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Abstract

Background: Alcohol dependence (AD) is a prevalent problem characterized by a
high relapse risk. The “incentive salience sensitization" theory of addiction proposes
that alcohol exposure progressively sensitizes the brain circuitry related to attributing
incentive salience to reward-predicting stimuli, which manifests in cue-triggered
behavior. The Pavlovian-to-instrumental transfer (PIT) and the approach bias (ApB) to
alcohol are two widely investigated cue-related effects in AD. Both effects have been
linked to the development, maintenance, and relapse in AD. The studies in my
dissertation investigated: (1) whether the opioid system, which has been associated
with the alcohol ApB, interacts with the PIT effect; (2) whether the alcohol ApB is
associated with PIT; and (3) whether the cognitive bias modification (CBM) training
targeting on the alcohol ApB impacts on PIT effects.

Methods: Patients with AD (n = 186), young healthy subjects (n = 161), and middle-
aged healthy subjects (n = 105) conducted a PIT task in study 1 of this dissertation.
Genotyping was performed on whole blood samples to assess the A118G (rs1799971)
polymorphism of the opioid receptor mu-1 (OPRM1) gene, which has been shown to
influence the affinity of the mu-opioid receptor. In study 2 of this dissertation, 100
patients with AD who performed both the alcohol approach/avoidance task and the
PIT were examined. In study 3, patients with AD (n = 95) completed the CBM or
placebo training and performed PIT tasks (n = 81) as well as the alcohol
approach/avoidance task (n = 88) before and after training.

Results: OPRM1 G-allele carriers compared to non-G-allele carriers showed a
stronger PIT effect in all three groups. Interestingly, this gene-behavior association
was present in prospectively relapsing but not in abstaining patients with AD. The
alcohol ApB was associated with both behavioral and neural PIT effects in patients
with AD. Moreover, this behavioral association was associated with the severity of AD
and trait impulsivity. The CBM training did not significantly affect the PIT effects nor
the alcohol ApB.
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Conclusion: Findings of this dissertation highlight the role of the opioid system in
Pavlovian mechanisms in humans that manifests in the PIT effect, which has
implications for the treatment of AD. Furthermore, the results indicate an association
between PIT, impulsive decision making, and a bias towards alcohol approach.
However, the CBM intervention did not interact with mechanisms assessed by our
PIT paradigms and may thus not be useful to target Pavlovian mechanisms in human

alcohol addiction.

Zusammenfassung

Hintergrund: Alkoholabhangigkeit ist durch ein hohes Ruckfallrisiko gekennzeichnet.
Die ,Incentive Salience Sensitization Theorie” der Sucht geht davon aus, dass
chronischer Alkoholkonsum jene Schaltkreise im Gehirn, die mit der Zuschreibung
von Bedeutsamkeit belohnungsrelevanter Reize zusammenhangen, fur Alkoholreize
sensibilisiert. Der Pawlowsch-Instrumentelle Transfer (PIT) Effekt sowie ein Alkohol-
Annaherungsbias sind zwei in der Literatur beschriebene Effekte, die Folgen einer
solchen Sensibilisierung gegenuber Suchtreizen sein konnen. Beide Effekte wurden
mit der Entwicklung, Aufrechterhaltung und dem Ruckfall bei Alkoholabhangigkeit
assoziiert. In dieser Dissertation untersuchte ich, (1) ob das Opioidsystem, das mit
dem Alkohol-Annaherungsbias in Verbindung gebracht wurde, auch an PIT Effekten
beteiligt ist, (2) ob der Alkohol-Annaherungsbias mit dem PIT-Effekt in Verbindung
steht, und (3) ob ein Training zur Modifikation der kognitiven Verzerrung (CBM),
welches auf eine Reduktion des Alkohol-Annaherungsbias, auch den PIT-Effekt
beeinflusst.

Methoden: Patienten mit Alkohoholabhangigkeit (n = 186), junge gesunde Probanden
(n =161) und gesunde Probanden mittleren Alters (n = 105) fihrten in Studie 1 dieser
Dissertation eine PIT-Aufgabe durch. Es wurde ein OPRM1-Polymorphismus
genotypisiert, der die Affinitat des mu-Opioidrezeptors beeinflusst. In Studie 2 wurden
100 Patienten mit Alkoholabhangigkeit untersucht, die sowohl die Alkohol-

Annaherungs-/Vermeidungsaufgabe als auch die PIT-Aufgabe durchfuhrten. In Studie
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3 absolvierten Patienten mit Alkoholabhangigkeit (n = 95) ein CBM- oder Placebo-
Training und fuhrten vor und nach dem Training die PIT-Aufgabe (n = 81) sowie die
Alkohol-Annaherungs-/Vermeidungs-Aufgabe (n = 88) durch.

Ergebnisse: Studie 1: OPRM1 G+ Trager zeigten im Vergleich zu G- Tragern einen
starkeren PIT-Effekt. Diese Gen-Verhaltens-Assoziation war bei Patienten, die
prospektiv ruckfallig wurden, nicht aber bei abstinenten alkoholabhangigen Patienten
zu beobachten. Studie 2: Bei Patienten wurde der Alkohol-Annaherungsbias sowohl
mit dem verhaltensbezogenen als auch mit dem neuronalen PIT-Effekt in Verbindung
gebracht. Daruber hinaus war diese Verhaltensassoziation mit dem Schweregrad der
Erkrankung und der Impulsivitat assoziiert. Studie 3: Das CBM-Training wirkte sich
weder auf den PIT-Effekt noch auf dem Alkohol-Annaherungsbias aus.
Schlussfolgerung: Die Ergebnisse dieser Dissertation unterstreichen die Rolle des
Opioidsystems fur den Einfluss Pawlowscher Reize auf das menschliche Verhalten,
der sich im PIT-Effekt manifestiert. Daruber hinaus zeigen die Ergebnisse einen
signifikanten Zusammenhang zwischen impulsiver Entscheidungsfindung, der
Alkohol-Annaherungsbias und den Veranderungen der Reaktivitat auf Pawlowsche
Anreize hin. Die CBM-Intervention interagierte dagegen nicht mit den Mechanismen,

die in dem von uns genutzten PIT-Paradigma untersucht wurden.
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1. Introduction

Alcohol consumption is widespread in Germany with around 18% of adults reporting
harmful use of alcohol [1, 2] and around 3.6% meeting the clinical criteria of alcohol
dependence (AD) [3]. A critical characteristic of AD is the high incidence of relapse
despite patients’ desire to remain abstinent [4]. It is widely hypothesized that alcohol-
related cues can elicit relapse [5]. According to the “incentive salience sensitization”
theory of addiction, alcohol exposure has the ability to sensitize the brain circuitry
related to attributing incentive salience to reward-predicting stimuli, as evidenced by
cue-related behavior [6, 7]. In this dissertation, we focused on two tasks that have
been used to investigate the cue-related behavior in research on AD: the Pavlovian-
to-instrumental transfer (PIT) task, and the alcohol approach/avoidance task (aAAT).
Studies provided evidence of these two tasks in association with the development,

maintenance and relapse of AD, and their implications for treatment [e.g. 8, 9-12].

1.1 Pavlovian-to-instrumental transfer (PIT)

Pavlovian learning (or in other words, conditioned learning) describes a process in
which a neutral stimulus (conditioned stimulus; CS) gains incentive salience when it
repeatedly appears with a reward (unconditioned stimulus; US) [13]. PIT is a well-
established paradigm to quantify the impact of Pavlovian cues on instrumental
behavior. In PIT, Pavlovian CS-US associations are trained separately from
instrumental response - outcome contingencies in subjects. Subsequently,
instrumental behavior is assessed in the presence of Pavlovian CSs, usually under

(nominal) extinction conditions (i.e., outcomes are not delivered during the test) [14].

To date, a variety of PIT paradigms have been utilized. Some studies focused on
appetitive PIT: the effect of Pavlovian CS predicting an appetitive outcome on
enhancing instrumental behavior that leads to the appetitive outcome [for a review,
see 14], and other studies examined aversive PIT: the effect of aversive outcome-

predictive Pavlovian CS on inhibiting approach to an appetitive outcome [e.g., 15, 16]
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or on promoting response to cancel the aversive outcome [e.g., 17, 18]. Moreover,
studies have disentangled outcome-specific PIT and general PIT that are
underpinned by different neural substrates [19]. Outcome-specific PIT refers to the
situation where the Pavlovian CS previously paired with a reward promotes
instrumental behavior that leads to the same reward, whereas in general PIT a CS
enhances instrumental behavior regardless of the identity of the reward [20, 21].
Research suggested that the nucleus accumbens (NAcc) shell mediates the

outcome-specific PIT effect, whereas NAcc core mediates the general PIT effect [19].

1.1.1 Animal research on PIT

The interaction between Pavlovian and instrumental learning has been observed in
animal studies a few decades ago. For instance, in a study conducted by Rescorla
and Lolordo (22), dogs increased bar pressing to prevent shock when hearing a tone
previously associated with shock (CS). Following that study, abundant animal studies
have investigated PIT in addiction research [e.g., 23, 24-29]. Drug-related cues
enhanced PIT effects in drug-exposed rats [23, 24]. Moreover, cues predicting
ethanol delivery facilitated reward seeking for both ethanol and non-ethanol reward

(i.e., a general PIT effect) [23].

In addition to drug-related cues, there are studies applying non-drug-related cues in
PIT to study a general impact of drug use and addiction on cue-related behavior.
Increased non-drug-related PIT effects were observed in rats repeatedly exposed to
cocaine [25-28]. Comparably, mice chronically exposed to ethanol vapor showed
enhanced non-ethanol-related (i.e., reward of food) PIT effects [29]. These findings
suggest a general alteration in cue processes and motivational behavior caused by

repeated exposure to drugs.

1.1.2 Human research on PIT

Following animal studies, PIT has been applied in human addition research, including
alcohol use and dependence. Alcohol-related PIT effects were observed in nonclinical

samples of social drinker [30-33]. This PIT effect was observed irrespective of alcohol
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devaluation [32], but was not associated with craving [33] or alcohol consumption
measured by the Alcohol Use Disorder Identification Test [30]. However, by applying
a non-drug-related PIT paradigm that presents monetary Pavlovian CSs when
participants performing an instrumental task to obtain monetary rewards or avoid
monetary losses, our research group observed enhanced PIT effects in social

drinkers with high-risk drinking compared to those with low-risk drinking [8, 34].

In addition to social drinkers, clinical samples of patients with AD have been
investigated in several studies to examine the clinical relevance of PIT in AD. Our
research group established and validated PIT tasks involving both drug-related and
non-drug-related cues in patients with AD [35]. In the PIT tasks, participants
completed an instrumental task to obtain monetary rewards or avoid monetary losses,
while the Pavlovian cues that are associated with monetary outcomes or drink cues
(i.e., alcohol or water pictures) were presented in the background. The non-drug-
related PIT effect was more pronounced in patients with AD compared with non-
dependent controls [9, 11, 35]. Moreover, the behavioral non-drug-related PIT was
found to be associated with prospective relapse risk in patients with AD [36]. The
alcohol cues, however, surprisingly inhibited instrumental button pressing for a
monetary outcome, compared to water cues [11, 35], and this inhibitory drug-related
PIT effect was observed in patients with AD but not in controls. Different findings were
reported in another study using a PIT paradigm with outcome of snacks, in which
differences were not found either between patients and controls, or between
subsequent relapsers and abstainers, in either general or outcome-specific PIT [37].
The null findings may be explained, at least in part, by the limited sample size in that

study [37], or might be associated with the type of reward used in PIT tasks.

1.1.3 Neurobiological correlates of PIT in nucleus accumbens

Neurobiological correlates of PIT have been studied in both animal and human
research. Applying functional magnetic resonance imaging (fMRI), areas of the

ventromedial prefrontal cortex, putamen, amygdala, and NAcc were identified to be



Introduction

associated with PIT [e.g., 9, 18, 38, 39-43]. We focused on the NAcc in this
dissertation (study 2) concerning imaging PIT data, in line with previous studies of our
research group [9, 43]. The NAcc plays an essential role in the human reward system
[44], and was found to be correlated with both salience and valence during incentive
anticipation [45]. In research on AD, heavy drinkers were found to have an enhanced
activity in the NAcc in response to alcohol cues than light drinkers [46]. Furthermore,
the activation in the NAcc induced by alcohol cues was associated with the severity of
alcohol use disorder [47] and subjective craving in patients with AD [48]. In addition, it
differentiated subsequent abstainers and relapsers [49]. Using the PIT task in clinical
sample of patients with AD, our research group also observed activation in the left
NAcc elicited by non-drug-related PIT among patients with AD as well as healthy
controls (HCs), with the activation being greater in prospective relapsers than
abstainers [9]. Activation in the NAcc induced by alcohol versus water cues in the
drug-related PIT task was also observed, which was stronger in patients than in HCs

and in prospective abstainers than in relapsers [43].

The neurotransmitter dopamine in NAcc functioning plays an important role in drug
addiction [50]. It has long been known that drugs of abuse affect the dopamine
transmission [51]. Less availability of dopamine D2-like receptors in the NAcc may
represents a down regulation, and was displayed in patients with AD, and was
associated with alcohol craving [52]. In one study using PIT, phasic dopamine release
in the NAcc was observed in rats in response to reward-paired cues, and this was
positively correlated with the general PIT effect [53]. In another study, rats that were
administrated nonspecific dopamine antagonists showed reduced outcome-specific

PIT effect [54].

1.1.4 Opioid system and incentive salience

In addition to the dopaminergic system, recent findings indicate that the opioid system
also plays a role in the attribution of incentive salience [55], beyond its role in hedonic

modulation that has long been postulated [56]. Animal studies revealed that the opioid
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system is involved in motivation to different types of rewards guided by available cues
[57], and choice decisions influenced by Pavlovian stimuli [58, 59]. In another study,
researchers compared the ability of mu opioid stimulation to dopamine stimulation in
the NAcc to amplify cue-triggered incentive salience measured by a PIT task, and
observed similar amplification effects by both substances [60]. Research further
suggests distinct functions of mu- and delta- opioid receptors across different brain

regions such as the amygdala and the NAcc [58, 61].

In human research, evidence supports the involvement of the mu- opioid system in
value-based decision making in healthy subjects who showed increased preference
for the stimulus associated with a high monetary reward probability [62]. The
involvement of the mu- opioid system was also implicated in social motivation, as
pharmacological manipulation of the mu- opioid system affected both the “liking” of
the opposite-sex faces and the motivation for viewing those faces [63]. In patients
with AD, the unspecific opioid receptor antagonist naltrexone decreased activation in
the ventral striatum induced by alcohol cues [64]. The function of the opioid system in
PIT, however, has been less studied. In Weber et al. [65], an outcome-specific PIT
task with the reward of chocolate was conducted by healthy subjects. Opioid receptor
antagonist naltrexone suppressed the PIT effect, although the impact was less

pronounced compared with a dopamine D2/D3 receptor antagonist [65].

1.2 Alcohol approach bias (ApB) and cognitive bias modification (CBM) training

Another area of research concerning the incentive salience of drug-related cues in
addiction focuses on cue-driven behavioral biases, such as an automatic approach
bias (ApB), for instance, a quick response to “approach” alcohol cues rather than to
“avoid” them. This ApB to alcohol has been found to be greater in heavy drinkers than
in light drinkers [e.g., 66, 67], and stronger in patients with AD compared with controls
[e.g., 68]. One frequently used paradigm in laboratory research on AD is aAAT, the
alcohol version of the approach/avoidance task [e.g., 69, 70]. Using aAAT, research

found that the baseline alcohol ApB was predictive of future drinking [71]. Genetically,
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the alcohol ApB was found to be related to the A118G (rs1799971) polymorphism of
the opioid receptor mu-1 (OPRM1) gene [69], with OPRM1 G-allele carriers (G+
carriers) displaying a stronger alcohol ApB in male heavy drinkers than non-G-allele
carriers (G- carriers) [69]. The OPRM1 A118G polymorphism influences the affinity of
the mu-opioid receptor, such that the G variant causes a threefold increase in the

binding affinity for beta-endorphin compared to the A variant [72].

In line with these findings, cognitive bias modification (CBM) training developed to
retrain the automatic ApB to alcohol stimuli (hereafter the term “CBM training” in this
dissertation specifically refers to alcohol ApB retraining) showed efficacy to reduce
the relapse risk [10, 12, 73-76]. For example, in the first clinical study that applied
CBM training targeted on alcohol ApB, patients with AD in the CBM training group
were trained to avoid alcohol pictures, while other patients conducted the sham
training (i.e., subjects had to approach and avoid alcohol and non-alcohol pictures
equally) or received no training [10]. Patients in the CBM training condition shifted
from an ApB to alcohol at baseline to an avoidance bias following training, and were

less likely to relapse in a 1-year follow-up compared to the control groups [10].

Incongruent findings on the effect of CBM training, however, were reported in several
studies, including a nonsignificant effect on the alcohol ApB in individuals with AD [77,
78], or heavy drinkers [79-83], and no effect on future alcohol drinking in heavy
drinkers [79, 80] or high-risk young adults [84]. A recent systematic review suggests
that CBM training exerts its effects mainly on individuals with more severe forms of
AD [85]. Considering the mixed findings, the mechanisms for the efficacy of CBM
training should be further investigated. Some studies suggest that the CBM effect on
reducing relapse risk or alcohol drinking is modulated by the change of the alcohol
ApB [e.g., 12, 86]. In other studies, CBM training effect generalized to other cue-
related effects, such as reduced implicit alcohol-approach associations [10, 70],
decreased behavioral arousal ratings to alcohol cues and cue reactivity in the
amygdala [77]. These findings imply that CBM training might work on a more general

effect on cue-guided behavior.
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1.3 PIT and alcohol ApB

Although the relationship between PIT and the alcohol ApB has not been directly
examined, findings suggest an association between them: both PIT and the alcohol
ApB have been linked to AD, and have clinical relevance in treatment outcome of AD.
Using fMRI, the NAcc was found to be correlated with both the PIT [e.g., 9, 39] and
the alcohol ApB [68]. Furthermore, the opioid system is implicated in both effects, as
the opioid receptor antagonist naltrexone suppressed the outcome-specific PIT effect
[65], and male heavy drinkers who are OPRM1 G+ carriers exhibited a greater
alcohol ApB than G- carriers [69]. From a theoretical perspective, both PIT and the
alcohol ApB are cue-guided behavior and could be manifestations of incentive
salience attribution to relevant stimuli [6]. According to “dual-process” accounts, the
alcohol ApB manifests when an automatic system is activated and cognitive control is
weakened [87], while the PIT effect in people with AD has been associated with

impulsive choice measured by a delay-discounting task [11].

