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Abstract 

This dissertation comprises original experimental work exploring the intermediate 

stages of the perception-action loop in the somatosensory domain. The stages 

correspond to the maintenance of working memory (WM) content, the goal-directed 

manipulation of the content, and the formation of memory-based decisions. 

Concurrently, the thesis addresses ongoing debates in cognitive neuroscience, 

specifically, the localization of the respective WM- and decision-making content. For 

both debates, the central issue rests with the extent of influence that experimental 

design has on the localization of the resulting representations.  

This dissertation consists of four empirical works which were designed to address 

these discussions. The works probe the localization of maintained and manipulated 

somatosensory WM content in humans using functional magnetic resonance imaging 

(fMRI) in combination with advanced multivariate analysis techniques. In the first study, 

we explored the WM maintenance of numerosities, an abstract quantity. By employing 

uncountable somatosensory stimuli, we were able to show that numerosities are 

maintained by frontal regions in a likely domain-general manner. Secondly, we asked 

how the manipulation of WM content would change the representational space 

underlying the content. Indeed, we found that WM representations in the intraparietal 

sulcus changed with the cognitive demands of the task. In the final two studies 

comprising this dissertation, we shifted the focus to the localization of the ensuing 

decision variable, the final WM stage before an action is performed. To this end we 

improved upon the standard frequency-discrimination task to decouple the decision 

variable from the sensory-motor features of the task. The third and fourth studies were 
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identical except for the motor output. In the third study, decisions were communicated 

via saccade and decision-content was identified in the frontal eye fields, whereas in the 

fourth, via button press and content was found in the premotor cortex. Therefore, we 

identified a dissociation with decision-specific information identified in motor-specific 

regions, providing evidence in favour of the Intentional Framework for perceptual 

decision making.  

Thus, the studies comprising this thesis were designed to provide insight into the 

intermediate stages of the somatosensory perception-action loop and associated 

debates. By taking advantage of modifications of experimental paradigms, advanced 

whole-brain data analysis techniques, and the extensive literature in the somatosensory 

domain, the dissertation provides evidence in favour of the distributed representation 

of WM content. The distribution of WM representations is not limited to either frontal 

or sensory regions. Indeed, the fronto-parietal network - specifically the intraparietal 

sulcus, inferior frontal gyrus, and the premotor cortex - is necessary for the successful 

performance of the intermediate stages of the perception-action loop. Therefore, the 

maintenance of WM content, the manipulation and maintenance of the resulting 

content, and the computation of the decision variable, all take place in a network 

consisting primarily of frontal and parietal regions with the specific distribution of WM 

content depending on the experimental paradigm. The dissertation concludes with a 

detailed exploration of the stages underlying each of the four empirical studies and 

discusses the implications of the results for the greater field of cognitive neuroscience. 
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Zusammenfassung 

Diese Dissertation befasst sich mit experimentellen Arbeiten zur Erforschung der Phasen 

der Wahrnehmungs-Aktions-Schleife im Bereich der Somatosensorik. Die Phasen 

entsprechen der Aufrechterhaltung von Arbeitsgedächtnisinhalten (WM), der 

zielgerichteten Manipulation der Inhalte und der Bildung gedächtnisbasierter 

Entscheidungen. Gleichzeitig greift die Arbeit aktuelle Debatten in der kognitiven 

Neurowissenschaft auf, insbesondere die Lokalisierung der jeweiligen WM- und 

Entscheidungsinhalte. Für beide Debatten steht die Frage im Mittelpunkt, inwieweit das 

experimentelle Design Einfluss auf die Lokalisierung der resultierenden 

Repräsentationen hat.  

Diese Dissertation besteht aus vier empirischen Arbeiten, die diese Diskussionen 

aufgreifen sollen. Die Arbeiten untersuchen die Lokalisierung von beibehaltenen und 

manipulierten somatosensorischen WM-Inhalten beim Menschen mit Hilfe der 

funktionellen Magnetresonanztomographie (fMRI) in Kombination mit fortgeschrittenen 

multivariaten Analyseverfahren. In der ersten Studie haben wir die WM-

Aufrechterhaltung von Zahlenwerten als einer abstrakten Größe untersucht. Durch den 

Einsatz von nicht zählbaren, somatosensorischen Reizen konnten wir zeigen, dass 

Zahlenwerte von frontalen Regionen auf eine wahrscheinlich domänenübergreifende 

Weise aufrechterhalten werden. Zweitens haben wir untersucht, wie die Manipulation 

von WM-Inhalten den Repräsentationsraum verändern würde, der den Inhalten 

zugrunde liegt. In der Tat haben wir herausgefunden, dass sich die WM-

Repräsentationen im intraparietalen Sulcus mit den kognitiven Anforderungen der 

Aufgabe veränderten. In den letzten beiden Studien dieser Dissertation haben wir den 
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Schwerpunkt auf die Lokalisierung der anschließenden Entscheidungsvariablen 

verlagert, der letzten WM-Phase vor der Ausführung einer Handlung. Zu diesem Zweck 

verbesserten wir die Standardaufgabe zur Frequenzdiskriminierung, um die 

Entscheidungsvariable von den sensorisch-motorischen Merkmalen der Aufgabe zu 

entkoppeln. Die dritte und vierte Studie sind bis auf den motorischen Output identisch. 

In der dritten Studie wurden die Entscheidungen über Sakkaden mitgeteilt und der 

Entscheidungsinhalt wurde in den frontalen Augenfeldern identifiziert, während in der 

vierten Studie die Entscheidungen über Tastendruck mitgeteilt wurden und der Inhalt im 

prämotorischen Kortex gefunden wurde. Wir haben daher eine Dissoziation festgestellt, 

bei der entscheidungsspezifische Informationen in motorspezifischen Regionen 

identifiziert wurden, was für das Intentional Framework für die perzeptuelle 

Entscheidungsfindung spricht.  

Die in dieser Arbeit durchgeführten Studien sollten also einen Einblick in die 

Phasen der somatosensorischen Wahrnehmungs-Aktions-Schleife und die damit 

verbundenen Debatten geben. Durch die Nutzung von Modifikationen experimenteller 

Paradigmen, fortschrittlicher Ganzhirn-Datenanalysetechniken und der umfangreichen 

Literatur im somatosensorischen Bereich liefert die Dissertation Belege für die verteilte 

Repräsentation von WM-Inhalten. Die Verteilung der WM-Repräsentationen ist weder 

auf frontale noch auf sensorische Regionen beschränkt. Tatsächlich ist das fronto-

parietale Netzwerk - insbesondere der intraparietale Sulcus, der inferiore frontale Gyrus 

und der prämotorische Kortex - für die erfolgreiche Ausführung der Zwischenstufen der 

Wahrnehmungs-Aktions-Schleife notwendig. Die Aufrechterhaltung von WM-Inhalten, 

die Manipulation und Aufrechterhaltung der resultierenden Inhalte und die Berechnung 

der Entscheidungsvariablen finden also alle in einem Netzwerk statt, das hauptsächlich 

aus frontalen und parietalen Regionen besteht, wobei die spezifische Verteilung der 

WM-Inhalte vom experimentellen Paradigma abhängt. Die Dissertation schließt mit 

einer detaillierten Untersuchung der Phasen, die jeder der vier empirischen Studien 

zugrunde liegen, und diskutiert die Implikationen der Ergebnisse für den größeren 

Bereich der kognitiven Neurowissenschaft. 
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1. Introduction 

The simplest neural network is the stimulus-response network wherein a sensory 

neuron directly impinges on a motor neuron. Spinal reflexes present a classic example of 

this simple system. A doctor’s reflex hammer to the knee activates a sensory neuron 

which activates the motor neuron downstream, causing the muscle to contract and the 

leg to raise. This stereotypical behaviour is extremely limited in that it occurs regardless 

of the current situation, previous experiences, or the individual’s current desires. If the 

hammer hits the sensory nerve in the knee, the leg will raise. The world, however, is a 

complicated dynamical system. As a result, any organism that can adapt its motor 

response to a stimulus based on the current situation, previous experiences, and their 

current goals has an increased chance of survival. Indeed, it has been suggested that the 

neocortex has evolved for exactly this purpose (Wolpert et al., 2011).  

The inclusion of intermediary neurons within the stimulus-response network 

endows the system with the ability to both select an appropriate response from an array 

of possibilities as well as the ability to remember. While the original stimulus may no 

longer be perceived by the organism, the intermediary neurons continue to pass 

information related to the stimulus, thereby maintaining a memory of the perceived 

stimulus. This information may be stored in long-term memory or kept for a short period 

of time until a decision is made and the appropriate motor plan has been selected and 

performed. This short-term, goal-oriented memory is called working memory (WM, 

Baddeley, 2010). Moreover, by increasing the number of neurons between the sensory 

and motor neurons, the range of possible motor responses to a specific stimulus 
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increases at an exponential rate. For the past several decades, cognitive neuroscientists 

have taken it upon themselves to understand and map the cortex’s complicated network 

of stimulus-response contingencies. Researchers have systematically studied the 

components of WM and have unified the various components through the concept of 

the perception-action or action-perception loop (Buzsáki, 2021).  

In the following sections of this introduction, I provide an overview of the stages 

of the perception-action loop, before exploring the frequency discrimination and 

Delayed-Match-To-Sample (DMTS) tasks and multivariate pattern analysis (MVPA) 

techniques in combination with functional magnetic resonance imagery (fMRI). The 

tasks, together with fMRI-MVPA, provide an ideal means for probing the intermediate 

representations of the perception-action loop. To this end, the novel experimental 

studies comprising this dissertation employed modifications of the tasks, in combination 

with fMRI-MVPA, to localize and manipulate the intermediate stages of the perception-

action loop in the somatosensory system. After the introduction, I summarize the main 

findings from the four empirical experiments which comprise the novel work in this 

dissertation. Finally, I conclude the dissertation by exploring the significance of the 

results within the established literature and contemplate the implications for the 

current understanding of the perception-action loop and the wider field of human 

cognitive neuroscience. 

1.1. The Perception-Action Loop 

It is the transformation of a perceived stimulus, through several intermediate 

representations, into an action, which underlies behaviours commonly associated with 

intelligence (D’Esposito & Postle, 2015). For example, during an oral exam, you need to 

(1) perceive the words spoken by the examiners, (2) remember and combine the 

individual words to form the question, (3) use your previous knowledge, experience, and 

current situation to understand and properly respond to the question, (4) decide on the 

correct answer, (5) before finally preparing and voicing your answer to the question. 

Indeed, WM acts as a bridge, spanning the gap between the perception of the initial 

sensory stimulus and the resulting motor output, and is therefore responsible for all 

intermediate stages between perception and action.  



 - 3 - 

Buzsáki, in his book “The brain from inside-out” (2021) summarizes the history of 

the perception-action loop, referring to it as an outside-in perspective, originating with 

Aristotle and having been expanded upon by David Hume. According to this outside-in 

perspective, all knowledge results from mapping cause-and-effect relationships with a 

focus on perception. Importantly, Buzsáki points out that this logic, which underlies 

Western philosophy, requires that WM act as a sort of internal homunculus which 

decides what to perceive, remember, and how to act. Instead, Buzsáki argues for an 

inverted action-focused, inside-out, view. By focusing on action instead of perception, a 

system can learn the mappings between an action and perception, thereby shifting the 

underlying mechanism from a homunculus to a learning rule. Thus, with an action-

focused interpretation of the perception-action loop, and human behaviour more 

generally, the brain, via intermediary WM representations, can experiment with and 

learn the consequences of various actions and their resulting effects on perception. As a 

result, the perception-action loop, with an inside-out focus, enables the evolution of 

complex behaviours without the need for the inclusion of an internal homunculus 

(Buzsáki, 2021). 

The term WM was proposed in 1960 by Miller, Galanter, and Pribram in their 

revolutionary book “Plans and Structure of Behavior”. Today, as nicely summarized by 

van Ede and Nobre (2023), WM is broadly understood as a collective term wherein 

internally directed selective attention is employed to perform dozens of actions 

including: protecting representations from decay and interference, reconfiguring neural 

codes, changing representational states, among others. It is this ability to reconfigure 

and manipulate stimulus representations that differentiates WM from other memory 

formats. Moreover, it is the maintenance of WM representations, their manipulation, 

and transformation into a decision, which is the central focus of this dissertation. In the 

following sections, the different WM stages of interest, and relevant background 

information, will be explored in more detail. 

1.1.1. Maintenance of Information in Working Memory 

The maintenance of information in WM refers to bridging the gap between the 

perception of the stimulus and eventual motor response. Returning to the oral exam 

example, maintenance refers to the ability to remember the individual words spoken by 
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the examiners for a sufficient amount of time such that the question can be understood 

and an answer prepared. Indeed, the maintenance of information in WM is the most 

basic, and may be considered, the most important function of WM (Nyberg & Eriksson, 

2016).  

Interestingly, long-before the concept of WM had been introduced, researchers 

had already begun to untangle the neural basis of WM maintenance (Marois, 2015). In 

the 1930s, researchers were attempting to ascribe a role to the prefrontal cortex (PFC). 

To this end, Jacobsen and colleagues bilaterally lesioned the PFC in non-human primates 

(NHPs) and revealed deficits in the delayed-response task (Jacobsen, 1935; Jacobsen et 

al., 1936). The delayed-response task is a staple in WM research and a large portion of 

the modern literature is a direct result of variations on this simple task. In the classic 

version of the task, a trial begins with the presentation of a stimulus, which is then 

removed for a short period of time, before a target stimulus is presented and 

participants indicate if the target matched the original stimulus. To perform the task, a 

representation of the original stimulus must be maintained in WM, bridging the gap 

between the presentation of the original and target stimuli. Thus, Jacobsen and 

colleagues demonstrated that the PFC is necessary for the WM maintenance of stimuli.  

