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1 Introduction

In modern X-ray photon science, a photon transport system with its X-ray optics is
the link between the source and the experiment which probes materials on spatial and
temporal scales down to nanometers and femtoseconds. With the development of new
powerful X-ray sources, such as 4th generation synchrotron sources and X-ray lasers,
new requirements for the design of X-ray optics must be defined: multy-dimensional
time-space optics. However, reaching these limits is only possible if the optics which
monochromatize and focus the photon beam optimally preserve the source brightness,
coherence and time characteristics. Even for today’s sources, the ability to fully
exploit their beam properties is limited by the design and technology of the X-ray
optics involved. With the new X-ray sources on the horizon, such as diffraction
limited synchrotron radiation sources (DLSRs) and free electron lasers (FELs), a new
generation of X-ray optics must be developed. Finally, all these efforts have to be
accompanied by the development of integrated optical modeling and design software
tools, addressed and maintained specifically for X-ray and UV optics. In this thesis,
one of the future optical elements, namely Fresnel reflection optics and its applications,
are described.
For the first time, the use of Fresnel reflecting structures for sharp focusing of X-ray
radiation was published in pioneer works of Aristov et al. in 1986 [1]. Here for the first
time, the use of a combination of Bragg diffraction on multilayer mirrors and Fres-
nel diffraction on a surface relief which corresponds to Fresnel’s zone structures was
suggested. Later, the effect of X-ray radiation focusing on such a structure, etched in
multilayered mirrors or a perfect silicon (germanium) crystal, was demonstrated ex-
perimentally [2]. In practice, the first successful implementation of a Fresnel reflection
structure to a synchrotron beamline was done in 1991 at LURE in Orsay [3]. Here, the
first micro probe based on the multilayered Bragg-Fresnel lens (BFL) was constructed.
The crystal analog of the LURE micro probe was tested later at the ESRF in Grenoble
[4]. The LURE micro probe was successfully explored in user operation before the
termination of the storage ring in 2005 and produced many published results in the
micro fluorescent analysis of materials with synchrotron radiation. At the same time,
other research teams paid attention to the dispersive properties of the Bragg-Fresnel
reflecting structures. They were applied as spectrometer elements [5] in hard and soft
X-ray radiation for spectral analysis of laser - plasma sources [6]. In the case of a soft
X-ray range, the effect of full external X-ray reflection from super polished surfaces
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1 Introduction

was applied, instead of Bragg reflection on a crystal or multilayer. It considerably
increased the energy range of a dispersive element due to the polychromatic nature of
the reflection from a smooth surface which is not limited by an energy selectivity of
Bragg reflection.

With modern developments in methods for the study of ultra-fast material processes
with the use of synchrotron radiation, X-ray lasers and laboratory sources, such as
high-harmonic generators and laser-plasma sources, the Fresnel reflection optics have
found wide application. Unique properties of the reflection Fresnel optics or reflection
zone plates (RZP) have been found very useful for the optical schemes with ultra-
sensitive spectrometers [7] and ultra-high time resolution optical systems [8]. In addi-
tion to the possibility of Fourier time-energy resolution optimization, a combination
of reflection, dispersion, and focusing in one element is increasing the transmission
efficiency of optical schemes in orders of magnitude, due to the refusal of several
additional optical elements for preparation of a parallel beam and its re-focusing.

The first descriptions of a mathematical model of RZPs and the calculation of their
aberrational properties were published in 1996 [9]. However, the real design of optical
schemes with the application of RZPs became possible only in 2012 with the devel-
opment of the corresponding option in the ray tracing program RAY-UI [10], used at
BESSY II and some other synchrotron radiation centers for the design of X-ray beam-
lines and optical systems. Since that time, a number of optical schemes was designed
with the use of the program, and all calculations showed an ideal coincidence with
experimental results on spatial and energy resolution. This program is also used as a
basis for the calculation of all X-ray optical schemes done in this work, and it is the
first major component of the definition of the RZP design parameters. The subject of
this work, the second major component of RZP design, is actually the calculation and
design of the Fresnel structure on a surface of a super - the polished substrate. The
further analysis of the carried-out experimental tests, determination of the accordance
of the calculated parameters and experimental data, serves to optimize the design and
precision. A large part of this thesis is devoted to the creation of new algorithms for
the calculation of the RZP structures.

The programs written on the basis of these algorithms are applied in the work for
the calculation of a number of optical elements for different applications and shapes
of focal spots. Additionally, a detailed analysis of experimental results obtained by
experiments for spectroscopy and monochromatization with synchrotron and free elec-
tron laser sources is given.
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In the experimental part of this work, the attention is mainly paid to the study of the
dispersive and focusing properties of total external reflection RZPs in the hard X-ray
energy range (around 8 keV). The experiments were carried out at the synchrotron
radiation sources BESSY II (Berlin) and APS (Chicago). The main goal of this part
of the experimental work is the further development of ultra-fast time resolved spec-
troscopy methods (XANES and EXAFS) in hard X-rays with the parallel registration
of a spectrum with a time resolution better than 1 fs. Another remarkable example
of a successful RZP application described in this work is the soft X-ray spectroscopy
of highly diluted materials in a liquid jet with an excitation by ultra-short pulses of
an X-ray free electron laser. The spectrometer based on RZP array shows an order of
magnitude higher sensitivity in comparison with conventional X-ray spectrometers.

RZPs are almost ideal optical elements for X-ray lasers and ultra-powerful sources
of X-rays. In addition to the three properties as focusing, reflection and dispersion
mentioned above, they also show an exclusive radiation and temperature stability.
RZPs are made on a massive substrate with the possibility of an effective cooling. It
should also be mentioned that for the fabrication of RZPs as described in this work the
most advanced methods available at the HZB nanotechnology laboratory were applied.

The thesis is divided into 6 chapters:

After the introduction, the second chapter of this thesis focuses on the theoretical
background necessary to understand the physical principals of RZPs and their imple-
mentation into science.

The third chapter focuses on the process of the design and calculation of RZPs. Here,
the development and mathematical background of the new and advanced calculation
program as well as the basic design types of RZP structures are described.

In a short fourth chapter, the typical structure dimensions of RZPs for the hard
X-ray range compared with RZPs for the soft X-ray range are given, followed by a
short description of the fabrication process.

The fifth chapter is the first of two chapters in the experimental part. Here, the
main part of the experimental work of this thesis is described, namely the charac-
terization of the newly developed hard X-ray RZPs. The experiments were done at
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1 Introduction

synchrotron beamlines at BESSY II in Berlin, Germany and at the APS in Chicago,
USA.

In the following experimental chapter, chapter six, the results of another RZP spec-
trometer characterization and optimization done within the framework of this thesis
is shown, this time for an application in the soft X-ray range at the soft X-ray mate-
rial science (SXR) beamline of the Linac Coherent Light Source (LCLS) in Stanford,
USA. These characterization and optimization experiments were conducted at BESSY
II beamlines.

The annex includes a mathematical derivations and the source code of the new calcu-
lation program.
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2 Basic Theory

2.1 Absorption and Fluorescence

Figure 2.1: Components of the attenuation coef-
ficient for iron depending on the incoming photon
energy, with total attenuation shown in pink. The
components are each caused by a different interac-
tion effect. Retrieved from [11].

When X-rays hit atoms or molecules,
they can cause various well-known
effects interacting with the electron
shells or even the atomic cores. The
decrease of the intensity while propa-
gating through matter caused by these
effects plays an important role in X-
ray optics. Generally, any intensity loss
can be described by the Beer-Lambert
law as a function of the thickness x of
the material:

I (x) = I0 · e−µx, (2.1)

with the intensity I0 of the incoming light. The linear attenuation coefficient µ can
be split into three summands:

µ = µscatt + µphoto + µpair, (2.2)

which arise from different categories of effects in the material: scattering (µscatt),
photo absorption (µphoto), and pair production (µpair). The first effect, scattering, can
be split into two subcategories. An X-ray quantum can be scattered either coherently
or incoherently on a shell electron. The coherent case, also called Rayleigh scatter-
ing, mostly occurs at photon energies lower than X-ray energies, when the ionization
energy of the electron is much larger than the energy of the X-ray. Here, the photon
only changes its direction; its energy remains the same. The effect varies with the
atomic number Z of absorber material and incident photon energy E by Z2/E. In the
incoherent case though, called Compton scattering which dominates at higher photon
energies up to the gamma ray range, the photon transmits a part of its momentum
onto an electron and therefore changes its energy. However, both scattering effects do
not cause the main part of the attenuation for X-ray energies. Instead of just deflect-
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2 Basic Theory

ing the X-ray, most electrons are removed from the shell. This is called photoelectric
effect. Mostly, electrons from the inner atomic shells (K and L shell) are ejected.
The discrete energy levels of those strongly bound electrons result in the so called ab-
sorption edges, used in absorption spectroscopy. The third summand from equation
(2.2), results from the production of electron-positron pairs and also only plays a role
in the gamma ray range. Depending on the interacting field (nuclear or electronic),
this effect is also parted into two subcategories. For both, threshold energies (the rest
energies of the two particles Emin ≈ 1.02 MeV for the interaction with the nuclear
field and twice as much Emin ≈ 2.04 MeV for the so called ”triplet production”, where
an electron-positron pair and an electron are emitted) even mark sharp limits, below
which these processes are impossible. Figure 2.1 shows the strength of the different
components of the attenuation coefficient for iron as a function of the incoming pho-
ton energy. For X-rays, especially soft X-rays, the photo effect clearly dominates.
The electron loss caused by this effect creates a hole in the atomic shell which is im-
mediately refilled by an electron of an upper level. Within the relaxation, a photon
corresponding to the energy difference of the two shell levels is emitted. This phe-
nomenon is called X-ray fluorescence, since the emitted energies also lie in the range
of X-rays. These characteristic fluorescence energies yield valuable information about
the chemical composition and structure of a (in this case mostly metallic) sample and
provide the analytical reason for the construction of fluorescence spectrometers.

2.2 Refraction and Reflection

For X-rays, vacuum is optically denser than any form of matter. Traveling from
vacuum onto for example a metal block under an angle, X-rays are refracted towards
the metal’s surface unlike visible light, which is refracted towards the surface normal.
This means that the refractive index n in a medium other than vacuum is actually
smaller than n̂ = 1. For X-rays, the conventional notation is n̂ = 1 − δ + iβ, with the
decrement of the real part δ and the imaginary part β describing the absorption index
or extinction coefficient. The decrement δ is positive and ranges from 10−4 to 10−6,
so the difference to the refractive index for vacuum is very small. Still, this results in
a phase velocity v higher than the vacuum speed of light c as n is defined as n = c/v.
This does not break the law of relativity though, only requiring that signals carrying
information do not travel faster than light. Such a signal propagates with the group
velocity instead of the phase velocity. The group velocity of X-rays in any matter
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2.3 Diffraction

remains of course still smaller than c. So, if an X-ray passes from vacuum (n̂1 = 1)
into matter (n̂2 < 1) with an incoming angle θ1, as usual, the resulting refractive angle
θ2 is given by Snell’s law:

n̂1 sin θ1 = n̂2 sin θ2, (2.3)

with the angles measured between the light rays and the surface normal. Because
n̂1 > n̂2, θ2 is larger than θ1. The limit for the refractive angle is θ2 = π/2 = 90 deg,
so incident angles of incidence larger than θ1 = arcsin (n̂2) can only cause total external
reflection. This effect is taken advantage of when using optical elements like mirrors
and total external reflection zone plates, by illuminating these optical elements under
very small angles (grazing incidence).

2.3 Diffraction

Equal to electromagnetic waves of other wavelengths, X-rays can be diffracted on
periodic structures. On the one hand, these structures can be the internal atomic
or molecular layers of crystalline materials or man-made multilayer materials, or, on
the other hand they can be implemented onto the surface of a substrate. In the first
case, incoming X-rays with an incident angle θ are reflected at different layers in the
material and interfere negatively or positively depending on the wavelength λ of the
photons, the distance d between the material layers and θ. The condition for positive
interference is given by Bragg’s law:

nλ = 2d sin(θ), (2.4)

with an integer number n ∈ N. This condition, illustrated in figure 2.2a, is responsible
for the shape of the so-called ”rocking-curves” of a crystal, which are recorded by
rotating the crystal within a certain range of θ and the detector simultaneously by 2θ.
In the second case, when electromagnetic waves are diffracted on a surface with period-
ical structures, the grating equation describes the condition for positive interference:

d · (sin α − sin β) = mλ, (2.5)

with the structure period d, the incoming angle α, the outgoing angle β and another
(positive or negative) integer number m ∈ Z. Here, several diffraction maxima can be
recorded, depending on the outgoing angle of the diffracted light. These are the so-
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2 Basic Theory

called diffraction orders, numbered by m. When the period of the surface structures
changes depending on the surface coordinate according to a certain principle, these
structures can accumulate the positive interference not just in a certain outgoing
angle, but in a certain point in space. This is the basic principle of Fresnel zone
plates, shown in section 2.4.1.

(a) Bragg-condition for positive interference on
crystal layers: the sum of the red segments
must cause a path difference equal to an inte-
ger multiple of the wavelength λ.

(b) Diffraction on a periodical surface structure: to
fulfill the condition for positive diffraction orders
(the grating equation 2.5), here, the difference be-
tween the red segments must be an integer multiple
of λ.

Figure 2.2: Conditions for positive diffraction interference on a) crystal layers and b) a periodical
surface structure

2.4 Total External Reflection Zone Plates

Fresnel zone plates are diffractive optical elements that combine the focusing (or
imaging) properties of refractive lenses with the dispersive property of diffraction
gratings. To understand this multifunctionality, the basic physical principles of Fresnel
zones and the resulting geometrical conditions between the light source and diffraction
image will be explained in this section. There are many different types of modified zone
plates, especially of reflection zone plates used for X-ray spectroscopy, as described in
the next chapter. They are all based on the most simple version though, a point-to-
point ZP that transfers light from a point source to a detector point.

2.4.1 Point-to-Point Fresnel Zone Plates

Imagine two points A and B in a 3D space. If A is now seen as a light source and
B is a detector point, a light ray that travels on a direct straight line from A to B

propagated over the shortest possible distance of AB. Any ray that takes a detour via
a point q, has a different phase in B. As long as this phase difference is no larger than
Φ = π, both rays still interfere positively in B. At a phase difference of π ≤ Φ ≤ 2π,
the interference is negative. For any phase difference value, there is a matching path
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2.4 Total External Reflection Zone Plates

difference ∆p that defines an ellipsoid with A and B as foci. This ellipsoid is the set of
points q to which the sum of distances Aq + qB is constantly ∆p. The ellipsoids that
mark phase differences of integer multiples of π, (Φ = nπ, with n ∈ N), equivalent to
path differences of

∆p = nλ, (2.6)

define certain zones of positive and negative interference. The volumes between two
neighboring ellipsoids are the so-called Fresnel zones. If the light emitted in A is
blocked in every second Fresnel zone and can not arrive in B, the interference is
completely positive and there is a bright spot in B. This is the working principle of
Fresnel zone plates (see figure 2.3).

Figure 2.3: Schematical Fresnel zones between two
points in space. Fresnel zone edges are ellipsoids with
the two points as foci. A TZP is a cut through the di-
rect connecting line between the two foci and an RZP
cut does not cross this line [12].

There are two types of ZPs depend-
ing on the interaction of the light
with the ZP material: transmis-
sive ZPs (TZPs) and reflection ZPs
(RZPs). TZPs work, as the name
suggests, with the light being trans-
mitted by the ZP material. There-
fore, their optical axis, which is de-
fined as the line that runs from A to
B via the central point of the zone
plate (Fresnel zone center, FZC), re-
mains the direct line from A to B,
AB = R1 + R2, with R1 = A, FZC

and R2 = FZC, B. The zones of a
TZP are concentric circles.
Via chosing materials with appropriate absorption properties, the zones alternatingly
absorb or transmit the light. Alternatively, if there is a material that meets these
demands, the absorbing parts can be substituted with another material with a refrac-
tive index that causes an exact phase shift of π and so lets the second half of the
light contribute to the positive interference as well. The phase shift of π is usually
regulated via the TZPs thickness.
Reflection zone plates function via reflection instead of transmission. The resulting
geometrical difference is that the optical axis does not run straight through the zone
plate, but it is bent at the zone plate’s center FZC. This means that the FZC is not
crossed by the direct connection line between the source and the detector AB. The
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2 Basic Theory

Fresnel zones of an RZP are created by alternating structure heights. In most cases,
they have non-centric elliptical shapes (with the only concentric exception R1 = R2).

Figure 2.4: Condition for ideal
(local) profile depth of an RZP.
Depending on the incoming an-
gle α, a certain height difference
between the two structure levels
causes a phase shift of π com-
pared to the upper level. The
path difference between the two
rays is shown in red.

Compared to TZPs, there is one additional variable -
the angle of incidence α. The smaller α, the narrower
are the resulting ellipses. For high reflectivities in the
X-ray range, very small angles must be used in reality
(see section 2.2). As an equivalent to transmission zone
plates that shift the phase second half of the light by π

instead of blocking it, there is an ideal structure depth t

at which this phase shift is caused at the lower structure
level (see figure 2.4). Similar to Bragg’s law, it is given
by

t = 2n + 1
2

λ

sin α
, (2.7)

with n ∈ N, and varies with the incoming angle α. With 3D-etching techniques that
will be described in detail in chapter 4, the (usually only slightly varying) structure
height can be fitted to the ideal one throughout the whole area of the RZP. Adjusting
the profile depth significantly increases the RZP’s efficiency.
For the calculation of the Fresnel zone structure of the RZP itself, the path difference
condition (2.6) defines all zone edges. Starting at the FZC as 0th zone edge, where
the optical path between A and B is R1 + R2, all points q with Aq = R′

1 and qB = R′
2

of a subsequent zone edge must fulfill

R′
1 + R′

2 = R1 + R2 + nλ. (2.8)

This results in an ellipsis functions in the coordinate system of the RZP plane and
will be discussed in detail in the next chapter.

2.4.2 Imaging and Dispersion

The characteristic advantage of ZPs is that they can image (which can either mean
that they focus or that they magnify) and disperse light from an X-ray source simulta-
neously. The mathematical background for these properties are two basic equations:
the lens equation for the imaging and the grating equation for the dispersion. Us-
ing ZP in the reflective geometry, RZPs, and their varying periods complicate these
conditions though, compared to normal lenses and diffraction gratings.
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2.4 Total External Reflection Zone Plates

Imaging Properties

Like a thin refractive lens, a Fresnel zone plate fulfills the lens equation:

1
L1

+ 1
L2

= 1
f

, (2.9)

with the focal distance f of the ZP. This holds for RZPs as well as TZPs. Other
than TZPs, RZPs have an angled optical axis. As a result of the reflection, the image
appears mirrored, meaning that compared to the source, it is flipped only horizontally,
not vertically and horizontally like a normal lens image (see figure 2.5).

Figure 2.5: Imaging geometry for a transmission ZP (left) and a reflection ZP (right).

For a finite source size, as for refractive lenses, the magnification factor of an RZP
is given by the ratio between the focal size ∆f and the source size ∆s. In vertical
direction it is defined as:

Mv = ∆fv

∆sv

= R′
2 sin α

R′
1 sin β

. (2.10)

The first component, R′
2/R′

1 is the ratio between entrance and exit arm, equivalent to
the magnification factor of a simple thin refractive lens. The second component is the
so-called asymmetry factor, caused by the fact that the entrance angle differs from
the exit angle. Counter-intuitively enough, in the first component, the source-side
quantity is the denominator and in the second component it is the numerator. But
with simple geometrical considerations, as shown in figure 2.6, this becomes clear: the
two red triangles include the incoming and outgoing angles α und β as well as half of
the RZP length L each. The trigonometrical relations

sin α = a

L/2 and sin β = b

L/2

describe the ratio between the halfs of the RZP length and their projections onto the
beam profile, labeled as a and b. To transform the incoming beam profile at the RZP
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2 Basic Theory

2a into the outgoing beam profile 2b, a factor of

2a

2b
= sin α

sin β

is needed.

Figure 2.6: Geometrical connections at the FZC of an RZP, illustrated to clarify the asymmetry
part of the magnification factor.

However, for RZPs symmetrical to the optical axis, the horizontal magnification factor
is not influenced by any angles and therefore remains to the ratio between entrance
and exit arm length:

Mh = R′
2

R′
1
. (2.11)

Dispersive Properties of Off-axis RZPs

Figure 2.7: Schematical Fresnel
zones of meridional VLS, sagittal
VLS and RZP with correspond-
ing image lines and points shown
above in red. The RZP is an
overlay of the two VLS gratings.

Unlike normal diffraction gratings that are used at par-
allel incidence and produce interference minima and
maxima depending only on the outgoing angle, ZPs de-
flect light from one point in space to another. This can
only be reached if the period of the grating structure
varies with the position on the grating. If the period
of the grating is varied in only one direction according
to the Fresnel condition (2.8), this results in a so-called
varied line spacing (VLS) grating that focuses the in-
coming light onto a focal line in the detector plane (for
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2.4 Total External Reflection Zone Plates

larger lateral opening angles the diffraction image dif-
fers from a line, see sections 3.8.2 and 3.9.1). Depending on the direction of the period
gradient - along the beam (sagittal VLS grating) or orthogonal to the beam (merid-
ional VLS grating) - the focal line will show vertically or horizontally on the detector
(see figure 2.7). An RZP can be understood as an overlay of two VLS gratings in
these orthogonal directions. For spectroscopic purposes, the gradient along the beam
path is used (sagittal grating).

