
Utilizing alignment-free methods to enable
quantitative gene expression analysis of large

collections of sequencing data

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
am

Fachbereich Mathematik und Informatik

Freie Universität Berlin

vorgelegt von

Mitra Darja Darvish
Berlin

August 2023

Gutachter:

Prof. Dr. Knut Reinert, Freie Universität Berlin

Prof. Dr. Zamin Iqbal, University of Bath

Tag der Disputation: 8. Dezember 2023

Abstract

Due to advances in sequencing technologies, the amount of sequencing data is contin-

uously increasing and has reached an amount that calls for new data management

methods, to actually utilize the sequencing data. In the last years, a number of

different indices haven been developed to simplify the data, thereby reducing the

amount of space needed and enabling analysis on large collections of sequencing

data.

In this thesis, the index Needle will be introduced, which allows (semi-)quantitative

analyses on large data sets and outperforms other existing solutions with regards to

both space and speed.

Needle, like other indices, is based on alignment-free methods because in this

way the costly step of classical sequence analyses, the alignment, can be omitted.

Alignment-free methods are based on short subsequences of the actual sequence data.

There are multiple different methods to determine these subsequences and this thesis

provides a detailed analysis and comparison to determine the best method for such

indices. Moreover, the benchmarking application minions is introduced, which will

make comparisons between these methods easier as adding future new methods is

simple.

Needle is capable of utilizing large collections of sequencing data and determining

their gene expressions. Three analyses are performed, which act as a proof of concept

for how Needle can be utilized for large collections of sequencing data. Therefore,

Needle is applied in this thesis to find cancer signatures, a newly annotated mouse

transcript and tissue specific differentially expressed genes for different large data

sets.

In summary, indices like Needle are needed to actually take advantage of the

data wealth currently present in the biological and medical research field.

III

IV

Zusammenfassung

Dank moderner Sequenzierungstechniken steigt die Menge an Sequenzdaten kon-

tinuierlich und hat Ausmaße angenommen, die neue Methoden zur Datenverwal-

tung erfordern, wenn die Daten nicht nur gespeichert, sondern wiederverwendet und

ausgewertet werden sollen. In den letzten Jahren sind daher verschiedene neue In-

dexe entwickelt worden, die die Sequenzdaten vereinfachen und dadurch weniger

Speicherplatz verbrauchen sowie Analysen auf den Daten ermöglichen.

In dieser Arbeit wird der Index Needle vorgestellt, der (semi-)quantitative Anal-

ysen erlaubt und im Vergleich zu anderen bestehenden Indexen am besten performt

hinsichtlich Speicherverbrauch und Laufzeit.

Needle sowie die anderen Indexe beruhen auf Alignement-freien Methoden, da so

der zeit- und speicherintensive Schritt in der klassischen Sequenzanalyse, das Alig-

nieren, umgangen werden kann. Dies wird erreicht, indem nur kurzen Teilsequen-

zen, die in den gegebenen Sequenzdaten vorkommen, betrachtet werden. Es gibt

zahlreiche Methoden diese kurzen Teilsequenzen zu bestimmen und hier wird eine

detaillierte Analyse vorgenommen, um zu bestimmen, welche Methode am besten

geeignet ist. Gleichzeitig wird die Applikation minions vorgestellt, die Vergleiche

zwischen den verschiedenen Methoden erleichtern soll, indem zukünftige neue Meth-

oden leicht hinzugefügt werden können.

Needle ermöglicht es nicht nur große Mengen an Sequenzdaten in einem kleinen

Index abzuspeichern, sondern auch vielfältige Analysen durchzuführen. In dieser Ar-

beit wird Needle genutzt, um Krebssignaturen, ein neu-annotiertes Transkript und

unterschiedlich exprimierte Gene zu finden in verschiedenen großen Datensätzen.

Zusammenfassend lässt sich festhalten, dass es Indexe wie Needle braucht, um

den Datenreichtum in der biologisch-medizinischen Wissenschaft tatsächlich nutzen

zu können.

V

VI

Selbstständigkeitserklärung

Name: Darvish

Vorname: Mitra Darja

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dis-

sertation selbstständig und ohne Benutzung anderer als der angegebenen Quellen

und Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle

Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen sind,

habe ich als solche kenntlich gemacht. Diese Dissertation wurde in gleicher oder

ähnlicher Form noch in keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich

mich einverstanden.

Berlin, 29.08.2023

Unterschrift:

VII

VIII

Acknowledgements

I want to thank Prof. Knut Reinert for giving me the opportunity to work on this

topic in the first place as well as for his guidance and mentorship throughout my

doctoral journey.

I am also grateful for all the help and supervision I received through the In-

ternational Max Planck Research School for Biology and Computation, especially

from my thesis advisory committee consisting of Prof. Martin Vingron and Prof.

Bernhard Renard.

I am indebted to my colleagues, who were not only always open for discussions

and never tired to answer my questions, but also made the whole experience enjoy-

able.

Outside of the academic context, I would like to express my sincere appreciation

to my family and friends, who kept me sane all these years. Without my parents

and my brother’s unwavering support and their never ending belief in me I would

never have managed to come so far.

A special thanks goes to my partner in crime Joshua Kim, who never is short of

kind words when I need them the most and listens to me even late at night when

he would rather fall asleep.

Lastly, I want to use the opportunity to thank Prof. Beate Rau and her team

for saving my life and thereby making this experience possible in the first place.

IX

X

Contents

1 Introduction 1

2 Alignment-free quantification 5

2.1 Submers . 6

2.1.1 k-mers . 6

2.1.2 Strobemers . 8

2.1.3 Comparison of k-mers and strobemers 14

2.2 Representative submers . 25

2.2.1 Modmers . 26

2.2.2 Minimizers . 26

2.2.3 Syncmers . 28

2.2.4 Universal hitting sets . 31

2.2.5 Minimum decycling sets . 32

2.2.6 Polar sets . 32

2.2.7 Prefix words . 33

2.2.8 Sigmer . 33

2.2.9 Fleximer . 33

2.2.10 Comparison of different methods 33

2.2.11 Conclusion of the comparison 45

2.3 Transcript quantification . 46

2.3.1 Overview of existing transcript quantification application . . . 46

2.3.2 Needle count . 47

2.3.3 Comparison of transcript quantification applications 48

3 Indexing big data 55

3.1 Bloom filter . 56

3.2 Colored de Bruijn graph . 57

3.3 Error handling . 58

3.4 Non-quantitative indices . 59

3.4.1 SeqOthello . 59

3.4.2 Mantis . 60

XI

3.4.3 Bifrost . 62

3.4.4 MetaGraph . 63

3.4.5 Sequence Bloom Tree . 64

3.4.6 COBS and MetaProFi . 67

3.4.7 RAMBO . 69

3.4.8 PAC . 70

3.4.9 Raptor . 71

3.5 Quantitative indices . 71

3.5.1 Reindeer . 72

3.5.2 Gazelle . 73

3.5.3 Counting DBG . 74

3.6 Needle . 75

3.6.1 Workflow Needle . 75

3.6.2 IBF . 78

3.6.3 HIBF . 79

3.6.4 Counting IBF . 82

3.6.5 Implementation . 85

3.6.6 Normalization . 86

3.6.7 Dynamic update . 87

3.6.8 Parallelization . 87

3.7 Comparison of quantitative indices 88

3.7.1 Accuracy . 89

3.7.2 Space and speed . 93

3.7.3 Conclusion . 99

4 Utilizing large collections of sequencing data 101

4.1 Determining genes of interest . 101

4.2 Finding a newly annotated mouse transcript 103

4.2.1 Data and building the Needle index 104

4.2.2 Finding Xert in the original data 104

4.2.3 Finding Xert in mouse randomly picked RNA-Seqs 105

4.2.4 Conclusion . 107

4.3 Cancer signatures . 108

4.3.1 Data and building the Needle index 109

4.3.2 Finding TNBC signature . 109

4.3.3 Finding NAT signature . 112

4.3.4 Conclusion . 112

5 Conclusion 115

XII

References 117

A Appendix 133

A.1 Repositories . 133

A.2 Alignment-free quantification . 133

A.2.1 Submers . 133

A.2.2 Representative submers . 133

A.3 Indexing big data . 142

A.3.1 Overview of indices . 142

A.3.2 Space and Speed Analyses . 142

XIII

Chapter 1

Introduction

In 2001, the Human Genome Project revealed the first draft sequence of the hu-

man genome [1] and thereby marked a turning point in the fields of biology and

medicine by introducing big data to these fields [2]. While the first draft sequence

of the human genome took 15 months to complete and had a cost of around $ 300

million [3], nowadays sequencing can be cheaper than $ 1, 000 [3] and the current

Guinness world record for fastest DNA sequencing technique takes a bit more than

five hours [4]. The constant development in the field might decrease the cost and

time consumption even further. As a result, sequencing is a standard method in

biological and medical research to investigate a wide range of questions, from causes

for diseases over differences between species to the function of singular genes [2].

This leads to a large amount of sequencing data and to projects aiming to pro-

vide a database for this data like the Sequence Read Archive [5] or GenBank [6].

Currently, the Sequence Read Archive contains more than 30 petabytes of sequenc-

ing data [7, 8]. Considering the exponential growth over the last years (as depicted

in Figure 1.1) and projects like the GenomeAsia 100K project [9] or the American

1,000,000 genome project [10], which seek to sequence even more data, the size of

these databases are expected to grow even further.

Accumulating and storing all this data only makese sense, however, if it can be

either analyzed on a large scale or if can be reused after the first analysis.

Biomedical research could be advanced further by analyzing sequencing data on

such a large scale [11]. For instance, population studies depend on a large collections

of sequencing data to account for the diversity within a population or in-between

multiple populations. Understanding individuals genomes and the differences better

could lead to more targeted medicine and help with fulfilling the dream of person-

alized medicine [12]. Moreover, machine learning methods are entering the field

of bioinformatics, including sequence analysis, due to their success in other fields

like image analysis [13, 14]. As machine learning methods rely on large collections

of data for their training, they are dependent on the possibility to utilize existing

1

2 Chapter 1. Introduction

Figure 1.1: Growth of the Sequence Read Archieve. The figure is taken from
[7].

data [14].

The need for analyzing large collections of sequencing data led to databases like

the Cancer Genome Atlas [15], which enable such analysis by preprocessing the

data. While such databases are a valuable resource [16], databases like this need to

constantly update their processed data to incorporate new information like a newly

annotated transcript [17]. Furthermore, currently these databases only cover a small

percentage of the available sequencing data, for example the Cancer Genome Atlas

covers around 2 Petabytes of sequencing data [17], which is roughly 7 % of the whole

Sequence Read Archive.

Reusing sequencing experiments can advance research as well by finding a new

hypothesis, validating a thesis or by providing more data for a study without the

need to sequence. If the sequencing databases were searchable for transcripts, one

could use them to find possible candidates connected to a condition of interest. For

instance, finding transcripts that are present in cancer samples, but not in healthy

tissue and then do more refined research on these found transcripts. Similarly, if

a research group has found a transcript in their experiment to be involved in a

disease, they could validate their findings by searching all existing sequencing data

of that disease. However, reusing sequencing experiments can only be achieved

under the condition that experiments of interests can be found in the sequencing

3

databases. Currently though, experiments can either be retrieved solely based on

the given metadata, not on the sequences itself, or by searching through a subset

of the database [11]. Both approaches are limiting and the reliance on metadata

is especially problematic as it can be incomplete or outdated, therefore making it

impossible to find all experiments of interest.

The reason why analyses on a large collection of sequencing data or determining

all experiments of interest based on the actual sequencing data is not possible, is

that established strategies to handle sequencing data do not scale to the amount of

existing sequencing data. This holds for strategies indexing sequencing data like the

Burrows-Wheeler Transform [18], the FM-index [19] or the suffix tree [20] as well as

for strategies to analyze the data, which typically includes a costly alignment step,

where the sequencing information is aligned to a known genome.

Approaches that work well in other fields handling similar amounts of data like

online search engines are not applicable to sequencing data for a number of reasons.

Among others, sequencing data, especially when considering metagenomics, has a

higher magnitude of unique terms compared to documents based on natural lan-

guages. Moreover, search engines are typically optimized for the top ten results and

on exact matches. In biomedical research due to the diversity of biological data,

approximate results are of interest and so are all results not only the top [21].

Furthermore, one important field of interpreting sequencing data is to determine

gene expression. Gene expression is a measure of transcriptional activity of a gene,

which is related to abundance of its respective protein or non-coding RNA [22]. By

determining gene expression of sequencing data, the underlying mechanisms of phe-

notypes can be better understood. This can improve medical research by aiding the

development of treatments, when comparing the gene expressions between healthy

and disease phenotypes [23]. Therefore, in order to utilize the large sequencing data

collections completely, it is necessary to have a quantitative index.

To understand the requirements such a quantitative index needs to fulfill, the

typical analysis of a small sequencing data set is sketched here.

Gene expression can be measured based on microarrays or on RNA sequencing

(RNA-Seq), but as RNA-Seq is nowadays the more common approach [24], the focus

of this thesis will lay on RNA-Seq.

There are different protocols for RNA-Seq (see [25] for an overview). Depending

on the protocol, the preparation of a sample differs as well as the outcome. In

general, RNA is isolated as a first step. Then either adapters are attached to the

RNA directly or to cDNA, which has been synthesized from the RNA. Following this

step is amplification, increasing the amount of RNA/cDNA, which then is sequenced

from one end (single read) or both ends (paired). The resulting sequences are called

reads and their lengths depend on the used sequencing technology [22, 25]. Most

4 Chapter 1. Introduction

commonly, these reads have a length of 75 to 400 bp (short reads), but recently with

advance of sequencing technology long reads of length 1, 000 to 50, 000 bp (long

reads) gained more and more traction [25, 26]. Short and long reads do not only

differ in their read length, but also in the number of reads that can be produced,

which is in the range of 109-1010 for short reads and 106-107 for long reads. Moreover,

long reads have a higher error rate than short reads [25].

These reads are then typically matched with a reference genome or reference

transcriptome by aligning them. Due to sequencing errors, mutations and repetitive

regions, these alignments can be imperfect by either not aligning completely or

uniquely [27]. Based on the number of these mapped reads, transcripts and genes can

be quantified and then compared within a sample or between samples. Depending on

the comparison, different normalization methods are appropriate because transcripts

and genes within a sample have different lengths and the longer a transcript or a

gene, the more likely it is to have a higher number of mapped reads. Additionally,

comparisons between samples and experiments need to account for differences in

sequencing depth [28].

Aligning the reads to a reference is costly in terms of space consumption and

run time. Therefore, in order to handle large collections of sequencing data, an

alternative to aligning became necessary and was found with alignment-free methods

[14]. Alignment-free methods are not new [14, 29], but applications employing these

methods are a recent development, see for example [30, 31].

How alignment-free methods can be applied to determine gene expression will be

explained in detail in chapter 2, before exploring these methods on large collections

of sequencing data in chapter 3.

Moreover, chapter 3 gives an overview of indices simplifying the sequencing data

thereby reducing the space consumption and enabling faster searches in order to

make sequencing data reusable and to enable (new) analyses on larger collections

of data. Most of these methods do not provide a quantification, but solely answer

the question of whether a transcript is present or absent in a sequencing experiment

[32]. Therefore, the focus will be on the quantitative index by Darvish et al. named

Needle [32].

Afterwards in chapter 4 analyses of large collections of sequencing data with

Needle are shown to prove the usefulness of utilizing these data collections. These

analyses include the finding of cancer signatures as well as validating a newly anno-

tated mouse transcript.

Chapter 2

Alignment-free quantification

The typical workflow to quantify transcripts from a RNA-seq experiment is to align

the reads to a known reference genome and count the number of aligned reads for

a transcript. This count value is then normalized and used as an expression value,

which allows the comparison to other transcripts within the same experiment or to

the same transcript between different experiments [27].

This workflow has one major drawback: As the number of RNA-Seq experiments

increases, so do the computational power and storage required for alignment.

For this reason, alignment-free methods were introduced to speed up analy-

sis. Instead of aligning reads to a known genome or transcriptome, information

of the sequence is obtained by counting the occurrences of words (subsequences

of a certain length), considering common or unique substrings between samples or

different methods based on information theory [33, 34]. The purpose of most de-

veloped alignment-free tools is not to determine transcript quantification though,

instead they were designed for genome assembly and metagenomics (see [34] for an

overview).

In 2014, Sailfish was introduced as the first alignment-free tool for transcript

quantification [35], which was then shortly followed by RNA-Skim [36] in the same

year, kallisto [37] in 2016 and Fleximer [38] and Salmon [39] in 2017.

The basis of most alignment-free methods for transcript quantification is the

usage of small subsequences of a given sequence to determine its most likely origin

in a transcriptome. These subsequences are from here on called submers (note that

the term was used slightly differently by Edgar [40]).

Here, a new method called Needle count is presented. The idea of Needle count

is to count the occurrences of submers in a sequence file and quantify a transcript

simply by using the median of the count values of submers in the queried transcript.

Despite its simplicity, Needle count is competitive with the above mentioned tools

as will be shown later in 2.3.

Before going into the actual methods used by these tools, an overview of submers

5

6 Chapter 2. Alignment-free quantification

is given as there has been a lot of development over the last years and an in-depth

understanding is beneficial for understanding the implementation choices made for

Needle count.

2.1 Submers

The purpose of submers is to simplify the sequencing data and to make analysis

more affordable by reducing the run time and the memory consumption, while still

capturing the underlying information. Therefore, the following three criteria are

good metrics to compare submer methods:

1. Run time and set size

The number of created submers is of interest because a smaller set size means

the submers need less space. This leads to a smaller memory footprint and

enables faster computation in downstream analysis, resulting in an overall

decrease in run time.

2. Uniqueness of a submer

The uniqueness of a submer is relevant for determining the genomic origin of

a submer [41]. If a submer is unique in a genome, its origin can be exactly

located under the condition that there are no sequencing errors or mutations.

3. Impact of sequencing errors and mutations

Sequencing errors and mutations play a crucial role in sequence comparison

as they introduce mismatches or insertion and deletions between otherwise

similar sequences, therefore the impact and the handling of sequencing errors

and mutations is of interest.

To determine the best submers for a task is still discussed and researched (for

example see [42]), but so far the research has mostly concentrated on alignment-

based applications, here the focus will be on alignment-free applications.

2.1.1 k-mers

The most frequently used submers are k-mers, which consist of all subsequences

in a given sequence of length k [43, 44]. If the reverse complement strand is also

considered, a k-mer is called canonical, if it is the smaller k-mer between itself and

its reverse complement.

As an alternative to these contiguous k-mers, gapped k-mers (also called spaced

k-mers [45, 46]) were introduced with the goal to make k-mers more robust to

sequencing errors and mutations. A gapped k-mer is a k-mer, where some g positions

in the k-mer are not considered (called gaps). For example, for k = 5 and g = 2

2.1. Submers 7

with a gap at the second and the fourth position (symbolized by the shape “10101”

with “0” marking a gap) the k-mers “ACGTA” and “AGGCA” would be equal to

each other as they are both seen as “AGA”.

Run time and set size

Obtaining all k-mers in a sequence can be achieved in linear time by iterating over

every position. Because it is necessary to consider every position, it is not possible

to achieve a faster than linear time. A fast method to construct ungapped k-mers

is to determine the first k-mer in a sequence and then shift to the next k-mer by

dropping the first nucleotide of the k-mer and adding the next nucleotide to the end

[47]. As this does not work for gapped k-mers because adjacent gapped k-mers do

not overlap, obtaining gapped k-mers should take more time.

For a given sequence of length sn, sn − k + 1 k-mers are obtained. Usually and

especially for genomes, not all of these k-mers are unique, therefore, the set of all

k-mers is typically smaller than sn − k + 1. In theory, a set could have a maximum

size of 4k, in practice, the size is considerably smaller.

Gaps do not influence the number of obtained k-mers. However if gapped k-

mers have the same length as ungapped k-mers, the final set size could be smaller

because the number of possible gapped k-mers is smaller than the number of all

possible k-mers. More precisely, the difference is 4k/4k−g = 4g. For this reason,

it is generally better to compare gapped k-mers to ungapped k-mers such that the

number of considered nucleotides are the same, which is the case when the number

of 1’s in the shape of the gapped k-mers is equal to the k of the ungapped k-mer.

Uniqueness

The uniqueness of k-mers is dependent on the sequence and the choice of k. The

greater k is, the more likely it is that the resulting k-mer is unique.

Impact of sequencing errors and mutations

A typical metric of sequence comparison with k-mers is based on the number of

shared k-mers between two sequences. If a sequence A is the same as a sequence

B, A shares all its k-mers with B. Mutations or sequencing errors can introduce

mismatches, insertions or deletions between these two sequences, the so called k-

mer lemma gives then the minimal number of shared k-mers, given e errors1 and a

sequence length of A sA:

sA − k + 1− e · k (2.1)

1The term errors here includes mutations as well.

8 Chapter 2. Alignment-free quantification

shared k-mers [48].

With an increasing number of possible mismatches e due to a high sequencing

error rate or a high mutation rate, the k-mer lemma becomes less meaningful, as

the number of minimal shared k-mers becomes 0.

For gapped k-mers, the k-mer lemma holds as well, but often returns too small a

threshold [48]. Considering the example of the gapped k-mer “101” for a sequence of

length sn = 5 and one error e = 1, the k-mer lemma returns zero shared k-mers with

the sequence without an error. However, even if the error is at the worst position in

the sequence, at least one k-mer remains intact (as can be seen in Figure 2.1).

Figure 2.1: Example of gapped k-mers “101” in a sequence with one error.
Gaps are highlighted in grey, the error is marked with an “X”. The first and the last
k-mer do not match due to the error, but the k-mer in the middle is still a match
because the error falls into the gap.

2.1.2 Strobemers

In 2021, strobemers were proposed as an alternative to k-mers. Strobemers are

motivated by the observation that k-mers (including gapped k-mers) do not handle

insertions and deletions well when used for sequence comparison, because k-mers

can not match over a region containing an insertion or deletion [41].

Strobemers are constructed by combining multiple shorter submers of a certain

length with gaps over variable length [41]. The fact that the gaps are not prede-

fined makes it possible to disregard insertions and deletions (see Figure 2.2 for an

example).

Originally, Sahlin introduced three different types of strobemers: minstrobemers,

randstrobemers and hybridstrobemers [41]. Recently, three new strobemer types

were introduced [49], however, these three new types are beyond the scope of this

work and not further discussed.

For minstrobemers, randstrobemers and hybridstrobemers, a user needs to choose

an l for the length of the shorter submers called strobes, an order n defining how

many strobes should be combined, a wmin marking the start of the sequence position

2.1. Submers 9

offsets for picking the strobe and a wlen giving the length of the windows. Strobe-

mers are from here on denoted by (n, l, wmin, wlen). Because a strobemer consists of

n l-mers, it can be compared to k-mers of length n · l [41].

Note that the definition is slightly different to Sahlin’s definition [41] as there

a wmax is used as the end of sequence position offset, instead of the length of the

window, therefore wmax = wlen + wmin − l.
All strobemers are constructed by iterating over a given sequence: at every

position i, the submer of length l is obtained (m1), this is the first part of the

strobemer, then the sequence for the positions [i+wmin : i+wmin+wlen) is considered

and a strobe is picked according to the rules of the strobemer type, this is the

second part of the strobemer (m2). If n == 2, then the strobemer consists of only

two strobes m1 and m2. If the order is greater than 2, then the sequence for the

positions [i + wmin + wlen : i + wmin + 2 · wlen) is considered for finding the third

part of the strobemer (m3). Generalized, for the jth part of the strobemer mj with

j > 1 the sequence in the window [i+wmin + (j − 2) ·wlen : i+wmin + (j − 1)wlen)

is taken into account [41].

Similar to canonical k-mers, canonical strobemers are defined as the minimal

strobemer between itself and its reverse complement when considering the reverse

complement strand.

Minstrobemers

For minstrobemers, the mj with j > 1 is picked by comparing all l-mers in the

corresponding window [i+wmin + (j− 2) ·wlen : i+wmin + (j− 1)wlen) and picking

the smallest submer [41] (see Figure 2.2 for an example).

Randstrobemers

For randstrobemers, the already picked l-mers in previous positions influence the

choice of mj with j > 1. This is achieved by calculating a hash value for all previous

l-mers (m1 to mj−1) concatenated with every l-mer in the corresponding window

[i+wmin+(j−2)·wlen : i+wmin+(j−1)wlen), the l-mer in the window that minimizes

the hash value is then picked as mj. Any hash function accepting a sequence string

and returning a numeric value would work for this approach [41] (see Figure 2.3 for

an example). Finding a good hash function is not trivial and is an active field of

research [50].

10 Chapter 2. Alignment-free quantification

Figure 2.2: Example of (2,2,2,6)-minstrobemers. The first part of the min-
strobemer is the first 2-mer, which is then combined with the smallest 2-mer in the
following window. The second part of all minstrobemers does not change as the min-
imum remains the same. The resulting minstrobemers are: ACAG, CGAG, GTAG,
TCAG. If the nucleotide ’T’ marked in red is deleted, the first two minstrobemers
remain the same. If a nucleotide is inserted before it, the second minstrobemer re-
mains the same. This shows that strobemers can be more robust to insertions and
deletions than k-mers, where all four k-mers would have been impacted by insertion
or deletion.

Figure 2.3: Example of (2,2,2,6)-randstrobemers. The first row gives hash
values for every 2-mer starting at that position. The first part of the randstrobe (a) is
the first 2-mer. The second part is picked by choosing the first 2-mer in the following
window that minimizes function f(a, b) = (h(a) + (hb))%3, where h(x) refers to the
hash values. This function is just used to illustrate the randstrobemers better, but
any function accepting two hash values would work. For the first randstrobemer,
this is f(AC,GT) = (1 + 11)%3 = 0. Both 2-mers are then combined to one
randstrobemer. The resulting randstrobemers are: ACGT, CGCG, GTGG, TCGA.

Hybridstrobemers

Hybridstrobemers intend to combine the approach of minstrobemers and randstrobe-

mers. This is achieved by creating x disjoint groups of the l-mers in the correspond-

ing window of mj [i+wmin + (j− 2) ·wlen : i+wmin + (j− 1)wlen), the rth group is

considered with r = h(mj−1)%x and the minimizer in this group is then picked as mj

(see Figure 2.4 for an example). Therefore, by letting the previous submer influence

2.1. Submers 11

the chosen group, previous submers like in randstrobemers have an influence while

the choosing method in a group equals the approach of the minstrobemers [41].

In the study from Sahlin [41] x = 3 was used. Similar to the randstrobes any

hash function h accepting a sequence string and returning a numeric value would

work for this approach.

Figure 2.4: Example of (2,2,2,6)-hybridstrobemers. The first row gives hash
values for every 2-mer starting at that position. The first part of the hybridstrobe
is the first 2-mer. The second part is picked by dividing the following window in 3
disjoint groups, where the first two groups contain 2 2-mers and the last group one
2-mer as the window contains in total 5 2-mers. The subwindow containing the rth
group (here marked in blue for each hybridstrobemer) is considered according to the
function r = h(mj−1)%x with x = 3. In the rth group the 2-mer with the smallest
hash value is picked. For the first hybridstrobemer, the r = h(AC)%3 = 1%3 = 1th
group is considered, the smallest hash value in that subwindow is associated with
CG, therefore this is the second part of the hybridstrobemer. Both 2-mers are
then combined to one hybridstrobemer. The resulting hybidstrobemers are: ACCG,
CGCG, GTGC, TCGC.

Run time and set size

Like k-mers, obtaining all strobemers takes linear time because an iteration over

every position is necessary. Minstrobemers are expected to be the fastest strobemer

type. This is because all strobes besides the first one are obtained by taking the

minimum in a window and once a minimum is known for one window, the following

strobemers only need to compare to this minimum, unless the minimum is the very

first l-mer and falls out of the bounds of the window, then all l-mers in a window

need to be compared, but this unlikely to happen with every shift.

Randstrobemers on the other hands are expected to have the longest run time

as the strobes have to be calculated every shift again because they are depending

on the first strobe.

Hybridstrobemers should be fast in computing a minimum as only a subset of

12 Chapter 2. Alignment-free quantification

all l-mers in a window are taken into account, but because the subset changes

depending on the first strobe, it is more likely that the minimum calculation has

to be repeated every shift. Therefore, hybridstrobemers are expected to be slower

than minstrobemers but faster than randstrobemers.

For a given sequence of length sn, sn − (wlen · (n − 1) + l) + 1 strobemers are

obtained, but similar to k-mers not all of them are unique, therefore, the set size

can be smaller. The theoretical maximum set size is for strobemers the same as it

is for k-mers.

Uniqueness

The uniqueness of strobemers is dependent on the sequence and the choice of param-

eters. As minstrobemers are the most likely to share their strobes between shifts,

they are also most likely to result in the least amount of unique strobemers.

Impact of sequencing errors and mutations

Considering two sequences A and B, which differ only in e positions due to mutations

or sequencing errors, the minimal number of shared strobemers is: sA − (wlen · (n−
1) + l) + 1− e · (wlen · (n− 1) + l) with sA being the sequence length of A. This is

due to the fact that (wlen · (n− 1) + l) is the span of the sequence that is taken into

account during the strobemer construction (in all three strobemer examples above,

this equals the length of both boxes).

However, this is a rather loose fit, as strobemers can be unaffected by errors (see

above Figure 2.2 for an example). As the first strobe in a strobemer is always set,

strobemers where the first strobe covers the error will always be impacted, therefore,

at least l strobemers are impacted by one error (in Figure 2.2 the last two strobemers

would be impacted by any error regarding the marked nucleotide ’T’).

Hence, in the best case that only the first strobes are impacted by errors se-

quences A and B share sA − (wlen · (n− 1) + l) + 1− e · (l) strobemers.

For the other strobes one of the following three cases can apply, where mj refers

to any strobe besides the first one and the window j is the corresponding window

mj originates from:

1. The error occurs in the sequence of mj.

2. The error occurs in the window j, but not in the sequence of mj and has an

impact on mj as a different l-mer is now picked as strobe mj.

3. The error occurs in the window j, but not in the sequence of mj and it has no

impact on mj.

2.1. Submers 13

How likely it is that the first case occurs is depending on the number of l-mers

considered in one window. If the number of l-mers in one window is small, then it is

even possible that every l-mer is impacted by an error and therefore every strobemer

covering the error position is affected. On the other hand, too large a window is

also not desirable as the likelihood of a window spanning over more than one error

increases with the window size.

The minimal number of unaffected l-mers in a window can be calculated with

the k-mer lemma (Equation 2.2), which is wlen − l + 1− l · e, where wlen − l + 1 is

the number of l-mers in one window. Therefore, the probability of case 1 can be

estimated by: 1− 1
wlen−l+1−l·e .

The likelihood of the second case depends on the type of strobemers. For min-

strobemers, an error can introduce a new minimum and therefore change the strobe

mj. If the distribution of l-mers was random, the probability that a new l-mer is

the new minimum is 1/(wlen − l + 1). As an error can introduce multiple changed

l-mers, this probability has to be multiplied with the number of changed l-mers.

Randstrobemers and hybridstrobemers on the other hand also depend on the

previous strobes and therefore it is less likely that an error somewhere else in the

window than in the actual strobe has an impact.

Therefore, the probable amount of strobemers impacted differs on the type of

strobemer. Calculating a tight lower bound on the minimal number of shared strobe-

mers similar to the formula based on the k-mer lemma (Equation 2.2) given above

is hard due to the probable nature that errors have in strobemers.

Moreover, the distribution of affected strobemers also depends on the strobemer

type.

Minstrobemers tend to pick similar strobes for adjacent strobemers as the mini-

mum often remains the same. Therefore, if an error impacts the minimum directly

by changing the sequence of the minimum or by creating a new minimum in the

window, it is likely that the adjacent minstrobemers are impacted as well.

Randstrobemers on the other hand are more likely to pick different strobes for

adjacent strobemers, therefore it is likely that an error hits one strobe, but it is

rather unlikely that the adjacent randstrobemers are impacted as well.

Hybridstrobemers as a combination of the other two types will probably perform

somewhere in the middle.

Therefore, one would expect the randstrobemers to be the best distributed

strobemers.

14 Chapter 2. Alignment-free quantification

2.1.3 Comparison of k-mers and strobemers

Besides a theoretical analysis, a practical evaluation and a comparison between

different methods on actual data sets can give a better insight. Therefore, the

project minions [51] was developed. Minions is a software project based on SeqAn

[52] and offers two things: Firstly, it contains every submer method discussed here

that is not part of SeqAn and therefore, minions can be used as library for these

methods. Secondly, it consists of benchmarking methods and even has snakemake

[53] files to easily reevaluate the methods. As finding submers is an active research

field, minions can be easily used as a benchmarking tool when a new method is

found by just adding the new method to minions and repeating previous analyses.

In minions, a hash value is stored for the submer rather than its actual sequence.

The hash values is obtained by translating the submer sequence into a number in

base 4, where the nucleotides A,C,G, T represent the numbers 0, 1, 2, 3 respectively

and then converting the result into base 10. This is done for the k-mer sequences as

for the complete strobemer sequence. Note that Sahlin uses this hash function for

the singular strobes and then combines them with an asymmetrical function in the

following way h(m1)/2 +h(m2)/3 for order 2 and h(m1)/3 +h(m2)/4 +h(m3)/5 for

order 3, where h(mx) represents the hash value based on the sequence of the strobe

[41]. In [54], Sahlin argues that a symmetrical function is useful as it can improve

alignment results and therefore Sahlin applies the function h(m1)/2 + h(m2)/2 for

order 2 [54].