1.4 Questions and hypotheses

In this dissertation, three studies were conducted to investigate three questions.

1. Is a genotype affecting receptor affinity in the opioid system associated with
the non-drug-related PIT effect in patients with AD and healthy control subjects?
Does this association differ between patients with AD and controls, and

between prospectively relapsing and abstaining patients?

In study 1 [88] of this dissertation, three groups (detoxified patients with AD,
middle-aged healthy control subjects, and young healthy subjects) were examined
with a non-drug-related PIT task using monetary rewards. The interindividual
difference in the opioid system in this study was quantified by A118G (or
ASN40Asp) single nucleotide polymorphism of the OPRM1 gene. It was
hypothesized that OPRM1 A118G polymorphism is associated with the non-drug-

related PIT effect in all three groups, and this association is stronger in patients
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with AD compared with age-matched healthy subjects, and stronger in prospective

relapsers compared with abstainers.

2. Is alcohol ApB associated with the non-drug-related PIT effect in patients with

AD?

In study 2 [89] of this dissertation, recently detoxified patients with AD conducted
both the aAAT and the non-drug-related PIT task. We hypothesized that the
strength of the alcohol ApB is associated with the behavioral non-drug-related PIT
effect and neural PIT effect in the NAcc. Furthermore, we examined whether the
behavioral association is further associated with the severity of AD and trait

impulsivity, and whether it differs between prospective relapsers and abstainers.

3. Does the CBM training targeting on alcohol ApB impact the PIT effects in
patients with AD?

In study 3 [90] of this dissertation, patients with AD received CBM or placebo
training, and conducted the aAAT, drug-related and non-drug-related PIT tasks
prior to and following the training. We hypothesized that CBM training would
reduce patients’ alcohol ApB, non-drug-related PIT effect, and increase the
inhibition effect of alcohol cues in drug-related PIT. In addition, we explored

whether CBM training reduces relapse risk in patients with AD.

2. Methods

2.1 Participants

Data were acquired from a bi-centric study that was conducted in Berlin and Dresden,
Germany (ClinicalTrials.gov identifiers: NCT01744834, NCTO01679145 and
NCT02615977). All studies were approved by the ethic committee of Charité-
Universitatsmedizin Berlin (EA1/267/14, EA/1/157/11 and EA1/268/14).
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Three different groups (i.e., recently detoxified patients with AD, sex- and age-
matched non-dependent healthy controls, and unmatched young healthy subjects)
were recruited and assessed between 2012 and 2018. Patients with AD were
followed up to until 2019. The inclusion criteria for participants were described in the
publications of this dissertation [88-90]. Briefly, none of the participants had a history
of substance dependence (expect for alcohol for patients with AD) or current
substance use (except for tobacco); neurological disorders or DSM-IV axis 1
psychiatric disorders according to Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition, Text Revision [DSM-IV-TR; 91, 92]; medication that
interacts with the central nervous system; and withdrawal symptoms. Patients with
AD met the diagnosis criteria of AD according to DSM-IV-TR and were recently
detoxified. The analyzed cohorts and sample size of the main analyses in the three
studies of this dissertation are shown in Figure 1. Detailed demographic and clinical

characteristics of participants can be found in the original publications [88, 90].

Patients with AD were followed up after study participation with the Time Line Follow
Back procedure [93]. Relapse was defined as consuming = four or five standard
drinks on one drinking occasion for female and male respectively, according to the
definition of high-risk consumption by World Health Organization [94]. In study 1 [88],
patients’ relapse status was determined by a 3-month follow-up, while study 2 [89]

and 3 [90] used a 6-month follow-up .

* AD patients who underwent

* Recently detoxified AD patients CBM/placebo training (n = 95)
* Recently detoxified AD patients

(n=186) * A subgroup of AD patients for
(n =100)
* Sex- and age-matched HCs (n = PIT analysis (n = 81)
* Asubgroup of AD patients for
105) * A subgroup of AD patients for

neuroimaging analysis (n = 72)
* Young HCs (n = 161) the alcohol approach bias

analysis (n = 88)

Figure 1. Analyzed cohorts and sample sizes in the three studies of this dissertation.
Abbreviations: AD = alcohol dependence; CBM = cognitive bias modification; HC = healthy

control. Originally created figure.
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2.2 Tasks and procedures

2.2.1 Pavlovian-to-instrumental transfer task

The PIT task has been introduced in all the three publications of this dissertation [88-
90]. Briefly, there were four parts in the PIT task (see Figure 2). The first part was
instrumental learning, in which participants learned to emit a go or a no-go response
to six shells via probabilistic reward outcome. The second part was Pavlovian
learning, in which participants passively viewed and remembered the presence of a
conditioned stimulus (CS; a fractal image compound with an audible tone; five CSs
were used) followed by an unconditioned stimulus (US; -2 vs. -1 vs. 0 vs. +1 vs. +2
euros). In the third part, participants performed the transfer test, in which the go/no-go
instrumental task was conducted while the CSs from the Pavlovian learning tiled the
background. The transfer test was performed in a fMRI scanner. The MRI acquisition
parameters were reported in in Chen et al. [89]. In the fourth phase, participants
conducted a forced-choice task, that is, they had to choose a CS from two

simultaneously presented CSs.

In addition to the PIT trials with Pavlovian CSs presented in the background (non-
drug-related PIT), participants completed trials in which alcohol and water pictures
were used as background stimuli (drug-related PIT). The drug-related PIT was

examined in study 3 [90] of this dissertation.

(A) Instrumental learning N WP (B) Pavlovian learning
= %G*d\
Go trial: 7
0
- ,
Pl X
- Ll | / .
. = A) B\
) P
(o% = g . ; -
g
NP

(D) Forced choice task

e
i no




Methods 14

Figure 2. The PIT paradigm.

(A) Instrumental learning. In a go-trial, collecting the shell by repeatedly pressing the button
and moving the red dot towards the presented shell will result in a 20-cent reward with 80%
probability or a 20-cent loss with 20% probability, while leaving the shell by no responses or
less than five button presses will result in a 20-cent loss with 80% probability or a 20-cent
reward with 20% probability. The outcome feedback of win or loss is presented following the
response. The probability of win and loss for a no-go trial is reversed (not depicted here).
Participants need to finish at least 60 trials and reach 80% accuracy over 16 trials or
complete the whole 120 trials to end the instrumental learning. (B) Pavilovian learning. A
conditioned stimulus (CS; compounded of a fractal image and an audio stimulus; five CSs in
total) is presented paired with a monetary stimulus (unconditioned stimulus, US; +2€, +1€, 0€,
-1€, -2€). Participants watch and memorize the Pavlovian CS — monetary US pairings. Eighty
trials are conducted. (C) Pavlovian-to-instrumental transfer. The instrumental task (i.e., collect
or leave the shell) is conducted with a Paviovian CS tiling the background. There was no
outcome feedback in this part to avoid further instrumental learning (nominal extinction).
Participants performed 90 ftrials. In addition, there are 72 trials in which alcohol or water
pictures are used as the background stimuli. (D) The forced choice task. The participant
needs to choose one from two simultaneously presented Paviovian CSs. Modified from Chen

et al., 2022 [89].

2.2.2 Alcohol approach/avoidance bias task

The aAAT applied in this dissertation was modified from Wiers et al. [10] to assess
patients’ alcohol ApB. Pictures of alcohol or soft drink were randomly presented
inclined 3° to the left or right, in alignment with Cousijn et al. [95], and patients
responded with a joystick according to the inclination of the picture. For example, one
needed to push the joystick if the picture is inclined to the left and pull if inclined to the
right (see Figure 3). The association between reaction (push/pull) and inclination

(left/right) was randomized among participants.
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Figure 3. The alcohol approach/avoidance task.
In the depicted example, a push movement is required for a picture that is inclined to the left.

A zooming-out effect shows upon pushing the joystick. Similarly, a right-inclined picture

requires a pull movement, which leads to a zooming-in effect. Participants complete 168 trials.

Modified from Chen et al., 2022 [89].

2.2.3 Cognitive bias modification training

The CBM training used in this dissertation was adapted from the aAAT. In the CBM
training condition, all alcohol pictures were presented with an inclination requiring a
push movement and all soft drink pictures with an inclination requiring a pull
movement [90]. In the placebo training condition, pictures of alcohol and soft drink

were randomly presented inclined to the left or right, as in the original aAAT.

2.3 Association between OPRM1 A118G polymorphism and non-drug-related
PIT

Study 1 [88] investigated the association between behavioral non-drug-related PIT
and OPRM1 A118G Polymorphism in three groups (n = 186 patients with AD, n = 161
young controls, and n = 105 middle-aged controls). Participants conducted the PIT
task introduced above. Whole blood samples were genotyped for the A118G
polymorphism of the OPRM1 gene [88]. Based on the presence of the G allele,
participants were categorized into G+ (AG and GG) and G- (AA) carriers.
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2.4 Association between alcohol ApB and non-drug-related PIT

Study 2 [89] investigated the association between alcohol ApB and the non-drug-
related PIT effect at both the behavioral and the neural level in patients with AD. N =
100 patients with AD who completed the PIT task and the aAAT were included in
behavioral analysis, among which the fMRI PIT data were available for analysis in n =
72 patients. Participants fulfilled the Barratt Impulsiveness Scale-15 [BIS-15; 96] that
measures the trait impulsivity, and the Alcohol Dependence Scale [ADS; 97] that

measures the severity of AD.

2.5 CBM training on PIT

In study 3 [90], patients were randomly allocated to the CBM or placebo training
group. The PIT task and the aAAT were conducted twice: once before the training to
assess the baseline, and once after the training. Six training sessions were planned in
total as suggested in previous literature [98]. After data cleaning, n = 95 (55/44 in the
CBM/placebo training group respectively) patients with AD who finished the whole six
sessions (no more than one missing session) were included into analyses. Among
those patients, n = 88 completed the aAAT, and n = 81 completed the PIT tasks

before and after the training.

2.6 Data analyses

Data analyses were conducted using the R programming language [99]. In all
publications of this dissertation, the behavioral non-drug-related PIT data were
analyzed using generalized linear mixed-effect models (GLMM; Ime4 R package
[100]), with the instrumental condition (go vs. no-go) and the valence [negative vs.
neutral vs. positive; 88] or the value [+2, +1, 0, -1, -2; 89, 90] of Pavlovian CS as the
basic predictors on trial-by-trial accuracy [88] or the number of button presses [89, 90]
in the transfer test. In study 1 [88], in order to examine the association of the OPRM1

polymorphism with the PIT effect, information on the OPRM1 polymorphism (G- vs.
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G+), as well as its interaction with the other two predictors of PIT (i.e., instrumental
condition and Pavlovian CS valence), were included in the fixed effects of the model
to regress the trial-by-trial accuracy (correct/incorrect). This analysis was conducted
separately for the three groups (i.e., patients with AD, middle-aged HCs, young HCs).
In addition, two analyses of the association between the OPRM1 polymorphism and
PIT were conducted, comparing between patients and matched controls, and
between prospective relapsers (n = 51) and abstainers (n = 94). For that, the group
factor (AD patients vs. matched HCs, or realpsers vs. abstainers) and the interaction

terms were included in the models.

To quantify participants’ alcohol ApB in aAAT, the median reaction times (RT) to each
drink category (alcohol or soft drink) under each movement condition (push or pull)
were extracted for each participant. The alcohol ApB was reflected by a calculated D-
diff score, which is the median RT difference between pushing and pulling alcohol
pictures relative to soft drink pictures [90]. Therefore, a positive D-diff score reflects
an ApB to alcohol relative to water cues, and a negative D-diff score reflects an
avoidance bias to alcohol relative to water cues. To measure the association between
alcohol ApB and behavioral PIT, study 2 of this dissertation added the predictor of the
aAAT D-diff score as well as interaction terms in the GLMM to analyze participants’
trial-by-trial number of button presses. In addition, it was further investigated if the
severity of AD or the trait impulsivity is involved in the association between the
alcohol ApB and behavioral PIT by adding the ADS score or the BIS-15 score as an
additional predictor in separate GLMMs. For neural PIT analysis, a parametric
modulator for non-drug-related PIT was established in the single-subject level
analysis in Statistical Parametric Mapping 12 [101], which was calculated as the
multiplication product of the Pavlovian CS value and the log-transformed number of
button presses. Individual contrast images were subjected into a group analysis in
which the aAAT D-diff score was added as a covariate. Small volume correction was
used to restrict the search area in region of interest in bilateral NAcc (derived from

Wake Forest University (WFU) PickAtlas software [102]) based on previous
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observations [9, 39]. In addition, we explored the differences between prospective

relapsers and abstainers in the alcohol ApB — PIT association.

In study 3 [90], in order to assess the impact of CBM training on the non-drug-related
PIT, the GLMM included predictors of the training condition (CBM vs. placebo
training), assessment time (pretest vs. posttest) and the interaction terms with
Pavlovian CS value and instrumental condition to analyze trial-by-trial number of
button presses. Similar analyses were conducted to investigate the impact of training
on drug-related PIT, with beverage type (alcohol vs. water) instead of Pavlovian CS
value included in the model. In addition, with regard to the training effect on the
alcohol ApB, a linear mixed-effect model (LMM) with predictors of training condition
and assessment time was established to predict the D-diff score. We further explored
whether CBM training reduced the relapse risk in patients with AD by comparing the

proportion of relapsers in two training groups using chi-squared test.

3. Results

3.1 Association between OPRM1 A118G polymorphism and non-drug-related
PIT

GLMM results demonstrated a stronger PIT effect in OPRM1 G+ carrier than G-
carriers in all three groups (instrumental condition x Pavlovian valence x OPRM1
polymorphism: p = .002/.011/<.001 and x? = 12.72/9.03/20.69 respectively for patients
with AD, middle-aged controls, and young controls; see Figure 4) [88]. This OPRM1
polymorphism — PIT association did not differ between patients and age-matched
controls (instrumental condition x Pavlovian valence x OPRM1 polymorphism x group:
p = .85). When comparing subsequent relapsers (n = 51) and abstainers (n = 94), a
significant group difference was present in the association between OPRM1

polymorphism and PIT (instrumental condition x Pavlovian valence x OPRM1
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polymorphism x relapse: x?> = 30.35, p < .001). Post-hoc tests indicated that this
gene-behavior association was significant only in relapsers (p < .001) but not in
abstainers (p = .33), see Figure 5. In G+ carriers, prospective relapsers exhibited a
stronger non-drug-related PIT effect than abstainers (p < .001), while no significant
difference in PIT was shown between relapsers and abstainers who are G- carriers (p

=.09). Further detailed results can be found in the original publication [88].

Alcohol-dependent Middle-aged Young
patients controls controls
Torssaz
0.8 xIlzsal. ==, | OPRM!
%) - 3 G-
: X = o
o &
004 GoNogo
o — Go
- = No-Go
0.0

Negative Neutral Positive Negative Neutral Positive Negative Neutral Positive
Pavlovian valence

Figure 4. Non-drug-related PIT effect as a function of OPRM1 polymorphism in three
groups: alcohol-dependent patients, middle-aged controls, and young controls.

The PIT effect in study 1 of this dissertation was reflected as the influence of Paviovian CS
valence (negative, neutral, or positive) on the accuracy of the instrumental response in the
transfer test. Positive CSs enhanced accuracy in instrumental go trials, and decreased
accuracy in no-go trials, vice versa for the effect of negative CSs, as shown by the slope of
the lines. In all three groups, the non-drug-related PIT effect was associated with the OPRM1
polymorphism [88]. That is, G+ carriers showed a stronger PIT effect than G- carriers.

Modified from Sebold et al., 2021 [88].
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Figure 5. Non-drug-related PIT effect in prospectively abstaining and relapsing alcohol-
dependent patients with a follow-up of three months.
The OPRM1 polymorphism — PIT association was stronger in future relapsers compared to

abstainers. Modified from Sebold et al., 2021 [88].

3.2 Association between alcohol ApB and non-drug-related PIT

There was a significant association of the alcohol ApB with the behavioral non-drug-
related PIT effect in patients with AD, as suggested by the interaction of aAAT D-diff
score with Pavlovian CS value (Pavlovian CS value x aAAT D-diff score: estimate =
0.14, z = 11.34, p < .001; Figure 6) [89]. Moreover, this association was associated
with the severity of AD in patients (Pavlovian CS value x aAAT D-diff score x ADS
score: estimate = 0.02, z = 12.51, p < .001) and the degree of trait impulsivity
(Pavlovian CS value x aAAT D-diff score x BIS-15 score: estimate = 0.04, z = 14.58,
p < .001) [89]. Exploratory analyses showed a stronger association of the alcohol ApB
with the non-drug-related PIT in relapsers compared with abstainers with intention-to-
treat analysis, when patients with missing relapse information were categorized as

relapsers (estimate = 0.08, z = 2.34, p = .020) [89], while this finding was not present
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with per-protocol analysis when only patients with clear relapse information were

included (estimate = -0.03, z = -0.81, p = .42) [89].
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Figure 6. The behavioral non-drug-related PIT effect as a function of the alcohol
approach bias (i.e., D-diff score).

The PIT effect in study 2 [89] of this dissertation was reflected as the influence of Pavlovian
CS value on the number of button presses in the transfer test (visualized as the slopes of
lines). In this figure, the D-diff score was transformed into a two-level factor using median split
for illustrative purposes. Patients who showed a greater alcohol approach bias (ApB)
exhibited a stronger PIT effect than patients with a lower alcohol ApB. Modified from Chen et
al. 2022 [89].

At the neural level, the alcohol ApB was associated with the PIT-related activity in the
right NAcc (x =16,y = 14, z = =12, t (67) = 3.40, psvc-rwe = .010) [89]. Further detailed
results can be found in the original publication [89]. The association between the
alcohol ApB and NAcc PIT effect did not differ between relapsers and abstainers,

either using per-protocol or intention-to-treat analysis (psve-Fwe = .156) [89].



22

Results

3.3 CBM training effects

Patients who underwent the CBM training showed a distinct change of the alcohol
ApB in comparison to those who underwent the placebo training, as indicated by an
interaction between training condition and assessment time on aAAT D-diff score
(estimate = -0.21, t = -2.20, p = .03) in the expected direction, i.e., bias decreased
after the CBM training and increased after the placebo training (Figure 7) [90].
However, post-hoc analyses suggest that the ApB did not change significantly in
either training group (CBM training group: estimate = -0.08, t = -1.30, p = .20; placebo
group: estimate = 0.13, t = 1.78, p = .08) [90], which did not support an impact of

CBM training on reducing alcohol ApB in a strict interpretation manner.

