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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Multiplexed cellular imaging typically relies on the sequential application of detection probes,

as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we

developed here protein nanobarcodes, composed of combinations of epitopes recognized

by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying

on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of

large numbers of protein combinations. Fluorescence images from nanobarcodes were

used as input images for a deep neural network, which was able to identify proteins with

high precision. We thus present an efficient and straightforward protein identification

method, which is applicable to relatively complex biological assays. We demonstrate this by

a multicell competition assay, in which we successfully used our nanobarcoded proteins

together with neurexin and neuroligin isoforms, thereby testing the preferred binding combi-

nations of multiple isoforms, in parallel.

Introduction

Fluorescence imaging is one of the most powerful tools for cellular investigations, but its

potential to reveal multiple targets has been rarely fulfilled, due to difficulties in labeling many

molecules simultaneously or in separating multiple fluorophores spectrally [1]. One potential

solution has been the introduction of multiplexing by sequential labeling, in which reagents

carrying the same fluorophore are added and removed sequentially. This can be achieved by
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fluorophore bleaching (for example, in toponome mapping [2]), by antibody removal using

harsh buffers, or by probe removal by extensive wash-offs (for example, maS3TORM [3] or

DNA-PAINT [4]). While these approaches have been used to investigate samples from cancer

cells to synapses, they involve long-lasting and challenging experiments and typically result in

vast amount of data. Deep learning, driven by artificial neural networks, is a versatile solution

for processing large datasets, which enables efficient quantitative analysis and extraction of fea-

tures [5]. Despite the reduction of tedious manual analyses of large datasets, deep learning

does not remove the more common challenges of multiplexing experiments, as long time peri-

ods necessary for imaging, and the increased chance of sample or experiment failure during

multistep operations.

A simpler and more straightforward solution for multiplexing is presented here. We started

from the idea that every microscope has a handful (n) of spectrally distinguishable channels,

with which n specific labels should be differentiated relatively easily. The number of possible

combinations of labels is substantially higher than n, since each label can be present or absent

(“on/off” signals), which leads, in theory, to 2n combinations, as in a conventional barcode. As

the “all labels absent” combination is useless for practical purposes, the actual number of tar-

gets that could be differentiated becomes 2n-1. Therefore, this barcoding approach could be

used to strongly enhance the number of targets that can be analyzed simultaneously using a

limited number of channels. So far, it has been used for cell identification by fluorescence-

activatedAU : Pleasenotethat}fluorescencecellsorting}hasbeenchangedto}fluorescence � activatedcellsorting}asthefullspellingfor}FACS}inthesentence}Sofar; ithasbeenusedforcellidentificationby:::}Pleaseconfirmthatthiscorrectionisvalid:cell sorting (FACS; [6]), using antibody detection, but could not be yet introduced in

the domain of conventional microscopy. Imaging the different label combinations using anti-

bodies is almost impossible, due to problems with steric hindrance caused by the large anti-

body size, label clustering induced by the dual binding capacity of the antibodies, and limited

epitope availability due to poor penetration into the cells [7,8]. Therefore, we relied here on

epitope recognition by nanobodies (single-domain camelid antibodies), which are monovalent

and substantially smaller than antibodies [9,10]. As a first step, we engineered proteins that

contain a combination of 5 genetically encoded epitopes that are recognizable by nanobodies.

The recognized combinations were termed “nanobarcodes.” Second, we established a deep

network, which was used for the automatic identification of nanobarcoded proteins. In

essence, this deep network is a composition of simple nonlinear functions with adjustable

parameters forming an extremely flexible, yet trainable map. Our artificial neural network

functions as a pixel-wise classifier, which reads and decodes nanobarcodes from single pixels

of fluorescence images, decides which protein is most likely represented by a particular pixel,

and assigns a predefined false color representing a specific protein. As a result, the input image

is transformed into a protein identification map. Finally, we provide this open source solution

for reading and translating nanobarcode images into single proteins maps, including the nec-

essary software and initial datasets, for training and use in other laboratories.

Results

Nanobody-based identification of barcoded proteins using simple

immunocytochemistry

We engineered our barcoded proteins containing up to 5 nanobody epitopes as follows. First,

a reference epitope was added to all our barcodes, in the form of the ALFA-tag [11]. This tag

forms a small and stable α-helix, and its functionality is irrespective of its position on the target

protein [11], thereby enabling us to detect every barcode, irrespective of what other epitopes

are present. The other 4 epitopes were present only in subsets of all barcodes: mCherry(Y71L)

and GFP(Y66L), both mutated to generate nonfluorescent variants [12] and 2 different short

sequences found at the C-terminus of human α-synuclein [13] (termed here syn87 and syn2).
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These 4 epitopes were engineered, in different combinations, into the sequences of different

proteins, and were then revealed using the respective fluorescently labeled nanobodies

(NbRFP, NbEGFP, NbSyn87, NbSyn2). We call these nanobody-revealed barcodes nanobar-

codes. As designed, all epitopes were easily detected in immunocytochemistry (Fig 1). We

implemented the barcodes in 15 different proteins (24−1), according to the schemes shown in

Fig 1A–1D. We targeted proteins mostly from the secretory pathway (Fig 1E), such as vesicle-

associated membrane proteins (VAMPs) and Syntaxins. A schematic topology of all protein

constructs is provided in S1 Fig.

Validation of nanobarcoded protein organization and function

As illustrated in Fig 1F, the nanobarcodes can be easily differentiated by the human observer.

Correct expression of the target proteins (Fig 1C) used in our barcoded constructs was vali-

dated as follows. Instead of nonfluorescent constructs, constructs with fluorescent mCherry

and GFP epitopes were used, enabling a direct visualization of the proteins. Target proteins

were visualized with immunocytochemistry, relying on antibodies, using wide-field micros-

copy in a common cell line, HEK cells. In this way, the expression patterns of barcoded and

endogenous target proteins are revealed and compared (S2 Fig), providing one layer of valida-

tion for all constructs.

Further validation of all constructs was achieved by the successful visualization of each of

our barcodes using 4 fluorescent nanobodies (S3 Fig). Neither the genetically induced loss of

fluorescence of the EGFP and mCherry epitopes, nor the number of epitopes per se, seem to

hinder the nanobodies in binding to their respective epitopes (S4 Fig).

We then proceeded to another layer of validation, this time aiming to understand whether

the barcoding affected the location and/or function of the proteins. However, some of our bar-

coded proteins do not actually have a cellular function. This subset includes cytosolic GFP, the

nuclear localization signal (NLS), the ER-retention signal (KDEL sequence), and a mitochon-

dria localization sequence (TOM70). To determine whether the epitopes alter the behavior of

these proteins, we analyzed their colocalization to the compartments in which they should be

present, relying on 2-color microscopy experiments (S5 Fig). We also added GalNacT to this

experiment, because its localization in the Golgi apparatus is essential for its function [14], and

because functional assays for this protein are not easily implemented by microscopy

experiments.

All other nanobarcoded proteins are involved in membrane trafficking in the cell, which

implies that they can be readily tested by classical assays designed to test receptor and cargo

trafficking. We chose 2 such assays, which were performed in parallel. First, we used a transfer-

rin endocytosis and recycling assay. The protein transferrin is involved in iron metabolism in

all mammalian cells, and is readily endocytosed, upon binding to its receptor. Transferrin is

then recycled and released from the cells, within a time frame of a few tens of minutes [15].

This enables the microscopy investigation of both transferrin uptake during pulsing with fluo-

rescently conjugated transferrin, as a measure of endocytosis potential, and transferrin loss

after a chase, as a measure of recycling and exocytosis. Second, we relied on the endocytosis of

the epidermal growth factor (EGF) receptor. The addition of fluorescently conjugated EGF

onto the cells results in abundant ligand-mediated endocytosis of the receptors, which are not

recycled, but proceed slowly to the lysosomal compartment, where they are later degraded

[16]. Therefore, no substantial loss of EGF fluorescence is expected upon a chase of a few tens

of minutes, offering a different readout to transferrin.

