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ELF5 is a potential respiratory epithelial cell-
specific risk gene for severe COVID-19

Maik Pietzner 1,2,20 , Robert Lorenz Chua3,20, Eleanor Wheeler 2,
Katharina Jechow3, Julian D. S. Willett4,5, Helena Radbruch 6, Saskia Trump7,
BettinaHeidecker8,HugoZeberg 9,10, FrankL.Heppner 6,11,12, RolandEils3,13,14,
Marcus A. Mall 14,15,16, J. Brent Richards 4,5,17,18, Leif-Erik Sander 19,
Irina Lehmann7,14, Sören Lukassen 3, Nicholas J. Wareham 2,
Christian Conrad 3,21 & Claudia Langenberg 1,2,21

Despite two years of intense global research activity, host genetic factors that
predispose to a poorer prognosis of COVID-19 infection remain poorly under-
stood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported
(e.g., RAB2A) candidateproteinmediatorsofCOVID-19outcomesby integrating
results from the COVID-19 Host Genetics Initiative with population-based
plasmaproteomics using statistical colocalisation. The transcription factor ELF5
(ELF5) shows robust and directionally consistent associations across different
outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI:
2.47–9.63; p-value < 5.0 × 10−6) for severe COVID-19 per 1 s.d. higher genetically
predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial
cells of the respiratory system, such as secretory and alveolar type 2 cells, using
single-cell RNA sequencing and immunohistochemistry. These cells are also
likely targets of SARS-CoV-2 by colocalisation with key host factors, including
ACE2 and TMPRSS2. In summary, large-scale human genetic studies together
with gene expression at single-cell resolution highlight ELF5 as a risk gene for
severeCOVID-19, supporting a role of epithelial cells of the respiratory system in
the adverse host response to SARS-CoV-2.
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The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has
overwhelmed health care systems all over the world and caused >6.1
million deaths. The unprecedented pace of vaccine development,
approval, and administration1, has strongly reduced hospitalisations
and prevented hundreds of thousands of deaths2, and only achieving
population-wide immunity will end the pandemic. However, it is
unclear how long immunisation from vaccines or natural infection will
last3 and hospitalisation and death tolls remain high due to various
factors, including the evolution of novel SARS-CoV-2 variants4–6 and
the missing availability of vaccines in low- and middle-income
countries7, requiring persistent efforts to identify host factors that
predispose to poor outcomes.

So far, older age, male sex, smoking, obesity, social deprivation,
ethnicity, and a high burden of pre-existing conditions have been con-
sistently identified as risk factors for a poor prognosis among COVID-19
patients8–11. However, a severedisease course, includinghospitalisations
and fatal outcomes also occurs in otherwise low-risk patients. Further,
the biology underlying disease progression and fatal outcomes remain
largely unknown, with observational studies unable to dissect cause
from consequence. Common variation in the human genome has now
been robustly linked to a higher susceptibility to severe COVID-19
outcomes12–15, offering novel and orthogonal insights to deepmolecular
profiling studies in patients employing single-cell sequencing or
immunoprofiling16–21. For example, common variants at 3p21.31 (possi-
bly mapping to LZTFL122 or SLC6A2023) or 12q24.13 (likely OAS124,25)
confer a 30–110% higher risk for severe outcomes of COVID-1912–15, with
suggested roles in alveolar type 2 (AT2) cells17,22 or modulation of the
host immune response24,26. However, a major obstacle to the clinical
translation of these findings is the identification of the causal genes
throughwhich risk locimediate their effect. Further, incorporatinggene
or protein expression quantitative trait loci (QTLs) via statistical colo-
calisation or Mendelian randomisation can highlight additional candi-
date genes24,27–30. Both techniques make use of a causal chain of events.
Firstly, alleles are allocated at random at conception providing the
opportunity to use them as instruments for causal inference. Secondly,
genetic variants near protein-encoding loci (cis-pQTLs) that associate
with protein levels in healthy individuals before viral exposure can serve
as instruments for lifelong exposure to higher or lower protein levels.
Therefore, establishing that the same genetic signal associates with
protein levels and a poor prognosis of COVID-19 provides strong evi-
dence for a causal role of theprotein in the aetiologyof thedisease. This

is particularly relevant for COVID-19, which is characterised by a
hyperimmune response and a profound impact on the plasma
proteome31 limiting insights from ad hoc cross-sectional proteomic
studies. Such genetically informed strategies have already identified
potential druggable targets, including ACE227, or modulators of the
immune response such as OAS124.

Here, we exploit a proteome-wide colocalisation screen, incor-
porating cis-pQTLs for >1100 protein targets across two different
platforms30,32, to identify proteomic modulators of SASRS-CoV-2
infection and COVID-19 prognosis using genome-wide summary sta-
tistics for four different outcome definitions (ranging from suscept-
ibility to severity) as released by the COVID-19 Host Genetics Initiative
(HGI)15 (https://www.covid19hg.org/, release 6) (Fig. 1). We demon-
strate the ability of genetically informed plasmaproteomics to identify
causal genes and proteins for severe COVID-19 and pinpoint the
responsible cell types through the integration of orthogonal data.

Results
Putative protein mediators of disease risk
We identified a total of 8 putative candidate causal proteins distributed
across three tiers of confidence by systematically testing for a shared
genetic signal at protein-coding loci (±500 kb) across 1121 protein
targets (see Methods) and COVID-19 outcomes (Supplementary
Table 1) using statistical colocalisation (Supplementary Data 1–5,
Methods). We replicated with high confidence proteins encoded at
ABO and OAS124,27,28, refined with robust confidence proteins encoded
at loci near ELF5 and SFTPD15, and further provide suggestive evidence
that proteins encoded at CSF3, HSP40, RAB2A, and NUDT5 might
modulate SARS-CoV-2 susceptibility or the course of COVID-19
(Table 1). All findings were virtually unaffected when systematically
varying prior settings in colocalisation analysis (Supplementary
Data 6). Further, all genetic variants possibly linking proteins to
COVID-19 had the highest effect estimates for severe COVID-19 (Sup-
plementary Data 5), although a more sophisticated Bayesian
approach as reported by theCOVID-19HGI classified variants atABO to
be most likely related to infectious susceptibility rather than severe
COVID-1915. This implies that the encoded protein, Histo-blood group
ABO system transferase (BGAT), may somehow contribute to a higher
susceptibility of infection but not a poorer prognosis.