Besides the run time analysis, all methods were used in their canonical form.

The shape of the gapped k-mers were generated randomly for 4 and 8 gaps, because

the design of the optimal number of gaps and their position is challenging and an

ongoing research topic [55, 56], but random shapes have been shown to work well in

practice [57].

For the strobemers, the window length was chosen in such a way that the two

strobes could have a maximal distance of 4 or 8, so they have the same span as the

gapped k-mers.

Run time

The speed of the different methods was compared with the minions option minions

speed, which returns the average time it took a method to process one sequence for all

given sequences. For this analysis, 1, 000 random sequences of length 10, 000 bp were

simulated with the tool mason [58] and tested with the different submer methods

with different parameters. All submer methods were used in their non-canonical

form, in order to eliminate possible influences from reversing the sequence.

The strobemer implementation used here and for all following comparisons is the

2.1. Submers 15

implementation integrated in minions, not the original one from Sahlin [41]. The

minion implementation is faster than the original (see Figure 2.5) in almost all cases.

The minions implementation is slower for randstrobemers of order 3 with all values

of k and randstrobemers of order 2 with larger values of k.

(a) Minstrobemers (b) Hybridstrobemers

(c) Randstrobemers (d) Randstrobemers with order 3

Figure 2.5: Average speed of strobemers for the original and the minion
implementation. 4 and 8 refer to the minion implementation of the strobemer
type, which allow up to 4 or 8 gaps to the previous strobe, while 4 ori and 8 ori
represent the implementation from Sahlin [41]. The strobemers have an order of 2, so
the singular strobes have a length of k/2. With the exception of the randstrobemers
with order 3, where k symbolizes the length of the singular strobe.

Moreover, the minion implementation uses less memory because it only returns

the hash value of the strobemer, while the original implementation also returns

the positions of the singular strobes. Therefore a comparison of the k-mers with the

minion strobemers is a fairer comparison. Furthermore, the original implementation

supports only order 2 for minstrobemers and hybridstrobemers, hence, the minion

implementation also offers more features.

Figure 2.6 (and Figures A.1, A.2 for a window length allowing up to 8 gaps to the

previous strobe and strobemers with order 3) show that the ungapped k-mer method

16 Chapter 2. Alignment-free quantification

Figure 2.6: Average speed of different submer methods. 4 and 8 k-mer refer
to the gapped k + 4-mer or k + 8-mer method with 4 or 8 gaps. The strobemers
have an order of 2, so the singular strobes have a length of k/2 and they have a
window length of k/2 + 4, so that a maximal gap of length 4 to the previous strobe
is ensured.

is by far the fastest, while the minstrobemers and hybridstrobemers have a similar

speed to each other and outperform the gapped k-mers. The randstrobemers is the

slowest strobemer method. The randstrobemers and gapped k-mers are always the

slowest methods, in Figure 2.6 the randstrobemers outperform the gapped k-mers,

in the Figures A.1 and A.2 the gapped k-mers are faster.

The good performance of the ungapped k-mers is not surprising as they are the

most simple method. However, the difference between strobemers and ungapped

k-mers is in so far surprising, as the difference reported by Sahlin [41] is not that

prominent.

Moreover, the fact that randstrobemers are slower than the other two strobemer

methods aligns with the above formulated expectation, but it is reversed in Sahlin’s

analysis [41]. Sahlin hypothesized that his better performance of randstrobemers

compared to hybridstrobemers is due the fact that randstrobemers do not have an

overhead as they do not need a data structure storing all values within a window

[41]. This also holds for the minion implementation, but the minion implementation

does not store information about the positions of the singular strobes, therefore the

overhead for the hybridstrobemers might have a smaller impact.

The fact that randstrobemers and gapped k-mers are the slowest methods shows

that it is costly that no information from the previous adjacent submer can be kept.

Therefore, at least in regards of the speed performance overlaps between submers

are helpful.

Despite the relative difference in speed, all methods take less than a second and

2.1. Submers 17

therefore are reasonably fast.

Set size

The set size of the different methods was compared with the minions option minions

counts, which returns the set size for a given sequence file. Here the human genome

was used as input.

Figure 2.7: Set size of different submer methods for the human genome. 4
and 8 k-mer refer to the gapped k + 4-mer or k + 8-mer method with 4 or 8 gaps.
The strobemers have an order of 2, so the singular strobes have a length of k/2 and
they have a window length of k/2 + 4, a maximal gap of length 4 to the previous
strobe is ensured.

Figure 2.7 (and Figures A.3, A.4 for a window length allowing up to 8 gaps to

the previous strobe and strobemers with order 3) show that the strobemer methods

have a smaller set size, but the difference is rather small and all methods seem to

converge to the same set size.

Uniqueness

The uniqueness of the different methods was determined with the minions option

minions unique, which returns the percentage of unique submers for the given files.

For this analysis, the human genome was used.

The uniqueness shown in Figure 2.8 follows a very similar curve to the set size

in Figure 2.7. The k-mer methods have a higher number of unique submers than

18 Chapter 2. Alignment-free quantification

Figure 2.8: Uniqueness of different submer methods for the human genome.
4 and 8 k-mer refer to the gapped k+ 4-mer or k+ 8-mer method with 4 or 8 gaps.
The strobemers have an order of 2, so the singular strobes have a length of k/2 and
they have a window length of k/2 + 4, so that a maximal gap of length 4 to the
previous strobe is ensured.

the strobemers, but the difference is insignificant and all methods seem to converge

to the same value for increasing values of k.

For a submer length of 16, the percentage of unique submers is below 50 percent,

which is concerning as 16 is a length commonly used [59, 60].

Moreover, as sequencing errors and mutations can impact submers, it is also of

interest to know how unique the submers remain when considering errors. To de-

termine this, the tool genmap [61] was applied. As genmap only supports ungapped

k-mers, only these were checked, but based on the similar uniqueness without er-

rors and the similar set sizes between the different methods, similar results can be

expected for the other methods as well. Here, different ks with an error rate of 0 to

2 for the human genome were tested.

As shown in Figure 2.9, the percentage of unique k-mers increases with increasing

k, but the more k grows the smaller is the increase. Furthermore, the percentage of

unique k-mers is significantly smaller with errors, but with increasing k the difference

becomes smaller as well.

Therefore, while there are differences between the submer methods, every method

seems to be a valid choice when considering a greater value for k, which is also

desirable due to its better performance in the presence of errors.

2.1. Submers 19

Figure 2.9: Percentage of unique ungapped canonical k-mers in the human
genome for different values of k and number of errors.

Impact of sequencing errors and mutations

The impact of sequencing errors and mutations between two sequences can be mea-

sured by the match coverage [41] (also called conservation [40, 44]). A match between

a sequence S and an erroneous or mutated sequence S ′ is defined as a submer that

appears in both sequences at the same position and is therefore unchanged between

the original sequence and the erroneous or mutated sequence. The match coverage

is then the percentage of bases that are covered by the span of a matched submer.

As the match coverage is based on the span of a submer, possible gaps in a submer

are seen as covered as well. The match coverage in comparison to the number of

matches is more stable due to overlapping submers (see Figure 2.10 for an example).

A single uncovered nucleotide or multiple adjacent uncovered nucleotides are

called an island [41, 62]. The island size measures the amount of sequence without

any information due to the lack of matching submers (see Figure 2.10).

Sahlin also considers a metric called sequence coverage, which measures how

much of the sequence is conserved, even if the submer is not a match [41]. This is

only of interest though, if alignment is involved, where even a submer with some

level of discrepancy can be aligned to the reference. Hence, the sequence coverage

is not of interest here.

The match coverage and the island size were determined by the minion option

minions match, which returns the average values for all reads between two given

20 Chapter 2. Alignment-free quantification

Figure 2.10: Example for the match coverage and island size. Two similar
sequences (one on the top, one one the bottom) are shown, they only differ in one
position marked in red in the bottom sequence. The number of matching 4-mers
are 4 out of 8, shown in between the two sequences. The match coverage however
is 10 out of 11 positions, based on the covered positions marked in blue in the top
sequence. The match coverage better represents the similarity than the number of
matches. There is one island as there is only one nucleotide not covered, which
is marked in white. Therefore, the island size here is 1. If gapped k-mers with
a shape of 1011 would have been used, then the gapped k-mer C-AG would also
exist between both sequences and cover the different nucleotides, leading to a match
coverage of 100 % and no islands.

sequencing files. Here, 100, 000 reads of length 100 bp were simulated based on

the human transcriptome. A second file based on the previous one was created

by randomly substituting 1, 2, 5 and 10% of the nucleotides. These substitutions

can represent either a sequencing error or a mutation. Neither sequencing errors nor

mutations appear randomly though and can also consist of insertion or deletion [63].

However, insertions and deletions are less likely to occur as a sequencing error [64]

and the impact of not considering them in the analysis should be minimal as the

sequence coverage is not determined.

For a substitution rate of 1% the difference between the submer methods were not

significant (see Figure A.6), but with an increase in the substitution rate differences

became more apparent. Figure 2.11 (and Figure A.5 for a window length allowing

up to 8 gaps to the previous strobe and strobemers of order 3) shows the match

coverage and island size for the substitution rate of 10%. The ungapped k-mers

have the lowest match coverage and the biggest average island size followed by the

different strobemer methods for the match coverage and by the gapped k-mers for

the average island size. It is interesting that the gapped k-mers have a higher match

coverage than the strobemer methods, but a higher average island size, because a

smaller average island size would be expected to lead to a better match coverage.

That this correlation did not hold here could indicate that some methods had too

2.1. Submers 21

(a) Match Coverage (b) Island Size

Figure 2.11: Match coverage and island size of different submer methods
with substitution rate 10. 4 and 8 k-mer refer to the gapped k+ 4-mer or k+ 8-
mer method with 4 or 8 gaps. The strobemers have an order of 2, so the singular
strobes have a length of k/2 and they have a window length of k/2 + 4, so that a
maximal gap of length 4 to the previous strobe is ensured.

many outliers in their island sizes, so that the average was skewed.

When comparing with strobemers of order 3 the 4 gap k-mers perform worse

than the strobemer methods for increasing k, but the 8 gapped k-mers remain the

best method. The strobemers used here can have up to 4 or 8 gaps between two

strobes, but that does not necessarily mean they have to have gaps. For order 3,

if 4 gaps are allowed between two strobes and there are three strobes in total, the

strobemer could have in total 8 gaps and for 8 gaps 16 respectively. Therefore, the

better performance of the strobemers of order 3 compared to the 4 gapped k-mers

could be due to a higher number of gaps. Overall, it seems like the more gaps a

submer has the better the match coverage.

However, these findings are contrary to the ones found by Sahlin [41], where

randstrobemers of order 3 have the highest match coverage and the most sparse

gapped k-mers the worst match coverage, even lower than the ungapped k-mers.

Sahlin based his analysis on a simulated sequence as well, but also considered in-

sertions and deletions with equal probability to the substitutions [41]. Therefore,

insertions and deletions were the majority of the changes in his analysis. This is not

a good representation of actual sequencing data as insertions and deletions are less

likely to occur. It remains therefore an open question, which submer method would

lead to the highest match coverage on actual sequencing data. An analysis on not

simulated sequencing data seems like a promising approach to answer this question

in the future. Nevertheless, such an analysis is not trivial as the ground truth needs

to be determined beforehand.

Moreover, the impact of a sequencing error or a mutation is less severe, if it can

22 Chapter 2. Alignment-free quantification

be accounted for. The k-mer lemma and the above described theoretical analysis

of the impact of sequencing errors and mutation give some insight into finding a

good threshold to determine, if a sequence with errors or mutation is still similar

enough to the original sequence. In order to analyse this on a practical example,

similar to the analysis of Seiler et al. [65], 64 highly similar genomes were simulated

and then based on these genomes a total of 1, 048, 576 reads of length 100 bp with 2

to 5 substitutions (called errors) were simulated. These sequencing files were then

analyzed with minions accuracy, which builds a probabilistic data structure over

all 64 genomes by storing their submer hash values and then checks for each read,

how many submers are present in each genome. Given a threshold minions accuracy

then considers a read originating from a certain genome, if the percentage of read

submers found in a genome exceed the threshold. As the data is simulated, the

actual origin of a read is known and the number of true positives, false positives,

true negatives and false negatives can be determined.

2 Errors 3 Errors 4 Errors
Method FP OT FP OT FP OT
20-mer 441 0.5 254 0.25 47,457,980 0.02

4 gapped 24-mer 445 0.42 592 0.15 28,202,361 0.03
8 gapped 28-mer 504 0.32 1,297 0.15 489,891 0.09

(2, 10, 10, 14)-minstrobemer 446 0.37 657,009 0.09 - -
(2, 10, 10, 14)-hybridstrobemer 459 0.37 9,167 0.12 45,729,774 0.02
(2, 10, 10, 14)-randstrobemer 451 0.37 176,923 0.1 60,551,536 0.02
(2, 10, 10, 18)-minstrobemer 504 0.23 43,932,027 0.02 - -

(2, 10, 10, 18)-hybridstrobemer 504 0.26 5,010,511 0.06 43,869,773 0.02
(2, 10, 10, 18)-randstrobemer 504 0.27 5,055,046 0.06 43,963,988 0.02

Table 2.1: Number of false positives and optimal threshold for different
submer methods. The table shows the number of false positives (FP) for the
greatest threshold that still lead to zero false negatives (OT for optimal threshold).
Three data sets with 2, 3 and 4 errors were evaluated. The smallest number of false
positives per column was marked in bold. In cases were there was no threshold with
zero false negatives, FP and OT are marked with “-”.

Table 2.1 shows the number of false positives for each submer method for the

highest threshold, where the number of false negatives is still zero, because false

positives are in most use cases less problematic than false negatives as false positives

could be sorted out afterwards with other methods. All thresholds from 0.0 to 0.6

in 0.01 steps have been tested. The column for five errors was omitted because only

the 8 gapped 28-mers and the (2, 10, 10, 14)-hybridstrobemers had results with zero

false negatives.

For ungapped k-mers, the k-mer lemma can be used to determine a good thresh-

old. Here, ungapped 20-mers were analyzed, according to the k-mer lemma (Eq.

2.1. Submers 23

2.2) 100− 20 + 1− 2 · 20 = 41 k-mers should be at least unaffected by two errors, 21

k-mers by three errors and 1 k-mer by four errors. In total, there are 81 k-mers in

the sequence, hence a good threshold is 41
81
≈ 0.506 for two errors, ≈ 0.259 for three

errors and ≈ 0.012 for four errorr. For five errors, the k-mer lemma (Eq. 2.2) would

lead to an useless threshold of 0.0. As can be seen in Table 2.1, the thresholds as

predicted by the k-mer lemma are really close to the ones practically measured and

thereby proves the usefulness of the k-mer lemma for ungapped k-mers.

The k-mer lemma (Eq. 2.2) for the 4 gapped 24-mers would lead to a threshold

of ≈ 0.377 for two errors and ≈ 0.065 for three errors, for four and five errors the

threshold would be 0.0. For the 8 gapped 28-mers the k-mer lemma (Eq. 2.2) would

lead to a threshold of ≈ 0.233 for two errors, for all errors the threshold would be

0.0. As expected, the k-mer lemma leads to poor predictions for the gapped k-mers,

whose actual thresholds are significantly greater as the predicted ones.

For the strobemers, predicting a good threshold is not easy as explained above. If

the errors would only impact the first strobe, then the thresholds should be ≈ 0.505,

≈ 0.258 and ≈ 0.01 for two, three and four errors respectively for strobemers with

wlen = 14 and ≈ 0.325 for two errors for strobemers with wlen = 18, for all others the

threshold would be 0.0. If the whole span of the strobemer would be considered, then

the same thresholds as the one from the gapped k-mers would apply. Interestingly,

the threshold for the span for two errors seems to be quite close to the actual ones,

but for the other errors, this is not the case.

As predicted, randstrobemers and hybridstrobemers perform better than min-

strobemers. Surprisingly, hybridstrobemers led to fewer false positives than rand-

strobemers.

Overall, all methods led to a similar number of false positives for two errors, while

for three errors the ungapped k-mers have significantly fewer false positives than all

other methods and all strobemer methods have significantly more false positives

than the three k-mer methods. For four errors, the ungapped k-mers are not the

best method anymore, instead the 8 gapped k-mers have the smallest number of

false positives by far. As already mentioned above, only the 8 gapped k-mers and

the (2, 10, 10, 14)-hybridstrobemers had thresholds with zero false negatives, there

as well the 8 gapped k-mers outperforms the strobemer method.

These results show that finding a good threshold is not trivial and only for

ungapped k-mers a solved problem. Furthermore, these result align with the results

from the match coverage. As neither insertions or deletions have been considered,

a future analysis including them would be beneficial to check, if the performance of

the strobemers could be improved.

However, it should be noted that at least for the alignment-free application

Needle count, mutations can be dealt with by searching for the changed submers

24 Chapter 2. Alignment-free quantification

directly as the mutations of transcript of interests should be known beforehand.

The above theoretical and practical analyses of the impact of sequencing errors

and finding a good threshold focuses on one singular read and its relationship to

the reference genome. While there are applications, where reads are considered

individually in the context of an alignment-free comparison (see for example [66, 67]),

Needle count always considers all reads at once. Therefore, a single error has only a

small impact as long as the genomic region an error covers incorrectly is also covered

correctly by another read. The chances that a position in the genome is covered

multiple times by different reads is depending on the read coverage. However, as

the different submer methods handle errors differently, the needed read coverage is

also based on the submer method.

Considering that high sequence coverage is affordable nowadays, that the quality

of sequencing methods improved over the years with even long sequencing reads

having an error rate of only 5 % [68] and considering the fact that multiple quality

control mechanisms like trimming have been introduced [27], the importance of

handling sequencing errors is not as important as it might seem at the first glance.

Therefore, all methods seem to be a reasonable choice.

Conclusion of the comparison

Determining a good submer method is dependent on the task at hand but also on

the order of priorities. The difference of the submer methods for the set size and the

number of unique submers is small, but might be essential when space is a crucial

factor.

In the speed and accuracy analysis, the difference between the methods seemed

greater. However, the speed of even the slowest method is still fast and the accuracy

analysis is based on a high percentage of substitutions, for a smaller percentage the

difference becomes less prominent. Considering the fact that even for long reads the

number of sequencing errors has been decreasing due to technology advances [68]

and that sequence differences based on mutations are less severe for an approach

like Needle count, which is not meant to find new mutations, any submer method

seems to be reasonable enough.

Moreover, quite often only a representative set of submers (see the next section)

are considered, this application of a representative submer method reduces the dif-

ference between strobemers and k-mers according to Maier et al. [49]. For that

reason, a decision for a submer method can not be made without an analysis of the

representative methods.

2.2. Representative submers 25

2.2 Representative submers

As the number of submers (k-mers or strobemers) is high and similar submers usu-

ally share the same information, different methods have been developed to find a

representative set of submers. These representative sets aim to fulfill the two fol-

lowing main goals:

1. A small number of short representative submers to reduce the amount of data.

2. Finding a good representation, so as to minimize the amount of sequencing

information lost.

These goals are usually opposed to each other: considering fewer submers leads

to less information kept.

To measure if a representative submer method achieves the first goal the com-

pression factor can be used as a metric. The compression factor as introduced by

Edgar is defined by the number of submers divided by the number of representative

submers, which is the inverse of the metric used in previous papers called density

[40].

The second goal can be measured by multiple metrics and it is an active discus-

sion, which are the best fitting ones [44, 69]. Similar to the analysis of the submers,

the uniqueness of the set of representative submers and the impact of sequencing

errors and mutations are good metrics to measure the representation and are in-

cluded here in the practical analysis. Beyond these metrics, the expected distance

between two adjacent representative submers can be determined. Distance thereby

describes the difference between the positions of the first nucleotides of the adjacent

representative submers [40]. The better distributed a method is, the more sequenc-

ing information is kept as close submers usually contain redundant information due

to overlaps [40].

The developed methods of determining a representative set of submers can be

distinguished by their construction, either they can be constructed directly from

the given sequences (called “on the fly”) or they are dependent on some kind of

preprocessing step or additional information (see Table 2.2 for an overview).

A different way to distinguish these methods is by the impact errors have. Con-

text dependent methods are methods, where an error outside the representative

submer sequence can influence the picked representative submer, while context free

representative submers can only be impacted by errors in their sequence [40]. All

context free representative submer methods were marked with a ’*’ in Table 2.2.

As representative submer methods can work with both k-mers and strobemers,

the variable kl is introduced here, which is kl = k for k-mers and kl = n · l for

strobemers.

26 Chapter 2. Alignment-free quantification

“on the fly” preprocessing
Minimizers Fleximers

Minimum decycling sets Minimum decycling sets
Modmers* Prefix words*
Syncmers* Polar sets*

Sigmers
Universal hitting sets*
Weighted Minimizers

Table 2.2: Overview of representative submer methods Submer methods
marked with a ’*’ are context free methods.

2.2.1 Modmers

Modmers were introduced by Edgar as a baseline method for comparison (there

called Modulo submer) [40]. A submer is considered a (kl,m)-modmer, if the hash

value of a submer of length kl for a given hash function modulo m is zero. Therefore,

the method is context free as an error can only impact a submer, if it appears in

the submer sequence itself.

Assuming the given hash function leads to independent and identically dis-

tributed submers, the probability that one submer is selected as a modmer is 1/m.

Therefore, the expected number of representative submers for a sequence with ns

submers is ns/m and hence, the compression factor of modmers is ns/(ns/m) = m.

The distance between two adjacent modmers has no maximal value, but the

probability of larger distances decreases with each step because it means all submers

in-between the adjacent ones are not modmers.

2.2.2 Minimizers

Minimizer were introduced independently of each other [70] by Roberts et al. [71]

and Schleimer et al. (Schleimer et al. called it winnowing instead of minimizers)

[72].

A minimizer is defined as the smallest submer of length kl in a window of given

length w, therefore minimizers are here denoted as (w, kl)-minimizers (see Fig. 2.12

for an example). As adjacent windows share most of their submers due to their

overlap, they often also share a minimizer, such a minimizer is only stored once,

which reduces the memory cost.

As an error inside a window but not in the sequence of the minimizer itself can

influence the minimizer by producing a new minimum, minimizers are not context

free.

Using the lexicographical order as in the example in Fig. 2.12 to determine the

smallest submer is less beneficial because it results in a skewed distribution. A ran-

2.2. Representative submers 27

Figure 2.12: Example of (8, 4)-minimizers. The shown 4-mers are the smallest
4-mers in their respective window of size 8. The second minimizer originates from
the reverse complement strand and is denoted by lower letters and has to be read
from right to left. The last two windows share the same minimizer, as it is often the
case for subsequent windows. They are shown twice, but are only stored once. The
figure and the caption is taken from [32].

dom order on the other hand can prevent this [70] and has with (w − kl + 2)/2 a

smaller expected compression factor than minimizers based on the lexicographical

order [40, 70, 72]. This formula for the compression factor holds under the as-

sumption submers are independently and identically distributed, because then two

adjacent windows share a minimizer, if the minimizer of the first window is not the

first submer and if the minimizer in the second window is not the last submer. The

likelihood that a submer is a minimizer in two adjacent window of length w + 1 is
1

w+1−kl+1
= 1

w−kl+2
. As two submers could lead to a new minimizer, the probability

that a window shift introduces a new minimizer is 2 · 1
w−kl+2

.

Even better compression factors can be achieved by applying different orders.

Zheng et al. proposes an order based on the algorithm miniception [73], while

Hoang et al. finds more compressed orders based on machine learning [74]. The

machine learning approach turns the minimizers into a preprocessing method, while

the miniception algorithm is evaluated on the fly, but is expected to slow down the

construction. For these reasons these orderings were not further considered here.

Unlike modmers, minimizers guarantee that two adjacent minimizers have a

maximal distance of w − kl + 1 because every window contains a minimizer (this

is called the window guarantee). Because each window shift can introduce a new

minimizer, it is implied that each distance up to w − kl + 1 is equally possible and

follows an uniform distribution [40].

Minimizers for Strobemers

Instead of determining the minimizer based on the whole strobemer, Sahlin sug-

gested to consider only the first strobe, if it is as minimizer given a window size,

28 Chapter 2. Alignment-free quantification

the complete strobemer is [41]. If this is done with minstrobemers, the results are

also known as paired minimizers [41, 75, 76]. However, this should result in most

cases to the same minimizers as when the minimizers are determined on the whole

sequence. For example, if “AC” is the minimal first strobe and all other first strobes

are greater, then the smallest whole strobemer is also the one starting with “AC”.

A different result between these two approaches can only occur if the first strobe is

the same between two strobemers. As for the whole strobemer approach the other

strobes are taken into account, while for Sahlin’s approach the tie is broken by pick-

ing the rightmost strobe. Because the results are expected to only differ slightly,

Sahlin’s approach was not used here.

Note, that Sahlin’s minimizer approach makes a bigger difference when the min-

imizers are determined on the hash values and Sahlin’s above described hash values

[41] are used as then the other strobes influence the hash value more and can lead

to completely different minimizers.

Weighted Minimizers

In highly repetitive regions, minimizers tend to be less informative when using a

lexicographical or even a random order. Therefore, the weighted minimizers were

introduced. Weighted minimizers are basically minimizers with an order function

that discriminates against repetitive less informative minimizers, so that the chances

that they are picked in a window are lower. This is achieved by giving as an ad-

ditional input a list of these unfavorable minimizers. As this list has to be created

beforehand for a specific genome, weighted minimizers can not be computed on the

fly anymore and need a preprocessing step. In order to still have a small memory

footprint, this input list is stored in a probabilistic data structure [77].

2.2.3 Syncmers

Syncmers were invented as a context free alternative to the context dependent min-

imizers by Edgar [40] and further generalized by Dutta et al. [69]. Syncmers are

described by a subsequence length s, a list of positions pos and a boolean param-

eter linear. Therefore, syncmers are from here on denoted as (kl, s, pos, linear)-

syncmers.

A syncmer is any submer that has its smallest s-mer at any of the given pos

positions (see Fig. 2.13 for an example). Syncmers which have a position list of

length one are also called open syncmers [40] and syncmers which have a position

list containing only the first and the last position are called closed syncmers [40]. If

the boolean parameter linear is false the syncmer is circular, which means the kl-

mers are seen as a cycle, for example for the 4-mer ACGT with s = 2, the following

2.2. Representative submers 29

s-mers are obtained: AC,CG,GT, TA.

Figure 2.13: Example of (4, 2, [0], 1)-syncmers. The shown 4-mers are open
syncmers as the smallest 2-mers are at the 0th-position of the 4-mers. As this does
not hold for any other 4-mer in the sequence, there are only 3 syncmers.

Compression factor

The compression factor of syncmers is dependent on its parameters, because they

influence the likelihood of a given submer being a syncmer.

Assuming that the s-mers are independent and identically distributed for a given

submer, the probability that the submer is a linear syncmer is npos · 1
(kl−s+1)

with

npos being the length of the list of position as their are npos positions where the

smallest s-mer can be for it being a linear syncmer and there are kl − s+ 1 s-mers

[40]. Therefore the compression factor is: (kl−s+1)
npos

.

For circular syncmers, there are kl s-mers in a kl-submer, therefore the prob-

ability that a submer is a syncmer is npos

kl
for circular syncmers [40]. Hence, the

compression factors is kl
npos

.

Window guarantee

Linear closed non-canonical syncmers guarantee that two adjacent closed syncmers

have a maximal distance of kl−s because the smallest s-mer in a sequence of length

2kl − s will have to be at the start or end of a submer making it a closed syncmer

(see Figure 2.14 for an example). Therefore, linear closed syncmers have a window

guarantee of kl − s [40, 44].

Linear open non-canonical syncmers also have a maximal distance between two

adjacent syncmers maxlos, but it is harder to derive a closed form for this [40].

If a submer q is not an open syncmer, the smallest s-mer must be at a different

position than the one position in pos. Without loss of generalization, let’s assume

the position in pos is set to zero (pos = [0]), then the smallest s-mer must be in the

last k− 1 letters of the submer sequence. Assuming that this is not the last submer

in the sequence, this smallest s-mer will be at the start of a submer that is maximal

30 Chapter 2. Alignment-free quantification

Figure 2.14: Example of the window guarantee for closed non-canonical
syncmers. The here used syncmers are (5, 2, [0, 2], 1)-syncmers and the sequence
length considered is 2kl−s = 2·5−2 = 8. There are 8−s+1 positions where a s-mer
can start (marked in blue and yellow). These starting positions are at the start or
end of at least one of the possible 5-mers of the sequence. Therefore, no matter
which s-mer is the smallest, there will be at least one syncmer in the sequence of
length 2kl − s.

k − s positions away from q. This new submer might also not be an open syncmer,

as this submer might now have an even smaller s-mer somewhere else. This new

smallest s-mer will be at the start of another submer maximal 2 · (k − s) positions

away from q and might not be a syncmer, because another s-mer in the submer is

smaller. This process can be repeated until the smallest possible s-mer is found [40].

For circular closed syncmers, it has not yet been proven, if a maximal dis-

tance exists or not [40]. While for circular open syncmers it can be shown that

there is no maximal distance. As can be seen by the following counterexample for

(4, 2, 0, 0, 1)-syncmers: The repetitive sequence “ACCACCACCA...” contains the

4-mers “ACCA”, “CCAC” and “CACC”, none of which are circular open syncmers

[40].

In case more than two positions are considered for a syncmer, it is dependent on

the positions if a window guarantee is provable. However, the more positions are

considered for turning a submer into a syncmer, the less likely are great distances

between adjacent syncmers.

Downsampled syncmers

Syncmers can be down sampled to obtain larger compression factors by using an

additional parameter d > 1. Downsampled syncmers are syncmers, if the submer

is a syncmer and the hash value of the complete submer itself is smaller than H/d

with H being the largest possible hash value [40].

If the hash function is chosen in the way that the function is independent of

the probability that a submer is a syncmer, the compression factor of downsampled

2.2. Representative submers 31

syncmers is the compression factor of the underlying syncmer csyncmer multiplied

with d: d · csyncmer [40].

There is no limit for the maximal distance between two adjacent downsampled

syncmers.

Syncmers for strobemers

Instead of using the syncmers on strobemers, Sahlin proposed to build strobmers on

top of syncmers. This is done by determining all syncmers in a sequence and then for

every syncmer pair it with a following second syncmer (or more, if an order greater

than 2 is picked) depending on the strobemer rules. Moreover, Sahlin adapted the

strobemers for this approach by picking closer syncmers with a higher probability as

the second strobe and Sahlin adapts the calculation of the hash value to a symmetric

function with h(m1)/2 + h(m2)/2 [54].

Speed optimization

The speed of syncmers can be optimized by using prefix syncmers. A given submer

is a prefix syncmer, if its prefix of length s′ is a syncmer. The compression factor

and the expected distance between prefix syncmers is identical to the underlying

syncmer rule [40].

The speed up is a result of the fact that only a part of the submer needs to

be considered and the syncmer rule can be chosen in the way that the number of

possible syncmers is small enough to store them in a vector, so that they can be

precomputed beforehand. Therefore, a syncmer can be determined by a look-up

[40]. In that case, syncmers would be dependent on a preprocessing step though.

2.2.4 Universal hitting sets

A minimal universal hitting set is a minimal set of submers that guarantees that at

least one of its members can be found in any sequence of length w. Therefore, a

minimal universal hitting sets guarantees for any sequence that the representative

submers have a distance from at most w, while ensuring a minimal set size for a

given submer length [78–80]. The minimal universal hitting set belongs therefore in

the category of preprocessing method, as the set needs to be determined beforehand

for a given w and submer length.

While there has been no proof so far that finding an universal hitting set is NP-

hard [78], currently only heuristic algorithms exist to determine minimal universal

hitting sets [78–80].

32 Chapter 2. Alignment-free quantification

2.2.5 Minimum decycling sets

The minimum decycling set is at its core an order for minimizers that should lead

to a greater compression factor. The set is defined by considering all submers of

length kl and a directed graph that takes these submers as edges connecting nodes

presenting kl−1-mers, if the outgoing node overlaps with the first kl−1-subsequence

of the edge and the incoming node overlaps with the last kl − 1-subsequence of the

edge (this is called a complete De Bruijn graph of order kl). From this graph a

minimal set of submers is removed that leads to an acyclic graph. This removed set

is then the minimal decycling set [80].

A representative submer is then determined by taking the minimal submer in

a window that is included in the minimal decycling set as minimizer. If there is

no submer in a window included in the minimal decycling set, then the classical

minimizer approach is used for this window and the minimal submer of the window

is taken. Pellow et al. showed experimentally that this approach leads to a lower

density and therefore to a greater compression factor than a random minimizer order

[80]. Therefore, the minimal decycling set has a window guarantee.

This approach can be a “on the fly” as the membership of an element in the

minimal decycling set can be determined on the fly or a preprcessing method as the

minimal decycling set can be determined beforehand for a given kl. The advantage

of the preprocessing method is that the membership lookups are quick and so this

method is faster. However, as the set needs to be loaded in memory the preprocessing

method will lead to a higher memory footprint. Therefore, the “on the fly” method

on the other hand has a smaller memory footprint, but takes longer [80].

Furthermore, the minimum decylcing set as a preprocessing method in the im-

plementation of Pellow et al. considers an exact lookup table [80]. But the set

could also be stored in a probabilistic data structure as was done for the weighted

minimizers [77] with a smaller memory footprint at the cost of adding false positive

submers to the set.