Almost four decades later, two independent groups identified the supposed 

neural activity underlying WM maintenance. The groups described neurons in the lateral 

PFC of NHPs which exhibited sustained activity during the WM delay in the delayed-

response task (Fuster & Alexander, 1971; Kubota & Niki, 1971). Moreover, trials when 

the NHPs made a mistake were often associated with a lack of delay-activity in the PFC. 

Importantly, Goldman-Rakic (1995) later demonstrated that the sustained activity of PFC 

neurons was specific to the content of WM. Goldman-Rakic and colleagues revealed that 

PFC neurons possessed a stimulus-specific selectivity profile, meaning they would only 

exhibit delay-activity when a preferred stimulus or stimulus property was to-be-

remembered. As a result, the researchers concluded that these delay-active neurons in 

the PFC were the single-cell correlates of WM maintenance. However, delay-active 

neurons are not isolated to the PFC. In fact, delay-activity had also been described in 

other parts of the cortex (Chelazzi et al., 1998; Fuster & Jervey, 1981). Thus began the 

debate regarding where and how information is maintained in WM, a debate which 
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continues to this day and was heavily influenced by the results from Jacobsen, Fuster, 

and Goldman-Rakic.  

1.1.2. Goal-directed Manipulation of Working Memory Information  

Whereas the maintenance of WM information specifically refers to the storage of WM 

content for a short delay, the goal-directed manipulation of WM content can refer to a 

broad range of mechanisms. Generally, WM manipulation refers to a conscious, goal-

oriented change in the WM content and corresponding reconfiguration of the neural 

code (Veltman et al., 2003). Returning to the oral exam example, the examiners may ask 

you to perform some mental arithmetic, such as “1 + 2”. To answer the question, you 

will need to manipulate the information perceived (1, 2) to arrive at the correct 

response (3). As a brief tangent, the dynamic coding hypothesis of WM maintenance 

suggests that WM content in the PFC is maintained in a stable but dynamic neural 

representation (Stokes et al., 2013). Note that, according to this theory, the 

representational state of the neural code is changing whereas the representation 

remains stable. Thus, because the representation remains stable, dynamic coding does 

not constitute a form of WM manipulation. To summarize, maintenance refers to a 

stable WM representation with a potentially dynamic code, and manipulation refers to a 

change in the WM representation and code for a specific goal or purpose.  

 The manipulation of WM content inherently encompasses a wide variety of 

experimental paradigms. Classically, paradigms required participants to mentally 

reorder lists of stimuli (D’Esposito et al., 1999; Koenigs et al., 2009), compare stimuli 

with previously presented stimuli (n-back tests, Owen et al., 2005), rotate mental images 

(Shepard & Metzler, 1971), among many other tasks. Similar to results from the 

maintenance WM literature, the results from decades of research suggest that the 

frontal cortex, particularly the PFC, and the superior parietal cortex, are responsible for 

the goal-directed manipulation of WM content (Nyberg & Eriksson, 2016). Importantly, 

these studies often don’t consider the location of the WM content per se, but instead 

likely identify the top-down control systems which manipulate the WM content. 

 The goal-directed manipulation of WM content can be further understood to 

include the formation of a category or label (Seger & Miller, 2010). In these studies, 

participants are often asked to classify a stimulus according to a previously known or 
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newly learned rule (Freedman & Assad, 2016). Studies exploring the formation of a 

category label often distort the boundary between WM manipulation and the final WM 

stage in the perception-action loop, the formation of a decision. Indeed, some 

researchers have suggested a common mechanism underlying categorization and 

perceptual decision making (Freedman & Assad, 2011). Perceptual decision-making 

entails forming a decision, often based on WM content, and the localization of the 

resulting decision will be discussed in the following section of the dissertation. Thus, 

decision formation is itself a form of WM manipulation, in that it requires the 

modification of maintained WM representation for the completion of a specific goal.  

1.1.3. Memory-based Perceptual Decision Making 

Memory-based perceptual decision making refers to the final WM stage in the 

perception-action loop. Indeed, this stage corresponds to the point, after all relevant 

information has been collected and manipulated, when a final decision is formed. The 

decision enables an appropriate motor plan to be prepared and communicated by 

downstream regions. Returning to the oral exam example, once the question has been 

comprehended and the appropriate manipulations have been performed (1 + 2), a 

decision (3) has been reached and can be communicated. Where and how these 

decisions are formed has been a central neuroscientific and scholarly research topic 

more generally (see Glimcher, 2003 for a comprehensive historical review). 

Classically, signal detection experiments in combination with statistical decision 

theories such as Signal Detection Theory (Green & Swets, 1966; Macmillan & Creelman, 

2004) or Sequential Sampling Methods (Ratcliff et al., 2016), have been employed to 

probe perceptual decision making (Gold & Shadlen, 2001; Shadlen et al., 1996; Shadlen 

& Newsome, 1998). Theories of sequential sampling suggest that participants gain 

evidence in favour of a decision by repeatedly sampling the perceptual stimulus. Then, 

once sufficient evidence has been collected, a decision boundary is reached and a 

decision is formed (O’Connell et al., 2018; Ratcliff et al., 2016). The Random Dot Motion 

(RDM) task has proven to be particularly powerful in localizing decision-specific signals in 

the visual domain. In the task, participants are presented with randomly moving dots on 

a screen, some of which are moving in a coherent direction, and participants must 

identify the direction of motion. Importantly, the amount of coherent motion can be 
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varied independently of the motion direction, thereby enabling researchers to decouple 

the decision from the trial-wise sensory information (Parker & Newsome, 1998).  

Shadlen, Newsome, and colleagues, having substantial evidence for the middle 

temporal visual area (MT) to accumulate sensory evidence for the direction of motion in 

RDM tasks, proceeded to identify the locus of perceptual decision-making. Decisions in 

the RDM task were communicated by saccades to a pre-determined location. Thus, the 

researchers chose to focus their search for a perceptual decision-making region to 

regions already known to be important for the performance of saccades, specifically the 

lateral intraparietal area (LIP), the frontal eye fields (FEF), and the superior colliculus. 

When the sensory evidence favoured a saccade to a target within the recorded LIP 

neuron’s receptive field, Shadlen and Newsome identified a gradual increase in LIP 

neuronal firing rates during stimulus presentation which was maintained until the 

saccade, the downstream motor plan, was completed. In contrast, when the saccade 

was away from the receptive field, the firing rate decreased (Shadlen & Newsome, 1996; 

2001). The authors proposed that this systematic activity in LIP represented the 

accumulation of evidence in favour of a decision, as well as the formation of the decision 

itself, in the RDM task. 

Importantly, several features suggest that the activity patterns of LIP neurons 

represent the accumulation of sensory evidence in favour of a decision instead of merely 

motor preparation behaviour (Wutz et al., 2001). The change in neuronal firing rate 

scales with the trial-wise sensory coherence, which, the stereotypical motor preparation 

is independent of (Shadlen & Newsome, 1998; 2001). Moreover, in a follow-up study, 

the researchers allowed the NHPs to respond freely. Previously, the NHPs were only able 

to communicate their decision during a pre-defined decision period. Researchers aligned 

the trial-wise data according to the initiation of the saccade and found that the ramping 

in LIP continued to a specific criterion, independent of the trial-wise motion coherence, 

before a saccade was triggered (Roitman & Shadlen, 2002). Finally, quantitative 

modelling provides evidence for the sensory evidence, encoded in MT population firing 

rates (Mazurek et al., 2003), to be temporally integrated and represented by the 

average firing rate of LIP neurons (Shadlen & Newsome, 1996; Shadlen et al., 1998). 

Interestingly, similar decision-making behaviour has been identified in other oculomotor 
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regions such as the FEF (Ding & Gold, 2012; Hanes & Schall, 1996; Kim & Shadlen, 1999), 

and the superior colliculus (Horwitz & Newsome, 1999; Ratcliff et al., 2003). 

The combination of modelling and neurophysiological recordings has been 

critical for generating testable hypotheses regarding the neural networks and 

computations underlying memory-guided perceptual decision making (Hanks & 

Summerfield, 2016). Indeed, the identification of oculomotor regions’ involvement in 

evidence accumulation and decision-making in visual perceptual decision-making tasks 

has resulted in the so-called Intentional Framework for decision making (Cisek & 

Kalaska, 2010; Gold & Shadlen, 2007). The Intentional Framework states that the 

decision variable for a particular perceptual decision will be computed in regions 

upstream from the eventual motor effector. As per the RDM example with saccade 

decision-responses, oculomotor regions LIP and FEF integrate the temporal evidence 

from motion-direction sensitive region MT until a decision criterion is reached and the 

downstream saccade effectors can be engaged. Whether perceptual decisions are 

computed in a single, general decision-making region or whether decisions are formed 

in a task-relevant region, as suggested by the Intentional Framework, remains an open 

question.  

1.2. The Tasks: Frequency Discrimination & Delayed-Match-to-Sample 

A short historical detour, the frequency-discrimination task evolved from the simple 

sensory-discrimination task. The sensory-discrimination task was introduced by Vernon 

Mountcastle and colleagues (Lamotte & Mountcastle, 1975; Mountcastle et al., 1972; 

1990) to enable the differentiation and identification of neural correlates of the 

perception-action loop. The sensory-discrimination task was itself a modification of the 

classic delayed-response task wherein a stimulus is presented and then removed for a 

short period of time and participants must remember the stimulus during the delay to 

correctly complete the task (Jacobsen, 1935).  

In the frequency-discrimination task, Mountcastle and colleagues presented two 

sequential tactile stimuli vibrating at different frequencies to the index fingers of NHPs 

while recording neurophysiological data from several regions hypothesized to be 

involved in the perception and evaluation of somatosensory stimulation. The task 



 - 9 - 

required that the NHPs indicate whether a vibrotactile comparison frequency (f2) was 

higher or lower than a base frequency (f1). The task can be sub-divided into several 

individual components which are necessary for its successful completion: (1) NHPs must 

perceive the base stimulus f1, (2) encode and maintain f1 in WM, (3) perceive the 

comparison frequency f2, (4) form a decision by comparing f2 against the memory-trace 

of f1, before finally (5) communicating their decision via a motor response. One of 

Mountcastle’s students, Ranulfo Romo, used extensive variations of the frequency-

discrimination task to gradually decipher the somatosensory perception-action loop in 

NHPs (e.g., Romo et al., 1998; 1999; 2000; 2004; Romo & Salinas, 2003). As described by 

Romo, the vibrotactile variant of the sensory-discrimination task is ideal for identifying 

the neural correlates of sensory processing because (1) humans and NHPs perform 

similarly on the task, (2) the different stages of cognitive processing are spread out in 

time, and (3) the same neural populations are consistently activated by the vibrotactile 

stimulus (Romo et al., 2012).  

The original frequency-discrimination task was modified after an important 

observation was made by Romo and colleagues. Originally, the base frequency, f1, was 

held constant across trials within a run (LaMotte & Mountcastle, 1975; Mountcastle et 

al., 1990). Romo and colleagues realized that, if the base frequency didn’t change, the 

task could be performed without having to maintain f1 in WM. By performing additional 

follow-up experiments, they showed that the NHPs were not comparing f2 against f1 but 

simply classifying f2 as high or low without taking f1 into consideration. Romo and 

colleagues showed that, by changing f1 on each trial, NHPs could learn to correctly 

perform the vibrotactile discrimination task, as evidenced by close inspection of the 

experimental psychophysics (Hernández et al., 1997). As noted by the authors, no 

matter how well designed a task may seem, participants may develop alternative 

strategies to complete the task in an unexpected manner (Romo & de Lafuente, 2013). 

As a result of Romo and colleagues’ careful inspection of their experimental data, the 

vibrotactile discrimination task became, and remains, a powerful tool for the 

investigation of the neural correlates of the perception-action loop (Romo & de 

Lafuente, 2013). 

While Romo and colleagues have accumulated an invaluable and extensive 

literature on the neural mechanisms underlying the somatosensory frequency-
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discrimination task, a few issues with the experimental design remained. Firstly, with 

human neuroimaging data, it is not possible to dissociate the WM representation of the 

first stimulus (f1) from the original perceptual representation of f1. To address this issue, 

the paradigm was modified such that two separate sensory stimuli are sequentially 

presented and a retro-cue indicates which of the two stimuli should be encoded in WM 

(Christophel et al., 2012; Harrison & Tong, 2009; Lepsien et al., 2005; Oberauer & Kliegl, 

2001). Moreover, the task no longer requires a comparison of the two initially presented 

stimuli. Instead, participants decide whether the cued stimulus matches a target 

stimulus which is presented after the end of the WM delay period. This retro-cue variant 

of the sensory-discrimination task is commonly used in human WM research because it 

allows for the dissociation of the maintained WM content from neural processes 

occurring in parallel, such as perception and motor preparation. Researchers are 

additionally able to use the “to-be-forgotten” stimulus as a negative control in their 

analyses, thereby providing an experimental test of the specificity of their WM analyses.  

To summarize, the frequency discrimination and DMTS tasks were developed so 

that researchers could reliably differentiate and investigate the representations 

underlying the various stages of the perception-action loop. Importantly, by controlling 

the durations, onsets, and correlations between the different task stages, it is possible 

to decouple and probe the neural processes underlying the various stages of the 

perception-action loop. For this reason, all four empirical studies comprising this 

dissertation employed modifications of the classic task designs. In the following sections 

of this sub-chapter, I present relevant results from NHP studies. The relevant results 

from humans are described in the following sections. 