Of the 6 refined or suggestive candidates, ELF5 showed significant
and directionally consistent associations across all four COVID-19

Fig. 1 | Flowchart of the study design.We tested whether the same genetic signal
that was associatedwith higher/lower protein abundanceswas also associated with
higher/lower risk for COVID-19 based on cis protein quantitative trait loci (cis-
pQTLs). We further investigated the expression of targeted proteins/genes using

single-cell and single nuclei RNA sequencing in samples of the respiratory system
and confirmed the expression of the most robust candidate ELF5 using immuno-
fluorescence staining.
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outcomes included as part of the COVID-19 HGI15, with the strongest
effects for more severe outcomes (Fig. 2 and Supplementary Data 5)
and strong evidence for a shared genetic signal for outcomes indi-
cating a poorer prognosis (hospitalisation and severe COVID-19; Pos-
terior probability (PP) > 80%). A definition in line with the classification
by the COVID-19 HGI15. For example, a 1 s.d. increase in genetically
predicted ELF5 plasma abundances was associated with an almost
fivefold higher risk for severe COVID-19 (odds ratio: 4.88; 95% CI:
2.47–9.63; p value < 5.0 × 10−6) in single-instrument Mendelian rando-
misation (MR) analysis using the lead cis protein quantitative trait
locus (cis-pQTL) as the genetic instrument (Fig. 2, see Methods).

The remaining candidate proteins showed at least suggestive
evidence for selectedCOVID-19 outcomes in our initial analysis (Fig. 2),
with G-CSF showing medium support (regional PP = 64%) for a shared
genetic signal with greater susceptibility to infection and severe
COVID-19, using multi-trait colocalisation33 (Supplementary Fig. 1).

ELF5 is the candidate causal gene at 11p13 for severe COVID-19
The lead cis-pQTL for ELF5, rs766826 (MAF = 35.9%), has been
reported by the COVID-19 HGI15 and is further in strong linkage
disequilibrium (LD; r² = 0.81) with a recently identified variant
rs61882275 associated with severe COVID-19 in an independent
study using whole genome sequencing34. The causal gene, however,
remained ambiguous, since ELF5 and CAT were reported as putative
causal genes at this locus based on evidence from gene expression
studies for rs76682635. Both encoded protein products are captured
by our proteomic data allowing us to test for the causal gene across
multiple molecular layers. We prioritised ELF5 as the causal gene at
this locus through a cluster of colocalising phenotypes, including
three different COVID-19 outcomes, ELF5 expression in the lung,
and ELF5 abundances in plasma (PP = 93% for a shared signal across
all outcomes), with rs766826 being the most likely (PP = 99%)
underlying causal variant (Fig. 3). We further tested for colocalisa-
tion of the cis-pQTL for ELF5 and gene expression across all GTEx
tissues and identified colocalisation specific to expression in lung
but not in other tissues, including tissues with high ELF5 expression
such as breast, prostate, or salivary glands (Supplementary Fig. 2).
This finding points towards a specific role of the major C-allele of
rs766826 in increasing the expression of ELF5 in the lung (beta =
0.24, p value = 5.3 × 10−15) with subsequent higher risk for severe
COVID-19 (odds ratio = 1.11, 95% CI:1.06–1.16; p value < 5.0 × 10−6)
and higher abundances of ELF5 in blood (beta = 0.07, p value < 5.4
× 10−6), the latter likely via cell turnover or injury of lung tissue since
ELF5 is not predicted to be actively secreted into blood36.

While we identified strong evidence for a shared genetic signal
(PP > 80%) between the lead cis-pQTL for the other candidate causal
gene at this locus (CAT) and the corresponding cis-eQTL in 29out of 49
tissues in GTEx v8, indicating convergence of gene and protein
expression, plasma levels of catalase (encoded by CAT) did not colo-
calise with COVID-19 phenotypes. We further observed that CAT
expression in lung and whole blood formed a separate cluster (PP =
56.6%) at the same genetic locus possibly explained by rs35725681
(PP = 36.8%, Supplementary Fig. 3).

rs766826 resides in an open chromatin region in the lung and is
associated with lung function
While ELF5 is known to be highly expressed in multiple tissues, we
demonstrated that the genetic signal shared between ELF5, severe
COVID-19, and gene expression was specific to the lung. We observed
that rs766826 mapped to an open chromatin region in AT2 cells from
the lung but not in other tissues with high expression of ELF537, such as
the mammary gland, prostate, or kidney (Supplementary Fig. 4), pro-
viding a potential explanation for the tissue-specific effect. We further
observed strong evidence that rs766826 is the most likely candidate
causal variant across ancestries based on high posterior inclusionTa
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probabilities (PIP) in European (PIP = 66%; 17,992 cases and 1,810,493
controls) and African individuals (PIP = 83%; 2113 cases and 121925
controls) when performing stepwise fine-mapping using European
PIPs as priors for the smaller African data set (Supplementary Fig. 5, see
Methods).

To systematically test phenotypic consequences of rs766826 or
proxies in strong LD (r² > 0.8), we queried the OpenGWAS database38

and performed colocalisation for all suggestive associations observed
at p < 10−4. The only association with evidence for a shared genetic
signal with ELF5 expression and COVID-19 outcomes was seen for lung
function (PP = 99%) (Supplementary Fig. 6). However, effect directions
were somewhat counterintuitive, since theELF5-increasing andCOVID-
19 risk C-allele was associated with better lung function (beta = 0.01, p
value < 1.6 × 10−5) based on the quotient between forced expired
volume in 1 second (FEV1) and forced vital capacity (FVC) from spiro-
metry in population-based, that is, COVID-19 free studies39. A similar
phenomenon has been described for rs35705950 mapped to MUCB5
and risk for idiopathic pulmonary fibrosis, a condition that shares
commonalities with severe COVID-1940.