Alternatively, similar to modmers, the window guarantee could be ignored and

then only submers included in the set are considered representative [80].

2.2.6 Polar sets

Polar sets are a set of submers, where if a submer is included in the set, it is consid-

ered representative. The polar set guarantees that all representative submers are at

least a given distance apart from each other for a given sequence. Unlike universal

hitting sets, which work for all possible sequences, the polar sets are constructed

for specific given sequences like a genome. However, despite being sequence specific,

constructing a polar set guaranteeing the best spread of representative submers over

2.2. Representative submers 33

the given sequences is NP-hard and therefore heuristics are necessary for construct-

ing a polar set [81].

2.2.7 Prefix words

Prefix words are sets of submers of length s <= kl and only submers whose prefix

exist in this set are considered representative [82, 83]. Frith et al. first constructed

these sets by minimizing the overlaps between submers [82]. Recently, Frith et al.

proposed a set construction by optimizing the probability that any submer occurs in

a given sequence length with the goal to find a good balance between the advantages

of universal hitting sets and polar sets [83].

2.2.8 Sigmer

Sigmers need for their construction a transcriptome as an input, which is partitioned

into groups by the user. One meaningful partition is the grouping of genes based

on their location on the genome. Then, a sigmer is defined as a submer that only

appears in one group but not the others and therefore is unique for this specific

group [36].

2.2.9 Fleximer

Fleximers are sigmers of variable length. The length of a fleximer is kept between

25 bp and 80% of the given read length. Fleximers are constructed by creating a

suffix tree on a given transcriptome. Like sigmers, this transcriptome needs to be

divided into groups by the user. Then all prefixes that appear in only one group

are considered and selected, if they meet the length requirement, are unique to a

transcript and lead to a sufficient read coverage [38].

2.2.10 Comparison of different methods

The focus of this analysis will be on the “on the fly” methods modmers, minimizers

and syncmers.

In order to enable a fair comparison between the different methods, the pa-

rameters were picked in such a way that the compression factor is the same. For

minimizers five window sizes between 24 and 40 were chosen with kl set to 20. The

modulo for the modmers was set to the compression factor of the (w, 20)-minimizers.

For the syncmers two linear syncmer types were tested, open syncmers where the

position list only contains the position 0 and closed syncmers, where the position

list contains the two values 0 and kl− s. The s-mer size was determined for the first

type by s = kl + 1− cf and for the second type by s = max(kl + 1− 2 · cf, 1) with

34 Chapter 2. Alignment-free quantification

cf being the compression factor of the minimizers. For the second syncmer type, s

is defined to be at least 1, as the formula would otherwise lead to a negative value

for s, therefore the compression factor for that syncmer type is 10 instead of 11 as

it is for all other methods. Besides the speed analysis, all analyses were performed

on canonical submers as the underlying submer method.

Speed

The speed of the different representative methods was compared similarly to the

comparison between k-mers and strobemers with the minions option minions speed

on the same data of 1, 000 sequences. All methods were built on top of ungapped

non-canonical k-mers as that was the fastest submer method.

Figure 2.15: Average speed of different representative methods. The
figure shows the speed in microseconds for the different representative methods
built on top of k-mers with k = 20. The window size for minimizer, the mod-
ulo for modmers and the s size for syncmers changes for every value on the x-
axis. The x-value indicates the position in the following lists: [24, 28, 32, 36, 40]
(minimizer), [3, 5, 7, 9, 11] (modmers), [18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and
[15, 11, 7, 3, 1] ((20, s, [0, 20− s], 1)-syncmers).

Figure 2.15 shows that the modmer method is the fastest method with the min-

imizers being a close second. This is not surprising as the modmers are an even

simpler method than the minimizer and only need to calculate the modulo value of

a k-mer instead of comparing it to other k-mers.

The reason why the syncmers are so slow compared to the other two methods

could be that it is costly to determine all the s-mers. However, similar to the

minimizers, the smallest s-mer of a k-mer often can be determined by comparing

it to the smallest s-mer in the previous k-mer and should therefore speed up the

process. Interestingly, closed syncmers are a bit faster than open syncmers with the

2.2. Representative submers 35

small exception of closedsyncmers based on a s-mer size of 1, which led to a notable

run time increase, probably because singular nucleotides are not that informative.

Furthermore, all methods become faster with an increase in the compression

factor with the exception of the closedsyncmers with s = 1. This is probably

due to two reasons. Firstly, with a greater compression factor more submers are

considered not representative, so they can be discarded. Secondly, both minimizers

and syncmers store k1-mers or s-mers respectively, and thus only need to compare

the next submer to the current minimum. The greater the compression factor, the

more information is kept leading to a speed decrease.

Set size

The set size was determined with minions counts for the same parameters that were

used in the speed analysis, which should ensure the same compression factor.

However, despite having the same compression factor, Figure 2.16 shows a no-

table difference in the set sizes of the different representative methods. While mod-

mers and minimizers led to similar set sizes with modmers having a slightly smaller

set size for decreasing compression factors, the syncmer methods led to a signifi-

cantly higher set size for all compression factors. Open syncmers had thereby the

highest set size with the exception of the last compression factor, where the closed

syncmers take the lead. This increase for the last compression factor is similar to

the outlier performance of the closed syncmers in Figure 2.15 and thereby proving

further that s = 1 is not a good parameter choice.

The analysis was also done with strobemers as the underlying submer method.

There is barely a difference between the different strobemer types. For strobemers

of order 2, the minimizer set size is barely influenced through the change of submer

method, while the set size of the modmers are closer to the ones of the minimizers

for decreasing compression factors. The set size of the syncmer methods show an

increase, but the order between them remains the same (see Figure 2.17).

For strobemers of order 3 as the underlying submer method, minimizers have

the smallest set size for each strobemer type. Moreover, with strobemers of order 3

all representative methods led to a greater set size than with k-mers or strobemers

of order 2 as the picked compression factors were greater (see Figure 2.18).

Therefore, the underlying submer method impacts the set size, but only impacts

the comparison of the representative methods for order 3.

As already stated, the big differences between the different methods is quite

surprising as the parameters were picked to guarantee the same compression factor.

There are multiple possible explanations for this.

Firstly, the assumptions of the compression factor formula could be wrong. How-

ever, the assumption of independent and identically distributed submers is also used

36 Chapter 2. Alignment-free quantification

Figure 2.16: Set size of different representative methods. The figure shows the
number of submers for the different representative methods built on top of k-mers
with k = 20. The window size for minimizer, the modulo for modmers and the s size
for syncmers changes for every value on the x-axis. The x-value indicates the po-
sition in the following lists: [24, 28, 32, 36, 40] (minimizer), [3, 5, 7, 9, 11] (modmers),
[18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and [15, 11, 7, 3, 1] ((20, s, [0, 20 − s], 1)-
syncmers).

in the compression factor formula for the minimizers, which seems to hold as the

minimizer set size was not influenced by switching the underlying submer method

from k-mers to strobemers.

Alternatively, the compression factor might not be a good indicator for the set

size. The set size is influenced by the number of different submers selected, while the

compression factor is a measurement for how many submers were selected as repre-

sentative submers. These two values should correlate, because the more submers are

selected as representative, the higher are the chances that these selected submers

differ from each other and the set size should increase. However, this correlation

might only hold when comparing different compression factors of one representative

method. Here, different methods are compared for the same compression factor and

it seems like syncmers are more likely to pick different submers.

These explanations are not exclusive and both could be the reason for the un-

expected results. In summary, the compression factor is not a good predictor of

the set size for all methods and only modmers and minimizers are robust methods

independent of the underlying submer method when comparing the set size.

2.2. Representative submers 37

(a) Minstrobemers (b) Minstrobemers 8

(c) Hybridstrobemers (d) Hybridstrobemers 8

(e) Randstrobemers (f) Randstrobemers 8

Figure 2.17: Set size of different representative submer methods based on
strobemers of order 2. The figure shows the number of submers for the dif-
ferent representative methods built on top of different types of strobemers. The
graphics on the left are built on top of (2, 10, 10, 14)-strobemers. The graphics
on the right marked with a 8 behind the name are built on top of (2, 10, 10, 18)-
strobemers. The window size for minimizer, the modulo for modmers and the s size
for syncmers changes for every value on the x-axis. The x-value indicates the po-
sition in the following lists: [24, 28, 32, 36, 40] (minimizer), [3, 5, 7, 9, 11] (modmers),
[18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and [15, 11, 7, 3, 1] ((20, s, [0, 20 − s], 1)-
syncmers).

38 Chapter 2. Alignment-free quantification

(a) Minstrobemers (b) Minstrobemers 8

(c) Hybridstrobemers (d) Hybridstrobemers 8

(e) Randstrobemers (f) Randstrobemers 8

Figure 2.18: Set size of different representative submer methods based on
strobemers of order 3. The figure shows the number of submers for the different
representative methods built on top of different types of strobemers. The graphics on
the left are built on top of (3, 9, 9, 13)-strobemers. The graphics on the right marked
with a 8 behind the name are built on top of (3, 9, 9, 17)-strobemers. The window
size for minimizer, the modulo for modmers and the s size for syncmers changes
for every value on the x-axis. The x-value indicates the position in the following
lists: [29, 33, 37, 41] (minimizer), [2, 4, 6, 8] (modmers), [26, 24, 22, 20] ((20, s, [0], 1)-
syncmers) and [24, 20, 16, 12] ((20, s, [0, 27− s], 1)-syncmers).

2.2. Representative submers 39

Uniqueness

The uniqueness was determined with minions unique for the same parameters as

used in previous analyses for the human genome.

The percentage of unique representative submers did not vary much between

the different parameters for one method, therefore, the results were summarized

by calculating the average percentage for each representative method. As can be

seen in Figure 2.19 (and in Figure A.7 for underlying strobemers of order 3), for

k-mers as the underlying submer method minimizers have the highest percentage of

unique representative submers, followed by modmers and then the syncmer methods.

However, with strobemers as underlying method all representative methods lead

to a similar percentage of unique representative submers, although the minimizer

methods remains the best performing one.

Figure 2.19: Average percentage of unique submers for different represen-
tative methods. The figure shows the average percentage of unique submers for
all representative methods for k-mers and the different strobemers as underlying
method. The average is calculated over the different parameters for the window
size for minimizer, the modulo for modmers and the s size for syncmers. The fol-
lowing parameters were used: [24, 28, 32, 36, 40] ((w, 20)-minimizer), [3, 5, 7, 9, 11]
((20,m)-modmers), [18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and [15, 11, 7, 3, 1]
((20, s, [0, 20 − s], 1)-syncmers). As underlying submer method, 20-mer were used
for the k-mers and for the different strobemers (2, 10, 10, 14)-strobemers were used.

These results align with the findings of Shaw et al., who proved that context free

methods like modmers and syncmers have a higher expected number of repetitive

k-mers [44] leading to a smaller percentage of unique submers.

40 Chapter 2. Alignment-free quantification

Distance

The distance distribution between representative submers was determined with min-

ions unique for the same parameters as used in previous analysis for the human

genome.

(a) (24, 20)-minimizer (b) (20, 3)-modmer

(c) (20, 18, [0], 1)-syncmer (d) (20, 15, [0, 5], 1)-syncmer

Figure 2.20: Distance between representative submers of different rep-
resentative methods. The figure shows the occurrence of different distances be-
tween adjacent representative submers on the human genome for (24, 20)-minimizers,
(20, 3)-modmers, (20, 18, [0], 1)-syncmers and (20, 15, [0, 5], 1)-syncmers based on k-
mers.

As shown in Figure 2.20 (and in Figure A.8 for more parameters and in Figure

A.9 for strobemers as underlying submer method), the greater the distance between

the adjacent representative submers, the less likely it is to occur. Modmers have

the greatest distance between two adjacent representative submers, open syncmers

come in second and closed syncmers third. Unsurprisingly, minimizers span over

only a small range of distances due to the window guarantee.

However, as described above closed syncmers have a window guarantee and

should have a maximal distance of kl − s, but the closed syncmers exceed this. The

2.2. Representative submers 41

reason for this is that the window guarantee is based on non-canonical k-mers and

does not hold for canonical k-mers as it can happen that the k-mer that would guar-

antee the maximal distance is not the minimal k-mer and therefore not canonical.

Consequently, a method to enable the window guarantee is to apply the syncmers

for canonical k-mers in the following way: If either a k-mer or its reverse comple-

ment is a syncmer, the canonical k-mer is considered a syncmer. But this approach

would then diverge from the other representative methods, which apply only for the

minimal part of the k-mer pair. Moreover, the window guarantee would still not

hold for strobemers as underlying submer method as the proof relies on the smallest

s-mer being guaranteed to be part of the resulting submers, which is not necessarily

given as the strobemer method could pick a strobe without including the smallest

s-mer. Therefore, the window guarantee of syncmers is limited to non-canonical

k-mers, while the window guarantee of minimizers is independent of the underlying

submer method.

Accuracy

The match coverage and average island size was determined with minions accuracy

for the same simulated 100, 000 reads of length 100 bp as in the comparison between

k-mers and strobemers.

(a) Match Coverage (b) Island Size

Figure 2.21: Match coverage and island size of different representative
submer methods with substitution rate 10. 4 and 8 k-mer refer to the gapped
k + 4-mer or k + 8-mer method with 4 or 8 gaps. The strobemers have an order of
2, so the singular strobes have a length of k/2 and they have a window length of
k/2 + 4, so that a maximal gap of length 4 to the previous strobe is ensured.

As can be seen in Figure 2.21, the match coverages were highest for the open

syncmers, followed by the closed syncmers and then the minimizers and modmers,

which had quite similar coverages. The average island sizes are in reverse order of

this, which is the expected result.

42 Chapter 2. Alignment-free quantification

Moreover, the match coverage of the representative methods based on strobemers

was smaller than the ones based on k-mers for all methods (see Figure 2.23 and

Figure A.10 for strobemers with a maximal gap size of 8). This is unexpected as the

strobemer methods compared to the ungapped k-mers had a higher match coverage,

which apparently did not improve the performance of the representative methods.

Additionally, the match coverages were smaller for every method than the ones

from the underlying submer method, which was to be expected as only a subset of

the underlying submers are considered.

In general, these results confirm Shaw et al.’s analysis that context depen-

dency leads to a lower match coverage [44], at least when comparing minimizers

to syncmers. However, modmers as the most simplistic context free method did not

yield a higher match coverage.

However, these results have to be seen with a grain of salt, as the set sizes of

the syncmer methods are greater than the ones from the minimizers and modmers,

meaning, they store more submers, which could also explain the higher match cov-

erages. In order to investigate this further, the match coverage was divided by

the number of matches a method had to determine the match coverage per match.

Figure 2.22 shows a similar graph as the match coverage. The most notable differ-

ence is that the modmers have a greater match coverage per match than minimizers

and have a similar coverage to the closed syncmers. This indicates that minimizer

matches cluster together and overlap thereby covering the same sequence multiple

times, which might be partly due to their distance distribution. Therefore, the

higher match coverage of the syncmers in Figure 2.21 seems to not be the result of

the greater set sizes.

Furthermore, the k-mer lemma could be applied to the complete window size

of the minimizers to determine a threshold guaranteeing zero false negatives when

searching for a sequence with mutations or sequencing errors, but this would lead

to too small a threshold and quite quickly lead to an unusable threshold of zero for

an increasing number of mutations or sequencing errors. For methods without a

window guarantee, the k-mer lemma is not even applicable. Therefore, like in the

comparison of k-mers and strobemers, the highest threshold for finding zero false

negatives in a set of simulated sequencing files with 2 to 5 errors was determined

practically with minions accuracy. As the match coverage was the best for the

representative methods based on k-mers, this analysis was only applied to those.

For already 4 errors, no representative method led to zero false negatives and

therefore Table 2.3 shows only the result for 2 and 3 errors. Modmers lead to the

worst results, having a significantly higher number of false positives than all the

other method for 2 errors and not even one threshold with zero false negatives for

3 errors. For 2 errors, the minimizers and both syncmer methods lead to similar

2.2. Representative submers 43

Figure 2.22: Match coverage divided by the number of matches of different
representative submer methods with substitution rate 10. 4 and 8 k-mer
refer to the gapped k+4-mer or k+8-mer method with 4 or 8 gaps. The strobemers
have an order of 2, so the singular strobes have a length of k/2 and they have a
window length of k/2 + 4, so that a maximal gap of length 4 to the previous strobe
is ensured.

2 Errors 3 Errors
Method FP OT FP OT

(24, 20)-minimizer 504 0.28 876,102 0.08
(3, 20)-modmer 354,735 0.09 - -

(20, 18, [0], 1)-syncmer 505 0.24 912,706 0.07
(20, 15, [0, 5], 1)-syncmer 504 0.38 551,455 0.08

Table 2.3: Number of false positives and optimal threshold for different
representative submer methods. The table shows the number of false positives
(FP) for the greatest threshold that still lead to zero false negatives (OT for optimal
threshold). Three data sets with 2 and 3 errors were evaluated. The smallest number
of false positives per column was marked in bold. If no threshold led to zero false
negatives, the FP and OT were marked with a ’-’.

results, while for 3 errors closed syncmers yield the smallest number of false positives.

Therefore, it is depending on the number of expected errors, if the threshold analysis

should impact the choice of representative submer method.

Comparing the threshold results with the results of the k-mers in Table 2.1, the

number of false positives is higher for the representative methods and the thresh-

olds smaller. Therefore, the match coverage analysis as well as the threshold anal-

44 Chapter 2. Alignment-free quantification

(a) Match Coverage, Minstrobemers (b) Island Size, Minstrobemers

(c) Match Coverage, Hybridstrobemers (d) Island Size, Hybridstrobemers

(e) Match Coverage, Randstrobemers (f) Island Size, Randstrobemers

Figure 2.23: Match coverage and island size of different representative
submer methods based on strobemers of order 2. The figure shows the
match coverage and island size of representative submers based on (2, 10, 10, 14)-
strobemers. The window size for minimizer, the modulo for modmers and the s size
for syncmers changes for every value on the x-axis. The x-value indicates the po-
sition in the following lists: [24, 28, 32, 36, 40] (minimizer), [3, 5, 7, 9, 11] (modmers),
[18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and [15, 11, 7, 3, 1] ((20, s, [0, 20 − s], 1)-
syncmers).

ysis confirm that the representative methods reduce the accuracy of the underlying

2.2. Representative submers 45

methods.

2.2.11 Conclusion of the comparison

The comparison of the representative methods is hard as their performance is de-

pendent on their parameters and it is not a trivial task to determine comparable

parameters. Here, all analyses are based on the same compression factor. However,

as is shown above the set size of the different methods differ significantly and there-

fore do not compress the data similarly making the interpretation of all analyses

harder. Therefore, a better method to predict the set size of syncmers would be

beneficial.

Moreover, the results are also impacted by the underlying submer method, which

sometimes leads to different results for the set size or the number of unique submers

for the syncmer methods, while the minimizers have been shown to be quite robust

to the underlying method. Considering the fact that the match coverage based on

strobemers is lower for all representative methods than the ones based on k-mers

and that the k-mer method is the fastest, Needle count supports k-mers instead of

strobemers.

When comparing the representative submer methods, two characteristics are

often discussed: context dependency and the window guarantee.

Context dependency leads to a smaller match coverage as it is influenced by

mutations or sequencing errors outside of the chosen submer sequence itself [44].

However, as was shown above the context free methods do not have a window

guarantee and therefore greater distances between adjacent submers within one se-

quence and a greater average island size when comparing two sequences. Edgar

questions if the window guarantee is a meaningful metric due to the lower match

coverage [40]. While this is a compelling argument, the problem only arises in light

of a high mutation rate or a high number of sequencing errors as the difference in

the match coverage is only this prominent, if either is high. Therefore, in theses

cases where the match coverage is rather similar, the window guarantee might be of

interest again as it ensures that every part of the sequence is covered.

For Needle count, mutations can be accounted for as they are known beforehand

and therefore, the only question is how impactful sequencing errors are. In Needle

count, the occurrence of each (representative) submer is counted and an expression

value is estimated via the median of all occurrences of submers in a queried sequence.

As the median is robust to outliers and is rather unlikely that the sequencing error

appears always at the same position, the impact of sequencing errors seems rather

small. Moreover, with the advances in sequencing technology [68], the number of

expected errors is also decreasing. Therefore, for Needle count, the match coverage

46 Chapter 2. Alignment-free quantification

should be accounted for but only as one metric among others. Because the mini-

mizers are fast with a small set size and a high percentage of unique submers and a

window guarantee, Needle count supports minimizers instead of syncmers.

Furthermore, it should be mentioned that the analysis here is not complete,

for example no method requiring a preprocessing step was considered and further

investigations are needed. Preprocessing methods could especially become more of

interest, as the completeness of the human transcriptome is only a matter of time

[36] and once achieved the preprocessing does not even need to be updated anymore.

In general, determining a good (representative) submer method depends on the

task at hand, but is also an active field of research. For this reason having an

application like minion, which offers analysis of these methods makes comparison

easier and could even help by guiding a researcher in the question, which method

to use for a given task.

2.3 Transcript quantification

In 2014, Sailfish [35] introduced the first alignment free method for transcript quan-

tification [34]. The idea of Sailfish and all other methods that followed is to de-

termine the most likely origin of a read instead of doing an base-by-base alignment

between the transcriptome and the reads [35–39].

An even simpler approach is presented here with Needle count, which does not

try to determine the origin of a read but rather assumes that most representative

submers of a transcript are unique and uses the count of these submers for quan-

tification. While this assumption does not always hold, especially for transcripts of

isoforms, which often share a larger part of their sequence, the approach can lead

to good results in cases, where it holds.

2.3.1 Overview of existing transcript quantification applica-

tion

An overview of existing transcript quantification methods is given here.

Sailfish

Sailfish consists of two operations. The first operation is the creation of an index

based on a given transcriptome. This index contains all k-mers in the transcriptome,

their counts and the relationship between k-mers and transcripts. The second op-

eration is then the actual transcript quantification, where the k-mers in a RNA-seq

file are counted and based on this information an expectation–maximization (EM)

algorithm determines the quantification for each transcript [35].

2.3. Transcript quantification 47

RNA-Skim and Fleximer

Shortly after Sailfish and inspired by it, RNA-Skim was introduced [36]. The idea of

RNA-Skim was then taken even further by the application Fleximer [38]. RNA-Skim

and Fleximer work similarly to Sailfish, but instead of k-mers, they use sigmers or

fleximers respectively [36, 38].

kallisto

Kallisto introduced pseudoalignment [37] to quantify transcripts. The index kallisto

builds over a given transcriptome in form of a coloured de Bruijn graph, where each

color symbolizes a different transcript in the transcriptome. Therefore, the kallsito

index stores additional information for the quantification via an EM algorithm com-

pared to Sailfish as the order of the k-mers in the transcriptome is kept. According

to the kallsito authors this leads to a higher accuracy [37].

The good performance in speed is also a result from the fact that kallisto makes

use of redundant information. This is achieved by skipping over k-mers in non-

branching paths of the coloured de Bruijn graph. The skip is then validated by

confirming that the k-mer after the skip is present in the same transcripts as the

k-mer before the skip, if not, every k-mer is considered [37].

Salmon

The motivation behind Salmon [39] was to increase the accuracy of transcript quan-

tification by correcting GC-content biases. Before these corrections are applied,

Salmon builds an index based on a given transcriptome and quantifies transcripts

of a RNA-seq file by using a method called quasi-mapping [84] to determine the

most likely origin of a read in a RNA-seq file [39] (for more information about the

quasi-mapping and a direct comparison to kallisto’s pseudoalignment, see [84, 85]).

2.3.2 Needle count

Needle count follows an even simpler approach as the methods mentioned above,

instead of trying to determine the most likely origin of a read, Needle count takes

the median of a transcript representative submer counts. This changes the typical

metrics to quantify transcript expression, as the other methods try to estimate the

number of reads matching with a transcript. Therefore, Needle count leads to its

own expression value, which is from here on called ME (for median expressed).

The median was chosen instead of other metrics like the mean as the median

handles outliers better. This is important as non-unique submers and sequencing

errors can lead to outlier count values. If one is interested in the expression of a

48 Chapter 2. Alignment-free quantification

singular gene on the other hand, the mean of ME’s is taken into account, as the

singular transcripts should have similar MEs.

One downside of the ME is that differentiating between transcripts, which share

half or more of their submers is not possible because the median will be the same.

This is often the case for isoforms.

Similar to the methods mentioned above, Needle count consists of two steps: an

indexing step and a quantification step.

The index is build by determining all representative submers in a given genome

or transcriptome and storing them in a hash table. Needle count uses minimizers as

representative submers.

For the quantification step, Needle count expects as input one or more RNA-Seq

files, one genome or transcriptome file and the associated genome or transcriptome

index. Needle count then counts the occurrences of every minimizer that can be

found in the index of a given RNA-seq file and then quantifies a transcript by

taking the median of its minimizers.

In theory, any submer method would work with Needle count, but at the moment,

it only supports gapped and ungapped k-mers and minimizers.

2.3.3 Comparison of transcript quantification applications

The state of the art applications kallisto and Salmon are compared to Needle count

in regards to their accuracy and their speed and space consumption. Moreover, an

actual differentially expression analysis is repeated with the quantification of Needle

count to show its applicability in real use cases.

Accuracy

Two different data sets, one simulated and one real data set were used to determine

the accuracy of the different applications.

Simulated data The same simulated data set as created by Darvish et al. [32]

was used. The data was constructed with the simulation tool Polyester [86]. 256

experiments were simulated with the coverage 20, 40, 60 and 80, so 64 experiments

per coverage. For each of these experiments a second experiment was simulated

where ten % of the genes are differentially expressed with fold changes of 1
4
, 1
2
, 2

and 4 with equal probability. All experiments contain 75-bp paired-end reads and

the simulations are based on 100 randomly picked protein-coding transcripts of the

human genome [32].

As Figure 2.25 shows Needle count performs similar as kallisto and Salmon for

all three types of tested minimizers. The mean and the variance of Needle count is

2.3. Transcript quantification 49

Figure 2.24: Comparison of Needle count with kallisto and Salmon on
differentially expressed genes. The figure shows the fold change of differentially
expressed genes in the simulated data set. For kallisto and Salmon k was set to
19. Needle count, here named just Count, uses minimizers with the window sizes
19, 23 and 39. The x-axis presents the actual fold change that was set during the
simulation, the y-axis shows the measured fold change.

in the same range as kallisto’s and Salmon’s means and variances. For (19, 19)- and

(23, 19)-minimizers, there is barely any difference visible, while (39, 19)-minimizers

show especially for the fold changes above 1 a smaller mean. A slightly less accurate

performance for such a great window size was to be expected. However, (39, 19)-

minimizers still perform well enough to be actually used.

A similar performance can be seen for the coverage analysis in Figure 2.25.

Moreover, in Figure 2.25 it is more noticeable that Salmon has a greater variance

than kallisto and often also than the Needle count applications. Therefore, Needle

count shows a better performance than Salmon, which is surprising as Salmon uses a

more sophisticated method. However, Salmon was built to account for GC-content

biases, which were not simulated, so the worse performance could be due to that.

Real data The real data set is from the Sequencing Quality Control (SEQC)

project [87] and consists of four samples. Sample A contains Universal Human Ref-

erence RNA (UHRR) and Sample B Human Brain Referece RNA (HBRR). Samples

50 Chapter 2. Alignment-free quantification

Figure 2.25: Comparison of Needle count with kallisto and Salmon with
different coverages. The figure shows the fold change of genes expressed within
simulated sequencing experiments of different coverages. For kallisto and Salmon
k was set to 19. Needle count, here named just Count, uses minimizers with the
window sizes 19, 23 and 39. The x-axis presents the actual expected fold change by
dividing the known coverages, for example comparing coverage 40 with 20 should
lead to a fold change of 40/20 = 2. The y-axis shows the measured fold change.

C and D are a mixture of A and B in the ratio 3/1 for C and 1/3 for D. The gene

expression of 818 genes was determined by real-time polymerase chain reaction (RT-

PCR) and for 15, 984 genes the expression was determined by microarray analysis

[32, 87].

This data was analyzed by calculating the Spearman correlation of the number of

the TPM values as given by kallisto and Salmon and the ME as given by Needle count

with the actual gene expression by either the RT-PCR or the microarray analysis.

The TPM value is a normalization method based on the number of matched reads of

a transcript and is calculated in the following way for one transcript i with ni being

the number of matched reads to transcript i and li being the length of transcript i:

TPMi =
ni

li∑
j
nj

lj

· 1, 000, 000. (2.2)

The TPM values account for different transcript lengths between different tran-

2.3. Transcript quantification 51

scripts and different sequencing depths between sequencing experiments [27, 88].

Furthermore, the mean squared error was determined by considering the ex-

pected fold change of the ratio between C and D based on A and B and the actual

fold change based on C and D. The expected fold change was calculated by the

following formula:

D

C
=
Ai + 3Bi

3Ai +Bi

, (2.3)

where Ai and Bi represent the expression values of a transcript i for experiment A

and B [32].

For the mean squared error analysis the Needle count values were normalized

in the following way: All ME values were summed up and divided by 1 million

to obtain the correction factor, then all ME values were corrected by division of

the correction factor. This normalization was inspired by the TPM normalization.

Unlike the TPM normalization, the ME values do not need to account for the gene

length as the median is less prune to be influenced by this. Therefore using the

unnormalized or the normalized MEs for the correlation analysis had no impact on

the results for Needle count.

SEQC Microarray MSE
kallisto 80.2 76.3 0.6
Salmon 80.7 76.7 0.6

Count (19, 19) 80.6 77.3 0.6
Count (23, 19) 80.6 77.2 0.5
Count (39, 19) 80.6 77.2 0.5

Table 2.4: Comparison of Needle count with kallisto and Salmon on the
SEQC data set. For kallisto and Salmon k was set to 19. Needle count, here named
just Count, uses minimizers with the window sizes 19, 23 and 39. The columns
SEQC and mircoarray give the Spearman correlation in percent to the RT-PCR
quantification and to the miroarray quantification respectively. The column MSE
represent the mean square error of the titration monotonicity transcript-wise.

As Table 2.4 shows Needle count performs similarly or even better than the state

of the art tools kallisto and Salmon. However, the differences are so small that it

can be concluded that all methods perform the same.

Interestingly, there is barely any difference between the different window sizes,

even for (39, 19)-minimizers, which have performed slightly worse on the simulated

data set than the other tested minimizers. Proving even further that the usage of

greater window sizes can lead to accurate results.

52 Chapter 2. Alignment-free quantification

Speed and space

For the speed and space analysis, the real data set from the accuracy analysis was

used and every proteincoding transcript of the human genome was quantified. As

all applications first create an index and then quantify, the speed and space needs to

be determined for both steps. All comparisons were performed on a Linux machine

(Debian GNU/Linux 11 (bullseye)) with 1TB RAM and an IAMD EPYC 7702P

64-Core Processor CPU with 64 cores and 256MB L3 cache.

Index Quantification
Time RAM Index Size Time RAM

kallisto 179 5.0 1.9 259 3.9
Salmon 187 0.6 0.5 993 0.9

Count (19, 19) 24 1.7 0.6 631 7.6
Count (23, 19) 15 0.5 0.2 313 1.3
Count (39, 19) 7 0.2 0.1 202 0.5

Table 2.5: Speed and space comparison of Needle count with kallisto and
Salmon. Needle count, here named just Count, uses minimizers with the window
sizes 19, 23 and 39. The time is given in seconds and the RAM and index size in
GB. The time and memory consumption for the quantification was averaged over
all sequencing experiments.

As can be seen in Table 2.5, Needle count with (39, 19)-minimizers is the fastest

and the most space efficient method, which is not surprising as it considers less sub-

mers than any other method. For the index building step Needle count is consid-

erably faster with any minimizer than kallisto and Salmon, but has only a smaller

memory footprint and a smaller index than Salmon with (23, 19)- and (39, 19)-

minimizers. Although the index size of Needle count with (19, 19)-minimizers is

comparable with only a 0.1 GB difference. In terms of the index build, kallisto has

the biggest memory footprint and the largest index size and is only marginally faster

than Salmon.

Surprisingly, kallisto’s quantification is faster than Needle count ’s quantifica-

tion for (19, 19)- and (23, 19)-minimizers despite the fact that kallisto uses an EM-

algorithm, while Needle count just determines the median. The above explained

approach of kallisto that some k-mers can be skipped is probably the cause for their

good performance. An approach that is dependent on storing a data structure that

keeps information about the relationship between submers and therefore is not ap-

plicable for the simplistic approach Needle count follows. However, as minimizers

with greater window sizes can outperform kallisto, while still maintaining a good

accuracy, Needle count is competitive.

2.3. Transcript quantification 53

Differentially expression analysis

A data set obtained by Hong et al. [89] consisting of ten RNA-Seq files from breast

cancer tissue (luminal B subtype) and three files of normal healthy tissue from the

same woman were analyzed. One of the breast cancer samples showed a low quality

in previous studies and therefore was disregarded [89].

The expression values of all human gene transcripts were determined with Needle

count for all twelve samples for (19, 19)-minimizers. Afterwards, the expression value

of every protein coding gene was determined by taking the mean of the expression

value of its transcripts. These values were then analyzed with the differential analysis

tool DESeq2.

Hong et al. pointed out that the data set has 67 differentially expressed genes,

which are associated with the lymphocyte activation pathway and the PPAR signal-

ing pathway. The genes of the lymphocyte pathway are upregulated in the breast

cancer samples, while the genes in the PPAR signaling pathway are downregulated

[89]. As can be seen in Figure 2.26, the same association can be found with Nee-

dle count and the DESeq2 analysis considers all 67 genes significantly differentially

expressed.