1.2.1. Maintenance of Information in Working Memory 

Romo and colleagues have employed the frequency-discrimination task, the precursor 

to the DMTS task, to investigate the neural basis of WM maintenance in the 

somatosensory domain. Following the literature and their detailed knowledge of the 

somatosensory perception-action loop pathway, the researchers decided to record 

neurophysiological data from the primary somatosensory cortex (S1), the secondary 

somatosensory cortex (S2), as well as frontal regions including the inferior convexity of 

the PFC – analogous to the dorsolateral prefrontal cortex in humans (dlPFC, Levy & 
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Goldman-Rakic, 2000), the ventral premotor cortex (vPMC), the dorsal premotor cortex 

(dPMC), the supplemental motor area (SMA), and the primary motor cortex (M1). Romo 

and colleagues have shown that the firing rate of neurons in S1 was only modulated by 

the stimulus during stimulus presentation. In contrast, all downstream regions: S2, PFC, 

vPMC, dPMC, SMA, and M1, demonstrated a more complicated response profile. The 

researchers found that all regions downstream from S1, including M1, were modulated 

by the first frequency and maintained the frequency-specific information in WM during 

the delay (Barak et al., 2010; Brody et al., 2003; Hernández et al., 2010; Jun et al., 2010; 

Machens et al., 2005; 2010). Moreover, using the region-specific neuronal latencies, the 

researchers were able to map the somatosensory processing pathway, beginning in 

contralateral S1 and continuing to bilateral S2, PFC, vPMC, and finally dPMC & SMA 

(Hernández et al., 2010). Thus, using the frequency-discrimination task, Romo and 

colleagues provided striking evidence for all frontal regions, as well as somatosensory 

and motor regions, to maintain vibrotactile frequency information in WM. 

1.2.2. Goal-directed Manipulation of Working Memory Information 

Expanding on their previous work, Romo and colleagues used a modification of the 

frequency-discrimination task design to explore the WM representation of vibrotactile 

categories (Rossi-Pool et al., 2016). In this study, researchers presented NHPs with two 

sequential stimuli comprising temporal patterns of electrical stimulation to the wrist. 

The NHPs needed to decide whether the two patterns were identical. The researchers 

recorded the neurophysiological activity from neurons in both contralateral S1 and the 

dPMC, a region which the researchers knew maintained WM representations of stimuli 

and hypothesized may encode more complicated WM dynamics as well (Hernández et 

al., 2010). Indeed, they found that, while firing rates in S1 were only modulated by the 

stimulus during stimulus presentation, the dPMC displayed a more sophisticated 

response profile. The dPMC firing rates were modulated by the specific trial type, such 

that it was possible to differentiate whether the stimuli were identical as well as the 

specific trial-wise ordering of the stimuli. This led the researchers to conclude that the 

WM information was manipulated and information relating to both the stimulus 

identities and trial type were maintained in the firing rates of dPMC neurons.  
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In the visual domain, Freedman and colleagues (2001) performed an important 

experiment on image categorization with NHPs. The researchers presented the 

participants with image morphs which had been manipulated so that they were a 

statistical mixture of a cat and dog. The NHPs were trained to decide which category, cat 

or dog, the image belonged to. Importantly, because the category-information in the 

image was independent of the category label, the researchers could differentiate 

stimulus features from the category label in the neurophysiological recordings. 

Freedman and colleagues identified category-specific information in the PFC. Ten years 

later, in two follow-up studies employing categorized directions of motion 

(Swaminathan & Freedman, 2012) and arbitrary groupings of visual stimuli (Fitzgerald et 

al., 2012), Freedman and colleagues found that the category-specific WM information 

was more pronounced in the posterior parietal cortex (PPC), specifically the LIP, than 

PFC neurons.  

The use of arbitrary groupings is especially significant. Arbitrary stimulus 

groupings do not employ feature-specific categorization rules but are instead taught to 

participants. Thus, the use of arbitrary groupings provides a means of exploring both the 

formation and maintenance of novel WM manipulation rules and category 

representations in WM, without relying on sensory features or previous knowledge. 

Moreover, in both follow-up studies, the same LIP neurons maintained information on 

both categories, motion direction and arbitrary groupings. Freedman and colleagues 

concluded that, not only is the category information identified in LIP unlikely to have 

originated in the PFC, as previously believed, but that LIP neurons are capable of 

learning new category information. Therefore, the researchers provided compelling 

evidence for LIP neurons to manipulate WM content, in this case form a category label, 

and then feed the manipulated content forward to the PFC (Swaminathan & Freedman, 

2012). 

1.2.3. Memory-based Perceptual Decision Making 

The decision in the frequency-discrimination task, the comparison of two frequencies, 

takes place after the second vibrotactile frequency (f2) has been presented. 

Interestingly, during presentation of the second stimulus, all downstream regions 

recorded by Romo and colleagues, including S2, frontal regions (PFC, vPMC, dPMC, 
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SMA), and M1, showed a multiplexed modulation of their firing rates which resulted 

from a combination of neurons modulated by f1 or f2, partially differentiated 

modulations by the two frequencies, as well as fully differentiated modulations of the 

neuronal firing rates (Romo & de Lafuente, 2013). Romo and colleagues suggested that 

the partially and fully differentiated neuronal modulations result from a subtraction 

operation where neurons with opposing response properties are contrasted. The result 

of this subtraction is evident in the modulation of the PMC firing rates which scale with 

the difference in frequency between f2 and f1 (Hernández et al., 2002; 2010; Romo & 

Salinas, 2003; Romo et al., 2004). Thus, the authors proposed that decisions in the 

vibrotactile frequency-discrimination task are made by subtracting the first frequency 

from the second (f2 – f1) and the resulting sign reflects the decision (higher -vs- lower). 

This was further evidenced by evaluating error trials where the neuronal activity in PMC 

and other frontal regions correlated with the decision, and not with the stimulus 

(Hernández et al., 2010).  

One major short-coming with the work completed by Romo and colleagues is 

their focus on the frontal cortex. This is in contrast to Shadlen and Newsome who, while 

employing the RDM task, had a wider cortical focus. As previously introduced, the RDM 

is the visual correlate of the tactile frequency-discrimination task in that visual stimuli of 

randomly moving dots are presented and participants must indicate, either the direction 

of the motion, or which of two stimuli has more coherent motion. In the RDM task, 

decisions were often communicated by saccades and Shadlen and Newsome identified a 

gradual increase of evidence for a specific decision in LIP neuronal firing rates which was 

maintained until the saccade was completed (Shadlen & Newsome, 1998; 2001). 

The Intentional Framework for perceptual decision making, which states that the 

decision variable for a particular memory-based decision will be in regions upstream 

from the eventual motor effector (Cisek & Kalaska, 2010; Gold & Shadlen, 2007), aligns 

well with results from both the RDM and frequency-discrimination tasks. As per the 

RDM example with saccade decision-responses, oculomotor regions LIP and FEF 

integrate the temporal evidence from motion-direction sensitive region MT until a 

decision criterion is reached and the downstream saccade effectors can be engaged 

(Shadlen & Newsome, 1996; 2001). Whereas Romo and colleagues employed manual 

responses in their frequency-discrimination tasks and identified memory-based decision 
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content in the PMC, a region upstream from manual motor-control regions such as M1 

(Romo & de Lafuente, 2013).  

1.3. Functional Magnetic Resonance Imaging & Multivariate Pattern Analysis 

Neurophysiological recordings, as used by Romo, Freedman, Gold, Shadlen, and their 

colleagues, are an incredibly powerful data set which enable conclusions on the spatial 

and temporal resolution level of single neurons and circuits to be drawn. At the same 

time, fMRI, which enables the mapping of specific cognitive functions to neuronal 

regions, was becoming more common and gaining in popularity. In contrast to 

neurophysiological data, fMRI data is much slower but allows the simultaneous non-

invasive recording of the entire brain, thereby providing a means to conduct 

neuroscientific research in healthy humans. Experiments with humans additionally 

benefit from a faster training period (days vs. months) as well as from a post-experiment 

debriefing session wherein participants describe, to the best of their abilities, what 

cognitive strategies they employed to complete the task. Furthermore, the simultaneous 

recording of whole-brain fMRI data facilitated a novel analysis technique known as 

multivariate pattern analysis (MVPA, also known as multi-voxel pattern analysis, Haxby, 

2012; Haxby et al., 2014). 

Standard, or univariate, fMRI data analysis treats each voxel in the brain as an 

isolated individual unit and tests whether the measured Blood-Oxygen-Level-Dependent 

(BOLD) signal in each voxel significantly varies with the experimental variables being 

tested (Friston et al., 1995). For example, whether there is an increased BOLD signal 

during the maintenance of a specific stimulus in WM. MVPA, in contrast, takes into 

consideration that voxels are part of an inter-dependent system and searches for 

patterns across the system of neighbouring voxels (Haynes & Rees, 2006; Tong & Pratte, 

2012). The idea stems from the assumption that the brain represents information 

according to a population coding method, which is inherently distributed in space 

(Pouget al., 2000). Distributed coding presumes that when a stimulus is presented, a 

subset of neurons in a population will fire in response. This subset of neurons is 

distributed in space and the pattern is detectable with MVPA, but may not be visible 

with univariate analysis pipelines (Haynes & Rees, 2006). Accordingly, an increased BOLD 
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response during WM does not mean that the area is maintaining WM content but may 

instead reflect ongoing processes which are required for WM, such as attention (Riggall 

& Postle, 2012). Indeed, fMRI in combination with MVPA (known as fMRI-MVPA) has 

proven itself to be a powerful technique for identifying and localization information 

maintained in the brain, even when no difference in BOLD signal is apparent (Haynes, 

2015). Thus, due to the powerful nature of the non-invasive analysis pipeline, studies 

employing fMRI-MVPA have been used to localize information at various stages of the 

perception-action loop. Consequently, fMRI-MVPA, in combination with modifications of 

the frequency discrimination and DMTS experimental paradigms, was used in all four 

empirical studies comprising this dissertation.  

1.3.1. Maintenance of Information in Working Memory 

Armed with a new and powerful data analysis technique, researchers returned to the 

DMTS task to localize maintained WM content using fMRI-MVPA. Following tradition in 

human cognitive neuroscience, researchers began by presenting visual stimuli to 

participants, then expanded to stimuli across all sensory modalities. In contrast to the 

majority of previous fMRI studies which had relied on univariate analysis methods, 

researchers employing fMRI-MVPA identified visual WM content in the early visual 

cortices (Christophel et al., 2012; Riggall & Postle, 2012). Expanding to other sensory 

modalities, WM content of vibrotactile stimuli was identified in the somatosensory 

cortices (Schmidt et al., 2017), and studies identified auditory WM content in auditory 

cortices (Uluç et al., 2018; Yu et al., 2021). Importantly, the observation that sensory 

WM content is maintained in regions essential for the initial perception of the sensory 

content features supported the idea of grounded cognition (Barsalou, 2008). Indeed, 

researchers suggested that sensory WM likely relies on cortical areas necessary for the 

perceptual processing of the stimuli, culminating in the feature-specific memory stores 

theory of WM (Pasternak & Greenlee, 2005). Both grounded cognition and feature-

specific memory stores fit well with the influential multicomponent model of WM 

proposed by Baddeley and Hitch (1974). 

The original multicomponent model of WM consisted of a visuospatial sketchpad 

and a phonological loop, each able to maintain specific content, visuospatial or verbal, 

respectively, in WM, as well as a central executive. The model was later updated to 



 - 16 - 

include an episodic buffer for maintaining episodic memories in WM (Baddeley, 2000). 

Baddeley and Hitch proposed that the central executive selected and coordinated what 

information entered the various memory stores, which acted as slaves of the central 

executive (Baddeley & Hitch, 1974). The Baddeley and Hitch multicomponent model of 

WM has been incredibly influential in WM research and there have been ongoing efforts 

to discover and localize the underlying neural implementation of the various model 

components (Andrade, 2002).  

In accordance with the Baddeley and Hitch model, the feature-specific memory 

stores theory of WM, and later, the Sensory-Recruitment theory of WM (D’Esposito, 

2007; D’Esposito & Postle, 2015), suggest that WM is not a unitary system localized in 

the PFC but instead results from the combined activity of a network of brain regions. The 

WM content is stored in sensory regions and the PFC acts as a control mechanism, 

analogous to the central executive (Awh & Jonides, 2001; D’Esposito, 2007; Jonides et 

al., 2005; Postle, 2006). Christophel and colleagues (2017) summarized the plethora of 

results from WM studies, from both the neurophysiological and fMRI-MVPA fields, 

exploring the maintenance of content-specific information in WM. The resulting maps 

for the neurophysiological and human data are surprisingly concurrent and provide 

strong evidence for the wide-spread maintenance of WM content across the cortex, 

including the PFC and PPC. Interestingly, studies employing more abstract stimuli, such 

as language characters (Corrreia et al., 2014; Yan et al., 2021), numerosity (Nieder et al., 

2002; Nieder, 2012; 2016), and analogue properties (Spitzer et al., 2014), have identified 

WM content in a broad network including the PFC. The results suggest that the more 

complicated or abstract the stimulus, the more wide-spread the distribution of WM 

content and involvement of higher-order brain regions, particularly the PFC and PPC 

(Christophel et al., 2017).  

Finally, there are also researchers who argue that only the PFC is capable of 

maintaining WM content (Constantinidis et al., 2018), or only higher-order brain regions 

such as the PFC and PPC (Xu, 2017; Xu, 2018). The researchers contend that sensory 

regions are not able to protect WM representations from distractors and that the 

activity in sensory regions likely reflects feedback mechanisms from the PFC and PPC 

(Xu, 2017). Moreover, proponents of these theories argue that the various alternative 

explanations for WM fail to explain the experimental results (Constantinidis et al., 2018). 
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As a result, the proponents argue that WM content resides in regions which have 

evolved specifically for the purpose of maintaining information in a stable and robust 

manner, such as the PFC and PPC (Haller et al., 2018). The debate regarding the role of 

sensory regions in WM, and the localization of WM content generally, is ongoing. As a 

result, several camps have formed: those arguing in favour of representations in sensory 

cortices (Scimeca et al., 2018), those in favour of an intermediate resolution with 

distributed WM representations across both sensory and higher-order regions 

(Christophel et al., 2017), and those in favour of higher-order only representations of 

WM content (Constantinidis et al., 2018; Xu, 2018).  