ELF5 is expressed in epithelial cells of the respiratory system
Motivated by the supposedly lung-specific genetic signal for ELF5
and the general relevance of the entire respiratory system for
severe COVID-19, we reanalysed single-cell and single nucleus RNA
sequencing (scnRNAseq) data sets generated by us41–43 and others44

across different sites from healthy donors (Fig. 4, see Methods). We
observed that ELF5 was almost exclusively expressed by different
epithelial cells of the respiratory system (Fig. 4). Its expression
pattern was shared with the viral entry receptor ACE2 and asso-
ciated proteases, such as TMPRSS2. Specifically, sustentacular and
Bowman gland cells from the olfactory mucosa and secretory epi-
thelial cells from the pseudostratified epithelium of the nasophar-
ynx and distal bronchioles of the lung showed high expression
levels of ELF5 (Fig. 4C). They similarly expressed host proteins
utilised by SARS-CoV-2, including ACE2 or TMPRSS2, suggesting
that putative target cells of SARS-CoV-2 express high quantities
of ELF5.

Lungs from deceased COVID-19 patients consistently show
signs of massive alveolar damage17,45. While ELF5 expression was

Fig. 2 | Proteins genetically linked to various COVID-19 outcomes. Odds ratios
(rectangles) and 95% CIs (lines) for the genetically predicted effect of protein
levels on three different outcome definitions and control populations for
COVID-19 (left), including protein targets with strong evidence for statistical
colocalisation for at least one definition (right). Proteins are ordered by abso-
lute effect size for severe COVID-19. The column in the middle reports the p
values for Wald ratio estimates from a single variant Mendelian randomisation
analysis. Stacked bar charts represent the posterior probability that protein
levels and COVID-19 outcomes share a genetic signal in a 500 kb flanking region
of the protein-encoding gene (black) or rather represent two distinct signals

(grey). For each protein, the proteomics platform and the protein-encoding
gene (in brackets) are listed. ELF5 ETS-related transcription factor Elf5, OAS1
2′–5′-oligoadenylate synthase 1, HSP40 DnaJ homologue subfamily B member 1,
RAB2A Ras-related protein Rab2A, NUDT5 ADP-sugar pyrophosphatase, SFTPD
Pulmonary surfactant-associated protein D, G-CSF Granulocyte colony-
stimulating factor, BGAT Histo-blood group ABO system transferase. The data
underlying this figure is given in Supplementary Data 5. Sample sizes for COVID-
19 outcomes can be found in Supplemental Table 1; 10,708 and 485 participants
were included for SomaScan and Olink analysis, respectively.
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highest in secretory cells, AT2 but not AT1 cells showed consistent
expression of ELF5 in our lung data set of COVID-19-free donors42

(Fig. 4). This finding coincided with classical lineage markers for
AT2 cells such as SFTPD, which was also highly expressed in mitotic
cells (Fig. 4C). We note that our proteogenomic screen prioritised
SFTPD as a candidate gene for severe COVID-19 in line with other
studies15,34, leaving the possibility of potential interactions between
candidate mediators. AT2 cells not only co-express SARS-CoV-2
host factors, including ACE242,46,47, but they also fulfil key roles in
maintaining normal lung function by producing surfactants that
reduce surface tension and prevent alveolar collapse48, and further
serve as resident stem cells essential for maintenance and repair of
the alveolar epithelium49.

Immunofluorescence staining validates scnRNAseq results and
shows high ELF5 expression in AT2 cells of postmortem COVID-
19 samples
Wevalidated the expression of ELF5 at the protein level in the different
epithelial cells of the olfactory mucosa and lungs using immuno-
fluorescence staining in non-COVID-19 samples (Fig. 5 and Supple-
mentary Figs. 7, 8). Within the olfactory mucosa, sustentacular cells
(KRT18+) and horizontal basal cells (KRT18−) of the olfactory epithe-
lium (above the dashed line, Fig. 5A) and the bowman gland cells
(KRT18+) within the lamina propria (below the dashed line, Fig. 5A)
were positively stained for ELF5 (Fig. 5A and Supplementary Fig. 7A).
We further validated protein expression of ELF5 in AT2 (SFTPC+) and
epithelial cells (EPCAM+) of the airways in lung consistent with the

Fig. 3 | Stacked regional association plots at ELF5. Each panel contains regional
association statistics from linear regression analysis (p values) for the trait listed in
the upper left corner along genomic coordinates. Each dot represents a single
nucleotide polymorphism and colours indicate linkage disequilibrium (LD; r²) with
the most likely causal variant (rs766826) at this locus (darker colours stronger LD).

The position of rs766826 in the genome is highlighted by a red line on the lowest
panel. Summary statistics for COVID-19-related outcomes were obtained from the
COVID-19 HGI15, for protein abundances from Pietzner et al.30, and gene expression
in lungs from GTEx version 835. LD was calculated based on 8350 unrelated white-
British participants of the Fenland cohort.
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Fig. 4 | Expression of candidate genes in different single-cell data sets covering
the respiratory system. A UMAP representation of single-cell/nuclei RNA
sequencing data from three data sets (olfactory mucosa, nasopharynx, and lung)
with annotations of cell types. B Expression levels of ELF5 across all cells identified
in all three data sets. C ACE2+ cells in all three data sets. D Dot plots showing the
number of cells positive for candidate genes (size). The colour gradient indicates

scaled average expression levels and red frames indicate significantly higher
expression (MAST-based test; false discovery rate adjusted p value < 0.05) of the
target gene in one cell type compared to all others. Expression patterns for sug-
gested host factors required for viral entry, such as TMPRSS2, FURIN, NRP1, as well
asNRP2, havebeen addedas a comparator. Data havebeen obtained fromLukassen
et al.42, Loske et al.43, Gassen et al.41, and Durante et al.44.
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scnRNAseq experiments (Fig. 5B, C and Supplementary Fig. 7B–D).We
observed similar validation of scnRNASeq experiments by immuno-
fluorescence staining for ACE2 and TMPRSS2 (Supplementary Fig. 9).