CBM training | | Placebo fraining |

aAAT D-diff score

Pre'test Positest Preiest Positest
Time point

Figure 7. Alcohol approach bias (ApB) (i.e., D-diff score) in alcohol-dependent patients
as a function of training condition and assessment time.
There was no significant change in ApB following CBM training or placebo training. From

Chen et al., 2022 [90].

With respect to the impact of training on the non-drug-related PIT, the nonsignificant

interaction (Pavlovian CS value * training condition * assessment time: estimate =
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0.006, z = 0.55, p = .58) indicates no difference between the two training conditions in
PIT change [90]. Exploratory analyses indicated that patients’ non-drug-related PIT
effect decreased following both the CBM training (Pavlovian CS value x assessment
time: estimate = -0.04, z = -5.41, p < .001) and the placebo training (Pavlovian CS
value x assessment time: estimate = -0.04, z = -5.01, p < .001) [90]. A null finding
was also observed for the training on drug-related PIT (beverage type x training
condition x assessment time: estimate = 0.02, z = 0.58, p = .56) [90]. The drug-

related PIT effect did not change significantly in either training group.

The exploratory analysis regarding the relapse status in the six-month follow-up
showed nonsignificant difference in relapse risk between the two training groups with
either per-protocol or intention-to-treat analysis (p = .17) [90]. Further exploratory
analyses examined if prospective relapsers and abstainers differed in the alcohol ApB
or PIT effects. Result indicated that prospective relaspers showed a greater alcohol
ApB than abstainers, especially at the posttest aAAT (estimate = 0.19, t = 2.41, p
= .02) [90]. Similarly, relapsers showed a stronger non-drug-related PIT effect than
abstainers across two assessment times (estimate = -0.05, z = -3.92, p < .001) [90].
The two groups did not differ significantly regarding drug-related PIT. Further detailed

results can be found in the original publication [90].

Internal consistency analyses were additionally conducted for both the aAAT and PIT
tasks. Followed Cousijn et al. [103], Cronbach’s a was calculated using each
approach bias score per picture stimulus in the aAAT, resulting in Cronbach’s a
values ranging from 0.51 to 0.71 (alcohol stimuli at pretest aAAT: 7 items, Cronbach’s
a = 0.51; soft drink stimuli at pretest aAAT: 7 items, Cronbach’s a = 0.61; alcohol
stimuli at posttest aAAT: 7 items, Cronbach’s a = 0.52; soft drink stimuli at posttest
aAAT: 7 items, Cronbach’s a = 0.71), which are comparable to similar studies
assessing implicit approach bias [95, 103, 104]. Regarding PIT tasks, split-half
reliability analyses showed high correlations between individual non-drug-related PIT

effects calculated separately for odd and even trials (r = 0.93 and 0.94 at pretest and
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posttest, respectively). These correlations remained consistent across both the CBM
training group (r = 0.93 and 0.94 at pretest and posttest respectively) and the placebo
training group (r = 0.92 and 0.95 at pretest and posttest respectively). Likewise, high
internal consistency was observed for drug-related PIT (r = 0.91 and 0.94 at pretest
and posttest, respectively). These results align with the previously demonstrated

moderate to high reliability of our PIT tasks [105].

4. Discussion

In conclusion, study 1 [88] of this dissertation found an association of the OPRM1
A118G polymorphism with the non-drug-related PIT in patients with AD and healthy
subjects. That is, OPRM1 G+ carriers exhibited a stronger behavioral non-drug-
related PIT effect than G- carriers. This OPRM1 polymorphism and PIT association
was not significantly different between patients and age-matched controls, but was
different between prospectively relapsing and abstaining patients, with the significant
interaction showed only in relapsing but not in abstaining patients [88]. Study 2 [89]
observed an association of the alcohol ApB with behavioral and neural non-drug-
related PIT effects in patients with AD, and the association with the behavioral PIT
was associated with the severity of AD and trait impulsivity of patients. Study 3 [90] of
this dissertation did not observe a significant impact of CBM training on either drug-
related or non-drug-related PIT in patients with AD. Findings from the three studies

are discussed below.

4.1 Association between OPRM1 A118G polymorphism and non-drug-related
PIT

Study 1 [88] shows for the first time that a OPRM1 polymorphism that affects receptor

affinity [72] is also a modulator of the magnitude of PIT effect in human, and indicates
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a difference between prospective relapsers and abstainers in this gene—behavior

interaction.

The finding that OPRM1 polymorphism is associated with PIT is in line with Weber et
al. [65], in which decreased PIT effects were observed in healthy subjects
administrated with opioid receptor antagonist. Compared to Weber et al. [65], study 1
used monetary rewards rather than food, and applied a PIT task that consists of both
excitatory and inhibitory Pavlovian CSs. The converging evidence implies an effect of
the OPRM1 gene on Pavlovian mechanisms, in both people with AD and non-

dependent healthy subjects.

There was no significant difference in this gene-behavior association between
patients and age-matched controls in this study. Past research showed contradictory
findings with respect to the effect this polymorphism on alcohol-related behavior. It
was reported that OPRM1 G+ carriers have a higher subjective feeling of intoxication
[106], alcohol craving [107] and an increased risk of a family history of AD [106]. On
the other hand, a meta-analysis with 17 studies suggests no association between the
OPRM1 genotype with AD [108]. In study 1 of this dissertation, instead of being a
marker of AD, the OPRM1 gene-PIT association may have more importance in
predicting mechanisms related to relapse in patients with AD. As found in study 1, the
OPRM1 gene-PIT association was significant only in prospective relapsers but not
abstainers, and a difference in PIT effect between relapsers and abstainers was
found only in G+ carriers, not in G- carriers, indicating that OPRM1 may modulate PIT

and interact with treatment outcome in some persons with AD [88].

4.2 Association between alcohol ApB and non-drug-related PIT

Converging evidence from study 1 [88] and previous findings [69] suggest that both
the alcohol ApB and the non-drug-related PIT are modulated by OPRM1 gene. Study

2 [89] provides further direct evidence of a significant association between the alcohol
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ApB and behavioral as well as neural non-drug-related PIT in patients with AD. This
finding links two well-developed paradigms in AD research, and indicates that the
mechanisms of the two paradigms overlap at least partially. The magnitude of the
alcohol ApB was positively associated with the right NAcc PIT effect in our study.
Previous research suggests the involvement of the right NAcc in alcohol-related CS
(i.e., beer flavor) [109], finding in study 2 of this dissertation indicates a role of the

right NAcc in Pavlovian conditioning assessed by both paradigms.

The behavioral association was modulated by trait impulsivity, which is in line with the
previous findings that impulsive processes may play a role in both the alcohol ApB
[87] and the PIT effect [11], hypothetically reflecting shared mechanisms of the
alcohol ApB and the PIT effect that are also implicated in impulsive processes.
Alcohol cues were used in aAAT, while non-drug-related cues were used in PIT in our
study, reflecting that impulsive decision making in individuals with AD can be

triggered by both alcohol cues as well as non-alcohol cues [89].

The aAAT-PIT association was associated with the severity of AD in patients (note
that the trait impulsivity was positively correlated with the severity of AD in this study;
see the original publication [89]). We speculate that more severe form of alcohol
intake and dependence could contribute to increasingly fast and hence “impulsive”
decision making elicited by conditioned cues, which contributes to the association of
the alcohol ApB with the non-drug-related PIT observed in this study. However,
impulsive decision making, on the other hand, can also be the cause and not only the
consequence of excessive alcohol intake. Longitudinal studies are needed to further
elucidate the associations between impulsive decision making, development of AD,

and cue reactivity.

4.3 CBM training effects
Although previous findings suggest that CBM training can affect other alcohol cue-

related behavior [10, 70], and the study 2 of this dissertation provides evidence of an
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association between the alcohol ApB targeted by CBM training and the non-drug-
related PIT, study 3 of this dissertation did not observe an impact of CBM training on
drug-related or non-drug-related PIT effects in people with AD. These findings imply
that CBM may not interact directly with the processes evaluated by our PIT

paradigms.

The nonsignificant impact of training on drug-related PIT may be due in part to an
already existing inhibition effect of the alcohol cues compared to the water cues on
instrumental behavior shown in the PIT alcohol versus water cue task prior to training,
which may lead to a ceiling effect to further increase the inhibition of alcohol cues.
The non-drug-related PIT, although found to be associated with the alcohol ApB in
study 2, was not affected by CBM training. Previous research indicates that changes
in the alcohol ApB may be related to the CBM training efficacy [12, 85, 86, 110].
Several previous studies that did not find a generalized impact of the CBM training on
implicit alcohol association also did not observe a significant change of the alcohol
ApB [80, 81, 83]. Study 3 of this dissertation did not support an effect of CBM on
decreasing the alcohol ApB in patients with AD, which may be associated with our
null findings regarding the PIT tasks. The nonsignificant decrease in the alcohol ApB
may be due to the absence of an alcohol ApB prior to the training. Similar to the
inhibition effect of alcohol cues in drug-related PIT, this hypothetically “aversive”
impact of alcohol cues in our study could be due to the motivation to remain abstinent
after detoxification [43]. Together, CBM training in study 3 did not significantly affect
the non-drug-related or the drug-related PIT effects nor the alcohol ApB [90]. Given
the mixed findings on the efficacy of training, further studies are needed to elucidate

the mechanisms of CBM interventions in AD.

4.4 Limitations

Several limitations of this dissertation should be stated. First, the non-drug-related

PIT task applied in all three studies of this dissertation cannot be categorized as an
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outcome-specific or a general PIT task, because monetary outcomes were used as
both the instrumental outcomes and the Pavlovian USs, albeit with different values.
Future studies applying a PIT task that can disentangle out-specific and general PIT
are needed. Second, in all three studies, there are a larger number of patients who
had missing relapse information (n = 41/49/38 in study 1/2/3 respectively), which
leads to a relatively small sample size for the analyses involving future relapse. In
study 1, the sample size of alcohol-dependent G+ carriers who relapsed versus who
abstained in follow-up was 16 versus 14 respectively, requiring replication studies
with larger sample sizes. In study 2, group differences between relapsers and
abstainers did not reach significance when excluding those with missing relapse
information, which was probably due to insufficient statistical power. Similarly, the null
effect of CBM training in study 3 on reducing the relapse risk may be explained by a
lack of statistical power, as the sample sizes in past studies were much larger [10, 12,
74, 76]. Third, the aAAT used in this dissertation, as well as in prior research using
similar implicit measures [95, 103, 104], displayed relatively low internal reliability.
The limited internal reliability may contribute to the inconsistent results observed
across studies using the aAAT. It is critical to develop measures of approach bias
with improved internal reliability in future research [103]. Fourth, causal interpretations
cannot be derived from association findings (e.g., the alcohol ApB - PIT association
observed in study 2), longitudinal research is warranted to further illustrate potentially

causal relationships and their underlying mechanisms.
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5. Conclusion

In conclusion, this dissertation presents evidence that non-drug-related PIT effect is
modulated by the OPRM1 polymorphism in patients with AD and healthy subjects,
and this gene-behavior association differed between subsequent relapsers and
abstainers [88]. This finding suggests that Pavlovian mechanisms could be a target
for therapeutic interventions, and such interventions could be particularly effective in a
genetically defined subgroup. Moreover, alcohol approach bias is associated with
both the behavioral and neural non-drug-related PIT in patients with AD, and the
association with behavioral PIT was related to the severity of AD and trait impulsivity
[89]. The cognitive bias modification training targeting on the alcohol approach bias,
however, did not significantly influence the non-drug-related or the drug-related PIT
effects nor the alcohol approach bias [90]. Therefore, modifying Pavlovian
mechanisms should not rely on the modification of the approach bias but explore

other interventions, e.g., increasing cognitive inhibition rather than motor approach.

Findings of this dissertation underscore the role of the opioid system in Pavlovian
mechanisms in humans that manifests in the PIT effect and may have clinical
relevance for the treatment of AD. Specifically, pharmacological modification of opiate
receptors (e.g., by antagonists) may be a promising approach. Furthermore, our
results indicate an association between impulsive decision making, an alcohol
approach bias and alterations in PIT. Future studies should further elucidate the
underlying mechanisms of how the neurobiological correlates of impulsivity and their
interaction with endorphinergic neurotransmission can affect PIT, which will contribute
to a better understanding of the mechanism, mediators, and moderators of cognitive
bias modification interventions, and thus may enhance the effectiveness of cognitive

bias modification interventions for AD.
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Abstnct

Backg d: Pavlovian-to-i | transfer (PIT) quantifies the extent to which a stimulus that has been associated with reward or punishment
alters operant behaviour. In alcohol dependence (AD), the PIT effect serves as a paradigmatic model of cue-induced relapse. Preclinical studies have
suggested a critical role of the opioid system in modulating Pavlovian-inst al interactions. The A118G polymorphism of the OPRM1 gene affects

opioid receptor availability and function. Furthermare, this polymorphism interacts with cue-induced ap ch beh and is a potential biomarker for
pharmacological treatment response in AD. In this study, we tested whether the OPRMI polymorphism is associated with the PIT effect and relapse in AD,
Methods: Using a PIT task, we d three independent samples: young healthy subjects (N=161), detoxified alcohol-dependent patients (W=186)
and age-matched healthy controls (N=105). We used data from a larger study designed to assess the role of learning mech in the devel

and maintenance of AD. Subjects were genotyped for the A118G (rs1799971) polymorphism of the OPRMI gene, Relapse was assessed after three months,
Results: In all three samples, participants with the minor 0PRMI G-Allele (G+ carriers) showed increased expression of the PIT effect in the absence of
learning differences. Relapse was not associated with the 0PRM1 polymorphism. Instead, G+ carriers displaying increased PIT effects were particularly
prone to relapse,

Conclusion: These results support a role for the opioid system in incentive salience motivation. Furthermore, they inform a mechanistic model of

aberrant salience processing and are in line with the pharmacological potential of opioid receptor targets in the treatment of AD.

Keywords

Alcohol dependence, learning, decision making, OPRMI A1186, opioid system

Introduction

Contextual stimuli are important modulators in the way we leam
and can promote specific behaviours. One mechanism underlyi mg,

compulsive alcohol drinking (Barker ct al., 2012; Corbit and Janak,
2007). Preclinical studies have also consistently reported that non-
drug-related (e.g. food or sucrose reward) CSs lead to increased

contextual lcaming is the so-called Pavlovian-to-instr
transfer (PIT). The PIT effect capture the influence of Pavlovian
conditioned stimuli (CSs) on instrumental behaviour, with appeti-
tive Pavlovian stimuli specifically promoting approach and reduc-
ing withdrawal, and aversive Pavlovian stimuli promoting
withdrawal and reducing approach (Huys et al., 2011), thus reflect-
ing a powerful mechanism affecting behavioural choices across
humans (Talmi et al., 2008) and animals (Dickinson et al., 2000;
O*Connor et al., 2010). Moreover, the PIT effect has been used as a
quantification of incentive salicnce attribution, that is, the extent to
which formerly neutral cues become attractive, themselves desired,
and therefore “wanted’ (Huys et al., 2014; Meyer et al., 2012).
Crucially, incentive salience attribution is one prominent mech-
anism underlying several disorders of compulsivity. such as alcohol
dependence (AD: Corbit and Janak, 2007) and other addictive dis-
orders (LeBlanc et al., 2012). Also, interindividual differences in
PIT have been associated with addiction vulnerability and mainte-
nance. For instance, preclinical work suggests an association
between the magnitude of PIT and addictive behaviour, such as

Department of Psychiatry and Psychotherapy, Charité -
Universitatsmedizin Berlin, corporate member of Freie Universitat
Berlin, Humbaldt-Universitit zu Berlin, and Berlin Institute of Health,
Berlin, Germany

2Department for Social and Preventive Medicine, University of
Potsdam, Potsdam, Germany

*Klinik firr Forensische Psychiatrie, Universitatsmedizin Rostock,
Rostock, Germany

*“Technical University of Dresden, Dresden, Germany

*Division of Psychiatry, University College London, London, UK
“Max Planck UCL Centre for Computational Psychiatry and Ageing
Research, University College London, London, UK

"Department of Econamics, University of Zurich, Zurich, Switzerland
SDepartment of Addiction Medicine and Psychotherapy, kbo Isar-
Amper-Klinikum, Munich, Germany

Corresponding author:

Andreas Heinz, Department of Psychiatry and Psychotherapy, Charité
Universitatsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
Email: andreas.heinz@charite.de



Printing Copies of the Publications

52

Sebold et al.

567

responding during PIT in addicted animals (LeBlanc et al., 2013;
Ostlund et al., 2014; Saddoris et al,, 2011). Morecover, we have
recently shown that the PIT effect in humans serves as a vulnerabil-
ity marker for the development and maintenance of AD (Garbusow
etal, 2014, 2019; Schad et al., 2019a; but see van Timmeren et al.,
2020). The behavioural and neural correlates of PIT have been
associated with relapse in AD (Garbusow et al., 2016; Sekutowicz
et al., 2019; Sommer et al.,, 2020) and were predictive of future
drinking behaviour in adolescents (Sekutowicz et al., 2019).

Although contemporary theories emphasise the involvement
of the dopaminergic system in incentive salience, recent find-
ings suggest the opioid system as another important player
(Pecina and Berridge, 2013: van Steenbergen et al., 2019). The
opioid system has been primartly linked to hedonic features of a
reward, also termed “liking” as opposed to “wanting’, which
reflects the motivational properties to promote a certain behav-
1our rather than its hedonic value. However, preclinical studics
have shown that stimulation of the p-opioid (MOP) system in
the nucleus accumbens directly enhances incentive motivation
(or ‘wanting”) for reward (Pecina and Berridge, 2013). In ani-
mals, experimental manipulation of the opioid system can medi-
ate the influence of reward-guided and stimulus-guided decisions
on choice (Laurent ct al,, 2012), increase motivation for differ-
ent reward types (Mahler and Berridge, 2012) and mediate the
motivating influence of cue-triggered reward expectations
(Lichtenberg and Wassum, 2017). In humans, cvidence for a
functional role of the opioid system in mediating “wanting’
mainly stems from pharmacological challenges. For instance,
MOP agonists and antagonists sclectively enhance and decreasce
processing efficiency in a reward task (Eikemo et al, 2017) and
increase and decrease the motivation to view positive valenced
stimuli, respectively (Chelnokova et al., 2014), Likewise, opioid
receptor antagonists reduced physical effort produced to obtain
reward and increased negative facial reactions during reward
anticipation (Korb et al., 2019),

In humans, the role of the opioid system in mediating the PIT
cffect as one further quantification of incentive salience (or
‘wanting’) is less clear. The opioid receptor antagonist naltrexonc
could decrease alcohol cue-induced activation of the ventral stri-
atum (Myrick et al., 2008) and cue-induced impulsive respond-
ing (Mitchell et al., 2007). However, to date, there are only two
studies investigating the role of the opioid system in mediating
human PIT-like effects (Weber et al., 2016; Wiers et al., 2009),
reporting reduced PIT after blockade of the MOP receptor (nal-
trexone) in healthy humans (Weber et al., 2016) and increased
automatic approach tendencies m G+ carriers of the OPRM1
polymorphism to alcohol-associated stimuli (Wiers et al., 2009).
The overarching aim of our study was to further elucidate the role
of the human opioid system in mediating the PIT effect in both
healthy subjects and those with AD.