One means for addressing this debate is to explore the maintenance of abstract 

numerosities in WM. As with all stimuli, numerosities are initially perceived bound to a 

set of sensory features, for example, a number of dots presented on a screen will have 

visual (location, size, colour, etc.) and verbal (number, etc.) features. However, by 

engaging the approximate number system (ANS) in combination with a clever task 

design, it is possible to extract the numerosity estimate away from the sensory features 

and thereby explore the grounding of WM content in sensory regions, when the 

features are no longer bound to the content. 

In WM, a fronto-parietal network comprising the PFC and intraparietal sulcus 

(IPS) has been shown to display numerosity-selective activity (Jacob et al., 2018, Nieder, 

2012). Moreover, evidence in humans has found that beta-band activity in the right PFC 

was modulated by numerosity (Spitzer et al., 2014). Thus, Spitzer and colleagues have 

provided evidence for the maintenance of abstract numerosity WM content in the PFC, 

however issues with localizing electrophysiological (EEG) signals, as well as the 

possibility of additional, distributed numerosity-related WM representations, makes the 

maintenance of numerosity WM content an attractive avenue for exploration. Thus, the 

first study comprising this dissertation employs a somatosensory DMTS task, in 

combination with an fMRI-MVPA analysis pipeline, to localize maintained WM 

representations of numerosities with the goal of addressing the debate surrounding the 

localization of maintained WM content. 
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1.3.2. Goal-directed Manipulation of Working Memory Information 

As suggested by the Sensory-Recruitment theory of WM (D’Esposito, 2007; D’Esposito & 

Postle, 2015), manipulated WM content is hypothesized to be maintained in a grounded 

fashion, meaning in regions responsible for the perception of the content features. In 

contrast, previous work analysing univariate fMRI results had identified the PFC and PPC 

as responsible for the manipulation of WM content (Nyberg & Eriksson, 2016). However, 

it is unclear whether the activity identified relates to the manipulated WM content per 

se, or the mechanism by which the WM content is manipulated. Moreover, it is difficult 

to determine with certainty whether the manipulated WM content is truly independent 

from the presented stimulus and associated sensory features with human neuroimaging 

data. Therefore, to draw conclusive inferences regarding the nature of manipulated WM 

content, it is necessary to divorce the content from the underlying perceptual and 

sensory features. 

Several methods have been implemented to prevent any contamination of 

perceptual activity into WM analyses. Some researchers employ a perceptual mask, 

consisting of a noisy stimulus, presented after the stimulus-of-interest has been 

removed, in an attempt to overwhelm the sensory cortex and erase any perceptual 

residues from the stimulus-of-interest (Christophel et al., 2012; Schmidt et al., 2017; 

Uluç et al., 2018). Another means is to abstract the desired WM representation away 

from the sensory features, either via categorization or arbitrary grouping (Seger & 

Miller, 2010). 

A pivotal study by Lee, Kravitz, and Baker (2013) employed experimental context 

to dissociate the involvement of various brain regions in human WM. The experiment 

consisted of separate blocks of trials where participants were asked to encode either the 

visual features of an object or the object as a whole. The researchers found a clear 

dissociation between the blocks. On trials where the visual features were encoded in 

WM, the content was identified in visual cortices, whereas on object-specific trials, the 

WM content was additionally found in the lateral PFC. This study provided an important 

clue as to how experimental manipulation can further elucidate the regions involved in 

WM manipulation, and provided evidence for the maintenance of category-specific WM 

content in the PFC. However, the use of object categories inherently bound the WM 

content to the stimulus features. As previously discussed, arbitrary stimulus groupings, 
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which do not employ feature-specific categorization rules but are instead taught to 

participants, provide a means of exploring the formation and maintenance of novel 

group representations in WM without relying on sensory features (Seger & Miller, 2010).  

 Expanding on the study by Lee, Kravitz, and Baker (2013), the inclusion of 

separate experimental contexts provides an opportunity to explore, not only the 

differing localization of WM content across contexts, but also the representational 

nature of the WM content. Indeed, one limitation of fMRI data is the lack of information 

regarding the underlying neural code. However, by employing novel analysis methods 

such as Representational Similarity Analysis (Kriegeskorte et al., 2008) or cross-validated 

MANOVAs (cvMANOVA, Allefeld & Haynes, 2014), it is possible to probe the underlying 

neural code of WM with non-invasive human neuroimaging data. Importantly, these 

methods provide a means to begin answering questions regarding the relationship 

between, and purpose of, the posited distributed WM representations (Christophel et 

al., 2017). 

To summarize, the use of arbitrary groupings and separate experimental 

contexts provides a means of both exploring the localization of manipulated WM 

content as well as providing insight into the representational nature of WM content 

across contexts. The second study in this dissertation addresses the question of whether 

manipulated WM content is bound to the sensory cortices, or whether there is sensory-

independent WM content which is maintained in higher-order regions, such as the PFC. 

Indeed, my co-authors and I employed separate experimental blocks wherein 

participants were instructed to maintain either the individual stimulus or its arbitrarily 

defined group in combination with advanced fMRI-cvMANOVA data analysis techniques. 

With this experimental design and analysis pipeline, we were able to dissociate the WM 

content from the underlying physical features, and localize the abstracted, manipulated 

WM content across contexts.  

1.3.3. Memory-based Perceptual Decision Making 

The first study to investigate human vibrotactile decision making with fMRI reported a 

broad decision-making network consisting of prefrontal, posterior parietal, and 

sensorimotor regions (Preuschhof et al., 2006). Moreover, when the task difficulty was 

modulated, Pleger and colleagues (2006), found that regions in the left dlPFC, anterior 
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cingulate gyrus, and insula were modulated by the difficulty of the vibrotactile decisions. 

The dlPFC (Heekeren et al., 2004; 2006), inferior frontal gyrus (IFG, Liu & Pleskac, 2011; 

Filimon et al., 2013), and insula (Ho et al., 2009; Liu & Pleskac, 2011) have all been 

shown to be involved in perceptual decision-making in the visual domain. Indeed, results 

from human neuroimaging studies have suggested that the frontal and parietal regions 

act as domain-general evidence accumulation mechanisms (Heekeren et al., 2006; Ho et 

al., 2009; O’Connell et al., 2012). Unfortunately, due to the sluggish nature of the BOLD 

response, it is difficult to determine the specific role performed, or mechanism 

implemented, by any specific region (Mulder et al., 2014). 

With EEG data, the faster timescale allows a more fine-tuned evaluation of the 

ongoing processes. Thereby permitting conclusions regarding the specific mechanisms 

underlying perceptual decision-making in humans to be drawn. Herding and colleagues 

found that the differential power of oscillations in the upper beta band reflected 

subjective perceptual choice (Herding et al., 2016; 2017). Moreover, in line with the 

Intentional Framework for perceptual decision-making (Cisek & Kalaska, 2010; Gold & 

Shadlen, 2007), Herding and colleagues identified a double dissociation: the SMA as the 

most likely source of the beta-band modulation when manual responses were employed 

(2016), and the FEF for saccadic responses (2017).  

Importantly, most previous work exploring memory-based perceptual decision 

making in the vibrotactile frequency-discrimination task suffers from two issues with 

their experimental paradigms. Firstly, most previous work employed paradigms wherein 

the decision was fixed with respect to the presentation order of the stimuli. The 

paradigms required that f2 act as comparison stimulus against f1, the reference 

stimulus. This creates an issue similar to that previously identified by Romo and 

colleagues wherein they realized that, by holding f1 constant across a trial block, NHPs 

could perform the task without having to maintain f1 in WM (Romo & de Lafuente, 

2013). By employing a fixed reference and comparison stimulus ordering, the decision is 

inherently bound to the presentation order of the stimuli. Thus, “higher” decisions will 

always be bound to a trial-wise increase in stimulus frequency and accordingly, “lower” 

is bound to a decrease in stimulus frequency. 

Secondly, in most previous studies, both human and NHP participants had 

foreknowledge of the motor action required to communicate their decision. Thus, once 
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the participant had formed their decision after the presentation of the second stimulus, 

they could immediately prepare the specific motor response because they knew that, 

for example, a saccade to the left or left button press indicated a decision of “higher”. 

This fixed mapping between the decision and the motor response allowed the 

participant to prepare a motor response directly after having formed a decision. Thus, it 

is plausible that the results from previous frequency discrimination studies have not 

identified decisions per se, but a multiplexing of decision-related signals together with 

sensorimotor components (Park et al., 2014).  

Finally, to my knowledge, the final two studies comprising this dissertation are 

the only studies which have employed fMRI-MVPA to explore memory-based perceptual 

decision making. In both studies we directly addressed the above-mentioned issues with 

the frequency-discrimination task experimental design. Specifically, we ensure that the 

reference and comparison frequency orderings are balanced and prevent the 

preparation of a motor plan. Furthermore, the studies provide a direct investigation of 

the Intentional Framework (Cisek & Kalaska, 2010; Gold & Shadlen, 2007). To this end, 

the studies were designed such that they were identical in nature other than the 

response modality: in the first study, participants respond via saccade whereas in the 

second, they respond via button press. Therefore, the final two studies of this 

dissertation provide a well-controlled analysis of the Intentional Framework for 

perceptual decision making in the somatosensory domain. 

1.4. Aim of the Dissertation 

This dissertation aims to explore the intermediate stages of the perception-action loop 

in the somatosensory domain. The stages correspond to the maintenance of WM 

content, the goal-directed manipulation of the content, and the formation of a decision 

based on the content. Concurrently, the dissertation addresses ongoing debates in 

cognitive neuroscience. Specifically, the localization of WM- and decision-making 

content. For both debates, the central issue rests with the extent of influence that the 

experimental design has on the resulting neural computations. For WM maintenance, 

the Sensory-Recruitment theory (D’Esposito, 2007; D’Esposito & Postle, 2015) says that 

localization depends on the stimulus features, whereas the opposing camp argues for all 
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content to be maintained in higher-order regions such as the PFC and PPC 

(Constantinidis et al., 2018; Xu, 2018). Furthermore, in the decision-making field, the 

Intentional Framework says that the localization of the decision variable depends on the 

motor output (Gold & Shadlen, 2007; Cisek & Kalaska, 2010), whereas the other side 

argues for a domain-general decision variable that is independent of experimental 

features (Heekeren et al., 2006; Ho et al., 2009; O’Connell et al., 2012).  

This dissertation consists of four original experimental works which were 

designed to address these ongoing discussions. The works probe the localization of 

maintained and manipulated somatosensory WM content in humans using fMRI in 

combination with advanced multivariate analysis techniques. Additionally, all four 

studies make use of a modified somatosensory stimulus discrimination paradigm. After 

the WM and decision delay periods, participants were asked to respond to a target 

stimulus. This is significant because, during the delays, participants were unaware of 

their post-target motor decision and could not form a motor plan. Therefore, by 

analysing the delay-period BOLD activity, we were able to disentangle WM content from 

perception and motor variables to localize brain regions maintaining somatosensory 

WM content. Correspondingly, the decision variables are additionally not corrupted by 

WM content. 

In the first study, we explored how the maintenance of an abstract quantity, such 

as numerosity, would be distributed in the brain. To this end, participants were 

presented an uncountable sequence of tactile pulses to the left median nerve and asked 

to estimate the number of pulses. Importantly, participants could not perform the task 

without having extracted the number because the target stimulus did not match the 

cued stimulus in any other feature. Thus, with this first study, we explored how 

maintaining numerosity content in WM would differ from simple vibrotactile 

somatosensory stimuli and whether numerosity content is maintained in a modality-

specific or general manner.  

In the second study, we asked whether the manipulation of WM content would 

affect the underlying representational code, an ability known as adaptive coding 

(Duncan, 2001). To this end, participants were taught arbitrary groupings of patterns of 

tactile stimuli and asked to maintain either the presented stimulus or the stimulus’ 

group in WM. In this study, we were interested in identifying how the WM 
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representation changed across experimental conditions and whether any region would 

modify their representational space in accordance with experimental demands.  

In the final two studies comprising this dissertation, we shifted the focus from 

the localization of WM content to the localization of the ensuing decision variable. As 

suggested by the Intentional Framework (Cisek & Kalaska, 2010; Gold & Shadlen, 2007), 

the localization of the decision variable should depend on the specific experimental 

context and manipulations. Thus, we modified the classic paradigm employed by Romo 

and colleagues to ensure that participants maintained a decision during the decision 

period which was not corrupted by trial-specific conditions such as the stimulus ordering 

or motor decisions. To this end, we performed two identical studies which only differed 

in the means of communication. In both studies, participants were presented with, and 

asked to compare, two sequential vibrotactile frequency stimulations (f1 and f2). In the 

third study, participants communicated their decisions via saccades, whereas in the 

fourth, manual button presses were recorded. Thus, if memory-based perceptual 

decision making adheres to the Intentional Framework, the localization of the decision 

variable should differ between the two studies. 

To conclude, the studies comprising this dissertation were designed to provide 

insight into the intermediate stages of the somatosensory perception-action loop. 

Furthermore, by taking advantage of modifications of classic experimental paradigms, 

advanced whole-brain data analysis techniques, and the extensive literature in the 

somatosensory domain, the studies address ongoing debates regarding the underlying 

nature of WM and decision-making. 

  



 - 24 - 

  

2. Summary of the Empirical Studies 

In this section, I summarize the four empirical studies which comprise the novel work of 

this dissertation. All four studies explore the localization of task-relevant 

representations using variations of the frequency discrimination and DMTS experimental 

paradigms together with fMRI-MVPA data analysis techniques. Moreover, all four 

studies aim to expand beyond the simple, standard paradigms and instead explore how 

features of the experimental paradigm influence the maintenance and localization of the 

resulting task-relevant representations.  

