusertib reduced tumor 

growth, but the response was slightly worse in the relapsed tumor (Figure 5c). This data 

suggests that ATR inhibition, alone and in combination, has strong antitumor activity in 

ARMS in vivo, and could potentially represent a therapeutic option in the treatment of 

ARMS patients. 
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Figure 5. ATR inhibition is an effective antitumor therapy in ARMS PDX models. (a) Tumor volume change 

of a FP-RMS PDX model subcutaneously xenografted and treated with AZD6738 (oral gavage, 50mg/kg 

per day), olaparib (oral gavage, 50mg/kg per day) or both compared to vehicle treated mice. (b) Tumor 

volume change of a FP-RMS PDX model subcutaneously xenografted and treated with BAY 1895344 (twice 

daily by oral gavage, 40mg/kg per application, 3 days on/4 days off schedule) as compared to vehicle 

treated mice.  (c) Tumor volume change of an ARMS PDX harboring a PAX7-FOXO1 and a relapse from 

the same patient with an additional MYCN amplification, treated with BAY 1895344 (twice daily by oral 

gavage, 40mg/kg per application, 3 days on/4 days off schedule) as compared to vehicle treated mice. 

Figure modified from Dorado García et al.(83). 
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3.2. Roeschert et al. Combined inhibition of Aurora-A and ATR kinase results in 

regression of MYCN-amplified neuroblastoma. 

Together with Prof. Martin Eilers, we evaluated the potential of ATR inhibitors in NB. Prof. 

Eilers research focus is the understanding of MYCN biology in high-risk, MYCN-amplified 

NB. In a previous study, they identified Aurora A kinase as a protein interactor of MYCN 

that stabilizes it and limit MYCN-dependent transcription during S phase to coordinate it 

with DNA replication(43). They observed that when treating NB cell lines with the Aurora 

A kinase inhibitor alisertib (MLN8237), replication stress increases, leading to activation 

of ATR-mediated DNA repair (Figure 6a). Using our experience with ATR inhibitors, we 

tested AZD6738 in combination with alisertib in a cohort of NB PDXs, including four 

MYCN-amplified NB (Figure 6b). The combination of alisertib with AZD6738 reduced tu-

mor growth better than the single agents in three out of the four tumor models, with two 

models achieving partial regression (Figure 6a). However, the response was weakened 

by the fact that the mice lacked an active immune system, pointing at the importance of 

the immune response engagement to further increase the antitumor potential of the drugs 

(Figure 6c). Taken together, this data suggests that combining ATR and Aurora A Kinase 

inhibitors have strong antitumor effect in MYCN-amplified NB, but require the host im-

mune system for tumor elimination. 
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Figure 6. Aurora A and ATR inhibitors have strong antitumor activity in MYCN-amplified NB PDX. (a) 

RPA32 S33 phosphorylation staining in IMR-5 cells treated for 8 h with the indicated concentrations of 

Aurora-A inhibitor MLN8237. (b) Relative changes in tumor volume of four MYCN-amplified PDX models 

during treatment with MLN8237, AZD6738 or a combination of both. (c) Histology of representative tumor 

sections showing CD45- and cGAS-positive cells in tumors of TH-MYCN mice treated with combined Au-

rora-A/ATR kinase inhibition. Figure modified from Roeschert et al.(82) 
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4. Discussion 

4.1. Short summary of results 

Here we show that ATR inhibitors have therapeutic potential for treating ARMS. Our co-

hort of eleven RMS cell lines, six of them ARMS, responded better to ATR inhibitors than 

five human myogenic cells used as control. In response to two ATR inhibitors, we observe 

that ARMS cell lines accumulate DNA damage and enter apoptosis. Furthermore, we 

observe a reduced G2/M checkpoint activity, as observed by an increase in mitotic cells 

despite persistent DNA damage. These findings are consistent with ATR being the key 

regulator of the G2/M checkpoint, as well as on-target activity of both small molecule 

inhibitors. To our knowledge, this is the first study that compares the response of ARMS 

to ATR inhibitors. Our data suggests that ATR inhibitors have a strong antitumor activity 

against ARMS. Upon inhibition of ATR, cells accumulate DNA damage, but the lack of 

activation of the ATR-controlled cell cycle checkpoints allows the entry in mitosis, trigger-

ing apoptosis due to the high levels of genomic instability. These findings are in line with 

previous reports of ATR inhibitors in multiple tumors, including leukemia, ATM- and TP53-

deficient tumors (67, 84-92). 