A common mechanism of quantifying interindividual differ-
ences in the human opioid system is the determination of the
MOP receptor single nucleotide polymorphism (OPRMT). The
OPRM1I gene codes for the MOP receptor, an inhibitory G-protein
coupled receptor that binds endogenous opioid peptides such as
[-endorphin and enkephalins as well as exogenous opioids such
as morphine and heroin (Burns et al, 2019; Kieffer and
Gaveriaux-Ruff, 2002). Opioid receptors are distributed widely
in the human brain and modulate brain function at all levels of
neural integration, including the mesolimbic system as part of the
brain’s reward pathway.

Human studies investigating the OPRMI polymorphism
have suggested a crucial role of this single nucleotide polymor-
phism (SNP) in AD, treatment response and automatic approach
biases to conditioned cues (Chamorro et al., 2012: Filbey et al.,
2008; Ray and Hutchison, 2004; Wicrs ct al., 2009), The A118G
(rs1799971) polymorphism of the OPRMI gene alters the func-
tion of MOP receptors, such that the G variant binds beta-endor-
phin three times more strongly than the A variant, potentially
also affecting receptor availability (Heinz et al., 2005). We
henceforth refer to the minor OPRM/ G-allele carriers as G+
carriers, G+ carriers were shown to report higher subjective
alcohol-associated feelings of intoxication (Ray and Hutchison,
2004) and craving (Van Den Wildenberg et al., 2007) and have a
higher risk for positive family history (Ray and Hutchison,
2004). However, conflicting results stem from large genome-
wide association studies (GWAS) and candidate gene studies
(Kong ct al., 2017), which could not replicate an association
between AD and OPRM1 genotype, corresponding with a recent
report on converging evidence against an association between
the OPRMI A118G polymorphism and alcohol consumption
and sedation (Sloan et al., 2018).

The analyses presented here aimed to answer three questions.
(1) Is the OPRM] polymorphism associated with the PIT effect
across three independent cohorts? (2) Is the association between
the PIT effect and the OPRM/ polymorphism different in patients
with AD compared to healthy controls (HCs)? (3) Is the associa-
tion between the PIT effect and the OPRMI polymorphism rele-
vant for treatment outcome in the way that it is different in
prospectively relapsing and abstinent patients with AD?

Methods
Subjects

All subjects were recruited between 2012 and 2018 as part of a
larger  study (LeAD study, ClinicalTrials.gov  identifiers:
NCT01744834, NCT01679145 and NCT02615977) investigat-
ing behavioural, genetic and neuroimaging alterations associated
with reward-based learning as (a) predictors for the development
of AD in a sample of young 18-year-old male subjects recruited
from the national registry and (b) the maintenance of AD with
respect to relapse and drinking behaviour in a sample of patients
suffering from AD and an age, education and sex-matched HC
sample (for previously published results of our sample, sce,
amongst others, Garbusow et al., 2014, 2016, 2019). Thus, this
study comprised two independent HC samples that significantly
differed with regards to several sociodemographic variables (sce
Supplemental Table S2 for between-group difTerences). As previ-
ous analyses (Scbold et al., 2016) indicated substantial differ-
ences in PIT effects between these cohorts, we did not merge
both control samples but instead analysed the influence of the
OPRMT polymorphism on the PIT effect separately in these two
control cohorts (analysis 1).

The assessed samples were a subsample of the three cohorts
mentioned above for which genctic data were available:
18-year-old male subjects (N=161, henceforth referred to as
young controls), recently detoxified patients with AD (N~ 186)
and age-matched HCs (N=105, henceforth referred to as mid-
dle-aged controls), For a precise overview of the selection pro-
cedures, see Supplemental Information 1 and Supplemental
Figure S1.
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For a complete description of exclusion criteria, see Garbusow
et al. (2016). Briefly, all subjects were free from psychotropic
medication, had no history of substance dependence (DSM-IV,
except from AD in the AD group) or current substance use
(DSM-IV. except for nicotine use), no other current DSM-TV axis
1 psychiatric or neurological disorders and no borderline person-
ality disorder as assessed by the computer-based Composite
International Diagnostic Interview (Jacobi et al., 2013; Wittchen,
1997). Participants’ demographic and clinical characteristics are
outlined in Table 1. Participants gave written informed consent
before study inclusion, The study was approved by the local eth-
ics committees of the Technical University of Dresden and
Charité Universitatsmedizin Berlin.

To define relapse across patients with AD, a three-month fol-
low-up was performed using the Time Line Follow Back proce-
dure (Sobell and Sobell, 1992). Relapse was defined as at least
five standard drinks (c.g. onc standard drink=0.33 L beer) on onc
occasion for male participants and at least four standard drinks
for female participants according to the World Health
Organization (WHO; 2014) definition of high-risk consumption.
A total of 51 patients were classified as relapsers (of whom 37
were G— and 14 were G+ carriers), whereas 94 patients were
classificd as abstainers (of whom 78 were G— and 16 were G+
carriers). The remaining 41 patients could not be contacted dur-
ing the follow-up period.

Task

We used a PIT task as previously described (Garbusow et al.,
2014, 2016; Sommer et al., 2017). The task consisted of four
phases (of which the first three phascs are depicted in Figure
1): (a) instrumental learning, (b) Pavlovian learning, (¢) PIT
and (d) forced choice task followed by a rating scale of the
stimuli.

Instrumental leamning. Subjects had to lcarn to collect *Go’
shells and leave ‘No-Go’ shells by repeatedly pressing a button
while receiving probabilistic feedback. In order to collect a shell,
subjects had to move a red dot onto the selected shell by repeated
button presses within two seconds. We instructed the subjects to
maximise their profit. For this, they should use the probabilistic
feedback to find out via trial and crror what is a “good shell’,
which in ‘most cases” lead to wins when collected, and leave “bad
shells’, which in ‘most cases’ lead to wins when not collected.
Each button press moved the red dot a fraction of the way towards
the shell. To collect a “Go’ shell correctly, subjects had to press
the button five or more times, and to leave a *‘No-Go’ shell, sub-
jects had to perform between zero and four button presses, The
subjects did not know about the number of button presses, but we
instructed them to press the button as often as possible to collect
a shell to maximise instrumental performance, Correct responscs
were rewarded with 20 cents in 80% of trials and punished with
a loss of 20 cents in 20% of trials, and for wrong responses it was
vice versa (see Figure 1.1 for *Go’ and “No-Go’ trials). The shell
set consisted of six different shells (three ‘Go’ shells and three
‘No-Go' shells).

Participants performed 60120 trials, depending on their per-
formance. In order to ensure that all subjects were at comparable
performance levels before advancing to the PIT part, a learning
criterion was enforced (80% correct choices over 16 trials after a
minimum of 60 trials).

Pavlovian learning. Pavlovian learning consisted of 80 trials in
which compound visual and auditory stimuli (CS) were predic-
tive of distinct monetary rewards or punishments (unconditioned
stimulus (US); Figure 1.2). Each trial began with a three-second
presentation of a compound CS (fractal picture and tone) which
was then followed by a three-second presentation of two fixation
crosses (on the left and right side of the screen). Then, the US
(monetary reward or punishment) was presented for threeseconds
on the side where the CS had not been presented. Subjects were
instructed to view the CS-US pairings passively and to memorise
these associations. The set of CS consisted of six stimuli of which
each was paired with positive (+2€/+ 1€), neutral (0€) or nega-
tive (—1€/-2€) outcomes, heneeforth referred to as “money CS'.

PIT phase. Subjects performed 162 trials of the instrumental
task again, this time without outcome feedback. Subjects were
instructed that their choices still counted towards the final mon-
ctary outcome (so-called nominal extinction). The instrumental
stimuli superimposed one of the money CSs presented during
Pavlovian training (Figure 1.3), or one of four beverage stimuli
(results not presented here, but see (Schad et al., 2019a; Sckuto-
wicz et al., 2019: Sommer et al., 2017, 2020). Each instrumental
stimulus (three “Go” shells and three ‘No-Go’ shells) was com-
bined with cach money CS (fractal stimulus previously associ-
ated with either of —2€. —1€, 0€, +1€, +2€) for three times,
resulting in 90 trials, which were of primary interest for this
study. Each trial lasted 3.6 scconds.

Forced-choice task. This part of the task aimed to verify the
acquisition of Pavlovian learning. In each trial. subjects had to
choose between two scquentially presented compound money
CSs from the Pavlovian training, cach presented for two seconds.
All possible compound CS pairings were presented three times in
an interleaved randomised order,

Pleasantness ratings. After the task, subjects were asked to
rate the pleasantness of the CSs (fractals and shells) from the
Pavlovian leaming phase and the instrumental learning phase on
a Likert scale from | to 7 on the screen.

Genotyping

To genotype our sample, DNA was extracted semi-automatically
with a Chemagen Magnetic Separation Module (PerkinElmer,
Waltham, MA) from whole blood. All samples were genotyped
with the Illumina Infinium Psych Array Bead Chip (Illumina, San
Diego, CA). We assessed rs1799971, a SNP that is an A-10-G
substitution (A118G), resulting in a functional amino acid substi-
tution (Asn40Asp; Hartwell et al,, 2020),

Because of the limited sample size, G-allele carriers (AG and
GG) were grouped together. This approach is in keeping with
precedent in the field (Persson et al,, 2019; Way et al,, 2009),

Behavioural analyses

Data were analysed using the R programming language (R
Foundation for Statistical Computing, Vienna, Austria).
Demographic, clinical and neuropsychological comparisons
between G+ and G— OPRM1 carriers were examined using chi-
square and r-tests (Table 1).
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Figure 1. Phases 1-3 of the paradigm for (a) the ‘No-Go’ trial and (b) the ‘Go’ trial. 1. Instrumental learning: The subject’s task was to move a dot
towards the stimulus by repeated button presses in order to collect it or to do nothing within two seconds. These two instrumental choices resulted
in monetary wins or losses, presented immediately after each trial via a picture of a 20€ coin for 1.5 seconds, Feedback was probabilistic, A ‘Go” shell
was rewarded in 80% and punished in 20% of trials if collected and vice versa if not collected. A ‘No-Go' shell was rewarded in 80% and punished in
20% of the trials if not collected and vice versa if collected. 2. Pavlovian learing: Neutral fractal and audio stimulus compounds (CS) are repeatedly
paired with monetary outcomes (US: e.g. here a 2€ coin). 3. Pavlovian-to-instrumental transfer (PIT) phase: Subjects performed the instrumental
task in nominal extinction, that is, no explicit monetary outcomes were presented (A. leave button to not collect a ‘No-Go’ shell and B. press button
to collect ‘Go” shell superimposed on the audiovisual Paviovian stimulus; here: the Paviovian stimulus previously paired with 2€ and the respective

tone pitch).

Analysis of the PIT phase was of primary interest, but we ana-
lysed all other phases as well (see Supplemental Information 6,
Supplemental Information 7, Supplemental Information 8 and
Supplemental Information 10). In the PIT phase. the PIT effect
reflects the interaction between the valence of the background
stimulus and the accuracy of the foreground instrumental action.
We were specifically interested whether the OPRMI genotype
covaried with PIT effect, that is, the way that positive and nega-
tive stimuli influence “Go” and “No-Go’ actions. More precisely,
we asked whether the genetic phenotype would interact with the
extent to which a positive stimulus facilitates ‘Go’ responses but
impairs ‘No-Go’ responses and, vice versa, a negative stimulus
facilitates ‘No-Go’ responses but impairs ‘Go’ responses.

As outlined in the introduction, the analyscs presented here
aimed to elucidate: (a) the association between the OPRM1 poly-
morphism and the PIT effect, (b) the clinical relevance of this
association for AD and (¢) the relevance of this association for
treatment outcome. Across these different analyses, we coded a
participant’s accuracy of the PIT phase as correct (1) if a *Go’
shell was collected or a “No-Go' shell was left, and as false (0) if
a ‘No-Go’ shell was collected or a “Go’ shell was left. We used a
binomial mixed effect regression as implemented in the Imed
package (Bates ct al,, 2015). We regressed the participant’s accu-
racy (correct or incorrect) on Pavlovian valence (negative, neutral
or positive, dummy coded with neutral as the reference), instru-
mental action (‘Go' or ‘No-Go’, coded as 0.5 and 0.5) and
OPRM1 polymorphism (G- or G+, coded as ~0.5 and +0.5) and
tested for interaction between these factors. Subjects were added
as random cffects (random intercept model). We performed model

comparisons to ensure that this model was the best-fitting model
across subjects (sec Supplmenctal Information 2).

Analysis 1: Association between the PIT effect and the
OPRM1 polymorphism across cohorts. To test whether the
OPRMI polymorphism was associated with the PIT effect in all
three cohorts, we performed the above-described analysis for all
three cohorts separately (Supplemental Figure S1).

Analysis 2: Alcohol-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. To test whether the interaction between the PIT effect
and the OPRM! polymorphism was significantly different
between HCs and patients with AD, we performed the above-
described regression model (see analysis 1) but additionally
added group (HC or AD, coded as 0.5 and —0.5) as an additional
fixed effect and allowed interaction with all predictors (Supple-
mental Figure S1). For this analysis, we only included patients
with AD and middlc-aged control subjects (who were initially
sampled as a comparison group of patients with AD). Both
groups profoundly differed across several socio-economic and
clinical variables (Supplemental Table S2). Increased depression,
anxiety, craving and impulsivity as well as reduced cognitive
speed and working memory are features instead of confounders
of AD. Thus, as suggested by Miller and Chapman (2001), we did
not control for these variables. Years of education was the only
variable we added as a covariate because groups significantly dif-
fered in these variables despite our efforts of matching.
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Table 2, Results of analysis 1. Effects of the regression analysis from the PIT part for all three cohorts,
Group Alcohol-dependent Middle-aged Young controls
patients (N=186) controls (N=105) (W=161)
1© p-Value b p-Value 1 p-Value
Pavlovian (S valence 11.723 0.003 5.599 0.061 15.105 0.001
Instrumental behavior 7.057 0.008 13.108 0.0003 0.159 0.690
0PRM1 polymorphism 0.002 0.963 0.046 0.331 0 0.994
Pavlovian valence X instrumental behavior 2074.63 <0.0001 912.67 <0.0001  365.68 <0.0001
Pavlovian valence X OPRM1 polymorphism 0.224 0.894 0.074 0.964 0.629 0.730
Instrumental behaviar X O0PRM1 polymarphism 13.917 0.0002  18.930 <0.0001 7.757 0.005
Pavlovian valence X instrumental behavior X OPRMI polymorphism 12.723 0.002 9.027 0.011 20,691 <0.0001

All interaction effects with the OPRMI polymorphism in the young contral cohort remained significant after controlling for self-reports of impulsivity, which was signifi-
cantly different between G+ and G- carriers in this cohort (see Table 1). Statistically significant values are shown in bold.

PIT: Pavlovian-to-instrumental transfer; (S: conditioned stimulus.

Analysis 3: Relapse-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. To test whether the interaction between the OPRM]
polymorphism and the PIT cffect was significantly different
between patients with AD who relapsed and those who remained
abstinent, we performed the above described regression analysis
(sec analysis 1) but added relapse (relapsers or abstainers, coded
as 0.5 and ~0.5) as an additional fixed factor and allowed interac-
tion with all predictors. For this analysis, we only included
paticnts with AD for whom relapse data were available (n=145;
Supplemental Figure S1). Relapsing patients did not differ from
abstaining patients in any demographic or clinical vanables,
except for craving (where relapsing patients had significantly
higher OCDS scores (Anton et al., 1995; Mann and Ackermann,
2000) than abstaining patients (r=-2.66, p=0.01). Thus, we
added craving as a covariate of no interest in this analysis,

Post hoc analyses

For analyses 2 and 3, we were particularly interested in how the
PIT effect was modulated by the OPRMI polymorphism and
whether this depended on group, respectively. Thus, in our post
hoc analyses, we focused on these contrasts (analysis 2; G+ vs.
G- carriers/HCs vs. ADs; analysis 3: G+ vs. G- carriers/relaps-
ers vs. abstainers) and considered effects as significant when they
survived Bonferroni correction for four comparisons (p << 0.01).

Results
Genotyping

Genotyping resulted in 353 participants homozygous for the
major A allele, 89 participants with the AG combination and 10
participants homozygous for the G allele. OPRM1 genotype dis-
tribution did not significantly differ from Hardy Weinberg equi-
librium (%% -, =2.31, p=0.13).

Demographic, clinical and neuropsychological comparisons
between G+ and G- carriers in all three cohorts indicated no
group differences (Table 1), except from increased self-reports of
impulsivity assessed via BIS-15 (Meule, 2011) in G+ carriers
compared to G- carriers in young healthy adults. Moreover, we

found no cvidence for a functional association between the
OPRMI polymorphism and AD. Descriptively, there were pro-
portionally more G+ carriers among the HCs compared to the
AD group — from the literature we would have expected the
reverse results — although this difference was formally not statis-
tical significant (x?;,.,,=3.62, p=0.06). Also, we found no evi-
dence for a functional association between the OPRM/
polymorphism and relapse (3% .\, = 1.60, p=0.21).

Behavioural data

Analysis 1: Association between the PIT effect and the
OPRM1 polymorphism across cohorts. The first aim of this
study was 1o test whether the OPRMI polymorphism influences
the PIT effect across three independent cohorts. In all three
cohorts we found a significant PIT effcct, that is, the interaction
between Pavlovian valence (negative, neutral or positive) and
instrumental action (‘Go’ or *No-Go’; Table 2), indicating that
positive stimuli facilitated *Go’ responses but impaired “No-Go'
responses, whereas negative stimuli facilitated “No-Go'responses
but impaired ‘Go’ responses.