2.1. Parametric Representation of Tactile Numerosity in Working Memory 

WM studies in humans and NHPs employing vibrotactile stimuli have provided initial 

evidence for the right lateral PFC to play a central role in maintaining magnitudes or 

quantities of a sensory stimulus, specifically the frequency (Romo et al., 1999; Schmidt 

et al., 2017; Uluc et al., 2018; Wu et al., 2018). Vibrotactile stimuli, wherein a specific 

frequency is presented and encoded, can be construed as an abstract quantity which 

must be extracted from the sensory stimulus. In a similar vein, the estimation of 

magnitudes or numerosities is also an abstract quantity which is hypothesized to be 

processed by the ANS.  

The ANS provides a quick estimate of numerical quantities such as size, length, 

amount, etc. without relying on symbols or language and has been shown to exist in 

both humans and other animals (Dehaene et al., 1992; Spitzer et al., 2014). The ANS is 

employed when there is insufficient time to count the stimulus, given that the value in 
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question is larger than the subitizing threshold (Kaufman et al., 1949). Below this 

threshold, participants are able to determine an exact amount without effort in a very 

short period of time. This is in contrast to counting or algebraic operations which rely on 

language and symbolic representations of precise numbers. The estimation process 

employed by the ANS is hypothesized to resemble the perception of a continuous 

magnitude (e.g., frequency, Nieder & Dehaene, 2009; Piazza et al., 2004; Spitzer et al., 

2014). Extensive literature on the function of the ANS in perception has been amassed 

and the consensus suggests a frontoparietal network, comprising the right ventrolateral 

PFC (vlPFC) and IPS in the PPC, underpins the ANS (Cantlon et al., 2006; 2009; Dehaene 

et al., 2004; Jacob & Nieder, 2009; Knops & Wilmes, 2014; Nieder, 2012; 2016; Piazza et 

al., 2004; 2007).  

Although the ANS has been extensively investigated, only a few studies have 

focused on the mental representation of remembered numerosity estimates in WM. 

Specifically, the mechanisms underlying estimated numerosity in WM are unclear. Thus, 

in the first study of this dissertation, we aimed to determine the extent to which the 

estimated approximation of numerosities would be maintained in a manner similar to 

the numerosities extracted in the visual domain. Moreover, we wanted to explore to 

what extent the pattern of maintained numerosity information would overlap with 

other abstract WM content, such as frequencies, and whether the content is grounded 

in sensory cortex. Thus, we hypothesized that, in line with the parametric vibrotactile 

literature (Nieder, 2016; Spitzer et al., 2014; Uluç et al., 2018; Wu et al., 2018), we 

would identify numerosity-specific WM content in the right PFC. 

In the present fMRI-MVPA study, we employed a DMTS paradigm where 

participants were required to match numerosity targets. To this end, we defined four 

numerosity stimuli which consisted of temporal patterns of electrical stimulation 

presented to the left medial nerve. Note that the number of pulses corresponded to the 

stimulus numerosity (7, 9, 11, or 13). The pulse duration and repetition rate were 

chosen such that participants were able to perceive each individual pulse instead of the 

pulses blurring into a single sensation, and the numerosities were large and presented 

quickly enough to prevent participants from counting. Moreover, to ensure that 

participants extracted the numerosity and not the spectral pattern from the stimulus, 

four alternative stimuli were created for each numerosity and employed as targets. Each 
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alternative consisted of a different duration and pattern of stimulation. Thus, to 

correctly identify the target, participants needed to extract the numerosity from the 

stimulus, encode the numerosity in WM, and use this information to identify the 

corresponding target.  

For all thirty-eight participants, six runs of fMRI data were collected. The data 

were analysed using a searchlight multivariate support vector regression analysis (SVR). 

In this pipeline, a searchlight travels through the brain and explores whether, in each 

searchlight, the WM representations of the four numerosities follow a linear ordering, as 

would be expected if the memoranda were encoded as ordinal numbers. We anticipated 

that, the larger the difference in ordinal 

numbering, the more different the WM 

representations. 

The results of the multivariate SVR 

analysis are shown in Figure 1. The analysis 

identified numerosity-specific WM information in 

the left PMC, left MFG, left SFG extending into 

bilateral SMAs, right SFG extending to the right 

frontal pole, and the right MFG extending into 

the pars triangularis of the right IFG. The results 

provide further evidence for the numerosity-

selective (Nieder, 2016) and parametric stimulus 

maintenance properties of the PFC (Romo et al., 

1999; Schmidt et al., 2017; Uluc et al., 2018; Wu 

et al., 2018). Moreover, we additionally 

identified members of the well-known task-

positive network: MFG, SMA, PMC (Fox et al., 

2005). This network is commonly involved in the 

attention-focused completion of tasks and 

regions belonging to the network have been 

shown to maintain a wide variety of WM-content 

(Christophel et al., 2017).  

Figure 1: Brain regions coding 
information for memorized estimated 
numerosities. The figure was originally 
published in Uluç et al., 2020, available 
under CC BY 4.0 

pFWE-cluster < 0.05 
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Therefore, the first empirical study of the dissertation demonstrated that, similar 

to other modalities, WM numerosity representations abstracted from tactile stimulation 

are also maintained in a distributed network spanning bilateral frontal cortices, and 

specifically the right PFC. This finding provides evidence in support of the hypothesis 

that the ANS, located in the right IFG (Nieder, 2016), is capable of maintaining 

numerosity WM content in a likely modality- and format-independent manner. 

2.2. Intraparietal Sulcus Maintains Working Memory Representations of 
Somatosensory Categories in an Adaptive, Context-dependent Manner 

In the second study comprising this dissertation, we explored the influence of task 

demands on the localization of manipulated WM representations. Specifically, how task 

demands can manipulate and modify the representational space underlying WM 

content. We were motivated by the work of Freedman and colleagues (2001; Fitzgerald 

et al., 2011; 2012; Freedman & Assad, 2016) who identified the neural signatures of 

visual categorical and arbitrary representations in PFC and LIP neurons, and Rossi-Pool 

and colleagues (2016) who identified tactile categorical-specific representations in the 

dPMC. Extending on these studies, and inspired by the Lee, Kravitz, and Baker (2013) 

task design, we designed a DMTS paradigm which enabled the dissociation of categorical 

labels from the underlying changes in stimulus features. This dissociation enabled 

conclusions regarding the location of stimulus and manipulated categorical WM 

information to be drawn.  

To this end, we trained participants to form arbitrary groups of stimuli. The use 

of arbitrary groupings is significant because, while neurophysiological data enables the 

differentiation between stimulus-specific and category-specific neural information, the 

difference is more nuanced with fMRI data. Thus, we employed arbitrary groupings so 

that the groups would be independent from underlying stimulus features (Seger & 

Miller, 2010). Based on previous results (Fitzgerald et al., 2011; Fitzgerald et al., 2012; 

Freedman & Assad, 2016; Freedman et al., 2001; Rossi-Pool et al., 2016) we 

hypothesized that the manipulated group WM representations would be identified in 

the dPMC and IPS – the human LIP homologue (Grefkes & Fink, 2005). 
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To this end, we designed four stimuli inspired by those employed by Rossi-Pool 

and colleagues (2016). The stimuli, similar to those used in the first study, consisted of 

temporal patterns of bursts of electrical stimulation which were applied to the left 

medial nerve. The stimuli were identical for all participants and were chosen such that 

they were equally differentiable and recognizable, according to preliminary testing data. 

Four possible groupings of four stimuli exist, and participants were randomly assigned a 

grouping. Participants were trained on their specific grouping during a training session. 

After ensuring that participants had learned the groupings, four experimental runs of 

fMRI data were collected for each participant, with each run consisting of two 

experimental blocks: stimulus trials, and group trials. In the stimulus block, participants 

performed a standard DMTS trial in which they were asked, via retro-cue, to encode a 

presented stimulus and compare the resulting WM representation of the stimulus to a 

target. In the group block of trials, participants performed a so-called delayed-match-to-

group task wherein they were instructed to encode both the cued stimulus together 

with its group member, and decide if the target was either of the encoded-group 

members.  

Importantly, the resulting decision and motor outputs were additionally 

decoupled from the WM content. To this end, after the presentation of the target 

stimulus, participants were presented with two coloured circles. Each colour 

represented a decision which participants had been assigned. Moreover, the location of 

the coloured circles changed pseudorandomly on each trial and participants had to 

respond by choosing the location of the relevant colour. For example, if the participant 

was told to choose blue for correct and yellow for incorrect targets, they would first 

have to decide if the correct target was presented, locate the representative colour, and 

choose the motor output which corresponded to the location of the colour (left or right 

button press). Thus, it was not possible for participants to prepare a decision or motor 

plan during the WM delay. 

In total, eight blocks of experimental trials, four of each condition, were collected 

from 36 participants. The fMRI data was analysed using a searchlight cross-validated 

MANOVA approach (Allefeld, 2016) which, unlike other MVPA methods, enables the 

evaluation of interaction analyses with multivariate data. The cvMANOVA results in a 

pattern distinctness value (Ds) which directly estimates the amount of multivariate 
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variance accounted for by the contrast. Thus, the Ds value indicates the dissimilarity of 

the WM representations. The results of the analyses are shown in Figure 2. In a first 

step, we identified condition-general stimulus-specific WM representations by 

performing a conjunction analysis across the two experimental conditions. This analysis 

identified stimulus-specific WM content in the left IFG and superior parietal lobule (blue 

regions in Figure 2A). Secondly, using an interaction analysis across experimental 

conditions, we demonstrated that the WM representations in the left IPS changed with 

changing task requirements (yellow regions in Figure 2A). The dPMC (referred to as PMd 

in the figure) did not reach significance but was included for completeness due to our 

strong a priori expectations.  

Our interaction analysis identified a manipulation of the WM representations 

across experimental conditions (Figure 2B). The IPS represented the group members 

more similarly in the group condition (smaller Ds) than in the stimulus condition (larger 

Ds). Importantly, the analysis was controlled to ensure that, in both conditions, the 

same stimuli were contrasted. Thus, the results could not be attributed to differences in 

stimulus features. The dPMC, as shown in Figure 2B, did not show a statistical difference 

between the conditions.  

To conclude, we provided novel evidence for the adaptive nature of 

somatosensory WM representations in the IPS. Importantly, we demonstrated 

Figure 2: Neuroimaging cvMANOVA results. A. Colour-bars indicated respective voxel-wise T-statistic 
values. B. Error bars indicate standard error of the mean. The figure was originally published in Velenosi et 
al., 2020, available under CC BY 4.0 
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conclusively that the WM content maintained in the IPS was manipulated in accordance 

with the specific cognitive demands of the task. 

2.3. Decoding Vibrotactile Choice Independent of Stimulus Order and Saccade 
Selection During Sequential Comparisons  

In the previous study (Velenosi et al., 2020), we revealed that the parietal cortex 

adaptively maintains somatosensory WM content according to the context of the 

cognitive task demands. Interestingly, we did not identify any group-specific WM 

representations in the left dPMC, as had been previously shown by Rossi-Pool and 

colleagues (2016). In the discussion section of the publication, we hypothesized that this 

was due to our having successfully decoupled the decision and motor output variables 

from the WM content. Thus, we hypothesized, that due to the successful decoupling, we 

identified the stimulus and context-modulated WM content in WM-specific regions and 

not in the dPMC, a region involved in the preparation of motor plans (Nakayama et al., 

2008; Yamagata et al., 2009; Yamagata et al., 2012). To further explore this hypothesis, 

the final two studies comprising this dissertation investigated the localization of 

memory-guided decision outcome variables in relation to the upcoming motor plan. We 

hypothesized that, in agreement with the Intentional Framework of decision-making 

(Cisek & Kalaska, 2010; Gold & Shadlen, 2007), the decision variable would be localized 

in brain regions which are required for creating and communicating the resulting motor 

decision.  

To this end, we returned to the classic vibrotactile frequency decision making 

task. Previous studies using neurophysiological recordings in NHPs and EEG in humans 

found strong evidence for the perceptual choice to be encoded in a sensorimotor 

network spanning S2, PFC, and PMC (Haegens et al., 2011; Herding et al., 2016; 2017). 

However, we identified two confounds with the classic version of the experimental 

paradigm. These confounds resulted in the perceptual decisions being inherently 

coupled to the sensory and motor aspects of the task and thereby bring into question 

the validity of the literature results. Thus, in an effort to reaffirm the literature, we 

included two modifications to the classic paradigm to control for the confounds.  
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In the standard vibrotactile frequency decision-making task, participants decide 

whether the second frequency is higher or lower than the first frequency (f2 > or < f1). 

Thus, the decision is inherently tied to the ordering of the stimulus frequencies with a 

“higher” decision tied to increasing frequencies and “lower” with decreasing. To remove 

this dependency, we included a rule condition at the start of each trial which instructed 

participants which stimulus, the first or the second, should be used as the base 

frequency and which as the comparison. Thus, in half of the trials, participants would 

contrast the first stimulus against the second, and the opposite in the other half, 

thereby ensuring that the decision is decoupled from the presentation order of the 

stimuli.  

Moreover, in previous studies, the decision was directly mapped to a specific 

motor output. For example, if decision higher - press the left button. Thus, once a 

decision has been made, participants could immediately translate the decision into a 

motor action plan instead of maintaining the abstract decision. Therefore, we decoupled 

the decision from the motor output by including a decision mapping cue. On each trial, 

participants were shown either an upward- or downward-facing arrow which indicated 

either “higher” or “lower” and participants had to decide whether they agreed with the 

arrow presented. For example, if participants were instructed to contrast the first 

frequency (Base - 12 Hz) against the second frequency (16 Hz), they would decide that 

the second frequency was higher. Then, after a delay, if an upward-pointing arrow was 

shown, they would decide that they agreed with the arrow and select the appropriate 

behavioural output to indicate a decision of “agree”. Thus, importantly, during the delay 

after the second stimulus and before the presentation of the arrow, participants 

maintained the decision of “higher” or “lower”. The formation of a final motor plan took 

place after the presentation of the arrow and participants communicated their decision 

via saccades.  