Mechanistically, ATR inhibition leads to hypophosphorylation of multiple proteins im-

portant for DNA repair and checkpoint activation. We here focus on BRCA1 because of 

its key role in HR. BRCA1 is frequently mutated in breast and ovarian cancer(73), and its 

role as a tumor suppressor is widely characterized. Phosphorylation of BRCA1, specifi-

cally at its C-terminal region, is important for HR regulation(93). Interestingly, we identified 

S1524 to be hypophosphorylated after ATR inhibition. While there is no direct evidence 

of the role of S1524, it is located in the same region as other sites described to be required 

for HR(93) and it is a known target of another DNA damage repair protein, ATM(94). We 

believe that other sites not identified in our phosphoproteomics experiment might be af-

fected by the inhibition of ATR. Consistently, we observed a reduction in HR activity, in 

line with other reports(93). Because BRCA1- and HR-deficient tumors are sensitive to 

PARP1 inhibitors, we hypothesized that adding olaparib to ATR inhibitors could result in 

stronger antitumor activity. Our results suggest that the combination is synergistic in 

ARMS, although at different levels. The synergistic potential of the combination can be 

affected by multiple factors, including how well the inhibitors work as a monotherapy. 
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Nonetheless, our data suggests that the combination is an interesting therapeutic option 

of ARMS treatment.  

We are able to show that PAX3-FOXO1 is sufficient to increase sensitivity to ATR inhibi-

tion by increasing the basal levels of replication stress. Likewise, PAX3-FOXO1 knock-

down reduced sensitivity of ARMS cells to ATR inhibition. The results are in line with our 

hypothesis based on the previous knowledge that the transcription factor activity of an-

other fusion oncoprotein, EWS-FLI1, confers sensitivity to ATR inhibitors in EWS. After 

PAX3-FOXO1 overexpression, we observed an increase in γH2AX phosphorylation, a 

marker of DNA damage, as well as a mild increase in RPA32 T21 phosphorylation. More 

significantly, HR activity was higher, suggesting higher levels of DNA damage and higher 

dependency on HR repair. After ATR inhibition, we observe a strong reduction and high 

levels of RPA32 T21 in PAX3-FOXO1 overexpressing cells, consistent with increased 

DNA damage. These results are in line with previous reports identifying factors that lead 

to vulnerability to ATR inhibitors, such as PGBD5, ATM and TP53(84, 86, 95). 

We also investigated potential resistance mechanisms that could emerge during treat-

ment with ATR inhibitors. We identify AP-1, and specifically FOSB, as a mediator of ATR 

inhibitor resistance, but the specific mechanism of action remains unclear. Studies in mel-

anoma have shown that overactivation of AP-1 mediates multidrug resistance(96-99), in-

cluding resistance to BRAF inhibitors(100, 101), part of the RAS/MAPK pathway. Future 

research in the topic could help understand how AP-1, and FOSB in particular, are con-

nected with drug resistance and to identify new treatments that overcome it. A study in 

osteosarcoma demonstrated that FOS activates CHK1 and protect cells from replication 

stress(97). It is tempting to speculate that by activating AP-1 cells are able to partially 

overcome ATR activation by directly activating CHK1. Simultaneously, a combination 

treatment of ATR and CHK1 inhibitors could potentially overcome this resistance mech-

anism. 

Finally, we explored the potential of ATR inhibitors in vivo as a monotherapy or in combi-

nation with olaparib and alisertib. ATR inhibitors are synergistic with olaparib in all cell 

lines tested, consistent with the observed reduction of HR activity and BRCA1 phosphor-

ylation and previous literature(86, 102-104). As a monotherapy, both celarasertib and 

elimusertib show strong antitumor activity in a PAX3-FOXO1 and a PAX7-FOXO1 ARMS 

PDX models, but the response was even stronger when combined with Olaparib. In com-

bination with Prof. Dr. Martin Eilers, we also analyzed the combination of AZD6738 and 
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alisertib in NB, based on their observations that Aurora A kinase inhibition leads to in-

creased genomic instability in MYCN-amplified NB. We observed a synergistic activity of 

AZD6738 and alisertib in MYCN-amplified NB cell lines and PDX models, suggesting a 

potential therapeutic option for MYCN-amplified NB. Our data opens the possibility to 

introduce ATR inhibitors in the clinic for treating ARMS, with strong response and limited 

toxicity, as well as MYCN-amplified NB in combination with Aurora A kinase inhibitors. 

 

4.2. Strengths and weaknesses of the studies 

This study is a step forward toward new, targeted therapies against pediatric solid tumors. 