In all groups, respectively, we found no interaction between
Pavlovian valence and OPRMI polymorphism. However, the
OPRMI polymorphism interacted with instrumental action
(Table 2). Crucially, we found a three-way interaction between
Pavlovian valence, instrumental action and OPRMI polymor-
phism in all cohorts. This result suggests that the OPRM1 poly-
morphism strongly interacts with the PIT effect i all three
independent cohorts. In fact the PIT effect was significantly
higher in G+ carriers compared to G— carriers (Figure 2 and
Table 2),

To rule out that our PIT-related OPRM1 effect was simply due
to the fact that G+ carriers showed stronger cue-induced modu-
lation of liking, we further performed analyses of the rating data
of the Pavlovian stimuli (pleasantness ratings: Supplemental
Information 10). To this end, we first tested whether the OPRM/
polymorphism was associated with ratings of the stimuli, depend-
ing on the Pavlovian valence. In all cohorts, the OPRMI poly-
morphism did not interact with Pavlovian valence (Supplemental
Information 10). Morcover, adding the rating data as an addi-
tional covariate in our PIT analyses, all interaction between the
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Figure 2. Results of the PIT phase as a function of group (patients with alcohol dependence (AD), middle-aged controls and young controls) and
0PRMI polymorphism. Each panel shows the PIT effect in the respective group, that is, there was a significant influence of Pavlovian background
valence on instrumental action (accuracy: percent correct choices), here visualised by the slope of the lines. Crucially, in each of the three cohorts,
this was steeper in G+ carriers compared to G- carriers, as indicated by the three-way interaction between OPRMI polymorphism, Pavlovian valence
and instrumental action (analysis 1), that is, in each of the three independent cohorts, the PIT effect was modulated by the OPRMI polymorphism.
However, this was not different between alcohol-dependent patients and matched middle-aged controls (analysis 2).

Table 3. Results of analysis 2. Effects of the regression analysis from the PIT part where we tested whether the interaction between the PIT effect
and the OPRMI polymorphism was significantly different between patients with AD and H(s.

7 p-Value
Pavlovian valence 13.183 0.001
Instrumental action 18,391 <0.0001
0PRMI polymorphism 0.007 0.933
Group 2.316 0.128
Years of education 7.651 0.006
Pavlovian valence X instrumental action 2888.726 <0.0001
Pavlovian valence X OPRM1 polymorphism 0.031 0.984
Instrumental action X OPRM1 polymorphism 0.374 0.540
Pavlovian valence X group 3.661 0.160
Instrumental action X group 4.187 0.041
0PRMI polymorphism X group 0.015 0.901
Pavlovian valence X instrumental action X OPRMI polymorphism 16.909 <0.0001
Pavlovian valence X instrumental action X group 22.695 <0.0001
Pavlovian valence x OPRM1 polymorphism X group 0.257 0.880
Instrumental action X OPRM1 polymorphism X group 30.727 <0.0001
Pavl valence X instr | action X OPRM1 polymorphism X group 0.318 0.853

HC: healthy control.

OPRMI polymorphism, Pavlovian valence and instrumental
action remained significant (patients with AD: p=0.0004; mid-
dle-aged controls: p=0.006; young controls: p << 0.0001).

Analysis 2: Alcohol-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. The second aim of this study was to test whether the
interaction between the PIT effect and OPRMI polymorphism
was significantly different between patients with AD and HCs.
This analysis indicated a three-way interaction between Pavlov-
1an valence, instrumental action and group and also a three-way

interaction between Pavlovian valence, instrumental action and
OPRMI polymorphism. Thus, AD and the OPRMI polymor-
phism were significantly and independently associated with the
strength of the PIT effect per se (see Figure 2). Morcover, we
found a three-way interaction between instrumental action, group
and OPRM1 polymorphism. However, the four-way interaction
between Pavlovian valence, instrumental action, group and
OPRM1 polymorphism was not statistically significant (Table 3).
Thus, the interaction between the PIT effect and the OPRM/
polymorphism was not statistically different between patients
with AD and matched control subjects (Figure 2).
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Table 4. Results of analysis 3. Effects of the regression analysis from the PIT part where we tested whether the interaction between the PIT effect
and the OPRMI polymarphism was significantly different between relapsers and abstainers.

%t p-Value
Pavlovian valence 10.27 0.006
Instrumental action 0.002 0.965
OPRM1 polymorphism 0.324 0.569
Relapse 0.706 0.401
Craving 0.053 0.817
Pavlovian valence X instrumental action 1535.13 <0.0001
Pavlovian valence X OPRM1 polymorphism 0.426 0.808
Instrumental action X OPRM1 polymorphism 11.706 0.001
Pavlovian valence X relapse 0.513 0.774
Instrumental action X relapse 12,786 <0.0001
0PRM1 polymorphism X relapse 0.042 0.838
Pavlovian valence X instrumental action X OPRMI polymorphism 16.786 0.001
Pavlovian valence X instrumental action X relapse 13.647 0.001
Pavlovian valence X OPRM1 polymorphism X relapse 0.571 0.752
Instrumental action X OPRM1 polymorphism X relapse 1.988 0.159
Pavlovian valence X instrumental action X OPRMI polymorphism X relapse 30.347 <0.0001
Abstainers 3 months | Relapsers 3 months
OPRM1
- G
| - G+
GoNago
- Go
= No-Go
0.0
Negative Neutral Positive  Negative Neutral Positive

Pavlovian valence

Figure 3. Results of the PIT phase as a function of treatment outcome (abstainers vs. relapsers) and OPRMI polymorphism (analysis 3). Patients
with AD who relapsed showed a stronger interaction between the PIT effect and the OPRMI polymorphism compared to patients with AD who
remained abstinent. Moreover, G+ carriers showed a strong and significant interaction between the PIT effect and treatment outcome, whereas G-

carriers did not.

Analysis 3: Relapse-related group differences for the associa-
tion between the PIT effect and the OPRM1 polymor-
phism. Last, we tested whether the observed interaction between
the OPRM| polymorphism and the PIT effect was associated with
relapse. Again, we found a three-way interaction between the
OPRM1T polymorphism, Pavlovian valence and instrumental action
(Table 4). In addition, we observed an interaction between relapse
status and instrumental action, and a three-way interaction between
Pavlovian valence, instrumental action and relapse. This interaction
was further modulated by the OPRM! polymorphism, resulting in
the expected four-way interaction between Pavlovian valence,
instrumental action, OPRM1 polymorphism and relapse status (Fig-
ure 3 and Table 4). Thus, the interaction between the OPRM| poly-
morphism and the PIT effect was statistically different between
patients with AD who prospectively relapsed and those who

remained abstinent, Post hoc tests indicated that the interaction
between Pavlovian valence, instrumental action and the OPRM]
polymorphism was only significant for relapsers (p<0.0001) but
not for abstamers (p=0.328%). Morcover, the interaction between
Pavlovian valence, instrumental action and relapse was significant
for G+ carriers (p< 0.0001) but not for G— camers (p=0.09).

Discussion

To explore and further understand the behavioural and genctic
underpinnings of “wanting’ as an expression of incentive salience
attribution in humans and to bridge the gap to preclinical results,
we investigated the association between the OPRMI polymor-
phism, PIT effect and relapse across a large cohort of patients
with AD and two independent cohorts of HCs.
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We demonstrate that (a) i all three independent cohorts, G+
carriers showed an increased PIT effect; (b) there is no difference
between patients with AD and HCs in the interaction between
OPRM]I and PIT; but (¢c) when merely investigating AD, relaps-
ing patients carrying the G+ allele showed an increased PIT
effect as opposed to abstaining patients, who did not show an
association between OPRMI genotype and PIT. We henceforth
discuss these three main results.

Analysis 1: Association between the PIT
effect and the OPRM1 polymorphism across
cohorts

The first analysis demonstrated a clear association between the
OPRM] genotype and PIT in three independent human cohorts.
Two studies have previously investigated the role of the human
opioid system in PIT-like effects in healthy human subjects. By
using a pharmacological challenge, Weber et al. (2016) demon-
strated that naltrexone reduces PIT effects for primary reinforcers
(e.g. food rewards). We here demonstrate that the opioid system is
also involved in modulating PIT effects for secondary reinforcers
(e.g. monetary rewards). Beyond this, the experimental design
from Weber et al. (2016) also differed in several other aspects
from our study. Weber et al. (2016) focused on the positive ‘limb’
of the PIT effect (the extent to which positive stimuli affect
responses), whereas our paradigm also enabled us to examine the
negative ‘limb’ of the PIT effect (the extent to which negative
stimuli affect responses). Morcover, our instrumental task
included both *Go’ and *No-Go’ responses, whereas the instru-
mental task by Weber et al. (2016) merely included a *Go’ compo-
nent. Thus. in line with previous investigations (Guitart-Masip
etal, 2011, 2014; Swart et al., 2017), our experimental manipula-
tion cnabled us to test for more complex valence—action interac-
tions. These previous tasks in line with our results have identified
a potentially phylogenetically induced bias for congruent action-
valence responses (e.g. better performance when a “Go’ response
was acquired to win) compared to incongruent action valence
(e.g. when a “No-Go’ response was acquired to win).

A second study published by Wiers et al. (2009) investigated
automatic appetitive action tendencies in male heavy-drinking
carriers of the OPRMI G allele. Heavy-drinking G+ carriers
showed increased automatic approach tendencies not only to
alcohol-associated stimuli but also to other appetitive stimuli
(Wiers et al., 2009). This is in linc with our finding of increased
behavioural modulation in the presence of appetitive cues in AD
G+ carriers. However, Wiers et al. did not include a control
group in their study design and only included male sex, which
limits generalisability and comparability to our results.

In summary, our data support the notion that the OPRM1 pol-
ymorphism serves as one biological agent associated with human
PIT effect in both AD patients and HCs.

Analysis 2: Alcohol-related group differences
for the association between the PIT effect
and the OPRM1 polymorphism

We did not find a significantly different association between the
PIT cffect and the OPRM! polymorphism between patients

with AD and HCs, which partly reflects the ongoing debate and
contradictory results published so far on the association between
the OPRMI genotype and AD (Hendershot et al,, 2016; Kong
et al., 2017; Ray and Hutchison, 2004; Sloan et al., 2018).
Instead, we found that AD and the OPRM! polymorphism are
independent factors that both increase the PIT effect. Morcover,
we found an interaction between instrumental action, OPRMT
polymorphism and group, indicating that the opioid system dif-
ferently affects instrumental responses in AD patients and HCs.
Exploratory post hoc analyses (Supplementary Information 4)
indicated that AD G+ carriers showed increased ‘Go’ responses
compared to ‘No-Go’ responses, whereas HC G+ carriers
showed increased ‘No-Go' responses compared to ‘Go’
responses. Of note, a positive PIT effect is accompanied by an
overall increase of *Go’ responses, while a negative PIT effect
is accompanied by an overall increase in ‘No-Go’ responding.
Thus, the OPRM! polymorphism may influcnce the positive
PIT effect in patients with AD and the negative PIT effect in
HC. A core feature of AD is the persistent substance consump-
tion despite the negative consequences of consumption (Stacy
and Wiers, 2010). We speculate that this paradox might partly
be explained by an increased responsiveness of patients with
AD to positively conditioned cues, which is stronger in G+ car-
riers. On the other hand, an increased responsiveness to nega-
tive stimuli might reveal a protective mechanism of healthy G+
carriers (S3 and S4). Clearly, future studics need to validate this
speculation.

Analysis 3: Relapse-related group differences
for the association between the PIT effect
and the OPRM1 polymorphism

Only relapsers but not abstainers showed a significant interac-
tion between the PIT effect and the OPRM! polymorphism.
Morcover, only relapsing G+ carriers showed an increased PIT
effect compared to abstainers, whereas there was no difference
between the PIT effect in relapsers and abstainers in G— carriers.
One speculative interpretation of these findings is that there may
be two pathways to relapse, and that these fundamentally differ
with regard to the OPRM polymorphism and the PIT effect. On
the onc hand, in G+ carriers, the mechanisms driving PIT might
also be related to relapse, whereas in G- carriers, these mecha-
nisms could be less related to relapse. Our finding of an increased
PIT cffect in relapsing AD G+ carriers might also be relevant
for precision medicine, particularly in the light of the ongoing
discussion of the OPRM! polymorphism as a potential bio-
marker for the effectivencss of naltrexone treatment (Chamorro
et al., 2012; Hartwell et al., 2020: Oslin et al., 2003; Setiawan
et al., 2012; Ziauddeen et al., 2016). Strkingly, treatment
response to naltrexone was also particularly high in patients with
AD classified as reward drinkers (Mann et al., 2018; Witkiewitz
et al.,, 2019) and reduced craving, most notably in social drink-
ers, who had high positive alcohol expectancies (Palfai et al.,
1999).

Similar considerations might be relevant to nalmefene, the
MOP antagonist and partial k-agonist, recently approved for the
treatment of AD (Gual et al., 2013), with similarly conflicting
results, According to a meta-analysis, the drug is able to improve
behavioural outcomes in patients with AD (Mann et al,, 2016),
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while others show that it has a limited efficacy in AD therapy
(Palpacuer et al., 2015; Soyka and Muller, 2017). Nalmefene
administered in a modified ‘Go'/*No-Go’ paradigm mildly
reduced vigor to alcoholic cues in patients with AD (Gal et al.,
2019). However, no major differences were observed between
the treatment group and the placebo group with respect to behav-
ioural and neural correlates of approach/avoidance tendencies.
Given our data, future studies could investigate whether naltrex-
one and/or nalmefeme might be particularly effective in alcohol-
dependent patients who are G+ carriers and additionally show
large PIT effects.

Outlook: How does OPRM1 influence neural
reward processing?

The neural correlates of PIT have been associated with relapse
in AD within the mesolimbic reward system (Garbusow et al.,
2016; Sekutowicz et al., 2019; Sommer et al., 2020) and could
predict future drinking behaviour in adolescents (Sckutowicz
et al, 2019). Recent studies have suggested a direct link
between the OPRM polymorphism and the mesolimbic dopa-
minergic system. For instance, by using a mouse model of the
OPRMI1 A118G SNP, Popova ct al. (2019) demonstrated that
A- and G-allele carriers show significantly different regulation
of mesolimbic dopaminergic firing. One potential underlying
mechanism is that MOP receptors (which are affected by the
OPRMI polymorphism) mediate opioid-induced disinhibition
of midbrain dopaminergic neurons (Jalabert et al., 2011: Jhou
ct al., 2012; Matsui ct al., 2014). Recent work in rodents has
proven that optogenetic manipulations of those dopaminergic
neurons can bidirectionally modulate online action selection
(Howard et al,, 2017). Thus, we speculate that the OPRM/ pol-
ymorphism is associated with the extent to which Pavlovian
stimuli functionally activate the mesolimbic dopaminergic sys-
tem in AD. This speculation is in line with functional magnetic
resonance imaging studies using cue reactivity paradigms in
substance-dependent individuals. For instance, some studies
suggest that AD G+ carriers display increased neural responscs
to alcohol-associated stimuli in mesocorticolimbic areas (Bach
et al., 2015; Courtney et al., 2015; Filbey et al., 2008; but see
Schacht et al., 2013). In linc with this, humanised mice carrying
the G+ allele of the OPRM1 polymorphism displayed increased
striatal dopamine release n response to an intravenously
infused alcohol dose (Ramchandani etal., 2011). Clearly, future
studies should further investigate how the OPRMI polymor-
phism affects the underlying neural mechanisms of the PIT
cffect in humans,

Limitations

The generalisability of our results is limited by the lack of prereg-
istration, additional analyses designed after study protocol and the
use of single gene analyses. The correlational nature of the analy-
ses only allows speculation about causal relationships and needs
to be further validated in a longitudinal design. Even though can-
didate genes as opposed to large-scale GWAS studies have come
into disrepute, we believe that there is still a high relevance in
connecting single genes and their respective pathways to specific

neurocognitive processes and thus providing the opportunity for
more specific interventions in precision medicine (Deb et al.,
2010; Di Martino et al., 2020). Another limitation of our design is
that the procedure used here to indicate Pavlovian learning (task
phase 4) was not designed to detect between-group effects but
instead served to identify subjects who did not learn the Paviovian
contingencies (Supplemental Information 8). Across all cohorts,
subjects could almost perfectly identify the best Pavlovian stim-
uli, and these ceiling effects potentially lowered statistical power
to detect differences in Pavlovian learning. Several studies across
humans and animals have demonstrated that individuals who
attribute incentive salience to reward predicting stimuli through
Pavlovian conditioning (so called sign-trackers) will also show an
increased PIT cffect (Garofalo and di Pellegrino, 2015; Schad
et al., 2019b). Future studies should therefore use more sensitive
methods to identify sign-tracking humans (such as eye-tracking;
Schad ct al., 2019b) and test the role of the OPRM! polymor-
phism in this phenomenon. One further limitation is the relatively
small sample size of relapsers versus abstainers in analysis 3.
Importantly, the group of G+ carriers that rclapsed versus
abstained was 16 versus 14, respectively. Thus, future stratifica-
tion studies need to replicate our findings in larger sampling sizes,
for example by oversampling G+ carriers in AD.

Summary

This study presents strong evidence for an association between
the OPRM]I polymorphism and the PIT effect in both patients
with AD and HCs. It is the first to show that the OPRM]1 poly-
morphism modulates the extent to which Pavlovian stimuli
exert control over behaviour and suggests a functional differ-
ence of this gene-behaviour interaction between relapsers and
abstainers,
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S| 1: Sample selection

Originally, we had behavioral data of 542 subjects (221 alcohol-dependent (AD) patients, 129
middle-aged controls, 192 young controls). However, due to missing data in the genetic
information (27 AD patients, 4 middle-aged controls, 19 young controls) or due to insufficient
performance in the forced choice task (indicating low Pavlovian learning: 8 AD patients, 17 middle
aged controls, 12 young controls), we had to exclude several subjects (Figure S1), resulting in the
final data sets reported throughout the manuscript for the respective analsysis.