Thus, by including these two modifications to the classic vibrotactile frequency 

discrimination paradigm, we were able to isolate the decision variable from the physical 

properties of the stimuli and the specific motor output. Based on previous research and 

according to the Intentional Framework of decision-making, we expected to identify 

decision-specific information in brain regions responsible for creating the motor plans 

for saccades, specifically the FEF. 
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We collected six experimental runs of fMRI data from 30 participants and 

analysed the data using multivariate support vector classification. The results are shown 

in Figure 3. We identified choice-specific information, regardless of decision (f1 >  

or < f2), in the bilateral FEF, IPS, and left IFG and MFG. Moreover, we found that the 

participant-specific decoding accuracy in the right FEF, a region upstream from saccade 

control regions, was positively correlated with the participant’s behavioural 

performance (Figure 3b). Thereby providing strong evidence for the involvement of the 

right FEF in memory-based perceptual decision making tasks when the decision is 

communicated via saccades. This empirical result provided strong evidence bridging the 

NHP results (Gold & Shadlen, 2007; Romo & de Lafuente, 2013) to humans. 

To conclude, we provided evidence for decision-specific information in the 

somatosensory frequency discrimination task to be maintained in brain regions which 

are necessary for the planning and communication of the decision, commonly referred 

to as the Intentional Framework of perceptual decision making (Gold & Shadlen, 2007; 

Cisek & Kalaska, 2010). Moreover, we showed that choices are maintained in an 

intentional manner even when the choices are decoupled from sensory properties of the 

stimuli and the ensuing decision motor output.  

2.4. Response Modality-dependent Categorical Choice Representations for 
Vibrotactile Comparisons  

The final study comprising this dissertation consisted of a follow-up to the previous 

study. If indeed decision information is maintained in an effector-specific manner, then 

changing the motor effector should result in a corresponding change in the location of 

Figure 3: Neuroimaging results. Brain regions carrying choice information independent of the stimulus 
order and the direction of the ensuing saccade. The figure was originally published in Wu et al., 2019, 
available under license agreement 1448822-1 from John Wiley & Sons, Inc.  
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the decision information. To this end we repeated the previous study and asked 

participants to respond with button-presses instead of saccades.  

 We again collected six runs of experimental data from 27 participants and 

analysed the data in a manner identical to the previous study. Indeed, when participants 

were asked to respond with a manual button press, the decision-specific information 

was located in the left dPMC and left IPS (Figure 4). Moreover, we did not find any 

statistically significant choice-specific information in the FEF. This dichotomy was further 

explored in a post-hoc analysis which confirmed the difference in localization of 

memory-guided choice-dependent information across the studies (Figure 4). Thus, we 

provided additional fMRI evidence for the coding of choice properties in human motor 

preparatory regions, even when choices are decoupled from action plans and 

maintained in an abstract form (higher – lower).  

Finally, taken together, 

the third and fourth studies of 

this dissertation provide 

strong evidence for the 

representation of memory-

guided perceptual decisions in 

human vibrotactile frequency 

discrimination tasks to be 

maintained in a response 

modality-dependent manner. 

To conclude, we replicated 

and extended the dissociation 

shown by Herding and 

colleagues (2016; 2017) with 

fMRI data and provide strong 

evidence in favour of the 

Intentional Framework of 

perceptual decision-making. 

  

Figure 4: Comparison with results from saccade version of the task 
(Wu et al., 2019, n = 30). The figure was originally published in Wu 
et al., 2021, available under CC BY 4.0 
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3. General Discussion 

In the final section of my dissertation, I present a synthesis of the empirical studies and 

suggest a unified somatosensory perception-action model of the brain. 

 The four empirical studies address questions relating to long-standing debates in 

the worlds of WM and memory-based perceptual decision making neuroscience. More 

specifically, the studies explore the influence of cognitive task-demands on the 

localization of neural representations. In the first study, Uluç et al., 2020, we showed 

that, similar to other forms of abstract WM content, approximated numerosities can be 

estimated from tactile stimulation and are maintained in a likely modality-independent 

manner in the PFC, specifically the right IFG. Secondly, in Velenosi et al., 2020, we 

showed that changing the experimental context resulted in a task-specific, adaptive 

modification of the WM representation in the IPS. Finally, in the two Wu et al., 2019; 

2021, papers, we showed that simply changing the manner in which the decision is 

communicated results in a task-specific change in the localization of the decision 

content. There are several implications of the four empirical studies comprising this 

dissertation and these are discussed in detail below. 

3.1. Localizing Maintained Information in Working Memory 

The first aim of this dissertation was to localize WM representations underlying the 

initial WM processing stage after perception. In addition, to simultaneously address the 

ongoing debate regarding the localization of information maintained in WM. Indeed, as 

outlined in the introduction, this debate has been ongoing for decades with two main 
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opposing camps. One arguing that the specific qualities of the PFC make it ideal and 

uniquely able to maintain WM content (Goldman-Rakic, 1995), and another which 

argues that the qualities are not unique to the PFC and WM is maintained in sensory 

regions (Postle, 2006; Sreenivasan et al., 2014). Recently, a middle option has been 

introduced suggesting that the maintenance of WM content is a ubiquitous feature of 

the cortex (Christophel et al., 2017). In the first and second studies of this dissertation 

(Uluç et al., 2020; Velenosi et al., 2020), we directly addressed this debate by localizing 

the representations of content maintained in WM.  

In the first study, participants extracted abstract numerosities from patterns of 

electrical pulses. The maintained WM content was identified in two frontal clusters 

spanning the IFG, MFG, SFG, SMA and PMC. In the second study, using similar stimuli as 

the first, WM content was also identified in the IFG, as well as the superior parietal 

lobule, including the IPS. Moreover, we included additional analyses in the supplemental 

material, specifically the distributed WM content maps for each experimental condition 

individually. The stimulus-specific WM content was maintained in a bilateral network 

spanning the IFG, PMC, PPC, middle temporal gyrus, and cerebellum. In contrast, the 

group-specific content was more localized and only identified in the bilateral MFG, left 

IFG, and left IPS. Thus, in both studies employing patterns of tactile electrical 

stimulation, the stimulus-specific WM content was maintained in the IFG. This provides 

additional evidence for the ability of the PFC to maintain abstract WM content in human 

fMRI studies. This is significant because, until recently, in contrast with 

neurophysiological recordings in NHPs, few human fMRI studies had identified WM 

content in the PFC (Riley & Constantinidis, 2016). Indeed, it appears as though the initial 

lack of findings of human WM content in the PFC was likely due to the nature of the 

stimulus, task, and analysis pipeline employed (Christophel et al., 2017). 

In the overview compiled by Christophel and colleagues (2017), the authors 

compared the WM literature between human and NHPs and found that the majority of 

both species’ cortices is able to maintain WM content. Generally, the more abstract the 

content, the more anterior the content is maintained. This gradient suggests that the 

localization of the WM content depends on the content itself, or more specifically, the 

method employed for encoding the content. For example, in both the first and second 

studies of this dissertation, the same stimuli were employed: temporal patterns of 
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electrical stimulation delivered to the median nerve. However, information outside of 

the frontal cortices was only found in the second study. There are several differences, 

both in the stimuli and study design, which may have contributed to the observed 

differences in localized WM representations. However, the conclusion is, depending on 

the experimental conditions and task-specific instructions, participants maintain 

differently distributed WM representations of the same stimulus across studies 

(Christophel et al., 2017). Thus, it is insufficient to draw general conclusions about the 

basis of WM maintenance from collections of studies which employ, for example, the 

same stimuli. Instead, specific details of the studies must be considered before 

conclusions can be drawn (van Ede & Nobre, 2023). 

This conceptualization of WM can be extended to the central executive and slave 

module components of the Baddeley and Hitch (1974) multicompetent model of WM. In 

this extension, the entire cortex is the slave of the central executive. Indeed, the 

literature provides ample evidence for the ability of all cortical regions to maintain 

specific formats of WM content. Moreover, some researchers argue that the same 

neural circuits underlying long-term memory also subserve WM (Cowan, 2001; Oberauer 

& Hein, 2012; Desimone & Duncan, 1995). Thus, rather than localizing maintained WM 

content, it is preferable to consider the pragmatic utility of the content (van Ede & 

Nobre, 2023). What purpose do the distributed representations summarized by 

Christophel and colleagues (2017) serve? How do the regions support the various stages 

of processing between the perception of a stimulus and the motor output? How do the 

distributed WM representations enable behavioural flexibility? Do they represent 

independent processing stages along the perception-action loop (Christophel et al., 

2017; Myers et al., 2017)? Or do they serve as back-up copies in case of distraction or 

neural damage? To this end, Romo and colleagues have provided evidence from NHPs 

based on the strength, dynamics, and latencies of neural responses that distributed 

regions in the frontal cortex maintain WM information (Hernández et al., 2010) but, to 

my knowledge, have yet to explore the relation between or the role of the distinct 

representations.  

Romo and colleagues show that, while there is a temporal delay between the 

regions which can be used to map their connectivity, the entire set of six regions (S2, 

VPC, PFC, mPMC, dPMC, M1) maintain WM information. Due to the large energy costs 
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of multiple distinct WM representations, there must be an essential purpose for six 

regions to maintain potentially overlapping and duplicate information. Future studies 

are necessary to explore the relationship between and purpose of the parallel nature of 

the distributed WM representations (Christophel et al., 2017). By employing advanced 

analysis techniques such as representational similarity analysis (Kriegeskorte et al., 

2008) or investigating the principal components of the representations (Rossi-Pool et al., 

2017), it is possible to compare the maintained representations across regions. This 

would greatly benefit the field of cognitive neuroscience by extending the discussion 

from debating the localization of maintained WM content to investigating the role of the 

content in subserving the perception-action loop (van Ede & Nobre, 2023). 

3.2. Localizing Goal-directed Manipulated Working Memory Content 

A second aim of the dissertation was to explore the subsequent stage in the perception-

action loop, the manipulation of WM content. As previously discussed, the concept of 

WM has evolved significantly over the past few years. Indeed, as nicely summarized by 

Myers and colleagues (2017), WM is a process which involves encoding stimuli, selecting 

the relevant information, reformatting the information, before finally transforming the 

information into an action plan. Thus, WM inherently contains manipulations and 

transformations of content. However, the goal-directed manipulation of WM content is 

not part of the standard WM pipeline per se. Instead, the manipulation of WM content 

involves an attempt to realise a specific goal via a transformation of the content. Thus, 

while the term WM maintenance, and WM more generally, has evolved to include 

various internal attention-demanding WM processes, including the transformations 

underlying the perception-action loop, I use the term WM manipulation to denote the 

conscious manipulation of WM content for the completion of a specific goal. 

Indeed, the first two empirical studies comprising this dissertation directly speak 

to this aim as both studies required participants to manipulate tactile stimuli to perform 

the task. In Uluç et al., 2020, participants were required to extract a numerosity from 

the perceived stimulus. Whereas in Velenosi et al., 2020, participants were required to 

encode either the presented stimulus or abstract the stimulus to an associated group. In 

the first study, we were not interested in the manipulation of the WM content per se, 
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but in localizing the resulting abstract numerosity-specific WM content which we 

identified in two clusters in the frontal cortex. In the second study, we extended our 

focus to explore how the manipulation of WM content changes the representational 

space underlying the content. Indeed, by directly comparing across experimental 

conditions, we identified similarities between the distributed WM representations of the 

original and manipulated content. Whereas the original stimulus-specific information 

was identified across conditions in the left IFG and SPL including the IPS, the 

manipulated group-specific information was found in the IPS and IFG, and other than 

preliminary evidence for the dPMC, no frontal regions were found to maintain context-

dependent manipulated WM content. Indeed, only the WM representations in the IPS 

were modified in accordance with the changing task demands.  

In Velenosi et al., 2020, we had hypothesized that, by training participants to 

form groups of stimuli, the resulting WM representations would be modified such that 

group members would be represented more similarly to one another in the group 

condition than in the stimulus condition. Indeed, a multivariate interaction analysis 

allowed the identification of changing WM representations with experimental context in 

the IPS. This is significant because the majority of studies investigating WM 

manipulation have relied on univariate data analysis methods and have focused on 

identifying the likely top-down manipulation signals, which have been shown to 

originate from the PFC (D’Esposito et al., 1999; Wager & Smith, 2003; Royall et al., 

2002). In contrast, our study extended the analysis of WM manipulation by localizing the 

manipulated WM content in the IPS.  

In line with our findings, previous studies have shown that task-relevant 

representations in the IPS change with changing task-demands (Jackson & Woolgar, 

2018; Liu & Hou, 2013; Woolgar et al., 2011) and that the IPS is central for grouping and 

categorizing stimuli (Freedman & Assad, 2016). Indeed, there is ample evidence for the 

involvement of the IPS in abstract cognitive functions including the representation of 

cognitive sets (Oristaglio et al., 2006; Stoet & Snyder, 2004), numerosity (Nieder et al., 

2006; Nieder & Miller, 2004), and salience (Leathers & Olson, 2012), all of which 

comprise forms of categorization. Importantly, a study by Zhou and Freedman (2019), 

found that the LIP, the IPS homologue in NHPs (Grefkes & Fink, 2005), is necessary for 

the transformation of a stimulus representation into a more-abstract category label, 



 - 39 - 

which is then passed to motor-selective neurons, also in the LIP. As a fitting summary of 

the literature, Freedman and Ibos (2018) have suggested a model which merges the 

various LIP functions into a single role: the identification of behaviourally relevant 

stimuli. To this end, the authors suggest that the nonlinear nature of responses 

observed in LIP neurons in DMTS tasks suggests the comparison and integration of 

incoming bottom-up sensory signals with top-down cognitive goals, likely from the PFC. 