Note that in Figure 2.26, the breast cancer sample named ”C0” seems like an

outlier as its expression profile looks more similar to the healthy samples. However,

this can be also seen in the analysis from Hong et al. [89].

Figure 2.26: Heatmap of the 67 differentially expressed genes. The samples
starting with the letter ”C” indicate a cancer sample, the samples starting with the
letter ”N” indicate a healthy sample. The heatmap was scaled columnwise.

Furthermore, a breast cancer signature found in a different study [90] on a dif-

ferent data set last year was tested as well. This signature consists of five genes, two

54 Chapter 2. Alignment-free quantification

were upregulated in breast cancer (KIF4A and COL11A1) and three were downregu-

lated (SFRP1, SAA1 and RBP4) [90]. All five genes were significantly differentially

expressed according to DESeq2 based on the Needle counts, confirming the gene

signature and the applicability of Needle count.

The results for both analysis remained the same using (23, 19)- and (39, 19)-

minimizers.

Conclusion

The here presented approach Needle count works well in practice, despite the fact

that the order of the submers is not kept and the median approach is more simplistic

than maximizing the likelihood a read originated from a specific transcript via an

EM algorithm. However, this approach has its limitations, as too similar transcripts

can not be differentiated.

Furthermore, the usefulness of representative submers like minimizers was shown

here for Needle count, which could be integrated in the other approaches as well to

boost their memory and run time performance.

Needle count could have a greater flexibility by applying the idea from [91] and

building the index over k-mers, thereby allowing queries for (w, k)-minimizers for any

w > k. In theory, the queries could also support syncmers or any other representative

submer method based on k-mers. Such an approach might speed up the query as

only the representative k-mers are considered and prevents rebuilding the index, if

a different representative submer method is desired. As the index for most sizes of

k for one genome is affordable, this seems like a good practice.

Overall, Needle count proves that even a simple quantification method can lead

to good results and therefore is worth investigating, especially in order to boost

speed and space performances.

Chapter 3

Indexing big data

Nowadays, the sequencing databases such as the European Nucleotide Archive [92]

or the Sequence Read Archive [5] contain sequences in the range of petabytes [7,

93]. In addition to storing this vast amount of data, searching the data is another

essential feature to enable reusability [94, 95]. However, alignment based searches

like BLAST [96] are computationally too expensive at this scale. Therefore, searches

based solely on the metadata became the default approach. Such an approach is

rather limited, though, as metadata can be missing, misclassified or outdated.

In 2016, Solomon and Kingsford had a breakthrough, when they constructed

the Sequence Bloom Tree, an index that could store almost 2, 600 RNA-Seq experi-

ments, while supporting queries based on the sequencing information itself instead

of metadata [97]. Since then, a wide range of indices were developed improving

and outperforming the initial index by Solomon and Kingsford. An overview of the

timeline of these indices and their surrounding data structures is given in Figure 3.1.

Excluded from this overview are approaches that were developed with pangenomic

applications in mind and therefore do not handle diverse data collections well, for

example VariMerge [98]. While most indices will benefit from a high similarity be-

tween different sequencing experiments, the excluded indices rely heavily on them

and are not an actual competitors to Solomon and Kingsford’s index.

This fast development and the variety of solutions, spanning only a couple of

years, indicates the importance of the underlying issue of the ever growing sequence

databases and the need for finding an efficient solution.

At the beginning, all indices were non-quantitative, however in 2020 with the in-

troduction of Reindeer, the first quantitative index was published [8]. From then one

further indices followed adapting existing non-quantitative versions to support quan-

tification. The focus of this work is on quantitative indices, especially on the current

state of the art index Needle [32]. However, an overview of the non-quantitative ones

are given as well because the approach of Needle could be adjusted to these methods.

In other works, the non-quantitative indices were separated in either color ag-

55

56 Chapter 3. Indexing big data

Figure 3.1: Overview of indices for large collections of sequencing data.
Each index or data structure is listed under the year it was published, either in
a peer-reviewed journal or on a pre-print server such as bioRxiv. Closely related
works are marked with an arrow. Some arrows seem to go back in time, this is
the result of the publication process of papers, which varies a lot. In the case of
kmtricks, the dotted arrow symbolizes that kmtricks in its current implementation is
based on the HDSBT, but could be implemented with other indices as well. Indices
with a blue background are quantitative. Data structures marked in cursive are not
forming a complete independent index. The reference to each mentioned index or
data structure can be found in the appendix Table A.1. The figure is an adapted
version of the figure found in [99].

gregative and k-mer aggregative methods [100] or in exact methods based on colored

de Bruijn graphs and probabilistic methods based on Bloom filters [101]. For al-

most every index these differentiation describe the same index with color aggregative

methods equaling the exact methods and k-mer aggregative methods equaling the

probabilistic ones, with the exception of SeqOthello [102], which is a color aggrega-

tive method [103] and probabilistic, although not based on Bloom filters. However,

the distinction based on the two data structures, the Bloom filter and the colored

de Bruijn graph, shows how essential the two data structures are. Therefore, both

are explained in more detail below.

3.1 Bloom filter

A Bloom filter requires a bit vector of length n, h hash functions and a false positive

rate (pfpr). An element is inserted into a Bloom filter by hashing the element with

each of the h hash functions. These hash values are then seen as positions in the

bit vector and the bits at these positions are flipped to one (see Figure 3.2 for an

3.2. Colored de Bruijn graph 57

example) [104].

Figure 3.2: Example of a Bloom filter. Three elements ’ACGTACT’,
’CAGTGGT’ and ’TTCTACT’ are inserted in an empty Bloom filter, thereby flip-
ping the bits at the positions that their hash functions are indicating. Despite not
being inserted, the element ’GCCCACA’ is found because its hash values point to
positions that have been flipped by other inserted elements.

A query works similarly. Again, the hash values are calculated and their positions

in the Bloom filter are looked up and combined with a logical AND. If the logical

AND results in one, meaning there was a one at every position, the element is

considered present, otherwise the element was not inserted in the Bloom filter [104].

Bloom filters can have false positives, but not false negatives. The false positives

are the result of different elements flipping bits to one than the queried element (as

shown in the example in Figure 3.2). The probability for a false positive depends

on the size of the vector, the number of hash functions and the number of inserted

elements m [104]:

pfpr = (1− (1− 1

n
)h·m)h ≈ (1− e−mh

n)h. (3.1)

3.2 Colored de Bruijn graph

A de Bruijn graph (DBG) [105, 106] is a graph that is widely used in bioinformatics,

for example in genome assembly. The graph consists of k-mers as nodes and two

nodes are connected with a directed edge, if and only if the suffix of the starting node

equals the prefix of the ending node [107, 108]. Note, this definition is node-centric

as used by Marchet et al. [8] (see Figure 3.3 for an example).

Often there is a path in a DBG, where all nodes have only one incoming and

outgoing edge, with the exception of the first and last node, which can have multiple

58 Chapter 3. Indexing big data

incoming or outgoing edges respectively, such a path is called an unitig. Storing

unitigs instead of the singular nodes is space efficient, therefore this version of a

DBG is called a compressed or compact DBG [108].

Figure 3.3: Example of a DBG. A DBG for the sequence ”AACGTCGACGTG”
for 4-mers. Marked in blue is the unitig path that can be compressed to one node
in a compressed DBG (the graph on the right).

A colored DBG (cDBG) is a DBG built over k-mers from different sequencing

experiments, where each node is associated with a color that symbolizes in which

experiments the k-mer can be found [109].

3.3 Error handling

All indices have to deal with the fact that sequencing experiments are not error

free. Most indices handle errors by applying a cutoff and disregarding all k-mers

which appear with a lower frequency in one sequencing experiment than the given

cutoff value [65, 97, 110, 111]. Therefore, determining the cutoffs is crucial and most

indices rely on the cutoffs introduced by Solomon and Kingsford [97].

These cutoffs are shown in Table 3.1 and are dependent on the file size. Solomon

and Kingsford do not clarify, if they meant the uncompressed or gzipped compressed

file size [110], but by now it is established to rely on the gezipped file size [65, 110].

Cutoff File size
1 0-300 MB
3 300-500 MB
10 500 MB - 1 GB
20 1-3 GB
50 > 3 GB

Table 3.1: Cutoffs based on file size.

An alternative approach follows kmtricks, which keeps low-frequency k-mers, if

they appear in multiple experiments because these k-mers are probably not the

3.4. Non-quantitative indices 59

result of an sequencing error despite their low frequency [111]. The same approach

could be applied to other indices as well.

3.4 Non-quantitative indices

This overview aims to give an insight into the variety of ideas that have been applied

to handle a large collection of sequencing data. Some ideas provide supportive data

structures or algorithms for existing indices, for example BLight, kcollections or

kmtricks, but do not form their own index (marked in cursive in Figure 3.1). These

ideas are not explained in detail here, but mentioned wherever needed.

Furthermore, it is worth mentioning that some indices were built with metage-

nomic applications in mind, for example COBS [21], while others target RNA-seq

applications, for example SBT [97]. However, while the performance of an index

might decrease in the task it was not built for, the underlying ideas are still of inter-

est and some indices are even meant to work in both fields, for example Raptor [65].

3.4.1 SeqOthello

SeqOthello is based on a static minimal perfect hashing algorithm called Othello

[102, 112, 113]. Unlike other minimal perfect hashing algorithms Othello allows

a many-to-one mapping, meaning multiple keys can map to the same value, but

multiple values can not be associated with multiple keys. In SeqOthello, these keys

are k-mers [102].

SeqOthello contains multiple Othellos, one root Othello and multiple bucket

Othellos (see Figure 3.4 for an example). The root Othello maps all k-mers found

in all given sequencing experiments to the bucket Othello they can be found in.

While the bucket Othellos map a k-mer to a bit vector containing the information

in which sequencing experiments it is present in. If these bit vectors are sparse or if

they contain a high number of ones, which happens when a k-mer appears in either

only a few sequencing experiments or many, the bit vectors are stored via a more

compact encoding utilizing the sparsity or density. A bucket Othello contains only

k-mers with the same encoding and the total size of all bit vectors in one bucket is

limited to a given size. In order to optimize the space consumption further, k-mers

that appear in only one sequencing experiment are stored only in the root Othello

and return that singular sequencing experiment [102].

A k-mer from a queried sequence is then found by checking maximally two Oth-

ellos. If a k-mer has been inserted in SeqOthello during construction, the correct

answer will be returned. However, if a k-mer that has not been seen in any se-

quencing experiment is searched for, SeqOthello may return a false bit vector and

60 Chapter 3. Indexing big data

Figure 3.4: Overview of SeqOthello. All k-mers from all sequencing experiments
are determined and then added in an Othello, which then stores for one k-mer the
bucket Othello it is in. These buckets point to bit vectors containing information,
in which sequencing experiment a k-mer occurs, here called occurrence map. These
bit vectors can be encoded in different formats to save space, which are called Value
List, Delta List and Bitmap here. The figure is taken from [102].

therefore lead to false positives [102]. As the number of false positives are dependent

on the given input, the probability of a false positive decreases with the diversity of

the given sequencing files.

Furthermore, SeqOthello has a dynamic update in form of insertions imple-

mented [102].

3.4.2 Mantis

Mantis is based on a counting quotient filter (CQF) and a binary matrix and im-

plements a cDBG [110].

The CQF is at its base a quotient filter, which is a probabilistic data structure

that divides a value into a quotient and a remainder. The quotient consists of the

first q bits of the value and the remainder of the rest. Inserting an element works by

determining the position in the quotient filter based on the quotient and then storing

the remainder there. If there is a hash collision, the second remainder is stored in

the next free slot on the right, while keeping track of whether the information filled

in was due to a hash collision [114].

A CQF adapts this data structure by solving hash collisions in such a way that

collided remainders are arranged in an increasing order. Whenever, an element

3.4. Non-quantitative indices 61

is inserted more than once, a remainder is used to keep track of the counts, as

this remainder does not follow the increasing order, it can be distinguished from

element’s remainders. Like the BF the CQF is a probabilistic data structure and

therefore can return a higher count for an queried element than the actual count

value. [114]. However, unlike BFs the CQF can be exact, when using an invertible

hash function and thereby preventing hash collisions [110].

The Mantis index is built by determining for a k-mer in which sequencing exper-

iment it appears by creating a bit vector with this information. If such a bit vector

is not present yet in the binary matrix, the bit vector is added together with a color

ID. If it is present on the other hand, the color ID is retrieved. The k-mer itself is

then stored in the CQF with the color ID as its count value (see Figure 3.5 for an

example). In order to construct a smaller CQF, Mantis uses a greedy approach to

give the most common bit vectors smaller color IDs [110]. Moreover, the bit vectors

can be stored more efficiently by applying a minimal spanning tree structure, where

the difference between the bit vectors to their parent node are stored [115].

Figure 3.5: Overview of Mantis. The k-mers of all four sequencing experiments
are determined and inserted into the CQF with a color ID. The color ID references
the row in the binary matrix called color class table, which contains bit vectors with
information in which experiments a k-mer can be found. For example the k-mer
”ACGT” can be found in the sequencing experiments E2 and E3. The bit vector in
the color class table, which shows presence in these experiments is the bit vector in
the first row with the color ID 0 and therefore ”ACGT” is stored in the CQF with
the color ID 0. The figure is taken from [110].

A k-mer from a queried sequence is then found by looking up its hash value in the

CQF and retrieving the color ID, to then check the binary matrix to access the bit

vector showing in which experiments the k-mer is present. The bit vectors from all

k-mers in a query sequence can be summed up and then based on a given threshold

the sequencing experiments containing the query sequence can be reported [110].

As the CQF can be exact, Mantis is mostly used in its exact mode. However,

using Mantis with a false positive rate can lead to false negatives. This is caused

62 Chapter 3. Indexing big data

by the fact that false positives in the CQF can lead to the return of higher color ID

values than the ones inserted for a k-mer and therefore to a completely different bit

vector, where sequencing experiments are missing or added compared to the actual

bit vector of that k-mer (for example in Figure 3.5, color ID 1 is returned for ”ACGT”

instead of 0 and sequencing experiment E2 would not be found, but E4). For these

false positives, Pandey et al. show that because multiple k-mers are considered these

randomly found sequencing experiments have with a high probability no impact on

the end result [110]. A similar argument could be made for the false negatives, but

false negatives are often seen as more problematic as false positives, because they

can not easily be verified in a downstream analysis.

Moreover, Mantis in its most recent version reduces the memory consumption by

loading the index only partially by applying a partition based on minimizers [116].

Furthermore, Mantis allows a dynamic update by applying the Bentley-Saxe

transformation, which allows insertions, but not deletions [116].

3.4.3 Bifrost

Bifrost is based on an array, a hash table and an array of binary matrices and

implements a cDBG.

The array contains all unitigs extracted from the sequencing experiments. For

these unitigs (k, kk)-minimizers, with kk being a user defined value so that kk <

k, are determined. These minimizers are then stored in a hash table with the

information, in which unitig they were found and at which position in the unitig.

As a minimizer might appear in different unitigs, multiple values might be stored for

one minimizer value. Furthermore, each unitig is associated with a binary matrix

in which each of a unitig’s k-mer is represented by a binary vector, where a one at

position j indicates that the k-mer can be found in sequencing experiment j (see

Figure 3.6 for an example). As the binary matrices can take up a considerable

amount of space, multiple compressing strategies are applied by Bifrost [117].

A query sequence can be found with Bifrost by extracting all k-mers from the

sequence and then searching for the minimizer of each k-mer in the hash table. If the

minimizer can not be found, the respective k-mer is not present in any sequencing

experiment. If the minimizer is found, each unitig it is linking to has to be checked

and compared to the k-mer, if the k-mer is present in a unitig, the associated binary

matrix needs to be checked to retrieve the binary vector with the information in

which experiments the k-mer can be found in. The bitvectors of all k-mers can be

summed up then and based on a given threshold, it can be determined in which

sequencing experiments the query sequence can be found [117].

Unlike all other indices, Bifrost allows inexact searches of k-mers with one se-

3.4. Non-quantitative indices 63

Figure 3.6: Overview of Bifrost. Bifrost is built over four sequencing experiments
with 4-mers. The unitigs of at least length 4 for all given sequencing experiments
are determined and stored in an unitig array. In a minimizer hash table, all (4, 2)-
minimizers are stored with a list of tuples, where each tuple stores a position in
the unitig array and a position in the unitig sequence. For example, the minimizer
”CG” is a minimizer in three unitig sequences, which can be found in the positions
1, 3 and 4 in the unitig array. Those minimizer start at different positions in their
unitigs, in the unitigs at position 1 and 4 in the unitig array, they start at position
0 of the unitigs, while in unitig at position 3 in the unitig array they start at
position 4. Each unitig in the unitig array is associated with a binary matrix that
stores which experiments a k-mer in the unitigs can be found. Querying the k-
mer ”TCGA” would work by first determining the (4, 2)-minimizer, which is ”CG”
assuming lexicographical ordering. Now, all unitigs ”CG” is pointing at in the
unitig array are considered by matching the unitig sequence to ”TCGA”. Only in
the unitig at position 3 in the unitig array, the k-mer can be found. Then the k-
mer is looked up in the binary matrix for that unitig and the bit vector stored for
”TCGA” reveales, ”TCGA” can only be found in the first sequencing experiments.

quencing error [117]. Furthermore, Bifrost supports dynamic updates by an imple-

mented insertion option [117].

3.4.4 MetaGraph

MetaGraph [101] is another cDBG implementation and the first application that

actually uses the DBG characteristics in a query.

64 Chapter 3. Indexing big data

MetaGraph is constructed from the individual DBGs based on each given se-

quencing experiment with the additional information how often a k-mer occurs in

an experiment. From these singular DBGs the cDBG is constructed. Each k-mer in

the cDBG is annotated with which sequencing experiment it occurs (see Figure 3.7

for an example). For these annotations different data structures are supported like

a simple hash table or a compressed indicator vector and depending on which one is

picked, MetaGraph becomes dynamic as certain data structures support insertions

of new experiments [101].

Figure 3.7: Overview of Metagraph. MetaGraph constructs a cDBG over all
given sequencing experiments (shown on the left) and associates to each k-mer rep-
resented as a node in the cDBG with information, in which experiments it can be
found. Here each experiment is symbolized by a different color and the association
is achieved by a binary matrix. The figure is taken from [101] and slightly adapted.

A query sequence can be found by considering all k-mers in the given sequence

and checking in the annotation matrix, in which experiments it is present and then

returning the percentage of k-mers found per sequencing experiment. If multiple

sequences are searched for or a long sequence, the query can be made more efficient

by creating a query graph which then can make usage of repetitive k-mers appearing

in different query sequences or multiple times in one sequence [101].

Alternatively, a query sequence can be aligned to all sequencing experiments at

the same time by finding a path through the cDBG and keeping track, which k-

mer has been seen in which sequencing experiment and the allowed distance [101].

Such an approach only makes sense though, if the stored sequencing experiments

are genomes.

3.4.5 Sequence Bloom Tree

The idea of a Sequence Bloom Tree (SBT) is to create a binary tree of BFs, where

one leaf represents one sequencing experiment and stores all the k-mers of that

experiment, while the internal nodes represent the union of their children (see Figure

3.8 for an example) [97].

3.4. Non-quantitative indices 65

Figure 3.8: Example of a SBT. There are four sequencing experiments represented
by Sx. Leaves of the tree represent one of these experiments, while the internal nodes
are the unions of their children. The figure is taken from [118].

Searching through a SBT for a specific sequence like a gene works in the following

way: The k-mers in the query sequence are searched for in the root node, if enough

k-mers according to a given threshold are present there, the children are considered.

This happens recursively until a leaf node is reached or a node does not contain

a certain amount of k-mers from the query sequence. Whenever this happens, the

search can end there, as its children will not include more of the query sequence’s

k-mers [97]. The speed of the search is therefore dependent on the threshold, as a

high threshold can exclude pathways in the tree faster.

The AllSome SBT (ASSBT) [119] and the Split SBT (SSBT) [120] apply similar

improvements to the SBT. Both store two BFs for internal nodes, where one BF

stores the intersection of the information stored in its children and the other one the

union minus the intersection (see Figure 3.9 for an example) [119, 120]. Therefore,

both approaches benefit from clustering similar sequencing experiments together

because the shared information is then the greatest [119]. The difference between

ASSBT and SSBT is that the ASSBT does not store the k-mers found in the union

of the parent node [119]. Therefore, the SSBT keeps some redundant information.

However, in the compressed version of the SSBT this redundancy is removed [120].

As both approaches, the ASSBT and the SSBT, are motivated by the idea to use

less redundant information, they achieve a smaller index size than the original SBT

[119, 120].

Furthermore, the search of the k-mers from a query sequence is faster as some

answers can be found quicker. As soon, as a k-mer is found in the intersection BF of

one internal node, it is known that the k-mer is present in all its children [119, 120].

66 Chapter 3. Indexing big data

Figure 3.9: Example of a SSBT. There are four sequencing experiments rep-
resented by Sx. Leaves of the tree represent one of these experiments, while the
internal nodes store two BFs: One containing the intersection of its children and
one containing the union minus the intersection. The figure is inspired by [118].

The HowDe-SBT (HDSBT) [121] improves the SBT further in terms of space

and speed by making even better use of the shared information between sequencing

experiments. The HDSBT also stores two BFs at its internal nodes. One BF contains

the stored information of the union of the intersection of its children nodes and the

complement of the union of its children nodes (from here on first BF), while the

other BF contains the information of the intersection of its children (from here on

second BF) [121].

For the search of a query sequence two counters, called present and absent, are

necessary. They are initialized with zeros. Then the k-mers of a query sequence

are processed by checking if the k-mer is found in the first BF of an internal node

starting with the root, if it is present, the second BF is checked, if the k-mer is found

there as well, the present counter is increased by one, if not the absent counter is

increased by one (see Figure 3.10 for an example). Whenever, the present counter

reaches the given threshold, all the leaves of the current node contain the query

sequence. Whenever, the absent counter reaches 1− threshold, the search does not

need to investigate the current node’s children further, as none of them will contain

the query sequence [121].

All SBT implementations can support in theory insertion and deletions. How-

ever, so far no SBT implementation actually implemented this feature [122].

Moreover, as BFs are probabilistic data structures with a false positive rate,

checking multiple BFs during a query for one k-mer leads to a multiple testing

problem. Any k-mer found in an union BF (for ASSBT and SSBT) or any k-mer

increasing the presence counter (for HDSBT) could be a false positive and because

the query for this k-mer ends there, this cannot be corrected. Therefore, the more

internal nodes are checked, the likelihood of a false positive increases and is overall

3.4. Non-quantitative indices 67

Figure 3.10: Example of a search in the HDSBT. There are five k-mers named
a, b, c, d and e searched for with a threshold of 0.5. Before looking at any node, the
counter present (P) and absent (A) are both zero. At the root node, the k-mer c is
found in both BFs, so the present counter is increased by one. At the internal node
on the left, the k-mers b and e are found in both BFs and the present counter is set
to 3 now. As three exceeds the threshold because 3 >= 0.5 · 5, it is now clear that
the sequencing experiments S1 and S2 contain the query sequence. Then the right
internal node is checked, there the k-mers a, b, d and e are found in the first BF, but
only d is found in the second BF. Therefore, the present counter is increased by one,
while the absent counter is increased by three. Now, it is clear that the sequencing
experiments S3 and S4 do not contain the query sequence.

greater than the false positive rate of the individual BFs. In the original SBT this

was accounted for by the redundancy, neither Harris et al., Sun et al. nor Salmon

et al. address this issue in their work of the HDSBT, ASSBT and the SSBT though

[119–121].

3.4.6 COBS and MetaProFi

COBS, and its direct ancestor BIGSI, are in their essence an array of BFs, where each

BF stores all k-mers in one sequencing experiment. These BFs are then combined in

an array where each BF is a column and a row represents result of a hashed k-mer

for each sequencing experiment [21, 123].

Therefore, searching a k-mer from a queried sequence works by finding the rows

of a k-mer, one row per hash. The rows of the different hash functions are combined

with an binary AND and result in a bit vector representing in which experiments

the k-mer can be found. This can be done for all k-mers in a queried sequence and

the resulting bit vectors can then be summed up to determine how many k-mers of

68 Chapter 3. Indexing big data

a queried sequence are present in each sequencing experiment (see Figure 3.11 for

an example) [21].

Figure 3.11: Example of a search in COBS. Two 4-mers ”ACGA” and ”CGAA”
are searched in a COBS index built over three sequencing experiments named here
d0, d1 and d2 with three hash functions. Each hash function points to a different row
and all three rows per 4-mer are extracted and then combined with a bitwise AND.
The resulting bit vectors are then summed up for the final result, which show that
the first sequencing experiment d0 contains one of the searched 4-mers, the second
one both and the third one none. The figure is taken from [21].

In order for a k-mer to point to the same positions in all BFs, the BFs need to

have the same size and the same hash functions. Sequencing experiments can have

a different amount of k-mers and fixing the size of all BFs based on the biggest

experiment as done by BIGSI leads to a waste of space for smaller experiments,

while fixing the size of all BFs based on the smallest experiment would lead to

an increase of the false positive rate for the bigger experiments. Therefore, COBS

offers a compact version of the index, where different sized BFs are allowed. In the

compact version, similar sized sequencing experiments are clustered together and

still have the same BF size, while different clusters can have different BF sizes. In

that case the hash functions for one k-mer can not point to the same positions in

the different BFs. However, COBS uses still one hash function for all by picking a

hash function whose output range is larger and then applying a modulo operator to

fit it into the individual BF sizes [21].

The clustering of the compact version makes an insertion harder, as a new se-

quencing experiment can not simply be added to the array, but needs to be inserted

in the best fitting cluster and this cluster needs to have space allocated for additional

experiments. At the moment, only a merge operation for non compact indices are

offered [21].

MetaProFi is an index from a different research group but the underlying data

structure is the same as in COBS. The difference to COBS lays in the compression

3.4. Non-quantitative indices 69

of the data structure, MetaProFi divides the array in batches and chunks, which are

compressed individually and thereby achieve a better compression ratio. Moreover,

MetaProFi is the only index so far that is written in Python and Cython for the

computationally heavy parts and might be easier to use for non-computer scientists

[124].

3.4.7 RAMBO

The idea of RAMBO is to not store one BF for each given sequencing experiment,

but several BFs storing multiple sequencing experiments and thereby reducing the

allocated space. To achieve this, RAMBO is at its core an array of BFs [125].

RAMBO is constructed by generating all the k-mers in a sequencing experiment

and partitioning the sequencing experiments into B groups. Each group can contain

more than one sequencing experiment and is stored in one BF, which is called a BF

union. All of these groups represent one column in the array of length R. For

the other R − 1 columns, this procedure is repeated with a different independent

partition. Therefore each sequencing experiment is stored R times together with

other experiments (for an example see Figure 3.12) [125].

Figure 3.12: Overview of Rambo. The K sequencing experiments are partitioned
into B groups, for the first entry in the first row (marked in color), the orange
and the yellow sequencing experiments are combined into one BF, the Bloom filter
union. For the other remaining R−1 columns a different partition leads to different
sequencing experiments combined in an union. The figure is taken from [125].

Answering for a query sequence then works by checking each k-mer in every B ·R
BF union. If the k-mer is found in one BF union, the list of sequencing experiments

of this union is saved. Therefore, by checking all BF unions, multiple list of se-

quencing experiments are obtained, these lists are then intersected to determine all

70 Chapter 3. Indexing big data

experiments containing the k-mer. As this is repeated for each k-mer, the percentage

of k-mers found for each experiment can be determined [125].

Due to the combination of sequencing experiments the false positive rate is not

only dependent on the false positive rate of the individual BFs, but also on the

partitioning. A k-mer can be considered found in an experiment it is not actually

contained, if the k-mer is present in the sequencing experiments this false positive

experiment is grouped with over the different columns. However, Gupta et al. argue

that the overall false positive rate is still low, if most k-mers appear in only a

small number of sequencing experiments [125]. This assumption might hold for

metagenomic applications, but not for usage with RNA-seq.

Furthermore, Gupta et al. do not mention the underlying multiple testing prob-

lem that can also impact the false positive rate. Addressing it could improve the

accuracy.

3.4.8 PAC

PAC is at its core a collection of multiple arrays of BFs, where a single array of BFs

can be compared to the single array in COBS. A k-mer in one of these arrays points

to a row, which contains the information, in which sequencing experiment it occurs

[103].

PAC is constructed by obtaining all k-mers from all sequencing experiments and

partitioning them based on their (k, kk)-minimizers with kk being a user defined

value so that kk < k. Each minimizer leads to one partition consisting of an array

of BFs for k-mers with the same minimizer and two integer arrays. These integer

arrays are obtained from leaf BFs, where each leaf BF contains the k-mers of one

partition that is present in one sequencing experiment. From these leaf BFs the

integer arrays are obtained by first creating the union of adjacent leaf BFs, starting

with one from the left and the other from the right, and then counting the number

of uninterrupted ones for each position starting from the BF union containing all

leaf BFs to a single leaf BF (see Figure 3.13a for an example) [103].

The integer arrays are used to reduce the search space of a query. For a queried

sequence, all k-mers with the same minimizer are handled at the same time, as they

point to the same partition. By applying the same hash functions as the ones in the

leaf BFs, the positions in the integer arrays and the arrays of BFs is determined.

The found number in the integer arrays mark a range from left and right of a row

in the array of BFs and only at the overlap of these two ranges, the sequencing

experiments could contain the queried k-mer. Therefore, only those positions need

to be checked (see Figure 3.13b for an example) [103].

Moreover, PAC offers an update option by allowing the insertion of multiple

3.5. Quantitative indices 71

(a) Construction (b) Query

Figure 3.13: Overview of PAC. Both figures show one partition. In (a) the leaf
BFs are shown marked with a grey background. The top and bottom rows show the
adjacent union BFs starting from the left respectively right of the leaf BFs. The two
integer arrays are here named Vl and Vr. In Vl the second position marked in green
stores a one as there is only one uninterrupted one starting from the last union BF.
While Vr stores a five because there is a one in all five union BFs. In (b) the k-mer
”AGTGGAT” is searched for, the correct partition was already determined by its
minimizer and now the hash functions determine the positions in the integer arrays
Vl and Vr as in the array of BFs. In this example, there is only one hash function,
so only one position is considered. The number in Vl determines the range starting
from the right, while Vr determines the range starting from the left. There is an
overlap of these two ranges for only one column, meaning only in the sequencing
experiment represented by this column the k-mer might be found. As a one is stored
at that spot, it is found. Both figures are taken from [122] with small adaptations.

sequencing experiments, the costs of these insertions is similar to the cost of the

build of an independent PAC over these experiments [103].

3.4.9 Raptor

Raptor is the only application that also supports minimizers alongside k-mers. The

index of Raptor was first based on the interleaved BF [65] and has been recently

replaced with the hierarchical interleaved BF [126]. Both data structures are ex-

plained in detail below in 3.6.2 and 3.6.3. According to the analysis of Seiler et

al. and Mehringer et al. Raptor is currently the best performing index in terms of

construction time, index size and query time [65, 126].

3.5 Quantitative indices

In the last three years, quantitative indices were simultaneously introduced as a

way to quantify a query for thousands of sequencing experiments. A quantitative

index can always answer a presence or absence query, as any occurrence greater than

zero can be interpreted as present. However, as the indices are optimized for the

quantitative query, this might be less efficient than using a non-quantitative index.

72 Chapter 3. Indexing big data

3.5.1 Reindeer

Reindeer was the first quantitative index and is at its core a cDBG, where each

k-mer is associated with a count vector representing the number of occurrences in

each sequencing experiment [8].

In order to build Reindeer, a preprocessing step is necessary, in which the com-

pact DBG for each sequencing experiment is determined and each unitig in the DBG

is associated with a count value. This count value is the average of the number of

occurrences of each k-mer contained in the unitig [8].

Given the individual compact DBGs, an union DBG is constructed. This union

DBG is built in a compact form, but instead of using unitigs, it is based on monotigs.

Monotigs are paths in the union DBG, where each k-mer is associated to the same

count vector and has the same (k, kk)-minimizer with kk < k (see the Figure 3.14

for an example). These monotigs are determined by a greedy algorithm and in the

end are associated to count vectors [8].

Figure 3.14: Overview of Reindeer. From each data set a DBG with the count
values is constructed (1), from there the monotigs are determined (2) and then
stored in an index, where each monotig is associated to a count vector (3). In (2),
the (4, 2)-minimizers in the 4-mers are marked in yellow and the singular monotigs
are overlined in orange. For each 4-mer the count values are marked with the three
symbols circle, star and rectangular. These symbols not only mark, if a 4-mer is
present in a given data set, but also the count value, which for simplicity is the same
for all the shown 4-mers here for one data set. The figure is taken from [8].

The count vectors can be stored in a more space efficient way by discretization of

the count values, for example by log-transforming the counts. Doing so will decrease

the accuracy compared to the original counts [8]. However, even when Reindeer is

used without a discretization it is not exact as the the count values over unitigs in

the preprocessing step are averaged.

A query sequence is quantified by first determining in which sequencing experi-

ments the query sequence can be found. This is the case in the default mode, if at

least 40 percent of the query sequence’s k-mers have count values greater than zero.

If a query sequence is found in a sequencing experiment, the count values for each

k-mer are determined and returned [8].