As described above, an RZP is designed for only one particular photon energy. For
other photon energies, the position of the detector point changes along the optical
axis. So, if the RZP was illuminated around its center, the direction of the dispersion
would fall together with the optical axis perpendicular to the detector plane. For
an actual spectral decomposition that is visible on the detector, a so-called off-axis
segment not including the FZC must be used. This also causes a separation of the
different diffraction orders of the RZP in the detector plane. The further away from
the FZC, the larger this separation and the larger the energy resolution of the RZP.
If the off-axis segment lies between the FZC and the source, the image point appears
below the specular reflection in the image plane and if the segment lies on the other
side of the FZC, the image point appears above the reflection. In the first case, the
image point can be seen as a negative order of diffraction and in the second case as a
positive diffraction order.

To calculate the vertical shift ∆s of the image point in the detector plane that corre-
sponds to a photon energy E differing from the design energy Ed of the RZP can be
derived in a good approximation by using the grating equation for the central grating
period dc of the off-axis RZP segment:

sin (π − α) − sin (π − β) = mλ

dc

, (2.12)

with the number m of the diffraction order. The incoming and outgoing angles α

and β are here measured between the RZP plane and the incoming beam (usually,
the grating equation is used with the angles measured to the RZP surface normal).
Solving this equation for β leads to

β = arcsin
(

sin (π − α) − mλ

d

)
+ π.

Knowing that the perpendicular s from the image point onto the RZP plane (see figure

19



2 Basic Theory

2.8) is given by
s = R2 sin β, (2.13)

and with λ = hc/E (h = Planck constant, c = speed of light) this results in a vertical
shift between the position sd of the image point for the design energy and the position
s for E of

∆s = sd − s = R2 arcsin
(

sin α − mhc/Ed

d

)
+ π − R2 arcsin

(
sin α − mhc/E

d

)
− π

= R2
mhc

d

( 1
Ed

− 1
E

)
. (2.14)

With this, any unknown energy corresponding to an image point shifted by a certain
∆s can be recalculated from the diffraction pattern of the RZP. The intensity of the
diffraction orders decreases with Im ∝ 1/m2. Therefore, mostly RZPs for the ±1st

order of diffraction are used.

Figure 2.8: Geometrical connections at the FZC of an RZP, illustrated to clarify the asymmetry
part of the magnification factor.
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Diffraction Image with Multiple Photon Energies

Figure 2.9: a typical diffraction
image on a CCD camera with
the 0th order and 1st order focal
spots.

As mentioned above, a single point-to-point RZP is a
segment of the plane cut through the three-dimensional
Fresnel zones between two points in space. For a vertical
energy dispersion on the detector, this segment must
be located outside the Fresnel zone center (off-axis) and
symmetrical the optical axis projection (the y-axis in the
RZP plane). The further away from the FZC, the better
the separation between the diffraction orders and hence
the better the resolution of the RZP. On the other hand,
the outer parts of an RZP have higher line densities
which yield less photon throughput and are less easy to
fabricate. If the section is located in front of the center
(along the beam direction, meaning on the source side of
the RZP), the RZP focuses in its −1st diffraction order,
and if it is located behind the center, it focuses in its
1st diffraction order. Figure 2.9 shows a CCD camera
image, with a typical diffraction image of a 1st order RZP illuminated with soft X-ray
fluorescence from a sample containing just a few chemical elements. The 0th order
or specular reflection is located in the lower part of the image. The area of the RZP
can be seen as darker part enframed by the reflection of the surrounding unstructured
substrate. Above the 0th order, a vertical row of 1st order spots of different sizes can
be seen. The smallest spot is caused by photons coming in with the design energy
of the RZP, so this is the actual focal spot. For all other photon energies the spots
are widened both vertically and horizontally. They resemble the circle of confusion
of refractive lenses. Therefore, their shape is determined by the shape of the RZP
aperture, which is, in this case, a trapeze (see section 3.7.3). Focal spots from lower
energies than the design energy appear above the design energy spot, and higher
energies appear below. For the analysis of the spectrum, the spectrometer has to be
calibrated to apply an energy scale to the vertical position of the spots. Once this is
done, any unknown fluorescence signal appearing on this scale can be assigned to its
exact energy.
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Diffraction-Limited Spatial Resolution

Via the Rayleigh-criterion, for a perfect point source (diffraction-limited), the spatial
resolution ∆l of zone plates and with that the minimum size of the focal spot ∆f is
defined by the width of the outermost zone δrnmax :

∆f ≈ 1.22 · δrnmax . (2.15)

Due to technical fabrication limits for δrnmax , zone plates can only be realized up to a
certain aperture, which results in a spatial resolution limit. One of the advantages of
RZPs compared to TZPs is the grazing incidence angle. For the same source-detector-
geometry, meaning as cuts of the same 3D Fresnel zone ellipsoids, the zone widths of
the RZP are much larger than those of the TZP. At an angle of incidence α on the
RZP, they differ according to

rn(TZP ) = sin α · rn(RZP ). (2.16)

So, for the same setup, an RZP can be fabricated up to more zones, meaning a larger
aperture, resulting in a better spatial resolution.

As mentioned above, this only holds for perfect point sources. For realistic source
sizes, the focal spot is larger as well, as described further in 3.1.2.

2.4.3 Angle of Acceptance and Numerical Aperture

The angle of acceptance αacc of an RZP is - as shown in figure 2.10 - the angle between
the rays that hit the front end of the RZP (at an angle of α1) and those that hit the
back end (at α2):

αacc = α1 − α2. (2.17)

The numerical aperture NA of a refractive optical system is the dimensionless number
that characterizes the angular range over which the system can accept or emit light.
For ZPs, it is typically defined as the projected aperture onto a plane perpendicular
to the optical axis. For a TZP, this coincides with the normal aperture A, but for
RZPs, again, in vertical direction, the angle of incidence comes into play. Here,

NAvert(RZP ) = A · sin α, (2.18)
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2.4 Total External Reflection Zone Plates

is a good approximation for this quantity. In horizontal direction, the numerical
aperture is not influenced by angle and hence matches the total width of the RZP.

Figure 2.10: Numerical aperture of an RZP in vertical direction at an acceptance angle of α2 − α1.

2.4.4 Diffraction Limited Depth of Focus

The diffraction-limited depth of focus ∆z of a ZP is defined as the permitted distance,
away from the focal image plane, at which photon density on the optical axis is
diminished by 20%. Mathematically, this is expressed by

∆z = ±1
2

λ

(NA)2 , (2.19)

with the numerical aperture NA described above. The mathematical prediction of
the real depth of focus depending on a finite source size is very complicated. Here, it
is more convenient to rely on ray-tracing programs and other simulation software.

2.4.5 Temporal Elongation

As described above, the path difference between two light rays traveling via two neigh-
boring Fresnel zone edges is equal to one wavelength. This means that in the detector
point where the two rays interfere, the time interval between them is ∆τ = λ/c, with
the speed of light c. The total time difference between the first and last ray diffracted
by the RZP then is equal to

∆τtot = Nmax · λ/c, (2.20)

where Nmax is the total number of Fresnel zones on the RZP. In ultra fast X-ray
optics, the incoming light has a specific pulse duration that needs to be maintained.
A diffractive optical element elongates the pulse by ∆τtot.

23



2 Basic Theory

2.5 Efficiency Estimation

2.5.1 Theories

The efficiency of a reflective diffraction grating is a very complex quantity influenced
by many factors. It is defined as the ratio between the intensity of the diffracted
(monochromatic) light into a specific diffraction order m and the intensity of the
incident light (absolute efficiency) or the intensity of the specular reflection from a
mirror coated with the same material as the grating (relative efficiency).
Basically, there are two different types of efficiency theories: scalar theories that
simplify the situation with three assumptions:

1. a significantly larger diffracting structure than the wavelength,

2. no polarisation effects and

3. the diffraction phenomena are observed in the far field,

and vector theories where Maxwell’s equations are used to yield a more accurate
determination of the diffraction intensities. Any precise calculation of the efficiency
is usually done with a suitable simulation software with numerical methods that
use these vector theories, for example the so-called rigorous coupled-wave analysis
(RCWA). For a grating with a laminar profile that meets the 3 assumptions of scalar
theories though, there is a rather simple formula with which the absolute efficiency in
the mth diffraction order ϵ(m) can be estimated sufficiently:

ϵ(m) = 4
m2π2 sin2

(
mπg

d

)
sin2

(
πt

λ
(sin α + sin βm)

)
, (2.21)

where g is the groove width, d the period, t the profile depth, α the incident angle
(measured from the grating surface) and βm the diffraction angle of the order m as
shown in figure 2.11. The two sine factors do not exceed the value 1. Thus, the
maximum possible grating efficiency for the ±mth order is

ϵ(m)max = 4
m2π2 = 1

m2 · 40%, (2.22)

independent of the grating period and the incoming or outgoing angles.
This equation still describes an ideal case though, with a perfect grating surface and a
100% reflecting material. In a realistic case, the efficiency is decreased by the material
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Figure 2.11: Geometry of rectangular profile of a laminar diffraction grating with the shadowed
regions shown on the right.

properties.
For RZPs, another factor comes into play as well: since the period varies, the formula
above and other efficiency simulation theories only hold for a local grating period
at one point of the RZP. Furthermore, at almost all points on the RZP except the
symmetry axis in the center, the incoming light rays are not perpendicular to the
Fresnel zones. These facts have to be considered for realistic efficiency estimations
of RZPs, described in detail in section 3.2. To understand the physical effects that
influence the overall efficiency and to estimate the ranges within which these factors
can be controlled, the following provides an overview of the same.

2.5.2 Influencing Parameters

Profile Depth and Shape

As mentioned in section 2.4.1, the profile depth of an RZP influences the efficiency
significantly. The height difference between lower and upper level of a laminar profile
causes a specific phase shift between rays reflected on the two levels. At the ideal
profile depth (see equation 2.7), this phase shift is exactly Φ = π. For RZPs, this
ideal profile depth slightly changes throughout the area of the RZP, depending on the
incoming angle.
Other profiles than a laminar one lead to other efficiency values. Usually, simulation
programs feature a couple of profile options. The most prominent are sinusodial or
blazed profiles. Blazed profiles have the advantage of high efficiencies due to the fact
that the triangular shape with an angled surface in every grating unit diffracts the
main peak intensity, that is usually deflected into the 0th order, now appears in the
diffraction order of interest, mostly the ±1st. Ideally, the efficiency is then increased
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to 100%. Due to their curvature of the zones and the strong variation in line density,
for RZPs, a blazed profile is very hard to achieve. A sinusodial profile can arise as a
product of etching inaccuracies at very small zone widths in the order of a few ten
nanometers. Here, the maximum possible efficiency is only 34%.

Shadowing and Fill Factor

As shown in figure 2.11, there are always regions at the lower level of a grating
structure that are not illuminated. An estimation [13] of the shadowed width gs for
any local grating period and profile depth t is given by

gs = t(cot α + cot β). (2.23)

The effective groove width is then

g′ = g − gs. (2.24)

By changing the so called fill factor ffill, that is given by

ffill = d − g′

d
, (2.25)

the maximal sum of the illuminated area on both structure levels can be optimized
accordingly.

Material Properties

Independent of the surface structure, the material that the grating or RZP is made
of plays a very important role. The mostly rather complicated interactions between
the electromagnetic waves of the incoming X-rays and the electronic shell as well as
sometimes the nucleus of the surface material cause different reflectivities for different
materials. The reflectivity Rrefl of a material is defined as the square of the magnitude
of the Fresnel reflection coefficient. Here, the polarization of the incoming light comes
into play. If the electrical field is oscillating perpendicular to the plane of incidence
(s-polarization), the reflectivity is

Rrefl,s = |rs|2 =
∣∣∣∣∣∣
n1 cos α − µr1

µr2
n2 cos β

n1 cos α + µr1
µr2

n2 cos β

∣∣∣∣∣∣
2

, (2.26)
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and if it oscillates parallel to the plane of incidence (p-polarization), it is

Rrefl,p = |rp|2 =
∣∣∣∣∣∣
n2

µr1
µr2

cos α − n1 cos β

n2
µr1
µr2

cos α + n1 cos β

∣∣∣∣∣∣
2

, (2.27)

with the permeabilities µ1 and µ2 and the refractive indices n1 and n2 of material 1
and 2.
Another effect occurs if one of the material’s absorption energies is met. This leads
to a dramatic reduction of the reflectivity.

Distance from Source

Another important influential factor is that the photon density dph of light emitted by
a point source is proportional to 1/R2

1, with the distance to the source R1. This means
that in any estimation of the overall efficiency of a larger RZP, different areas of the
RZP receive different amounts of light and must hence be weighted with an appropriate
factor. In the framework of this thesis, this method was used in combination with the
efficiency calculation software Reflec as described in section 3.2 of the next chapter.
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RZP spectrometers are wavelength-dispersive (WD). Similar to a conventional WD-
spectrometer with a crystal as dispersive optical element, the incoming photons are
separated spatially before entering the detector. Other than in the conventional sys-
tems (see section 4.1), the optical element is static. Instead of spreading the different
photon energies angularily according to Bragg’s law (see section 2.3) like the crystal,
and hence being rotated during the scanning process, the RZP simultaneously focuses
all photon energies of its spectral range onto a CCD.
Finding the best RZP spectrometer solution for a given scientific goal is a complicated
process. The design of these spectrometers involves 4 basic steps:

• the choice of the type of RZP structure according to the main purpose of the
spectrometer,

• the determination of the setup parameters depending on the one hand on the
dimensions of the beamline, laboratory or scanning electron microscope within
which the spectrometer is supposed to work, and on the other hand on their
feasibility with today’s fabrication techniques and other physical limits,

• the simulation and optimization of the efficiency, and

• the calculation of the RZP structure.

This chapter gives a detailed insight into the whole design process starting from setup
dimensions and the desired function and ending with the ready-to-write RZP struc-
ture. As one of the key tasks of this thesis, a special focus is given on the development
of a new calculation software.

3.1 Parameter Determination

Within the dimension limits of a laboratory, an SEM or a beamline, the key parameters
of an RZP such as the arm lengths, the design energy and the angle of incidence,
have to be optimized considering physical limits such as the critical angle or the
fabricability of the structures. With the goals of a high resolution, low losses of
photons and a sufficient fabricability, the parameter determination involves many
(sometimes opposing) factors.
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Generally, an approach via iteration starting with estimated values based on long-time
experience has proven to be the fastest method. For this, a quantity table with all
important input and output parameters has been created, with the parameters asso-
ciated to each other via their mathematical connections as described in the following.
The geometrical parameters are illustrated in figure 3.1 with the input shown in red
and the output shown in black.

Figure 3.1: The geometry of a point-to-point reflection zone plate setup. The input parameters are
labeled in red, the output parameters in black.

3.1.1 Input parameters

Photon energy

The photon energy E that the RZP will be designed for is relatively easy to determine.
Depending on the purpose of the RZP spectrometer, this usually is either a specific
energy corresponding to a chemical element or, as a part of quasi-continuous array of
different zone plates covering a certain energy range as mentioned in section 3.8.1, one
of the discrete energy steps in that range. Since the radii and widths of the Fresnel
zones linearly increase with the design wavelength, lower energies cause larger zones.
Or, in other words, if the photon energy is increased by a factor k, the zone sizes are
decreased by k.
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Angle of incidence

At a given photon energy, first of all, the angle of incidence α is limited by the condition
for total external reflection. For X-rays, this leads to very small angles of only a few
degrees or, for hard X-rays, even below one degree. The optimal angle of incidence
(at a certain line density) depends on the reflectivity of the RZP’s surface material
(see figure 3.2a as an example) and the desired resolution and can be determined by
simulations with simulation programs such as RAY© or REFLEC©.

Order of diffraction

The intensity of a diffraction spot varies with the diffraction order n by ~1/n2. There-
fore, in most RZP spectrometers, the RZPs are designed for either their 1st or −1st

order. Positive order RZPs usually yield better energy resolutions, while negative
order RZPs at the same setup geometry yield more photon throughput due to larger
acceptance angles.

Distances to source and detector

The distance between the source and the detector plane is usually given by the setup
requirements of the experiment. The position of the RZP between source and detector,
determining the entrance and exit arm length R′

1 and R′
2 of the RZP, is mostly flexi-

ble within a certain range, but subject to other requirements like the desired photon
throughput or magnifying/demagnifying factor. In X-ray fluorescence spectrometers
for example, the fluorescent sample emits light with approximately spherical or hemi-
spherical wave fronts, and the photon flux reaching the RZP area varies with ~1/(R′

1)2.

Another fact to consider is the absorption of X-rays in air. Sometimes the light
paths cannot be evacuated. For soft X-rays, even a cm of air causes photon losses
of over 99%, mostly caused by photo absorption (see section 2.1). For hard X-rays,
such as used in experiments within the framework of this thesis (see chapter 5), the
attenuation is much lower. As shown in figure 3.2b for a path length of 10 cm, the
change from complete absorption to almost no absorption roughly goes along with the
transition between soft and hard X-rays. So in general, lower arm lengths facilitate a
higher photon throughput.
On the other hand, shorter arm lengths mean a larger variation of the line density
along the optical axis, resulting in smaller Fresnel zones further away from the FZC.
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To maintain the desired resolution in the detector plane, shortening the exit arm will
lead to smaller zones.

(a) Efficiency of the −1st order of a laminar grating
with a line density of 300 l/mm at a photon energy
of 640 eV depending on the angle of incidence.

(b) Total attenuation as described in section 2.1
for X-rays between 1 and 12 keV after propagating
though 10 cm of air.

Figure 3.2: a) the grating efficiency of a typical soft X-ray diffraction grating. The applicable angles
of incidence are clearly limited to a range between 2° and 4°. b) Attenuation of X-rays in 10 cm of
air. For lower energies below 2 keV the absorption is very high, almost 100%. At the transition to
harder X-rays, the attenuation decreases to around 40% and then slowly continues droping to almost
0% for 10 keV.

Desired energy resolution and vertical focal size on the detector

Another important input quantity for the RZP parameter determination is the desired
energy resolution λ/∆λ = ∆E/E. Together with the desired vertical focal size ∆hd

on the detector, it quantifies the vertical shift of the focal spot in the detector plane
caused by a variation of the incoming photon energy, or in other words, the dispersive
behavior of the RZP. Hence, the two quantities actually come down to a single input
parameter ∆hd/∆λ, but for an easier imagination of the situation, it was split into
two more illustrative quantities. In the parameter calculation, they contribute to the
expression of the local grating period d (see equation 3.6) as shown in the next section.

Length of the working area

The length L of the working area of the RZP along the beam direction defines the
vertical numerical aperture of the RZP and therefore influences its spatial resolution.
The larger the aperture, the better the spatial resolution (see section 2.4.2). On the
other hand, L also determines the vertical sizes of out-of-focus diffraction spots in the
detector plane. Other energies than the design energy cause these “blurred” spots.
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The larger L is, the larger the spots are vertically, and the lower the energy resolution
of the RZP. Another reason for a blurred spot is a change in the entrance or exit
arm length. Like with refractive lenses, this leads to another illustrative quantity, the
depth of field (see end of next section).

Source size

Even though the expected source size S of an experiment does not directly influence
the parameters of the RZP, it is very important during the parameter determination.
Only by suggesting a realistic source of a finite size, the actual spatial resolution and
the energy resolving power of the spectrometer can be calculated (see next section).

3.1.2 Output parameters

Local grating period (line density) at the center of the working area

The local grating period d or local line density dl = 1/d at the center of the working
area is essential for calculations and simulations preliminary to the actual calculation
of the Fresnel zone pattern such as efficiency simulations. Starting from the grating
equation,

d cos α − cos β = mλ, (3.1)

which, with a fixed grating period d and incoming angle α, can be written as a function
β (λ):

β (λ) = arccos
(

cos α − mλ

d

)
, (3.2)

its first derivative

dβ

dλ
= − 1√

1 −(cos α − mλ/d )2︸ ︷︷ ︸
= cos2 β

·
(

−m

d

)

= m

d
√

1 − cos2 β︸ ︷︷ ︸
= sin β

⇔ dβ

dλ
= ∆β

∆λ
= m

d sin β
, for small variations (3.3)

provides the angular dispersive behavior of the grating.
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A change in β from β1 to β2 (= ∆β) corresponds to a vertical shift from hd1 to hd2

(= ∆hd) in the detector plane by

sin β1 − sin β2 = hd1 − hd2

R′
2

.

With small-angle approximation this simplifies to

∆β = 1
R′

2
· ∆hd. (3.4)

Combining 3.3 with 3.4 results in

d = mR′
2∆λ

∆hd sin β
, (3.5)

which, with 3.2, leads to an expression for the grating period d depending only on
input parameters:

d = λ|m|
sin α

− m

|m|
cot α +

√√√√1 + cot2 α +
(

R′
2

∆hd

∆λ

λ

)2
 . (3.6)

For the detailed equation transformation see annex (section 7.1).