We next investigated ELF5 expression within the same tissues in
samples from two patients who rapidly died from severe COVID-19
within ≤14 days (Fig. 5A–C). We observed an injured olfactory epi-
thelium, including highly disrupted Bowman glands and very few
cells showing ELF5 expression (Fig. 5A, left; Supplementary Fig. 7A),
and further loss of structural integrity of the alveolar region of the
lung with only very few AT2 cells within the damaged region.
However, AT2 cells characterised by high ELF5 expression also
formed clusters, possibly reflective of their activated state to
regenerate the epithelia49,50 (Fig. 5B and Supplementary Fig. 7B).
Similarly, secretory cells (SCGB1A1+) along with other epithelial cells
of the airway mucosa (e.g., ciliated and basal cells) expressed ELF5
and were also injured over the course of SARS-CoV-2 infection
(Fig. 5C, Supplementary Fig. 7C, D). These observations suggest that
ELF5 expression might play a dynamic role during SARS-CoV-2
infection and COVID-19.

We finally observed potential signs of remodelling and high ELF5
expression in postmortem respiratory tissue samples of two COVID-19
patients with a fatal but not rapid disease course due to intensive
treatment, including extracorporeal membrane oxygenation
(≥14 days, termed as ‘later death’; Supplementary Fig. 10A). Mucosal
structures were similar to controls, although structural integrity was
not fully restored. We further observed potentially regenerative
structures with either AT2 cells or airway epithelial cells highly
expressing ELF5 that may indicate an active wound healing

response50–52 (Supplementary Fig. 10B, C). Delorey et al. recently
showed the induction of a regenerative programme in cells of the
airway and alveolar epithelium after SARS-CoV-2 infection17. However,
AT2 cell renewal and AT1 cell differentiation were inhibited in COVID-
19, leading to an accumulation of cells in this regenerative transitional
cell state and potentially lung failure17.

ELF5 and TMPRSS2 are co-expressed
To derive a possible hypothesis of how ELF5 expression might be
linked to severe COVID-19, we collated a list of candidate genes, that
were either regulated by or co-expressed with ELF5 (see Methods and
Supplementary Data 7). Among the set of candidate genes were mul-
tiplemembers of the transmembrane serine protease family, including
TMPRSS2 andTMPRSS4, whichhavebeen shown tobe essential for viral
entry by priming of the spike protein53,54. We observed a positive cor-
relation between ELF5 and TMPRSS2 expression in sustentacular cells
(r =0.15, p < 4.5 × 10−6, Supplementary Fig. 11), the cell type with the
highest ELF5 expression in scnRNAseq data sets, but no correlation
with TMPRSS4 expression. The correlation with TMPRSS2 expression
was also above the 95th percentile of correlation coefficients across all
genes. Further, genes highly correlated with ELF5 expression were also
significantly (enrichment score 0.31; p = 0.013) enriched among col-
lated target genes, minimising the possibility of a measurement arte-
fact. While such correlation analysis using single-cell data must be
treated with caution, overexpression of Efl5 in a mouse model showed
a three-fold increase in Ace2 and a two-fold higher expression of
Tmprss4 in AT2 cells55, providing additional evidence that ELF5 might
be involved in the regulation of key host factors for SARS-CoV-2.

Fig. 5 | ELF5 expression by epithelial cells of the olfactory mucosa and lung.
Immunofluorescent staining of ELF5 in control and COVID-19 patients in the
A olfactorymucosa, B lung alveoli, and C lung bronchiole.A Dashed lines separate
the olfactory epithelium and the lamina propria. B Arrowheads highlight AT2 cells
expressing ELF5; dashed outline highlights clusters of AT cells expressing ELF5.

C left: epithelial cells expressing ELF5; right: arrowheads highlight airway epithelial
cells expressing ELF5. Marker genes for sustentacular and Bowman gland cells
(A KRT18), alveoli type II cells (B SFTPC), pan-epithelial cells (C EPCAM), and
secretory cells (C SCGB1A1) are shown in purple. Validation staining for each tissue:
control (n = 2); COVID-19 (n = 2). Scale bar = 100μm.
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To formally test for pathways associated with ELF5 expression, we
performed cell-type specific pathway enrichment analysis using the
collated set of putative ELF5 targets or co-expressed genes and
observed a consistent enrichment of biosynthetic pathways likemRNA
and peptide processing, and possibly among genes involved in epi-
thelial barrier formation (Supplementary Fig. 12). The latter aligns with
a substantial impact of Elf5overexpressionon thedifferentiationof the
lung epithelium in mouse models of lung development, leading to
dilation of the airways55.

Drug target identification
We queried all identified candidate proteins in the Open Targets
database56 to identify repurposing opportunities for COVID-19. While
none of the proteins had already been approved drugs or drugs in
clinical trials, recombinant human G-CSF (rhG-CSF), such as filgrastim
and lenograstim, is used to treat the neutropenia caused by che-
motherapy to stimulate the production of granulocytes from the bone
marrow57. In line with this, phenotypic associations identified in a
phenome-wide colocalisation analysis at CSF3 (±500 kb, encoding G-
CSF) provided robust evidence for a shared genetic signal between
plasma G-CSF and granulocyte and other white blood cell counts58,
with consistent positive associations across candidate genetic variants
(Fig. 6 and Supplementary Data 8). This suggests the ability of the cis-
pQTL to instrument the function of the protein and allowed testing of
the potential effect of G-CSF supplementation for (severe) COVID-19 in
silico. We observed a 25% (odds ratio: 0.75; 95% CI: 0.65–0.87; p
value < 1.5 × 10−4) reduction in the risk for severe COVID-19 per 1 s.d.
higher genetically predictedG-CSF (SupplementaryData 5). A previous
smaller, independent study that used a different proteomic technol-
ogy observed directionally consistent results but did not reach statis-
tical significance59. Together, these results provide in silico evidence
that people with genetically higher plasma G-CSF abundances are less
likely to develop (severe) COVID-19 and suggest that treatment with
rhG-CSF might decrease the risk for symptomatic or even severe
COVID-19. A recent randomised clinical trial60 among 200 COVID-19
patients with pneumonia and severe lymphopenia observed a sig-
nificantly lower number of patients developing critical illness when
treated within the first three days of inclusion with 5 µg/kg rhG-CSF.
However, leucocytosis was common in the treatment arm, including
severe cases, which may limit the general application. For example, it
might be conceivable that rhG-CSF treatment in COVID-19 patients
with a strong immune response stimulates an adverse hyperin-
flammatory state and hence only a subgroup of COVID-19 patients
might benefit.