We performed both of these assays for the endosomal membrane organizer Rab5a, for Life-

act (whose binding to actin should lead to a small, but measurable enhancement of actin
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localization signal; t-SNE, t-distributed Stochastic

Neighbor Embedding; VAMP, vesicle-associated

membrane protein.
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Fig 1. Design of protein constructs with nanobarcodes using 4 nanobody epitopes. (A, B) Scheme of the 4 nanobarcode epitopes (A) and the fluorescent

nanobodies used for recognizing them (B). (B) NbRFP-Atto565 in red, NbEGFP-Atto488 in green, NbSyn87-Dylight405 in cyan, NbSyn2-Star635P in

magenta. (C) Design of the protein construct VAMP4(1111). Each protein construct contains a target protein (the protein to identify) and a barcode. In this

example, the target protein is VAMP4, and its barcode contains the following nonfluorescent epitopes: mCherry (Y71L), GFP (Y66L), syn87, and syn2. The

ALFA-tag [10] is present for testing purposes. See S1 Fig for further sequence information. Barcode epitopes recognized by fluorescent nanobodies shown as

“ones” in pseudocolors that correspond to the fluorophores used. (D) Nanobarcodes, 15 in total, resulting from a binary combination of 4 nanobarcode-

epitopes. Epitopes from left to right: mCherry(Y71L), GFP(Y66L), syn87 and syn2. The nanobody scheme is the same as in (B). (E) The expected cellular

protein distribution for the proteins used, according to the literature. (F) Nanobarcode-based identification of the proteins STX6(0011), GFP(0100), and

SNAP25(1100). The pseudocolors for merged images correspond to the fluorescence channels of the nanobodies: NbRFP-Atto565 in red, NbGFP-Atto488 in

green, NbSyn87-Dylight405 in cyan, and NbSyn2-Star635P in magenta. Scale bar: 20 μm.

https://doi.org/10.1371/journal.pbio.3002427.g001
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dynamics [17]), and 7 SNARE molecules involved in fusion events in the membrane traffick-

ing pathway: endobrevin, syntaxins 4, 6, 7, and 13, Vti1a, and VAMP4. The expected result is

that the overexpression of these proteins will not affect the transferrin and EGF dynamics neg-

atively but would rather lead to small enhancements of their uptake (and possibly release as

well, for transferrin). The changes induced by the expression of barcoding proteins can only

reach a moderate level, since the respective trafficking pathways remain limited by the abun-

dance of many other proteins, which are not overexpressed. We obtained this result for all pro-

teins. S6 Fig presents an overall view of the results, indicating the transferrin and EGF

dynamics in all experiments, combined. S7–S15 Figs show the results for every individual pro-

tein, comparing the transferrin and EGF signals to the levels of overexpression of the respec-

tive proteins. Overall, these experiments indicate that these components of the membrane

trafficking machinery are not negatively affected by our tagging procedure.

One additional SNARE molecule, SNAP25, is more difficult to test in such experiments,

since it only functions in synapses, where its abundance is already extraordinary [18], so that

overexpression is not expected to lead to changes in synaptic processes (just as lowering

SNAP25 levels in heterozygous SNAP25+/− mice leads to very minor phenotypes [19]). To

validate the behavior of SNAP25, we therefore relied on a super-resolution imaging assay, in

which we tested its localization, in comparison to endogenous SNAP25, in a neuroblastoma

cell line (PC12). The results, shown in S16 Fig, indicate that our epitope tagging does not affect

SNAP25 localization. A quantification of localization results, also including the work relating

to the proteins lacking a cellular function, is shown in S17 Fig.

Deep learning–based identification of protein nanobarcodes

While the identification of protein nanobarcodes, which fluoresce as a combination of their

tags, is possible with the human eye (Figs 1F and S3), it is still a statistical inference task and,

accordingly, is more suited for automated machine learning algorithms. The task can be for-

mulated in simple terms as to determine the probability of the observed protein belonging to

one of 2n-1 categories, given the registered intensities in all the microscope channels. This

inference is to be done for each pixel in the image to translate the spectral block into a bitmap

representation with proteins highlighted in false colors.

We used deep learning for the nontrivial classification task and developed the Deep-Nano-

barcode software package (https://github.com/noegroup/deep_nanobarcode). Deep-Nanobar-

code is a Python package developed using PyTorch machine learning framework and deploys

a deep neural network trained to map the combined fluorescence output of the nanobarcode

sequences to the identity of the respective labeled proteins (Figs 2 and S18).

Our developed deep network is essentially a pixel-wise classifier, has about 620k trainable

parameters, and is trained in a supervised manner (Figs 2A and S18, Methods section “Deep

neural network for nanobarcode identification”). The training dataset is gathered from confo-

cal images of single-transfect samples using a machine-learned thresholding scheme (see

Methods section “Data pipeline for training and evaluation of the deep network” and

S3 Table). These data are split for training, validation, and testing (Methods section “Training

and testing the deep network”).

Additionally, we have provided the possibility of invoking another level of machine learning

at inference time when using whole images as input. This is achieved via a trainable contrast-

modifier acting in tandem with the deep network, which is trained in a self-supervised manner

(Methods section “Training and testing the deep network”). We found that training the con-

trast-modifier with small number of steps (between 10 and 100) helps with enhancing the spar-

sity in the prediction, i.e., less noisy predictions in the image backgrounds. Essentially, the
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Fig 2. Neural network–based identification of nanobarcode proteins. (A) Schematic of the neural network used for identification of nanobarcodes from

pixel-wise fluorescence information. Brightness values across all emission channels are fed to the network as input, which, in turn, has been trained to predict

the probability of this information pertaining to a specific nanobarcode, or a blank pixel. The trained network can readily be applied to full micrographs as

well as stacks of images to produce false color outputs illustrating spatial distribution of proteins (further details in S18 Fig). (B) Example images of HEK293

cells transfected with specific nanobarcodes. To account for all possible emission features (including bleed-through), we acquired 11 frames for each area,

consisting of the following: 405 nm excitation, with emission windows in blue, green, red, deep red; 488 nm excitation, with emission windows in green, red,

deep red; 561 nm excitation, with emission windows in red and deep red; 633 nm excitation, with an emission window in deep red; brightfield. The panels in

the left column show an overlay of the 4 brightest frames: 405 nm excitation, blue emission (in cyan); 488 nm excitation, green emission (in green); 561 nm

excitation, red emission (in red); 633 nm excitation, deep red emission (in magenta). False color neural network output images are shown in the right column

of (A). (C) Prediction accuracy of the neural network over a hold-out test dataset. For each protein, bars represent the precision (top), recall (middle), and

F1-score (bottom). (D) False positive and false negative protein identifications (as percentage of all false predictions). For further details about the

experimental procedures, imaging settings and neural network analysis, see the Methods section. For practical implementation purposes, we concentrated

here on a subset of the labeled proteins, which were also used for the Nrxn/Nlgn experiments in Fig 4. Scale bars: 20 μm. The data underlying this Figure are

available as file “Fig 2_CD.xlsx” from http://dx.doi.org/10.17169/refubium-40101.

https://doi.org/10.1371/journal.pbio.3002427.g002
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contrast-modifier’s target of reducing the entropy in the network output helps remove spuri-

ous detection of nanobarcodes with weak or noisy input signals. But, of course, its training

procedure is agnostic to the correct nanobarcode to be picked, and no new information would

be gained with more training steps.

With the data being processed on the fly through our data augmentation protocol (Methods

section “Training and testing the deep network”), and utilizing a GeForce RTX 3090 graphics card

with 24 GB of graphics memory, fully training the network on our dataset takes up to 2 hours in

each case. After training the network, and utilizing the same hardware, the inference takes about

15 seconds for each 512 × 512 pixel image, when an additional 50 iterations of self-supervised con-

trast adaptation is performed. While this deep learning framework can readily be fine-tuned or

retrained on new imaging data, we provide all the weights of the network trained for the cases dis-

cussed here. The Deep-Nanobarcode software can thus be applied out of the box to new confocal

images containing the same nanobarcodes described here, without the need for retraining.

Evaluation of the performance and reliability of the deep network

After training the network, we analyzed its performance on (i) hold-out test sets and (ii) full

images of single-transfected samples containing known nanobarcodes. The metrics we have

used for evaluation of network performance are the percentage of false positive and negatives,

accuracy, recall, and F1-score (Methods section “Training and testing the deep network”).

Analysis on hold-out test sets, to which the network has not been exposed during any stage of

training and validation, revealed a prediction accuracy of at least 80% for all the cases (Fig 2C

and 2D). The analysis on full images resulted in a relatively high accuracy, considering the

strong criterion of pixel-wise true identification (Figs 2B–2D and S20). Generally, optimal pre-

cision was achieved when the network was trained and tested on samples with similar expres-

sion and transfection time windows (S20 Fig). For these cases, we calculated a mean pixel-wise

precision of 70% with 95% confidence interval of (63%, 77%).