Smallest zone width and total width of the RZP

With the definition of a line density vector field d⃗l (x, y) as derived in section 3.5,
each local line density in an arbitrary point (x, y) in the RZP area can easily be
calculated as the vector field norm. For the typical rectangular section around the
axis of symmetry, no matter which diffraction order the RZP is designed for and for
point-to-point RZPs, the laterally outermost region the farthest away from the FZC
has the highest line density. The only exception are telescopic RZPs (see section 3.9.2).
With their parabolic shape of the zones, here, the highest line density is located on
the lateral outside corner as well, but the one facing the FZC. So, knowing which type
of RZP is desired, for each case, the highest line density can directly be calculated by
inserting the corresponding coordinates into d⃗l (x, y). Here, the total width of the RZP
comes into play. It is either given in advance due to limited space on the substrate,
or, as in most cases, the calculation works reversely: for a given limit of fabricable
zone widths (and the resulting highest line density), the outermost lateral coordinate
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x is derived from the norm of the vector field.

Angle of diffraction

For the design of any RZP spectrometer with a fixed RZP-detector system, it is very
important to know the expected range of the angle of diffraction β. Mostly, with a
known local line density in the center of the RZP, the grating equation (3.2) yields a
sufficient estimation.

Angle of incidence at the Fresnel zone center

The incident angle θ at the FZC is one of the 6 parameters needed for the calculation
of the Fresnel zone pattern as described in sections 3.6 and 3.7. From the parameters
to the center of the RZP, θ can be derived via simple geometric relations:
The perpendiculars hs and hd of source and focal spot and the projections L′

1 and L′
2

of R′
1 and R′

2 onto the RZP plane are defined as

hs = R′
1 sin α (3.7)

hd = R′
2 sin β (3.8)

L′
1 = R′

1 cos α (3.9)
L′

2 = R′
2 cos β. (3.10)

At the FZC, the same applies for the incident angle theta and the arm lengths R1 and
R2:

hs = R1 sin θ (3.11)
hd = R2 sin θ (3.12)
L1 = R1 cos θ (3.13)
L2 = R2 cos θ (3.14)

or, as a result,
tan θ = hs

L1
= hd

L2
.

Now, knowing that
L′

1 + L′
2 = L1 + L2,
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this leads to

L′
1 + L′

2 = 1
tan θ

(hs + hd)

⇔ (R′
1 cos α + R′

2 cos β) = 1
tan θ

(R′
1 sin α + R′

2 sin β)

⇔ tan θ = (R′
1 sin α + R′

2 sin β)
(R′

1 cos α + R′
2 cos β) , (3.15)

defined by input parameters only.

Distances between Fresnel zone center, source and detector

With a known θ, R1 and R2 are given by

R1 = R′
1 sin α

sin θ
(3.16)

and
R2 = R′

2 sin β

sin θ
, (3.17)

resulting from 3.7, 3.8, 3.11 and 3.12.

Center and edges of working area

In the coordinate system of the full RZP with its origin in the FZC, for cutting the
desired off-axis region out of the zone pattern, the center C of the RZP is given by

C = L′
1 − L1 = R′

1 cos α − R1 cos θ. (3.18)

The edges of the working area y1 and y2 are determined by the length L of the RZP:

ymin = C − L/2 (3.19)

and
ymax = C + L/2. (3.20)

Magnification factor

The magnification factor is very important for an estimation of what focal sizes to
expect with different source sizes. As described in section 2.4.2, the vertical and
horizontal magnification factors differ. While in horizontal direction, the ratio between

36



3.2 Efficiency Simulation

source and focal size is given by the ratio between entrance and exit arm length
(equation 2.11)

Mh = R′
2

R′
1
,

in vertical direction, the ratio is expanded by the asymmetry factor sin α/ sin β:

Mv = R′
2

R′
1

sin α

sin β
,

Real focal size

With a finite source size in both directions ∆sh and ∆sv, the realistic focal sizes ∆fh

and ∆fv can be determined by 2.10 and 2.11:

∆fh = Mh · ∆sh and ∆fv = Mv · ∆sv.

Real energy resolution

With the realistic vertical focal size ∆fv, the expected energy resolution on the de-
tector can be derived from equations 3.5 with the focal size implemented as vertical
shift ∆hd = ∆fv:

d = mR′
2∆λ

∆fv sin β

⇔ λ

∆λ
= mR′

2λ

∆fvd sin β
(3.21)

3.2 Efficiency Simulation

An important step in the design process of RZPs is the efficiency optimization. This
involves the adjustment of the variable parameters (profile depth, line density, coating
material) by analyzing their exact influence on the overall efficiency of the RZP. Within
this thesis, mainly the HZB’s own simulation software was used for this purpose. The
software Reflec© was developed by Dr. Franz Schäfers and combines complicated
efficiency theories as mentioned in section 2.5 with data sets for material properties.
Its actual function is, among other things, to yield the reflectivity or grating efficiency
of diffraction gratings with a constant line density as a function of the incoming angle
or the photon energy. The results can be graphically displayed by the program itself or
extracted as ascii tables and processed further with analysis programs like OriginLab©
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as shown in figure 3.3. Here, the behavior for different profile depths at a constant
incident angle over a certain energy range was invesitagted. For RZPs though, this
would mean just one step of a more complex analysis. Since RZPs have a varying line
density, the total efficiency is a combination of a few local grating efficiencies, each
for a different location within the RZP area. Hence, this analysis must be repeated
with an sufficient number of points along the RZP area.

Figure 3.3: Simulated grating efficiency curves for different profile depths at constant line density
(285 l/mm), depending on the photon energy.

The program is limited to an incidence perpendicular to the grating lines, though.
This means that only points on the symmetry axis of the RZP can be simulated here.
At the laterally outer parts of an RZP, perpendicular incidence does not meet the
reality. With the support of another simulation software, a freeware called GSolver©,
which has indeed a feature for a lateral angle of incidence, this problem could be
solved. The simulation results connected with the behavior in outer parts of an RZP
will be analyzed in detail in section ??.
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3.3 Simulation of Diffraction Image

Another powerful tool to simulate the properties of RZPs is the ray tracing program
RAY©, which was also developed by Dr. Franz Schäfers at the Helmholtz-Zentrum
Berlin, actually for simulating whole beamlines. The user can trace a light beam
through a desired number of optical components like mirrors, crystals, gratings, etc.
For the simulation of RZPs, RAY© uses a grating overlay technique, shown as a scheme
in figure 3.4. The line density in each point of the RZP is parted into two vector
coordinates, perpendicular to the incoming light, and parallel to it. An incoming
light ray (provided with a random direction within a certain divergence of the source)
is then deflected in both directions according to the laws of diffraction. The results
of the ray tracing method are so called footprints, point diagrams of the light rays
hitting a plane of interest. These footprints can be extracted for the source, the RZP
plane itself, and an image plane at a desired distance to the RZP. A typical footprint
in the image plane is shown in figure 3.5. Recently, a graphical user interface and the
possibility of adding the specular reflection (zeroth order) to the image plane footprint
were implemented, making the program a very versatile and useful tool within this
thesis.

Figure 3.4: Technique for the calculation of RZP diffraction images of the simulation software
RAY©. At each point on the RZP surface, two perpendicular gratings with a certain line density are
superimposed.
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Figure 3.5: Typical footprint in the image plane of an RZP. The central point diagram features
the distribution of light rays hitting the plane, and the line spectra below and on the right show the
intensity distributions along the vertical and horizontal axis.

3.4 Phase Law of Zone Pattern and RZP Coordi-
nate System

As mentioned above, the edges of the Fresnel zones in RZPs have an elliptical shape.
To determine their exact shape and location for the structure visualization and real-
ization, a two-dimensional Cartesian coordinate system is useful. It stands to reason
to define the RZP plane itself as x-y-plane with the Fresnel zone center in the origin
of the coordinate system. This can be embedded into a three-dimensional coordinate
system with the optical axis of the RZP in the x-z-plane (see figure 3.6). The light
source point A then has the coordinates (R1x, R1y, R1z) and the detector point B is
located at (R2x, R2y, R2z). Any arbitrary point P (x, y, 0) in the RZP plane defines a
path difference ∆p between two light paths from A to B: along the optical axis (blue)
and via P (red), with AP = R⃗′

1 and PB = R⃗′
2:

∆p = |R⃗′
1| + |R⃗′

2| −
(
|R⃗1| + |R⃗2|

)
. (3.22)

Multiplied by π/λ this transfers into the corresponding phase shift Φ:

Φ(x, y) = π

λ

(
|R⃗′

1| + |R⃗′
2| −

(
|R⃗1| + |R⃗2|

))
. (3.23)
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Figure 3.6: Point-to-point RZP zone structure geometry in a Cartesian coordinate system. The
RZP plane is defined as x-y-plane and the optical path through the Fresnel zone center runs along
the y-z-plane. The source is located in point A at a height of hs = R1z above the RZP-plane,
the detector point at a height of hd = R2z. The optical axis through the FZC is depicted in blue
(R⃗1 + R⃗2). The Cartesian coordinates x amd y of any point P on the RZP plane can be expressed
by the RZP input parameters R1, R2, θ and λ. The phase shift between the two light paths along
the optical axis and via P (depicted in red), is given by a function ϕ(x, y).

Geometrical conditions define the coordinates of R⃗1 and R⃗2 as

R1x = 0, (3.24)
R1y = R1 cos θ, (3.25)
R1z = R1 sin θ, (3.26)
R2x = 0, (3.27)
R2y = R2 sin θ and (3.28)
R2z = R2 sin θ, (3.29)

with |R⃗1| = R1 and |R⃗2| = R2. The absolute values of the two parts of the red path
|R⃗′

1| and |R⃗′
2| are then given by the Pythagorean conditions

|R⃗′
1| =

√
(R1x − x)2 + (R1y − y)2 + (R1z − 0)2 =

√
x2 + (R1 cos θ − y)2 + (R1 sin θ)2

(3.30)
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and

|R⃗′
2| =

√
(R2x − x)2 + (R2y − y)2 + (R2z − 0)2 =

√
x2 + (R2 cos θ − y)2 + (R2 sin θ)2.

(3.31)
Implementing this into 3.23 results in

Φ(x, y) = π

λ

(√
x2 + (R1 cos θ − y)2 + (R1 sin θ)2 +

√
x2 + (R2 cos θ − y)2 + (R2 sin θ)2

− (R1 + R2)
)

,

(3.32)

the phase shift as a function of x and y depending only on the input parameters R1,
R2, θ and λ. For the Fresnel zone edges, the phase shift to the optical axis must be
an integer factor n multiplied by π/2, resulting in a path difference of ∆p = nλ/2 and
the equation

√
x2 + (R1 cos θ − y)2 + (R1 sin θ)2 +

√
x2 + (R2 cos θ − y)2 + (R2 sin θ)2

− (R1 + R2) − n · λ

2 = 0,
(3.33)

which can be transferred (see annex, 7.2) into a clearer expression of the form

K1y
2 + K2y + K3x

2 + K4 = 0. (3.34)

With a simple transformation

K1y
2 + K2y + K3x

2 + K4 = 0
⇔ y2

K3
+ K2

K1K3
y + x2

K1
+ K4

K1K3
= 0

⇔
(y+ K2

K1
)2−( K2

K1
)2

K3
+ x2

K1
+ K4

K1K3
= 0

⇔
(y+ K2

K1
)2

K3
+ x2

K1
= K2

2
K2

1K3
− K4

K1K3
= const, (3.35)

it becomes clear that this is the equation of an ellipsis. The center of the ellipsis M has
the coordinates (0, −K2

K1
), which means that the ellipsis is symmetrical to the y-axis,

but not to the x-axis. Each zone edge center is shifted along the y-axis depending on
the zone edge number n. 3.35 can be transformed into surjective functions x(y) and
y(x) with two solutions each.
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3.5 Line Density Vector Field

The gradient of the scalar field 3.32 describing the phase shift between the path along
the optical axis and the path via an arbitrary point P (x, y) on the RZP,

∇⃗Φ(x, y) = ∂Φ
∂x

e⃗x + ∂Φ
∂y

e⃗y (3.36)

yields the local line density vector d⃗l in P :

d⃗l = ∇⃗Φ(x, y) = π

λ

(
x√
C1

+ x√
C2

− R1 cos θ − y√
C1

− R2 cos θ − y√
C2

)
, (3.37)

with
C1 = x2 + (R1 cos θ − y)2 + (R1 sin θ)2

and
C2 = x2 + (R2 cos θ − y)2 + (R2 sin θ)2.

As shown in figure 3.7, the local line density vector points perpendicular to the Fresnel
zones. The absolute value of the line density on an RZP generally varies between
| ⃗dl,min| = 0 at the FZC and a limit value of | ⃗dl,max| = 2/λ. The line density is the
reciprocal value of the local grating period d

d = 1
|d⃗l|

, (3.38)

meaning that the maximum line density correlates with the smallest possible period
dmin = λ/2 or the smallest possible zone width fzmin = dmin/2 = λ/4, respectively.

3.6 Structure Calculation - State of the Art

For the realization of an RZP, the Fresnel zone structure must be calculated in a data
format compatible with an e-beam or laser writing machine. These machines work
with a set of two dimensional (x,y)-coordinate points at which the beam exposes the
writing material with a certain dose. The internal software of the machines will gen-
erate these exposure points itself for any given structure composed of closed polygons.
Thus, a writable Fresnel zone structure has to be calculated as such.
For any data calculation of Fresnel zones as closed polygons, mathematical functions
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Figure 3.7: Schematic line density vector field for a point-to-point RZP with Fresnel zones (left
graph) and drop-shaped curves of constant line density (right).

that follow the shape of the zone edges are needed. In the framework of the Diploma
thesis [14] preceding this work, a basic calculation software for rectangular off-axis
sections of RZPs was developed. The equation for the elliptical Fresnel zone edges
(3.35) of a point-to-point RZP was used to derive surjective functions in the (x,y)-
coordinate system. The two versions x1,2 (y) and y1,2 (x) are equivalently adaptable.
To avoid inaccuracies at the edges of the structure though, both functions were incor-
porated into the calculation algorithm. The rectangular working area A of the RZP is
defined by a given width B, as well as the edges y1 and y2 as found in the parameter
determination above (section 3.1.2).

Figure 3.8: Calculation algo-
rithm of zones as closed poly-
gons.

The basic principle of the algorithm is illustrated in fig-
ure 3.8: for a set of equidistant x-values from −B/2
to B/2, the corresponding y-values are determined with
y (x). Which one of the two possible solutions y1,2 (x)
the program must use is determined by the algorith-
mic sign of y1 and y2, or in other words, the diffraction
order (for negative orders, the convex part and for posi-
tive orders the concave part of the ellipsis is used, figure
3.8 shows the +1st order). Every Fresnel zone contains
two zone edges numbered with an index n. The Fresnel
zones themselves are numbered with another index t.
In an inner loop, the lower zone edge curve is calculated
from left to right. Then, n is increased by 1, jumping to
the next higher zone edge, and the upper edge is calculated backwards. The polygon
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3.6 Structure Calculation - State of the Art

is closed by copying the first value into the last entry in the data point set. In an
outer loop, the zone number t is then increased by 2, obeying the condition for positive
interference at alternatingly written and not written zones.

(a) Low resolution problem on edges (b) Different types of zones

Figure 3.9: a) Schematic illustration of an RZP calculated via only one surjective function y1,2 (x).
At the upper and lower edges of the working area the finite number of equidistant given x-coordinates
causes undesirable ”spikes”. b) The same zone structure with straight edges (inverse function x (y)
used as well) and differently colored zone types: uninterrupted and not crossing the lateral edges of
the working area (black), parted and not crossing the lateral edges (blue), parted and crossing the
lateral edges (red).

The algorithm becomes more complicated, if the zone does not exceed the lateral
edges of the working area or if the upper edge at y2 cuts off an inner part of the zone.
In the first case, the first x-value of the calculation loop corresponds to a y-value
larger than y1. Especially for zones with a strong slope like in the outer regions of the
RZP, this will result in a poor structure quality (see figure 3.9a). Here, the first and
last (x, y)-pairs of each zone edge must be determined with x (y). Figure 3.9b shows
types of zones that differ from the common ones: those that start at a given y-value
but still can be written in an uninterrupted loop (black), those that are written in
two parts and start at a given y-value (blue) and those that are parted and start at
a lateral edge (red). For all these types, the calculation algorithm is a little different,
making the program complicated. Additionally, the functions y (x) and x (y) include
many mathematical operations, slowing down the total calculation time for an RZP.
Actually, in general, the intersection between an ellipsoid and a plane in a 3D space
does not seem to be an easy-to-solve mathematical problem, since only recently, in
2012, a very helpful paper was published on this matter [15], laying the foundation for
an advanced version of the RZP calculation program, as described in the next section.
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3.7 Development of Advanced Software

To avoid large data volumes and complicated nested subroutines and to reduce the
calculation time in general, a new RZP calculation program was developed in the
framework of this thesis. On the basis of a mathematical paper describing a simple
and fast determination of an ellipse as intersection between an ellipsoid and a plane in
a 3D space, the new algorithm reproduces the actual physical principle of origin of the
Fresnel zones. Now, the Fresnel zone edges on the RZP do not have to be described by
surjective functions anymore and more versatile shapes of the RZP aperture are easily
applied. The derivation of the calculation process from the ellipsoid/plane intersection
and the RZP geometry will be described in the following.

3.7.1 Ellipsoid and Plane Intersection

Figure 3.10: Geometry of the Fresnel zone ellipsoids and RZP-plane intersection

In the paper mentioned above with the title ”On the Ellipsoid and Plane Intersection
Equation” [15] published in the Journal of Applied Mathematics in 2012, the explicit
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goal of the author was to find ”simple formulas for the semi-axes and the center of the
ellipse” as an intersection line between a 3D ellipsoid and a plane (see figure 3.10 for
illustration). For the purpose of a fast and versatile RZP calculation, the basic part
of the paper’s derivations, described in the following, was used in the new program.

Starting with an ellipsoid around the two foci A and B with the semi-axes a,b and c
in a 3D Cartesian coordinate system with the axes x1, x2 and x3,

x2
1

a2 + x2
2

b2 + x2
3

c2 = 1, (3.39)

and a plane with the orthogonal spanning unit vectors r⃗ and s⃗ with

r⃗ =


r1

r2

r3

 and s⃗ =


s1

s2

s3

 ,

an intersection point q contained in both the plane and the ellipsoid volume is defined
with the position vector

q⃗ =


q1

q2

q3

 .

With the diagonal matrix

D = diag
(1

a
,
1
b
,
1
c

)
=


1
a

0 0
0 1

b
0

0 0 1
c

 ,

the coordinates of the central point (u0, v0) and the semi-axes A and B of the inter-
section ellipse are then given as

u0 = Dq⃗, Dr⃗

Dr⃗, Dr⃗
and v0 = Dq⃗, Ds⃗

Ds⃗, Ds⃗
(3.40)

and
A =

√
1 − Kd

Dr⃗, Dr⃗
and B =

√
1 − Kd

Ds⃗, Ds⃗
, (3.41)

where
Kd = (Dq⃗, Dq⃗) − (Dq⃗, Dr⃗)2

(Dr⃗, Dr⃗) − (Dq⃗, Ds⃗)2

(Ds⃗, Ds⃗) .
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So, the only input parameters here are the ellipsoid’s semi-axes and the plane param-
eters. All conditions hold if the point q is just the contact point between the ellipsoid
and the plane as shown in figure 3.10. If this is applied to the geometry of an RZP
as the tangential plane of an ellipsoid with the semi-axes a0, b0 and c0 and the source
and detector point in the ellipsoid’s foci, this point of contact q becomes the center of
the Fresnel zones (FZC). The distance between focus A and q is now the entrance arm
length of the RZP, R1, and the distance between focus B and q is the exit arm length
R2. The incident angle θ of the RZP defines the obtuse angle of the gray triangle as
γ = 2π − 2θ.
Now, additional conditions specify the problem and yield the characteristic ellipsoid
and plane parameters depending only on the input parameters (R1, R2, and θ) of the
RZP:

1. Lateral symmetry: the lateral semi-axes b0 and c0 have the same length
(therefore only two dimensions are shown in figure 3.10):

b0 = c0. (3.42)

2. Length of eccentricity: the eccentricity e0 (distance between a focal point
and the center of the ellipsoid) is not a parameter needed for 3.40 or 3.41 itself,
but it is vital in the calculation of many other parameters. It can be derived
from the law of cosines for the gray triangle ∆(ABq):

(2e0)2 = R2
1 + R2

2 − 2R1R2 cos ϵ3,

where the obtuse angle ϵ3 is given as ϵ3 = π − 2θ. With cos ϵ3 = − cos π − ϵ3 =
− cos 2θ this yields

(2e0)2 = R2
1 + R2

2 + 2R1R2 cos 2θ. (3.43)

3. Length of longitudinal semi-axis: imagine the sum S of distances from point
Pa (on the far right of the ellipsoid) to the two foci. According to the ellipsis
condition, it must be the same as for point q with S = R1 + R2. From the figure
it is clear, that the sum of distances for Pa is also e0 + a0 + (a0 − e0) = 2a0, so

2a0 = R1 + R2. (3.44)
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4. Length of lateral semi-axes: via the Pythagorean theorem in the light red
triangle between A, Pb and the coordinate origin (0, 0) as well as equation 3.43,
the lateral semi-axes of the ellipsoid is given as

b0 =
√

a2
0 − e2

0 =
√

a2
0 − (R2

1 + R2
2 + 2R1R2 cos 2θ)2. (3.45)

The fact that the hypothenuse must have the length a0 comes from the sum of
distances S of an arbitrary point of the ellipsoid to the two foci again: imagine
this point in Pb. The segment APb is then exactly half of S = 2a0 (3.44).