Discussion
Multiple host genetic variants have been identified12–15 that predispose
SARS-CoV-2 infected individuals to a severe course of COVID-19,
including hospitalisation and risk of death, pointing to causal
mechanisms. To translate these findings into clinical management or
the identification of novel drug targets and repurposing opportunities,
a deep understanding of the involved causal genes is needed. We
identified six candidate causal genes and their proteins by refining
known risk loci (ELF5, SFTPD) and by prioritising suggestive loci (CSF3,
RAB2A,HSP40, NUDT5) through the integration of plasma proteomics.
We demonstrate that the strongest and most robust candidate, ELF5
(associated with a >4-fold higher risk to develop severe COVID-19), is
specifically expressed in primary target cells of SARS-CoV-2 (for
example, sustentacular61, AT246, and secretory or ciliated epithelial
cells62) with evidence of co-expression with genes encoding key host
factors, such as ACE2 and TMPRSS2, using scnRNAseq data across
various sites of the respiratory system. We further find genetically
anchored evidence that aligns with a recent clinical trial60 suggesting
human recombinant granulocyte colony-stimulating factor (G-CSF) as

a potential treatment option amongpatientswithCOVID-19 and severe
lymphopenia to mitigate adverse outcomes.

ELF5 is a member of the erythroblast transformation-specific (Ets)
transcription factor family and is best known for its possible role in
breast or prostate cancer, tissues with high fractions of epithelial
cells63,64, and less for its possible role in lung development55,65 and
possibly cysticfibrosis66. Experimentalmodels to study the role of ELF5
are difficult since Elf5−/− mice are embryonic lethal67. However, the
recent development of transgenicmousemodels68 andour scnRNAseq
data provide strong evidence that ELF5 is expressed in epithelial cells
of the respiratory system of adult mice and humans. Early work in lung
tissue cultures and mouse models described a dynamic expression
pattern of Elf5 during embryogenesis and lung branching, including
almost complete downregulation in distal lung postnatally, while
residual expression in proximal airways persisted55,65. Overexpression
of Elf5 during early but not late embryonal development (after E16.5)
caused a severe cystic lung phenotype characterised by disrupted
branching and a dilated airway epithelium55, characteristics that are
also seen in autopsies of COVID-19 patients45. While such a drastic
intervention inmousemodels is not comparable to the subtle effect of
a common genetic variant, the observation that key host factors for
SARS-CoV-2 (Ace2 andTmprss4) areupregulated in Elf5-overexpressing
AT2 cells partly aligns with our observations using scRNAseq data.

The role of ELF5 in secretory and AT2 cells of the airway and
alveolar epithelium, respectively, may have potential implications to
the wound healing response. As cells with stem-like capacity, they are
involved in the maintenance and repair of their respective cellular
niches49,69. Thus, any surviving secretory and AT2 cells that drive the
repopulation of the epithelium could potentially have aberrant repair
programmes mediated by ELF5 and therefore possibly rs766826. An
accumulation of AT2 cells in a regenerative transitional cell state has
recently been suggested for COVID-1917.

Up to 60% of COVID-19 patients report transient anosmia70. The
underlying aetiology, however, remains largely elusive. Direct infec-
tion and hence damage of olfactory sensory neurons by SARS-CoV-2
could be one obvious explanation. Viral particles have been shown to
be present in neuronal cells of the olfactory mucosa possibly pre-
senting a route for CNS infection71, however, the generally undetect-
able expression levels of ACE2 in those cells make them an unlikely
primary target compared to, for example, epithelial cells61. Previous
studies suggested that the loss of essential supporting cells, susten-
tacular cells, in the olfactorymucosa causes anosmia61,72. Sustentacular
cells have been suggested as primary targets of SARS-CoV-2 based on
high ACE2 expression46,61,73, supported by in vivo models showing a
high viral load and rapid desquamation of the olfactory epithelium
following infection74,75. A finding in line with our observations from
samples of COVID-19 patients. Our observation that sustentacular
cells, as well as other secretory epithelial cells in the olfactory mucosa,
express high levels of ELF5 along with a possible link to ACE2 expres-
sion, might indicate a possible modulating role of ELF5 expression for
this common symptom. However, a recent genome-wide association
study (GWAS) for anosmia76 among self-reported COVID-19 cases did
not yet identify rs766826 and hence ELF5 expression. Larger GWAS for
anosmia and functional studies are needed to clarify a possible role of
ELF5 in the onset of anosmia during SARS-CoV-2 infection.

We provide genetically anchored evidence that people with
higher plasma G-CSF abundances are less likely to develop severe
COVID-19, suggesting a possible protective effect possibly via early
recruitment of neutrophils to the entry sites of SARS-CoV-243. Colony-
stimulating factors, such as G-CSF, are haematopoietic growth factors
and are actively investigated as treatment options for COVID-1977. A
recent open-label, multicentre, randomised clinical trial60 evaluated
the efficacy of rhG-CSF to improve symptoms among 200 COVID-19
patients with lymphopenia (lymphocyte cell count <800 per µL) but
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without comorbidities. While no significant effect on the primary
endpoint (time to improvement) was detected, patients treated with
rhG-CSF experienced significantly fewer severe adverse effects,
including respiratory failure, acute respiratory distress symptoms,

sepsis, or septic schock60. The treatment effect seemed further
dependent on baseline lymphocyte counts, with patients <400 per µL
benefiting the most. However, leucocytosis was common in the
treatment arm, including severe cases. We note, that our results and

Fig. 6 | Stacked regional association plots at CSF3. Each panel contains regional
association statistics (p values) from linear regression analysis for the trait listed in
the upper left corner along genomic coordinates. Each dot represents single
nucleotidepolymorphisms and colours indicate linkagedisequilibrium (LD; r²)with
the most likely causal variant, rs12600856, prioritised by multi-trait colocalisation
at this locus (darker colours stronger LD). The position of rs12600856 in the

genome is highlighted by a red line on the lowest panel. Summary statistics for
COVID-19-related outcomes were obtained from the COVID-19 HGI15, for protein
abundances from Pietzner et al.32, andwhite blood cell counts fromAstle et al.58. LD
was calculated based on 8350 unrelated white-British participants of the Fenland
cohort.
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the trial are in stark contrast to observational studies associating
higher G-CSF plasma levels78,79 and rhG-CSF treatment among cancer
patients with a poor prognosis80,81, possibly explained by the inability
to distinguish cause and effect. We further emphasise, that our
genetically anchored drug prioritisation approach cannot make any
recommendations about the best time point and dose of intervention
during the course of infection/disease, which are crucial parameters
for any drug application. Bespoke large randomised clinical trials are
warranted to evaluate optimal timing, dosage, and risk-benefit eva-
luation of rhG-CSF treatment among COVID-19 patients.