Thus, taken across species, the IPS maintains WM representations indicating the current 

task goal. To conclude, the IPS likely acts as a central hub where manipulated WM 

content is computed, maintained, and shared with other downstream regions in the 

perception-action loop.  

3.3. Localizing Memory-based Perceptual Decision-Making Content 

The third goal of this dissertation was to localize the representations underlying 

memory-guided perceptual decision making. Moreover, in a similar vein as the WM 

localization debate, to simultaneously address the ongoing debate of whether domain-

general regions compute the decision (Heekeren et al., 2006; Ho et al., 2009; O’Connell 

et al., 2012) or whether the regions change depending on the current task-demands, as 

per the Intentional Framework (Cisek & Kalaska, 2010; Gold & Shadlen, 2007). Indeed, 

our results from the third and fourth studies, Wu et al., 2019; 2021, directly address this 

goal. By performing two studies which were controlled for the sensory-motor features 

of the frequency discrimination task, and identical except for the motor output effector, 

our results directly speak to the debate. Indeed, we clearly show that, depending on the 

motor output effector, the location of the resulting decision-related information 

changes with the FEF maintaining the decision when communicated via saccades (Wu et 

al., 2019) and the PMC when by button presses (Wu et al., 2021). Thus, at first glance, 

the Intentional Framework (Cisek & Kalaska, 2010; Gold & Shadlen, 2007) appears to 

correctly explain our results. However, as is often the case in cognitive neuroscience, 

and with fMRI results specifically, the results are not so straightforward to interpret. 

Undeniably, while the results show a clear dichotomy between the two 

experimental paradigms, this cannot be stated conclusively. Importantly, in both studies, 

multiple regions were found to maintain decision-specific information such as the IPS, 
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IFG, and MFG. In an analogous fashion to the maintenance of WM content, it is 

presently not known what purpose these additional distributed representations serve. 

Indeed, it may be possible that a general decision-making region lays upstream to both 

the FEF and the PMC where the decision was computed in both studies, such as the IPS, 

and communicated to the downstream regions necessary for producing the required 

motor behaviour (Freedman & Ibos, 2018; Zhou & Freedman, 2019). Unfortunately, our 

experimental paradigm does not provide the temporal resolution necessary to resolve 

such an interaction between regions. Thus, while our results provide evidence in favour 

of the Intentional Framework for perceptual decision making, we cannot state 

conclusively where the decision-related information was computed. Additional research, 

including connectivity studies in humans and neurophysiological work in NHPs, is 

necessary before a decisive conclusion between the two theories in memory-guided 

perceptual decision making can be drawn. 

3.4. Comment on the Somatosensory Perception-Action Loop 

Taken together, all four studies in this dissertation provide evidence for the localization 

of information underlying the intermediate stages of the perception-action loop in the 

somatosensory domain. Indeed, by considering the results from the four studies 

together with the extensive literature, it is possible to build a rudimentary model of the 

somatosensory perception-action loop.  

Each trial begins with the perception of a somatosensory stimulus. This stimulus 

is converted into a perceptual representation which, based on previous findings from 

both the NHP and human literatures, occurs in contralateral S1 and bilateral S2 

(Auksztulewicz et al., 2012; Romo & de Lafuente, 2013). Romo and colleagues 

demonstrated that tactile frequency information is transformed into a rate code by S1 

(Hernández et al., 2000), which is expected to have occurred in all four of the studies 

comprising this dissertation. Indeed, all studies employed forms of vibrotactile 

stimulation: numbers of pulses, temporal patterns, and frequencies. Thus, based on the 

literature, we presume that, in all four studies, the contralateral S1 converted the tactile 

stimulation into a rate code which was then passed to downstream bilateral S2 regions.  
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Together, the contralateral S1 and bilateral S2 cortices establish the first 

representation of the stimulus (Auksztulewicz et al., 2012; Romo & Rossi-Pool, 2020; 

Schröder et al., 2019). Importantly, the accuracy of the initial stimulus representation 

has a significant influence on the outcome of the trial. As shown by Herding and 

colleagues (2016) and many others beginning with Hellström (1985), the trial-wise 

stimulus perception is biased by the subject’s experimental history. Indeed, Herding and 

colleagues found that the representation of the stimulus on a trial will be biased 

towards the mean value of the previously perceived stimuli. Moreover, since all 

downstream transformations in the perception-action loop are computed using the 

initial perceptual representation, any errors or biases in the initial representation are 

perpetuated throughout the remaining stages, culminating in the evidence upon which a 

perceptual decision is based.  

Following the initial perceptual representation, the information is distributed to 

a wide range of cortical regions. As shown by Romo and colleagues in the vibrotactile 

discrimination task, following activity in S2, the rate code information is passed to 

frontal regions, specifically the bilateral PFC and vPMC, and then with a short delay to 

the mPMC and dPMC (Hernández et al., 2010). Unfortunately, the research group did 

not consider the PPC in their experiments. Interestingly, all regions investigated by the 

Romo group were found to be actively involved in the perceptual decision-making task. 

This suggests a distributed network underlies the post-perception stages of the 

perception-action loop (Romo & de Lafuente, 2013). 

Indeed, the regions reported by Romo and colleagues correspond well with the 

task-positive network (Fox et al., 2005) also known as the multiple-demand network 

(Duncan & Owen, 2000; Duncan, 2010). As indicated by the name, the network was 

identified due to the consistent activity of the regions during attention-demanding, 

externally orienting cognitive tasks. The task-positive network in humans is generally 

considered to consist of the lateral PFC, dorsal parietal cortex – especially the IPS, 

sensory-motor cortices, subcortical regions, and the cerebellum (Kim et al., 2010). 

Recently, a connectivity map between the regions comprising the multiple-demand 

network was completed (Camilleri et al., 2018). Camilleri and colleagues defined seed 

regions according to the multiple-demand network and computed both functional and 

resting-state connectivity between the regions. Using hierarchical clustering, they 
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identified separate clusters of regions. Of relevance to the current dissertation, the IPS, 

dPMC, inferior frontal junction, and inferior temporal gyrus were shown to be activated 

together, however the co-activation was dependent on the specific features of the task. 

The researchers did not include any sensorimotor regions other than the pre-SMA in 

their analysis and did not explore the temporal development of the network co-

activations. Unsurprisingly, in all four of the empirical studies comprising this 

dissertation, regions belonging to the network were found to maintain task-relevant 

information: IFG, MFG, SMA, IPS, dPMC, and FEF. Moreover, in agreement with Camilleri 

and colleagues, the involvement of the specific regions was dependent on the task. 

As defined by Kim and colleagues, the task-positive network consists of both 

sensory and motor regions. Thus, the network offers a transition from sensory 

representations to motor output. Indeed, it is likely that the initial sensory 

representations are transferred to the PPC and PFC for additional processing and 

manipulation, before being sent to motor regions for construction of the motor plan. 

Importantly, as stated by Christophel and colleagues in their review (2017), the location 

where task-relevant information is identified depends on the experimental design. 

Specifically, to what degree the participant is able to process the information along the 

perception-action loop for the successful completion of the task. In the following 

paragraphs, I explore each empirical study individually according to this distributed, 

task-dependent model of the somatosensory perception-action loop. Unfortunately, 

fMRI research does not lend itself to the investigation of temporal processes, thus, 

corroboration of the following sections with EEG in humans and neurophysiological 

recordings in NHPs is necessary.  

 

Task-positive network maintains information in WM 

Specifically, the sensory-motor and fronto-parietal regions comprising the task-positive 

network (Kim et al., 2010) maintain WM representations. In agreement with Christophel 

and colleagues (2017), the specific experimental design features, such as the stimulus, 

task, and motor output, will determine the localization of maintained information in 

WM for the particular experimental paradigm. 
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In the first study of this dissertation, participants extracted numerosity 

information from a repetitive tactile stimulus and used this information to make a 

perceptual decision, communicated using their right index and middle fingers. As 

previously discussed, the results of the multivariate SVR analysis identified two clusters 

of numerosity-specific WM information in the frontal cortex. One cluster in the right IFG, 

a region previously shown to be responsible for the extraction of numerosity-specific 

information (Nieder, 2016). The second cluster in the task-positive network member 

regions left SFG, MFG, and PMC.  

Interestingly, only frontal regions and no somatosensory or parietal regions were 

found to maintain numerosity-specific WM information. This is likely due to the activity 

of the ANS which abstracts numerosity information from a stimulus, thereby dissociating 

the WM representation from the underlying somatosensory stimulus features and 

maintaining the information in the region responsible for the transformation. Moreover, 

if participants had been instructed to maintain the tactile sensation of the stimulus, 

then, based on somatosensory imagery results (Nierhaus et al., 2023; Schmidt et al., 

2014), it is likely that the WM content would have additionally been maintained in 

somatosensory regions. Finally, the PMC is known to be necessary for the comparison of 

numerical quantities (Gruber et al., 2001; Nieder, 2005) and is also responsible for the 

preparation of manual motor commands (Nakayama et al., 2008; Yamagata et al., 2009; 

Yamagata et al., 2012).  

Thus, I propose a complete perception-action loop description of this first 

experiment: S1 extracted the rate code from the tactile stimulus and passed the code to 

the ANS in the right PFC. The ANS isolated the numerosity information from the rate 

code, discarded the unnecessary sensory features, before sharing the information with 

bilateral downstream regions in the task-positive network (SFG, MFG). The contralateral 

PMC was the final processing stage before a decision could be made, and the ensuing 

motor plan computed. Due to participants having access to the WM information during 

the WM delay and not the test stimulus, a final decision could not be computed. 

Therefore, the WM information could not be processed further along the perception-

action loop and formalized into a motor plan until after the presentation of the test 

stimulus, which is likely why no information was identified in M1.  
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 In the second study, the experimental design was modified with the introduction 

of a second experimental condition, the group condition. In contrast to the first study 

where participants always extracted the numerosity, in the second study, participants 

extracted the group in half of the trials, whereas in the other half, they simply encoded 

and maintained the stimulus as presented. This experimental modification provided a 

means of contrasting the two experimental conditions. Indeed, we identified adaptive 

coding (Duncan, 2001) in the left IPS in that the WM representation changed depending 

on the experimental condition. Importantly, the IPS, like the PFC, is a core member of 

the task-positive network (Fox et al., 2005). Additionally, we identified stimulus-specific 

information in both the stimulus and group experimental conditions in the left IFG. 

Moreover, we did not identify any WM-specific information in somatosensory regions. 

We hypothesized that this was due to the nature of the stimuli and the experimental 

design. Participants were made very familiar with the stimuli during a training session 

and reported encoding them as auditory or verbal stimuli, which would be consistent 

with the representation identified in the IFG (Binder et al., 1997).  

Importantly, in this second study, we did not identify any significant manipulated 

WM content in the PMC. We hypothesize that this was due to another crucial 

modification of the trial design. Whereas in the first study, participants were able to 

respond directly after presentation of the test stimulus (i.e., if stim 1 choose left, if stim 

2 choose right), this was not possible in the second study. Indeed, after the target, two 

colour stimuli were presented, and participants had to choose the colour that 

corresponded with their decision. Moreover, the colours appeared randomly on either 

the left or right side. Thus, we argue that the PMC was not able to prepare a motor plan 

because participants had to first translate their WM representation into a decision, and 

then their decision into a colour, before a motor output could be computed. We suggest 

that this additional step further decoupled the WM information from motor regions 

such that the WM information was not present in motor regions and was instead 

maintained by the task-positive frontal-parietal regions: IFG and IPS. Indeed, we suggest 

that in this study, across both conditions, the IFG and IPS maintained stimulus-specific 

information in WM which was manipulated by the IPS during the group experimental 

condition. Due to the additional decoupling of the motor decision from the WM content, 

the information could not be processed further along the perception-action loop. 
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Task-positive network maintains memory-based perceptual decision representations 

Transitioning to the final two decision-making experiments. The key difference between 

the two halves of the empirical studies comprising this dissertation is that the 

experimental focus shifts from the WM period to the period after the presentation of 

the test stimulus. Thus, in an identical fashion to the first two experiments, participants 

began by extracting and forming a perceptual representation which was transformed by 

the fronto-parietal task-positive network into a WM representation. Then, the test 

stimulus was presented and compared against the WM representation. The period 

between the presentation of the test stimulus and the completion of the motor action 

was the time period under investigation. 

Importantly, the distinction between the two decision-making studies is the 

motor output effector, and this distinction is well-represented by the results. The fourth 

study, in an analogous fashion to the first and second, employed a manual button 

response with the right hand whereas the third study employed saccades as responses. 

Correspondingly, the decision-specific information was found in bilateral FEF (saccades) 

and the left PMC (right hand effector) respectively. Furthermore, the decoding accuracy 

in the FEF predicted the individual behavioural accuracy (Wu et al., 2019). Interestingly, 

additional regions in the fronto-parietal cortex were also identified during the saccadic 

response version of the task: the left MFG, left IFG, and inferior parietal lobule, which 

were not present in the manual response version of the task. It is likely that, due to the 

identical trial structure and task design, both studies required the same computations. 

However, due to differences in statistical power, only the third study was able to identify 

the decision-specific information in other frontal regions. This discrepancy highlights the 

necessity for well-powered studies so that robust conclusions can be drawn from the 

results.  