5. Coordinates of q: the intersection line between the ellipsoid and the plane
of the optical path (x1, x2-plane) is an ellipsis with the semi-axes a0 and b0 as
shown in figure 3.10. Its ellipsis equation is 3.39, reduced by the x3-dimension:

x2
1

a2
0

+ x2
2

b2
0

= 1. (3.46)

The Pythagorean theorem in the triangle ∆(AMq) gives a condition for the
coordinates of q:

R2
1 = (e0 + q1)2 + q2

2

⇔ q2
2 = R2

1 − (e0 + q1)2. (3.47)

Inserting 3.47 into 3.46 gives

q2
1

a2
0

+ R2
1−(e0+q1)2

b2
0

= 1
⇔ b2

0q
2
1 + a2

0R
2
1 − a2

0(e0 + q1)2 = a2
0b

2
0

⇔ b2
0q

2
1 − a2

0q
2
1 − 2a2

0e0q1 = a2
0b

2
0 − a2

0R
2
1 + a2

0e
2
0

⇔ (b2
0 − a2

0)︸ ︷︷ ︸
=−e2

0

q2
1 − 2a2

0e0q1 = a2
0(e2

0 + b2
0 − R2

1)

⇔ q2
1 + 2a2

0
e0

q1 + a2
0(a2

0−R2
1)

e2
0

= 0.
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The two solutions then are

(q1)1,2 = −a2
0

e0
±
√

a4
0

e2
0

− a2
0(a2

0−R2
1)

e2
0

= −a2
0

e0
±

√
a4

0−a4
0+a2

0R2
1

e0

= −a2
0

e0
± a0R1

e0
.

With the condition that q1 must not exceed the ellipse’s limits −a0 or +a0,

− a0 ≤ q1 ≤ a0,

⇔ − 1 ≤ −a0

e0
± R1

e0
≤ 1

⇔ − e0 ≤ −a0 ± R1 ≤ e0

⇔e0 ≥ a0 ∓ R1 ≥ −e0,

and the fact that e0 ≤ a0, it is clear that only the second solution where e0 ≥
a0 − R1 makes sense. Thus, the first coordinate of q is

q1 = −a2
0

e0
+ a0R1

e0
.

The second coordinate, q2, is easily obtained from 3.47:

q2 =
√

R2
1 − (e0 + q1)2.

The third coordinate is zero, since q lies in the x1, x2-plane. Consequently, q is
given as

q⃗ =


−a2

0
e0

+ a0R1
e0√

R2
1 − (e0 + q1)2

0

 . (3.48)

6. Spanning vectors r⃗ and s⃗: the spanning vectors must be orthogonal to the
plane’s normal vector and to each other. The first one can be chosen as parallel
to the x3-axis:

r⃗ =


0
0
1

 . (3.49)

The second one then must lie in the x1, x2-plane. The plane crosses the x1-axis
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at the angle δ. A unit vector in this direction is given as

s⃗ =


cos δ

− sin δ

0

 .

The angle δ can be derived from known parameters as follows: In the triangle
∆(MBq), the sum of angles must be π, so the angle at point q must be π− π

2 −ϵ2.
From the right angle between the black dashed reference line parallel to the x1-
axis, δ can then be derived as

δ = π

2 − θ −
(

π

2 − ϵ2

)
= ϵ2 − θ.

With the trigonometric condition

sin ϵ2 = q2

R2
,

this results in
δ = arcsin q2

R2
− θ. (3.50)

Hence, the second spanning vector is

s⃗ =


cos

(
arcsin q2

R2
− θ

)
− sin

(
arcsin q2

R2
− θ

)
0

 . (3.51)

Finally, all parameters needed for the calculation of the Fresnel zones in the RZP-plane
as intersection ellipsoids via 3.40 and 3.41 are determined. How these determinations
are embedded in the algorithm of the new software will be explained in the next
section.

3.7.2 Calculation Algorithm

One of the time-saving advantages of the new program is that all the basic information
about the RZP geometry is given by the parameter determination described in the
previous section, independent of the actual calculation of the Fresnel zones. In other
words, only once at the beginning of the calculation algorithm, these parameters
(the semi-axes of the first ellipsoid touching the plane in the osculation point q, the
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coordinates of q and the spanning vectors r⃗ and s⃗ of the plane) are calculated and
then remain fixed during the production of the RZP data.

Figure 3.11: Scheme of the calculation algorithm for the determination of the Fresnel zone edges
on the RZP plane. The first row shows the parameters that remain fixed during the RZP data
production and the second row shows the incrementing parameters of different Fresnel zones.

Figure 3.11 shows a scheme of the calculation process. The input parameters are
implemented in two packages, the basic RZP parameters (R1, R2 and θ), that de-
termine the shape of the Fresnel zones, and the section parameters that define the
section of the RZP used in the fabrication as well as the single input parameter λ, the
wavelength corresponding to the design energy of the RZP. The section parameters
are the off-axis limits in beam direction ymin and ymax and another parameter that
gives the shape and location of the lateral limits. This can either be just the width w

of the RZP or the opening angle ϕ of an RZP trapeze as shown in figure 3.13. With
the first package of input values, the parameters of the first ellipsoid (semi-axes a0,
b0 and c0) and the RZP plane vectors (q⃗, r⃗ and s⃗) are calculated. On the basis of the
first ellipsoid’s parameters, the parameters of all subsequent Fresnel zone ellipsoids
are determined. This determination is based on the phase shift law of Fresnel zones
3.33:

R′
1 + R′

2 = R1 + R2 + n
λ

2 . (3.52)

With 3.44, the ellipsoid matching the path difference nλ
2 is given by its semi-axes

an = a0 + n
λ

4 (3.53)

and
bn = cn =

√
an − e0. (3.54)

The eccentricity e0 remains the same for all Fresnel zone ellipsoids, as the distance
between the two foci does not change.
The actual Fresnel zone edge ellipses on the RZP plane are then given as intersections
with the incrementing ellipsoids, with the coordinates of the central point un and vn
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and their semi-axes An and Bn calculated via 3.40 and 3.41, inserting the different
ellipsoid semi-axes for each integer n into the diagonal matrix

Dn = diag
( 1

an

,
1
bn

,
1
cn

)
:

un = Dnq⃗, Dnr⃗

Dnr⃗, Dnr⃗
= 0 and vn = Dnq⃗, Dns⃗

Dns⃗, Dns⃗
(3.55)

and
An =

√
1 − Kd

Dnr⃗, Dnr⃗
and Bn =

√
1 − Kd

Dns⃗, Dns⃗
. (3.56)

with
Kd = (Dnq⃗, Dnq⃗) − (Dnq⃗, Dnr⃗)2

(Dnr⃗, Dnr⃗) − (Dnq⃗, Dns⃗)2

(Dns⃗, Dns⃗) .

The increment n is the number of the zone edges intersecting with the RZP plane. It
starts at n = 0 for the FZC in point q. Note that the actual path difference between
light traveling in a direct line from A to B and the path via q is independent of this
and is not considered in the calculations. The Fresnel condition only has to be fulfilled
for the relative phase shifts within a diffracting optical element such as an RZP. Like
the 3D ellipsoids, all intersection ellipses are symmetrical to the x1-axis, meaning that
the second coordinate vn of the central point remains zero. The second input package
with the section parameters defines the region in which the actual zone plate data as
set of polygons is calculated as described in the next section.
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3.7.3 RZP Coordinates, Angular Distribution Law and
Aperture Shape

Figure 3.12: Zone edge cal-
culation with polar coordi-
nates at equidistant angles
(left) and with the angular
distribution law (right).

Any writing machine usable for RZP structures works with
a set of tuples that compose closed polygons. As imple-
mented in the preliminary version of the RZP program (see
section 3.6), an (x, y)-coordinate system with the projec-
tion of the optical axis running along the y-axis is the most
simple and intuitive solution. To transform the given Fres-
nel zone edge ellipses into polygons, the most convenient
way is a parametric vector function

f⃗n =
 x

y

 =
 An cos t

Bn sin t + vn

 , (3.57)

that describes the ellipsis in polar coordinates with the
angular parameter 0 ≤ t ≤ 2π. As mentioned above,
the central point of each ellipse is shifted along the y-axis
only, which simplifies the problem even further. If t in-
creases in equidistant steps, for a very narrow zone shape,
where Bn ≪ An, the strongly curved sections of the ellipsis
around t = π/2 or t = 3π/2 have a lower quality than the less curved sections (see
figure 3.12). To adapt the point density to the curvature of the ellipsis in a sensible
way, the angular distribution law

t = arctan
(

tan φ
(

Bn

An

)j
)

(3.58)

was used, with the inner variable φ now increasing in equidistant steps. The exponent
was found to yield the smoothest curves at j = 0.382, equal to one of line segments in
the golden ratio. This also minimizes the number of points needed for each polygon
and saves data volume as well as calculation time. Another feature of the new program
that reduces the calculation time even more dramatically, is the use of the symmetry.
Only one side of the whole RZP is actually calculated with the parametric ellipsis
function. The other half is then produced by copying and mirroring the first half. In
the mirroring step, only the algebraic sign of first coordinate of the tuples is changed.
Finally, compared to the previous program, the advanced version produces the same
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RZP structure about 50 times faster, reducing the usual calculation time to a few
minutes.
The shape of the RZP’s aperture can be different depending on the purpose of the
spectrometer. Along the y-axis, it is always limited by ymin and ymax, which were
determined prior to the structure calculation, see section 3.1.2. These limits are
mostly given by choosing applicable angles of incidence. A too long RZP would
decrease the resolution as well, so it does not make any sense to exceed these limits.
The lateral borders of the aperture are more flexible. As mentioned above, for a single
RZP, the most simple shape is a rectangle. In lateral direction, the width w gives the
coordinate limits: −w/2 ≤ x ≤ w/2. Prior to the data production, the lowest and
highest number of zone edges included in the segment are determined. This list of
n-values is then parted into tuples of two neighboring zone edges. With this list of
n-value-tuples, a list of sextuples of ellipsis parameters (An, An+1, Bn, Bn+1, vn and
vn+1) for each n-tuple is generated, with each entry representing one Fresnel zone. In
the next step, all intersection points with the rectangle are identified and each zone
edge segment is calculated by dividing the corresponding angular section according to
the distribution law mentioned above. Depending on the diffraction order of use and
the type of zones (parted, unparted, etc. as mentioned in section 3.6), a distinction
of cases is needed to set the correct angular limits for each zone. Other than in the
previous program, where this distinction was part of the calculation process of each
zone, in the new version, all this is done prior to the actual polygon calculation, saving
running time once again.
For trapeze-shaped apertures, the intersection points are simply determined mathe-
matically as intersection between a straight line (with the slope given by the opening
angle φ of the trapeze (see next section)) and the ellipsis.
Another aperture shape of interest is the maximum writable area between ymin and
ymax, where the zone width does not fall below the fabrication limit. The curve that
borders this area laterally can be derived from the line density vector field (see section
3.5). Half of the local grating period as defined in 3.38 gives the zone width fz:

fz = d

2 = 1
2|d⃗l|

.

For a minimum fabricable zone width fzfab, the corresponding maximum line density
dl,max is then given by

dl,max = 1
2fzfab

, (3.59)
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which leads to drop-shaped curves of constant line density on the RZP plane as shown
schematically in the right graph of figure 3.7. Note that in the figure unrealistic RZP
parameters were used for a better illustration. For an applicable RZP, these curves
are much flatter, causing aperture shapes that are very similar to trapezes.

3.7.4 Array Calculation

In many RZP spectrometers, as described in detail the next section, several point-to
point RZPs are implemented next to each other in a fanned-out array (see figure 3.13).
These produce several individual focal points in one focal line at the same height on
the detector plane. With a total opening angle ω of the fan, the foci are distributed
according to the fan angle ωi of each RZP ”channel”. Since most CCD detectors
are not curved in any way, the entrance and exit arm lengths vary for each channel
according to

R1i = R1 cos ωi and R2i = R2 cos ωi. (3.60)

This way, the FZCs of all channels are located on one line parallel to the detector
plane. The opening angle of the fan is limited by the detector width wd to

ωmax = arctan
(

wd/2
L1,max + L2,max

)
, (3.61)

with the projections of the entrance and exit arm of the outermost channel onto the
RZP plane L1,max = R1,max cos ωmax and L2,max = R2,max cos ωmax. To maintain the
exact same height of the focal spots on the detector, the individual angle of incidence
θi of each RZP channel must be readjusted to

θi = arcsin R1

R1i sin θ
, (3.62)

with the uncorrected entrance angle θ of a central channel.

Depending on the purpose of the spectrometer, many different designs of such an RZP
array are possible. These will be described in detail in the next section.
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Figure 3.13: Scheme of optical path for a trapeze-shaped RZP. This is mostly used for RZP arrays
(see section 3.8).

3.8 RZP Arrays (Multichannel Spectrometers)

3.8.1 Polychromatic RZP Arrays

A spectrometer with only one RZP usually has a very narrow full spectral range. To
enlarge this range, there are several ways of combining RZPs to so-called multi-channel
single shot spectrometers. Each channel then has an individual design energy. These
design energies can either be adapted to the X-ray fluorescence energies of chemical
elements of interest or they can be distributed quasi-continuously between a start and
end energy of a certain range. The opening angle is adjusted to the width of the
detector in the experimental setup, meaning mostly a CCD X-ray camera.

Element-specific Arrays

Multi-channel spectrometers with element-specific channels usually contain a small
number of channels, such as 10 or 20. The RZPs focus at the fluorescence energies
of a few chemical elements. The advantage of these spectrometers is that all element
energies of interest can be recorded in one single CCD camera shot. This reduces the
measuring time to usually a few seconds.
Figure 3.15 schematically shows a fanned-out RZP channel array structure with six
channels and a measured X-ray camera image above. Each channel is made for a
different photon energy, all of them focus in their first order and at the same height
above the specular reflection, resulting in the same vertical position on the camera
image. The set of focal points of design energies is called focal line. Around this
focal line, other blurred spots from other energies appear in every channel. The
blurred spots have a more or less rectangular shape as described in section 2.4.2.
Each photon energy appears in several channels, but at a different vertical position
and with a different spot width. The elements that the channels are designed for are
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written into zero order shadows in the lower part of the image. The carbon signal for
example appears in every channel. It is the first blurred spot below the focal line in
the boron channel on the left, then shows in the focal line in the carbon channel itself,
and then as blurred signal again in all the next channels, but above the focal line, at
an increasing height. A small dashed white line through the carbon spots illustrates
this behavior.
The analysis of the CCD image works in two dimensions: around the focal line, a
vertically binned section with a height of a few pixel rows (shown as white rectangle)
will yield a line spectrum with the peak heights revealing the element’s concentrations
in the sample. A horizontally binned section around the diffraction images of one single
channel results in another line spectrum, featuring sharp and blurred peaks around
the design energy.

Figure 3.14: Two different types of line spec-
tra that can be extracted from the diffraction
images.

For each channel, an energy scale can be cal-
ibrated, so that the vertical position of each
peak can be assigned to a certain photon
energy. This yields important information
about energies other than the design ener-
gies, such as chemically shifted energy levels
or different elements appearing in the sam-
ple. Both line spectrum types are shown in
figure 3.14, with the information extracted
from the CCD image in figure 3.15. While
the peaks in the focal line spectrum are usu-
ally sharp and have fixed distances to each
other, the peaks in the channel spectrum
have different widths. The peak height and peak-to-noise-level depends on the num-
ber of pixel rows or columns, that are summed up for these spectra. Of course, there
is a limit to both numbers. Since one channel fills a certain horizontal space above
which the spots from other channels interfere in the channel spectrum, and the peaks
in the focal line spectrum will be widened by energies close to the design energy with
an increasing number of pixel rows. Here, the best compromise for clear peaks must
be found individually for every RZP array spectrometer.
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Figure 3.15: Schematic array of 6 RZPs with diffraction image.
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Quasi-continuous Arrays

Another type of RZP array spectrometer is a quasi-continuous array. Here, the chan-
nels are very narrow and there is a large number of them (100, 200 for example).
The design energies are no more fixed to specific element energies, but are distributed
over a certain energy range. There are two different ways to distribute them. With
equidistant energy steps or according to a distribution law such that every channel
has the same energy resolution E/∆E in the focal spot. At a total number of RZP
channels Nc, for an energy range between Emin and Emax, with equidistant energy
steps, the energy of the ith channel is

Ei = Emin + i · Emax − Emin

Nc

, (3.63)

with i ∈ {0, 1, ..., Nc}. With an exponential disribution law,

Ei = Emin

(
Emax

Emin

) i
Nc

, (3.64)

with i ∈ {0, 1, ..., Nc −1}, the energy resolution E/∆E along the focal line is constant.

This law is derived as follows: The resolvable energy difference ∆Ei for the RZP array
is given by the FWHM of the envelope function enclosing the channel peaks as shown
in figure 3.16. The peak heights and hence the envelope depend on the number of
pixel rows from the CCD image that are summed up for the line spectrum as described
for the element specific arrays in the previous section. This number of rows is usually
chosen in such a way that the FWHM of the envelope matches two channel widths.
Therefore, the FWHM (=∆E) along the focal line energy scale of the spectrometer is
given by two times the energy difference between two neighboring channels i + 1 and
i:

∆Ei = 2 · (Ei+1 − Ei) .

60



3.8 RZP Arrays (Multichannel Spectrometers)

With the energy of the i-th channel (3.64) this leads to

∆Ei = 2 ·

Emin

(
Emax

Emin

) i+1
Nc

− Emin

(
Emax

Emin

) i
Nc


= 2 Emin

(
Emax

Emin

) i
Nc

︸ ︷︷ ︸
Ei

(Emax

Emin

) 1
Nc

− 1


= 2Ei

(Emax

Emin

) 1
Nc

− 1
 ,

which then leads to an energy resolution of

Ei

∆Ei

=
2

(Emax

Emin

) 1
Nc

− 1
−1

= const. (3.65)

Figure 3.17 shows an RZP array spectrometer with 200 channels. Here, the focal line
appears below the specular reflection, meaning that the array was made for its −1st

order. The blurred energy spots are now narrow vertical lines, as their width is set
by the channel width. Each photon energy signal now shows in an x-shaped form,
with the center of the x at the channel with the design energy closest to this photon
energy.

Figure 3.16: Simulated line spectrum
exracted from a ray traced diffraction image,
cut out around the focal line at different slit
sizes.

In this specific spectrometer, the optimum
profile depth varied a lot between the chan-
nels, so that they were etched in three
groups, each with a different depth, in-
dicated by different color tones in the
schematic array structure below the camera
image as well. This is why in the diffrac-
tion image there are three sections with dif-
ferent spot intensities and signal-to-noise-
ratios. With this type of RZP array spec-
trometer, all necessary information can be
found in the line spectrum binned around the

focal line. The resolution now depends mainly on the number of pixel rows binned,
as mentioned above and shown in figure 3.16 for three different ”slit widths”. The
spectrum was extracted from simulated data (ray traced), where there was no camera
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image to analyze, but a section of ray traced footprint, cut out by horizontal slits
at different widths. The spectrum with the smallest slit, 50 µm, does not yield a
smooth enough envelope function, while at the largest slit, 200 µm, the signals from
two photon energies start to merge. The optimum slit size is 100 µm.

3.8.2 Monochromatic RZP Arrays

In some experiments, the goal is not to investigate the chemical composition of a
sample, but to detect a very weak signal. For this purpose, as many photons as
possible have to be brought into the focal line. One solution is to use an RZP array,
where all channels have the same design energy, that meets the element signal of
interest. The left side of figure 3.18 illustrates the discrete array and camera image
equivalent to the previous sections. The RZPs work in −1st order. For the analysis
of the signal, now a region of interest can be selected around the focal line and for
example the signal intensity in dependence of the incoming photon energy (absorption
spectroscopy) can be detected. The channel width is limited in its maximum by the
fabrication limit and in its minimum by a clear separation of the focal spots.
Another version, a continuous array, can be reached by decreasing the channel size
to one data point per Fresnel zone edge. Now, all the data points from the same
Fresnel zone edges of the neighboring channels can be connected to form new zones
(see right part of figure 3.18). The curvature of the zones depends on the distance
to the detector: the closer the detector, the stronger the curvature. The resulting
camera image shows a continuous line as focus, which can be evaluated in the same
way as the set of points. While the continuous structure is easier to fabricate due to
the larger zone widths, the resulting camera image is very hard to align (see section
6.2.2).

3.9 Modified RZPs

3.9.1 Astigmatic RZPs

Another possibility to create a continuous horizontal focal line is an astigmatic RZP.
The structure is calculated easily by multiplying all structure coordinates in one di-
mension with a certain stretching factor. This causes the sagittal and meridional focal
plane to separate, equivalent to refractive lenses. If the data points on the horizon-
tal structure axis are multiplied with a factor larger than one, the focal spot will be
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Figure 3.17: Schematic array of 200 RZPs with diffraction image.
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Figure 3.18: Schematic array of 40 RZPs (left) and a continuous array (right) with the same design
energy and corresponding diffraction images.
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stretched horizontally.
Figure 3.19 shows a single unstretched RZP (left) with the resulting camera image
compared with an astigmatic RZP (on the right), stretched with a quite large factor,
causing a continuous long focal line. Even though the zones of the astigmatic struc-
ture are curved upwards like the single RZP, and the zones of the continuous array is
curved downwards, the resulting horizontal focal lines in the camera images are very
similar. This is based on the fact that in this particular experiment, within which the
camera images were recorded, only a small region of the structure was illuminated.
For small opening angles, where just an inner part of the structure is illuminated,
both structure types show more or less the same results as a VLS grating. For larger
opening angles though, the different curvatures cause a significantly different behavior
in the outer parts of the focal line. The results of theoretical considerations on this
matter were published in detail in [16], showing that the abbreviations in the outer
parts are the smallest with a continuous array as described in the previous section.
Like the continuous array structure, the zones of the astigmatic RZP are much wider
than those of normal point-to-point RZPs, especially in the laterally outer parts, which
makes them attractive for an easier fabrication.
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Figure 3.19: Single focusing RZP (left) and astigmatic RZP (right), with camera images above.
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3.9.2 Telescopic RZPs

Figure 3.20: Telescopic RZP as intersection be-
tween 3D Fresnel paraboloids and a plane. Here,
the entrance arm length is infinite and the exit
arm length is exactly the focal length of the
RZP.