Behavioral data
alcohol-dependent patients n = 221
middle-aged controls n = 129
young controls n = 192

No genetic information
alcohol-dependent patients n =27
middie-aged controls n =7
young controls n = 19

No Pavlovian learning
alcohol-dependent patientsn = 8
middle-aged controls n = 17
young controls n = 12

No follow up information
Missing relapse infromation n = 41

Figure S1: Sample selection procedure.
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S| 2: Model Comparisons

We performed several generalized linear mixed models (across all subjects) and compared model
fits. The first model (henceforth referred to “1. linear-accuracy”) included Pavlovian valence as a
linear contrast (-2,-1,0,1,2), instrumental action (Go, No-Go, coded as 0.5 and -0.5) and OPRM1
polymorphism (G-, G+, coded as -0.5 and +0.5) on the participant's accuracy (Correct, Incorrect).
This model (without the OPRM1 polymorphism) has been used to model performance of the PIT
paradigm in a recent sample of the LeAD study (Sommer et al., 2017). The next model (henceforth
referred to as “2. non-linear-accuracy”) included Pavlovian valence as non-linear contrast
(Negative, Neutral, Positive, dummy coded with neutral as reference), instrumental action (Go,
No-Go, coded as 0.5 and -0.5) and OPRM1 polymorphism (G-, G+, coded as -0.5 and +0.5) on
the participant's accuracy (Correct, Incorrect). We additionally fitted reduced versions of these two
models: a linear accuracy model without the OPRM1 polymorphism, henceforth referred as “1a:
linear accuracy ho OPRM1", a linear accuracy model without the instrumental action: henceforth
referred as “1b: linear accuracy no Instrumental action” and the same for the non-linear accuracy
model: a non-linear accuracy model without the OPRM1 polymorphism, henceforth referred as
“2a: non-linear accuracy no OPRM?1", a non-linear accuracy model without the instrumental action:
henceforth referred as “2b: non-linear accuracy no Instrumental action™. Last, we fitted an
accuracy model without Pavlovian valence, henceforth referred as “3: accuracy no Pavlovian
valence”

We used the anova function of the stats package to perform model comparisons. This analysis
indicated that the non-linear accuracy model was the best fitting model (lowest AIC score and
highest Log Likelihood, Table S1).

Table S1: Results of the model comparisons

Model AlC Log Likelihood
1. linear-accuracy 42164 -21073
1a: linear accuracy no OPRM1 42182 -21086
1b: linear accuracy no Instrumental action 45479 -22735
2. non-linear-accuracy 41851 -20911
2a: non-linear accuracy no OPRM1 41900 -20943
2b: non-linear accuracy no Instrumental action 45471 -22728
3: accuracy no Pavlovian valence 45470 -22730
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Sl 3: Group comparisons for demographic and clinical characteristics

Table S2: OPRM1 independent group pari: for alcohol dependent pati middle aged controls and young healthy controls

Demographic Variables

Age 4633 (10.56)  44.24 (10.96) 18.36(0.2) | F =521.95,p<.0001 |t=1.58 p=0.11 t=36.11, p <.0001 t=-24.18, p <.0001
Sex (% male) 84% 83% 100% X?=29.78, p<.0001 |X’=.01,p=.93 X? = 26.24, p <.0001 X? = 26.95, p <.0001
Years of education 14.85 (3.84) 15.84 (3.24)  11.65(0.93) F=77612, p<.0001 |t=-2.28 p=.02 t=10.75, p <.001 t=-12.67, p <.0001
Clinical Characteristics

Anxiety * 4.44 (3.39) 2.21(2.08)  246(239) |F=30033, p<0001 |t=683 p<.0001 t=6.28, p <0001 t=088,p=038
Depression ® 3.64 (3.64) 1.57 (2.15) 1.7 (1.81) F=27.724, p <0001 |t=6 p<.0001 t=6.31, p <.0001 t=051,p=061
Craving © 12.72 (8.03) 2.73(2.93)  377(3.16) | F=129.89 p<.0001 [t=14.31, p<.0001 t=13.58, p <.0001 =246, p=0.02
Impulsivity ¢ 31.66 (6.48) 29.2 (5.35) 30.45(5.08) | F=6.12, p =0.002 t=3.45, p =0.001 t=1.93,p=0.05 t=1.89,p =006
Neuropsychological Testing

Cognitive Speed © 9.31(2.76) 10.67 (3.07)  11.37 (2.31) F = 2578, p <.0001 t=-3.73, p=0.001 t = -7.4965, p <.0001 =202 p=0.04
Working Memory ' 6.55 (1.87) 7.46(2.07)  8.04(2.01) F=2460,p<0001 |t=-369 p=0.001 t=.7.038, p <.0001 t=226,p=003
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S| 4: Post-hoc analyses based on visual inspection of the 3-way
interaction: Pavlovian valence x Instrumental action x OPRM1

polymorphism (analysis 1)

Interestingly, our graphical illustrations of the interaction between the PIT effect and the OPRM1
polymorphism (Figure S2) indicated that the direction of this association was group dependent.
More precisely, Figure S2 suggests that AD G+ carriers showed increased modulation of Go and
No-Go responses in the context of positive stimuli, whereas G+ carriers in both healthy control
samples (middle aged controls and young controls) seemed to show increased modulation of Go
and No-Go responses in the context of negative stimuli.

We thus performed exploratory post hoc analyses for all three cohorts, respectively, where we
tested instrumental action®*OPRM1 interactions separately for the negative (Negative vs. neutral)
and positive (positive vs. neutral) limb of the PIT effect. In AD patients, we found a significant
interaction between instrumental action and OPRM1 for positive values (p < .0001), but not for
negative values (p = .29). In young and middle aged healthy controls, we found the reverse
patterns, namely an instrumental action*OPRM1 interaction for negative values (young controls,
p < .0001, middle aged controls, p < .0001) but no significant interaction between instrumental
action and OPRM1 for positive values (young controls, p = .59, middle aged controls, p = .08).

S| 5: Post-hoc analyses for the 3-way interaction: Instrumental
action x group x OPRM1 polymorphism (analysis 2)

We performed additional post-hoc analyses for AD patients and healthy controls separately, where
we analyzed how the OPRM1 polymorphism would differentially affect Go and No-Go responses.
This analysis revealed that AD G+ carriers showed increased Go responses compared to No-Go
responses compared to G- carriers p = .01) whereas healthy controls showed increased No-Go
responses compared to Go responses compared to G- carriers (p < .0001).

Sl 6: Performance of the instrumental learning phase
448 out of the initial 452 subjects had complete data of the instrumental learning phase (phase 1
of the paradigm).

On average subjects performed 87.2 trials (sd = 25.7) until they reached the criterion in the
instrumental learning phase. OPRM1 polymorphism did not covary with the number of trials that
G- and G+ carriers performed (young controls: W = 2542.5, p = .74, middle-aged controls: W =
884.5, p=0.48, AD patients: W = 2403.5, p = 0.91). Thus, overall performance in the instrumental
learning phase was not dependent on OPRM1 polymorphism. Adapting our analysis approach
from the PIT phase we also performed a binomial mixed effect regression, where we regressed
instrumental action (Go, No-Go) and the OPRM1 polymorphism on accuracy (correct, incorrect)
in the instrumental learning phase.

Overall, we found a main effect of instrumental action that was positive across all cohorts,
indicating that subjects were better in Go learning compared to No-Go learning. Beyond this, the
OPRM?1 polymorphism did not interact with instrumental action in young healthy controls (p = .26),
AD patients (p = .17), but was statistically significant in middle-aged healthy controls (p = <.0001).
Post-hoc analyses indicated that in this cohort (middle-aged controls), G- carriers showed
significantly better performance in Go compared to No-Go trials (p < .0001), whereas this
difference was not significantly different in G+ carriers (p = .06), see Table S3, Figure S2.
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Table S3: Results from the generalized linear mixed effects model of the instrumental training data

Alcohol-dependent
patients (n = 184)

Middle-aged controls
(n=103)

Young controls
(n=161)

p-
Estimate p-value Estimate p-value | Estimate value

Intercept 0.59 <0001 [0.88 <0001 |1.11 <.0001
Instrumental action 0.48 <.001 0.74 <.0001 0.51 <.0001
OPRM1 polymorphism 0.08 39 -0.36 .002 001 094
Instrumental action * OPRM1 polymorphism | -0.11 0.17 0.57 <.0001 0.10 0.26
HG-EG+
Alcohol-dependent Middle-aged Young
patients controls controls
1.00 - — . — .

SAd

No Go Go No Go

Go No Go ‘ Go
GoNogo

Figure S2: Correct responses in the instrumental learning phase as a function of action (Go/No-go), group (alcohol
dependent, middle age controls, young controls) and OPRM1 polymorphism (G-/G+). For display purposes only
responses larger than 10% correct are displayed.

Sl 7: Stay/switch behavior of the instrumental learning phase

Some previous studies have suggested a profound effect of the opioid system on reinforcement
learning (Efremidze et al., 2017; Lee et al., 2011). Moreover, our analyses of the overall correct
responses from the instrumental learning phase revealed that at least in one cohort (middle aged
controls) Go and No-Go learning was different across G+ and G- carriers (see S| 5). Thus, we
additionally tested, whether OPRM1 polymorphism additionally affected choice behavior
depending on outcome. More precisely we asked, whether G+-carriers would show increased
learning from reward or punishment. To this end, we carried out an analysis previously introduced
by Huys et al. (2011), where we analyzed the immediate consequences of a trial's outcome on
subsequent behavior. We performed a binomial mixed effect regression, where we regressed
outcome of the previous trial (reward, punishmenty) and the OPRM1 polymorphism on repetition
behavior of a specific stimulus (stay = Goyy & Gogs1) | No-Goyy & No-Goyy, switch = Goyy & No-
Gog+1y | No-Goyy & Gog-1)). This analysis revealed increased stay behavior after reward compared
to switch behavior after punishment (see Figure S3, Table S4) across all cohorts. This is in line
with Huys et al. (2011) and has previously been interpreted as increased reward sensitivity
opposed to punishment sensitivity. OPRM1 polymorphism did not influence the impact that
outcome of the previous trial (reward/punishment) had on stay/ switch behavior. However, in
middle aged controls, the main effect of OPRM1 polymorphism was on the border of significance
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(p=.07), indicating that in this cohort, G+ carriers tended to show deficits in adapting their behavior
according to the outcomes of their action, which is in line with the finding that in this cohort G+
carriers showed overall less correct responses in the instrumental learning phase (see Figure S3,
middle panel).

Table S4: Results from the generalized linear mixed effects model of the instrumental training data regarding stay/switch
behavior as a function of previous outcome and OPRM1 polymorphism

Alcohol-dependent | Middle-aged controls | Young controls
patients (n = 184) (n=103) (n=161)

Estimate p-value Estimate p-value Estimate p-value
Intercept 0.46 <.0001 0.42 <.0001 0.30 <.0001
Reward/Punishment of the previous trial 0.47 <.001 0.65 <.0001 0.91 <.0001
OPRM1 polymorphism 0.01 97 -0.24 0.07 -0.01 0.90
Reward/Punishment * OPRM1 polymorphism -0.03 0.69 0.02 0.82 0.15 0.12

HG-HG+
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Figure S3: Mean overall probability of repeating an action in the instrumental part given that it was last rewarded in the
presence of the current stimulus, or the probability of switching given a previous punishment as a function of Group
(Alcohol dependent, middle age controls, young controls) and OPRM1 polymorphism (G+/G- carriers).

S| 8: Performance of the forced choice phase

448 out of the initial 452 subjects had complete data of the forced choice phase (phase 4 of the
paradigm). Based on prior work (Garbusow et al., 2016; Garbusow et al., 2014), we only included
subjects in all analyses, who responded better than chance in the query trials (see S| 1). We did
this to ensure that subjects had sufficiently acquired the Pavlovian associations, which is a
prerequisite of the Pavlovian-to-instrumental transfer effect.

To mirror our behavioral analyses of the PIT phase and the instrumental learning phase, we
analyzed performance from the query trials in the same way. Thus we regressed correct
responses on Pavlovian valence by using a linear mixed model. Note that in each trial two
Pavlovian values are displayed and subjects have to indicate the better one. Thus, if subjects give
a correct response, this trial is coded as correctly for both Pavlovian values, whereas if the subject
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gives a wrong response, this trial is coded as false for both Pavlovian values. This results in 60
correct/false responses for each subject from 30 trials.

Results from this analysis indicated that Pavlovian valence influenced correct choices in AD
patients (p < .0001) and in middle-aged controls (p < .0001) but not in young controls (p = .88,
probably due to ceiling effects in this group). This effect was not modulated by the OPRM1
polymorphism in AD patients (p = 0.07), nor middle-aged controls (p = 0.16) or young controls
(p = 0.8, Table S5, Figure S4)

Table S5: Results from the linear mixed effects model of the forced choice data

Alcohol-dependent | Middle-aged controls | Young controls
patients (n = 184) (n=103) (n=161)
Chisq p-value Chisq p-value | Chisg p-value
Pavlovian valence 46.24 <.0001 24,95 <.0001 0.26 0.88
OPRM1 polymorphism 2.56 RE 0.92 0.34 0.38 0.54
Pavlovian valence* OPRM1 polymorphism 5.20 0.07 3.66 0.16 0.45 0.8
+~G-+G+
Alcohol-dependent Middle-aged Young
patients controls controls
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09 = ":::Tf_‘;ffi 3 b—-—-...,,‘_'v&——-__b_;;
©
0.8
]
00.7
o
0.6
0.5

Negétive Neutral  Positive Negétive Neutral ~ Positive Negétive Neutral ~ Positive
Pavlovian valence

Figure S4: Correct responses for the forced choice task as a function of Paviovian valence (Negative, Neutral, Positive)
OPRM?1 polymorphism (G-,G+ carriers) and group (alcohol-dependent, middle-age controls, young controls). For
display purposes individual correct responses are clustered, in the way that subjects with the same correct responses
for a Pavlovian valence are displayed as scatter.

S| 9: Reaction times of the PIT phase

In the behavioral analyses, we did not see a OPRM1 polymorphism*Pavlovian valence interaction
across all subjects, However, we found evidence that Pavlovian valence interacted more strongly
with action across G+ carriers. We performed additional analyses to see how Pavlovian valence
influenced reaction times.

Thus we regressed reaction times of first button presses on Pavlovian valence and OPRM1
polymorphism on reaction times of first button presses. First button responses were cleaned for
reaction times faster than 50 milliseconds (0.006 % of all trials) or slower than 2950 ms (0.001%
of all events). Note that even if a subject performs a response in a No-Go trial, this can be a correct
response, because the coding of correct/ incorrect depends of the number of button presses. Thus
we collapsed all trials across Go and No-Go responses.
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Mirroring our behavioral analyses, we performed all analyses separately for the three groups. Our
analyses indicated that across all groups, Pavlovian valence influenced RTs (Table S6, Figure
S5). Moreover, in AD patients, G+ carriers showed a stronger modulation of Pavlovian valence
than G- allele carriers. This result was mirrored by young controls, but it failed to reach statistically
significance in middle aged healthy controls.

Table S6: Results from the linear mixed effects model of the Reaction time data of the first button press during the PIT
phase

Alcohol-dependent | Middle-aged controls | Young controls
patients (n = 186) {n =105) (n =161)
Chisq p-value Chisq p-value | Estimate value
Pavlovian valence 342.19 <.0001 84.71 <.0001 45.22 <.0001
OPRM1 polymorphism 0.01 93 3.36 07 0.18 0.67
Pavlovian valence* OPRM1 polymorphism 7.11 0.03 4.06 0.11 2.93 0.05
- G-+G+
Alcohol-dependent Middle-aged Young
- patients controls controls
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Figure S5: Reaction times of the first Response in the PIT phase as a function of Paviovian valence (Negative, Neutral,
Positive), OPRM1 polymorphism and group. For display purposes only individual responses < 2 seconds are displayed.

S1 10: Subjective Pleasantness of the rating data

446 out of the initial 452 subjects had complete data of the rating part (phase 5 of the paradigm).
We here additionally tested the hypothesis, that pleasantness ratings of instrumental and
Pavlovian stimuli were affected by OPRM1 polymorphism across groups. With regard to the
instrumental stimuli, we thus performed a linear mixed model, where we regressed OPRM1
polymorphism and instrumental action on pleasantness ratings. With regard to the Pavlovian
stimuli, we performed a linear mixed model, where we regressed OPRM1 polymorphism and
Pavlovian valence on pleasantness ratings.
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Table S7: Results from the linear mixed effects model of the pleasantness ratings of the instrumental stimuli (above)

and the Pavilovian stimuli (below).

Alcohol-dependent Middle-aged controls | Young controls
patients (n = 182) (n=104) (n=160)
Instrumental stimuli Estimate p-value Estimate p-value | Estimate p-value
Intercept 4.04 <.0001 4.08 <.0001 4.01 <.0001
Instrumental action 1.29 <0001 {213 <0001 (243 <.0001
OPRM1 polymorphism -0.10 0.53 -0.14 0.48 -0.01 0.94
Instrumental action * OPRM1 polymorphism -0.12 0.71 -0.27 0.48 -0.05 0.87
Paviovian stimuli Chisq p-value Chisq p-value [ Chisq p-value
Pavlovian valence 127.95 <.0001 138.94 <.0001 311.84  <.0001
OPRM1 polymorphism 1.87 0.17 3.90 0.05 0.17 0.68
Pavlovian valence * OPRM1 polymorphism 3.06 0.22 -0.13 0.24 2.52 0.28

With regard to the ratings of the instrumental stimuli, we found a main effect of instrumental action
across groups (AD patients (p < .0001), middle aged controls (p < .0001) in young controls (p <
.0001), demonstrating that subjects rated Go-trials as more pleasant compared to No-Go trials.
Likewise, with regard to the ratings of the Pavlovian stimuli, we found a main effect of Pavlovian
valence across groups (AD (p <.0001), middle aged controls (p < .0001) and in young controls (p
<.0001), demonstrating that subjects rated the stimuli in accordance with their Pavlovian valence.
However, neither ratings of instrumental nor Pavlovian stimuli were additionally modulated by
OPRM1 polymorphism (Table S7 & Figure S6).
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Figure S6: Pleasant ratings of A.) Instrumental stimuli and B.) Pavlovian valence as a function of OPRM1
polymorphism (G+,G- carriers) and group (Alcohol dependent, middle age controls, young controls)
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Alcohol Approach Bias Is Associated With Both
Behavioral and Neural Pavlovian-to-Instrumental
Transfer Effects in Alcohol-Dependent Patients

Ke Chen, Maria Garbusow, Miriam Sebold, Séren Kuitunen-Paul, Michael N. Smolka,
Quentin J.M. Huys, Ulrich S. Zimmermann, Florian Schlagenhauf, and Andreas Heinz

ABSTRACT

BACKGROUND: Even after qualified detoxification, alcohol-dependent (AD) patients may relapse to drinking alcohol
despite their decision to abstain. Two mechanisms may play important roles. First, the impact of environmental cues
on instrumental behavior (i.e., Pavlovian-to-instrumental transfer [PIT] effect), which was found to be stronger in
prospectively relapsing AD patients than in abstaining patients. Second, an automatic approach bias toward
alcohol stimuli was observed in AD patients, and interventions targeting this bias reduced the relapse risk in some
studies. Previous findings suggest a potential behavioral and neurobiological overlap between these two
mechanisms.