For this analysis task, the use of a neural network was inevitable, as shown in Fig 3. We

exhausted the possibility of using shallow machine learning algorithms for the analysis. We fed

the data gathered for known proteins, as pixel-wise intensities in 10 channels, into 4 well-

known dimensionality reduction algorithms, namely, the Isomap Embedding [20], kernel

Principal Component Analysis (kPCA) [21], t-distributed Stochastic Neighbor Embedding (t-

SNE) [22], and Spectral Embedding methods ([23]; Fig 3A and 3B). While we achieved some

successful separation with more obvious cases, such as GFP, none of these methods are able to

partition the whole dataset into a meaningful set of clusters.

We further performed an ablation study to establish the sensitivity and reliability of predictions.

In a series of experiments with the deep network, we removed proteins one by one from the train-

ing data, fully trained the network on the remainder of samples, and measured its performance

(Fig 3D). Generally, reducing the number of target classes in training the network improves its

performance, as the task of mapping input vectors to the classes becomes easier. Nevertheless, this

inevitable bump in performance is not uniform for all the target proteins, and, not surprisingly,

removal of proteins that have the lowest prediction scores results in higher increase in perfor-

mance (Fig 3D). This finding implies that the respective low prediction scores are inherent to the

data gathered for the corresponding nanobarcodes and not a shortcoming of the deep network.

Proof-of-principle application of the deep network for neuronal cell

biology

After ensuring that the network could identify proteins with satisfactory precision, we set out

to apply it to samples in which the combinations of transfected cells were unknown. We
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considered the prediction precision of more than 80% on test data and mean prediction preci-

sion of 70% on image data to suffice for the purpose of reliably localizing molecules in the bio-

logical task. The way we measured precision in these examples is very strict, since it includes

all the accumulated effects of (i) expression of nanobarcodes in imaged cells, (ii) imaging con-

ditions, and (iii) uncertainty in deep network predictions, into one final score. Therefore, we

consider the overall prediction precision to be satisfactory.

Fig 3. Training and testing of the deep network. (A) Pipeline through which data are prepared for training and testing the deep network for SNAP25 from

48-hour protocol as an example. Ten-dimensional vectors containing pixel-wise intensities across all channels are mapped along one dimension using kPCA

transform. A relative threshold on the principal component separates foreground from background and results in a binary mask, based on which data can be

gathered from points than contain proteins in the confocal image. (B) The result of Isomap, kPCA, t-SNE, and Sepctral Embedding “shallow-learning”

methods for dimensionality reduction applied directly to the data gathered according to the pipeline explained in (A). (C) Training and validation accuracies

averaged over all proteins in the dataset, sampled in each training epoch. Red dashed line shows the early stopping used based on the monitored validation

accuracy. (D) Results of the ablation study, in which in each case one protein is removed from the training dataset and the performance of the deep network is

evaluated based on the given metrics after training and validation procedure is performed. The data underlying this Figure are available as file “Fig 3_ABCD.

xlsx” from http://dx.doi.org/10.17169/refubium-40101.

https://doi.org/10.1371/journal.pbio.3002427.g003
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To apply this analysis to a relevant biological problem, we turned to a set of cell adhesion

molecules that are essential in neuronal cell biology: neurexins (Nrxns1-3), found in the

pre-synapse, and neuroligins (Nlgns1-4), expressed in the post-synapse. These molecules

are essential for synaptic regulation. These molecules bind to each other and to other part-

ners in neuronal cells, inducing the formation of synapses. Their mutation and/or deletion

can lead to the loss of synapses [24]. Both Nrxns and Nlgns can be used in vitro, in experi-

ments in which individual cells express some of these molecules, enabling then to form

“synapses” between them [24]. In such experiments, any combination of Nrxns and Nlgns

could result in synapse formation. This does not take place in the brain, where specific

interactions tend to take place, possibly due to further complexity in the behavior of these

molecules. They contain glycosylation domains [25], a posttranslational modification that

makes it very likely that these molecules are endocytosed and recycled, in order to repair

damage to the glycosylation in a re-glycosylation mechanism that has been described for

more than 2 decades in cancer cell cultures (e.g., [26] but has only recently been related to

the synapse [27]). This implies that these molecules may have complex behaviors at the cell

surface, including detailed membrane trafficking, as discussed already for both Nrxns and

Nlgns, which will modify their capacity to interact with each other [28,29]. Moreover, bind-

ing between Nrxns and Nlgns is dependent on the alternative splicing of these molecules,

resulting in a complex pattern of interactions [30].

Overall, Nrxn/Nlgn binding is subject to detailed and poorly known regulation, with the

interaction of specific partners being affected by neuronal plasticity and by local conditions,

and also by their membrane trafficking behavior. Interactions between the 2 sets of molecules

are typically investigated by introducing single splicing variants into cells, followed by a one-

by-one comparison of binding properties and/or interactions between Nrxn/Nlgn pairs

expressed on different cells that are combined in vitro [31–35]. This type of analysis can pin-

point the interactions with the highest affinity, but they do not necessarily recapitulate the in

vivo situation. Ideally, cells carrying different Nrxns and Nlgns should be exposed to each

other simultaneously, in a multicell competition, to enable individual cells to test different

potential partners, as in living tissues.

We therefore applied the nanobarcoding tools to this problem (Figs 4 and S20). We coex-

pressed different Nrxns and Nlgns with specific barcoded proteins (S20 Fig), and we then

developed a cell-seeding assay that allows us to map all of the respective Nrxn/Nlgn interac-

tions (Fig 4). We applied this assay to 4 β-Nrxns and 7 Nlgn isoforms: Nrxn-1ß (SS#4(+)),

Nrxn-1 (SS#4(−)), Nrxn-2ß (SS#4(−)), Nrxn-3ß (SS#4(−)), Nlgn1(−), Nlgn1 (SS#B), Nlgn1

(SS#AB), Nlgn2 (−), Nlgn2 (SS#A), Nlgn3(WT), Nlgn4 (WT) (see also S21 Fig).

From the total number of cell contacts made by each Nrxn- or Nlgn-positive cell (using the

nanobarcodes as reference), we calculated the percentage of specific Nrxn/Nlgn pairs (Fig 4B–

4D). We found that some specific combinations are substantially more likely than others

(Fig 4D). Like the Nrxn2ß (SS#4(+))/Nlgn1(−), we regularly identified Nrxn1ß (SS#4

(+))//Nlgn3 (WT) pairs, which is surprising, since Nlgn3 is thought to have a lower affinity for

Nrxns than the Nlgn1 and Nlgn2 isoforms [35]. In addition, 3 other Nrxn/Nlgn pairs were

observed regularly: Nrxn1ß (SS#4(+))/Nlgn1(−), Nrxn2ß (SS#4(−))/Nlgn2 (SS#A) and Nrxn3ß

(SS#4(−))/Nlgn2 (SS#A), which are compatible with the previous literature, albeit none are

known to be of particularly high affinity. This implies that such an assay should be used for

testing further the Nrxn/Nlgn interactions, especially as it is able to take into account not only

the molecular binding but also the further dynamics that are induced by binding, such as

molecular endocytosis and trafficking [29].
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Fig 4. Multiplex identification of proteins using a neural network–based spectral analysis. (A) Experimental design of a co-seeding assay including 11

different cell types, labeled with specific nanobarcodes (see Methods section for details). (B) Example of an Nrxn-2ß (SS#4(+))/Nlgn-1 (SS#AB) and an Nrxn-

2ß (SS#4(−))/Nlgn-2 (−) pair (red boxes depict typical cell contacts). (C) Overlay of cells containing nanobarcode proteins and Nrxn- or Nlgn-positive cells.

Nanobarcode proteins are shown in green (anti-ALFA-Atto488). Nrxn or Nlgn isoforms are shown in magenta (anti-HA and anti-goat-Cy3). See S21 Fig for

example images of all proteins. Scale bars: 20 μm. (D) Interaction preferences of Nrxn/Nlgn isoforms. A total of 4,569 cell contacts, 147 images, 4 independent

co-seeding experiments. The Nrxn/Nlgn codes, such as SS#4(+) refer to the respective splicing sites of the proteins, according to the literature (e.gAU : Pleasenotethat}f :e:}hasbeenchangedto}e:g:}inthesentence}TheNrxn=Nlgncodes; suchasSS4ðþÞrefertothe:::}Pleaseconfirmthatthisiscorrect:., [24]). The

data underlying this Figure can be found in the S1 Data file, Sheet “Fig 4D”, available from http://dx.doi.org/10.17169/refubium-40101.

https://doi.org/10.1371/journal.pbio.3002427.g004
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Discussion

We conclude that the nanobarcoding technology is feasible in conventional microscopy assays.