Though not characterized within the
framework of this thesis, for the sake of
completeness and for a successive exper-
iment, RZPs that produce a focus point
from an incoming parallel beam should
be mentioned. These so called telescopic
RZPs have a wide range of use in astro-
physics, where very far away light sources.
Still, in synchrotrons and free electron
lasers, it is possible to produce X-ray
beams with a very low divergence that can
be considered parallel (see APS experiment in section 5.3). The 3D Fresnel zones
of a telescopic RZP are no more ellipsoids but paraboloids with the image point in
their focus. The zones on the RZP are still shaped elliptically though, see figure 3.20.
Mathematically, this means that the distance between the FZC on the RZP and the
source is infinite (R1 = ∞), leading to a phase shift function of:

Φ(x, y) = lim
R1→∞

(
π

λ

(√
x2 + (R1 cos θ − y)2 + (R1 sin θ)2

+
√

x2 + (R2 cos θ − y)2 + (R2 sin θ)2 − (R1 + R2)
))

,

as a limit of the point-to-point version in equation 3.32. The root term with R1 and
the summand −R1 converge to

lim
R1→∞

(√
x2 + (R1 cos θ − y)2 + (R1 sin θ)2 − R1

)
= y cos θ,

leading to

Φ(x, y) = y cos θ +
√

x2 + (R2 cos θ − y)2 + (R2 sin θ)2 − R2, (3.66)

with the RZP’s focal length f = R2.
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Subsequent to the parameter optimization and the calculation of the Fresnel zone
structures, the RZPs must be realized. To transfer the Fresnel zones from the digital
data onto a solid substrate, a fine patterning technique is needed, although for some
RZPs, especially if made for the lower soft X-ray range, UV-lithography is sufficient
enough to ensure well-defined structures (down to 500 µm). The RZPs that were
fabricated within the framework of this thesis have much smaller zone widths and
were hence solely realized with e-beam lithography. The following sections provide an
overview of their typical lateral dimensions, profile depths, inaccuracies, as well as a
detailed description of their fabrication via e-beam lithography.

4.1 Conventional Fluorescence Detectors

For the analysis of the chemical composition and structure of sample materials in
solid or sometimes liquid (see jet experiment, section 6.2) phase, the characteristic
X-ray lines emitted by the sample are of crucial interest. Fluorescence emission in the
X-ray range can be, as mentioned above, caused by X-rays themselves or high-energy
electron beams. For many small scale laboratory uses, X-ray tubes or the electron
beams from scanning electron microscopes (SEMs) serve as sources. On larger scales,
synchrotron or even free electron laser facilities offer much higher photon fluxes.
Basically, there are two different methods of X-ray fluorescence spectroscopy: energy
dispersive spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS). EDS
detectors offer faster overviews over large energy ranges, while WDS detectors pro-
duce better resolutions within only small detection ranges. Both analyze the sample
emission as counts over photon energy and can be applied for X-ray or electron beam
exitation sources, but work on a completely different principle.
The central component of an EDS system is a solid-state detector, consisting of a
semiconductor crystal. As each X-ray photon hits the detector, a very small current
is produced by knocking out electrons from the semi-conductor. Each electron ejected
from a silicon electron shell consumes about 3.8 eV of energy from the X-ray. There-
fore, an X-ray photon starting with an energy of for example 7471 eV (Ni Kα-line) will
produce a current of about 1966 electrons [19]. By measuring the amount of current
produced by each X-ray photon, the original energy of the X-ray can be calculated.
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Figure 4.1: a) a typical ED-spectrometer, implemented in an electron microscope. The electron
beam is focused by a lens onto the sample and exites fluorescent X-rays, that are collimated onto
the Si crystal detector. The lithium drifted silicon crystal is mounted on a cold finger connected to
a liquid nitrogen reservoir stored in a Dewar. Low temperature is essential for noise reduction and
to limit the mobility of the lithium ions initially introduced in the silicon crystal [17]. b) a typical
WD-spectrometer, used with an X-ray source. The X-rays excite X-ray fluorescence on the sample
and are diffracted by a crystal according to Bragg’s law (2.4, section 2.3). While scanning, the crystal
is rotated so it deflects one energy at a time onto the detector, such as gas flow proportional counters
[18].

An EDS spectrum is essentially a histogram of the number of X-rays measured at
each energy.

WDS differs from EDS in that it uses special crystals to separate its raw data into
spectral components (see figure 4.1). According to Bragg’s law, different wavelengths
are diffracted at different angles. In the scanning process, the crystal is rotated while
the deflected photons are recorded. WDS has a much finer spectral resolution than
EDS. In WDS, only one a small energy range can be analyzed at a time, though.
Figure 4.2 shows two overlapping spectra, recorded with the two methods. The WD-
spectrum clearly has a much higher resolution, whereas the ED-spectrum is shown
for only a small section of the entire recorded range. EDS detectors typically have
resolutions of about ∆E = 150 to 600 eV, while WDS detectors offer ∆E = 5 to 20
eV [20]. RZP spectrometers have the great advantage of combining the benefits of
both methods. Large energy ranges can be measured simultaneously with a high res-
olution. The physical properties of RZPs that enable these spectroscopic features will
be explained in the following.

4.2 Typical Structure Dimensions

In table 4.1, the typical dimensions of the RZPs fabricated at the HZB within the
framework of this thesis, are shown. Generally, they can be split into two groups: soft
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Figure 4.2: Comparison between a typical WD- and ED-fluorescence-spectrum. The EDS channel
counts are shown in gray, the WDS counts in black. Due to the much lower resolution (typically
∆E = 150 to 600 eV) of an EDS detector compared to a WDS detector (∆E = 5 to 20 eV) [20], the
X-shell peaks of Molybdenum and Sulfur can not be resolved in the ED-spectrum [18].

X-ray and hard X-ray RZPs. The wavelengths for soft X-rays roughly lie in the range
between 0.1 and 10 nm. The most prominent soft X-ray RZP spectrometers in this
thesis were made for a photon energy of 640 eV or a wavelength of 2 nm, respectively.
Other RZP arrays ranged down to photon energies of 180 eV (wavelengths of 7 nm).
For hard X-rays, only one photon energy was focused upon: the Ni Kα edge at 8333
eV. This corresponds to a wavelength of 0.15 nm.

The angles of incidence are very low in both cases, due to the grazing incidence of
total external reflection zone plates in the X-ray range. For the soft X-ray RZPs, the
typical angles of incidence range around 2°, for hard X-rays, they are typically even
one order of magnitude lower, around 0.3°.

The total width and length of the structured area as well as the width of the smallest
zone depend on the fabrication limit. Of course generally, the Fresnel zones of soft
X-ray RZPs are larger than those of hard X-ray RZPs. Therefore, soft X-ray RZP
can be realized with more Fresnel zones, up to a cm in width. Along the optical axis
(lengthwise), the variation on zone width is often rather low, so they could be written
to lengths larger than 10 cm. Here, the size of the substrates that can be handled by
the e-beam writer comes into play and sets another limit. With some safety distance
to the substrate edges or some space left on the substrate for adjustment RZPs, this
leaves a typical length of about 8 cm on typically 10 cm substrates. In the hard X-ray
range, these values are again decreased by one order of magnitude approximately.
They are only 0.3 mm wide and around 10 mm long. Here, smaller substrates were
used. The smallest zone width was set as 40 nm for hard X-ray RZP and a little
higher, 70 nm, for soft X-ray RZPs. The fabrication limit was found as the best
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compromise between usable RZP area and structure quality (meaning efficiency). For
the hard X-ray RZPs this limit was set a little lower because otherwise the functioning
area would have been too small to operate the RZP sufficiently.
The ideal profile depth of an RZP can vary significantly with the incoming angle. For
soft X-ray RZPs, the value can vary between 10 and 25 nm. Due to the lower angles of
incidence on the one hand and the shorter wavelength on the other hand, the typical
profile depths of hard X-ray RZPs are roughly equal; the typical value for the 8333
eV is 10 nm.

typical incident length width smallest profile
wavelengths angles zone size depth

soft X-rays 2 - 7 nm ~2° ~8 cm ~1 cm ~70 nm ~17 nm
hard X-rays 0.15 nm ~0.3° ~10 mm ~0.3 mm ~40 nm ~10 nm

Table 4.1: typical dimensions of RZPs fabricted at the HZB within the framework of this thesis

Figure 4.3 illustrates the zone pattern (upper part of the image) in the RZP’s coor-
dinate system as described in section 3.6 and line density (graph in lower part) of a
typical soft X-ray RZP on a larger scale. Here, the full range including the source
and detector point (as projections onto the RZP plane) is shown. To indicate the
shape Fresnel zones, the zone edges are shown as black lines. For simplification and
visibility, they are shown in three packs: every 104th zone in the inner pack of ten,
every (105)th zone in the next pack of ten and every (106)th zone in the outermost
pack up to the (5 · 107)th zone. The red rectangle marks the part of the RZP that was
actually used. The source and detector point projections are shown as red dots. The
black lines clearly reveal the elliptical shape of the zones and the large gradient of the
zone width, especially in the lateral dimension (here vertical).
The lower part of 4.3 shows the local line density of the same RZP along different lines
parallel to the y-axis for 11 different x-values (x = 0mm, x = 1mm, x = 2mm, ...x =
10mm). At x = 0mm, meaning along the projection of the optical axis, the line graph
includes the singularity of the FZC, where the line density is zero. Within the range
of fabricable sections of RZPs (marked as red area), the line density varies almost
perfectly linear along the y-axis (note the logarithmic scale). At very large distances
from the FZC however (larger than the maximum of R1 and R2), this nearly linear
gradient changes to a logarithmic one, running towards the limit of dl = 2

λ
. This

absolute limit depends only on the photon energy, not on any geometrical parameter.
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It is exactly the distance between two zone edges that cause a phase shift of π at a
perpendicular incidence on the zone edges. In x-direction the nature of the variation
of the local line density is similar. Due to the very short radius of the Fresnel zone
ellipsoids in this direction, the local line density quickly reaches much higher values
than in y-direction. In the far outer regions (at much larger distances than the max-
imum of R1 and R2), the line density approaches the absolute limit as well. This
limit results in a zone width limit of half the wavelength, for this particular example
of a soft X-ray RZP this corresponds to around 1 nm, which is about the size of a
single Carbon atom (reference). For hard X-rays (8.3 keV), this limit is one order of
magnitude smaller: 74 pm. This is approximately the size of a single carbon atom.

Figure 4.3: Schematic line density vector field for a point-to-point RZP.

4.3 Fabrication Technique

The RZPs that were fabricated to be used within the projects of this thesis were all
realized with e-beam lithography. As described in detail in the Diploma thesis prior
to this work, there are 6 basic steps in the fabrication process (see figure 4.4).
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4 Realization of RZP Spectrometers

1. The first step is the coating of a silicon substrate with an e-beam sensitive
photo resist, which is usually a solution of long-chain polymers that are split
into smaller pieces by the electron beam, making them soluble in the developer.
The substrate has to have a super-polished surface with no more than 1 nm
roughness (rms). In addition, the substrates must have a certain thickness (in
our case 1 cm) to ensure that any surface slope errors are kept to a minimum.
Common Si-wafers do not fulfill this criterion.
The resist is spin coated onto the substrate to ensure an evenly thick resist layer.
After the coating, the resist must be baked at around 130°C to evaporate the
remaining solvent. Usually, for RZPs, the resulting resist thicknesses lie in the
range between 100 and 200 nm, depending on the desired smallest zone size and
the e-beam dose rate.

2. In the second step, the resist is exposed to the electron beam. The e-beam
writing used at the HZB to pattern RZPs is a high-voltage machine (Vistec
EBPG 5000+) for high precision patterning down to 1 nm. The actual resolution
of the written pattern is limited by scattering effects though. The zone pattern
file of the format ”Graphic Data System” (GDS) consisting of filled polygon
areas in an xy-coordinate plane, calculated as described above is transferred
into a pattern of exposure shots by the machine’s internal software. For each
shot, the ideal dose rate is calculated and assigned to the shot. At the edges
of the exposed areas and within very narrow areas, the dose has to be lower to
reduce the scattering.

3. After the e-beam exposure, the resist can be developed. In this wet chemical
process, the solvent of the developer solution bloats the exposed short chain
polymers so they disentangle and diffuse into the developer.

4. With the zone pattern now formed by the unexposed resist, after cleaning any
remaining solvent from the free surface areas, the pattern is now transferred
into the silicon substrate via reactive ion etching. The etching machine used is
a Plasmalab80+ from Oxford Instruments and works via ionizing reactive gases
such as SF6, O2, CHF3, H2 or C4F8 with a high frequency alternating field. The
etching process is a combination of chemical reactions and mechanical removal
of surface material as a high voltage additionally accelerates the reactive ions
onto the substrate. For the cleaning, oxygen has the best effects, as it does not
react with the silicon. For etching into the silicon, mostly CHF3 is used.
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5. In the next step, the unexposed resist is removed from the substrate. This
process is called lift-off. Mostly, simple acetone can be used as solvent of the
resist. After the wet chemical relief, again, any remaining rests of solvent of
resist have to be cleaned off the surface with reactive oxygen.

6. In the final step, the RZP surface is coated with a highly reflective material such
as nickel or gold. The material is sputtered onto the substrate in a high-voltage
sputtering machine (Bestec HV 8A). Compared with coating via evaporation,
sputtering causes more smooth and even layers.

Figure 4.4: The 6 basic steps of RZP fabrication via e-beam lithography
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5.1 State of the Art

The work on focusing total external reflection zone plates in the hard X-ray range
started in 2012 with a prototype fabricated on a simple wafer piece. This prototype
was made for the Ni-K-edge as a typical fluorescence line in the hard X-ray range and
the geometerical parameters were optimized to fit one of the hard X-ray beamlines
at BESSY II, the KMC-2. As shown as an overview in table 5.1, the entrance arm
length is very long (10 m) compared to the exit arm length (500 mm). This ensures
a strong demagnification. To define a source at the exact 10 m distance to the RZP,
a pinhole was inserted into the beam. To reach total external reflection, a very low
angle of incidence (0.3°) was chosen. The diffraction image was then recorded with a
CCD camera at the distance of the exit arm (see detailed setup description in next
section). The prototype was designed for first order use. The size of the demaginfied
image (focal point) could be optimised to 16.4 µm (v) x 42 µm (h). Compared with
simulated ideal values of 12.8 µm (v) x 16.4 µm (h), this result was unsatisfactory.
The main reason was the surface quality of the substrate which lead to the appearance
of several maxima in the focal area (see image 5.2).

Figure 5.1: Schematic setup of the first prototype test of a hard X-ray RZP at the beamline KMC-2
at BESSY II.

More promising results were reached with a subsequent set of two RZPs on a super
polished substrate. One RZP was made for point-to-point focusing like the prototype,
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but in on-axis mode, meaning that the focal spot appears in the 0th order. The other
RZP was a one-dimensional varied line spacing grating (VLS grating), focusing in
only one dimension (in this case in sagittal direction). Figure 5.3 shows the resulting
diffraction images. On the left side (image of the two-dimensional RZP), the image
is a spot and on the right side (VLS grating), it appears as vertical line. Both are
surrounded by the specular reflection. The VLS grating served only as a proof-of-
principle of the focusing properties of RZPs and VLS gratings in this energy range,
while the size of the focal spot of the RZP could be minimized to 2.9 µm (v) x 3.7 µm

(h), close to the expected values. Moreover, the shorter exit arm length comes into
play here, causing an even stronger demagnification. In addition to the focal spot size,

E [eV] R1 [m] R2 [mm] α [°] β [°] θ [°] ∆y [mm] L [mm] order
prototype 8333 10 500 0.3 0.4 0.35 54 10 1

on-axis 8333 10 100 0.35 0.35 0.35 0 10 /

Table 5.1: Parameters of the first two total external RZP in hard X-rays, the prototype and an
on-axis RZP. With the photon energy E, the entrance and exit arm lengths R1 and R2, the angle
of incidence α, the exit angle β, the incident angle at the FZC θ and the distance between the FZC
and the central point on the RZP ∆y

.

Figure 5.2: Diffraction image of prototype RZP

the dispersive properties of the prototype RZP were investigated. For three different
incoming photon energies, 8000 eV, 8333 eV and 9000 eV, the vertical position of
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Figure 5.3: Diffraction image of on-axis RZP and VLS grating

the focal spot was recorded (see figure 5.4. The behaviour confirms the nearly linear
connection between photon energy and vertical shift. Within 1000 eV, the spot is
shifted by 41 ± 2 µm, which, with the vertical FWHM of the focal spot (16.4 ±
2.6 µm), results in an a weak energy resolving power lower than E/∆E = 20. In

Figure 5.4: vertical shift of focal spot with incoming photon energy

summary, it was proven that the imaging and dispersive properties of total external
reflection zone plates showed as expected. The biggest problem was the distortion of
the focal spot of the off-axis prototype, due to a minor substrate quality. On the other
hand, the on-axis point-to-point RZP on a better quality substrate worked well and
paved the way to well-focusing off-axis RZPs in the hard X-ray range. All subsequent
designs and measurements on this matter were done within the framework of this
thesis, starting with a row of experiments at the same beamline at BESSY II, as
described in the next section.
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5.2 Characterization at BESSY II

5.2.1 New RZP Design

The first measurements done for this thesis were conducted at the KMC-2 at BESSY
II. The hard X-ray beamline offers a manipulator stage at 10 m distance to the ex-
perimental hutch. Therefore, the RZPs used at this beamline are optimized for an
entrance arm length of 10 m, as done for the prototype. The new RZP was chosen
to operate in −1st order, for the advantage of a larger acceptance angle, meaning
more light in the focal spot (see parameters in table 5.2). The exit arm length was
kept at 100 mm like the on-axis RZP, for a strong demagnification. The new RZP
was fabricated onto a super polished substrate to ensure that no surface irregularities
could distort the focal spot.

E R1 R2 α β θ ∆y L order
8333 eV 10 m 100 mm 0.3° 0.15° 0.3° -50.3 mm 10 mm -1

Table 5.2: Parameters of the −1st order off-axis RZP for characterization at BESSY II.

5.2.2 Setup of the Experiment

Downstream of the refocusing mirror of the KMC-2, at 10 m distance to the RZP, a
pinhole of 200 µm diameter was inserted into the beam to define a secondary source
(see figure 5.5). The beam was focused onto the pinhole with the mirror to ensure
a high flux coming through. At the same grazing incidence angle (0.3°), the RZP
was illuminated and the diffraction image was recorded with a CCD camera at the
exit arm length of 10 cm. A new camera type was used (Rigaku XSight Micron),
with an effective pixel size of 0.65 µm, about a twentieth of the 13.5 µm used in
the previous experiments. The RZP was controlled and adjusted to its best position
by a 6 degrees of freedom goniometer. Due to these many variable coordinates, the
adjustment procedure can be time consuming. To avoid this, a repeatable procedure
was developed, as described in the next section.
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Figure 5.5: Schematic setup of the RZP characterization at the beamline KMC-2 at BESSY II.

5.2.3 Alignment Procedure

Figure 5.6: The 6 possi-
ble degrees of freedom on
an RZP goniometer.

In an RZP spectrometer setup, the substrate with the RZP
structures is mounted on a goniometer with up to 6 degrees
of freedom (see figure 5.6: the translations along and rota-
tions around all three spacial axes. Usually (and within this
thesis), the axis parallel to the RZP’s optical axis is labeled
“z”, the axis orthogonal to the RZP plane is labeled “y” and
the lateral axis is labeled “x”. In analogy to aviation and
space technology, the rotation around z is called “roll”, the
rotation around y “yaw” and the rotation around x “pitch”.
All changes in any degree of freedom affect the size or shape
of the diffraction image of the RZP. In the CCD image, the
dispersion direction (within one channel or RZP) is set as “vertical” and the lateral
direction as “horizontal”.

1. It is advisable to start with the direct beam in the CCD image. So in the
beginning, the RZP must be low enough in y not to block any direct light. The
direct light should be centered in the CCD or cover the whole range.

2. The RZP can then be moved upwards until half of the direct beam is cut off.
So y is the first axis to (roughly) adjust.

3. “Pitch” changes the incoming angle. Now, at very low angles close to zero, the
reflection of the substrate will appear. If the CCD is large enough to cover
both the reflection (0th order) and the direct beam, by the distance between
the two signals the ideal incoming angle can be roughly adjusted. But, in most
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cases, due to the limited range of the CCD, the position of the camera has to
be changed vertically to follow the reflection.