METHODS: In this study, we examined the association between alcohol approach bias and both behavioral and
neural non—drug-related PIT effects in AD patients after detoxification. A total of 100 AD patients (17 females)
performed a PIT task and an alcohol approach/avoidance task. Patients were followed for 6 months.

RESULTS: A stronger alcohol approach bias was associated with both a more pronounced behavioral PIT effect and
stronger PIT-related neural activity in the right nucleus accumbens. Moreover, the association between alcohol
approach bias and behavioral PIT increased with the severity of alcohol dependence and trait impulsivity and was
stronger in patients who relapsed during follow-up in the exploratory analysis.

CONCLUSIONS: These findings indicate partial behavioral and neurobiological overlap between alcohol approach
bias and the PIT effect assessed with our tasks. The association was stronger in patients with more severe alcohol

dependence.
https://doi.org/10.1016/].bpsgos.2022.03.014

Alcohol-dependent (AD) patients frequently relapse after
detoxification despite their intention to remain abstinent (1).
Pavlovian conditioning has been hypothesized to contribute to
relapse, because environmental cues associated with alcohol
intake can become conditioned stimuli (CS) that elicit drug
craving and may bias instrumental behavior toward drug
seeking [e.g., (?-4)]. This phenomenon—the impact of envi-
ronmental cues on instrumental behavior (i.e., Pavlovian-
to-instrumental transfer [PIT] effect}—has been investigated
in animal and human studies. Ethanol-associated cues can
promote seeking behavior for not only ethanol but also non-
ethanol-related reward in ethanol-treated rats (5). Repeated
drug intake can further enhance non-drug-related reward-
seeking elicited by nondrug cues in rats (6-10). Comparable
alterations in motivational processes have also been observed
in humans: enhanced non-drug-related PIT effects have been
observed in AD patients compared with healthy control sub-
jects and in prospectively relapsing patients compared with
abstaining patients (11-13). Functional magnetic resonance
imaging (fMRI) studies revealed that PIT effects can induce
activation in the nucleus accumbens (NAcc) (14-17). This brain

area has long been associated with reinforcement learning
(18,19), processing of alcohol cues, and craving (20).

It has been suggested that relapse can be triggered by an
automatic approach tendency to alcohol stimuli, which was
observed to be stronger in AD patients and heavy drinkers in
some studies [e.g., (21-23)]. An alcohol approach bias in a
laboratory can be operationalized as a shorter response la-
tency to approach alcohol cues than to avoid them, even
though the content of alcohol cues is task irrelevant. Applying
an alcohol approach/avoidance task (aAAT), there is evidence
that alcohol approach bias was positively associated with past
hazardous drinking and future drinking (24,25). Inconsistently,
there are studies using a stimulus-response compatibility task
that found no approach bias or even an avoidance bias toward
alcohol in AD patients (26,27) and a predictive role of the
avoidance bias in future drinking or relapse (27,28). The
discrepant findings could partly be explained by differences in
the tasks (29). Cognitive bias modification (CBM) intervention
adapted from the aAAT to retrain the approach bias has shown
promising effects on decreasing relapse risk in AD patients
[e.g., (30-33)).

@ 2022 THE AUTHORS. Published by Elsevier Inc on behalf of the Society of Biological Psychiatry, This is an 1
open access article under the CC BY-NC-ND license (hitp://creativeacommons.org/licenses/by-nc-nd/4.0/).
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The previous findings indicate that both alcohol approach
bias and PIT effect are closely associated with alcohol
dependence. Although the association between alcohol
approach bias and PIT effect in AD patients has so far not been
directly investigated, previous theories and findings indicated a
potential overlap between these two phenomena. Theoreti-
cally, in view of a dual-process model, an automatic approach
bias was suggested to occur when the appetitive stimulus
activates an impulsive or automatic system, which cannot be
overridden by cognitive control processes because this
reflective system is weakened (34). Automatic or impulsive
approach biases may then drive addictive behavior (35), pro-
moting drug seeking despite long-term harm (36). The strength
of a non-drug-related PIT effect in AD patients has also been
associated with impulsivity as assessed by a delay-
discounting task (12). Moreover, impairments in inhibiting
automatic approach biases to appetitive Paviovian stimuli in a
non—drug-related PIT task predicted relapse risk in AD patients
(13). Based on those findings, we hypothesize that the impul-
sivity process could contribute to linking alcohol approach bias
with PIT effects, On the neural level, neuroimaging studies also
suggest that the underlying neurobiological mechanisms of the
two effects overlap at least partly, because functional NAcc
activation relates to both alcohol approach bias (37) and PIT
effects (14-17),

This study tested the hypothesis that alcohol approach bias
is associated with behavioral and neural correlates of the non-
drug-related PIT effect in recently detoxified AD patients. We
hypothesized that patients with a stronger alcohol approach
bias would show a more pronounced PIT effect behaviorally
and in the NAcc. Furthermore, we hypothesized that the as-
sociation between alcohol approach bias and PIT effect in-
creases with the severity of alcohol dependence and trait
impulsivity. In addition, we explored if the association between
PIT and alcohol approach bias differed between prospective
relapsers and abstainers with a 6-month follow-up.

METHODS AND MATERIALS

Participants

AD patients were assessed in a bicentric research project
conducted in Berlin and Dresden, Germany (ClinicalTrials.gov
identifier; NCT02615977). The study was approved by local
ethics committees of Charité Universitatsmedizin Berlin (EA1/
268/14) and Technische Universitét Dresden (EK 300082014).
All participants gave written informed consent before
participation.

Patients fulfilled the criteria of alcohol dependence
according to the DSM-IV-TR, assessed by the Munich Com-
posite International Diagnostic Instrument (38,39). After data
cleaning (Supplement), 100 AD patients (age [mean * SD] =
46.86 * 10.30 years; 17 females; abstinence before study
participation [mean = SD]: 22.44 + 12.77 days) were included
for behavioral analyses and a subcohort of 72 patients (age
[mean * SD] = 44.97 + 9.64 years; 10 females; abstinence
before study participation [mean * SD]: 23.33 + 12.54 days)
for imaging analyses.

The severity of alcohol dependence was measured by the
Alcohol Dependence Scale (ADS) (40). Trait impulsivity was
assessed by the Barratt Impulsiveness Scale-15 (BIS-15) (41).

The Association of Alcohol Approach Bias With PIT

This study was conducted within a research consortium (DFG
FOR 1617 and CRC-TRR 265), which also applied other tasks
not reported in this paper. In addition, a subset of the partici-
pants underwent CBM training after the task assessments
(nonsignificant training effects will be reported elsewhere).
Patients had follow-ups 6 months (at weeks 6, 10, 14, 18, 22,
and 26) after study participation and retrospectively reported
their alcohol consumption since the last follow-up interview
using the Timeline Follow-Back (42). We applied an intention-
to-treat analysis (43) and classified all patients who relapsed
to heavy drinking (i.e., =5 standard drinks [e.g., one standard
drink = 0.33 L beer] for males and =4 standard drinks for fe-
males consumed on one drinking occasion), did not respond,
or had incomplete follow-up information as belonging to the
relapser group [as in (30,31,44)], while the rest of the patients
were categorized as abstainers. We additionally conducted
explorative analyses that included only patients with clear
relapse status and reported results in the Supplement.

The aAAT

In this task, images of drink (alcohol drink or soft drink) were
randomly presented inclined to the left or the right, and
participants pulled or pushed a joystick (approach or avoid)
according to the inclination of the image (see detailed
description in the Supplement).

PIT Task

Participants performed an instrumental task (pressing the
button to collect shells) while monetary CS learned from
Pavlovian training were presented in the background [see the
Supplement and (11-13) for a detailed description].

MRI Acquisition

Functional imaging was performed on Siemens Trio 3T MRI
scanners at both study centers using eche-planar imaging
sequences (repetition time: 2410 ms; echo time: 25 ms; flip
angle: 80°; field of view: 192 x 192 mm?; voxel size: 3 X 3 X
2 mm? comprising 42 slices approximately —25° to the
bicommissural plane. We acquired a three-dimensional
magnetization-prepared rapid gradient echo image (repetition
time: 1900 ms; echo time: 5.25 ms; flip angle: 9°; field of view:
256 x 256 mm?; 192 sagittal slices; voxel size: 1 X 1 X 1 mm?)
for coregistration and normalization during fMRI data pre-
processing. A field map was collected before functional
scanning to account for individual homogeneity differences of
the magnetic field.

Data Analysis

Data were analyzed using MATLAB R2020b (MATLAB version
9.9, 2020; The MathWorks, Inc.) and the R System for Statis-
tical Computing version 4.0.3 (R Development Core Team,
2020). SPM12 software package (http://www.fil.ion.ucl.ac.uk/
spm/; Wellcome Centre for Human Neuroimaging) was used
for fMRI data analyses.

Behavioral Analyses

For the aAAT, 6 patients were excluded because of excessive
errors (=35%) (30,31). To exclude extreme outlier response
times, the 1% fastest and 1% slowest responses were excluded
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The Association of Alcohol Approach Bias With PIT

in the overall response time distribution, consistent with the
method used in previous studies (33,45-47), Trials with incorrect
responses on the first try were also discarded. In line with Wiers
et al. (21), D scores were calculated to reflect the approach bias
to each stimulus category (see below). We further calculated a
D-diff score to reflect an approach bias to alcohol relative to soft
drink:

D scoreuieohal = (Push median RT ona
Pull median RTyccha ) /Personal SD

D scoresn gink = (Push median RTaon arri
~Pull median RTgn gink )/ Personal SD

D—diff score = D scoreysne—D SCOM.c drirk

where RT is the response time and personal SD is the standard
deviation of all response times including alcohol trials and soft
drink trials, per participant.

For the PIT task, 10 patients who did not successfully learn
the correlation between Pavlovian CS and unconditioned
stimuli (i.e., performance in the forced choice task was not
above chance) were excluded from analyses. A generalized
linear mixed-effects model (GLMM) [R package Ime4 (48)] with
Poisson distribution was used to predict the number of button
presses in each trial in the transfer part. The number of button
presses depending on Pavlovian CS value was used to assess
the behavioral PIT effect to be consistent with the imaging
analyses (see Imaging Analyses), Parameters of Paviovian CS
value (.e., the monetary value of Pavlovian CS in the
background: +2, +1, 0, —1, —2), trial type of the instrumental
condition {(go and no-go; coded as +0.5 vs, —0.5), the indi-
vidual alcohol approach bias (i.e., D-diff score in the aAAT), the
interaction of Pavlovian CS value and D-diff score, and the
interaction of instrumental condition and D-diff score were
included as fixed effects in the GLMM. Subject IDs, instru-
mental stimuli (shells), and Pavlovian CS (fractal combined with
pure tone) were treated as random effects to be controlled.

In addition, we further established GLMMs with additional
parameters of ADS score and BIS-15 score separately and
their interaction with other predictors (i.e., Pavlovian CS value
and D-diff score) to examine if the association between alcohol
approach bias and PIT effect interacts with those factors. We
applied another GLMM to explore if this association differed
between patients who abstained from alcohol and those who
relapsed in follow-up.

Imaging Analyses

Nipype (49) was used for preprocessing the PIT fMRI data.
First, correction for differences in slice time acquisition was
performed to the middle slice as reference. Based on acquired
field maps, voxel displacement maps were estimated. Images
were realigned to correct for head motion, distortion, and their
interaction. Coregistration of the individual structural T1 image
to the individual mean echo-planar imaging was conducted.
Then, the structural image was spatially normalized with a
resampling solution of 2 x 2 x 2 mm®, and the normalization
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parameters were applied to all echo-planar imaging images.
Finally, images were partially smoothed with a Gaussian kernel
of 8-mm full width at half maximum. Before statistical analysis,
data were high-pass filtered with a cutoff of 128 seconds to
remove low-frequency fluctuation in the blood oxygen level-
dependent signal.

After preprocessing, individual general linear models were
established in SPM12. Non-drug-related PIT trials were
modeled as one condition with three parametric medulators:
the Paviovian CS value, the transformed number of button
presses [calculated as Infthe original number of button
presses + e)], and the PIT parameter, which is the product of
the Pavlovian CS value and the transformed number of button
presses. We added e (Euler's number) to the log transformation
function for the number of button presses so that 0 button
presses would be transformed to 1, resulting in different nu-
merical values in the PIT parametric modulator after weighing
by different Pavlovian CS values. In the end, a higher number
of button presses to a higher Pavlovian CS value leads to a
higher numerical value in the PIT parametric modulator. To
account for variance caused by motor responses associated
with button pressing, button presses of all trials were modeled
in an additional regressor as stick functions. Drug-related PIT
trials with similar parametric modulators as a separate condi-
tion and the realignment parameters with derivatives were
included as regressors of no interest. The individual neural PIT
effect was measured with a contrast in which the non-drug-
related PIT parametric modulator was weighted with 1 and
other regressors weighted with 0.

At the second-level analysis, a one-sample t test was
established with individual contrast images. Individual alcohol
approach bias (i.e., D-diff score) was treated as a covariate of
interest in the model. In addition, participants’ age, sex. and
study center were taken as additional covariates to control
their potential impact on the results. Consistent with Garbusow
et al. (11), a region of interest analysis was conducted with ana
priori-defined compound region of interest in the left and right
NAcc (NAcc,, NAccg) (derived from the Wake Forest University
PickAtlas software; http://www.fmri.wfubmec.edu/download.
htm). Moreover, we performed an explorative whole-brain
analysis for the main PIT effect on a significance level of un-
corrected p < 001 and with k = 20 activated voxels per cluster
(Supplement). In addition, similar to the behavioral analysis, we
also explored if retrospective relapsers and abstainers differ in
the association of alcohol approach bias and neural PIT effect.

RESULTS

Behavioral Results

Patients showed a significant behavioral PIT effect—more
button presses in the presence of higher monetary value-
associated Pavlovian CS (main effect of Paviovian CS value:
estimate = 0.28, z = 77.81, p < .001) (Table 1). Moreover, there
was a significant association of PIT effect elicited by the
Pavlovian CS value with aAAT D-diff score (Paviovian CS
value X D-diff score: estimate = 0.14, z = 11.34, p < .001).
Patients with a stronger alcohol approach bias in the aAAT
task showed a more pronounced PIT effect (Figure 1). For a
visual inspection of the raw D-diff scores and individual PIT
slopes, see the Supplement.
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Table 1. Results of the Generalized Linear Mixed-Effects Model Regarding Effects of the Different Variables (Pavlovian CS
Value and Instrumental Condition) and Association of Alcohol Approach Bias With Number of Button Presses in the PIT Task

Parameter Estimate SE z P
Intercept 1.44 0.05 28,80 <.,001
D-Diff Score 0.01 0.13 0.09 .93
Paviovian CS Value 0.28 0.004 77.81 -.001
Instrumental Condition (Go vs. Ne-Go) 0.56 0.04 15.93 <001
D-Diff Score x Paviovian CS Value 0.14 0.01 11.34 <.001
D-Diff Score x Instrumental Condition ~0.06 0.04 ~1.74 .083

CS, conditioned stimulus; PIT, Paviovian-to-instrumental transfer,

When including alcohol dependence severity (i.e., ADS
score) in the GLMM, the results showed a significant interac-
tion effect (Paviovian CS value * D-diff score x ADS score:
estimate = 0,02, z = 12,51, p < .001). Specifically, the more
severe the alcohol dependence of the patient, the stronger the
association between aAAT score and PIT effect (Figure 2A).
Similar results also showed in the model with trait impulsivity
(i.e., BIS-15 score) (Pavlovian CS value x D-diff score x BIS-
15 score: estimate = 0.04, z = 14.58, p < .001) (Figure 2B). The
association between alcohol approach bias and PIT effect
increased with trait impulsivity. It should be noted that ADS
score was positively correlated with BIS-15 score (rho = 0.24,
p = .026, Spearman rank correlation) (see the Supplement fora
visual inspection of the raw data).

For the exploratory analysis regarding aAAT D-diff score
and PIT association between abstainers (n = 21) and relapsers
(n = 79) using the intention-to-treat analysis approach, results
yielded a significant interaction of Paviovian CS value, aAAT
D-diff score, and relapse group (estimate = 0.08, z = 2.34,
p = .020). Follow-up analyses examined the Pavlovian CS
value x D-diff score interaction in abstainers and relapsers
separately and showed a higher parameter estimate of

D-diff score B3 Higher D-d# scora 55| Lawer D1 scora

=10

1 0 1
Paviovian CS value

Number of button presses (relative to zero CS value)

Figure 1. Patients who displayed a stronger alcohol approach bias (a
higher D-diff score in the alcohol approach/avoidance task) showed a
higher Pavlovian-to-instrumental transfer effect (a stesper slops) than
patients who had a lower alcohol approach bias (a lower D-diff score). The
continuous D-diff score was transferred to a factor with two levels with a
median split in this figure for illustration. Group means and SEMs are
shown with bars and error bars. Individual values (mean number of button
p ) are repr by d dots. CS, conditioned stimulus,

Pavlovian CS value x D-diff score interaction in relapsers
(estimate = 0.15, z = 10.57, p < .001) compared with ab-
stainers (estimate = 0.07, z = 2.43, p = .015).

Functional MRI Results

We observed a significant activation elicited by PIT in NAcc,
(x=—-10,y = 8, z= —10; tg; = 2.92, small volume-corrected
[SVC] and familywise error-comected [FWE] psyc-rwe = .035;
voxel-based analysis) and NAccr (x =8,y =8,z= —12, fg; =
3.29, psvc-rue = .014).

More importantly, we observed a significant effect of aAAT
D-diff score on PIT-related blood oxygen level-dependent
signals in NAccr (x = 16, y = 14, 2 = ~12; tg; = 3.40, psvc-
Fwe = .010) (Figure 3) and a trendwise effect in NAcc (x = 14,
y =12,z = ~12; tg; = 2.74, psyc-rwe = .053).