We would like to point out that the error measured for the prediction precision on images

(S20 Fig) originates from a mixture of machine learning performance and the whole pipeline

of expression, immunostaining, and imaging the nanobarcodes. Considering this compound

effect, our results appear to be highly effective in identifying and localizing proteins in crowded

biological samples, using simple, conventional imaging tools.

One limitation of applying this method in conventional imaging is that single pixels could

reflect the emission of many proteins, and our analysis will only indicate the most common

one present in the respective pixel. In our present work, single pixels typically reflect only one

type of nanobarcode, since the tagged molecules are expressed in different compartments,

with limited overlap, whenever they are combined. To avoid this problem, if the nanobarcodes

find themselves in the same compartment, one needs to increase the resolution of the micros-

copy technique used.

In principle, nanobarcoding should be suitable for super-resolution analyses, especially as

the probes used (nanobodies) have been heavily used in super-resolution for a decade (e.g.,

[36]). One limitation is that super-resolution imaging tools have been notoriously difficult to

apply to more than 2 to 3 color channels, although improved hardware and spectral demixing

algorithms may alleviate this problem [37]. A number of other strategies have also emerged,

which could be employed for multichannel observations. First, one could rely fluorescence life-

time detection, to separate spectrally similar fluorophores [38], or, in a more advanced imple-

mentation, one could use single-molecule spectroscopy, for the same purpose [39]. An often

used approach for multiplexing, as mentioned in the introduction, is DNA-PAINT, for which

all our nanobodies are readily available, some have already been used for PAINT multiplexing

[4]. In fact, nanobody-based PAINT barcoding is now being used to identify endogenous pro-

teins in neurons, relying on primary antibodies bound by secondary nanobodies carrying dif-

ferent barcodes [40], albeit these procedures require extensive buffer exchanges and repeated

imaging, something we aimed to avoid in our current approach.

To maintain the ease of use of multicolor imaging experiments, but obtain a high resolu-

tion, one could rely on expansion microscopy, in which the sample is labeled with nanobodies,

exactly as we now performed, and is then embedded in a swellable gel and is expanded [41].

This type of procedure could raise the resolution of the images by at least 5- to 10-fold,

depending on the expansion factor of the gel, without major changes to our overall approach.

Multicolor images have been obtained with this approach, at very high resolutions [42,43].

Another potential limitation is the use of genetic encoding, since multiple constructs need

to be introduced into the same cells. Current developments in CRISPR/Cas technologies

should render this approach not overly difficult, as cell lines containing multiple constructs

can be readily obtained. In addition, the sequences (barcodes) could be expressed, purified,

and linked to secondary nanobodies, which are applied to reveal primary antibodies in immu-

nocytochemistry and are inherently multiplexable, as explained above for DNA-PAINT (see

also [44]), thereby extending the assay to many protein targets. Finally, since many other bar-

code epitopes could be used, our approach should have a large application range in the field of

cellular biology and proteomics.

Our deep learning approach adds to a rapidly growing body of work in the imaging field.

Similar deep learning methods, for example, image segmentation [45–48] and feature detec-

tion [49,50], are among the most sought-after applications in imaging. Other prominent appli-

cations include resolution enhancement [51–53] and increasing the signal-to-noise ratio [54].

Efforts are being made to democratize the application of deep learning in microscopy for
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nonexperts through open-source solutions [55–58]. Given these developments, we assume

that future implementations of nanobarcoding will become increasingly easier to analyze and,

therefore, more easily applicable.

Materials and methods

In silico design of nanobarcode proteins for protein identification

Nanobarcode proteins were designed in silico and consist of 3 main components: (1) the pro-

tein sequence; (2) up to 4 genetically encoded epitopes that form the nanobarcode; and (3) the

ALFA-tag [11] for testing purposes. The used epitopes have been validated previously and/or

in this manuscript (for an overview, see S1 Table). Short flexible linkers (5 amino acids long)

were added in between epitopes to ensure epitope availability. We used abbreviations for the

nanobarcode proteins to ensure readability (Fig 1B). For example, the abbreviation NLS(1101)

was used for the nanobarcode protein NLS_L2_mCherry(Y71L)_L3_GFP(Y66L)

_L4_α_L5_syn2. It contains 3 of the 4 nanobarcode epitopes, mCherry(Y71L), GFP(Y66L),

and syn2, plus the ALFA-tag for testing purposes. Accordingly, the NLS construct contains 4

flexible linkers (L2 to L5). The position of the ALFA-tag and the positions of the flexible linkers

varied among the palette of proteins used, according to the characteristics of each protein.

Full-length sequences are uploaded to the repository as an overview table and as single.ape

files (http://dx.doi.org/10.17169/refubium-40101/Plasmid_design.zip). The company Gen-

Script Biotech generated the pcDNA3.1(+) mammalian expression vectors containing the

nanobarcode sequences DNA, using the NheI/XhoI cloning sites.

Cell culture experiments with human embryonic kidney 293 cells (HEK293

cells)

HEK293 cell cultures. HEK293 cells were cultured in a CO2 incubator (37˚C and 5%

CO2). Cells were maintained in Dulbecco’s Modified Eagle Medium (Sigma-Aldrich, 10% fetal

bovine serum (Sigma-Aldrich), 2% L-Glutamine (Gibco), 0.6% penicillin/streptomycin

(Lonza). When confluent, cells were briefly washed with DPBS (Dulbecco’s Phosphate Buff-

ered Saline) and were detached from the culture dishes using 0.05% Trypsin–EDTA (1X,

Gibco), before culturing them in fresh medium. Approximately 24 hours before plasmid trans-

fection, HEK293 cells were seeded on 12-well plates containing poly-L-lysine–coated glass cov-

erslips. An exception was made for the co-seeding assay (see below), in which the cells were

first mixed in solution, before finally being seeded on glass coverslips.

Lipofectamine-based transfection of HEK293 cells. HEK293 cells were transfected with

1 to 2 μg of plasmid DNA per well, after mixing with 1.5 to 4 μl of Lipofectamine 2000. The

optimal time window for transfection was defined based on the protein performance in the

neural network analysis (Figs 2C, 2D, S19 and S20); see below for details about the neural net-

work identification procedure). Independent tested time windows were overnight (N = 1), 24

hours (N = 2), 48 hours (N = 2), and 72 hours (N = 1) for each protein tested.

Co-seeding of cell suspensions containing distinct HEK293 cell populations. For co-

seeding, transfected HEK293 cells were trypsinized, washed, and brought to suspension in

complete medium without antibiotics. Subsequently, cells transfected with different constructs

were mixed. Up to 11 different transfected cell populations were co-seeded into a single

12-well plate (CellStar) containing poly-L-Lysine–coated coverslips. Plates with co-seeded cells

were gently shaken in a humidified incubator for 1 hour and then stopped, allowing cells to

attach to the coverslips overnight.
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Nanobody production and coupling

Nanobodies were custom produced (NbSyn87 and NbSyn2) or simply purchased as catalog

products from NanoTag Biotechnologies GmbH (Göttingen, Germany), as described below.

Immunocytochemistry procedure

Immunocytochemistry with antibodies and or nanobodies. Transfected HEK293 cells

were fixed with 4% PFA for 45 minutes at room temperature, followed by a short rinse in PBS

and aldehyde quenching with 100 mM NH4Cl and 100 mM glycine in PBS, for 30 minutes at

room temperature. Cells were permeabilized and blocked using PBS supplemented with 0.01%

Triton X-100 and 2% bovine serum albumin (BSA) for 30 minutes at room temperature. Per-

meabilized cells were immunostained with the following fluorescent nanobodies: NbSyn87

(conjugated to DyLight 405), NbEGFP (FluoTag-Q anti-GFP Atto488, Cat#N0301-At488-L),

NbRFP (conjugated to Atto565, sold as FluoTag-Q anti-RFP, Cat#N0401-AT565-L), and

NbSyn2 (conjugated to Star635P). All nanobodies have been characterized and used in early

studies (the NbEGFP and NbRFP [4] and the NbSyn2 and NbSyn87 [13,59–61]). Nanobodies

were incubated for 1 hour at room temperature in the permeabilization/blocking buffer indi-

cated above, at final concentrations of approximatelyAU : PleasenotethatasperPLOSstyle; donotusethesymbol � inprosetomeanaboutorapproximately:}Hence; allinstancesofthissymbolhavebeenreplacedwith}approximately}throughoutthetext:70 nanogram/μl (NbEGFP), 70 nano-

gram/μl (NbRFP), approximately 70 nanomolar (NbSyn87), and approximately 70 nanomolar

(NbSyn2). Excess nanobody was thoroughly washed with PBS, and coverslips were mounted

on microscope slides using Mowiol. For antibody stainings (S2, S5, S16 and S21 Figs), proce-

dures were very similar, but now, stainings were achieved by 1-hour incubation with primary

antibodies followed by a 30- to 60-minute incubation with secondary antibodies (for details

regarding antibodies and used concentrations, see S2 Table).