One of the advantages of using ATR inhibitors to treat cancer is that it relies on an intrinsic 

characteristic of cancer, genomic instability, instead of a specific mutation or factor that 

is present in a subset of tumors. This broad vulnerability allows us to expand our research 

to molecularly and histologically different tumors, such as MYCN-amplified NB and 

ARMS. This is particularly important for pediatric oncology, as they are rare and thus 

samples available for research are few and scarce, making it difficult to identify specific 

vulnerabilities for each tumor type. 

Simultaneously, one of the limitations of the study is the scarcity of models available for 

research, particularly for PDXs. As such, one of the next steps the lab is currently working 

on is a preclinical study of elimusertib in multiple pediatric solid tumor PDXs, including 

ARMS and MYCN-amplified NB. This future study will enable us to better characterize 

the response to ATR inhibitors, identify biomarkers and explore novel vulnerabilities in 

pediatric solid tumors, as well as getting us closer to a clinical trial that tests the efficacy 

and safety of ATR inhibitors in patients.  

Finally, a novelty of this study is that we not only look at the efficacy of ATR inhibitors in 

pediatric solid tumors, but also, we attempt to identify resistance mechanisms that might 

emerge during treatment. Targeted therapy, including ATR inhibitors, often stop being 

effective after a subpopulation of the tumor acquires new characteristics to survive in the 

presence of the drug. These could be by physically excluding the drug from the cells, 

such as overexpression of efflux pumps(105, 106), blocking the induction of apopto-

sis(107) or more specific resistance mechanisms may emerge specific for the drug or 

pathway affected, such as mutations in BRCA2 or deletion of TP53BP1 in BRCA1-defi-

cient tumors treated with olaparib(108, 109). We here identify overexpression of the AP-
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1 transcription factor, and more specifically FOSB, to confer resistance to ATR inhibitors 

by two independent experiments. How FOSB activity interferes with ATR inhibitors, as 

well as alternative treatments to offer for patients that develop resistance remains unclear 

and will be part of a future project specifically addressing these issues. 

 

4.3. Implications for practice and/or future research 

Here we are able to provide a rationale for the inclusion of ATR inhibitors in the therapeu-

tic options for ARMS, MYCN-amplified NB and potentially other pediatric solid tumors with 

common characteristics, such as medulloblastoma and EWS. There has not been any 

new drug approved for the treatment of ARMS and MYCN-amplified NB in the last four 

decades. Furthermore, due to the rarity of pediatric solid tumors, there is no economic 

incentive to develop novel treatments. Repurposing drugs that are currently available or 

under investigation in adult cancers for use in pediatric solid tumors is a less expensive 

approach that would accelerate the introduction of novel, more effective and safer treat-

ments. 

One of the current limitations of cancer therapies is the emergence of resistances. Re-

sistance to treatment can either be intrinsic (e.g. cancer stem cells that do not respond to 

chemotherapy(110-112) or acquired (e.g. Loss of 53BP1 and mutations in BRCA2 in 

BRCA1-deficient tumors receiving PARP1 inhibitors(108, 109). Early detection of re-

sistance allows us to change the treatment to a more effective one and avoid unnecessary 

toxicities and side effects. Here, we attempted to predict resistance mechanisms to ATR 

inhibitors, in hopes to identify markers to monitor and predict response to ATR inhibitors. 

While we could not suggest an alternative treatment to overcome, or at least delay, re-

sistance to ATR inhibitor, further research could identify new agents that extend the effi-

cacy of ATR inhibitors. 

Our data provides a starting point to introduce ATR inhibitors in the clinic, but more ex-

tensive research is needed, particularly in more complex models that better simulate hu-

man biology. Our lab is currently working on a preclinical trial for elimusertib using over 

30 PDX models from several pediatric solid tumors. This knowledge would further im-

prove our understanding of ATR inhibitors and allow us to better select patients that would 

benefit from them. Importantly, American and European RMS leading researchers are 

pushing WEE1 inhibitors, a downstream target of ATR, in combination with vincristine 
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and irinotecan for RMS clinical trial design(113, 114). My PhD project provides a rationale 

for inhibiting the ATR/CHK1/WEE1 axis and suggests PAX3-FOXO1 as a biomarker for 

sensitivity to ATR inhibitors. A clinical trial in the United States is currently recruiting pa-

tients for receiving elimusertib in several pediatric solid tumors, including refractory 

ARMS. This clinical trial is directed by one of our collaborators and was partially inspired 

by the results of my PhD project. We are currently working towards starting a clinical trial 

in Europe to treat patients with ATR inhibitors in combination with other small molecule 

inhibitors, including olaparib. If successful, it could help establish Berlin and Charité as a 

reference center in Europe for pediatric sarcoma research. 
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