Therefore, Reindeer does not determine a singular expression value for each

3.5. Quantitative indices 73

sequencing experiment and it is up to the user, what to do with the received count

values. Similar to Needle count, the median of these count values could be used and

lead to a good result. However, the approach from kallisto or salmon would also

work and Marchet et al. mentions such an approach as future work [8].

3.5.2 Gazelle

Gazelle could be described as the quantitative update to SeqOthello and therefore

also builds upon the Othello data structure [127].

The first step in the Gazelle construction is to build a SeqOthello and then

construct for each given sequencing experiment a hash table based on minimal per-

fect hashing, which maps every k-mer contained in an experiment to its number of

occurrence [127] (see Figure 3.15 for an example).

Figure 3.15: Overview of Gazelle. The first part named Tier 1 is a SeqOthello
index, while the Tier 2 consists of n hash tables mapping each k-mer in a sequencing
experiment to its number of occurrence in an experiment. The figure is taken from
[127].

As the exact number of occurrences often are not necessary, Gazelle uses the

log-function to discretize the values, similar to Reindeer, thereby saving space [127].

A query sequence’s expression is determined by searching for all its k-mers in

the SeqOthello and once a certain percentage of the k-mers has been found in a se-

quencing experiment, the sequencing experiment’s hash table is considered and each

k-mer’s count value determined. From these k-mer count values the interquartile

74 Chapter 3. Indexing big data

mean is calculated as the expression value [127]. The interquartile mean is picked

to exclude outliers [127], similar to Needle count ’s median approach.

3.5.3 Counting DBG

MetaGraph supports associating the k-mers in their cDBG with information about

their occurrence, they call this version of the DBG the counting DBG [95, 101].

The association of k-mers to their count values in different experiments works by

compressing a integer array, where an entry represents the count value of a k-mer

in one given sequencing experiment [95].

The compression of the integer array works by splitting it into two parts, a binary

array of the same size as the integer array and a smaller integer array. The binary

array has a one at each position where the count values of the integer array are

greater than zero. As this is a sparse binary array, common compression strategies

can be applied, Karasikov et al. use a Multi-BRWT [128]. The smaller integer array

does not store any of the zero values and is thereby smaller. In order to find the

correct entry during a k-mer query, the binary array is checked first, if the position

the k-mer hashes to is set to one in a column meaning the k-mer is present in a

specific sequencing experiment, the rank of that column returns the position in the

smaller integer array and the correct count value can be retrieved (see Figure 3.16

for an example) [95].

Figure 3.16: Example of storing the integer array in the Counting DBG.
The example shows one column of each array. In L1 the counts for each 3-mer
are noted, this column is transformed in the binary column B1 and the column A1

storing all count values greater than zero. The rank of the value in B1 gives the
correct position in A1. The figure is taken from [95].

In order to store smaller count values and achieving an even better compression,

the counting DBG makes use of the fact that adjacent k-mers in a DBG will have

a similar count value. Therefore, the actual count values are only kept for so called

anchor nodes and for the other nodes the difference in their count values to their

successor nodes are stored (see Figure 3.17 for an example) [95].

3.6. Needle 75

Figure 3.17: Overview of the counting DBG. The red nodes are anchor nodes.
The node for the 3-mer ”TAT” is not an anchor node as this is only a slice of a
DBG and the node has a successor not shown. Also marked in red are the difference
values stored instead of the actual count values, which capture the difference of a
node to its successor. The figure is taken from [95].

Similar to Reindeer, the counting DBG does not return singular expression val-

ues, but all count values found for the k-mers of a query sequence, thereby leaving

it to the user how to interpret these.

3.6 Needle

Needle is the current state of the art of the quantitative indices. The basic idea of

Needle is to store a non-quantitative index multiple times, where each index stores

the submers with a count value in a specified range. Therefore, Needle could have

been implemented with any non-quantitative index, but was based on Raptor ’s

interleaved Bloom filter (IBF) [32]. First, an overview over Needle’s workflow is

given. Then an introduction of the IBF and its alternative versions the hierarchical

IBF [126] and the counting IBF follows including an discussion about the advantages

and disadvantages of the different data structures for Needle. Afterwards, an in-

depth description of Needle’s implementation is presented and lastly, insights into

Needle’s normalization, dynamization and parallelization are given.

3.6.1 Workflow Needle

Needle constructs q IBFs with q being an input parameter. Each of these IBFs are

called a level and each level has a threshold (tq) associated to it. These associated

thresholds increase with the levels, therefore t1 < t2 < ... < tq holds [32].

For each sequencing experiment the canonical k-mers or the (w, k)-minimizers

(both from here on denoted minimizer) and their number of occurrence (nq) in each

experiment are determined. The minimizers are then inserted into the level that

represents the range that their number of occurrence falls into, so that tl <= nq <

tl+1 holds. For the last level q, nq only needs to fulfill tq <= nq (see Figure 3.18 for

an example) [32].

76 Chapter 3. Indexing big data

RNA-Seq

AGTC: 51
CCCA: 45
TGTA: 12

…

ACAA: 27
GGGT: 19
TTTA: 7

…

AGGG: 2
CGGT: 3
CGTA: 17

…

AGTC: 33
CAAC: 15
CGTA: 9

…

Minimizer
Occurences

Levels Thresholds

5 = q

4

3

2

1

AGTC
32

16

8

4

2

CCCA

TTTA

AGGG

Needle Index

Figure 3.18: Example of constructing a Needle index for (4, 4)-minimizers.
The exemplary Needle index consists of five IBFs. Each IBF is associated to a level
and a threshold and stores all minimizers present for that level for each sequencing
experiment. The index is constructed by first determining all minimizers and their
respective occurrences for all given sequencing experiments. Then, the minimizers
are inserted into the level for which ti ≤ occurrence < ti + 1 holds. For example,
minimizer ‘AGGG’ from the pink sample occurs two times and is therefore stored
in the first level, because t1 = 2 ≤ 2 < t2 = 4.

The thresholds of the level can be either the same for every sequencing experi-

ment and defined by the user (user-defined thresholds) or the thresholds can be au-

tomatically determined by Needle itself for each sequencing experiment (automatic

thresholds). The automatic thresholds are determined by recursively taking the

median of the number of occurrences of all minimizers in a sequencing experiment.

Thereby, reducing the minimizer content by half for each sequencing experiment at

every level [32].

An optimal partitioning is not feasible as the underlying minimizer distribution

usually does not contain any local minima that could be used as thresholds [32].

A query sequence is quantified by determining all its minimizers and initializing a

integer array as counter that has a zero value for each stored sequencing experiment.

Each minimizer is searched for in all levels, starting with the last level q and ending

with the first level using the counter array to keep track how many minimizers

have been found. Once half or more of a query sequence’s minimizers are found for

a sequencing experiment, the sequence is quantified for that experiment [32] (see

Figure 3.19 for an example).

3.6. Needle 77

GGT…TGA

5 9230

5100

0016

0364

1955

4

3

2

1

4 −
7.5 − 2 − 1 − 3

𝟗
∗ 4 − 2 = 3.7

GGTA
…
ATGA

Query Minimizers

Number of Minimizers in
Total: 15
15

2
= 7.5

8 −
7.5 − 6

𝟒
∗ 8 − 4 = 6.5

8 −
7.5 − 3 − 1

𝟔
∗ 8 − 4 = 5.7

7

9
32

32

16

8

4

2

ThresholdsLevels

Figure 3.19: Example of querying a Needle index for (w, 4)-minimizers. The
minimizers of a query sequence and the total number of minimizers in the sequence
are determined. Afterwards, the minimizers are looked up in each level, starting
with the highest level 5. The number of found minimizers per levels is then used
to determine, if the expression value should be estimated, which is the case, if half
or more of all minimizers in the query are found at that level or all higher levels.
Here that level is marked in bold for each color (Level 2 for green and yellow, Level
1 for pink and Level 5 for blue). If the estimation occurs at the highest level, the
threshold of that level becomes the expression value. On all other levels, Equation
3.4 is applied.

However, because the IBF is a probabilistic data structure this leads to a mul-

tiple testing problem and a correction is necessary. The observed number of found

minimizers (no) consists of the number of true positives (ntp) and the number of

false positives, which can be estimated by the number of minimizers in the query

sequence (ns) multiplied with the false positive rate:

no = ntp + ns · fpr. (3.2)

Therefore, the number of true positives can be estimated by:

ntp =
no − ns · fpr

1− fpr . (3.3)

This estimated value ntp is added to the counter at each level [32].

The actual quantification of the query sequence is based on the median of the

number of occurrences of all minimizers like in Needle count. However, unlike Needle

count the number of occurrences are not available, as only the level thresholds are

known. The median is therefore estimated by linear interpolation of two adjacent

levels [32].

Given a query sequence T with m minimizers, let Ci(T) describe the estimated

number of true positives ntp found for the sequence T at level i for one sequencing

experiment e. Furthermore, let level xe be the level, where counter[e] becomes equal

to or greater than m
2

for experiment e and level ye = xe + 1 be the level after xe.

78 Chapter 3. Indexing big data

Then the expression value for that experiment for the query sequence (µe) can be

determined by:

ae = Cxe(T
′)

be =

q∑
i=ye

Ci(T
′)

µe = tye −
m
2
− be
ae

· (tye − txe). (3.4)

In cases, where counter[e] becomes equal to or greater than m
2

at level q, which

is the first level considered, µe is set to tqe [32].

In theory, not all levels need to be considered, if a query sequence is already

quantified before reaching the last level for each sequencing experiment. In practice,

this is rather unlikely to happen, especially when considering more than one query

sequence, which can be quantified simultaneously with a counter matrix instead of

an array [32].

3.6.2 IBF

The IBF combines b BFs into one bit vector by interleaving them. This means that

an IBF stores a bit vector of length b at every position instead of a single bit like BFs

do (see Figure 3.20 for an example). Each bin, which stands here for one sequencing

experiment, is represented by one BF.

Therefore, the size of an IBF is b · n. The insertion and query work similar to

BFs [66]. As the IBF consists of multiple BFs, the IBF does not have one single

false positive rate, but multiple, one for each bin [32, 126].

It should be noted that the IBF is quite similar to COBS and shares similar

ideas and concepts. Considering the fact that the IBF and COBS ’s ancestor BIGSI

were published with just a few months in-between, the similarities are a coincidence

of independent research. However, despite their similarities, they differ in their

implementation details and according to the analyses performed by Seiler et al. the

IBF is the preferable non-quantitative index [65].

As an IBF is at its core a bitvector, known compression algorithms can be applied

to decrease the size of the IBF at the cost of increasing the query time.

While the IBF does not allow the deletion of singular elements from a bin, it is

possible to delete a complete bin by setting all its bits back to zero. These deleted

bins can then be filled by insertions of new bins. If there has been no deletion or

not enough for the numbers one wants to insert, the bin size of the IBF can be

increased. Therefore, the IBF supports dynamic updates in the sense that whole

3.6. Needle 79

0 0 0 ... 1 1 0 1 ... 0 0 0 0 ... 1 ... 1 0 0 ... 1 0 0 1 ... 0 0 0 1 ... 1

1 0 1 0 0 1 ... 0 1 0 1 0 0

. . .

0 1 0 0 0 0 ... 0 0 1 1 0 0

0 0 0 0 0 0 ... 1 0 0 0 0 0

0 1 0 0 1 0 ... 0 1 0 0 0 1

IBF

BF1

BF2

BF3

BFb

b b b b b b

|IBF | = b ∗ n

|BFb| = n

H1(ACGTACT) =

H2(ACGTACT) =

H3(ACGTACT) =

0 0 0 ... 1
0 0 1 ... 1
1 0 0 ... 1&

Bins of ACGTACT = 0 0 0 ... 1

Figure 3.20: Example of an IBF. At the top, [b] individual Bloom filters of length
n are shown, these were interleaved to create an IBF, of size b × n using 3 hash
functions. When querying a [submer], here ACGTACT, the hash functions return 3
positions in the IBF, so that 3 sub-bitvectors can be retrieved. These sub-bitvectors
are combined with a bitwise & to a final resulting bitvector, where a 1 indicates that
the [submer] is found in that experiment. Here, ACGTACT can be found in the
last (blue) experiment. The figure is taken from [66], the description with small
adaptations from [32].

sequencing experiments can be discarded or inserted, however, adapting an existing

bin by adding or deleting singular elements is not possible.

3.6.3 HIBF

The HIBF was motivated by the problem that hugely differently sized bins in the

IBF would lead to drastically different false positive rates for each bin. If a false

positive rate is guaranteed for all bins, this would lead to IBFs with a higher space

consumption than necessary, because the smaller bins will then have more space

than needed and a much smaller false positive rate. Therefore, the idea of the HIBF

is to improve space efficiency of smaller bins by merging them and to reduce the

space bigger bins need by splitting them (see Figure 3.21 for an example). For this

reason, the term bins is now differentiated into technical and user bins [126].

User bins refer to the bins the user is interested in, for example singular RNA-seq

files. As bigger user bins might get split or smaller user bins merged in the HIBF,

the actual bins in the data structure are called technical bins [126].

80 Chapter 3. Indexing big data

A B C D E F G H

0

50

100

A A B C D-H

0

50

100

A is split
into 2 TBs

D-H are merged
into 1 TB

D E F G H

0

50

100

IBF-1 IBF-2

a b

original IBF HIBF
size = 8× 100 = 800 size = 5× 60 + 5× 20 = 400

Figure 3.21: IBF vs. the HIBF Given an input of eight user bins (UBs), subfigure
a displays the layout of a normal IBF storing the content of the UBs, represented
by the inner, lightly colored cylinders, in one technical bin (TB) each. The outer
cylinders represent the size of the TBs and visualizes the wasted space. The hor-
izontal rectangular bar represents the layout, indicating which UBs, identified by
their ID (A-H), are stored in which TB. The same semantics hold for subfigure b
which displays the corresponding HIBF with a maximum of 5 TBs on each level.
In this example, UB A is split into the first two TBs in IBF-1, while UBs D-H are
merged into the last TB. The merged bin requires a second lower-level IBF (IBF-2)
storing the content of UB D-H in individual TBs. The size is given in exemplary
numbers. The figure and the description are taken from [126].

Splitting a user bin creates two or more technical bins. During a query, the

technical bins belonging to one user bin are considered together, so that the counts

in either bin are added up. Therefore, if an element is found in either technical bin,

the query will return that the element is present [126]. Merging two user bins into

one technical bin makes it necessary to store another HIBF, where the merged user

bins are stored individually. This allows the differentiation of the different user bins

in a query. As this second HIBF might also contain merged user bins, another HIBF

might become necessary. Therefore, an HIBF consists basically of multiple levels of

IBFs [126].

Before constructing the HIBF, it is necessary to know which bins should be

merged and which should be split. To determine this, Mehringer and Seiler et al.

introduced a preprocessing step that utilizes a dynamic programming algorithm to

determine a good layout, thereby optimizing the space consumption of a single IBF

of the HIBF [126].

The construction of the HIBF works then by inserting elements in the different

IBFs, while keeping track of which technical bins relate to the different user bins

[126].

Unlike the IBF, the HIBF tries to obtain guarantees an upper bound on the false

3.6. Needle 81

positive rate for all bins. The splitting and merging operations lead to a similar

number of elements stored in the different technical bins in each IBF of an HIBF,

meaning the false positive rate of the technical bins are roughly the same. However,

splitting a user bin leads to a multiple testing problem, as the query result of all

technical bins of a split user bin are summed up. To account for this, more space

is allocated for split bins, leading to a smaller false positive rate for the split bin

and thereby guarantees the false positive rate for a split user bin as well. However,

by doing so, the false positive rate of every other technical bin decreases, meaning

technical bins, which represent just a user bin without any split or merge now also

have a smaller false positive rate [126].

Moreover, merged user bins have a lower false positive rate, because at least two

IBFs are queried for them, meaning a false positive would need to be present in both

IBFs to be not detected or a true positive at the higher levels and a false positive

at the lower one [126].

Therefore, the HIBF like the IBF has different false positive rates for the differ-

ent user bins, but can guarantee a certain false positive rate with a smaller space

consumption than the IBF [126].

Querying an element for split user bins means checking multiple technical bins

and for merged user bins checking multiple IBFs. Despite the need to query multiple

IBFs, the HIBF was shown to be faster than a simple IBF due to the fact that the

single IBFs in an HIBF are smaller than a simple IBF. Moreover, in most applications

a query does not consist of a single element but of a longer query, for example a list

of k-mers, and it is only of interest if at least a certain amount of these elements are

contained in the HIBF. In these cases, a lookup at a deeper level is not necessary

anymore if the threshold has been reached on the upper-level. Thereby speeding up

the query even further [126].

Evaluation of the HIBF for the Needle workflow

The input of Needle is in most cases differently sized sequencing experiments, there-

fore, the better handling of the space of the HIBF is desirable for Needle.

As Needle stores q different IBFs, it would need to replace each IBF with an

HIBF. As a layout needs to be determined for an HIBF beforehand, this leads to

the question of if each level would need its own layout. If so, this would drastically

increase the construction time, as every file would need to be processed twice: Once

for determining how many elements go into which level and once to actually insert

the elements in the HIBFs. However, assuming the same layout for each level seems

reasonable as the difference between the sequencing experiments should not change

between levels at least not for the automatic thresholds. Therefore, the construction

time would only increase by calculating one layout. As a faster layout calculation is

82 Chapter 3. Indexing big data

currently researched, there is a good chance that this increase in construction time

could become insignificant.

Furthermore, Needle does not profit from a speed up during a query resulting

from reached thresholds, as Needle needs the exact number of elements found and

therefore, always needs to examine every IBF in a HIBF.

Moreover, Needle needs for its correction function during a query the exact false

positive rate per bin and would need to know, if a user bin is stored as a split,

merged or in one singular technical bin to estimate the false positive rate correctly.

A major drawback of the HIBF is that dynamic updates are currently not sup-

ported. However, as with a possible speed up for constructing the layout, this is

under active development.

In summary, the HIBF would probably slow down the construction and the search

times, while at the same time saving space. As a construction usually only needs to

happen once and the query times are still expected to be of the same magnitude, the

advantages of the HIBF seem to outweigh the disadvantages and using the HIBF

over the IBF seems to be preferable. Nevertheless, the missing dynamic updates are

the reason why here the IBF was used instead. But once the HIBF supports the

dynamic updates as well, its performance within Needle should be tested.

3.6.4 Counting IBF

There is a version of a Bloom filter that allows quantifying an element instead of

a mere presence or absence call, this version is called counting Bloom filter (CBF)

[129–132]. As Needle’s aim is a (semi-)quantification, combining the ideas of a

CBF with the ideas of the IBF or HIBF seem like an obvious alternative than

storing multiple IBFs or HIBFs as done in the current Needle workflow. Therefore,

the advantages and disadvantages of such an approach are discussed here, after

formally introducing the CBF and then a possible combination of the CBF with the

IBF called counting interleaved Bloom filter (CIBF).

CBF

A CBF works similar to a Bloom filter, but instead of being a bit vector, it stores

integers. The insertion of an element works by adding the count of an element to the

integer at the positions the hash functions of that element are pointing to [132] (see

Figure 3.22 for an example). In case the count is inserted to a position that already

stores a non-zero value, the maximum value between the stored and the count value

of the current element is stored.

Querying an element works by taking the minimum of the values that the hash

functions of the element are pointing to. The minimum is picked, because other

3.6. Needle 83

Figure 3.22: Example of a CBF. Three elements ’ACGTACT’, ’GCCCACA’ and
’TTCTACT’ are inserted in an empty CBF, thereby adding their counts at the
positions that their hash functions are indicating. When then searching for the
inserted element ’GCCCACA’, the minimum of the found values is then reported as
the count value as the higher numbers stem from other elements.

inserted elements might share one or more of the positions in the vector and have

increased the count [131].

Similar to Bloom filters these shared hash positions can lead to false positives in

CBFs in the sense that the reported count value is higher than the actual one [131].

The size of a CBF compared to a Bloom filter is greater as more than one bit

is needed per entry in the vector [129, 132]. The actual size is dependent on the

desired integer type one wants to save. Note that there have been some alternative

implementation of the CBF to improve further on their space consumption, for

example by applying d-Left hashing [130], as these implementation are based on

more convoluted ideas, which make it harder or even impossible to combine with

the ideas of the IBF, investigating those implementation is out of scope of this work.

Moreover, CBFs are sometimes implemented with a delete function, meaning

an element can be removed by decreasing the values at the positions their hash

functions are pointing to [130, 133]. This would introduce false negatives [130, 133].

As false negatives should be avoided in the use case covered here, this option is not

further taken into account here.

CIBF

The CIBF similar to the IBF combines b CBFs into one vector by interleaving them

(see Figure 3.23 for an example). The insertion and query work similar to CBFs.

Compressing a CIBF might be harder than compressing an IBF as it does not contain

only zeros and ones anymore.

84 Chapter 3. Indexing big data

0 0 0 ... 3 7 0 2 ... 0 0 0 0 ... 4 ... 0 0 2 ... 6 0 0 0 ... 0 2 0 0 ... 8

3 0 4 0 0 9 ... 0 1 0 6 0 8

. . .

0 2 0 0 0 0 ... 0 0 5 2 0 0

0 0 0 0 0 0 ... 3 0 0 0 0 0

0 7 0 0 4 0 ... 0 8 0 0 0 2

CIBF

CBF1

CBF2

CBF3

CBFb

b b b b b b

|CIBF | = b ∗ n

|CBFb| = n

H1(ACGTACT) =

H2(ACGTACT) =

H3(ACGTACT) =

0 0 0 ... 4

2 0 0 ... 8

0 0 2 ... 6

min

Bins of ACGTACT =0 0 0 ... 4

Figure 3.23: Example of an CIBF. There are [b] individual CBFs of length n
shown, which were interleaved for constructing a CIBF using three hash functions.
During a query, here for the example ’ACGTACT’, these three hash function will
point to positions in the CIBF and to three different sub-vectors. For these sub-
vectors for each bin the minimum of all three subvectors is determined for the
resulting vector. Here, ACGTACT has a count value of 4 in the last (blue) experi-
ment.

Evaluation of the CIBF for the Needle workflow

The current Needle workflow is based on q IBFs storing in each q level elements

with a count value in a defined range. 15 levels seem to be sufficient for most use

cases [32]. A CIBF replacing these q IBFs could work in two ways.

The first option would be allowing to directly save the counts in the CIBF,

thereby abandoning the range approach, which might lead to a higher accuracy.

However, by doing so the CIBF would need to save high count values and would

need to support an integer type capable of storing at least 28 = 256 numbers. A

greater number might be even appropriate, depending on how interested one is in

count values above 255. Therefore, at least eight additional bits per entry are needed

for a CIBF.

The second option would be to keep the idea of saving only the ranges of count

values and not all counts. In this way, each number in a CIBF would relate to a

level in the current Needle workflow. As 15 levels are a reasonable number, it would

be enough, if the CIBF has only four additional bits per entry.

In regards of space consumption, the advantage of the CIBF over q IBFs is that

3.6. Needle 85

only one CIBF is necessary. This CIBF however has to store all elements in one

CIBF, while the individual IBFs contain only parts of the elements. Given the

standard division of the elements in the Needle workflow based on the automatic

thresholds, the first level will contain half of the elements, while the second level

contains a fourth and so on. Therefore, the size of all q IBFs can be estimated by

multiplying the size of the first level IBF by two.

The difference of elements stored between the CIBF and the first level IBF is

two as well, as the first level stores half of the elements.

Based on equation 3.1, the size of a Bloom filter can be determined by

n ≈ −hm
ln(1− p1/hfpr)

. (3.5)

The size of an IBF is this formula multiplied by the number of b bins, while the

size of an CIBF is this formula multiplied by b and the number of additional bits

for storing the counts (nbits).

−h2m/ln(1− p1/hfpr) · b · nbits < −hm/ln(1− p1/hfpr) · b · 2

nbits < 1.

Hence, the CIBF consumes more space than the q IBFs and it is not an advantage

to use a CIBF.

However, as only one CIBF is necessary, the query could be faster with a CIBF.

Moreover, a CIBF would not lead to a multiple testing problem and therefore not

need a correction. Also, the first option might be of interest, if a more detailed

differentiation between the count values is of interest and might increase the accu-

racy. In summary, the CIBF has interesting properties and, despite the higher space

consumption, might be the appropriate data structure for certain tasks.

3.6.5 Implementation

Needle supports the build directly from sequencing experiment. However, it is rec-

ommended to use a preprocessing step.

The preprocessing step consists of determining all minimizers and the number of

their occurrence for each sequencing file and storing these information in a temporary

file together with the information of how many minimizers are contained in one file.

During the preprocessing, the minimizers and their counts are kept in an unordered

map and whenever a minimizer is seen the mapped value is increased. However,

in most cases only minimizers which have a count value above a certain threshold

are of interest. In order to reduce the memory consumption of the preprocessing

86 Chapter 3. Indexing big data

step, a second unordered map, which allows only counts up to uint8 is constructed.

Minimizers are kept in this second map until the count value exceeds the threshold,

only then they are stored in the first unordered map. Minimizers in the second

unordered map are discarded once all minimizers have been seen.

Based on this preprocessing step, the build starts with constructing all q IBFs.

The size for each IBF is determined from the average minimizer content for each

level and a given false positive rate.

In case of the user-defined thresholds, the minimizer content of each level needs

to be determined by going over all minimizers and counting how many to expect

per level for each sequencing experiment. In case of the automatic thresholds, the

total count of minimizers of one sequencing file is enough to estimate the minimizer

content for each level, as it should half with every level due to the construction of

the automatic thresholds. Therefore, the construction with automatic thresholds is

faster.

If there is no preprocessing step, the size of the IBFs is estimated based on the

file size of the sequencing experiments, which is less precise and might lead to too

big IBFs.

All constructed IBFs are kept in memory to insert the minimizers in the correct

IBF. Alternatively, the IBFs could be loaded one by one to reduce the memory

footprint, but this would significantly increase the construction time and therefore

was not implemented.

Moreover, the false positive rate is crucial for Needle’s query as it is used to

correct the number of found minimizers and needs to be known for each sequencing

experiment, therefore Needle stores a matrix with the false positive rates for each

level and each sequencing experiment as the given false positive rate will only hold

on average.

3.6.6 Normalization

The results from Needle can be normalized by every normalization method that

is used for read counts. However, as for Needle count, there is no need to correct

for read length, because the median is more robust to it than the sum of aligned

reads. Needle also offers its own normalization method to correct sequencing depth,

by dividing each result by the threshold of level 2. This is only applies for the

automatic thresholds, as then the thresholds are based on the given sequencing

experiments. Level 2 was picked instead of level 1 because level 1 can be influenced

by given cutoff values.

3.6. Needle 87

3.6.7 Dynamic update

The IBF supports dynamic updates in the form of inserting new elements into

specific bins and inserting and deleting complete bins. In Needle, the insertion and

deletion of complete bins has to happen on each level.

The deletion just resets all bits in a bin to zero, but the bin remains and therefore

still takes up space. In theory, one could delete the bin completely by shifting

all other bins and then resizing the bitvector. However, the IBF in its current

implementation is optimized for 64 bit machines and therefore, the number of bins

in an IBF are always a multiple of 64. Thus, such a complete deletion only makes

sense, if there are at least 64 empty bins. Furthermore, keeping the deleted bins

offers space for new sequencing experiments. For these reasons, the deleted bins are

kept.

When new sequencing experiments are added, the IBF is first checked for deleted

bins, which are then filled and if there are none or not enough, more bins are added.

As the IBF is already created, the size of an individual bin is determined. Therefore,

if the new sequencing experiments are significant larger than the ones Needle was

built on, the false positive rate for these bins will be rather high. There is no option

to increase the size of the bins as this would mean all hashes need to be recalculated

and for that the original sequencing experiments are needed. In this regard, the

HIBF seems promising as then large new sequencing experiments could be split.

3.6.8 Parallelization

The simplest way to parallelize the construction in Needle is to go over multiple

sequencing experiments at the same time and fill their information into the correct

IBFs. If the sequencing experiments are in bins that are stored on a different byte

this will not lead to a race condition and therefore, the split of the sequencing

experiments is set accordingly.

However, such a simple parallelization for the determination of the minimizers

and their counts either in the recommended way by a preprocessing step or during

the construction of the IBFs leads to multiple sequencing files loaded into the RAM

namely one for each thread, which can easily exceed the available memory due to

the size of the sequencing experiments.

Therefore, a more RAM-friendly parallelization option was implemented. In

this implementation, the parallelization happens over one sequencing experiment by

dividing the sequences over the different threads. Then each thread determines the

minimizers and their counts for their sequence batch and after all threads finished

their calculation, a single thread merges the result. This merging step slows this

parallelization down compared to the simple version, but is less memory intensive.

88 Chapter 3. Indexing big data

For this reason both parallelization methods were implemented and the user can

decide which option is more suitable.

To show the different performance of these two parallelization methods, the

preprocessing step was run for four sequencing experiments with four threads with

the simple parallelization and the RAM friendly version on a Linux machine (Debian

GNU/Linux 11 (bullseye)) with 1TB RAM and an IAMD EPYC 7702P 64-Core

Processor CPU with 64 cores and 256MB L3 cache (see A.3.2 for more details). The

four sequencing experiments have a size of approximately 20 GB (gzipped).

Threads Time RAM
1 81 21

simple 4 18 84
RAM-friendly 4 35 34

Table 3.2: Comparison of Needle’s simple and RAM-friendly paralleliza-
tion for determining the minimizers and their counts. The time is given in
minutes and the RAM in GB.

As shown in Table 3.2, the simple parallelization method is twice as fast as

the RAM-friendly version, but uses more than twice the amount of memory. Both

parallelization methods are faster than using only one thread, but have a higher

memory consumption. Therefore, both parallelization methods have their merit

and its up to the user to decide, which one is the best.

The parallelization for the quantification is implemented in a simplistic way

by parallelizing over the query sequences. As a query does not consist of a large

collection of sequencing experiments, but rather one file of sequences, the memory

footprint of the quantification is small enough to not need a more sophisticated

parallelization method.

3.7 Comparison of quantitative indices

The quantitative indices are compared regarding their accuracy and their speed and

space performance. As the counting DBG is implemented in MetaGraph, MetaGraph

will from here on refer to the counting DBG not to the non-quantitative version.

Moreover, Gazelle is not publicly available and therefore can not be included

in the comparison. For all applications, the most recent released version was used,

which are MetaGraph(v0.3.6), Needle(v1.0.2) and Reindeer(v1.0.2).

3.7. Comparison of quantitative indices 89

3.7.1 Accuracy

In section 2.3.3, it was shown for Needle count that taking the median of the k-mer

or minimizer count values has a similar accuracy as more sophisticated approaches.

MetaGraph and Reindeer can determine the exact k-mer count values in a query,

therefore, the analysis done for Needle count holds for them as well.

However, Needle itself only approximates the median. For this reason, the accu-

racy analyses needs to be repeated for Needle for both data sets, the simulated and

the real one. Needle was tested for two different false positives rates 0.05 and 0.3.

The surprisingly high false positive rate of 0.3 was chosen because, as Bingmann

et al. pointed out for non-quantitative indices [21], considering multiple minimizers

lowers the overall false positive rate and therefore even a false positive rate of 0.3 is

reasonable [21].

Simulated data

As the simulated data set has coverages ranging between 20 to 80 and differentially

expressed genes with fold changes ranging between 1
4

to 4, Needle was built with

user-defined thresholds by using 15 thresholds between 5 to 520.

Figures 3.24 and 3.25 show that Needle can capture the fold changes for differen-

tially expressed genes and different coverages. There is a difference between Needle

and Needle count that is more prominent with a higher false positive rate. For a

false positive rate of 0.05, the differences between the different window sizes seems

dismissably small. For a false positive rate of 0.3, the difference between (19, 19)-

and (23, 19)-minimizers is still barely noticeable. Only for a false positive rate of 0.3

and (39, 19)-minimizers did the accuracy decrease significantly, which makes sense

as the greater the window size the less minimizers are considered and the argument

for considering a higher false positive rate weakens. However, even for these pa-

rameters, most fold changes are close to the ground truth and therefore, even this

combination is a good choice.

90 Chapter 3. Indexing big data

(a) FPR 0.05

(b) FPR 0.3

Figure 3.24: Comparison of Needle with Needle Count on differentially
expressed genes. The figure shows the fold change of differentially expressed
genes in the simulated data set. Needle count, here named Count, and Needle use
minimizers with the window sizes 19, 23 and 39. Needle was used for a false positive
rate of 0.05 and 0.3. The x-axis presents the actual fold change that was set during
the simulation, the y-axis shows the measured fold change.

3.7. Comparison of quantitative indices 91

(a) FPR 0.05

(b) FPR 0.3

Figure 3.25: Comparison of Needle with Needle count with different cov-
erages. The figure shows the fold change of genes expressed within simulated se-
quencing experiments of different coverages. Needle count, here named Count, and
Needle use minimizers with the window sizes 19, 23 and 39. Needle was used for
a false positive rate of 0.05 and 0.3. The x-axis presents the actual expected fold
change by dividing the known coverages, for example comparing coverage 40 with
20 should lead to a fold change of 40/20 = 2. The y-axis shows the measured fold
change.

92 Chapter 3. Indexing big data

Real data

Needle was built for the SEQC data set with the automatic thresholds for 10 levels

for the false positive rates of 0.05 and 0.3. Furthermore, Needle’s normalization

was tested by using the normalized expression values for the mean square error

calculation. For the comparisons with the expression values from the RT-PCR and

the microarray, Needle’s normalization would not impact the results because the

normalization is for comparisons between different sequencing experiments, not for

within one.