4. If x is misaligned, the 0th order surrounded by the substrate reflection will not
be in the center of the CCD. So, if necessary, with x, the RZP can be moved
into the beam. By now, the diffraction order of interest (DOI, in most cases
1st or −1st) should have appeared above or below the 0th order. Especially in
vertical direction, changing the incoming angle significantly distorts the focal
point. Thus, the ideal pitch position is found by minimizing the vertical size of
the DOI.

5. Now, the edges of the RZP (or any alignment feature, see next subsection (6.2.2))
are visible in the 0th order. They should be exactly vertical in the CCD image.
Any tilt indicates a wrong yaw angle. This way, yaw is adjusted roughly.

6. At this point, the DOI of a single RZP should have a point-like shape. A
misalignment in roll will result in a mostly vertical distortion as well, so now, if
necessary, roll can be adjusted by minimizing the vertical spot size again.

7. For a finer adjustment of the very sensitive yaw angle, now the shape of the
focal spot serves as indicator. If yaw is slightly wrong, the focal spot will be
distorted in both directions and have a tilted banana-like shape.

8. Since often the depth of field of the RZPs is quite large, adjusting z is not so
critical. However, z is optimized by finding the smallest possible focal size in
both directions. In practice, unfortunately the z axis is often not exactly in the
beam plane. Consequently, pitch and yaw have to be permanently re-adjusted
in the process.

9. For fine focusing, now a three dimensional, fine-stepped cube of yaw, pitch and
z can be recorded any analyzed by the size of the focus in both dimensions to
find the best possible focusing with the given accuracy of the goniometer.
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Figure 5.7: Steps of the alignment process of a typical RZP. Steps 1 to 5 show the whole setup:
source, RZP and CCD, while in steps 6 to 8 only the CCD images are shown. The beam (incoming
as well as reflected) is illustrated in yellow, the coordinate movements corresponding to each step
are indicated by red arrows or red text, respectively. On the CCD screen, light appears as white
or brighter blue tones. In steps 6 to 8, the shapes of the focal spot changed by the coordinate in
question is depicted by dashed white contours. Please rotate by 90° clockwise.
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5.2.4 Quality of the Focus

Figure 5.8 shows focal spot recordings at the ideal alignment for 17 different photon
energies from 7.8 to 9 keV. Besides the typical vertical shift, the most obvious char-
acteristic of the focal spot is its change in shape with the photon energy. While at
lower photon energies the spot appears almost circular, there is a horizontal broad-
ening towards higher energies as well as a small lateral ”tail” on its right side in the
lower-energy-half of the image series. This distortion is not caused by the RZP itself,
but is a result of the source being distorted in the same manner. The secondary source
created by the pinhole behind a focusing mirror is subdued to the inevitable mechani-
cal tolerance of the beamline’s double crystal monochromator. Unfortunately, during
an energy scan, the beam that exits the monochromator moves in its lateral position,
hitting the focusing mirror at different lateral positions.
Apart from the horizontal distortion, in vertical direction, the focal spot size varied
from its smallest value, 3.4 ± 0.1 µm, at 8.4 keV, to 6.1 ± 0.1 µm at 9.0 keV and 8.8
± 0.2 µm at 7.8 keV.

Figure 5.8: 131 (H) x 151 (V) pixel sections from the CCD images of the focal spot for different
photon energies from 7.8 to 9 keV, showing the vertical shift as well as the changing shape of the
focal spot [21].

5.2.5 Dispersive Properties

The 17 recorded CCD camera images were binned horizontally around the region of
interest (0th order and focal spot) and the resulting intensity curves were normalized
(see figure 5.9). The graphs show a clear shift of the focal spot. As a quantity for
the dispersive properties of the RZP, the resolving power E/∆E, with ∆E derived
from the FWHM of the focal spot was calculated for each of the 17 CCD images and
plotted as shown in figure 5.10. The resolving power follows a near-Lorentzian shape,
with a full spectral range of 1.24 keV. The full spectral range is hereby calculated as
the energy range, within which the resolving power is reduced by less than 20%.
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Figure 5.9: Vertical shift of the −1st order focal spot with respect to the 0th order: on the left, the
camera image at the design energy is shown. The 0th order shows as two wide horizontal stripes with
the focal spot below. The 8 graphs on the right are normalised intensity distributions (horizontally
binned pixel lines) at different photon energies.

Figure 5.10: The resolving power of the RZP between 7.8 and 9.0 keV as derived from the vertical
FWHM and position of the focal spot in the CCD images. Adapted from [21].

5.3 Characterization at APS

In a new experiment in 2014, at another experimental station at the Advanced Photon
Source (APS) in Argonne, Illinois, the same RZP was characterized a second time.
With a much higher photon flux, no focusing mirror was needed and the beamline
offered the chance of illuminating the RZP with an almost parallel beam, undistorted
by any other optical elements.
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5.3.1 Setup of the Experiment

The setup at the 1-BM-beamline of the APS, a dipole beamline for the hard X-
ray range, was composed very similar to the previous experiments at BESSY II, see
figure 5.11. Due to the absence of any focusing mirror in the beamline, the RZP was
illuminated with undistorted light coming directly from the dipole source. The RZP
was set at 34 m distance to this source. As shown in a short calculation in the next
section, this large distance, together with the very small size of the RZP itself, lead
to the fact that the RZP was illuminated with a quasi parallel X-ray beam. To form
a secondary source though, closer to the actual design parameters of the RZP, a slit
prior to the monochromator, the so called white beam slit (WBS) was used. Unlike
the BESSY II experiments, this WBS was located one meter further away from the
RZP, at 11 m distance. The RZP was again mounted on a goniometer with 6 degrees

Figure 5.11: Schematic beamline setup at the APS [22]

of freedom so that the alignment procedure followed the same scheme as described
above. To record the shape of the focal spot, two different apertures were installed at
the RZP’s exit arm length of 10 cm. At first, for a rough alignment, a CCD camera
with a changeable optical magnification lens and hence a flexible effective pixel size,
and secondly, for finer measurements, a knife-edge scan stage (see figure 5.12). Onto
this stage, a round pinhole of about 30 µm diameter was mounted with beam blocking
material surrounding it.

5.3.2 Beam Divergence

As mentioned above, the beam generated by the dipole source of the 1-BM beamline
at the APS illuminated the RZP almost in a parallel beam. To actually estimate
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Figure 5.12: End station with RZP goniometer, CCD camera and knife-edge scanning stage

the beam divergence horizontally and vertically, the beam was cut by the WBS to
illuminate only the RZP area. This cut was controlled by recoding an overview CCD-
camera video featuring the focal spot as well as the specular reflection. As shown in
figure 5.13, the beam was cut so that only a very small bright edge around the 0th order
shadow appeared. The white beam slit then had a size of 120 µm (H) and 50 µm (V).
With the most recent measurements of a source size of 200 µm (H) and 80 µm (V),
and the size of the RZP (in vertical direction projected onto a plane perpendicular
to the incoming beam due to the angle of incidence), 300 µm (H) and 52 µm (V), as
well as the known distances between source and WBS (24 m) and WBS and RZP (11
m), the paths of the most divergent rays can be found as follows (illustrated in figure
5.14):

In horizontal direction, there are two possibilities. If the exact source size is taken
into account (green rays), this leads to a slightly wrong RZP size (273 µm), which is
actually impossible since its layout was set to 300 µm and the e-beam writing liability
was proven many times. Alternatively (orange rays), the source actually had a slightly
larger horizontal size of 256 µm, which lies within the tolerance of their measurements.
In the latter case, the horizontal beam divergence could be calculated as

ΘH = 2 · arctan 256µm + 120µm

2 · 23m
= 16.35µrad.
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In vertical direction though, this calculation formula with the most divergent beams

Figure 5.13: Focal spot (−1st order), 0th order and blurred positive orders with the incoming beam
cut to the exact size of the RZP

crossing each other between the source and the WBS, poses a problem. The RZP
projection size of 52 µm is only very slightly larger than the WBS size of 50 µm. So,
with a source size of 80 µm, and the fact that the beam size has to be influenced
by the WBS, the maximum divergence as calculated above, shown by orange rays
in the figure, would result in a much too large RZP size of 112 µm. Therefore, the
beam divergence in vertical direction must be very low, with the most divergent rays
following the blue ray paths. With the given WBS and RZP sizes, this results in

ΘH = 2 · arctan 52µm − 50µm

2 · 11m
= 0.2µrad.

In both directions, the results correspond well with the expectations, since dipole
sources have a much higher divergence in horizontal than in vertical direction and the
RZP’s are is so very small compared to its distance to the source and WBS. According
to [23], a hard X-ray beam is quasi parallel below a divergence of 1 mrad, so that
within this experiment, the incoming beam can be seen as parallel.
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Figure 5.14: Scheme for the calculation of the beam divergence at the 1-BM beamline of the APS
illuminating the RZP

5.3.3 Dispersive Properties

To analyse the dispersive properties of the RZP and compare the results with our
previous experiments, a series of focal spots at different energies was recorded again
and their FWHM as well as their vertical shift was determined. Unlike the BESSY
II experiments though, the focal spots were measured with a more precise method, a
knife-edge technique with a 30 µm pinhole mounted on a piezo stage. With a diode
behind the stage, the amount of light coming through the pinhole was recorded. Due to
inevitable slight shifts in the beam position in horizontal as well as in vertical direction
caused by the monochromator, after each energy change, the horizontal position of
the pinhole had to be readjusted. The diode current was then plotted over the vertical
position of the pinhole and the resulting curve was derived. Figure 5.15 shows five
selected derivatives of these scan measurements of a series of 15 vertical scans at
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equidistant energy steps in an interval from 7.6 eV to 9.0 eV. The averaged FWHM of
both peaks in these derivatives give the values of the corresponding vertical focal size.
The focal sizes combined with the vertical position yield the next figure (5.16), the
graph for the resolving power as described above in the previous experiment analysis.

Figure 5.15: Selected vertical pinhole edge scan measurements of the full series between 7.6 keV and
9.0 keV. The 1D intensity distribution is normalized and displayed on a gray scale and its numerical
derivative is shown in red. The spatial resolution is listed below [22].

Figure 5.16: Resolving power as evaluated from the pinhole edge scans. The experimental results
are compared with the fit function. Adapted from [22].

5.3.4 Size of the Focus

Due to the parallel incidence, the RZP’s design parameters are not exactly fulfilled.
Even though the beam quality was excellent, this caused a slight astigmatism, meaning
a separation between the sagittal and meridional focal plane. Consequently, it was
impossible to minimize the focal size in both directions at the same time. After finding
the best compromise in the focal size for both directions with the beam cut to the
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RZP size, the beam size was further reduced. In four steps, independently for each
direction, the slit was closed down to an opening size of 10 µm, while leaving the
other direction open. The focal size was then determined via the pinhole-knife-edge
scan technique mentioned above. Figure 5.17 shows the results for both directions
including ray tracing simulations for comparison. The tendency of a smaller focal
size with a smaller source size is clear, even though the fitting curve as well as the
simulated curves do not show a linear behavior. The focal spot size decreasing also
confirms the fact that now the WBS must be seen as secondary source, even though
the beam is nearly parallel. Starting with a focal size of 1.45 ± 0.73 µm (H) and 1.50
± 0.75 µm (V), finally, at slit sizes of 10 µm, the focal spot could be reduced to 0.85
± 0.42 µm (H) and 1.29 ± 0.64 µm (V).

Figure 5.17: Decreasing of the white beam slit size and its influence on the focal spot size; in
vertical direction (left) and horizontal direction (right) [22].

5.4 Errors of the Resolving Power and Focal Sizes

The resolving power E/∆E at a photon energy E is calculated from the dispersion
(Energy interval over the vertical shift in µm multiplied by the focal size at that
energy. By error propagation the error of the result is the square root of the sum
of the squares of each contributing parameter. The focal sizes are derived from the
FWHM of the focal peaks in the line projections of the CCD images (count values in
each pixel of the focal spot). At the HZB, the monochromator’s mechanical error was
determined as around 0.1%. The error of the vertical shift was estimated as around
2% and the error of the FWHM of the spots around 2% as well. This results in an
overall error of roughly 3% for the resolving power at the HZB as shown in figure
5.10. At the APS, the asymmetrical properties of the focal spot due to the slight
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astigmatism of the RZP played a larger role, so that the resolving power was given an
estimated error of 5% (see figure 5.16). For the focal sizes, the calculation was done
with the software Origin again, yielding an error of 2% at the HZB and 5% at the
APS.

5.5 Time Elongation

A big technical advantage of a hard X-ray RZP is the very small elongation of any
beam pulse that passes it. Due to its small size, the time difference between the first
and the last ray hitting the surface of the RZP is smaller than a femtosecond. It can
be estimated by the number of Fresnel periods that are included in the RZP area.
Each of those periods causes a time elongation of

∆τ = λ

c
= 1.5 · 10−10m

3 · 108 m
s

= 5 · 10−19s. (5.1)

With 700 periods along the optical axis of the RZP, this sums up to a total time
elongation of

700 · 5 · 10−19s = 0.35fs.
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In addition to the hard X-ray RZP spectrometer, a soft X-ray spectrometer was de-
signed and tested within the framework of this thesis. Its experimental purpose is
different from the hard X-ray spectrometer. While for the hard X-rays the goal was
to focus the beam to a minimum size while dispersing the incoming photon energies
with a high resolution, the main function of the soft X-ray spectrometer is to yield a
very high photon throughput. In the chemical experiment for which this spectrome-
ter was developed, different metallo-enzyme complexes related to the photo system II
(PSII) complex were studied. The PSII complex is a part of the natural photo syn-
thesis process as found in plants and contains four manganese atoms that are oxidized
in four different states throughout the photo synthesis. As the complex molecule is
diluted in a water environment, the Manganese L-edge X-ray fluorescence signal of
interest at 640 eV is usually overlayed by the close-by Oxygen K-alpha contribution at
525 eV. To separate these two signals while yielding a high photon throughput for Mn,
the RZP spectrometer structure was optimized for a high-resolution spectral region
around the Mn-signal and a maximum photon yield for Mn.

6.1 Experimental Setup and Spectrometer Design

The experiment was set at the Linac Coherent Light Source (LCLS), a free electron
laser facility located at the Stanford Linear Accelerator Center (SLAC) in Menlo Park,
USA. The free electron laser’s soft X-ray materials science (SXR) beamline provides
a very intense soft X-ray beam that excites the fluorescence signals. The sample
substances are dissolved in water at very low concentrations and injected from above
into a vacuum chamber at the beamline’s end station. The liquid entering the vacuum
from a capillary forms a thin jet (see figure 6.1) which is hit perpendicularly by the
horizontal X-ray beam. The fluorescence is then emitted in all directions, so some
part of it is collected by the RZP and focused onto a CCD sensor chip. The RZP’s
entrance arm was kept short (90 mm), to collect as much of the signal as possible. The
exit arm is longer (400 mm), to ensure a large separation between the two close-by
signals of Mn and O. The resulting fact that here the source is slightly magnified does
not restrain the goal of the experiment, since the X-ray beam (and with it the source
point of the fluorescence) is kept at a very small size anyway.
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The arm lengths were optimized for the best compromise between a good separation
of the two signals and a large meridional acceptance angle. The RZP is held in a
fixed case constructed to keep its position fixed with respect to the CCD camera at
the right exit arm length (see figure 6.2). At the front end of the case, which faces
the liquid jet, a small aperture hole of around 3 (H) x 2 (V) mm2 ensures that in
the right adjustment. Only the RZP area is illuminated, avoiding unnecessary light
scatter. The distance between the front edge of the RZP (which is 80 mm long) and
the liquid jet is just 50 mm, so a thin aluminum filter in front of the aperture shields
away any visible light from the chamber and any spraying material from the jet. A
vacuum valve protects the sensitive CCD sensor from damage during venting.

Figure 6.1: Scheme of the spectrometer setup: the incoming X-ray laser beam is shot onto the
liquid jet sample which then emits the X-ray fluorescence. The fluorescence X-rays hitting the area
of the RZP structures are then focused onto the CCD camera chip [24].

6.2 Structure Optimization

To find the ideal RZP structure that would best fit this experiment, five different
structure types were designed and tested in a separate row of experiments at BESSY
II beamlines, prior to the actual experiment.
The spectrometer layout as described above was designed with fixed entrance and exit
arm lengths. Together with the angle of incidence, the design energy and the distance
between the Fresnel zone center (FZC) and the center of the written RZP area, these
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Figure 6.2: Top view of the spectrometer. At 90 mm from the source (yellow spot on the left),
the RZP (1) collects the fluorescence light and focuses it onto the CCD camera chip (3) at 400 mm
distance. Between RZP and CCD there is a valve (2) to protect the CCD from contaminations during
venting.

parameters were optimized in the typical procedure as described in section 5.2.3.
So, for the maximum meridional acceptance angle and the highest grating efficiency
along the optical axis of the RZP, these parameters were unchangeable. The simplest
structure, a normal elliptical single RZP (see type 1 in figure 6.4), is limited in its
width due to the fabrication limit. This width is just about a third of the useable
total opening angle matching the width of the CCD detector. So in sagittal direction,
there was a certain degree of freedom to fill more of the substrate with RZP structures
and collect more light onto the CCD.

The first approach to fill the side parts was to simply duplicate the structure two
times and create a three-channel RZP array. Here of course, the parameters of the
outer two RZPs must be changed a little according to their position to ensure that
their focal point appears exactly in the CCD plane (see section 3.7.4). The structure
and its resulting camera image are shown as type 2 in figure 6.4.

In a second approach, shown as type 3, the whole opening angle was filled with 40
smaller channels. The smaller channels have the advantage that the smallest structures
are larger. The result is an array of focal points along the focal line in the CCD image.

The third and fourth layout (type 4 and 5) both result in focal lines instead of focal
points. The first layout was a continuous array and the second one an astigmatic
RZP, as both are described in section 3.8.

All in all, these five structures were compared with respect to two main aspects: the
duration of the adjustment procedure (in the actual experiment every second counts)
and their efficiency (photon throughput) as described in the following.
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Figure 6.3: One of the RZP arrays, with 40 channels and adjustment RZPs in the front and back
for adjustment with visible light.

Figure 6.4: 5 different structure types for a low-signal RZP spectrometer: 1) the prototype, a single
elliptical RZP, 2) 3 elliptical RZPs, 3) array of 40 elliptical RZPs, 4) continuous array, 5) astigmatic
RZP

6.2.1 Alignment procedures

As described above in the general alignment procedure, there are two features in the
CCD image which can be used for the alignment: the 0th order and the focal spot.
Due to the grazing incidence, the 0th order of diffraction is usually detected together
with the focal image (see figure 2.9). In single RZP spectrometers which are limited
to small lateral dimensions, the 0th order is (at least laterally) surrounded by the
reflection of the plain substrate. Therefore, the lateral edges of the RZP are visible.
This helps adjust the very sensitive yaw angle. However, RZP arrays have much larger
lateral dimensions with several RZPs side by side. If the array’s structure is written
with small gaps of unstructured substrate between the channels, these gaps appear as
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vertical stripes in the 0th order. These can easily be used to determine yaw and z. If all
stripes are tilted in the same direction (see figure 6.5), this means that yaw is wrong.
If they are tilted in a tapered way, z is wrong. Of course, these two misalignments
can coincide and the effects will superimpose.

Figure 6.5: Scheme of shape and slope of focal spots and gap lines in the 0th order of a monochro-
matic RZP array depending on the distance between source and RZP (z).

Figure 6.6: On the left: scheme of monochromatic RZP array with 100 channels working in −1st

order. Note that for illustration, the Fresnel zones are much larger than in reality. Around the lateral
center of the structure, two channels are left out (black lines) as alignment indication feature. On
the right: the corresponding CCD image (see soft X-ray characterization, section 6.2). The two gaps
in the structure cause two brighter (here blue) vertical stripes in the otherwise continuously dark 0th

order. Consequently, two focal spots in the −1st order below are missing. The CCD covers only 25
of the 98 focal spots because the full spectrometer was made for a maximum detector width of 10
cm, while this CCD is 2.7 only cm wide.

If the array structure is written without any gaps between the channels, the RZP
edges will be invisible. On the other hand, the smaller the channels are, the smaller
the photon throughput will be. A gap of 10% the lateral size of the channels means
a photon loss of 10%. Whereas in multi-channel spectrometers at least the shape of
the focal points can still yield enough information about the yaw-angle, the problem
worsens for continuous structures. Here, the focus is for example line-shaped and any
change in yaw will only blur the line.
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To solve these problems, practical experience shows that the best compromise between
a large illuminated area and sufficient alignment properties is to leave out only two
small gaps along the optical axis of the structure as shown in figure 6.6. In the
resulting CCD image, the gaps appear as two brighter vertical stripes in the 0th order
area (see figure 6.6, right side).
The orientation of these two stripes can be used to adjust the yaw angle as well as z
in the same manner as for the array of 40 channels. In the ideal RZP position, they
appear parallel to each other and orthogonal to the focal line (row of focal spots). If
yaw is misaligned, they will both be tilted in the same direction (see figure 6.6, lower
part). If z is misaligned, they will be tilted in opposite directions.