EGF and transferrin assay

During EGF and transferrin pulse and chase, 12-well plates with HEK cells were kept in a

water bath (37˚C). As a first step, the cell medium was removed and washed twice with pre-

warmed HBSS (minimal buffer, no calcium, no magnesium, no phenol red). HBSS was supple-

mented with 1 mM CaCl2 and 1 mM MgCl2 directly before use. Transferrin-Alexa488

(Thermo Fisher, E35351) and EGF-Alexa647 (Thermo Fisher, T13342) stock solutions were

prepared and stored according to the company’s instructions. For our experiments, stock solu-

tions were diluted 1:100 in HBSS. HEK cells were pulsed with transferrin and EGF for 10 min-

utes, allowing the cells to endocytose these ligands. Afterwards, they were immediately fixed or

were chased (washed off) in a minimal buffer at 37˚C, for 10 or 20 minutes. Finally, all cells

were fixed and immunolabeled for the ALFA tag (see immunocytochemistry procedure) to

identify the nanobarcoded proteins.

Imaging and image processing

Multichannel images were obtained using a ZEISS LSM 710 AxioObserver equipped with a

ZEISS Plan Apochromat 63× oil DIC objective lens (NA 1.40). Images were acquired using

512 × 512 pixels, at 440 nm pixel sizes. Samples were illuminated with the following lasers

(fiber launching): λ = 405 nm, λ = 488 nm, λ = 561, and λ = 633 nm, excitation filters MBS

488/561/633 and MBS 405. Fluorescence was collated using the corresponding diffraction grat-

ing and bandwidth slit settings for emission 416 to 485 nm (CH1), 494 to 554 nm (CH2), 572

to 632 nm (CH3), and 641 to 730 nm (CH4).

The following combinations of lasers (excitation) and bandwidth slit settings were used for

our 10-channel recordings:
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1. 405 nm plus CH1-4 (images 1 to 4)

2. 488 nm plus CH2-4 (images 6 to 8)

3. Brightfield image for validation purposes (image 5)

4. 561 nm plus CH3-4 (images 9 and 10)

5. 641 nm plus CH4 (image 11)

Validation images of the fluorescent protein constructs stained with primary and secondary

antibodies (see S2 Fig and S2 Table) were obtained using an Olympus IX71 microscope

equipped with an Olympus UPlanSApo 60× oil objective (1.35 NA). These validation images

were only obtained to determine whether the proteins behaved as expected. Rab5a images of

S2 Fig and all work relating to the deep neural network was performed on the ZEISS LSM 710

AxioObserver.

Super-resolution assay

Transfected PC12 cells, a neuroblastoma cell line endogenous expressing SNAP25, were trans-

fected with the SNAP25(1100) construct, fixed, and stained with anti-SNAP antibody and

NbALFA. Transfection, fixation, and staining were similar to the procedures described above

in the “Lipofectamine-based transfection of HEK293 cells” and “Immunocytochemistry with

Antibodies and or Nanobodies” Methods sections. The only difference was that, this time, the

stainings were done sequentially, starting with NbALFA (30 minutes) and followed by the pri-

mary and secondary antibodies against SNAP25 (for details about the antibody dilutions, see

S2 Table).

STED imaging

STED images were obtained using the Abberior Quad Scan Super-Resolution Microscope.

Before imaging, a laser power meter (Thorlabs) was used to measure and set the energy levels

of the lasers used (approximately 1 μW for excitation, approximately 5 mW for depletion).

Images (pixel size: 50 nm; 1,400 × 1,400 pixels) of endogenous SNAP25 were obtained using

the Abberior STAR580 excitation and emission settings (561 nm excitation/775 nm depletion)

of the Imspector software. For images of SNAP25(1100), we used the Abberior STAR635P set-

tings (640 nm/775 nm depletion). Dwell time was set to 10.00 μs and line averaging to 2.

Data pipeline for training and evaluation of the deep network

The data for supervised training of the network are prepared by taking images of single trans-

fects with known nanobarcode proteins. To separate the foreground (fluorescing nanobar-

codes) from the background, we have used the kPCA algorithm [21]. The kPCA algorithm

learns a nonlinear map with a prespecified kernel function that transforms the data such that

maximum standard deviation is achieved along a reduced number of dimensions. For each

case, which contains a nanobarcode with a time window (e.g., SNAP25, 48 hours), we train

one kPCA model with a single reduced dimension over 4,000 pixels randomly selected from

all the available images and then apply the trained model to all the pixels (Fig 3). We found out

that applying a relative threshold at 0.8 of the range of the transformed values amounts to a

reliable separation of pixels into foreground and background (Fig 3). We aimed to gather a

maximum of 10,000 pixels per each case, but the actual available number could be smaller due

to the quality of captured images (S3 Table). To each sample containing proteins, we gathered
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10 blank samples to capture the background noise in the absence of any nanobarcodes

(S3 Table).

For the training procedure to cover situations where the actual signal-to-noise ratio is lower

than the gathered samples, we applied a contrast augmentation to the training data. We scale

the values of channel intensities in the range 0.5 to 1.5 in a stochastic manner each time the

network accesses the training data. The approach results in a more robust prediction as well as

less chance of overfitting. The effect of this on-the-fly data augmentation can be traced in vali-

dation accuracies being higher than the training accuracies in the training loop of the deep net-

work (Fig 3C).

Deep neural network for nanobarcode identification

We have designed and trained a deep neural network for the identification of protein nanobar-

codes from multichannel confocal images (S18 Fig). We have taken an approach similar to

image segmentation and have assigned to each pixel of the image probabilities corresponding

to the presence of each of the nanobarcodes, i.e., the network learns a mapping between chan-

nel intensities per pixel to a Multinoulli probability distribution. The components of the vector

x = (x1,. . .,xn)T represent intensities of each of the n imaging channels. This vector is fed to the

network as the input, producing an m-dimensional output y = (y1,. . .,ym)T. The components

of the vector y are related to the probabilities P(x2Ci; θ), with Ci denoting the fluorescence

data pertaining to the i-th nanobarcode class, and θ being the parameters of the network. In

order for the output of the network to be a normalized probability, the last layer applies a soft-

max function (S18B Fig),

P x 2 Ci; θð Þ ¼ softmax yið Þ ¼
expðyiÞPm
j¼1

expðyjÞ

The loss function, minimizing which with respect to θ constitutes the training procedure, is

the negative log-likelihood of the Multinoulli probability distribution,

L ¼ �
1

N

XN

n¼1

logðPðx 2 CiðnÞ; θÞÞ

where N is the number of samples in one mini-batch, and i(n) is the target class assigned to the

n-th sample. Maximizing the log-likelihood over the probabilities is equivalent to minimizing

the cross-entropy between the target distribution (which sharply separates classes in a one-hot

representation) and the distribution modeled by the network [5].

We have designed the feed forward network by stacking residual blocks (S18 Fig). Using

residual learning allows the training of significantly deeper network [62] In addition, by

increasing cardinality, i.e., inclusion of multiple parallel paths through the network, we allow

for high representation power with less network depth, thus preventing vanishing gradients

during the training procedure [63] (S18C Fig). Dense (or fully connected) layers of the net-

work apply an affine transformation to their input, followed by the nonlinear activation func-

tion g. Thus, for vectors z being transformed by the network at a dense layer, zout = g(Wzin+b),

where the weights matrix W and the bias vector b are trainable parameters of the layer. We

have used Rectified Linear Unit (ReLU) as the activation function g throughout the network

and have employed the batch normalization algorithm to regularize the processed data during

training and achieve better convergence [64] (S18 Fig).

PLOS BIOLOGY Nanobarcode-based protein identification

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002427 December 11, 2023 15 / 27

https://doi.org/10.1371/journal.pbio.3002427


Training and testing the deep network

The network is trained via gradient descent using the AdamW algorithm [65,66]. Gradient of

the loss function with respect to trainable parameters is calculated in the forward pass, and the

optimizer algorithm updates the parameters via backpropagation [67]. We use a starting learn-

ing rate of 5×10−4 for the AdamW optimizer and apply a step-decay of 0.9 per each 20 epochs.