Exploratory analyses with 17 abstainers and 55 relapsers
did not find a significant difference between the two subgroups
in the association between aAAT D-diff score and neural PIT
effect in either NAccg (relapsers > abstainers: x = 14, y = 4,
z = —14, lgs = 0.98, psyc.ewe = 667, abstainers = relapsers:
x =16, y=14,z= =12, tgs = 0.42, Psve.FwWE = .815) or NAcc,
(relapsers > abstainers: x = —14, y = 8,z = —8, tgs = —0.04,
Psveewe = .870; abstainers = relapsers: x = —12, y = 8,

= =12, tgs = 1.33, psvc.ene = .523).

DISCUSSION

This study examined the association between a non-
drug-related PIT effect and automatic alcohol approach bias
in AD patients. These two paradigms were chosen because
both may reflect an impulsive approach bias (12,34), one
alcohol cue-related and one reflecting an effect of nondrug
Pavlovian cues, and because approach effects assessed in
both paradigms have been associated with poor treatment
outcomes or greater future drinking (11,13,25). Our key finding
is that detoxified AD patients who had a stronger alcohol
approach bias (relative to soft drinks) displayed a higher
behavioral PIT effect (i.e., a stronger effect of Pavlovian CS in
the background on unrelated instrumental behavior, indicated
by more button presses) and a stronger PIT-related functional
activation of NAccg. Furthermore, as expected, the association
between alcohol approach bias and behavioral PIT effect
increased with the severity of alcohol dependence and trait
impulsivity. These findings link two well-established paradigms
in alcohol research and indicate at least partially shared un-
derlying mechanisms between alcohol approach bias and
behavioral PIT effect.
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Figure 2. (A) Patients with higher Alcohol Dependence Scale (ADS) scores had & stronger assoclation between alcohol approach bias (l.e., D-aiff scorse) and
the Paviovian-to-instrumental transfer effect. (B) Patients with higher Barratt Impulsiveness Scale-15 (BIS-15) scores showed a stronger assoclation between
alcohol approach bias and the Pavlovian-te-instrumental transfer effect. Alcohol approach bias, ADS score, and BIS-15 score in this figure were all transferred
to factors with two levels with a median split for illustration. Group means and SEMs are shown with bars and error bars. Individual values (mean number of

button presses) are represented by colored dots.

From the perspective of dual-process accounts, alcohol
approach bias is mainly driven by a system associated with
impulsive and automatic decision making (34), and PIT effect
has also been associated with choice impulsivity in AD patients

Figure 3. Strength of the alcohol approach bias was associated with
Pavlovian-to-instrumental transfer-related neural activation in the nucleus
accumbens. The bilateral nucleus accumbens region of interest is marked in
blue, and functional Paviovian-to-instrumental transfer activation associated
with alcohol approach bias is marked in yellow (uncorrected p < .005 for
ilustration),

(12). In this study, the association between the two effects was
indeed larger in patients who reported higher trait impulsivity.
Conditioned cues in the PIT paradigm were associated with
monetary reward, while conditioned cues in the aAAT task
reflect drug versus nondrug cues. These findings suggest that
impulsive decision making can be triggered by the impact of
drug-related and drug-unrelated cues on approach behavior in
AD patients.

The severity of alcohol dependence might modulate the
association of these two effects, because stronger associa-
tions between PIT and aAAT effects were found among pa-
tients with more severe alcohol dependence. Correlations are
not causations, and potential explanations for these observa-
tions indicate two directions of further research. First, a
stronger effect of nondrug Pavlovian background cues on
approach behavior was already observed in young adults with
higher versus lower levels of alcohol intake (50) and may reflect
a risk factor for excessive consumption. Second, higher levels
of alcohol intake can impact monoaminergic neurotransmis-
sion and promote associative learning of drug-related and
contextual cues (51,52), thus potentially modifying cue-
induced approach biases. With more severe alcohol
dependence and higher levels of drug intake, the impact of
conditioned cues on fast and impulsive decision making can
increase, which may then lead to the observed, stronger as-
sociation between cue effects assessed with both aAAT and
the PIT paradigm. In this study, we observed a positive cor-
relation between the severity of alcohol dependence (i.e., ADS
score) and trait impulsivity (i.e., BIS-15 score), which empha-
sizes the role of impulsive decision making in more severe
forms of alcohol dependence. Again, impulsive decision
making can be both a cause and a consequence of excessive
alcohol intake, because alcohol is known to impact not only
monoaminergic systems but also prefrontal cortical brain areas
associated with impulse control (53). Future studies in
nonclinical high risky drinkers are needed to longitudinally
assess the development of associations between impulsive
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decision making, conditioned cues responses, and alcohol
intake.

On the neural level, functional NAcc activation has been
associated with both PIT effect (14-17) and alcohol approach
bias (54). In this study, the strength of the behavioral alcohol
approach bias was associated with the PIT-related functional
activation of NAccg. Previous literature suggested a lateralized
dopamine function in the NAcc, with dopamine release in
NAccy reflecting the impact of drink-related CS (i.e., beer fla-
vor) (55). In this study, NAccgy was related to the association
between alcohol approach bias and neural PIT effect, which
underlies the role of this brain area in mediating the effects of
Pavlovian conditioned cues as assessed in both paradigms. In
the aAAT, Paviovian conditioning to alcohol stimuli has been
established during prolonged alcohol consumption, while in
the PIT task, the Pavlovian conditioning was drug-unrelated
and had been established in a laboratory setting. The come-
lation of the two effects is likely to reflect a more general
alteration in the Pavlovian leaming processes in alcohol
dependence. Future longitudinal research can help assess
changes in Pavlovian conditioning across the addiction cycle.

Some research has shown the predictive role of alcohol
approach bias in drinking behavior (24,25). The CBM inter-
vention targeted on retraining alcohol approach bias showed
evidence of reducing the relapse risk in AD patients [e.g.,
(30,31)]. In contrast, the instrumental go/no-go responses in
PIT can also be understood as an approach/no-approach
behavior. The stronger impact of environmental cues on
approach/no-approach behavior in the PIT task was particu-
larly pronounced in prospective relapsers compared with ab-
stainers (13). Our exploratory analysis compared subsequent
relapsers with abstainers and observed a stronger association
between alcohol approach bias and PIT effect in relapsers,
indicating a potential role of the association of two approach
behaviors in predicting treatment outcome.

Several limitations should be addressed. First, we lost track
of a substantial number of patients during follow-up, which
limits the interpretation of our exploratory analysis regarding
the treatment outcome. Our study categorized patients with
missing follow-up information as relapsers, in accordance with
the method used in previous studies under the assumption
that missing data is indicative of relapse [e.g., (30,21,44)].
When excluding patients who had unclear relapse status (n =
49) from the analysis, there was no more significant group
difference between relapsers and abstainers in the association
between alcohol approach bias and behavioral PIT
(Supplement). We suspect that this null effect could be due to
the insufficient statistical power of the small sample size.
Future studies are warranted to elucidate the predictive role of
the association between alcohol appreach bias and PIT
regarding relapse. Second, abstaining in our study was defined
as not relapsing to heavy drinking. Other studies with different
abstaining definitions (e.g., no alcohol consumption at all)
might have different results. Third, most of the participants in
this study underwent a CBM training procedure after con-
ducting the aAAT and PIT, which we expected to reduce the
relapse risk in AD patients. However, the relapse ratio did not
differ between the training and placebo groups (results will be
reported elsewhere), Considering that the null effect of training
on relapse status could be due to insufficient statistical power

The Association of Alcohol Approach Bias With PIT

(56), we included the training condition as a covariate in
additional analyses. By doing that, we still observed a statis-
tically significant interaction of treatment outcome (relapsers
versus abstainers, categorizing patients lost to follow-up
as relapsers) with the association between D-diff score
and behavioral PIT and no difference between relapsers and
abstainers in the association between D-diff score and
neural PIT in either NAccy or NAcc,. There is no indication
that the training impacted findings regarding relapse in this
study.

In conclusion, our study observed a significant association
between alcchol approach bias and behavioral and neurobi-
ological non-drug-related PIT effect in AD patients, and the
behavioral association was correlated with the severity of
alcohol dependence and trait impulsivity. These findings
indicate at least a partial overlap of the underlying mecha-
nisms of learning and decision making assessed in both par-
adigms and emphasize their relevance for severe alcohol use
disorders.
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Alcohol Approach Bias Is Associated With Both Behavioral
and Neural Pavlovian-to-Instrumental Transfer Effects in
Alcohol-Dependent Patients

Supplement

Participant recruitment and exclusion criteria

Alcohol-dependent (AD) patients were recruited during detoxification treatment in
addiction-specific, psychiatric wards of university hospitals. All participants were
aged between 18 to 65, and were fluent in German. Exclusion criteria were: other
substance dependence (except nicotine dependence); current substance use (assessed
by drug urine test); alcohol intoxication (assessed by alcohol breath test); major
psychiatric disorders assessed by M-CIDI; neurological disorders; medications that
arc known to interact with the central nervous system (less than four half-lives post
last intake). Patients had no or low alcohol withdrawal symptoms for 3 days before
fMRI as assessed by Clinical Institute Withdrawal Assessment for Alcohol revised
version (CIWA-Ar score < 4; 1). The sample sizes for different analyses are shown in

Figure S1.
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| Participated in both aAAT and PIT:

| (n=112) aAAT error rate »35%: (n — 2)

Unsuccessful Pavlovian conditioning in PI'T task: (n = 6)
aAAT crror rate =35% and unsuccessful Pavlovian
conditioning in PIT task: (n = 4).

No valid data files tor ADS: (n — &)

No valid data files for BIS-15: (n=3)

Analyzed for AAT and behavioral PIT:

(n— 100)
Analyzed with ADS score: (n = 92)
Analyzed with BIS-15 score: (n=97)

Contraindications [or MRI: (n = 22)
Technical problems: (n — 4)

Head rotation = 4 mm/3%: (n=1)
l Incidental finding: (n= 1)

Analyzed for imaging data:

(n=72)

Analyzed for behavioral data with 100 patients (for behavioral PIT analysis) during [ollow-up:
follow-up information: (n — 21

abstainers, n= 79 relapsers (ITT)). Participation withdrawal for the rest of the study: (n= 11)
Analyzed lor imaging data with follow- Relused o respond/not reachedidied: (n = 21)

up information: (n — 17 abstainers, n - Incomplete follow-up interviews: (n—17)

55 relapsers (ITT)).

Figure S1: the flow chart of sample sizes for behavioral and imaging analyses.
aAAT: alcohol approach/avoidance task: ADS: Alcohol Dependence Scale (2): BIS-
15: Short German version of the Barrat Impulsiveness Scale-15 (3); ITT: intention-to-
treat; PIT: Pavlovian-to-instrumental transfer task. Details regarding data exclusion
based on aAAT and PIT performances are illustrated in the data analysis part in the
main text.

Alcohol approach/avoidance task

Twenty-one alcohol drink images and 21 soft drink images were used in this task. In
each trial, one of those images randomly presented inclined to the left or to the right
on the screen. Pictures of each stimulus category were presented equally often as
inclined to either side, and participants responded with a joystick movement
according to the inclination of the image. For example, they had to pull the joystick

towards themselves (approach) if the image inclined to the left and to push the
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joystick away (avoidance) if it inclined to the right (see Figure S2). The
correspondence between left/right inclination and push/pull responses was
counterbalanced across participants. There was no response time limitation, and
participants had to correct their response in case of a wrong action. Only when the
trial was accurately responded or corrected, a new trial started. Pulling the joystick
enlarged the image while pushing the joystick minimized the image with a zooming
motion. Participants conducted 26 practice trials with drink-unrelated neutral images

and then 168 experimental trials. The aAAT was conducted outside the fMRI scanner.

o

Figure S2: A push trial in alcohol approach/avoidance task (aAAT). An alcohol drink
image tilted to the right and thus needed to be pushed away. By pushing the joystick,

the picture was minimized.
Pavlovian-to-instrumental transfer task

There were four experimental phases in the PIT task.
(1) Instrumental training. Participants underwent a probabilistic instrumental

training and learned to emit a go or a no-go response for each of six instrumental shell
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stimuli. For a “good” shell, collecting it (i.c., a “go” response) by repeatly pressing
the button for five or more times would lead to a monetary reward of 20 cents in 80%
of the trials and a loss of 20 cents in 20% of the trials, while not collecting it (i.e., a
“no-go” response) by pressing the button less than five times or no button pressing
would lead to the monetary reward with a probablilty of 20% and to the monetary loss
with a probability of 80% (Figure S3 (a)). For a “bad™ shell, the probability of
monetary reward/loss corresponding to a go/no-go action was reversed. Participants
should complete a minumum of 60 trials and have 80% correct responses in 16
consecutive trials, or a maximum of 120 trials.

(2) Pavlovian training. In each trial, a compound stimulus (conditioned stimulus,
CS) consisting of a fractal picture and a pure tone was presented simulatenously with
an unconditioned stimulus (US: monetary gain or loss) after a delay of 500 ms.
Participants were instructed to passively watch and memorize the pairings. There
were 80 trials in the Pavlovian training phase.

(3) Pavlovian-to-instrumental transfer (PIT). In this part, participants performed
the same instrumental task as in the first phase. A CS learned from the Pavlovian
training or a beverage image (i.e., alcohol drink or water) that was not introduced in
the previous phase tiled the background of the instrumental shell in each trial. Ninety
trials with Pavlovian CS background and 72 trials with beverage image background
were implemented. Trials with beverage image background were out of the scope of
the current paper. The instrumental task was independent of the value of the CS. No

feedback was given at the end of each trial in this phase to avoid further instrumental
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learning. However, participants were instructed that their actions were counted to the
final monetary outcome.

(4) Forced choice task. The forced choice task was used to exmaine the efficacy
of the Pavlovian training. In cach trial, participants chose one CS over another
between two CSs that presented sequentially. All possible CS pairings were presented
three times in randomized order. Each choice trial was pesented for 2 sec.

Three phases (i.e., instrumental training, pavlovian training and forced choice
task) were conducted outside the fMRI scanner, while the transfer part was conducted

inside the scanner.

(a) Instrumental training d“‘ﬁf@i} (b) Pavlovian training

A go trial:
05 -
i 1E
3o

(d) Forced choice task
T! ) ?%

Figure S3. Pavlovian-to-instrumental transfer (PIT) task. (a): Instrumental training:

participants learn to collect “good™ shells (go trials) and leave “bad” shells (no-go
trials) with probabilistic outcomes. A go trial was depicted in the figure. Collecting
the shell would lead to a reward of 20 cents with 80% probability and to a loss of 20
cents with 20% probability, while vice versa for not collecting it. The probability of
reward/loss after an action of go/no-go was reversed for a “bad” shell (not depicted
here). (b): Pavlovian training: a Pavlovian conditioned stimulus (CS) consisting of a
fractal and a pure tone was paired with an unconditioned cue (US), i.e., a picture of



Printing Copies of the Publications

89

coin (-2€, -1€, 0€, +1€, +2€). Negative USs were presented as coins with a
superimposed red cross. Participants passively viewed the trials and remembered the
pairings. (c): Pavlovian-to-instrumental transfer: participants were instructed to
perform the instumental actions as learned from instrumental training with a
Pavlovian CS tiling the backgroud. (d): Forced choice task: two Palovian CSs
simulatenously presented on the screen and participants were instructed to choose the
most appealing one.

Neural PIT effect — whole brain analyses

Table S1. Explorative whole-brain analyses: activations for the PIT effect at puu.
<.001 with cluster extend k > 20.

Cluster Peak
FWE M FWE
k Pl p(unc) t Coordinates p(FWE plunc)
corrected) ——————— corrected)
X y z
BATI1- Anterior
cingulate and
. L 441 .02 .004 419 -6 40 -6 33 <.001
paracingulate
gyri
4.05 8 48 -4 44 <.001
369 -6 46 8 a7 <.001
BA21- Superior
R 105 42 A2 407 66 -28 4 43 <.001
temporal gyrus
3.79 60 20 4 68 <.001
BA22- Superior
L 31 83 39 381 -64 232 12 67 <.001
temporal gyrus
BAS4-
ParaHippocamp L 54 .69 .26 363 32 -36 -8 .83 <.001
al gyrus
349 40 26 2 91 <.001
347 -40 34 4 92 <.001
BA24- Anterior
cingulate and
21 89 49 352 -2 32 14 9 <.001

paracingulate

gyri

Note. BA, Brodmann area; FWE, family-wise error; L, left hemisphere; MNI, Montreal

Neurological Institute; R, right hemisphere.
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Visual inspection of behavioral PIT slopes and D-diff scores

Alcohol approach bias (D-diff score)

A0-

06 00 06 10 15
Behavioral PIT slope

Figure S4. Scatter plot for behavioral PIT slopes and D-diff scores

Note. The behavioral PIT slopes were the extracted slopes from a generalized linear mixed-

effects model used for the behavioral PIT analysis to reflect the strength of the individual PIT

effect.

The correlation between alcohol dependence severity and trait impulsivity

till

= = =

Trait impulsivity (B1S-15 score)

[
=

10 20 30 40 50
Alcohol dependence severity (ADS score)

Figure S5. The correlation between the ADS score and the BIS-15 score

Note. ADS: Alcohol Dependence Scale (2), possible score range is 0 to 48: BIS-15: Barrat

Impulsiveness Scale-15 (3), possible score range is 15 to 60. The blue line shows the linear

correlation between the ADS score and the BIS-15 score (rho = .24, p = .026, Spearman rank

correlation).
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Exploratory analyses including only patients with clear relapse status

Behavioral result

When including only patients with clear relapse status (n = 21 abstainers and 30
relapsers; n = 49 with unclear relapse status were removed here) into analysis, there
was no significant interaction of Pavlovian CS value, aAAT D-diff score, and relapse
group (estimate = -0.03, z = -0.81, p = .418), which did not support a difference
between abstainers and relapsers in the association between the alcohol approach bias
and the behavioral PIT effect.

FMRI results

When only patients with clear relapse status were included into analysis, as found
before, there was no significant group differences in the association between the
alcohol approach bias and the neural PIT effect in either the right NAcc or the left
NAcc (right NAcc (relapsers > abstainers: X =6,y = 8, z= -8, t (32) = 0.95, psverwE
=.694; abstainers > relapsers: x= 16,y = 14, z=-12,t (32) = 1.13, psveFwe = .630;
left NAcc (relapsers > abstainers: x = -14, y =2, z=-12, t (32) = -0.25, psve-FrwE

= .892; abstainers > relapsers: x=-10,y = 10, z = -12, t (32) = 2.34, peve-rwe = .156).
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