6.2.2 Efficiency Measurements

The efficiencies of the different RZP types were measured over the time of their de-
velopment with two different reflectometer types at BESSY II beamlines. Since the
first reflectometer, which was available until 2015, had no possibility of adjusting the
RZP’s azimuthal angle (rotation around the surface normal), the first row of mea-
surements was limited to points along the optical axis of the RZP structures. As the
efficiency of an RZP changes with the angle of incidence and the local grating period
though, a row of three points along this axis, one in the center of the RZP structure,
and two at ±2 cm from the center were measured. Figure 6.7 shows the changes in
the incident angles that were necessary to keep the focal spot of the RZP at the same
detector position for all measurements. In each point, the photon throughput of the
RZP (with respect to the direct beam) was measured for 11 different photon energies
around the design energy of 640 eV. In figure 6.8, two of these energy scans are shown
for different RZP types. The first one is the prototype, the single RZP, focusing in
a point and the second one a continuous array focusing in a line. To get an idea of
the overall distribution of the light into the different diffraction orders, there are three
curves in each graph, one for the −1st order (the focus, shown in black), one for the
specular reflection (0th order, shown in red) and the unfocused 1st order, shown in
blue. The two graphs look similar, but the maximum efficiency of the single RZP
structure is higher (up to roughly 24 % at 700 eV) than the one for the continuous
array (roughly 20 % at 640 eV). The energy of the maximum is connected to the pro-
file depth of the RZP. The ideal profile depth was calculated as a compromise for the
whole RZP area, though actually it is slightly different depending on the local grating
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period. The height of the maximum is connected to the surface roughness, so it can
be concluded that the surface of the single RZP has a lower roughness than the one of
the continuous array. But, as these two measurement points are just examples out of
three for each RZP, for the final calculation of the whole efficiency, all of them have to
be considered. They must be weighted with an intensity factor for the incoming light,
since the distance to the source in the actual experiment at the SLAC is different in
all three points. The results of this calculation for all 3 points of all RZP types and
the total efficiency are summarized in figure 6.9. The total efficiencies vary between
13.3 ± 0.2 % and 20.3 ± 0.2 %. Unlike the exemplary measurement points mentioned
above, in the overall efficiency, the continuous array yields better results than the
single RZP. It also seems that the line focusing RZPs both are more efficient than
the elliptical RZPs, which would support the theory that larger structures are more
efficient and are less influenced by fabrication irregularities.
Measurements at the second type of reflectometer yielded contradictory results. Since
the reflectometer has a tripod stage for samples which can be moved in many degrees
of freedom including the azimuthal angle, a more realistic analysis of the lateral parts
of the elliptical RZP could be done. In these lateral parts, the local grating period is
small, but the incoming beam does not hit the Fresnel zones perpendicularly. In the
outer parts of an elliptical RZP, the grating lines run almost parallel to the incoming
beam, so that the actual effective grating period is much larger than the groove
and line period. The results of efficiency simulations as done with REFLEC, which
has no possibility of conical incidence, are no more accurate enough. Figure 6.10
shows the efficiency curves for different points along a line across the RZP’s center,
perpendicular to the optical axis (here coordinate x). The thin curves were measured
without correcting the azimuthal angle and the thick curves were measured with this
correction. It is clear that the further outside the measurement point, the lower the
efficiency seems without the correction. With the correction, there is even a slight
increase to the outer parts.

6.2.3 The Errors of the Efficiency Measurements

Over many years, the beam slit size and all geometrical parameters (that have fully
automatic fine motor controls) of reflectometer at the HZB, such as angles and x-, y-
an z-positions, were optimized to generate errors less than 0.1 %. With a precision
like that, each efficiency measurement is done by first collecting the light (with a
diode) from the incident beam directly and then collecting the light that is reflected
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Figure 6.7: Efficiency measurement technique with 3 measurement points and adjusted incident
angles

Figure 6.8: Efficiency energy scan on a) the prototype and b) the continuous array

by the RZP in its different orders at different photon energies while the collecting
diode is moved along a range of exit angles (theta). The resulting curves usually have
sharp peaks that are then integrated in the software Origin. This integration process
includes a manual determination of the points between which the peak is integrated.
For the measurements with the measuring points along the central axis of the RZP, the
error that results from the uncertainty of determining these integration borders has to
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Figure 6.9: Efficiency measurement results for the 5 different types of RZPs.
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be estimated as a much higher and more significant contribution to the resulting error
for each measurement value. With these assumptions, the error of the measurements
of the central axis were estimated as no higher than 1% (see figure 6.8 and table in
figure 6.9 and the measurements on the lateral areas no higher than 3% (see figure
6.10).

6.2.4 Final Choice

With all factors influencing the overall performance of the different types of RZPs,
the easiness of the alignment of RZP arrays compared to line focusing structures, the
higher efficiency of the larger zone widths and the fact that there is no loss of intensity
in the outer parts of the elliptical RZPs, the final decision for an optimized RZP
structure was a compromise between elliptical and continuous structures. An array
with very small channels, overall 100, with two empty channels for a faster adjustment
as described above was designed, fabricated and tested in the latest experiments at the
SLAC. Due to the fact that there are many challenges during the experiment which
need to be met at the same time, like making sure that the liquid jet runs smoothly
or that the X-ray beam is stable, the need for a very fast adjustment slightly over
weighted the need for the highest efficiency.
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Figure 6.10: Efficiency measured in the lateral areas of a single RZP with adjusted azimuthal angle
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Summary

In this thesis, two main application fields for off-axis reflection zone plates (RZPs) in X-ray
optics were analyzed: as element for the monochromatization of soft and hard X-ray beams
and as spectroscopy element for X-ray spectrometers with synchrotron radiation, free elec-
tron lasers, as well as laboratory sources such as laser plasma sources and high harmonic
generators.

As a big step forward in the design process, a new calculation software was developed, us-
ing a modern mathematical description of an ellipse-plane intersection. This new approach
reduces the data volume and calculation time to a minimum, while ensuring a high accu-
racy of the structures and opens many possibilities for the design of multi-channel parallel
spectrometers for monochromatic and polychromatic radiation.

The spectroscopic properties of off-axis RZPs were systematically investigated in the hard
X-ray range. The spatial resolution was found to be better than 2 µm at 8.3 keV with a
diffraction efficiency of 17.5 %. The experimentally tested spectroscopic arrangement showed
a resolving power (λ/∆λ) up to 400 in an energy range of 1000 eV around the central energy.
This experiment indicates a possibility of absorption spectroscopy on transition metals in
the energy range below 10 keV. Simultaneously, a time elongation in the optical element was
estimated as 0.35 fs, which would allow ultra-fast time resolved spectroscopy methods.

For the first time in the soft X-ray range, within the framework of this thesis, multi-channel
RZPs for an ultra-sensitive parallel X-ray spectrometer were realized. Through this develop-
ment, the spectrometer could be applied at the free electron laser source LCLS in Stanford
(outside of this dissertation). The spectroscopy of highly diluted materials, metallo-enzyme
complexes that contain manganese oxides, was performed. The new spectrometer has one
order of magnitude better acceptance than conventional grating spectrometers. The results
of these measurements are not mentioned in this thesis.

The developed design model was applied for the realization of two types of new labora-
tory source spectrometers based on RZPs: a parallel spectrometer for a scanning electron
microscope and a single-channel spectrometer for a laser-plasma X-ray source.
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Kurzzusammenfassung

In dieser Arbeit werden die zwei Haupt-Anwendungsgebiete von Reflektionszonenplatten
(RZPs) in der Röntgenoptik analysiert: als optisches Element zur Monochromatisierung
von weicher und harter Röntgenstrahlung und als Element von Röntgenspektrometern wie
Laser-Plasma-Quellen und High Harmonic Generators.

Der wichtigste Aspekt der Weiterentwicklung bestand darin, den Design-Prozess von RZPs
durch eine neue Software, die auf einem modernen mathematischen Modell des Schnitts
zwischen einem Ellipsoiden und einer Ebene basiert, zu erleichtern und zu beschleunigen.
Dies reduziert die Datenmenge und die Rechenzeit auf ein Minimum, während gleichzeitig
eine sehr hohe Strukturgenauigkeit erzielt werden kann. Somit wurden neue Möglichkeiten
für die Realisierung von Multi-Channel Spektrometern geschaffen, sowohl für monochroma-
tische als auch für polychromatische Strahlung.

Die spektroskopischen Eigenschaften von Off-Axis RZPs wurden im Bereich der harten Rönt-
genstrahlung systematisch untersucht. Dabei wurde eine örtliche Auflösung von unter 2 µm

bei 8.3 keV mit einer Effizienz von 17.5 % erreicht. Der experimentelle Aufbau ermöglichte
eine Energieauflöung von (λ/∆λ) bis zu 400 in einem Energiebereich von 1000 eV um die
Designenergie der RZP. Dadurch wurde eine neue Möglichkeit für Absorptionsspektroskopie
an Übergangsmetallen unterhalb von 10 keV geschaffen. Ein weiterer Vorteil von RZPs
in diesem Bereich ist die geringe zeitliche Streckung ultra-kurzer Lichtimpulse. Sie liegt
in diesem Fall unterhalb von 0.35 fs und ermöglicht zeitlich hochaufgelöste Röntgenspek-
troskopie.

Darüber hinaus wurden im Rahmen der vorliegenden Doktorarbeit zum ersten Mal im
Bereich der weichen Röntgenstrahlung Multi-Channel RZPs für ein ultra-sensitives Paral-
lelspektrometer entwickelt. Durch diese Entwicklung konnte das Spektrometer am Freie-
Elektronen-Laser (außerhalb dieser Dissertation) in Stanford getestet werden. Metallo-
Enzym-Komplexe in einer sehr verdünnten Lösung, die Mangan-Oxide enthalten, wurden
mit dieser Methode untersucht. Durch das neue Spektrometer konnte die Akzeptanz um eine
Größenordnung erhöht werden. Die Ergebnisse dieser Messungen sind nicht Gegenstand der
vorliegenden Dissertation.

Nach dem in dieser Arbeit entwickelten Design-Prozess wurden zwei Typen von Röntgen-
spektrometern realisiert: zum einen Parallel-Spektrometer zur Anwendung an Rasterelek-
tronenmikroskopen und ein Ein-Kanal-Spektrometer für eine Laser-Plasma-Quelle.
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With the developed software and optimization methods as well as the alignment pro-
cedures and the knowledge gained from the experiments conducted in this work, RZP
structures can be applied in spectrometers for scanning electron microscopes, plasma
sources or any synchrotron source.
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7.1 Local Grating Period

Starting from
d = mR′

2∆λ

∆hd sin β
, (7.1)

implementing the grating equation

d cos α − cos β = mλ (7.2)

leads to a quadratic equation for the local grating period d by

d = mR′
2∆λ

∆hd

√
1 − cos2 β

(7.3)

⇔ d = mR′
2∆λ

∆hd

√
1 −

(
cos α − mλ

d

)2
(7.4)

⇔ d

√√√√1 −
(

cos α − mλ

d

)2

= mR′
2∆λ

∆hd

(7.5)

⇔ d2 ·

1 −
(

cos α − mλ

d

)2
 =

(
mR′

2∆λ

∆hd

)2

(7.6)

⇔ d2 − d2 cos2 α + 2 cos αmλd − m2λ2 =
(

mR′
2∆λ

∆hd

)2

(7.7)

⇔ d2
(
1 − cos2 α

)
+ 2 cos αmλd − m2λ2 =

(
mR′

2∆λ

∆hd

)2

(7.8)

⇔ d2 sin2 α + 2 cos αmλd − m2λ2 =
(

mR′
2∆λ

∆hd

)2

(7.9)

⇔ d2 + 2 cos α

sin2 α
mλ · d −

m2λ2 +
(

mR′
2∆λ

∆hd

)2

sin2 α
= 0. (7.10)
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Solved with the p,q-formula this results in

⇒ d1,2 = − cos α

sin2 α
mλ ±

√√√√( cos α

sin2 α
mλ

)2
+

m2λ2 +
(

mR′
2∆λ

∆hd

)2

sin2 α
(7.11)

= −cot α

sin α
mλ ± λ|m|

sin α

√√√√√cot2 α +
1 +

(
R′

2
∆hd

∆λ

λ

)2
 (7.12)

= −λ|m|
sin α

 m

|m|
cot α ±

√√√√1 + cot2 α +
(

R′
2

∆hd

∆λ

λ

)2
 (7.13)

⇔ d1,2 = λ|m|
sin α

− m

|m|
cot α ∓

√√√√1 + cot2 α +
(

R′
2

∆hd

∆λ

λ

)2
 . (7.14)

There are two solutions to this problem, which correspond to the two cases of negative
and positive diffraction orders. In the input of equation 7.1 the diffration order m is
clearly defined including its algebraic sign, but in the transformation from 7.1 to 7.3
there is a squaring step, where this uniqueness is lost. By defining the local grating
period as a positive value though, 7.3 reduces to

d = λ|m|
sin α

− m

|m|
cot α +

√√√√1 + cot2 α +
(

R′
2

∆hd

∆λ

λ

)2
 , (7.15)

with a positive root term.

7.2 Fresnel Zone Edge Equation

By inserting equations 3.30 and 3.31 into 3.22 and the fact that ∆p = nλ/2, a rather
long euqation can be derived:
√

x2 + (R1 · cos(θ) − y)2 + (R1 · sin(θ))2 +
√

x2 + (R2 · cos(θ) − y)2 + (R2 · sin(θ))2

= R1 + R2 + n · λ

2 ,

which can be transformed as follows:
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Squaring the equation and expanding it gives

2x2 + 2y2 + R2
1 + R2

2 − 2ycos(θ) · (R1 + R2)

+ 2 ·
√

(x2 + y2 + R2
1 − 2yR1 · cos(θ)) · (x2 + y2 + R2

2 − 2yR2 · cos(θ))

= (R1 + R2 + n · λ

2 )2.

By isolating the root term and another squaring this transforms to

4 · (R2
1 + x2 + y2 − 2R1ycos(θ)) · (R2

2 + x2 + y2 − 2R2ycos(θ))

= (n · λ

2 + R1 + R2 + 2(R1 + R2) · ycos(θ) − (R2
1 + R2

2 + 2 · (x2 + y2)))2.

When all brackets are fully expanded there will be terms with x and y up to a power
of 4,

4R2
1R2

2 + 4R2
1x2 + 4R2

2x2 + 4x4 + 4R2
1y2 + 4R2

2y2 + 8x2y2 + 4y4

− 8R2
1R2ycos(θ) − 8R1R

2
2ycos(θ) − 8R1x

2ycos(θ) − 8R2x
2ycos(θ) − 8R1y

3cos(θ)
− 8R2y

3cos(θ) + 16R1R2y
2(cos(θ))2

= (n · λ

2 )2n2 + 2n · λ

2 R1 + R2
1 − 2n · λ

2 R2
1 − 2R3

1

+ R4
1 + 2n · λ

2 R2 + 2R1R2 − 2R2
1R2 + R2

2 − 2n · λ

2 R2
2

− 2R1R
2
2 + 2R2

1R2
2 − 2R3

2 + R4
2 − 4n · λ

2 x2 − 4R1x
2

+ 4R2
1x2 − 4R2x

2 + 4R2
2x2 + 4x4 − 4n · λ

2 y2−

4R1y
2 + 4R2

1y2 − 4R2y
2 + 4R2

2y2 + 8x2y2 + 4y4 + 4n · λ

2 R1ycos(θ) + 4R2
1ycos(θ)−

4R3
1ycos(θ) + 4n · λ

2 R2ycos(θ) + 8R1R2ycos(θ) − 4R2
1R2ycos(θ) + 4R2

2ycos(θ)

− 4R1R
2
2ycos(θ) − 4R3

2ycos(θ) − 8R1x
2ycos(θ) − 8R2x

2ycos(θ) − 8R1y
3cos(θ)

− 8R2y
3cos(θ) + 4R2

1y2(cos(θ))2 + 8R1R2y
2(cos(θ))2 + 4R2

2y2(cos(θ))2,
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which all cancel out exept the quadratic terms.

− (n · λ

2 )4 − 4(n · λ

2 )3R1 − 4(n · λ

2 )2R2
1 − 4(n · λ

2 )3R2 − 12(n · λ

2 )2R1R2 − 8n · λ

2 R2
1R2

− 4(n · λ

2 )2R2
2 − 8n · λ

2 R1R
2
2 + 4(n · λ

2 )2x2 + 8n · λ

2 R1x
2 + 4R2

1x2 + 8n · λ

2 R2x
2

+ 8R1R2x
2 + 4R2

2x2 + 4(n · λ

2 )2y2 + 8n · λ

2 R1y
2 + 4R2

1y2 + 8n · λ

2 R2y
2 + 8R1R2y

2

+ 4R2
2y2 − 4(n · λ

2 )2R1ycos(θ) − 8n · λ

2 R2
1ycos(θ) − 4(n · λ

2 )2R2ycos(θ)

− 16n · λ

2 R1R2cos(θ) − 16R2
1R2ycos(θ) − 8n · λ

2 R2
2ycos(θ) − 16R1R

2
2ycos(θ)

− 4R2
1y2(cos(θ))2 + 8R1R2y

2(cos(θ))2 − 4R2
2y2(cos(θ))2 = 0

Now, the y2, x2 and y terms can be summed up:

4y2 · (R1 + R2 + n · λ

2 + (R1 − R2)(cos(θ)))(R1 + R2 + n · λ

2 + (R2 − R1)(cos(θ)))

+4x2 · (R1 + R2 + n · λ

2 )2

+4y · (n · λ

2 + 2R1)(n · λ

2 + 2R2)(r1 + r2)

−n · λ

2 · (n · λ

2 + 2R1)(n · λ

2 + 2R2)(R1 + R2 + n · λ

2 + R1 + R2)

= 0

With the abbreviation Kn = R1 + R2 + n · λ
2 this simplifies to

4y2 · (Kn + (R1 − R2)(cos(θ)))(Kn + (R2 − R1)(cos(θ)))

+4x2 · K2
n + 4y · (n · λ

2 + 2R1)(n · λ

2 + 2R2)(r1 + r2)

−n · λ

2 · (n · λ

2 + 2R1)(n · λ

2 + 2R2)(Kn + R1 + R2).

= 0

This equation has the form

K1y
2 + K2y + K3x

2 + K4 = 0.
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7.3 Program Code (Core Calculation of Fresnel
Zones)

# ======================================================================= #
# RZP Parameter calculation
# ======================================================================= #

PLANCK_CONSTANT = D(’4.135667516e -15 ’) # in eV*s
SPEED_OF_LIGHT = 299792458 # in m/s
PI = D(’3.141592653589793238462643383279502884197169399375 ’)

def energy_to_lambda ( energy ):
""" return lambda in microns . """
if not isinstance (energy , (D, int )):

raise ValueError (’For␣highest␣precision ,␣only␣integer␣or␣’ +
’␣decimal␣float␣are␣allowed ’)

return PLANCK_CONSTANT * SPEED_OF_LIGHT / energy * 1000000

cdef cos(x):
""" Return the cosine of x as measured in radians .

>>> print cos( Decimal ( ’0.5 ’))
0.8775825618903727161162815826
>>> print cos (0.5)
0.87758256189
>>> print cos (0.5+0 j)
(0.87758256189+0 j)

"""
getcontext (). prec += 2
i, lasts , s, fact , num , sign = 0, 0, 1, 1, 1, 1
while s != lasts :

lasts = s
i += 2
fact *= i * (i -1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext (). prec -= 2
return +s

cdef sin(x):
""" Return the sine of x as measured in radians .

>>> print sin( Decimal ( ’0.5 ’))
0.4794255386042030002732879352
>>> print sin (0.5)
0.479425538604
>>> print sin (0.5+0 j)
(0.479425538604+0 j)
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"""
getcontext (). prec += 2
i, lasts , s, fact , num , sign = 1, 0, x, 1, x, 1
while s != lasts :

lasts = s
i += 2
fact *= i * (i -1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext (). prec -= 2
return +s

cdef class ZoneCalculator :
# fields declaration :
cdef:

# all fields are cdecimal . Decimal objects :
readonly object _r1 , _r2 , _theta
readonly object _e , _a0 , _svec , _qvec , _p1
readonly object _phi , _lambda , _x_stretch_factor
readonly object _xwidth_bot , _xwidth_top , _ymin , _ymax ,

cdef int _nmin , _nmax
# the last result calculated with calc_RZP_parameters ...
cdef readonly object last_result
# instance of the GDSWriter class
cdef GDSWriter _gds
# counts the number of RZPs written to file. User can also make prediction
# of this number , which allows writing the main cell in the beginning
cdef int _rzp_counter , _rzp_counter_prediction
# whether the main cell has already been written
cdef bint _main_written

# _reference_p1 is necessary if multiple RZPs (with different distance_r1 )
# are added to same GDS -File. By default , every RZP has its own coordinate
# system where the origin is in the center of the zeroth zone.
# When the first RZP is calculated (with calc_RZP_parameters ...) ,
# _reference_p1 is calculated , which is the the distance to the source ,
# projected onto the RZP plane of this first RZP.
# Following RZPs ( calculated by subsequent calls to calc_RZP_parameter )
# will be shifted in such a way , that the source point is always on the
# same spot in space , regardless of the given distance_r1 parameter .
# This shift will be computed and added in write_zones .
cdef readonly object _reference_p1

# The user can specify custom polygons by calling
# ZoneCalculator . write_polygon () or ZoneCalculator . write_rectangle (),
# which will be written to the gds file when the ZoneCalculator object is
# destroyed . Each custom polygon is an item in the following list; each
# item is a ( number_of_points , 2)- sized numpy ndarray of floats :
cdef list _custom_polygon_points_list
# Each of the custom polygons can be designated a layer , which is saved
# in the following list (one item ( integer ) for every custom polygon ):
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cdef list _custom_polygon_layers_list

def __init__ (self ):
""" This class calculates the axes and offsets of ellipses forming a
reflection zone plate ’s (RZP) zone borders . After initializing the
class , the method ’calc_RZP_parameters ’ can be called to get these
values for the ellipses intersecting a given rectangle (off -axis -RZP ).