A batch size of 458 is used (see “Hyperparameter optimization” for details).

The input data are split 80%–10%–10% into training, validation, and hold-out test datasets,

with the network being trained only on the training set, and the training procedure monitored

via the loss and accuracies obtained with the validation set. We found out that training the net-

work beyond 100 epochs is not necessary, as the validation loss plateaus before that, implying

that the network might begin to overfit to the training data (Fig 3C). We applied early stopping

by picking the trained network at an epoch after which the validation accuracies start to

decline (Fig 3C).

After the training of the network is complete, the inference is done on full-sized images by

feeding them to the network in a pixel-by-pixel scan. We have produced output images by

assigning false colors to each protein and using output probabilities to compose a weighted

color sum per pixel (S20 Fig). In order to account for slight variations in imaging conditions,

we additionally applied trainable shifts and scales to the input channel intensity values via a

contrast-modifier network. These transformations are separately trained per image in a self-

supervised manner via minimizing the total entropy of the output signal. For each image, 50

steps of training are done with the contract-modifier. Apart from this, we have applied no

other pre- or postprocessing to the images.

The performance of the trained network is evaluated based on the following metrics:

accuracy ¼
true pos:þ true neg:
all pos:þ all neg:

; precision ¼
true pos:
all pos:

recall ¼
true pos:

true pos: þ false neg:
; F1 � Score ¼

2

precision� 1 þ recall� 1

When the hold-out test set is used for evaluation, true/false positives and negatives are

determined based on predicted and target classes. When the inference is done on images with

a known nanobarcode, it is assumed that all the predictions not pertaining to blank or back-

ground should coincide with this nanobarcode. Thus, precision is the metric more suitable for

this evaluation (S20 Fig).

Hyperparameter optimization

Apart from trainable parameters, the network design contains a set of so-called hyperpara-

meters, which in our case are the maximum layer width in each branch, number of branches,

depth of each branch, batch size, and the learning rate. We have used the Adaptive Experimen-

tation Platform (AX) to optimize hyperparameters based on the network performance on the

validation set, i.e., its prediction accuracy after a fixed number of training epochs. The AX plat-

form yields optimal values for the hyperparameters via Bayesian optimization [68].

Supporting information

S1 Fig. Design and topology of protein constructs. (A-C) Legends for expected topology (A),

protein length (B), and construct epitopes (C). (D) Protein topology schemes for the 15 con-

structs used. Below is a list with detailed information about the respective topology scheme of
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each construct depicted in (B). Uniprot accession numbers (acc.nr.) are available under

https://www.uniprot.org/uniprot/. Sequences of all constructs are listed in “plasmid_sequen-

ce_information.xlsx” stored in “Plasmid_design.zip” available from http://dx.doi.org/10.

17169/refubium-40101. No protein, used for background signals.

(TIF)

S2 Fig. A visualization of nanobarcode-carrying proteins using antibodies. We validated

the correct nanobarcoding and expression of the protein constructs by simultaneous visualiza-

tion of the nanobarcodes and their respective endogenous epitope counterparts. The nanobar-

codes were visualized by imaging their GFP or mCherry fluorescence (relying on constructs

lacking the Y/L mutations of the chromophores), or by nanobody stainings, for barcodes lack-

ing GFP or mCherry. We immunostained the respective proteins of interest with antibodies

directed against protein-specific epitopes. (A) All protein constructs lacking mCherry or GFP

fluorescence. (B, C) Protein constructs with GFP fluorescence. These proteins exhibit a strong

localization to the perinuclear area, where antibodies penetrate more poorly than nanobodies

[69]. See S3 and S4 Figs for nanobody staining of the nanobarcode epitopes. (D, E) All protein

constructs having a fluorescent mCherry epitope. (F) All protein constructs having mCherry

and GFP fluorescence. To visualize the target protein component of the nanobarcoded pro-

teins, Cy5-coupled secondary antibodies were used. Scale bars: 10 μm.

(TIF)

S3 Fig. Visualization of 15 nanobarcode epitopes using 4 spectrally distinct nanobodies.

(A-D) Nanobody-based identification of the 4 genetically encoded nanobarcode epitopes

mCherry(Y71L), GFP(Y66L), syn87, and syn2 and the ALFA-tag epitope by their correspond-

ing nanobodies NbRFP, NbEGFP, NbSyn87, NbSyn2, and NbALFA. Scaling was optimized

for each protein. (D) VAMP4(1111) example (all epitopes present) and negative control condi-

tion: mock transfection (no DNA, no epitopes present) using same intensity scale. (E) As in

(D), now with upscale intensities. Scale bar: 50 μm.

(TIFF)

S4 Fig. Simultaneous nanobody staining of multiple epitopes. (A) Nonfluorescent epitopes

of SNAP25(1100) are recognized successfully by the corresponding nanobodies, independent

of the number of nanobodies used. The SNAP25(1100) construct is successfully stained when

using the NbALFA only (first row), when using the anti-GFP and anti-RFP nanobodies (sec-

ond row) or when using the anti-GFP, anti-RFP, and anti-ALFA nanobodies (third row). The

corresponding nanobarcode epitopes are detected, which indicates that there is no substantial

steric hindrance between the nanobodies (which is expected due to the small size of the nano-

bodies). The morphological features of the cells are similar to cells transfected with a SNAP25

construct containing fluorescent epitopes (B), which indicates that these constructs are com-

parable and, therefore, suitable for our investigations, as shown in Figs 3 and 4. Scale bars:

30 μm.

(TIF)

S5 Fig. Visualization of nanobarcoded proteins that act as markers for specific organelles.

The proteins indicated in the left-most column are markers for specific compartments, indi-

cated in the next column. The colocalization of these proteins and specific compartment mark-

ers is then indicated in the fluorescence images. Scale bars: 20 μm. For quantification, see S17

Fig, below.

(TIF)
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S6 Fig. A functional assay to test nanobarcoded proteins. Cells expressing different nanobar-

coded proteins were pulsed with transferrin conjugated to Alexa488 and with EGF conjugated

to Alexa647, for 10 minutes, allowing the cells to endocytose these ligands. Afterwards, they

were immediately fixed or were chased (washed off) in a minimal buffer at 37˚C, for 10 or 20

minutes. Finally, all cells were fixed and immunolabeled for the ALFA tag, to identify the

nanobarcoded proteins. (A, B) The behavior of transferrin and EGF, respectively. Transferrin

recycles, as expected, being released during the chase period (Kruskal–Wallis test followed by

Tukey post hoc test, p< 0.006 for endocytosis vs. 10- or 20-minute wash-off). No changes

were seen for EGF, as expected (Kruskal–Wallis test, not significant). N = 17–18 independent

experiments. (C, D) Same data as above, but indicating the nature of the nanobarcoded protein

in each of the independent experiments. The data underlying this Figure can be found in the

following Sheets of the “S1 Data file: “Tf_SFig 6A,” “EGF_SFig 6B,” “Tf_SFig 6C,” and

“EGF_SFig 6D.” The S1 Data file is available from http://dx.doi.org/10.17169/refubium-40101.

(TIF)

S7 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded Vti1a. (A) Visualiza-

tion of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the transfected

protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568 (white). The

3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the 10- and

20-minute chase (wash-off). To enable optimal visualization, the images are scaled differently,

with the image scaling indicated in all panels. Scale bars: 20 μm. (B) The nanobarcoding

scheme and the expected localization of the protein. (C) The NbALFA fluorescence intensity is

plotted against the transferrin (green) and EGF (magenta) intensity, for all signals measured in

2 independent experiments, for all conditions. All intensities were normalized to the medians

of the distributions and were then grouped in 20 bins of ALFA intensity, each containing simi-

lar numbers of values. The mean and SEM of each bin in the respective channels are plotted.

The data underlying this Figure can be found in the S1 Data file, Sheet “SFig 7C_Vti1a,” avail-

able from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s correlation coeffi-

cients for the distributions from panel C are shown, with the p-values corrected for multiple

testing using a Bonferroni correction.

(TIF)

S8 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded syntaxin 4. (A) Visu-

alization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the trans-

fected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

8C_STX4,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s cor-

relation coefficients for the distributions from panel C are shown, with the p-values corrected

for multiple testing using a Bonferroni correction.

(PNG)
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S9 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded syntaxin 6. (A) Visu-

alization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the trans-

fected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

9C_STX6,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s cor-

relation coefficients for the distributions from panel C are shown, with the p-values corrected

for multiple testing using a Bonferroni correction.