Candidate proteins highlighted in the present study might gen-
erally act via two distinct mechanisms. Firstly, they may increase/
decrease the susceptibility of getting infected with SARS-CoV-2 in the
first place, which is also the most powered outcome investigated by
theCOVID-19HGI. The effect of BGAT encoded byABO fallsmost likely
into this category15. Secondly, once patients are sufficiently infected,
host proteins might contribute to exaggerated replication/spreading
of the virus into different organ systems or contribute to the hyper-
inflammatory response seen in many severe COVID-19 cases with
subsequent injury, and possibly failure, of multiple organ systems,
including the lung. We observed at least 3-times higher effect esti-
mates of candidate genetic variants for severe COVID-19 compared to
testing positive for SARS-CoV-2 for all remaining candidate proteins
(Supplemental Data 5), making them likely candidates to contribute to
disease severity, which was supported by analysis from the COVID-19
HGI for ELF5, OAS1, and SFTP15.

Apart from the (refined) annotation of causal genes at known risk
loci, establishing a shared signal across different molecular layers and
COVID-19 subthreshold findings can reveal yet-to-be-identified risk
genes and proteins. For example, we identified RAB2A, encoding Ras-
related protein Rab2A, as a suggestive causal gene for severe COVID-
19, which has only been identified as a genome-wide significant locus
while this paper was under review with substantially larger case
numbers82. While other findings, including CSF3 (encoding G-CSF), still
warrant statistical identification at genome-wide significance for
COVID-19 outcomes before being unambiguously declared as genetic
risk locus, we argue that establishing convergence of different biolo-
gical entities at a genetic signal can greatly increase confidence in the
plausibility of findings. For example, out of all findings at the CSF3
locus only the most powered once, that is, white blood cell counts,
reach genome-wide significance, although the cluster identified using
multi-trait colocalisation aligns with the known biology of G-CSF as a
myelopoietic growth factor andwas further supportedby external trial
evidence.

Although the GWAS summary statistics from the COVID-19 HGI
represent multiple ancestries and the signal at the ELF5 locus has
recently been replicated in a Brazilian cohort83, the pQTL instruments
are based on a single ancestry and genetic studies of plasma abun-
dances of proteins in other ancestries may reveal additional candidate
proteins, that may help to explain the variable prevalence of adverse
COVID-19 outcomes across ethnicities8. We obtained some evidence
that rs766826 might act through a mechanism that is possibly unique
to AT2 cells based on an open chromatin region, the concrete under-
lying mechanism, however, remains elusive. Further studies are nee-
ded to decipher the role of rs766826 in the cell-type specific
expression of ELF5. The sameholds true for the suggestedmechanisms
of action for ELF5, for example, co-expression with and possibly reg-
ulation of ACE2 or TMPRSS2, that need to be tested in appropriate
cellular and animal models, also to investigate the role of ELF5 in tis-
sues of the respiratory system more in general. Although our results
started with the investigation of proteins measured in plasma and
might hence provide possible biomarkers for severe COVID-19 in a
clinical setting, we did not identify concordant associations based on
plasma proteomic profiling for most of the candidates in public data
sets31,84. This likely reflects the general segregation of proteins that

possibly cause amore severe outcome of COVID-19 than those being a
consequence of SARS-CoV-2 infection and COVID-19. We note that
while MR can indicate the direction of effects, estimates should be
interpreted with cautionwhen plasma/blood is not the tissue of action
of the protein or if cis-pQTL(s) can be linked to protein-altering var-
iants or splicing event QTLs32. These effects, along with a possible
general moderate biological effect, might have contributed to the
small effect sizes for BGAT (linked to a splicing QTL) or SFTPD (the cis-
pQTL, rs721917, being a missense variant, p.M31T). Finally, while we
introduced filters on top of a high PP for a shared signal to ensure
robust candidate proteins, correction for multiple testing in statistical
colocalisation is still an area of debate and further developments are
needed.

Our results demonstrate potential modulators for a poor prog-
nosis amongCOVID-19 patients with potential therapeutic options.We
highlight ELF5 as a potential regulator in cells that are the primary
targets of SARS-CoV-2 by combining population-level genetic evidence
with gene expression at single-cell resolution, providing a tangible
hypothesis for further functional follow-up studies to investigate the
role of ELF5 for viral entry and wound healing of the epithelial layer of
the respiratory system upon severe COVID-19.

Methods
Summary statistics for proteins
We obtained locus-specific, ±500kB of the protein-encoding gene,
summary statistics from our genome-wide association analysis for
4,775 plasma proteins targeted by the SomaScan v4 assay and 1069
targeted by the Olink proximity extension assay30,32. A detailed
description can be found elsewhere30,32. Briefly, plasma abundances of
4775 protein targets were tested for protein quantitative trait loci
using standard GWAS workflows based on 10.4 million single nucleo-
tide polymorphisms (SNPs) among 10,708 individuals of white-British
descent. We further obtained genome-wide association statistics for
1069 proteins measured using the complementary Olink technique
available among a subcohort of 485 participants. We treated protein
assays as separate instances even if those targeted the same protein
between both techniques, given the heterogeneity of genetic findings
across both platforms32. All variants are oriented based on the hg19
genome build.

Summary statistics for COVID-19
We used four meta-analysed COVID-19 data sets from the June 2021
release of the COVID-19Host Genetics Initiative including all ancestries
but excluding data provided by 23andMe (https://www.covid19hg.org/
results/r6/). The phenotypes comprised A2 (Severe COVID-19 vs.
population), B1 (hospitalised COVID-19 vs. not hospitalised COVID-19),
B2 (hospitalised COVID-19 vs. population), and C2 (SARS-CoV-2 posi-
tive vs. population). A summary of case definitions can be found in
Supplementary Table 1.