"""
# these fields will be initialized in calc_RZP_parameters :
self._r1 = D(0)
self._r2 = D(0)
self. _theta = D(0)
self. _xwidth_bot = D( -1)
self. _xwidth_top = D( -1)
self. _ymin = D(0)
self. _ymax = D(0)
self. _lambda = D( -1)
self._phi = 0
self. last_result = None
self._gds = None
self. _rzp_counter = 0
self. _rzp_counter_prediction = 0
self. _main_written = False
self. _reference_p1 = None
self. _x_stretch_factor = 1.0

self. _custom_polygon_points_list = []
self. _custom_polygon_layers_list = []

def __dealloc__ (self ):
if self. _rzp_counter != 0 and not self. _main_written :

self. _write_main_cell (self. _rzp_counter )
elif self. _rzp_counter != self. _rzp_counter_prediction :

print (’Warning:␣Number␣of␣RZPs␣written␣does␣not␣match␣number␣’ +
’given␣in␣setup_gds .␣GDS␣file␣is␣ corrupted .’)

self. _write_custom_cell ()

cdef _write_main_cell (self , int num_rzp ):
if self. _main_written :

# main cell already written
return

cdef char cellname [20] # this length shouldn ’t be exceeded
cdef int i, slen
self._gds. _new_cell (’main ’, 4)
for i in range ( num_rzp ):

slen = io. sprintf (cellname , ’RZP %04i’, i)
self._gds. _add_reference (

cellname , slen)
# add reference to cell where custom polygons will be added :
self._gds. _add_reference (" custom_polygons ", 15)
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self. _main_written = True

cdef _write_custom_cell (self ):
""" Writes the cell with the custom polygons to file.
Should only be called from __dealloc__ , i.e. when no more custom
polygons can be added by user."""
self._gds. _new_cell (’custom_polygons ’, 15)
cdef int num_polygons = len(self. _custom_polygon_points_list )
cdef int i
for i in range ( num_polygons ):

self._gds. add_polygon_to_cell (
self. _custom_polygon_points_list [i],
layer =0 )

cdef get_semi_major_axis (self , point ):
""" Return the semi - major axis of an ellipsoid with the same
focal distance defined by the geometry , such that the ellipsoid
intersects point . point is a vector with length 3 (a numpy array ,
python tuple or list ).

"""
x = point [0]
y = point [1]
z = point [2]
p = (x**2 + y**2 + z**2 + self._e **2) / 2
return (p + (p**2 - self._e **2 * x **2). sqrt ()). sqrt ()

def calc_RZP_parameters (
self , distance_r1 , distance_r2 , theta ,
xwidth , ymin , ymax , energy , phi = 0,
x_stretch_factor =1):

""" Calculate and return the three ellipse_parameters (y-shift ,
half width and half height of ellipse ) for each ellipse intersecting
the clip rectangle .
The returned list (n x 3 numpy matrix ) contains a line for each
ellipse .

Parameters :
distance_r1 : Distance from the RZP ’s center to the source , in mm
distance_r2 : Distance from the RZP ’s center to the detector , in mm
theta : Reflection angle ( angle between beam and RZP - surface ), in degrees
xwidth : Width of clip rectangle in mm
ymin : Lower boundary of clip rectangle in mm
ymax : Upper boundary of clip rectangle in mm
energy : Photon energy in eV

Optional parameter :
phi : Phase - shift in microns

"""
return self. calc_RZP_parameters_trapezoid (

distance_r1 , distance_r2 , theta , xwidth , xwidth , ymin , ymax ,
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energy , phi , x_stretch_factor )

def calc_RZP_parameters_trapezoid (
self , distance_r1 , distance_r2 , theta ,
xwidth_bottom , xwidth_top , ymin , ymax , energy , phi = 0,
x_stretch_factor =1):

""" Calculate and return the three ellipse_parameters (y-shift ,
half width and half height of ellipse ) for each ellipse intersecting
the clip trapezoid .
The returned list (n x 3 numpy matrix ) contains a line for each
ellipse .

Parameters :
distance_r1 : Distance from the RZP ’s center to the source , in mm
distance_r2 : Distance from the RZP ’s center to the detector , in mm
theta : Reflection angle ( angle between beam and RZP - surface ), in degrees
xwidth_bottom : Width at bottom of clip trapezoid in mm
xwidth_top : Width at top of clip trapezoid in mm
ymin : Lower boundary of clip rectangle in mm
ymax : Upper boundary of clip rectangle in mm
energy : Photon energy in eV

Optional parameter :
phi : Phase - shift in microns

"""
# internally , all lengths are saved in microns :
self._r1 = D( distance_r1 ) * 1000
self._r2 = D( distance_r2 ) * 1000
self. _theta = D( theta ) / 180 * PI
if ymin == ymax or ( xwidth_top == 0 and xwidth_bottom == 0):

raise ValueError (’Please␣specify␣non -empty␣RZP␣area.’)
elif ymin < ymax:

self. _xwidth_bot = D( xwidth_bottom ) * 1000
self. _xwidth_top = D( xwidth_top ) * 1000
self. _ymin = D(ymin) * 1000
self. _ymax = D(ymax) * 1000

else :
# switch top and bottom :
self. _xwidth_top = D( xwidth_bottom ) * 1000
self. _xwidth_bot = D( xwidth_top ) * 1000
self. _ymin = D(ymax) * 1000
self. _ymax = D(ymin) * 1000

self. _lambda = energy_to_lambda (D( energy ))
self._phi = D(phi)
self. _x_stretch_factor = D( x_stretch_factor )

# ellipsoid focal distance e:
self._e = (

self._r1 **2 + self._r2 **2 +
2 * self._r1 * self._r2 * cos (2 * self. _theta )). sqrt () / 2

# semi - major axis a ( along line connecting source and detector )
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# of the ellipsoid which just touches the surface at the nearest point :
# This is the smallest ellipsoid which intersects the surface - it will
# be used as reference length for calculating the other ellipsoids .
self._a0 = (self._r1 + self._r2) / 2

# x- component of the point q where the above ellipsoid with _a0 touches
# the surface :
# This point will be the origin of the surface
qx = (self._r1 **2 - self._r2 **2) / (4 * self._e)
# complete point q:
self. _qvec = np. array (

[qx , -(self._r1 **2 - (self._e + qx )**2). sqrt (), 0])

# surface basis vector s:
# (The second basis vector is trivial : r = (0, 0, 1))
h1 = (self._e + qx) / self._r1
h2 = (1 - h1 **2). sqrt ()
ca = cos(self. _theta )
sa = sin(self. _theta )
self. _svec = np. array ([ h1*ca + h2*sa , h1*sa - h2*ca , 0])

# projection of source point on RZP - surface :
# (will be needed in write_zones if RZP must be rotated )
self._p1 = <double >( self._r1 * ca)

# self. _reference_p1 will be used to put multiple RZPs on same
# coordinate system , using the first RZP as reference
if self. _reference_p1 is None:

self. _reference_p1 = self._p1

# calculate amin and amax , i.e. the semi - major axes of the smallest
# and biggest ellipsoid which still touches the clipping rectangle
testpoint = self. _qvec + self. _ymin *self. _svec
amin1 = self. get_semi_major_axis ( testpoint )
testpoint = (self. _qvec + self. _ymin *self. _svec +

(0, 0, self. _xwidth_bot / 2 / self. _x_stretch_factor ))
amin2 = self. get_semi_major_axis ( testpoint )

testpoint = self. _qvec + self. _ymax *self. _svec
amax1 = self. get_semi_major_axis ( testpoint )
testpoint = (self. _qvec + self. _ymax *self. _svec +

(0, 0, self. _xwidth_top / 2 / self. _x_stretch_factor ))
amax2 = self. get_semi_major_axis ( testpoint )

if self. _ymin < 0 and self. _ymax > 0:
amax = max(amin1 , amin2 , amax1 , amax2 )
amin = self._a0

else :
amin = min(amin1 , amin2 , amax1 , amax2 )
amax = max(amin1 , amin2 , amax1 , amax2 )

# using amin and amax from above and the equation
# 2*a(n) = 2* a0 + phi + n* lambda /2 ( which is essentially the Fresnel -
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# relation for constructively interfering waves reflected at different
# ellipsoids with semi -axes a(n), put into relation to our reference
# length a0 and an optional phase shift phi),
# one gets nmin and nmax. Later , iterating between these two values
# will deliver all RZP zone boundaries in the clipping rectangle .
self. _nmin = int(np.ceil(

float (4 * (amin - self._a0 - self._phi /2) / self. _lambda )))
self. _nmax = int(np. floor (

float (4 * (amax - self._a0 - self._phi /2) / self. _lambda )))

# the first ellipse must always have an even ellipse number ;
# This way one can ensure that always the same zones are ’filled ’
# independent of the chosen RZP boundaries :
if self. _nmin % 2 != 0:

self. _nmin -= 1

print (’calculating ␣ellipses␣%i␣to␣%i.’ % (self._nmin , self. _nmax ))

# iterate through all n between nmin and nmax and create the results
# list:
self. last_result = self. get_intersection_ellipse_parameters (

self._nmin , self. _nmax )

return self. last_result

cdef get_intersection_ellipse_parameters (self , int nmin , int nmax ):
""" Using the ellipsoids with the focal distance defined by the
geometry and semi - major axes a(n) = a0 + phi /2 + n* lambda /4,
for n between nmin and nmax ( inclusive ), calculate the intersections
these ellipsoids have with the RZP -surface , which are 2D- ellipses .
Return the parameters of these 2D-ellipses , which are:

ellipse - origin ’s y- component (x- component is always 0),
semi -axis in x- direction (a) and
semi -axis in y- direction (b).

The returned list is a (n x 3) numpy matrix , containing a line (with
the three values above ) for each ellipse (i.e. for each n).

"""
cdef:

# all variables are cdecimal . Decimal objects :
e_squared = self._e **2
a_0 = self._a0 + self._phi / 2
a_m = self. _lambda / 4
qx = self. _qvec [0]
qy = self. _qvec [1]
sx = self. _svec [0]
sy = self. _svec [1]

cdef np. float64_t y0 , A, B

cdef np. ndarray [np.float64_t , ndim =2] results = np. zeros (
(nmax - nmin + 1, 3), dtype = np. float64 )

cdef int n
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cdef int i = 0
for n in range (nmin , nmax + 1):

if (n - nmin) % 2000 == 0 and n != nmin:
print (’progress:␣ calculating ␣ellipse␣%i␣of␣%i’ %

(n-nmin , nmax -nmin +1))
a_squared = (a_0 + a_m * n)**2
b_squared = ( a_squared - e_squared )
Drr = 1 / b_squared
Dss = sx **2 / a_squared + sy **2 / b_squared
Dqs = (qx * sx / a_squared +

qy * sy / b_squared )
Dqq = qx **2 / a_squared + qy **2 / b_squared

d1 = 1 - Dqq + Dqs **2 / Dss
if d1 < 1E -25:

# if the ellipsoid just barely touches the plane , which is
# the case for an ellipsoid with a=a0 , d1 must be zero.
# Due to rounding errors , this value might not be reached
# exactly , and d1 can even become negative , which would be
# problematic in the calculation of A and B.
y0 = A = B = 0.0

else :
y0 = <np.float64_t >(- Dqs / Dss)
# y0 can be exactly 0 in theory , but here , it will hardly be
# exact due to rounding errors . Since this will be a problem
# later on (e.g. during the final RZP ’s clipping with a
# boundary , y0 needs to be tested whether it is 0) and to
# produce a nicer output , we should approximate to zero here.
# It should be perfectly save to clip values smaller than
# 1e -3 nm to zero:
if math.fabs(y0) < 1e -6:

y0 = 0.0
A = <np.float64_t >(( d1 / Drr ). sqrt () * self. _x_stretch_factor )
B = <np.float64_t >(( d1 / Dss ). sqrt ())

results [i, 0] = y0
results [i, 1] = A
results [i, 2] = B
n += 1
i += 1

print (’progress:␣ calculated ␣%i␣ellipses ’ % (nmax -nmin +1))
return results

def setup_gds (
self , filename , int rzp_count = 0,
double unit =1.0e-6, double precision =1.0e -9):

"""
Initialize a GDSII file for writing the RZP design to.

Parameters :

filename : name of the created GDSII file ( please incl. ’.gds ’)
rzp_count : number of RZP which will be written to file:

It is essential that this number equals the number of
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later calls to write_zones (). It can also be 0
( default value ), in which case the main cell will be
written at the end , but then file cannot be previewed
during writing .

unit : GDS file units , in meters ( default : 1.0e -6)
precision : GDS file precision , in meters ( default : 1.0e -10)

"""
self._gds = GDSWriter (filename , unit , precision )
if rzp_count != 0:

self. _rzp_counter_prediction = rzp_count
self. _write_main_cell (self. _rzp_counter_prediction )

def write_zones (
self , unsigned int num_points , double rotation = 0,
bint fill_odd_zones = False , double q = 0.38 ,
unsigned short layer =0, unsigned short datatype =0,
bint do_clipping = True ):

"""
Write the RZP structure to the GDSII file initialized by setup_gds ().
calc_RZP_parameters must have been called before .

Parameters :

num_points : number of points a single zone is made up of
rotation : rotation of the RZP , in degrees ( default : 0)
fill_odd_zones : If True , odd zones are filled . By default , even

zones are filled
q : ellipse polygon point distribution factor

(for more details see below ); default value : 0.38
layer : layer used for the RZP in the GDS file ( default : 0)
datatype : datatype used for the RZP in the GDS file

( default : 0)
do_clipping : If False , the zones are not clipped by the

boundary trapezoid . Default is True.

q is a value between -1 and 1, smoothly changing the distribution of
polygon points along the ellipse ’s boundary .
If q = 0, the parameter t increases in constant steps (in the ellipse
parameterization (x, y)=(a*cos[t], b*sin[t])). Its the same as a
circle drawn with equidistant points which is then stretched . If
distributed this way , there are too many points at flat areas of the
polygon while there are too few at round areas (at big semi - major
axis), making them look edgy if using too few points .
If q = -1, the points are distributed in a way that the
angles between lines connecting the ellipse ’s origin with the points
are constant , i.e each line is separated by 2pi/ numpoints . This
way , there are even fewer points at the round areas .
If q = +1, the points are distributed in a way that the angles
of the normals to the ellipse surface at each point have constant
difference . This way , there are too few points at flat areas .
It turns out the best looking value for q is somewhere around 0.38.
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"""

cdef char cellname [20] # this length shouldn ’t be exceeded
cdef int i, npts , slen
cdef np. ndarray [np.float64_t , ndim =2, mode="c"] rzp_parameter
cdef double x_shift
cdef unsigned int num_ellipses , istart

if self. last_result is None:
raise ValueError (

" ZoneCalculator ’s␣results␣contained ␣no␣ellipses.␣" +
"Please␣run␣ ZoneCalculator . calc_RZP_parameters ␣before.")

if self._gds is None:
raise ValueError ("Please␣run␣ ZoneCalculator . setup_gds␣before.")

rzp_parameter = self. last_result
num_ellipses = rzp_parameter . shape [0]
if rzp_parameter . shape [1] != 3:

raise ValueError (
" ZoneCalculator ’s␣result␣does␣not␣have␣shape␣(num_ellipses ,␣3)")

if num_points > MAX_POINTS_PER_POLYGON :
raise ValueError (("Polygons␣with␣more␣than␣%i␣points␣are␣not␣" +

" supported␣by␣the␣GDSII␣format.") % MAX_POINTS_PER_POLYGON )

zpm = ZonePolygonMaker (self._gds , num_points ,
self. _xwidth_bot , self. _xwidth_top ,
self._ymin , self._ymax , q)

# calculate x and y shift of zone plate if rotation != 0, so that the
# rotation is around projection of source point on RZP - plane .
# The additional y- shift is due to different coordinate systems if
# multiple RZP with different r1 are added to same GDS file
# (see comment for self. _reference_p1 above __init__ ).
x_shift = -self._p1 * math.sin(math.M_PI * rotation / 180.)
y_shift = (self._p1 * (math.cos(math.M_PI * rotation / 180.) - 1)

+ self._p1 - self. _reference_p1 )

if fill_odd_zones :
istart = 1

else :
istart = 0

# make rzp cell with references :
# individual zone cells will be created afterwards
slen = io. sprintf (cellname , ’RZP %04i’, self. _rzp_counter )
self._gds. _new_cell (cellname , slen)
for i in range (np.ceil (( num_ellipses / 2) / MAX_ZONES_PER_CELL )):

slen = io. sprintf (cellname , ’zone %04 i_ %06i’, self. _rzp_counter , i)
self._gds. _add_reference (

cellname , slen ,
originx = x_shift ,
originy = y_shift ,
mirror =0, magnification =1,
rotation = rotation )
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self._gds. _add_reference (
cellname , slen ,
originx = x_shift ,
originy = y_shift ,
mirror =1, magnification =1,
rotation =180 + rotation )

## for i in range ( num_ellipses / 2):
## slen = io. sprintf (cellname , ’zone %08i’, i)
## self._gds. _add_reference (cellname , slen , 0, 0, 0, 1, rotation =0)
## self._gds. _add_reference (
## cellname , slen , 0, 0, mirror =1, magnification =1,
## rotation =180)

# add rectangle :
## cdef double xbh = self. _xwidth_bot / 2.0
## cdef double xth = self. _xwidth_top / 2.0
## cdef double ptbuffer [8]
## ptbuffer [0] = -xbh; ptbuffer [1] = self. _ymin
## ptbuffer [2] = xbh; ptbuffer [3] = self. _ymin
## ptbuffer [4] = xth; ptbuffer [5] = self. _ymax
## ptbuffer [6] = -xth; ptbuffer [7] = self. _ymax
## self._gds. _add_polygon_to_cell (ptbuffer , 4, layer = 1)

for i in range ( num_ellipses / 2):
# this only iterates through ellipses upto the maximum even number ,
# creating zones as pairs of ellipses . If there is one ellipse left
# over (if num_ellipses is odd), then that last ellipse will be
# ignored .
if (i+1) % 2000 == 0 and i != 0:

print (’progress:␣writing␣zone␣%i␣of␣%i’ %
(i + 1, num_ellipses / 2))

# only create a new cell if current cell is full:
if (i % MAX_ZONES_PER_CELL == 0):

slen = io. sprintf (cellname , ’zone %04 i_ %06i’, self. _rzp_counter ,
i / MAX_ZONES_PER_CELL )

self._gds. _new_cell (cellname , slen)
npts = zpm. _write_zone (

& rzp_parameter [ istart + 2*i ,0] ,
& rzp_parameter [ istart + 2*i+1 ,0] ,
layer =layer , datatype =datatype , clipping = do_clipping )

if npts == -1:
print (’WARNING:␣could␣not␣write␣zone␣#{0}. ’. format (i))
print (’There␣was␣an␣ unexpected ␣error␣finding␣the␣correct␣’ +

’intersections ␣with␣the␣boundary.’)
print (’Please␣try␣shifting␣the␣ boundaries ␣a␣small␣amount.’)

elif npts == 0:
print (’WARNING:␣could␣not␣write␣zone␣#{0}. ’. format (i))
print (’One␣ellipse␣had␣no␣ intersections ␣with␣the␣boundary␣’ +

’or␣the␣middle␣line.’)
print (’Please␣supply␣the␣exact␣same␣ boundaries ␣to␣the␣function␣’ +

’" write_zones "␣than␣supplied␣to␣’ +
’ZoneCalculator . get_RZP_parameters ␣before.’)

print (’progress:␣wrote␣%i␣zones␣to␣file.’ % ( num_ellipses / 2))
self. _rzp_counter += 1
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def write_polygon (
self , np. ndarray [double , ndim =2, mode="c"] points ,
unsigned short layer =0):

""" Add a custom polygon to the gds file. points must be a numpy
array of shape ( number_of_points , 2) and of dtype float ."""
if points . shape [1] != 2:

raise ValueError ("Please␣provide␣points␣with␣shape␣(numpoints ,␣2)")
if points . shape [0] > MAX_POINTS_PER_POLYGON :

raise ValueError ("Polygons␣with␣more␣than␣%i␣points␣are␣not␣" +
" supported␣by␣the␣GDSII␣format." % MAX_POINTS_PER_POLYGON )

self. _custom_polygon_points_list . append ( points .copy ())
self. _custom_polygon_layers_list . append ( layer )

def write_rectangle (
self , double left , double bottom , double width , double height ,
unsigned short layer =0):

""" Add a custom rectangle to the gds file."""
cdef np. ndarray [double , ndim =2] points = \

np. zeros ((4 , 2), dtype =np. double )
points [0, 0] = left; points [0, 1] = bottom
points [1, 0] = left + width ; points [1, 1] = bottom
points [2, 0] = left + width ; points [2, 1] = bottom + height
points [3, 0] = left; points [3, 1] = bottom + height
self. _custom_polygon_points_list . append ( points )
self. _custom_polygon_layers_list . append ( layer )
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