(TIF)

S10 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded syntaxin 7. (A)

Visualization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the

transfected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

10C_STX7,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s

correlation coefficients for the distributions from panel C are shown, with the p-values cor-

rected for multiple testing using a Bonferroni correction.

(TIF)

S11 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded endobrevin. (A)

Visualization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the

transfected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

11C_Endo,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s

correlation coefficients for the distributions from panel C are shown, with the p-values cor-

rected for multiple testing using a Bonferroni correction.

(PNG)
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S12 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded LifeAct. (A) Visual-

ization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the transfected

protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568 (white). The

3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the 10- and

20-minute chase (wash-off). To enable optimal visualization, the images are scaled differently,

with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcoding scheme

and the expected localization of the protein. (C) The NbALFA fluorescence intensity is plotted

against the transferrin (green) and EGF (magenta) intensity, for all signals measured in 2 inde-

pendent experiments, for all conditions. All intensities were normalized to the medians of the

distributions and were then grouped in 20 bins of ALFA intensity, each containing similar

numbers of values. The mean and SEM of each bin in the respective channels are plotted. The

data underlying this Figure can be found in the S1 Data file, Sheet “SFig 12C_LifeAct,” avail-

able from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s correlation coeffi-

cients for the distributions from panel C are shown, with the p-values corrected for multiple

testing using a Bonferroni correction.

(TIF)

S13 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded Rab5a. (A) Visuali-

zation of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the transfected

protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568 (white). The

3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the 10- and

20-minute chase (wash-off). To enable optimal visualization, the images are scaled differently,

with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcoding scheme

and the expected localization of the protein. (C) The NbALFA fluorescence intensity is plotted

against the transferrin (green) and EGF (magenta) intensity, for all signals measured in 2 inde-

pendent experiments, for all conditions. All intensities were normalized to the medians of the

distributions and were then grouped in 20 bins of ALFA intensity, each containing similar

numbers of values. The mean and SEM of each bin in the respective channels are plotted. The

data underlying this Figure can be found in the S1 Data file, Sheet “SFig 13C_Rab5a,” available

from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s correlation coefficients

for the distributions from panel C are shown, with the p-values corrected for multiple testing

using a Bonferroni correction.

(TIF)

S14 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded syntaxin 13. (A)

Visualization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the

transfected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

14C_STX13,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s

correlation coefficients for the distributions from panel C are shown, with the p-values
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corrected for multiple testing using a Bonferroni correction.

(TIF)

S15 Fig. Transferrin and EGF imaging assays, tested for nanobarcoded VAMP4. (A) Visu-

alization of transferrin-Alexa488 (green) and EGF-Alexa647 (magenta), as well as the trans-

fected protein, visualized with the ALFA nanobody (NbALFA) conjugated to AZdye568

(white). The 3 rows show the 10-minute pulse with the ligands (endocytosis), followed by the

10- and 20-minute chase (wash-off). To enable optimal visualization, the images are scaled dif-

ferently, with the image scaling indicated in all panels. Scale bar: 20 μm. (B) The nanobarcod-

ing scheme and the expected localization of the protein. (C) The NbALFA fluorescence

intensity is plotted against the transferrin (green) and EGF (magenta) intensity, for all signals

measured in 2 independent experiments, for all conditions. All intensities were normalized to

the medians of the distributions and were then grouped in 20 bins of ALFA intensity, each

containing similar numbers of values. The mean and SEM of each bin in the respective chan-

nels are plotted. The data underlying this Figure can be found in the S1 Data file, Sheet “SFig

15C_VAMP4,” available from http://dx.doi.org/10.17169/refubium-40101. (D) The Pearson’s

correlation coefficients for the distributions from panel C are shown, with the p-values cor-

rected for multiple testing using a Bonferroni correction.

(TIF)

S16 Fig. Endogenous SNAP25 and SNAP25(1100) have a similar cellular distribution

within SNAP25(1100) transfected PC12 cells. (A) Visualization of both endogenous

SNAP25 and SNAP25(1100) using SNAP25 specific primary and secondary antibodies, plus

NbALFA. (B, C) Negative control experiments, leaving out either primary antibodies (B) or

NbALFA (C). (D) Imaging control, using a mixture of the same secondary antibody with 2 dis-

tinct fluorophores (targeting both endogenous SNAP25 and SNAP25(1100)), to provide a

visual indication of the maximum expected colocalization. Bottom part of the figure: legend

for used symbols and schemes. Scale bars: 2.5 μm. For quantification, see S17 Fig.

(TIF)

S17 Fig. An analysis of the colocalization of epitope-tagged proteins to their expected com-

partments. The images from S5 and S16 Figs were analyzed by measuring the Pearson’s corre-

lation coefficient in different image regions. The box plot indicates the respective values,

compared to a control, consisting of similar measurements across the same regions in the pro-

tein-of-interest channel, and mirrored regions in the compartment channel. All proteins show

a colocalization that is significantly above the control values (Kruskal–Wallis test followed by

Tukey post hoc test, p< 0.006 for all proteins). The data underlying this Figure can be found

in the S1 Data file, Sheet “SFig 17_all_loc_func,” available from http://dx.doi.org/10.17169/

refubium-40101.

(TIF)

S18 Fig. Deep neural network for nanobarcode identification. (A) Schematic representation

of experimental protocol for obtaining multichannel images of HEK293 cells transfected with

a single protein construct. HEK293 cells are seeded (1) and transfected with the necessary

DNA plasmids. After an incubation of at least 14 hours, the HEK293 cells, now expressing the

protein constructs, are fixed and stained with nanobodies (2). Multichannel images from the

respective cells (3) are used for the training of a neuronal network. Wavelengths of excitation

lasers used: λ = 405 nm, λ = 488 nm, λ = 561 nm, and λ = 633 nm. Emission channels used:

417–485 nm (CH1), 495–553 nm (CH2), 573–631 nm (CH3), and 641–729 nm (CH4). (B)

Architecture of the deep network used for protein identification from channel intensity values

pertaining to each pixel. For the dense layers, given numbers indicate input and output
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dimensions. The network contains 4 parallel branches in the middle (2 are shown), the outputs

of which are summed and processed by the final layers. The branches are composed of sequen-

tial residual blocks with skip connections bypassing triplets of layers, as shown in the expan-

sion panel to the left (further details in Methods section “Deep neural network-based protein

identification”AU : PleasenotethatDeepneuralnetwork � basedproteinidentificationmentionedinS18captionismissingfromthetext:Pleaseconfirmthatthisisacorrectsection:). (C) The output probability distributions of the network are used to render

false color images that contain information on the identified proteins in each pixel. Scale bars:

50 μm.

(TIF)

S19 Fig. Deep network performance metrics for different protein expression times: Predic-

tion accuracies (top panel titles), as well as precision, recall, and F1-Score (shown in the

same order for each protein in the top panels), false positives and false negatives (bottom

panels). Data are shown for overnight, 24 hours and 72 hours protein expression, respectively.

The data underlying this Figure are available as file “FigS19.xlsx” from http://dx.doi.org/10.

17169/refubium-40101. The metrics for 48 hours are shown in Fig 2C and 2D.

(TIF)

S20 Fig. Deep network analysis results. (A) The prediction accuracy matrix of trained deep

networks, estimated over all the images in the dataset. To increase the complexity of the train-

ing and testing procedure, we expressed each construct for different time periods, and we then

trained and tested the deep networks with all of these different datasets. Each row corresponds

to a separate network that has been trained solely on the given dataset. Columns are the aver-

age pixel-wise prediction accuracy, assuming that all the pixels picked by the network in an

image should belong to the protein with which the cells have been transfected. The given accu-

racy values may include effects of misexpressed proteins, weak fluorescence signals, and imag-

ing noise. (B) From left to right, first column: merged channels (405 nm/CH1, 488 nm/CH2,

561 nm/CH3, 633 nm/CH4), before being processed by the network. Second column: images

produced by assigning false colors to bright pixels, assuming that all the proteins in the image

exactly match the given nanobarcode. Third column: output of the deep network, with each

pixel given the false color representing the protein picked by the network. Colors are scaled

based on class probabilities (Fig 2). Fourth column: false color output of the network overlaid

on the gray “cell halos” produced from the brightfield images. Brightfield images have been

processed to remove noise and background gradients and to enhance the contrast. (C, D) As

(A) and (B), for additional nanobarcode proteins. The data underlying this Figure are available

as file “FigS20_AC.xlsx” from http://dx.doi.org/10.17169/refubium-40101.