Table 3.3 shows that the correlations of Needle with the expression values from

the RT-PCR and the microarray are almost as strong as the ones from Needle

Count. In most cases, the difference between Needle and Needle Count is less than

one percent. The mean square of errors Needle are either the same or almost the

same to the ones from Needle Count as well.

Similarly to the results for the simulated data set, the combination of (39, 19)-

minimizers and a false positive rate of 0.3 led to the worst result. But even so, there

is still a correlation to the known expression values and therefore, might be the right

choice in certain cases.

SEQC Microarray MSE
Count (19, 19) 80.6 77.3 0.6
Needle (19, 19) 80.6 77.1 0.5

0.3 Needle (19, 19) 80.1 76.9 0.5
Count (23, 19) 80.6 77.2 0.5
Needle (23, 19) 80.5 77.1 0.5

0.3 Needle (23, 19) 79.5 75.5 0.6
Count (39, 19) 80.6 77.2 0.5
Needle (39, 19) 80.4 76.9 0.5

0.3 Needle (39, 19) 60.9 58.6 1.3

Table 3.3: Comparison of Needle with Needle count on the SEQC data
set. Needle and Needle count, here named just Count, use minimizers with the win-
dow sizes 19, 23 and 39. For Needle the false positive rates 0.05 and 0.3 (marked)
were considered. The columns SEQC and mircoarray give the Spearman correla-
tion in percent to the RT-PCR quantification and to the miroarray quantification
respectively. The column MSE represent the mean square error of the titration
monotonicity transcript-wise.

Conclusion

For the simulated data set, Needle was tested in a best-case scenario as the expression

levels are known during construction, while for the real data set, Needle was tested

in the more common case, where this information is not known. Both analyses

3.7. Comparison of quantitative indices 93

show that Needle can approximate the median quite well and that even greater

window sizes or greater false positive rates lead to accurate results. However, not

every window size combined with any false positive rate lead to the same accuracy.

Therefore, these values should be carefully considered.

Moreover, as MetaGraph and Reindeer would perform similar to Needle Count,

they have a higher accuracy than Needle, but depending on the chosen parameters

Needle can be close to their performance and therefore compete with them.

3.7.2 Space and speed

All comparisons were performed on a Linux machine (Debian GNU/Linux 11 (bulls-

eye)) with 1TB RAM and an IAMD EPYC 7702P 64-Core Processor CPU with 64

cores and 256MB L3 cache.

Data

Solomon and Kingsford introduced next to their SBT also a data set that nowadays

can be seen as the main benchmark in the field of handling large collections of

nucleotide data [8, 97]. The data set consists of 2, 568 human RNA-seq files from

blood, breast and brain tissues with different read lengths [97]. Some of the read

lengths are quite short for the minimizers that are tested here. Therefore, similar to

the benchmark in Raptor [65], a subset of the data set was used for the benchmark

by excluding all experiments with an average read length below 50 bp. As such short

reads are seldomly relevant. This lead to a data set of 1, 742 sequencing experiments,

which takes up around 6 TB of space in gzipped fastq format [32].

Preprocessing

In most benchmarks, the index construction is separated from a preprocessing step

(see for example: [32, 97, 110]), in which usually the k-mer or minimizer occurrence

is obtained. Lemane et al. criticized this practice as the preprocessing step takes of-

ten a long time and thereby slows down construction [111]. Although, Lemane et al.

are correct in their assessment, the separation between the index construction and

the preprocessing step seems appropriate as often the preprocessing step is calcu-

lated by a separated application and not the index application itself. Furthermore,

determining k-mer or minimizer occurrences in the fastest and most space efficient

way is a separate research topic [134]. Moreover, in theory all indices should be

capable of supporting each other’s preprocessing step as they do the same. That

this is not the case in practice is due to a lack of a standard.

With all this said, the preprocessing is compared for four random sequencing

experiments from the 1, 742 to give a rough idea of how the different preprocessing

94 Chapter 3. Indexing big data

steps fare.

Time RAM
KMC3 30 56.3

MetaGraph 0.4 1.1
Needle (21, 21) 129 84.1
Needle (25, 21) 53 21.5

1

Needle (41, 21) 27 5.7
KMC3 11 71.4

MetaGraph 0.2 1.1
bcalm2 260 33.2

Needle (21, 21) 43 223.9
Needle (25, 21) 17 84.3

4

Needle (41, 21) 8 21.6

Table 3.4: Comparison of the preprocessing step of different quantitative
indices for k = 21 on four sequencing experiments. The numbers on the far
left give the number of threads used, for bcalm2 2 cores instead of 4 threads are
used. Needle (w, k) represents Needle based on (w, k)-minimizers. Build-Time is
given in minutes and RAM is given in GB.

The preprocessing step of the MetaGraph is based on KMC3 [134], Reindeer ’s

is based on bcalm2 [135] and Needle’s preprocessing is part of its implementation.

For this comparison, the cutoffs from Table 3.1 have been applied.

The preprocessing step of Reindeer is doing more than counting the k-mer occur-

rences, bcalm2 determines a DBG for each sequencing experiment. It is questionable

to consider this still part of the preprocessing, especially since most other applica-

tions, non-quantitative and quantitative, do less in their preprocessing. The first

step in a MetaGraph construction after the preprocessing is to determine the indi-

vidual DBGs as well. Therefore, for a fairer comparison this MetaGraph build step

is also considered here.

Moreover, while KMC3, MetaGraph and Needle allow adjustment in the number

of threads to use, bcalm2 can only adjust the number of cores. Furthermore, bcalm2

with one core did not manage to process even one sequencing experiment in three

hours and was therefore not included in the comparison.

As can be seen in Table 3.4, the KMC3 has the fastest implementation for count-

ing k-mer occurrences with the smallest memory footprint. This was to be expected

as KMC3 is one of the fastest k-mer counters. However, Needle is still reasonable

fast and even outperforms bcalm2. Moreover, Needle is the only preprocessing that

allows counting of minimizer occurrences and therefore can not be replaced in Nee-

dle. Although, the results indicate that the preprocess of Needle could be improved

for k-mers, if KMC files are supported as well.

3.7. Comparison of quantitative indices 95

Construction

For Reindeer and Needle, the construction is based on one command after prepro-

cessing. For MetaGraph multiple commands need to be executed, therefore, the run

time of all of these were summed up and the highest memory footprint was reported

in Table 3.5. The run time and memory footprint of the individual MetaGraph

commands can be found in the appendix in Table A.2.

The comparison is based on 21-mers as MetaGraph and Reindeer used them in

their benchmark as well [8, 95]. Both MetaGraph and Reindeer have an inexact

mode named smooth and log respectively, where the k-mer counts are smoothed

over a unitig or log-transformed. These versions were included in the comparison as

well.

Needle was built for a false positive rate of 0.05. Moreover, as Reindeer has not

been updated since the publication of [32] and the analysis here is done on the same

machine, the values for Reindeer were adopted. The numbers for Needle might be

slightly different than in [32] as the most recent Needle version was applied.

Time RAM Index Size
Reindeer log 432 39.4 27.9

Needle (21, 21) 79 (82) 121.1 62.2 (20.1)
Needle (25, 21) 22 (24) 38.4 19.7 (6.9)1
Needle (41, 21) 6 (6) 9.4 4.8 (1.7)

MetaGraph 916 347.1 20.7
MetaGraph smooth 791 345.0 9.3

Reindeer 251 44.1 50.5
Reindeer log 218 39.4 27.9

Needle (21, 21) 22 (34) 121.1 62.2 (20.1)
Needle (25, 21) 9 (11) 38.4 19.7 (6.9)

4

Needle (41, 21) 3 (3) 9.4 4.8 (1.7)

Table 3.5: Comparison of building quantitative indices for k = 21 on the
large real data set. Needle (w, k) represents Needle based on (w, k)-minimizers.
The time is given in minutes, RAM and Index size in GB. The values in parentheses
are the results when using compressed IBFs. Needle was built with a false positive
rate of 0.05.

Reindeer in its exact mode led to a library error and is therefore not reported in

Table 3.5. However, as it still built with four threads, a comparison with the other

applications is still possible [32].

Building MetaGraph with one thread took more than 24 hours, after which the

build process was stopped, as MetaGraph can not compete in its run time with

Needle or Reindeer. However, because the build with four threads was completed,

MetaGraph can be included in the comparison.

96 Chapter 3. Indexing big data

As shown in Table 3.5, Needle is the fastest application and creates in its com-

pressed form the smallest index, even when compared to the inexact version of Rein-

deer. Although MetaGraph’s inexact version leads to a smaller index than Needle

for (21, 21)-minimizers, Needle outperforms that version as well as soon as greater

window sizes are considered. Needle’s memory footprint is greater than Reindeer ’s

for (21, 21)-minimizers, but still at a scale that most modern machines can handle

easily.

The index size of MetaGraph is surprising as Karasikov et al. [95] reported for

the the complete data set of 2, 568 RNA-Seq files index sizes of 21 GB for the exact

version and 11 GB for the smoothed version. The index sizes measured here are

quite close to these numbers, especially for the exact version, despite considering

less sequencing data.

The MetaGraph analyses performed here are based on the script that Karasikov

et al. [95] provided. After close examination, the only difference that was found

between the provided scripts and the commands used here, lies in the usage of

KMC3. By default, KMC3 sets all count values above 255 to 255. As this is too

restrictive, this value was set to 65, 535 as this is the maximal value Needle captures

as it is uses the integer type uint16 t. Karasikov et al. [95] on the other hand did

not modify the default value of KMC3.

Karasikov et al. [95] did not give any reasoning why a maximal count value of 255

is sufficient and considering the sequencing depth of modern sequencing machines

this value seems too low. Moreover, Reindeer and Needle would probably also create

smaller indices with such a small maximum. Therefore, the comparison presented

here seems to be more accurate.

Furthermore, while Gazelle could not be tested due to its unavailability, Zhang

et al. analyzed Gazelle’s performance on the 2, 568 RNA-Seq files and reported an

index size of 45.6 GB for its exact version and 36.7 GB when using less bits for each

count value [127]. As here only a subset is used, these values do not easily compare.

If the values are multiplied with b1,742
2,568

= 0.6c, the expected index sizes for the here

used data set would be 27.4 GB and 22.0 GB, which would make Needle in its

compressed form still the smallest index. However, this estimation is rather loose

as the sequencing experiments excluded to get the 1, 742 were experiments with a

short read length. Comparing the Reindeer index sizes reported here with the one

Marchet et al. reported for the 2, 568 set leads to a difference of more than 0.8 [32].

According to Zhang et al. Gazelle takes more than nine hours to build [127] for

all 2, 568 RNA-Seq files. Even if it would take only half the time to process the

1, 742, Needle would be still considerable faster. Therefore, it can be concluded that

Needle outperforms Gazelle as well.

On top of Needle already outperforming Gazelle, MetaGraph and Reindeer for

3.7. Comparison of quantitative indices 97

(21, 21)-minimizers, its real advantage can be seen when applying greater window

sizes as the index size can shrink to less than 2 GB and the construction can happen

in less than ten minutes. This kind of speed up and compression is something the

other indices can not offer. And as shown above, using greater window sizes impacts

the accuracy with a false positive rate of 0.05 only slightly.

However, even a false positive rate of 0.3 can lead to meaningful results. There-

fore, the index sizes between the false positive rates 0.05 and 0.3 were compared in

Table 3.6. The construction time and memory footprint were omitted because the

difference was rather small.

Index Size
Needle (21, 21) 62.2 (20.1)
Needle (25, 21) 19.7 (6.9)0.05
Needle (41, 21) 4.8 (1.7)
Needle (21, 21) 8.9 (11.7)
Needle (25, 21) 2.8 (3.5)0.3
Needle (41, 21) 0.7 (0.8)

Table 3.6: Index sizes for Needle constructed with different minimizers and
false positive rates. Needle (w, k) represents Needle based on (w, k)-minimizers.
The index size is given in GB. The values in parentheses are the results when using
compressed IBFs. Needle was built with a false positive rate of 0.05 and 0.3 as
marked with the values on the leftmost column.

As shown in Table 3.6, a false positive rate of 0.3 can reduce the size to less

than a 15 percent of the size with a false positive rate of 0.05. With (41, 21)-

minimizers even an index size of less than one GB can be achieved. Interestingly,

the compressed versions take up more space than the uncompressed versions, which

is probably due to the fact that IBFs with higher false positive rates have more ones

and the compression loses its benefit.

In summary, Needle can create small indices fast and because the false positive

rate as well as the concrete minimizers, especially the window size, are user defined

parameters, Needle can be optimized for any given task.

Query

The query performance was tested for 1, 100 and 1, 000 randomly picked transcripts

from the human genome. Similar to the comparison for the construction, the values

for Reindeer were adopted from [32].

Reindeer led to a memory allocation error when run in their log-transformed

version, and with four threads to a segmentation fault error. Even after consulting

the developers, the issues could not be solved and have been open issues in the

98 Chapter 3. Indexing big data

1 100 1000 RAM
MetaGraph 10 69 430 20.9/21.2/21.8

MetaGraph smooth 11 27 219 9.4/9.7/10.2
Reindeer 813 897 1,710 80.7

Reindeer log >559 >559 >559 67.3
Needle (21, 21) 77 (30) 41 (34) 147 (214) 30.4 (9.7)
Needle (25, 21) 6 (4) 10 (10) 45 (67) 9.6 (2.8)

1

Needle (41, 21) 4 (1) 3 (3) 13 (20) 2.4 (0.7)
MetaGraph 9 59 248 20.9/21.5/21.9

MetaGraph smooth 5 12 86 9.4/9.9/10.4
Reindeer >746 >746 >746 80.7

Reindeer log >559 >559 >559 67.3
Needle (21, 21) 30 (15) 33 (21) 54 (67) 30.4 (9.7)
Needle (25, 21) 9 (4) 9 (6) 19 (21) 9.6 (2.8)

4

Needle (41, 21) 2 (1) 3 (2) 5 (6) 2.4 (0.7)

Table 3.7: Comparison of querying quantitative indices for k = 21 on the
large real data set. Needle (w, k) represents Needle based on (w, k)-minimizers.
Time is given in seconds, RAM and Index size in GB. The values in parentheses are
the results when using compressed IBFs. The RAM for MetaGraph is given for the
queries 1/100/1000, for Reindeer and Needle the RAM usage was the same for all
three queries. In the instances where Reindeer resulted in an error, only the index
loading times are reported and marked with >.

Reindeer github repository for two years by now1. However, in both cases, the

query worked in so far as the indices were loaded successfully, as this is always the

first step in a Reindeer query, therefore the times for the index loading were reported

in Table 3.7.

As shown in Table 3.7, Needle’s memory footprint is smaller than the com-

plete Needle index as only one IBF at a time is loaded into memory. For (21, 21)-

minimizers Needle uses a similar amount of memory in its compressed form as Meta-

Graph, for greater window sizes it has the smallest memory footprint compared to

the other applications.

Moreover, Needle and MetaGraph are a magnitude faster than Reindeer. Meta-

Graph is faster than Needle with (21, 21)-minimizers when querying one transcript.

For 100 and 1, 000 transcripts the speed between both applications is rather similar,

especially if MetaGrap smooth is considered. However, as soon as a greater win-

dow size than 21 is taken into account, Needle clearly outperforms both MetaGraph

versions.

The query performance of Needle based on a false positive rate of 0.3 is not

considered here, as the false positive rate should have no impact on the speed of a

1Malloc: https://github.com/kamimrcht/REINDEER/issues/13, Segfault: https://github.
com/kamimrcht/REINDEER/issues/14 (both accessed: 14. August 2023).

https://github.com/kamimrcht/REINDEER/issues/13
https://github.com/kamimrcht/REINDEER/issues/14
https://github.com/kamimrcht/REINDEER/issues/14

3.7. Comparison of quantitative indices 99

query, outside of creating smaller indices, which are faster to load.

Insertion and deletion

Needle is the only quantitative index that offers dynamic updates by inserting or

deleting sequencing experiments. In order to show the performance of both features,

four sequencing experiments are deleted from and inserted into the indices built

above for a false positive rate of 0.05.

Time RAM Index Size
Needle (21, 21) 173 60.7 62.2
Needle (25, 21) 43 19.2 19.7Delete
Needle (41, 21) 11 4.7 4.8
Needle (21, 21) 425 121.2 62.2
Needle (25, 21) 243 38.4 19.7Insert
Needle (41, 21) 31 9.4 4.8

Table 3.8: Performance of inserting and deleting into a Needle index. Needle
(w, k) represents Needle based on (w, k)-minimizers. The time is given in seconds,
RAM and Index size in GB.

As can be seen in Table 3.8 the index size was not changed through the insertion

or deletion. Deletions can never change the index size as the space is kept for future

insertions. The insertions did not change the index size as there were empty bins

left as 1, 742 is not a multiple of 64.

Both deletions and insertions, are reasonably fast. Therefore, Needle’s dynamic

update options are practicable.

3.7.3 Conclusion

In contrast to other quantitative indices, Needle does not store the minimizer oc-

currence directly, instead it stores in which occurrence range the minimizer falls.

Therefore, the median of minimizer occurrences as expression value can only be

approximated. However, despite the approximation Needle is capable of capturing

fold changes due to different coverages or differential expression and correlates with

expression values obtained by microarray and RT-PCR.

Moreover, Needle outperforms the other quantitative indices in speed and size.

Due to the application of minimizers, Needle can reduce the index size drastically

while still being accurate. Alternatively, the index size can be minimized by in-

creasing the false positive rate, which for some minimizers barely has an impact on

the accuracy. Because of this Needle is more flexible than other applications as its

100 Chapter 3. Indexing big data

setting can be adapted for a given task. However, more research is necessary to

understand the relationship between the window size and the false positive rate.

Furthermore, the idea of Needle is not dependent on the IBF. There is the

potential to replace it with the HIBF as soon as dynamic updates are possible,

but any other non-quantitative index would work with the idea here presented.

Therefore, as the research of non-quantitative indices advances, so can Needle.

Chapter 4

Utilizing large collections of

sequencing data

Indexing large collections of sequencing data opens up new possibilities for research.

In order to show and to prove the advantages of actually utilizing large amounts

of sequencing data, three different data sets are investigated. Firstly, Needle is

applied to find tissue-specific genes in a data set consisting of three different tissue

types. Secondly, a newly annotated mouse transcript is searched for in a set of

randomly choosen mouse sequencing experiments and lastly, Needle will be used to

find cancer signatures. As all three analyses have a different goal and topic, this

shows that Needle can be applied for a wide range of research questions.

4.1 Determining genes of interest

Studying genes and their functions takes up a huge part of the biological and medical

research field. As genes are often involved in numerous phenotypes and seldomly

act alone, it is often of interest to study a network of genes [136]. Determining genes

of interest is thereby a tedious task and often based on a small set of sequencing

experiments. With Needle, interesting genes can be determined within in minutes

for a wide range of phenotypes.

As a proof of concept the large data set from the previous chapter consisting of

1, 742 RNA-Seq experiments is analyzed further. The data set contains 809 RNA-

Seq experiments from blood, 336 from brain tissue and 597 from breast tissue. As

the Needle index was already built, the index was used as is without a change

of parameters. All 103, 155 protein-coding transcripts in the human genome were

quantified. With one thread the quantification took less than twenty minutes and

with 4 threads less than six minutes [32].

Then the gene expression of each human gene was estimated by taking the mean

101

102 Chapter 4. Utilizing large collections of sequencing data

of all its transcripts expression values. Based on these values a differential expression

analysis was performed with DESeq2. All over-expressed genes between one tissue

and the other two tissue types with at least a fold change of 4 were determined. Note

that this analysis is slightly different than the one in [32], where the differential gene

expression was based on simple t-test instead of DESeq2.

For the blood category 1, 052 genes were found overexpressed, for the brain tissue

1, 085 genes and for the breast tissue 270 genes. Figure 4.1 shows the gene ontology

for each gene set obtained with ShinyGo [137] for the TISSUES 2.0 database [138].

For the blood category, all found types are related to blood. Almost all tissue

types for the brain are brain related. The large numbers of genes for Adult might be

surprising, but adult brains differ from children brains [139] and the large numbers

associated with adulthood could indicate that the samples in the data set stem from

adult brains.

For the breast tissue, at a first glance there are some surprising associations,

such as the association with Mouth, Bladder and several epithelium types. However,

these tissues have been shown to be associated to breast tissue. For example, some

breast cancer genes were shown to be involved in an oral cancer [140], bladder

cancer subtypes showed similarities to breast cancer subtypes at a molecular level

[141] and the epithelium in breast tissue is a target of multiple research projects

due to its unique characteristic of developing after child birth [142]. Specifically,

Myoepithelium is known for its role in breast tissue [143].

In summary, with a rather simple differential expression analysis on three tissue

types that were only considered together because the data set already existed, genes

of interest could be determined and shown to be actually meaningful as they de-

scribed the underlying tissue. Thereby proving that analyses with Needle on large

collections of sequencing experiments are sufficient.

4.2. Finding a newly annotated mouse transcript 103

(a) Blood

(b) Brain

(c) Breast

Figure 4.1: Gene ontology analysis for genes found differentially expressed
in blood, brain and breast tissue of 1742 RNA-seq experiments. The colors
show the fold enrichment, the tissues are sorted by their false discovery rate.

4.2 Finding a newly annotated mouse transcript

One major benefit of utilizing large collections of sequencing data is that new findings

can be either validated quickly or further researched. Gjaltema et al. discovered a

104 Chapter 4. Utilizing large collections of sequencing data

previously unannotated transcript in the mouse genome called Xert, which regulates

and enhances the developmental gene Xist [144]. Due to the lack of a database

allowing searches for the transcript, it is not trivial to determine whether Xert can

be found under different conditions as well.

4.2.1 Data and building the Needle index

In order to prove that Needle could be applied for such a task, 1, 024 mouse RNA-

Seq files were used to build a Needle index. These 1, 024 RNA-Seq files included

twelve RNA-Seq files from the original study by Gjaltema et al., which were from

different time points for two female embryonic mouse stem cells, where for one line

one X chromosome was lost (XO). There are two replicates for each time point.

All other sequencing experiments were randomly selected from all publicly available

mouse RNA-Seq experiments on the Sequence Read Archive, for which information

about the gender was given and the average read length was at least 150 bp. The

gender information was of interest because Xert is expected to be differential ex-

pressed between female and male mice as there is a difference between having two

X chromosomes or one [144].

These 1, 024 RNA-Seq files took roughly 3 TB of space in gzipped form. A

compressed Needle index was built with (23, 19)-minimizer, a cutoff value of 1 and

a false positive rate of 0.05. This led to an index size of 75.2 GB, so roughly 2.5

percent of the original size. As mentioned above for the cancer signatures, a smaller

index size could be achieved by using a greater window size, a higher false positive

rate or a greater cutoff. The cutoff of 1 was used to avoid parameter tuning and to

account for low counts because Xert appeared in the original study in a low quantity,

therefore these might be informative.

The expression values from Needle were normalized in a similar way as in the

original study by summing up the expression of all transcripts and then dividing

the expression values of the Xert transcripts by the sum and multiplying the result

with 107. This is similar to the TPM normalization of the original study without

considering the transcript length as Needle’s expression value are less prone to be in-

fluenced by the transcript length due to the usage of the median. The multiplication

with 107 instead of 106 was done to achieve a nicer scaling.

4.2.2 Finding Xert in the original data

Figure 4.2 shows the normalized expression based on Needle of Xert for the se-

quencing experiments of the original study. In four sequencing experiments from

the original study, there can be no traces found of Xert (Day 0 in Figure 4.2), which

also can not be found with Needle. As in the original study, there is an expression

4.2. Finding a newly annotated mouse transcript 105

Figure 4.2: Expression of Xert for different days of differentiation for XX
and XO cell line. The expression of Xert according to the ME from Needle for the
XX cell line (both X chromosomes present) and the XO cell line for different time
points after differentiation. The ME was normalized similar to the original study.
0.1 was added to avoid taking the logarithm of 0. The line is based on the mean
between the different replicates. The dots mark the expression of the replicates.

peak at day 2 and then a slow decline [144].

Moreover, the difference in Figure 4.2 between the two cell lines is rather small

and does not seem significant. Even this is in accordance with the original study

(see Figure 3B in [144]), where the difference between the two cell lines was not

significant for the RNA-Seq experiments, but for other sequencing techniques like

TT-Seq [144].

4.2.3 Finding Xert in mouse randomly picked RNA-Seqs

In 855 of the 1, 024 sequencing experiment, there was no trace of Xert found, leaving

169 sequencing experiments potentially containing Xert. 16 of these 169 experiments

are the ones from the original study as discussed above. The 10 sequencing exper-

iments with the highest normalized ME values were determined excluding the se-

quencing experiments from the original study, because these sequencing experiments

are already known to contain Xert. Then these top ten sequencing experiments were

aligned to the mouse genome including Xert with the tool STAR [145].

106 Chapter 4. Utilizing large collections of sequencing data

Experiment # Reads Project Topics
SRR1205854 51 Cornea
SRR851653 7 de novo DNA methylation in germ cells
SRR5279965 4 cancer secreted exosomes during cancer progression
SRR11241390 2 ADAR1 bound to DNA in neurons
SRR12170201 2 FXR1 during spermiogenesis
SRR8589508 51 cerebral cortex during postnatal development
SRR12179942 10 anxiety and depression during aging
SRR4015305 1 immunized mouse spleen

Table 4.1: Top ten sequencing Experiments found by Needle to contain
Xert. The number of matched reads was determined with STAR. The project topics
are based on the abstract given in the sequence read archive and are supposed to
give the most informative description.

In 8 out of the 10 sequencing experiments Xert was found (see Table 4.1). For

some of these found experiments, the number of matched reads to Xert is rather

small and probably not worth further investigations. The sequencing experiment

SRR4015305 with only one matched read has to be seen as a false positive as well

as the used cutoff of 1 should have prevented finding it. Therefore, the false positive

rate for these 10 sequencing experiments is 30 %.

The sequencing experiment SRR1205854 is from sequencing cornea tissue. Xist

has been found to play a role in the cornea related disease keratoconus [146]. There-

fore, finding Xist in presumably healthy cornea tissue indicates that studying the

impact of Xert in keratoconus or even in general in cornea tissue might lead to new

insights.

Furthermore, the X chromosome has a strong impact on the development of

the brain [147]. Therefore, the findings of Xert in brain tissues in SRR8589508,

SRR12179942 and SRR11241390 are of interest and the associated projects could

be used for further research.

Moreover, Xist is also known to be expressed in germ cells [148] and Xist is an

oncogene in certain cancer types [149, 150]. Therefore, finding Xert in germ cells

(SRR851653 and SRR12170201) and cancer tissue (SRR5279965) is not surprising.

For 162 of the 1, 024 sequencing experiments, there is a sequencing experiment

from the same project of the opposite gender. As mentioned above, one would

expect a stronger expression of Xert in female samples than male samples, therefore

all projects were determined with a stronger Xert expression for the female sample

than the male sample. Afterwards, these experiments were validated by aligning

them to the mouse genome.

11 projects were determined, so 22 sequencing experiments. For 5 projects Xert

could be found with a higher number of matched reads for the female sample than

4.2. Finding a newly annotated mouse transcript 107

the male one (see Table 4.2). Similar to the sequencing experiment in Table 4.1 with

only one matched read, SRR13859593 should be probably seen as a false positive as

well. Therefore, there are 7 false positives and the false positive rate is around 64

%.

Experiment # Reads Project Topics
SRR10513178 12 melanomas after UVB
SRR10513179 7 treatment
SRR13615756 3 mice hearts infected
SRR13615766 2 with T1L reovirus
SRR13859593 1 Intestinal tissue
SRR13859586 0 following Pichia colonization
SRR15722532 3 islet b cell dysfunction
SRR15722533 0
SRR9127111 21 aging in mice, skin tissue
SRR9126727 1 aging in mice, liver tissue

Table 4.2: Sequencing Experiments with a higher gene expression of Xert
for the female sample than the male sample according to Needle. The
number of matched reads was determined with STAR. The project topics are based
on the abstract given in the sequence read archive and are supposed to give the most
informative description. The female sample is given first for each project.

As already mentioned, Xist is known as a oncogene in certain cancers, but it

also acts as a regulator in melanoma [151]. Therefore, the findings of Xert in

SRR10513178 and SRR10513179 seem promising that Xert plays a similar role.

Moreover, it is interesting that Xert can be found in presumably healthy skin tissue

(SRR9127111) as well.

Furthermore, pancreatic islet biology is influenced by sex [152] the different num-

bers of matched reads for SRR15722532 and SRR15722533 could indicate that this

is partly due to the involvement of Xert.

4.2.4 Conclusion

In general, the numbers of matched reads found here is rather low and while there

might be some connection to the X chromosome or even Xist, that does not necessar-

ily mean Xert is a contributing factor. However, these findings are still interesting

as they give a reason to look further into the mentioned topics. Further research

could validate Xert ’s actual role in these conditions by either reusing existing ex-

periment or starting new ones. As Xert can be better detected with TT-Seq [144],

new sequencing experiments might help in clarifying Xert ’s role.

The high number of false positives, especially in the second analysis, might seem

concerning at the first glance. However, the used parameters were rather loose.

108 Chapter 4. Utilizing large collections of sequencing data

A cutoff of only 1 is small and allowed identification of sequencing experiments

with small numbers of matched reads. Depending on whether one is interested in

sequencing experiments with such a low number of matched reads or not, an increase

of the cutoff could have resulted in a smaller false positive rate. Also, the results

from Needle could have undergone a post processing, excluding experiments with a

low quantification. The fact that the number of false positives was lower for the top

ten results compared to the analysis based on gender shows that the difference in

Needle’s expression values matters.

However, even if there were no possibilities to improve the false positive rate,

the shown results are helpful. Needle was capable of reducing 1, 024 potentially

interesting sequencing experiments to only 169 sequencing experiments. This is an

enormous achievement, especially considering the fact that the parameters were set

rather loose.

4.3 Cancer signatures

Cancer is a widespread, heterogeneous disease that is the cause of nearly ten million

deaths worldwide and therefore has been a research focus for decades [153]. One

research aim is to find significant characteristics of cancer that can in the best case

help to develop a treatment. These characteristics are often dependent on a specific

cancer type due to its heterogeneity and can be described with the broad term

cancer signatures. Cancer signatures thereby include mutations from substitutions

to rearrangements [154], biallelic mutations [155] or gene signatures [156]. Gene

signatures consists of at least one gene with an unique expression profile for a certain

condition that should be the result of an altered biological or biochemical processes

[156].

A wide range of gene signatures exist for different kind of cancers. Breast cancer

as the most common cancer type [153] has been the focus of many research projects,

which is why there are multiple breast cancer gene signatures [157–159]. Some of

them are even used to guide medical treatment by giving a prediction whether a

patient will profit from a chemotherapy or not [157, 159–161].

If gene signatures can be detected in a Needle index, this would open up new

research possibilities. If a Needle index over large collections of sequencing data

exists and a new gene signature is determined based on one data set, it could be

easily verified with Needle for a larger data set. Moreover, the Needle index can

be used in the beginning, to find a new gene signature by determining differentially

expressed genes between different samples.

Furthermore, even a use case in direct patient care could be applicable by com-

paring the sequencing data to all stored data in a Needle index and thereby clas-

4.3. Cancer signatures 109

sifying the patient in either a certain risk group or detecting the specific cancer

type.

In order for any of these applications to work, the Needle index needs to be capa-

ble of detecting gene signatures. The analyses above showed that the quantification

of Needle is meaningful and make the recognition of gene signatures with Needle

look promising. However, to further validate the capabilities of the Needle index,

two different breast cancer gene signatures were analyzed on a data set consisting of

different breast cancer samples. The aim of these analyses is to show that first of all,

the Needle quantification verifies these known gene signatures and secondly, that a

clustering based on these genes is possible as these would prove that classifications

with Needle are attainable.

4.3.1 Data and building the Needle index

A publicly accessible data set (GEO accession number: GSE58135) consisting of 168

sequencing experiments in total was used to search for gene signatures with Needle.

All sequencing experiments were obtained with Illumina HiSeq 2000 and consist of

paired-end reads of length 50 bp. 28 experiments originate from breast cancer cell

lines, 42 from triple negative breast cancer primary tumors (TNBC), another 42

from estrogen receptor positive (ER+) breast cancer primary tumors (ERBC), 21

from non-malignant breast tissue next to the TNBC, 30 from non-malignant breast

tissue next to the ERBC and 5 from non-cancer tissue obtained from a reduction of

mammoplasty [162]. The sequencing files in fastq format take up roughly 1 TB of

disk space.

A compressed Needle index was built with (24, 20)-minimizer, a cutoff value of

1 and a false positive rate of 0.05. This led to an index of size 16.7 GB, so a

size of less than 2 percent of the original size. Moreover, a smaller index could be

achieved by using a greater window size, a higher false positive rate or a greater

cutoff. The chosen cutoff is particularly small, as only minimizers that occur once

are disregarded. The cutoff was set to 1 to avoid parameter tuning.

For quantifying genes, all their transcript sequences were quantified with Needle

and then the mean of all the transcript values was picked as the gene expression

value.

4.3.2 Finding TNBC signature

The first gene signature analyzed is a gene signature distinguishing TNBC from

ERBC and consists of 40 genes. Nine of these genes were found overexpressed in

TNBC and the other 31 genes were underexpressed in TNBC compared to ERBC

[163].