Statistical colocalisation
To identify genetic variants that are shared between plasma
protein levels and the four different COVID-19 definitions, we
performed statistical colocalisation85 in a ±500 kb window around
the protein-coding gene as implemented in the R package coloc
(Fig. 1). We decided for such a ‘colocalisation first’ to prioritise
candidates for formal Mendelian randomisation analysis that fulfil
the exchangeability assumption. In other words, to ensure that
the effect from the genetic variant to the outcome goes only via
the exposure (the protein level) and not via other pathways
through proximal or distal variants in linkage disequilibrium, a
frequent issue when working with molecular QTLs86. In detail, a
statistical colocalisation is a Bayesian approach that provides
posterior probabilities for each of five hypotheses: H0 – none of
two traits has a genetic signal in the region; H1 – only trait 1 has
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evidence for a genetic signal in the region; H2 – only trait 2 has
evidence for a genetic signal in the region; H3 – both traits have
two distinct signals in the same genomic region; and H4 – both
traits share the same underlying genetic signal. We used the
default prior settings to test for colocalisation (p1 = 10−4, p2 = 10−4,
p12 = 10−5) and tested robustness of findings for candidate pro-
teins by systematically varying across a grid of prior combina-
tions (p1 = c(10−4, 10−5, 10−6); p2 = c(10−4, 10−5, 10−6); p12 = c(10−5,
5 × 10−6, 10−6)). To accommodate the single variant assumption of
coloc, we further required for each protein–outcome pair passing
the PP threshold of 80% that respective regional lead variants are
in strong LD (r² > 0.8). While such a filter may drop some true
candidates, such as HINT1 for severe COVID-19 (PP H4 = 84%, LD
between respective lead signals = 0.79), it filters for likely false-
positive findings, such as FAS1 (PP H4 = 93%), that have distinct
regional sentinel variants violating statistical colocalisation
assumptions (r2 = 0.12).

We optimised computational efficacy by only testing regions with
at least suggestive evidence (p < 10−5) for either the plasma protein or
COVID-19-related outcomes, resulting in a total of 2375 protein targets
(n = 723 common to both platforms) to be tested. We treated each
protein-platform combination as a distinct entity for colocalisation. To
avoid spurious colocalisation results, we further ensured that the lead
cis-pQTL or a proxy in strong LD (r2 > 0.8) was included in the over-
lapping set of SNPs used for colocalization with COVID-19 summary
statistics. We took only that protein–outcome regions forward with
sufficient presentation of the lead cis-pQTL signal (r2 > 0.8) and further
provide similar information for COVID-19 statistics. We further kept
only SNPs in the COVID-19 summary statistics present in 80% of the
contributing studies. This resulted in a total of 1121 unique protein
targets with reliable colocalisation results for at least one of the four
COVID-19 outcomes. We note, that due to the varying sets of over-
lapping SNPs between protein and COVID-19 summary statistics, we
chose to take forward the SNP most strongly associated with plasma
protein levels as a representative topresent effect estimates.While this
may have led to slightly varying candidate SNPs for each
protein–outcome pair, the fact that we rigorously filtered for a pre-
served protein signal ensures that all those variants should tag the
same underlying potentially causal variant. We used the largest Fen-
land subset (n = 8350) to compute LD information, if SNPs were not
available, we queried the non-Finnish European sample from the 1000
Genomes project as implemented in the R package ieugwasr. We
report minor allele frequencies based on the Fenland data set.

We finally categorised candidate proteins (i.e., PP H4 > 80% and
LD regional sentinels r2 > 0.8) into three tiers based on statistical sig-
nificance: 1 – genome-wide significant (p < 5 × 10−8) in protein and
COVID-19 summary statistics; 2 – genome-wide significant in either
protein or COVID-19 statistics; and 3 – suggestive candidates with
subthreshold (5 × 10−8 < p < 10−4) findings for both.

Multi-trait colocalisation
We used hypothesis prioritisation in multi-trait colocalisation
(HyPrColoc)33 at selected protein loci (1) to identify a shared genetic
signal across various traits, including gene expression, plasma protein
levels, COVID-19 outcomes, and other phenotypes, and (2) to test
whether phenotypes with genetic signals at the same genetic locus
centre around distinct causal variants, that is, although in close
proximity represent distinct genetic findings. HyPrColoc provides for
each cluster three different types of output: (1) a posterior probability
(PP) that all phenotypes in the cluster share a common genetic signal,
(2) a regional association probability, that it, that all the phenotypes
share an association with one or more variants in the region, and (3)
the proportion of the PP explained by the candidate variant. We con-
sidered a highly likely alignment of a genetic signal across various
phenotypes if the PP > 80% and report obtained PPs otherwise. We

further used the intrinsic fine-mapping approach done by HyPrColoc
to report candidate causal variants at each locus.

Mendelian randomisation
To derive effect directions and estimate possible effects of lifelong
higher/lower protein abundances on COVID-19 susceptibility and
severeness, we performed single-instrument MR analysis using cis
protein quantitative trait loci (cis-pQTLs) as instruments. We com-
puted the ratio between the effect of the genetic instrument on the
outcome divided by the effect on the exposure (so-calledWald ratio87)
to derive an estimate for the causal effect of a 1 s.d. increase in plasma
abundances of the candidate protein on the risk for COVID-19.

Tissue gene expression
We incorporated gene expression data by testing for a shared genetic
signal between protein abundance in plasma and expression of the
protein-encoding gene in one of at least 49 tissues of the GTX v8
resource35. We used the same colocalisation approach as
described above.

Multi-ethnic fine-mapping of the ELF5 locus
We used Bcftools v1.9 to isolate variants present in the ELF5 locus
(chr11:34440000-34540000) from the 1000G project GRCh37 phase
3official releasedata, stratifying for EuropeanandAfrican ancestry88,89,
and isolated biallelic variants using Plink v2.00a22.3LM. To calculate
the linkage disequilibrium (r2) for all combinations of variants we
processed all variants with Tomahawk v0.7.1 (https://mklarqvist.
github.io/tomahawk/). We obtained missing linkage disequilibrium
statistics using the R package LDLinkR.