(TIFF)

S21 Fig. Validation of transfection and expression of protein constructs within HEK293

cells. To enable an analysis of Nrxn and Nlgn pairing, we coexpressed different Nrxn and

Nlgn constructs with specific nanobarcode proteins. This enables us to provide the different

Nrxn- and Nlgn-containing cells with a recognizable identity, without having to modify the

additional proteins themselves by nanobarcode tagging. However, this implies that we need to

verify whether the majority of Nrxn- or Nlgn-expressing cells also express the respective nano-

barcode proteins. (A, B) Nanobody staining with anti-ALFA-Atto488 reveals cells expressing

protein constructs with nanobarcodes. Antibody staining with mouse-anti-HA and Cy3-anti-

mouse reveals cells expressing NRXN or NL constructs with HA-tags. An overlay of both sig-

nals (anti-ALFA in green and anti-HA in magenta) indicates double-transfected cells, which

make up the majority of all cells. N = 2 independent experiments for each protein combina-

tion. Scale bars: 50 μm.

(TIF)
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S1 Table. Protein tag validation in literature and/or in this manuscript.

(DOCX)
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Rizzoli.
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31. Nguyen T, Südhof TC. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic

cell adhesion molecules. J Biol Chem. 1997; 272:26032–26039. https://doi.org/10.1074/jbc.272.41.

26032 PMID: 9325340

32. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers pre-

synaptic development in contacting axons. Cell. 2000; 101:657–669. https://doi.org/10.1016/s0092-

8674(00)80877-6 PMID: 10892652

33. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. Neurexins induce differentiation of GABA and gluta-

mate postsynaptic specializations via neuroligins. Cell. 2004; 119:1013–1026. https://doi.org/10.1016/j.

cell.2004.11.035 PMID: 15620359

34. Lee H, Dean C, Isacoff E. Alternative splicing of neuroligin regulates the rate of presynaptic differentia-

tion. J Neurosci. 2010; 30:11435–11446. https://doi.org/10.1523/JNEUROSCI.2946-10.2010 PMID:

20739565

35. Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B, et al. Splice form dependence of

beta-neurexin/neuroligin binding interactions. Neuron. 2010; 67:61–74. https://doi.org/10.1016/j.

neuron.2010.06.001 PMID: 20624592

36. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. A simple, versatile method for GFP-based super-

resolution microscopy via nanobodies. Nat Methods. 2012; 9:582–584. https://doi.org/10.1038/nmeth.

1991 PMID: 22543348

37. Andronov L, Genthial R, Hentsch D, Klaholz BP. splitSMLM, a spectral demixing method for high-preci-

sion multi-color localization microscopy applied to nuclear pore complexes. Commun Biol. 2022; 5:1–

13. https://doi.org/10.1038/s42003-022-04040-1 PMID: 36253454

38. Gonzalez Pisfil M, Nadelson I, Bergner B, Rottmeier S, Thomae AW, Dietzel S. Stimulated emission

depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime

phasor separation. Sci Rep. 2022; 12:1–15. https://doi.org/10.1038/s41598-022-17825-5 PMID:

35982114

PLOS BIOLOGY Nanobarcode-based protein identification

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002427 December 11, 2023 25 / 27

https://doi.org/10.3389/fnsyn.2016.00007
https://doi.org/10.3389/fnsyn.2016.00007
http://www.ncbi.nlm.nih.gov/pubmed/27047369
https://doi.org/10.1126/science.290.5500.2319
http://www.ncbi.nlm.nih.gov/pubmed/11125149
https://doi.org/10.1007/bfb0020217
https://proceedings.neurips.cc/paper_files/paper/2001/file/801272ee79cfde7fa5960571fee36b9b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/801272ee79cfde7fa5960571fee36b9b-Paper.pdf
https://doi.org/10.1016/j.neuron.2018.09.040
https://doi.org/10.1016/j.neuron.2018.09.040
http://www.ncbi.nlm.nih.gov/pubmed/30359597
https://doi.org/10.1016/j.cell.2018.07.002
https://doi.org/10.1016/j.cell.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30100184
https://doi.org/10.1083/jcb.130.3.537
http://www.ncbi.nlm.nih.gov/pubmed/7622556
https://doi.org/10.1038/S41467-021-27462-7
https://doi.org/10.1038/S41467-021-27462-7
http://www.ncbi.nlm.nih.gov/pubmed/34880248
https://doi.org/10.1371/journal.pbio.3000466
http://www.ncbi.nlm.nih.gov/pubmed/31658245
https://doi.org/10.1074/jbc.M114.549279
https://doi.org/10.1074/jbc.M114.549279
http://www.ncbi.nlm.nih.gov/pubmed/25190809
https://doi.org/10.1016/j.neuron.2005.08.026
http://www.ncbi.nlm.nih.gov/pubmed/16242404
https://doi.org/10.1074/jbc.272.41.26032
https://doi.org/10.1074/jbc.272.41.26032
http://www.ncbi.nlm.nih.gov/pubmed/9325340
https://doi.org/10.1016/s0092-8674%2800%2980877-6
https://doi.org/10.1016/s0092-8674%2800%2980877-6
http://www.ncbi.nlm.nih.gov/pubmed/10892652
https://doi.org/10.1016/j.cell.2004.11.035
https://doi.org/10.1016/j.cell.2004.11.035
http://www.ncbi.nlm.nih.gov/pubmed/15620359
https://doi.org/10.1523/JNEUROSCI.2946-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20739565
https://doi.org/10.1016/j.neuron.2010.06.001
https://doi.org/10.1016/j.neuron.2010.06.001
http://www.ncbi.nlm.nih.gov/pubmed/20624592
https://doi.org/10.1038/nmeth.1991
https://doi.org/10.1038/nmeth.1991
http://www.ncbi.nlm.nih.gov/pubmed/22543348
https://doi.org/10.1038/s42003-022-04040-1
http://www.ncbi.nlm.nih.gov/pubmed/36253454
https://doi.org/10.1038/s41598-022-17825-5
http://www.ncbi.nlm.nih.gov/pubmed/35982114
https://doi.org/10.1371/journal.pbio.3002427


39. Zhang Z, Kenny SJ, Hauser M, Li W, Xu K. Ultrahigh-throughput single-molecule spectroscopy and

spectrally resolved super-resolution microscopy. Nat Methods. 2015; 12:935–938. https://doi.org/10.

1038/nmeth.3528 PMID: 26280329

40. Unterauer EM, Boushehri SS, Jevdokimenko K, Masullo LA, Ganji M, Sograte-Idrissi S, et al. Spatial

proteomics in neurons at single-protein resolution. bioRxiv. 2023; 2023.05.17.541210. https://doi.org/

10.1101/2023.05.17.541210

41. Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science. 2015; 347:543–

548. https://doi.org/10.1126/science.1260088 PMID: 25592419

42. Kylies D, Zimmermann M, Haas F, Schwerk M, Kuehl M, Brehler M, et al. Expansion-enhanced super-

resolution radial fluctuations enable nanoscale molecular profiling of pathology specimens. Nat Nano-

technol. 2023; 18:336–342. https://doi.org/10.1038/s41565-023-01328-z PMID: 37037895

43. Shaib AH, Chouaib AA, Chowdhury R, Mihaylov D, Zhang C, Imani V, et al. Visualizing proteins by

expansion microscopy. bioRxiv. 2023; 2022.08.03.502284. https://doi.org/10.1101/2022.08.03.502284

44. Sograte-Idrissi S, Schlichthaerle T, Duque-Afonso CJ, Alevra M, Strauss S, Moser T, et al. Circumven-

tion of common labelling artefacts using secondary nanobodies. Nanoscale. 2020; 12:10226–10239.

https://doi.org/10.1039/d0nr00227e PMID: 32356544

45. Ronneberger O, Fischer PF, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmenta-

tion. Springer International Publishing Switzerland; 2015. pp. 234–241. https://doi.org/10.1007/978-3-

319-24574-4_28

46. Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, et al. Convolutional neural networks for auto-

mated annotation of cellular cryo-electron tomograms. Nat Methods. 2017; 14:983–985. https://doi.org/

10.1038/nmeth.4405 PMID: 28846087

47. Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, et al. Whole-cell organelle segmen-

tation in volume electron microscopy. Nature. 2021; 599:141–146. https://doi.org/10.1038/s41586-021-

03977-3 PMID: 34616042

48. Dyhr MCA, Sadeghi M, Moynova R, Knappe C, Kepsutlu Çakmak B, Werner S, et al. 3D surface recon-
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