110 Chapter 4. Utilizing large collections of sequencing data

Figure 4.3: Heatmap of 40 gene signature for ERBC and TNBC samples
in data set. The heatmap was built on top of the Z-Scores. The first nine genes
are the ones that should be overexpressed in TNBC and the other 31 genes are the
underexpressed genes.

4.3. Cancer signatures 111

A differential expression analysis was performed with DESeq2 and found 38 of

the 40 genes differential expressed between the TNBC and ERBC samples of the

GSE58135 data set. As can be seen in Figure 4.3, generally the overexpressed genes

are in the TNBC samples and the underexpressed genes are in the TNBC samples.

One sample of the ERBC with the name ”ERBC39” does not fit well as its gene

expression shows more similarity to the TNBC samples. There might be a chance

that this specific sample was mislabeled.

Figure 4.4: PCA of the clustering of the TNBC and ERBC samples in the
data set for the gene signature. The TNBC samples are named from 1 to 42,
the ERBC samples are named with letters. Samples that were misclassified by the
clustering algorithm (31,39,42 and m) are marked by being circled in the color of
the cluster they are supposed to be in.

Furthermore, the TNBC and ERBC samples were clustered with a K-Medoids

algorithm based on the Z-Score values of the gene expression values given by Needle.

As can be seen in Figure 4.4, the two sample groups are distinguishable from another.

112 Chapter 4. Utilizing large collections of sequencing data

Only four of the 84 samples are considered to be in the wrong cluster. One of these

samples (the one named ”m” in Figure 4.4) is the ”ERBC39” sample already pointed

out above, which might be a mislabeled sample.

4.3.3 Finding NAT signature

The second gene signature analyzed is a gene signature consisting of 18 genes that

was found to distinguish normal tissue adjacent to tumor tissue (NAT) from tumor

tissue and normal healthy tissue. Aran et al. identified 18 genes overexpressed in

NATs compared to tumor and healthy tissue [164].

In the here used data set there are two different types of NATs, one adjacent

to ERBC and one adjacent to TNBC. Here, a differential expression analysis was

performed with DESeq2 between the NATs and their respective tumor tissue and

between the NATs and the healthy samples.

For the analysis with the healthy samples none of the genes were significantly

differentially expressed. As the healthy samples consist of only five samples, this

sample size might be to small for an analysis. Therefore, the focus of this analysis

was on the comparison between the tumor samples and the NAT samples.

For the comparison between the ERBC samples and its NAT samples, 15 out

of the 18 genes were significantly differentially expressed and for the comparison

between the TNBC and its NAT samples all 18 were differentially expressed.

As with the TNBC gene signature, a clustering based on K-Medoids was per-

formed. The gene signature led to a good clustering for both examples as can be

seen in Figure 4.5. In the clustering of the ERBC tissues, eight samples out of 72

were misclassified and on the clustering of the TNBC tissues, three samples out of

63 were misclassified.

4.3.4 Conclusion

The two analyses show that the Needle index can be used to verify existing gene

signatures, which also indicates the index could be used to determine new ones.

Moreover, while the clustering is not perfect, it is promising enough to investigate

further the possibility of a clinical use of the Needle index.

4.3. Cancer signatures 113

(a) ERBC (b) TNBC

Figure 4.5: PCA of the clustering of the NAT samples with their respective
cancer samples in the data set for the gene signature. The cancer samples
are named from 1 to 42, the NAT samples are named with letters. Samples that were
misclassified by the clustering algorithm (2,24,F,J,K,P,V,c for ERBC and 25,40,41
for TNBC) are marked by being circled in the color of the cluster they are supposed
to be in.

114 Chapter 4. Utilizing large collections of sequencing data

Chapter 5

Conclusion

In light of the ever increasing amount of sequencing data, new methods to store and

search through this data became necessary because established and already well-

known strategies can not handle the sheer amount of data. Therefore, alignment-free

methods gained the attention of the research community.

As was shown here, a direct approach of determining gene expression solely

on the median of a gene’s k-mer occurrences, works surprisingly well in capturing

the underlying information. The same holds for a representative set of k-mers like

minimizers. Alternative approaches to k-mers and minimizers would also work in

theory, but based on the analyses done here, the choice of (representative) submer

method is expected to have a rather small impact on the gene expression analysis.

However, in order to actually manage large collections of sequencing experiments,

an index that stores this data needs to be built. Here, Needle was presented, which

outperforms existing alternatives and offers more features like dynamic updates and

a better handle on the trade-off between space and accuracy.

There are multiple possibilities to utilize the existing sequencing data, three

different possibilities were shown here, proving the usefulness of storing sequencing

data to begin with. Furthermore, as the research of utilizing large collections of

sequencing data is rather new, it can be expected that new analyses will be developed

to learn as much as possible from the data. One possible development could be

the usage of machine learning based directly on quantitative indices like Needle.

For example, the IBFs Needle is based on could be used as the input to a machine

learning algorithm, thereby allowing analyses directly on the stored sequencing data.

In summary, it can be stated that quantitative indices like Needle resolve one

major bottleneck of bioinformatics by utilizing the large amount of existing sequenc-

ing data and it remains to be seen, how this can advance biological and biomedical

research concretely.

115

116 Chapter 5. Conclusion

References

[1] J. C. Venter et al., “The sequence of the human genome,” Science (New York,

N.Y.), vol. 291, no. 5507, pp. 1304–1351, 2001. doi: 10.1126/science.

1058040.

[2] L. Hood and L. Rowen, “The human genome project: Big science transforms

biology and medicine,” Genome Medicine, vol. 5, no. 9, p. 79, 2013. doi:

10.1186/gm483.

[3] K. A. Wetterstrand, The cost of sequencing a human genome, 2019. [Online].

Available: https://www.genome.gov/about- genomics/fact- sheets/

Sequencing-Human-Genome-cost, (Accessed: 3. July 2023).

[4] H. Armitage, Fastest dna sequencing technique helps undiagnosed patients

find answers in mere hours, 2022. [Online]. Available: https://med.stanford.

edu/news/all-news/2022/01/dna-sequencing-technique.html, (Ac-

cessed: 3. July 2023).

[5] D. L. Wheeler et al., “Database resources of the national center for biotech-

nology information,” Nucleic acids research, vol. 36, no. Database issue,

pp. D13–21, 2008. doi: 10.1093/nar/gkm1000.

[6] E. W. Sayers et al., “Genbank 2023 update,” Nucleic acids research, vol. 51,

no. D1, pp. D141–D144, 2023. doi: 10.1093/nar/gkac1012.

[7] K. Katz, O. Shutov, R. Lapoint, M. Kimelman, J. R. Brister, and C. O’Sullivan,

“The Sequence Read Archive: a decade more of explosive growth,” Nucleic

acids research, vol. 50, no. D1, pp. D387–D390, 2022. doi: 10.1093/nar/

gkab1053.

[8] C. Marchet, Z. Iqbal, D. Gautheret, M. Salson, and R. Chikhi, “REINDEER:

efficient indexing of k-mer presence and abundance in sequencing datasets,”

Bioinformatics, vol. 36, pp. i177–i185, 2020. doi: 10.1093/bioinformatics/

btaa487.

[9] GenomeAsia100K Consortium, “The genomeasia 100k project enables genetic

discoveries across asia,” Nature, vol. 576, no. 7785, pp. 106–111, 2019. doi:

10.1038/s41586-019-1793-z.

117

https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.1058040
https://doi.org/10.1186/gm483
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://med.stanford.edu/news/all-news/2022/01/dna-sequencing-technique.html
https://med.stanford.edu/news/all-news/2022/01/dna-sequencing-technique.html
https://doi.org/10.1093/nar/gkm1000
https://doi.org/10.1093/nar/gkac1012
https://doi.org/10.1093/nar/gkab1053
https://doi.org/10.1093/nar/gkab1053
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1038/s41586-019-1793-z

118 References

[10] J. Kaiser, Nih’s huge all of us genes and health study releases first 100,000

genomes, 2022. [Online]. Available: https://www.science.org/content/

article/nih-s-huge-all-us-genes-and-health-study-releases-

first-100-000-genomes, (Accessed: 4. July 2023).

[11] K. Levi, M. Rynge, E. Abeysinghe, and R. A. Edwards, “Searching the se-

quence read archive using jetstream and wrangler,” in Proceedings of the

Practice and Experience on Advanced Research Computing, S. Sanielevici,

Ed., Pittsburgh PA USA: ACM, 2018, pp. 1–7. doi: 10.1145/3219104.

3229278.

[12] P. Suwinski, C. Ong, M. H. T. Ling, Y. M. Poh, A. M. Khan, and H. S. Ong,

“Advancing personalized medicine through the application of whole exome

sequencing and big data analytics,” Frontiers in Genetics, vol. 10, p. 49, 2019.

doi: 10.3389/fgene.2019.00049.

[13] T. Ching et al., “Opportunities and obstacles for deep learning in biology and

medicine,” Journal of the Royal Society, Interface, vol. 15, no. 141, 2018. doi:

10.1098/rsif.2017.0387.

[14] G. Kucherov, “Evolution of biosequence search algorithms: A brief survey,”

Bioinformatics (Oxford, England), vol. 35, no. 19, pp. 3547–3552, 2019. doi:

10.1093/bioinformatics/btz272.

[15] The Cancer Genome Atlas (TCGA) Research Network, “Comprehensive ge-

nomic characterization defines human glioblastoma genes and core path-

ways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008. doi: 10 . 1038 /

nature07385.

[16] K. Tomczak, P. Czerwińska, and M. Wiznerowicz, “The cancer genome atlas

(tcga): An immeasurable source of knowledge,” Contemporary oncology (Poz-

nan, Poland), vol. 19, no. 1A, A68–77, 2015. doi: 10.5114/wo.2014.47136.

[17] G. F. Gao et al., “Before and after: Comparison of legacy and harmonized

tcga genomic data commons’ data,” Cell Systems, vol. 9, no. 1, 24–34.e10,

2019. doi: 10.1016/j.cels.2019.06.006.

[18] M. Burrows and D. L. Wheeler, “A block sorting lossless data compression

algorithm,” Technical Report, no. 124, 1994.

[19] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal of the

ACM, vol. 52, no. 4, pp. 552–581, 2005. doi: 10.1145/1082036.1082039.

[20] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14,

no. 3, pp. 249–260, 1995. doi: 10.1007/BF01206331.

https://www.science.org/content/article/nih-s-huge-all-us-genes-and-health-study-releases-first-100-000-genomes
https://www.science.org/content/article/nih-s-huge-all-us-genes-and-health-study-releases-first-100-000-genomes
https://www.science.org/content/article/nih-s-huge-all-us-genes-and-health-study-releases-first-100-000-genomes
https://doi.org/10.1145/3219104.3229278
https://doi.org/10.1145/3219104.3229278
https://doi.org/10.3389/fgene.2019.00049
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1093/bioinformatics/btz272
https://doi.org/10.1038/nature07385
https://doi.org/10.1038/nature07385
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1016/j.cels.2019.06.006
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1007/BF01206331

References 119

[21] T. Bingmann, P. Bradley, F. Gauger, and Z. Iqbal, “COBS: a Compact Bit-

Sliced Signature Index,” in 26th International Conference on String Process-

ing and Information Retrieval (SPIRE), ser. LNCS, Springer, 2019, pp. 285–

303.

[22] N. D. Magar et al., “Gene expression and transcriptome sequencing: Basics,

analysis, advances,” in Gene Expression, F. Uchiumi, Ed., IntechOpen, 2022.

doi: 10.5772/intechopen.105929.

[23] S. A. Byron, K. R. van Keuren-Jensen, D. M. Engelthaler, J. D. Carpten, and

D. W. Craig, “Translating rna sequencing into clinical diagnostics: Opportu-

nities and challenges,” Nature Reviews Genetics, vol. 17, no. 5, pp. 257–271,

2016. doi: 10.1038/nrg.2016.10.

[24] A. Negi, A. Shukla, A. Jaiswar, J. Shrinet, and R. S. Jasrotia, “Chapter 6 -

applications and challenges of microarray and rna-sequencing,” in Bioinfor-

matics, D. B. Singh and R. K. Pathak, Eds., Academic Press, 2021, pp. 91–

103. doi: 10.1016/B978-0-323-89775-4.00016-X.

[25] R. Stark, M. Grzelak, and J. Hadfield, “Rna sequencing: The teenage years,”

Nature Reviews Genetics, vol. 20, no. 11, pp. 631–656, 2019. doi: 10.1038/

s41576-019-0150-2.

[26] B. A. Adewale, “Will long-read sequencing technologies replace short-read

sequencing technologies in the next 10 years?” African Journal of Laboratory

Medicine, vol. 9, no. 1, p. 1340, 2020. doi: 10.4102/ajlm.v9i1.1340.

[27] A. Conesa et al., “A survey of best practices for RNA-seq data analysis,”

Genome Biology, vol. 17, p. 13, 2016. doi: 10.1186/s13059-016-0881-8.

[28] C. Evans, J. Hardin, and D. M. Stoebel, “Selecting between-sample rna-seq

normalization methods from the perspective of their assumptions,” Briefings

in Bioinformatics, vol. 19, no. 5, pp. 776–792, 2018. doi: 10.1093/bib/

bbx008.

[29] S. Vinga and J. Almeida, “Alignment-free sequence comparison-a review,”

Bioinformatics, vol. 19, no. 4, pp. 513–523, 2003. doi: 10.1093/bioinformatics/

btg005.

[30] G. Holley, R. Wittler, and J. Stoye, “Bloom Filter Trie: an alignment-free

and reference-free data structure for pan-genome storage,” Algorithms for

molecular biology : AMB, vol. 11, no. 1, p. 3, 2016. doi: 10.1186/s13015-

016-0066-8.

https://doi.org/10.5772/intechopen.105929
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.1016/B978-0-323-89775-4.00016-X
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.4102/ajlm.v9i1.1340
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1093/bib/bbx008
https://doi.org/10.1093/bib/bbx008
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1186/s13015-016-0066-8
https://doi.org/10.1186/s13015-016-0066-8

120 References

[31] B. Morgenstern, B. Zhu, S. Horwege, and C. A. Leimeister, “Estimating evo-

lutionary distances between genomic sequences from spaced-word matches,”

Algorithms for Molecular Biology, vol. 10, no. 1, p. 5, 2015. doi: 10.1186/

s13015-015-0032-x.

[32] M. Darvish, E. Seiler, S. Mehringer, R. Rahn, and K. Reinert, “Needle: A fast

and space-efficient prefilter for estimating the quantification of very large col-

lections of expression experiments,” Bioinformatics (Oxford, England), 2022.

doi: 10.1093/bioinformatics/btac492.

[33] J. Ren et al., “Alignment-Free Sequence Analysis and Applications,” Annual

review of biomedical data science, vol. 1, pp. 93–114, 2018. doi: 10.1146/

annurev-biodatasci-080917-013431.

[34] A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski, “Alignment-free

sequence comparison: Benefits, applications, and tools,” Genome Biology,

vol. 18, no. 1, p. 186, 2017. doi: 10.1186/s13059-017-1319-7.

[35] R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-free

isoform quantification from RNA-seq reads using lightweight algorithms,”

Nature Biotechnology, vol. 32, no. 5, pp. 462–464, 2014. doi: 10.1038/nbt.

2862.

[36] Z. Zhang and W. Wang, “Rna-Skim: A rapid method for RNA-Seq quantifi-

cation at transcript level,” Bioinformatics (Oxford, England), vol. 30, no. 12,

pp. i283–i292, 2014. doi: 10.1093/bioinformatics/btu288.

[37] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal proba-

bilistic RNA-seq quantification,” Nature Biotechnology, vol. 34, no. 5, pp. 525–

527, 2016. doi: 10.1038/nbt.3519.

[38] C. J.-T. Ju, R. Li, Z. Wu, J.-Y. Jiang, Z. Yang, and W. Wang, “Fleximer:

Accurate Quantification of RNA-Seq via Variable-Length k-mers,” in Pro-

ceedings of the 8th ACM International Conference on Bioinformatics, Com-

putational Biology, and Health Informatics (ACM-BCB ’17), New York, NY,

USA: Association for Computing Machinery, 2017, pp. 263–272. doi: 10.

1145/3107411.3107444.

[39] R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon

provides fast and bias-aware quantification of transcript expression,” Nature

Methods, vol. 14, no. 4, pp. 417–419, 2017. doi: 10.1038/nmeth.4197.

[40] R. Edgar, “Syncmers are more sensitive than minimizers for selecting con-

served k-mers in biological sequences,” PeerJ, vol. 9, e10805, 2021. doi: 10.

7717/peerj.10805.

https://doi.org/10.1186/s13015-015-0032-x
https://doi.org/10.1186/s13015-015-0032-x
https://doi.org/10.1093/bioinformatics/btac492
https://doi.org/10.1146/annurev-biodatasci-080917-013431
https://doi.org/10.1146/annurev-biodatasci-080917-013431
https://doi.org/10.1186/s13059-017-1319-7
https://doi.org/10.1038/nbt.2862
https://doi.org/10.1038/nbt.2862
https://doi.org/10.1093/bioinformatics/btu288
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1145/3107411.3107444
https://doi.org/10.1145/3107411.3107444
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.7717/peerj.10805
https://doi.org/10.7717/peerj.10805

References 121

[41] K. Sahlin, “Effective sequence similarity detection with strobemers,” Genome

Research, vol. 31, no. 11, pp. 2080–2094, 2021. doi: 10.1101/gr.275648.121.

[42] K. Sahlin, T. Baudeau, B. Cazaux, and C. Marchet, “A survey of mapping

algorithms in the long-reads era,” bioRxiv, 2022. doi: 10.1101/2022.05.

21.492932.

[43] M. S. Fujimoto, C. A. Lyman, and M. J. Clement, “Kcollections: A Fast

and Efficient Library for K-mers,” in 2020 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2020, pp. 193–198.

doi: 10.1109/IPDPSW50202.2020.00041.

[44] J. Shaw and Y. W. Yu, “Theory of local k-mer selection with applications

to long-read alignment,” Bioinformatics (Oxford, England), vol. 38, no. 20,

pp. 4659–4669, 2022. doi: 10.1093/bioinformatics/btab790.

[45] K. Břinda, M. Sykulski, and G. Kucherov, “Spaced seeds improve k-mer-

based metagenomic classification,” Bioinformatics (Oxford, England), vol. 31,

no. 22, pp. 3584–3592, 2015. doi: 10.1093/bioinformatics/btv419.

[46] D. E. Wood, J. Lu, and B. Langmead, “Improved metagenomic analysis with

Kraken 2,” Genome Biology, vol. 20, no. 1, p. 257, 2019. doi: 10.1186/

s13059-019-1891-0.

[47] H. Mohamadi, J. Chu, B. P. Vandervalk, and I. Birol, “ntHash: recursive nu-

cleotide hashing,” Bioinformatics (Oxford, England), vol. 32, no. 22, pp. 3492–

3494, 2016. doi: 10.1093/bioinformatics/btw397.

[48] S. Burkhardt and J. Kärkkäinen, “Better Filtering with Gapped q-Grams,”

Fundamenta Informaticae, vol. 56, no. 1–2, pp. 51–70, 2003.

[49] B. D. Maier and K. Sahlin, “Entropy predicts sensitivity of pseudorandom

seeds,” Genome Research, 2023. doi: 10.1101/gr.277645.123.

[50] K. Sahlin, Evaluation of methods for constructing randstrobes, 2022. [On-

line]. Available: https://github.com/ksahlin/strobemers/tree/main/

randstrobe_implementations, (Accessed: 23. May 2023).

[51] M. Darvish, Comparison between different methods to simplify sequence data,

2023. [Online]. Available: https://github.com/seqan/minions, (Accessed:

2. June 2023).

[52] K. Reinert et al., “The SeqAn C++ template library for efficient sequence

analysis: A resource for programmers,” Journal of Biotechnology, vol. 261,

pp. 157–168, 2017. doi: 10.1016/j.jbiotec.2017.07.017.

[53] F. Mölder et al., “Sustainable data analysis with Snakemake,” F1000Research,

vol. 10, p. 33, 2021. doi: 10.12688/f1000research.29032.2.

https://doi.org/10.1101/gr.275648.121
https://doi.org/10.1101/2022.05.21.492932
https://doi.org/10.1101/2022.05.21.492932
https://doi.org/10.1109/IPDPSW50202.2020.00041
https://doi.org/10.1093/bioinformatics/btab790
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1101/gr.277645.123
https://github.com/ksahlin/strobemers/tree/main/randstrobe_implementations
https://github.com/ksahlin/strobemers/tree/main/randstrobe_implementations
https://github.com/seqan/minions
https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/10.12688/f1000research.29032.2

122 References

[54] K. Sahlin, “Strobealign: Flexible seed size enables ultra-fast and accurate

read alignment,” Genome Biology, vol. 23, no. 1, p. 260, 2022. doi: 10.

1186/s13059-022-02831-7.

[55] L. Noé, “Best hits of 11110110111: Model-free selection and parameter-free

sensitivity calculation of spaced seeds,” Algorithms for molecular biology :

AMB, vol. 12, p. 1, 2017. doi: 10.1186/s13015-017-0092-1.

[56] L. Zhang, “Superiority and Complexity of the Spaced Seeds,” in Encyclopedia

of Algorithms, Springer, Berlin, Heidelberg, 2015, pp. 1–5. doi: 10.1007/

978-3-642-27848-8_803-1.

[57] J. Chu et al., “Mismatch-tolerant, alignment-free sequence classification using

multiple spaced seeds and multiindex Bloom filters,” Proceedings of the Na-

tional Academy of Sciences of the United States of America, vol. 117, no. 29,

pp. 16 961–16 968, 2020. doi: 10.1073/pnas.1903436117.

[58] M. Holtgrewe, “Mason? A Read Simulator for Second Generation Sequencing

Data,” Technical Report FU Berlin, 2010.

[59] A. B. Carvalho, E. G. Dupim, and G. Goldstein, “Improved assembly of noisy

long reads by k-mer validation,” Genome Research, vol. 26, no. 12, pp. 1710–

1720, 2016. doi: 10.1101/gr.209247.116.

[60] W. Kaisers, H. Schwender, and H. Schaal, “Hierarchical clustering of dna

k-mer counts in rnaseq fastq files identifies sample heterogeneities,” Interna-

tional Journal of Molecular Sciences, vol. 19, no. 11, 2018. doi: 10.3390/

ijms19113687.

[61] C. Pockrandt, M. Alzamel, C. S. Iliopoulos, and K. Reinert, “Genmap: Ultra-

fast computation of genome mappability,” Bioinformatics (Oxford, England),

vol. 36, no. 12, pp. 3687–3692, 2020. doi: 10 . 1093 / bioinformatics /

btaa222.

[62] A. Blanca, R. S. Harris, D. Koslicki, and P. Medvedev, “The Statistics of

k-mers from a Sequence Undergoing a Simple Mutation Process Without

Spurious Matches,” Journal of Computational Biology, vol. 29, no. 2, pp. 155–

168, 2022. doi: 10.1089/cmb.2021.0431.

[63] N. Stoler and A. Nekrutenko, “Sequencing error profiles of Illumina sequenc-

ing instruments,” NAR Genomics and Bioinformatics, vol. 3, no. 1, lqab019,

2021. doi: 10.1093/nargab/lqab019.

[64] M. Schirmer, R. D’Amore, U. Z. Ijaz, N. Hall, and C. Quince, “Illumina er-

ror profiles: Resolving fine-scale variation in metagenomic sequencing data,”

BMC Bioinformatics, vol. 17, no. 1, p. 125, 2016. doi: 10.1186/s12859-

016-0976-y.

https://doi.org/10.1186/s13059-022-02831-7
https://doi.org/10.1186/s13059-022-02831-7
https://doi.org/10.1186/s13015-017-0092-1
https://doi.org/10.1007/978-3-642-27848-8_803-1
https://doi.org/10.1007/978-3-642-27848-8_803-1
https://doi.org/10.1073/pnas.1903436117
https://doi.org/10.1101/gr.209247.116
https://doi.org/10.3390/ijms19113687
https://doi.org/10.3390/ijms19113687
https://doi.org/10.1093/bioinformatics/btaa222
https://doi.org/10.1093/bioinformatics/btaa222
https://doi.org/10.1089/cmb.2021.0431
https://doi.org/10.1093/nargab/lqab019
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1186/s12859-016-0976-y

References 123

[65] E. Seiler, S. Mehringer, M. Darvish, E. Turc, and K. Reinert, “Raptor: A fast

and space-efficient pre-filter for querying very large collections of nucleotide

sequences,” iScience, vol. 24, no. 7, 2021. doi: 10.1016/j.isci.2021.

102782.

[66] T. H. Dadi et al., “DREAM-Yara: an exact read mapper for very large

databases with short update time,” Bioinformatics (Oxford, England), vol. 34,

no. 17, pp. i766–i772, 2018. doi: 10.1093/bioinformatics/bty567.

[67] V. C. Piro, T. H. Dadi, E. Seiler, K. Reinert, and B. Y. Renard, “ganon:

precise metagenomics classification against large and up-to-date sets of ref-

erence sequences,” Bioinformatics (Oxford, England), vol. 36, no. Suppl 1,

pp. i12–i20, 2020. doi: 10.1093/bioinformatics/btaa458.

[68] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and Q. Gouil,

“Opportunities and challenges in long-read sequencing data analysis,” Genome

Biology, vol. 21, no. 1, p. 30, 2020. doi: 10.1186/s13059-020-1935-5.

[69] A. Dutta, D. Pellow, and R. Shamir, “Parameterized syncmer schemes im-

prove long-read mapping,” PLOS Computational Biology, vol. 18, no. 10,

e1010638, 2022. doi: 10.1371/journal.pcbi.1010638.

[70] G. Marçais, D. Pellow, D. Bork, Y. Orenstein, R. Shamir, and C. Kingsford,

“Improving the performance of minimizers and winnowing schemes,” Bioin-

formatics, vol. 33, no. 14, pp. i110–i117, 2017. doi: 10.1093/bioinformatics/

btx235.

[71] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, “Reducing

storage requirements for biological sequence comparison,” Bioinformatics,

vol. 20, no. 18, pp. 3363–3369, 2004. doi: 10.1093/bioinformatics/bth408.

[72] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: Local algorithms for

document fingerprinting,” in Proceedings of the 2003 ACM SIGMOD Interna-

tional Conference on Management of Data, New York, NY, USA: Association

for Computing Machinery, 2003, pp. 76–85.

[73] H. Zheng, C. Kingsford, and G. Marçais, “Improved design and analysis of

practical minimizers,” Bioinformatics (Oxford, England), vol. 36, no. Suppl 1,

pp. i119–i127, 2020. doi: 10.1093/bioinformatics/btaa472.

[74] M. Hoang, H. Zheng, and C. Kingsford, “DeepMinimizer: A Differentiable

Framework for Optimizing Sequence-Specific Minimizer Schemes,” in Re-

search in Computational Molecular Biology, I. Pe’er, Ed., Cham: Springer

International Publishing, 2022, pp. 52–69.

[75] C.-S. Chin and A. Khalak, “Human genome assembly in 100 minutes,” bioRxiv,

p. 705 616, 2019. doi: 10.1101/705616.

https://doi.org/10.1016/j.isci.2021.102782
https://doi.org/10.1016/j.isci.2021.102782
https://doi.org/10.1093/bioinformatics/bty567
https://doi.org/10.1093/bioinformatics/btaa458
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1371/journal.pcbi.1010638
https://doi.org/10.1093/bioinformatics/btx235
https://doi.org/10.1093/bioinformatics/btx235
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1093/bioinformatics/btaa472
https://doi.org/10.1101/705616

124 References

[76] K. Sahlin and P. Medvedev, “Error correction enables use of oxford nanopore

technology for reference-free transcriptome analysis,” Nature Communica-

tions, vol. 12, no. 1, p. 2, 2021. doi: 10.1038/s41467-020-20340-8.

[77] C. Jain et al., “Weighted minimizer sampling improves long read mapping,”

Bioinformatics (Oxford, England), vol. 36, no. Suppl 1, pp. i111–i118, 2020.

doi: 10.1093/bioinformatics/btaa435.

[78] B. Ekim, B. Berger, and Y. Orenstein, “A Randomized Parallel Algorithm

for Efficiently Finding Near-Optimal Universal Hitting Sets,” in Research in

Computational Molecular Biology, R. Schwartz, Ed., Cham: Springer Inter-

national Publishing, 2020, pp. 37–53.

[79] Y. Orenstein, D. Pellow, G. Marçais, R. Shamir, and C. Kingsford, “Designing

small universal k-mer hitting sets for improved analysis of high-throughput

sequencing,” PLOS Computational Biology, vol. 13, no. 10, e1005777, 2017.

doi: 10.1371/journal.pcbi.1005777.

[80] D. Pellow et al., “Efficient minimizer orders for large values of k using mini-

mum decycling sets,” bioRxiv, 2022. doi: 10.1101/2022.10.18.512682.

[81] H. Zheng, C. Kingsford, and G. Marçais, “Sequence-specific minimizers via

polar sets,” Bioinformatics (Oxford, England), vol. 37, no. Suppl 1, pp. i187–

i195, 2021. doi: 10.1093/bioinformatics/btab313.

[82] M. C. Frith, L. Noé, and G. Kucherov, “Minimally-overlapping words for se-

quence similarity search,” Bioinformatics (Oxford, England), vol. 36, no. 22-

23, pp. 5344–5350, 2020. doi: 10.1093/bioinformatics/btaa1054.

[83] M. C. Frith, J. Shaw, and J. L. Spouge, “How to optimally sample a sequence

for rapid analysis,” Bioinformatics (Oxford, England), vol. 39, no. 2, 2023.

doi: 10.1093/bioinformatics/btad057.

[84] A. Srivastava, H. Sarkar, N. Gupta, and R. Patro, “RapMap: a rapid, sensitive

and accurate tool for mapping RNA-seq reads to transcriptomes,” Bioinfor-

matics, vol. 32, no. 12, pp. i192–i200, 2016. doi: 10.1093/bioinformatics/

btw277.

[85] L. Pachter, How not to perform a differential expression analysis (or science),

2017. [Online]. Available: https://liorpachter.wordpress.com/tag/

pseudoalignment/, (Accessed: 9. January 2022).

[86] A. C. Frazee, A. E. Jaffe, B. Langmead, and J. T. Leek, “Polyester: Simulat-

ing rna-seq datasets with differential transcript expression,” Bioinformatics,

vol. 31, no. 17, pp. 2778–2784, 2015. doi: 10.1093/bioinformatics/btv272.

https://doi.org/10.1038/s41467-020-20340-8
https://doi.org/10.1093/bioinformatics/btaa435
https://doi.org/10.1371/journal.pcbi.1005777
https://doi.org/10.1101/2022.10.18.512682
https://doi.org/10.1093/bioinformatics/btab313
https://doi.org/10.1093/bioinformatics/btaa1054
https://doi.org/10.1093/bioinformatics/btad057
https://doi.org/10.1093/bioinformatics/btw277
https://doi.org/10.1093/bioinformatics/btw277
https://liorpachter.wordpress.com/tag/pseudoalignment/
https://liorpachter.wordpress.com/tag/pseudoalignment/
https://doi.org/10.1093/bioinformatics/btv272

References 125

[87] SEQC/MAQC-III Consortium, “A comprehensive assessment of rna-seq ac-

curacy, reproducibility and information content by the sequencing quality

control consortium,” Nature Biotechnology, vol. 32, no. 9, pp. 903–914, 2014.

doi: 10.1038/nbt.2957.

[88] Y. Zhao et al., “TPM, FPKM, or Normalized Counts? A Comparative Study

of Quantification Measures for the Analysis of RNA-seq Data from the NCI

Patient-Derived Models Repository,” Journal of Translational Medicine, vol. 19,

no. 1, p. 269, 2021. doi: 10.1186/s12967-021-02936-w.

[89] J. H. Hong, Y. H. Ko, and K. Kang, “Rna-seq data of invasive ductal carci-

noma and adjacent normal tissues from a korean patient with breast cancer,”

Data in Brief, vol. 18, pp. 736–739, 2018. doi: 10.1016/j.dib.2018.03.079.

[90] Y. Yang, H.-L. Liu, and Y.-J. Liu, “A Novel Five-Gene Signature Related to

Clinical Outcome and Immune Microenvironment in Breast Cancer,” Fron-

tiers in Genetics, vol. 13, p. 912 125, 2022. doi: 10.3389/fgene.2022.

912125.

[91] M. Almutairy and E. Torng, “Comparing fixed sampling with minimizer sam-

pling when using k-mer indexes to find maximal exact matches,” PLOS ONE,

vol. 13, no. 2, e0189960, 2018. doi: 10.1371/journal.pone.0189960.

[92] J. Burgin et al., “The european nucleotide archive in 2022,” Nucleic acids

research, vol. 51, no. D1, pp. D121–D125, 2023. doi: 10.1093/nar/gkac1051.

[93] M. Arita, I. Karsch-Mizrachi, and G. Cochrane, “The international nucleotide

sequence database collaboration,” Nucleic acids research, vol. 49, no. D1,

pp. D121–D124, 2021. doi: 10.1093/nar/gkaa967.

[94] X. Su, G. Jing, Y. Zhang, and S. Wu, “Method development for cross-study

microbiome data mining: Challenges and opportunities,” Computational and

Structural Biotechnology Journal, vol. 18, pp. 2075–2080, 2020. doi: 10 .

1016/j.csbj.2020.07.020.

[95] M. Karasikov, H. Mustafa, G. Rätsch, and A. Kahles, “Lossless indexing with

counting de Bruijn graphs,” Genome Research, vol. 32, no. 9, pp. 1754–1764,

2022. doi: 10.1101/gr.276607.122.