We used FINEMAP v1.490 to perform multi-ancestry fine-mapping
following a previously published workflow25. Summary statistics and
linkage disequilibrium statistics by ancestry were organised into files
formatted for use. We started with the most powered European
ancestry data, setting prior probabilities for each variant to be equal.
We used the PIPs from this analysis as priors in the subsequent analysis
of the African ancestry results. We note that the added value of trans-
ethnic fine-mapping is likely due to smaller LD-blocks in participants of
African descent, since we identified five SNPs co-segregating with
rs766826 in Europeans (r2 > 0.7), while none did so using the African
reference panel.

Phenotypic follow-up of candidate cis-pQTLs
We systematically tested for phenotypic associations for cis-pQTLs by
querying the OpenGWAS38 database, including proxies in high LD
(r² > 0.8). To test for a shared genetic signal between the FEV1/FCV
ratio (a proxy for lung function) and plasma levels of ELF5, we down-
loaded genome-wide summary statistics from Shrine et al.39. We con-
ditioned on two stronger independent lead signals in the region
(rs10836366 and rs1648123) to account for the single variant
assumption in statistical colocalisation.

Collation of target genes of ELF5
Wecollated a list of geneswith possible direction associationwith ELF5
by querying theMolecular Signatures Data Base91, the Enricr tool92, the
Harmonizome93, includingChIP-Seq experiments94, and a curated gene
co-expression network95 (Supplementary Data 7).

Single-cell/nucleus RNA sequencing quality control
Single-cell/nucleus RNA sequencing (sc/nRNA-seq) healthy control
data sets of the olfactory mucosa (GSE139522), nasopharynx
(EGAS00001005461), and lungs (EGAS00001004689; EGAS000010
04419: SAMEA6848756, SAMEA6848761, SAMEA6848765, SAMEA
6848766) were reanalysed in this study41–44. Due to the increased noise
of snRNA-seq data, we performed ambient RNA removal on the lung
data set with SoupX v1.4.596. Analysis was performed with Seurat
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v3.1.497,98. For the olfactory mucosa and lung data sets, individual
samples were integrated and annotated from scratch. Individual
samples were subjected to an upper bound filter of <10% mitochon-
drial reads and >200 genes expressed, and an upper bound filter of
3000–6000 genes depending on the sample.

Single-cell/nucleus RNA sequencing analysis
After log-normalisation and scaling, canonical correlation analysis
was used for integration and batch-correction of the individual
samples. Principal component analysis and Uniform Manifold
Approximation and Projection for dimension reduction (UMAP)
were calculated for each integrated data set. Finally, after unsu-
pervised clustering, the cell-type assignment was performed as
previously described16,41–44,61 and marker genes are depicted in
Supplementary Fig. 13. Differentially expressed genes were identi-
fied using a MAST-based differential expression test. The Pearson’s
correlation was calculated on log-normalised expression values for
all detected genes against ELF5 in Sustentacular cells, which
expressed ELF5 the highest. Gene set enrichment analysis91 (GSEA;
v4.1.0) was used to test for enrichment of the collated ELF5 target
genes against all detected genes where the weights used were the
Pearson’s correlation values. Utilising the collated ELF5 target
genes, cell-type specific pathway enrichment was performed using
Metascape99.

Immunohistochemistry
Postmortem olfactory mucosa and lung tissue were collected from
control and COVID-19 donors (Supplementary Table 2). All donors
or their next of kin/legal representative gave consent. COVID-19
status from the controls was assessed by Spindiag Rhonda PCR
rapid COVID-19 test according to the manufacturer's protocol. This
study was approved by the local ethics committees (EA1/144/13,
EA2/066/20 and EA1/075/19) as well as by the Charité–BIH COVID-19
research board and is in compliance with the Declaration of Hel-
sinki; autopsies were performed on the legal basis of §1 of the
Autopsy Act of the state Berlin and §25(4) of the German Infection
Protection. Control lung tissues were purchased from OriGene
(TissueFocus) and Tissue Solutions. Samples were embedded in
paraffin and sectioned at a 5μm thickness. Sections were depar-
affinized in Roticlear (CarlRoth, A538.1) and rehydrated with an
ethanol series. Antigen retrieval was performed by submerging
slides in 10mM Sodium Citrate Buffer (Sigma-Aldrich, C999-
1000ML) at 95 °C for 10minutes and left to cool for 30minutes.
Sections were permeabilized and blocked with 5% goat serum PBST
(0.5% Triton X-100 in PBS) for 1 hour. Primary antibodies (1% goat
serum PBST) were then added to the tissues and left to incubate
overnight. This was followed by secondary antibody (1% goat serum
PBST) labelling for 1 hour at room temperature. Antibodies used in
this study and their respective dilutions can be found in Supple-
mentary Table 3. TMPRSS2 with ACE2 staining was performed
according to the instructions of VectaFluor™ Excel Amplified Kit
(Vector Laboratories; DK-2594). To remove autofluorescence, sec-
tions were sequentially treated with Lipofuscin Autofluorescence
Quencher (PromoCell, PK-CA707-23007) and Vector TrueVIEW™ Kit
(Vector Laboratories, SP-8400). Sections were then stained with
16 μM Hoechst 33258 (ThermoFischer, H3569) for 5minutes,
washed with 1× PBS, and mounted with VECTASHIELD® HardSet™
Antifade Mounting Medium (Vector Laboratories, H-1400-10).
Stained slides were visualised with a Leica SP8 confocal microscope.
Images were processed and assembled with FIJI v1.0100.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics for protein levels are available from https://
omicscience.org/apps/pgwas/ (SomaScan v4) and https://zenodo.
org/record/6787142#.Yr761uxBxhE (Olink). Summary statistics for
COVID-19 are available from https://www.covid19hg.org/results/r6/.
scRNAseq data sets are available under the accession IDs: Olfactory
Mucosa (GSE139522); Nasopharynx (EGAS00001005461); Lung
(EGAS00001004689) and (EGAS00001004419). Publicly available
GWAS summary statistics were obtained from the IEU OpenGWAS
project (https://gwas.mrcieu.ac.uk/).

Code availability
Associated code and scripts for the analysis are available on GitHub
(https://github.com/pietznerm/elf5_covid_19)101.
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