[96] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic

local alignment search tool,” Journal of molecular biology, vol. 215, no. 3,

pp. 403–410, 1990. doi: 10.1016/S0022-2836(05)80360-2.

[97] B. Solomon and C. Kingsford, “Fast search of thousands of short-read se-

quencing experiments,” Nature Biotechnology, vol. 34, no. 3, pp. 300–302,

2016. doi: 10.1038/nbt.3442.

https://doi.org/10.1038/nbt.2957
https://doi.org/10.1186/s12967-021-02936-w
https://doi.org/10.1016/j.dib.2018.03.079
https://doi.org/10.3389/fgene.2022.912125
https://doi.org/10.3389/fgene.2022.912125
https://doi.org/10.1371/journal.pone.0189960
https://doi.org/10.1093/nar/gkac1051
https://doi.org/10.1093/nar/gkaa967
https://doi.org/10.1016/j.csbj.2020.07.020
https://doi.org/10.1016/j.csbj.2020.07.020
https://doi.org/10.1101/gr.276607.122
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/nbt.3442

126 References

[98] M. D. Muggli, B. Alipanahi, and C. Boucher, “Building large updatable

colored de Bruijn graphs via merging,” Bioinformatics (Oxford, England),

vol. 35, no. 14, pp. i51–i60, 2019. doi: 10.1093/bioinformatics/btz350.

[99] C. Marchet, Data-structures for sets of k-mer sets: What’s new since 2020,

2023. [Online]. Available: https://kamimrcht.github.io/webpage/sets_

kmer_sets.html, (Accessed: 18. July 2023).

[100] C. Marchet, C. Boucher, S. J. Puglisi, P. Medvedev, M. Salson, and R. Chikhi,

“Data structures based on k-mers for querying large collections of sequencing

data sets,” Genome Research, vol. 31, no. 1, pp. 1–12, 2021. doi: 10.1101/

gr.260604.119.

[101] M. Karasikov et al., “MetaGraph: Indexing and Analysing Nucleotide Archives

at Petabase-scale,” bioRxiv, 2020. doi: 10.1101/2020.10.01.322164.

[102] Y. Yu et al., “SeqOthello: querying RNA-seq experiments at scale,” Genome

Biology, vol. 19, no. 1, p. 167, 2018. doi: 10.1186/s13059-018-1535-9.

[103] C. Marchet and A. Limasset, “Scalable sequence database search using par-

titioned aggregated bloom comb trees,” Bioinformatics (Oxford, England),

vol. 39, no. 39 Suppl 1, pp. i252–i259, 2023. doi: 10.1093/bioinformatics/

btad225.

[104] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970. doi: 10.

1145/362686.362692.

[105] N. de Bruijn, “A combinatorial problem,” Indagationes Mathematicae, no. 49,

pp. 758–764, 1946.

[106] I. J. Good, “Normal Recurring Decimals,” Journal of the London Mathemat-

ical Society, vol. s1-21, no. 3, pp. 167–169, 1946. doi: 10.1112/jlms/s1-

21.3.167.

[107] J. T. Simpson and M. Pop, “The theory and practice of genome sequence

assembly,” Annual review of genomics and human genetics, vol. 16, pp. 153–

172, 2015. doi: 10.1146/annurev-genom-090314-050032.

[108] R. Chikhi, J. Holub, and P. Medvedev, “Data Structures to Represent a Set

of k -long DNA Sequences,” ACM Computing Surveys, vol. 54, no. 1, pp. 1–

22, 2022. doi: 10.1145/3445967.

[109] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo as-

sembly and genotyping of variants using colored de Bruijn graphs,” Nature

Genetics, vol. 44, no. 2, pp. 226–232, 2012. doi: 10.1038/ng.1028.

https://doi.org/10.1093/bioinformatics/btz350
https://kamimrcht.github.io/webpage/sets_kmer_sets.html
https://kamimrcht.github.io/webpage/sets_kmer_sets.html
https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1186/s13059-018-1535-9
https://doi.org/10.1093/bioinformatics/btad225
https://doi.org/10.1093/bioinformatics/btad225
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1146/annurev-genom-090314-050032
https://doi.org/10.1145/3445967
https://doi.org/10.1038/ng.1028

References 127

[110] P. Pandey, F. Almodaresi, M. A. Bender, M. Ferdman, R. Johnson, and

R. Patro, “Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search

Index,” Cell Systems, vol. 7, no. 2, 201–207.e4, 2018. doi: 10.1016/j.cels.

2018.05.021.

[111] T. Lemane, P. Medvedev, R. Chikhi, and P. Peterlongo, “kmtricks: efficient

and flexible construction of Bloom filters for large sequencing data collec-

tions,” Bioinformatics Advances, vol. 2, no. 1, vbac029, 2022. doi: 10.1093/

bioadv/vbac029.

[112] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang, “Memory-Efficient and Ultra-

Fast Network Lookup and Forwarding Using Othello Hashing,” IEEE/ACM

Transactions on Networking, vol. 26, no. 3, pp. 1151–1164, 2018. doi: 10.

1109/TNET.2018.2820067.

[113] X. Liu, Y. Yu, J. Liu, C. F. Elliott, C. Qian, and J. Liu, “A novel data

structure to support ultra-fast taxonomic classification of metagenomic se-

quences with k-mer signatures,” Bioinformatics (Oxford, England), vol. 34,

no. 1, pp. 171–178, 2018. doi: 10.1093/bioinformatics/btx432.

[114] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose

counting filter,” in Proceedings of the 2017 ACM International Conference

on Management of Data, R. Chirkova, Ed., ser. ACM Digital Library, New

York, NY: ACM, 2017, pp. 775–787. doi: 10.1145/3035918.3035963.

[115] F. Almodaresi, P. Pandey, M. Ferdman, R. Johnson, and R. Patro, “An Ef-

ficient, Scalable, and Exact Representation of High-Dimensional Color Infor-

mation Enabled Using de Bruijn Graph Search,” Journal of Computational

Biology, vol. 27, no. 4, pp. 485–499, 2020. doi: 10.1089/cmb.2019.0322.

[116] F. Almodaresi et al., “An incrementally updatable and scalable system for

large-scale sequence search using the Bentley-Saxe transformation,” Bioin-

formatics (Oxford, England), vol. 38, no. 12, pp. 3155–3163, 2022. doi: 10.

1093/bioinformatics/btac142.

[117] G. Holley and P. Melsted, “Bifrost: highly parallel construction and indexing

of colored and compacted de Bruijn graphs,” Genome Biology, vol. 21, no. 1,

p. 249, 2020. doi: 10.1186/s13059-020-02135-8.

[118] Nate, “Sequence bloom trees, part i: Motivation and principles,” Seven Bridges

Genomics Inc, 2017. [Online]. Available: https://www.sevenbridges.com/

sequence-bloom-trees-principles/, (Accessed: 9. August 2023).

[119] C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev, “AllSome Sequence Bloom

Trees,” Journal of Computational Biology, vol. 25, no. 5, pp. 467–479, 2018.

doi: 10.1089/cmb.2017.0258.

https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1109/TNET.2018.2820067
https://doi.org/10.1109/TNET.2018.2820067
https://doi.org/10.1093/bioinformatics/btx432
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1089/cmb.2019.0322
https://doi.org/10.1093/bioinformatics/btac142
https://doi.org/10.1093/bioinformatics/btac142
https://doi.org/10.1186/s13059-020-02135-8
https://www.sevenbridges.com/sequence-bloom-trees-principles/
https://www.sevenbridges.com/sequence-bloom-trees-principles/
https://doi.org/10.1089/cmb.2017.0258

128 References

[120] B. Solomon and C. Kingsford, “Improved Search of Large Transcriptomic

Sequencing Databases Using Split Sequence Bloom Trees,” Journal of Com-

putational Biology, vol. 25, no. 7, pp. 755–765, 2018. doi: 10.1089/cmb.

2017.0265.

[121] R. S. Harris and P. Medvedev, “Improved representation of sequence bloom

trees,” Bioinformatics, vol. 36, no. 3, pp. 721–727, 2020. doi: 10.1093/

bioinformatics/btz662.

[122] C. Marchet and A. Limasset, “Scalable sequence database search using Parti-

tioned Aggregated Bloom Comb-Trees,” bioRxiv, 2022. doi: 10.1101/2022.

02.11.480089.

[123] P. Bradley, H. C. den Bakker, E. P. C. Rocha, G. McVean, and Z. Iqbal,

“Ultrafast search of all deposited bacterial and viral genomic data,” Nature

Biotechnology, vol. 37, no. 2, pp. 152–159, 2019. doi: 10.1038/s41587-018-

0010-1.

[124] S. K. Srikakulam, S. Keller, F. Dabbaghie, R. Bals, and O. V. Kalinina,

“MetaProFi: an ultrafast chunked Bloom filter for storing and querying pro-

tein and nucleotide sequence data for accurate identification of functionally

relevant genetic variants,” Bioinformatics (Oxford, England), vol. 39, no. 3,

2023. doi: 10.1093/bioinformatics/btad101.

[125] G. Gupta et al., “Fast Processing and Querying of 170TB of Genomics Data

via a Repeated And Merged BloOm Filter (RAMBO),” in Proceedings of the

2021 International Conference on Management of Data (SIGMOD ’21), New

York, NY, USA: Association for Computing Machinery, 2021, pp. 2226–2234.

doi: 10.1145/3448016.3457333.

[126] S. Mehringer et al., “Hierarchical interleaved bloom filter: Enabling ultrafast,

approximate sequence queries,” Genome Biology, vol. 24, no. 1, p. 131, 2023.

doi: 10.1186/s13059-023-02971-4.

[127] X. Zhang, Y. Yu, C. H. Mok, J. N. MacLeod, and J. Liu, “Gazelle: Tran-

script abundance query against large-scale rna-seq experiments,” in Proceed-

ings of the 12th ACM Conference on Bioinformatics, Computational Biology,

and Health Informatics, ser. BCB ’21, New York, NY, USA: Association for

Computing Machinery, 2021. doi: 10.1145/3459930.3469548.

[128] M. Karasikov, H. Mustafa, A. Joudaki, S. Javadzadeh-no, G. Rätsch, and A.

Kahles, “Sparse Binary Relation Representations for Genome Graph Anno-

tation,” Journal of Computational Biology, vol. 27, no. 4, pp. 626–639, 2020.

doi: 10.1089/cmb.2019.0324.

https://doi.org/10.1089/cmb.2017.0265
https://doi.org/10.1089/cmb.2017.0265
https://doi.org/10.1093/bioinformatics/btz662
https://doi.org/10.1093/bioinformatics/btz662
https://doi.org/10.1101/2022.02.11.480089
https://doi.org/10.1101/2022.02.11.480089
https://doi.org/10.1038/s41587-018-0010-1
https://doi.org/10.1038/s41587-018-0010-1
https://doi.org/10.1093/bioinformatics/btad101
https://doi.org/10.1145/3448016.3457333
https://doi.org/10.1186/s13059-023-02971-4
https://doi.org/10.1145/3459930.3469548
https://doi.org/10.1089/cmb.2019.0324

References 129

[129] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable

wide-area web cache sharing protocol,” IEEE/ACM Transactions on Net-

working, vol. 8, no. 3, pp. 281–293, 2000. doi: 10.1109/90.851975.

[130] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,

“An Improved Construction for Counting Bloom Filters,” Springer, Berlin,

Heidelberg, 2006, pp. 684–695. doi: 10.1007/11841036_61.

[131] K. Kim, Y. Jeong, Y. Lee, and S. Lee, “Analysis of Counting Bloom Filters

Used for Count Thresholding,” Electronics, vol. 8, no. 7, p. 779, 2019. doi:

10.3390/electronics8070779.

[132] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the twen-

tieth annual ACM symposium on Principles of distributed computing, A.

Kshemkalyani, Ed., ser. ACM Conferences, New York, NY: ACM, 2001,

pp. 144–150. doi: 10.1145/383962.384004.

[133] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of count-

ing bloom filter,” IEEE Transactions on Knowledge and Data Engineering,

vol. 22, no. 5, pp. 651–664, 2010. doi: 10.1109/TKDE.2009.209.

[134] M. Kokot, M. Dlugosz, and S. Deorowicz, “Kmc 3: Counting and manipu-

lating k-mer statistics,” Bioinformatics (Oxford, England), vol. 33, no. 17,

pp. 2759–2761, 2017. doi: 10.1093/bioinformatics/btx304.

[135] R. Chikhi, A. Limasset, and P. Medvedev, “Compacting de bruijn graphs

from sequencing data quickly and in low memory,” Bioinformatics (Oxford,

England), vol. 32, no. 12, pp. i201–i208, 2016. doi: 10.1093/bioinformatics/

btw279.

[136] The Gene Ontology Consortium, “The gene ontology resource: 20 years and

still going strong,” Nucleic acids research, vol. 47, no. D1, pp. D330–D338,

2019. doi: 10.1093/nar/gky1055.

[137] S. X. Ge, D. Jung, and R. Yao, “Shinygo: A graphical gene-set enrichment

tool for animals and plants,” Bioinformatics (Oxford, England), vol. 36, no. 8,

pp. 2628–2629, 2020. doi: 10.1093/bioinformatics/btz931.

[138] O. Palasca, A. Santos, C. Stolte, J. Gorodkin, and L. J. Jensen, “Tissues

2.0: An integrative web resource on mammalian tissue expression,” Database,

vol. 2018, 2018. doi: 10.1093/database/bay003.

[139] J. Pujol et al., “Differences between the child and adult brain in the local

functional structure of the cerebral cortex,” NeuroImage, vol. 237, p. 118 150,

2021. doi: 10.1016/j.neuroimage.2021.118150.

https://doi.org/10.1109/90.851975
https://doi.org/10.1007/11841036_61
https://doi.org/10.3390/electronics8070779
https://doi.org/10.1145/383962.384004
https://doi.org/10.1109/TKDE.2009.209
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/bioinformatics/btz931
https://doi.org/10.1093/database/bay003
https://doi.org/10.1016/j.neuroimage.2021.118150

130 References

[140] T. Z. Parris et al., “Clinical relevance of breast cancer-related genes as po-

tential biomarkers for oral squamous cell carcinoma,” BMC Cancer, vol. 14,

p. 324, 2014. doi: 10.1186/1471-2407-14-324.

[141] L. Hutchinson, “Genetics: What do breast and bladder cancer have in com-

mon?” Nature Reviews Clinical Oncology, vol. 11, no. 4, p. 179, 2014. doi:

10.1038/nrclinonc.2014.33.

[142] P.-A. Vidi, M. J. Bissell, and S. A. Lelièvre, “Three-dimensional culture of

human breast epithelial cells: The how and the why,” Methods in Molecular

Biology (Clifton, N.J.), vol. 945, pp. 193–219, 2013. doi: 10.1007/978-1-

62703-125-7_13.

[143] T. Gudjonsson, M. C. Adriance, M. D. Sternlicht, O. W. Petersen, and M. J.

Bissell, “Myoepithelial cells: Their origin and function in breast morphogene-

sis and neoplasia,” Journal of mammary gland biology and neoplasia, vol. 10,

no. 3, pp. 261–272, 2005. doi: 10.1007/s10911-005-9586-4.

[144] R. A. F. Gjaltema et al., “Distal and proximal cis-regulatory elements sense

x chromosome dosage and developmental state at the xist locus,” Molecular

Cell, vol. 82, no. 1, 190–208.e17, 2022. doi: 10.1016/j.molcel.2021.11.

023.

[145] A. Dobin et al., “Star: Ultrafast universal rna-seq aligner,” Bioinformatics,

vol. 29, no. 1, pp. 15–21, 2013. doi: 10.1093/bioinformatics/bts635.

[146] R. Tian, L. Wang, H. Zou, M. Song, L. Liu, and H. Zhang, “Role of the xist-

mir-181a-col4a1 axis in the development and progression of keratoconus,”

Molecular Vision, vol. 26, pp. 1–13, 2020.

[147] T. T. Mallard et al., “X-chromosome influences on neuroanatomical variation

in humans,” Nature Neuroscience, vol. 24, no. 9, pp. 1216–1224, 2021. doi:

10.1038/s41593-021-00890-w.

[148] J. R. McCarrey and D. D. Dilworth, “Expression of xist in mouse germ cells

correlates with x-chromosome inactivation,” Nature Genetics, vol. 2, no. 3,

pp. 200–203, 1992. doi: 10.1038/ng1192-200.

[149] J. Yang, M. Qi, X. Fei, X. Wang, and K. Wang, “Long non-coding rna xist:

A novel oncogene in multiple cancers,” Molecular Medicine, vol. 27, no. 1,

p. 159, 2021. doi: 10.1186/s10020-021-00421-0.

[150] W. Han et al., “Pan-cancer analysis of lncrna xist and its potential mech-

anisms in human cancers,” Heliyon, vol. 8, no. 10, e10786, 2022. doi: 10.

1016/j.heliyon.2022.e10786.

https://doi.org/10.1186/1471-2407-14-324
https://doi.org/10.1038/nrclinonc.2014.33
https://doi.org/10.1007/978-1-62703-125-7_13
https://doi.org/10.1007/978-1-62703-125-7_13
https://doi.org/10.1007/s10911-005-9586-4
https://doi.org/10.1016/j.molcel.2021.11.023
https://doi.org/10.1016/j.molcel.2021.11.023
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41593-021-00890-w
https://doi.org/10.1038/ng1192-200
https://doi.org/10.1186/s10020-021-00421-0
https://doi.org/10.1016/j.heliyon.2022.e10786
https://doi.org/10.1016/j.heliyon.2022.e10786

References 131

[151] B. Pan, X. Lin, L. Zhang, W. Hong, and Y. Zhang, “Long noncoding rna

x-inactive specific transcript promotes malignant melanoma progression and

oxaliplatin resistance,” Melanoma Research, vol. 29, no. 3, pp. 254–262, 2019.

doi: 10.1097/CMR.0000000000000560.

[152] M. Gannon, R. N. Kulkarni, H. M. Tse, and F. Mauvais-Jarvis, “Sex dif-

ferences underlying pancreatic islet biology and its dysfunction,” Molecular

Metabolism, vol. 15, pp. 82–91, 2018. doi: 10.1016/j.molmet.2018.05.017.

[153] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA:

A Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021. doi:

10.3322/caac.21660.

[154] L. B. Alexandrov et al., “Signatures of mutational processes in human can-

cer,” Nature, vol. 500, no. 7463, pp. 415–421, 2013. doi: 10.1038/nature12477.

[155] J. Demeulemeester, S. C. Dentro, M. Gerstung, and P. van Loo, “Biallelic

mutations in cancer genomes reveal local mutational determinants,” Nature

Genetics, vol. 54, no. 2, pp. 128–133, 2022. doi: 10.1038/s41588- 021-

01005-8.

[156] S. Mallik and Z. Zhao, “Identification of gene signatures from RNA-seq

data using Pareto-optimal cluster algorithm,” BMC Systems Biology, vol. 12,

no. Suppl 8, p. 126, 2018. doi: 10.1186/s12918-018-0650-2.

[157] L. Mittempergher et al., “MammaPrint and BluePrint Molecular Diagnostics

Using Targeted RNA Next-Generation Sequencing Technology,” The Journal

of molecular diagnostics, vol. 21, no. 5, pp. 808–823, 2019. doi: 10.1016/j.

jmoldx.2019.04.007.

[158] K. Manjang, S. Tripathi, O. Yli-Harja, M. Dehmer, G. Glazko, and F. Emmert-

Streib, “Prognostic gene expression signatures of breast cancer are lacking a

sensible biological meaning,” Scientific Reports, vol. 11, no. 1, p. 156, 2021.

doi: 10.1038/s41598-020-79375-y.

[159] X. Zhao, H. Yan, X. Yan, Z. Chen, and R. Zhuo, “A novel prognostic four-gene

signature of breast cancer identified by integrated bioinformatics analysis,”

Disease Markers, vol. 2022, p. 5 925 982, 2022. doi: 10.1155/2022/5925982.

[160] F. Cardoso et al., “70-Gene Signature as an Aid to Treatment Decisions in

Early-Stage Breast Cancer,” The New England journal of medicine, vol. 375,

no. 8, pp. 717–729, 2016. doi: 10.1056/NEJMoa1602253.

https://doi.org/10.1097/CMR.0000000000000560
https://doi.org/10.1016/j.molmet.2018.05.017
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/nature12477
https://doi.org/10.1038/s41588-021-01005-8
https://doi.org/10.1038/s41588-021-01005-8
https://doi.org/10.1186/s12918-018-0650-2
https://doi.org/10.1016/j.jmoldx.2019.04.007
https://doi.org/10.1016/j.jmoldx.2019.04.007
https://doi.org/10.1038/s41598-020-79375-y
https://doi.org/10.1155/2022/5925982
https://doi.org/10.1056/NEJMoa1602253

132 References

[161] I. Krop et al., “Use of Biomarkers to Guide Decisions on Adjuvant Systemic

Therapy for Women With Early-Stage Invasive Breast Cancer: American

Society of Clinical Oncology Clinical Practice Guideline Focused Update,”

Journal of Clinical Oncology, vol. 35, no. 24, pp. 2838–2847, 2017. doi: 10.

1200/JCO.2017.74.0472.

[162] K. E. Varley et al., “Recurrent read-through fusion transcripts in breast can-

cer,” Breast Cancer Research and Treatment, vol. 146, no. 2, pp. 287–297,

2014. doi: 10.1007/s10549-014-3019-2.

[163] S. K. Santuario-Facio et al., “A New Gene Expression Signature for Triple

Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemother-

apy,” Molecular medicine (Cambridge, Mass.), vol. 23, pp. 101–111, 2017.

doi: 10.2119/molmed.2016.00257.

[164] D. Aran et al., “Comprehensive analysis of normal adjacent to tumor tran-

scriptomes,” Nature Communications, vol. 8, no. 1, p. 1077, 2017. doi: 10.

1038/s41467-017-01027-z.

[165] C. Marchet, M. Kerbiriou, and A. Limasset, “BLight: efficient exact associa-

tive structure for k-mers,” Bioinformatics (Oxford, England), vol. 37, no. 18,

pp. 2858–2865, 2021. doi: 10.1093/bioinformatics/btab217.

[166] T. Lemane et al., “Kmindex and ora: Indexing and real-time user-friendly

queries in terabytes-sized complex genomic datasets,” bioRxiv, p. 2023.05.31.543043,

2023. doi: 10.1101/2023.05.31.543043.

https://doi.org/10.1200/JCO.2017.74.0472
https://doi.org/10.1200/JCO.2017.74.0472
https://doi.org/10.1007/s10549-014-3019-2
https://doi.org/10.2119/molmed.2016.00257
https://doi.org/10.1038/s41467-017-01027-z
https://doi.org/10.1038/s41467-017-01027-z
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1101/2023.05.31.543043

Appendix

A.1 Repositories

The here presented and developed applications minions and Needle can be found

under the following links: (https://github.com/seqan/minions) and (https://

github.com/seqan/needle).

A.2 Alignment-free quantification

A.2.1 Submers

Figure A.1: Average speed of different submer methods. 4 and 8 k-mer refer
to the gapped k+4-mer or k+8-mer method with 4 or 8 gaps. The strobemers have
an order of 2, so the singular strobes have a length of k/2 and they have a window
length of k/2 + 8 to ensure a maximal gap of length 8 to the previous strobe.

A.2.2 Representative submers

133

https://github.com/seqan/minions
https://github.com/seqan/needle
https://github.com/seqan/needle

134 Appendix A. Appendix

(a) Strobemers 4 (b) Strobemers 8

Figure A.2: Average speed of different methods with strobemers of order
3. 4 and 8 k-mer refer to the gapped k + 4-mer or k + 8-mer method with 4 or 8
gaps. The strobemers have an order of 3, so the singular strobes have a length of
k/3 and they have a window length of k/2 + 4, so that a maximal gap of length 4
to the previous strobe is ensured for Strobemers 4 and a window length of k/2 + 8,
a maximal gap of length 8 to the previous strobe is ensured for Strobemers 8.

Figure A.3: Set size of different submer methods for the human genome.
4 and 8 k-mer refer to the gapped k+ 4-mer or k+ 8-mer method with 4 or 8 gaps.
The strobemers have an order of 2, so the singular strobes have a length of k/2 and
they have a window length of k/2 + 8, so that a maximal gap of length 8 to the
previous strobe is ensured.

A.2. Alignment-free quantification 135

(a) Strobemers 4 (b) Strobemers 8

Figure A.4: Set size of different methods for the human genome with
strobemers of order 3. 4 and 8 k-mer refer to the gapped k+ 4-mer or k+ 8-mer
method with 4 or 8 gaps. The strobemers have an order of 3, so the singular strobes
have a length of k/3 and they have a window length of k/2 + 4, so that a maximal
gap of length 4 to the previous strobe is ensured for Strobemers 4, and a window
length of k/2+8, so that a maximal gap of length 8 to the previous strobe is ensured,
for Strobemers 8.

136 Appendix A. Appendix

(a) Strobemers 8, Match Coverage (b) Strobemers 8, Island Size

(c) Order 3, Match Coverage (d) Order 3, Island Size

(e) Strobemers 8, Order 3, Match Coverage (f) Strobemers 8, Order 3, Island Size

Figure A.5: Match coverage and island size of different submer methods
with substitution rate 10 for strobemers with a longer window length and
order 3. 4 and 8 k-mer refer to the gapped k+4-mer or k+8-mer method with 4 or
8 gaps. The strobemers have an order of 2 for Strobemers 8, so the singular strobes
have a length of k/2 and they have a window length of k/2 + 8, so that a maximal
gap of length 8 to the previous strobe is ensured. For the rest, the strobemers have
an order of 3 with either a window length of of k/2 + 4 or of k/2 + 8 (Strobemers
8).

A.2. Alignment-free quantification 137

(a) Substitution rate of 1% (b) Substitution rate of 2%

(c) Substitution rate of 5%

Figure A.6: Match coverage of different submer methods for different sub-
stitution rates. 4 and 8 k-mer refer to the gapped k+ 4-mer or k+ 8-mer method
with 4 or 8 gaps. The strobemers have an order of 2, so the singular strobes have a
length of k/2 and they have a window length of k/2 + 4, so that a maximal gap of
length 4 to the previous strobe is ensured.

138 Appendix A. Appendix

(a) Strobemers 8 (b) Strobemers 4, order 3

(c) Strobemers 8, order 3

Figure A.7: Average percentage of unique submers for different represen-
tative methods for strobemers with a longer window length and of order
3. The figure shows the average percentage of unique submers for all representative
methods for k-mers and the different strobemers as underlying method. The aver-
age is calculated over the different parameters for the window size for minimizer,
the modulo for modmers and the s size for syncmers. The following parameters
were used: [24, 28, 32, 36, 40] ((w, kl)-minimizer), [3, 5, 7, 9, 11] ((kl,m)-modmers),
[18, 16, 14, 12, 10] ((kl, s, [0], 1)-syncmers) and [15, 11, 7, 3, 1] ((kl, s, [0, 20 − s], 1)-
syncmers) with kl being 20 for a) and 27 for b) and c). For a), as underlying
submer method, 20-mer were used for the k-mers and for the different strobemers
(2, 10, 10, 18)-strobemers were used. For b) and c), 27-mers were used for the k-mers
and for the different strobemers (3, 9, 9, 13/17)-strobemers were used.

A.2. Alignment-free quantification 139

Figure A.8: Distance between representative submers of different represen-
tative methods. The figure shows the occurrence of different distances between
adjacent representative submers on the human genome for different representative
submer methods based on k-mers.

140 Appendix A. Appendix

(a) Hybridstrobemers, 4 (b) Hybridstrobemers, 8

(c) Minstrobemers, 4 (d) Minstrobemers, 8

(e) Randstrobemers, 4 (f) Randstrobemers, 8

Figure A.9: Distance between representative submers of different represen-
tative methods. The figure shows the occurrence of different distances between ad-
jacent representative submers on the human genome for (24, 20)-minimizers, (20, 3)-
modmers, (20, 18, [0], 1)-syncmers and (20, 15, [0, 5], 1)-syncmers based on different
strobemers of order 2. The 4 in the caption references the (2, 10, 10, 14)-strobemers
and the 8 the (2, 10, 10, 18)-strobemers.

A.2. Alignment-free quantification 141

(a) Match Coverage, Minstrobemers (b) Island Size, Minstrobemers

(c) Match Coverage, Hybridstrobemers (d) Island Size, Hybridstrobemers

(e) Match Coverage, Randstrobemers (f) Island Size, Randstrobemers

Figure A.10: Match coverage and island size of different representative
submer methods based on strobemers of order 2 with maximal 8 gaps
between two strobes. The figure shows the match coverage and island size of rep-
resentative submers based on (2, 10, 10, 18)-strobemers. The window size for mini-
mizer, the modulo for modmers and the s size for syncmers changes for every value on
the x-axis. The x-value indicates the position in the following lists: [24, 28, 32, 36, 40]
(minimizer), [3, 5, 7, 9, 11] (modmers), [18, 16, 14, 12, 10] ((20, s, [0], 1)-syncmers) and
[15, 11, 7, 3, 1] ((20, s, [0, 20− s], 1)-syncmers).

142 Appendix A. Appendix

A.3 Indexing big data

A.3.1 Overview of indices

ASSBT [119]
BFT [30]

BIGSI [123]
BLight [165]
COBS [21]

Counting DBG [95]
Gazelle [127]
HDSBT [121]

IBF [66]
kcollections [43]

kmtricks [111]
kmindex [166]
Mantis [110]

Manis-MST [115]
Mantis-BS [116]
MetaGraph [101]
MetaProFii [124]

Multi-BRWT [128]
Needle [32]
PAC [103]

Rambo [125]
Raptor [65]

Raptor 2.0 [126]
Reindeer [8]

SBT [97]
SeqOthello [102]

SSBT [120]

Table A.1: References for the Figure 3.1.

A.3.2 Space and Speed Analyses

All benchmarks and analyses can be found in the Needle repository (https://

github.com/seqan/needle) under the folder ”utils”. The time and memory con-

sumption was always measured by /usr/bin/time -v.

For the comparison of the different Needle parallelization methods, for the com-

parison of the preprocessing for all quantitative methods and for showing the perfor-

mance of Needle’s insertion and deletion, the following four sequencing experiments

were used:

• SRR1313229

https://github.com/seqan/needle
https://github.com/seqan/needle

A.3. Indexing big data 143

• SRR1313228

• SRR1313227

• SRR1313226.

Construction

clean 130 2.1
build 22 50.5

transform 39 7.4
build 2 7 23.7

transform 2 2 5.1
annotate 445 6.0

transform anno 0 13 32.3
transform anno 1 77 347.1
transform anno 2 99 312.6
transform anno 74 52.1

normal

relax brwt 8 20.4
clean 118 2.1
build 22 50.5

transform 23 7.4
build 2 7 23.7

transform 2 2 5.2
annotate 363 5.4

transform anno 0 9 32.0
transform anno 1 82 345.0
transform anno 2 93 149.2
transform anno 67 20.4

smooth

relax brwt 5 8.8

Table A.2: Speed and space analyses of the individual MetaGraph steps.
The time is given in minutes and the RAM in GB. All commands were run with
4 threads. The column on the left specifies, if the counts were smoothed (named
smooth) or not (named normal). For the exact commands, see https://github.

com/seqan/needle/blob/master/utils/metagraph.sh

The index size was determined by taking into account all files that are needed

for a successful query. The file suffixes for each application are listed here:

• MetaGraph: .dbg, .dbg.weights, relaxed.row diff int brwt.annodbg

• Needle: IBF Data, IBF Level 0-14, IBF Levels.levels, IBF FPRs.fprs

• Reindeer: index.gz, matrix eqc.gz, matrix eqc info, matrix eqc position.gz.

https://github.com/seqan/needle/blob/master/utils/metagraph.sh
https://github.com/seqan/needle/blob/master/utils/metagraph.sh

	Introduction
	Alignment-free quantification
	Submers
	k-mers
	Strobemers
	Comparison of k-mers and strobemers

	Representative submers
	Modmers
	Minimizers
	Syncmers
	Universal hitting sets
	Minimum decycling sets
	Polar sets
	Prefix words
	Sigmer
	Fleximer
	Comparison of different methods
	Conclusion of the comparison

	Transcript quantification
	Overview of existing transcript quantification application
	Needle count
	Comparison of transcript quantification applications

	Indexing big data
	Bloom filter
	Colored de Bruijn graph
	Error handling
	Non-quantitative indices
	SeqOthello
	Mantis
	Bifrost
	MetaGraph
	Sequence Bloom Tree
	COBS and MetaProFi
	RAMBO
	PAC
	Raptor

	Quantitative indices
	Reindeer
	Gazelle
	Counting DBG

	Needle
	Workflow Needle
	IBF
	HIBF
	Counting IBF
	Implementation
	Normalization
	Dynamic update
	Parallelization

	Comparison of quantitative indices
	Accuracy
	Space and speed
	Conclusion

	Utilizing large collections of sequencing data
	Determining genes of interest
	Finding a newly annotated mouse transcript
	Data and building the Needle index
	Finding Xert in the original data
	Finding Xert in mouse randomly picked RNA-Seqs
	Conclusion

	Cancer signatures
	Data and building the Needle index
	Finding TNBC signature
	Finding NAT signature
	Conclusion

	Conclusion
	References
	Appendix
	Repositories
	Alignment-free quantification
	Submers
	Representative submers

	Indexing big data
	Overview of indices
	Space and Speed Analyses