 Furthermore, similar to the first two studies of this dissertation, only fronto-

parietal regions were found to maintain relevant information. Indeed, both the third and 

fourth studies identified memory-based decision-specific information in the left IPS, 

similar to the second study. Freedman and Assad have suggested that a common 

computational mechanism underlies both processes of decision making and 

categorization or grouping (Freedman & Assad, 2011; 2016). Thus, it is possible that the 

IPS computed the decision (higher -vs- lower) and this information was then conveyed to 
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downstream motor regions in an effector-specific manner. While this interpretation 

seemingly contradicts the Intentional Framework for decision making and appears to 

argue for a domain-general decision-making region, the third and fourth studies 

identified non-overlapping regions in the IPS as maintaining decision-specific 

information. Thus, it is possible that, due to the identical experimental features, similar 

but non-overlapping regions relevant for saccadic and motor downstream regions within 

the IPS computed the decision. Whereas a novel experimental paradigm with different 

stimuli, features, and task, would require the decision to be computed in a completely 

distinct region. Future research is necessary to determine whether the finding of distinct 

IPS regions is real or an artefact of statistical processing and power. Therefore, to 

conclude, studies employing computational modelling are necessary to determine 

whether a domain-general IPS, specific sub-regions of the IPS, or downstream motor 

regions such as the PMC and FEF compute the memory-based perceptual decision. 

 

4. Conclusions and Open Questions 

After having completed the research comprising this dissertation, it is possible to draw 

conclusions regarding the intermediate representations enabling the explosion of 

adaptive behaviours from the simple stimulus-response reflexes to the complex 

behaviours observed across species today. Indeed, the cortex has evolved a significant 

number of intermediate regions between the sensory and motor cortices and these 

regions have been found to support WM processes and representations. Sensory 

regions create and maintain perceptual representations, motor regions the motor action 

plans, and depending on the specific task-demands, a combination of sensory and 



 - 47 - 

higher-order task-positive regions spanning the frontal and parietal cortices maintain, 

manipulate, and transform WM information. However, several open questions regarding 

this process remain.  

First and foremost, a goal of cognitive neuroscience should be the description of 

the roles of the distributed representations underlying the intermediate stages of the 

perception-action loop. Neurophysiological recordings in combination with 

computational modelling is necessary to truly differentiate between the various 

representations. Indeed, Romo and colleagues have already provided invaluable 

information on the content of the representations in frontal regions, however it is 

necessary to look in more detail. What is the connectivity between the regions? Are the 

regions connected in a serial or parallel pathway, and does information feedback 

between regions? How does the information between the regions differ? Are all of the 

regions necessary or is there redundancy in the information maintained? What 

transformations take place along the pathway? What role does the PPC play? Finally, 

what oscillations contribute to or result from the various WM processes? While it is 

possible to address some of these questions using neuroimaging in humans in 

combination with RSA and other advanced techniques, neurophysiological data is 

necessary for drawing definitive conclusions. Indeed, only by determining the relation 

between, and purpose of, the various WM representations will it be possible to 

understand the progression of information along the perception-action loop.  

Secondly, future studies should focus on predicting the localization of WM 

content, since such studies provide a strong basis upon which to draw conclusions 

regarding the nature and purpose of WM content. Expanding on the experimental 

paradigms of Lee and colleagues (2013) and ours (Velenosi et al., 2020), I suggest a 

paradigm consisting of two conditions wherein participants are instructed to use a 

specific method for encoding WM content. For example, in the first condition, 

participants are told to maintain the stimulus using a visual method, e.g., to imagine the 

stimulus in their mind’s eye during the WM delay phase of the trial. Whereas, the 

second condition entails using a somatosensory method, e.g., to imagine feeling the 

stimulus during the WM delay. Thus, the same participants encode the same stimuli 

using two separate methods (visual, tactile) and, based on the Distributed Coding theory 

of WM (Christophel et al., 2017) a dichotomy between the experimental conditions 
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should be identified. Moreover, by analysing the data using MVPA as well as 

connectivity methods, it should be possible to localize the WM content and track the 

flow between regions. Moreover, repeating the study using EEG, and with a different 

response motor effector, would provide additional important temporal and oscillatory 

information about the influence of experimental design on the representations 

underlying the perception-action loop.   

Finally, I would like to again highlight the central importance of the experimental 

design for the interpretation of results. As demonstrated by all four studies included in 

this dissertation, the particular details of the experimental design: the stimuli, task, and 

analysis pipeline, influence which brain regions maintain relevant information. While 

this may seem a trivial insight, I believe it to be a very important aspect of cognitive 

neuroscience research. Indeed, when comparing between experimental results, it is 

important to consider the minute differences in experimental designs as they may result 

in different results which hinder the development of a complete mapping of the cortex’s 

complicated network of stimulus-response contingencies. Only with careful 

consideration of the experimental context and details, will cognitive neuroscience 

achieve the goal of describing the mechanisms underlying the ability of organisms to 

adapt their motor responses to a stimulus based on their current situation, previous 

experiences, and current goals. 
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Abstract
Estimated numerosity perception is processed in an approximate number system (ANS) that resembles the
perception of a continuous magnitude. The ANS consists of a right lateralized frontoparietal network comprising
the lateral prefrontal cortex (LPFC) and the intraparietal sulcus. Although the ANS has been extensively investi-
gated, only a few studies have focused on the mental representation of retained numerosity estimates. Specif-
ically, the underlying mechanisms of estimated numerosity working memory (WM) is unclear. Besides
numerosities, as another form of abstract quantity, vibrotactile WM studies provide initial evidence that the right
LPFC takes a central role in maintaining magnitudes. In the present fMRI multivariate pattern analysis study, we
designed a delayed match-to-numerosity paradigm to test what brain regions retain approximate numerosity
memoranda. In line with parametric WM results, our study found numerosity-specific WM representations in the
right LPFC as well as in the supplementary motor area and the left premotor cortex extending into the superior
frontal gyrus, thus bridging the gap in abstract quantity WM literature.
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Introduction
Humans can tell whether 100 people are a larger group

than 50 people quite accurately without counting. This ability
to quantify amount, size, length, or other analog stimulus
properties can be performed nonsymbolically, independent
of language (Dehaene, 1992; Spitzer et al., 2014b). Indeed,
human infants and several animals are able to approximate

a variety of quantities (Nieder, 2005; Piazza et al., 2007;
Piazza and Izard, 2009; Nieder and Dehaene, 2009), sug-
gesting a common elemental system which has been
termed the approximate number system (ANS; Gallistel and
Gelman, 1992; Dehaene, 2011).

While numerosity is a discrete stimulus property, the
ANS allows an approximation of numerosity, resulting in
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Significance Statement

While the perception of approximate numerosities has been extensively investigated, research into the
mnemonic representation during working memory (WM) is relatively rare. Here, we present the first study to
localize WM information for approximate numerosities using functional magnetic resonance imaging in
combination with multivariate pattern analysis (MVPA). Extending beyond previous accounts that used
either a priori brain regions or electrocorticography with poor spatial resolution and univariate analysis
methods, we used an assumption-free, time-resolved, whole-brain searchlight MVPA approach to identify
brain regions that code approximate numerosity WM content. Our findings in line with previous work,
provide preliminary evidence for a modality- and format-independent, abstract quantitative WM system,
which resides within the right lateral PFC.
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an analog estimation. Thus, in contrast to the symbolic
mental representation of numbers as classes or catego-
ries, it has been hypothesized that the ANS representation
resembles that of continuous quantities or magnitudes
such as intensities, lengths, or frequencies (Piazza et al.,
2004; Nieder and Dehaene, 2009; Spitzer et al., 2014a). In
support of this, neural representations underlying both the
ANS and continuous quantities have been shown to be
supramodal, implying a representation abstract in nature
(Piazza et al., 2006; Spitzer and Blankenburg, 2012;
Spitzer et al., 2014a; Vergara et al., 2016). Moreover, small
numbers are rapidly and accurately identified without
counting, known as subitizing (Kaufman et al., 1949).
Thus, these numbers are represented as discrete values.
If the number of items exceeds the subitizing threshold,
counting is required to determine the exact amount. When
there is insufficient time for counting, the ANS approxi-
mates the quantity in a fast and efficient manner.

The functional anatomy of the ANS has been exten-
sively characterized in both human and nonhuman pri-
mates (NHPs). A frontoparietal network comprising the
dorsolateral prefrontal cortex and the posterior parietal
cortex (PPC), specifically the intraparietal sulcus (IPS), is
involved in approximating quantities during perception
(Dehaene et al., 2004; Piazza et al., 2004, 2007; Cantlon
et al., 2006, 2009; Jacob and Nieder, 2009; Knops and
Willmes, 2014). Moreover, the right hemisphere has been
shown to be dominant with respect to quantity estimation
(McGlone and Davidson, 1973; Young and Bion, 1979;
Kosslyn et al., 1989); however, recent studies have found
that both hemispheres respond to approximate visual
numerosity (Piazza et al., 2004; Ansari et al., 2006). Par-
ticularly in nonsymbolic numerosity perception, the IPS
has been shown to exhibit stronger numerosity-selective
responses than the PFC (Tudusciuc and Nieder, 2009),
and the PPC, especially the IPS, responds to the nonsym-
bolic numerosity processing (Piazza et al., 2004, 2007).

The ANS literature is primarily focused on perception
with relatively few NHP studies extending to investigate
working memory (WM) representations of approximate
quantities (Nieder, 2016). As short-term maintenance of
information is critical for higher-order cognitive functions
such as decision-making and reasoning, it is crucial to
investigate beyond perception to the maintenance of ap-
proximate quantities in WM. In line with results from per-
ception studies of the ANS, neurons in the frontoparietal
network were found, specifically in the PFC and IPS, to
exhibit numerosity-selective activity during WM (Jacob
et al., 2018). Furthermore, supramodal coding of numer-

osity memoranda in the frontoparietal cortex has been
identified (Nieder, 2017). Interestingly, in contrast to per-
ception, the proportion of numerosity-selective neurons in
the PFC and their tuning strength to numerosity have
been more prominent than the ones in the PPC during
WM retention. Moreover, neurons in the PFC remained
selective and discriminated numerosities better than neu-
rons in the PPC during the WM delay (Nieder and Miller,
2004; Tudusciuc and Nieder, 2009; Nieder, 2016).

To the best of our knowledge, only a single study has
focused on the WM representation of numerosity in hu-
mans (Spitzer et al., 2014a), although some approximate
numerosity perception studies used fMRI multivariate
pattern analysis (MVPA) method with WM-related para-
digms focusing on the perceptual processes instead of
the WM retention (Eger et al., 2009; Borghesani et al.,
2019; Castaldi et al., 2019). Spitzer et al. (2014a) probed
the oscillations underlying multimodal WM representa-
tions by training participants to estimate numerosity from
sequential auditory, visual, and tactile stimuli. They iden-
tified strong and long-lasting alpha oscillations in the PPC
reflecting WM load, whereas, in line with NHP results,
beta-band activity in the right PFC showed numerosity-
selective modulation.

Nevertheless, whole-brain research regarding the local-
ization of numerosity memoranda in humans is lacking. To
this end, we designed a tactile delayed match-to-
numerosity (DMTN) task in combination with whole-brain,
searchlight, MVPA of human fMRI data (Christophel et al.,
2012; Schmidt et al., 2017; Uluç et al., 2018). Using this
analysis approach, we localized brain regions maintaining
approximate number content in WM. As per previous
studies (Spitzer et al., 2014a; Nieder, 2016), we hypothe-
sized that the content would be represented in frontal
regions, specifically the right PFC.

Materials and Methods
Participants

Thirty-eight healthy volunteers participated in the study.
The sample size was based on the successful use of
similar sample sizes in earlier MVPA experiments with
analog experimental designs and analyses (Schmidt et al.,
2017; Christophel et al., 2018). In addition, it accords with
recent theoretical work on power analysis for random field
theory-based cluster-level statistical inference (Ostwald
et al., 2019). The data of four participants were excluded
due to low performance levels (!60%), resulting in data
from 34 participants (mean ! SD age, 25.53 ! 5.43 years;
19 females) being further analyzed. All were right handed
according to the Edinburgh Handedness Inventory with a
mean ! SD index of 0.82 ! 0.14 (Oldfield, 1971). The
experimental procedure was approved by the local ethics
committee and was conducted in accordance with the
Human Subject Guidelines of the Declaration of Helsinki.
All participants provided written informed consent before
the experiment and were compensated for their partici-
pation.

I.U. was supported by Deutscher Akademischer Austauschdienst and the
Berlin School of Mind and Brain. L.A.V. was supported by the Research
Training Group GRK 1589/2 by the Deutsche Forschungsgemeinschaft.

Acknowledgments: We thank Yuan-hao Wu for assistance on data collec-
tion, and Alexander von Lautz for feedback on this manuscript.

Correspondence should be addressed to Işıl Uluç at isil.uluc@gmail.com.
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Stimuli
Tactile stimuli consisted of trains of square-wave elec-

tric pulses (200 "s) delivered via a pair of surface-
adhesive electrodes attached to the participant’s left
wrist. A constant current neurostimulator (model DS7A,
Digitimer) was used to deliver the stimuli. Subjects re-
ported tactile sensations radiating to the thumb, index,
and middle finger, verifying stimulation of the median
nerve. Individual sensory thresholds were determined for
each participant. The stimulus intensity was then adjusted
to a target value of "200% of the sensory threshold
(mean, 6.42 mA; SD, 1.20 mA).

A to-be-remembered stimulus sequence comprised 7,
9, 11, or 13 pulses. To dissociate stimulus length and
perceived pulse frequency (spacing of tactile pulses) from
the numerosity of pulses, the duration of the stimulus
varied, and the interpulse intervals were randomized. To
this end, we defined four stimulus durations (960, 1020,
1080, and 1140 ms). Each duration was subdivided into
60 ms slots, resulting in 17, 18, 19, and 20 slots, respec-
tively. The temporal distribution of the pulses was then
randomized across the slots (Fig. 1A, illustrative stimuli).
Within each run, each numerosity was presented in a

short (17 or 18) and a long (19 or 20) duration, resulting in
24 different numerosity–duration pairings (4 numerosities
# 2 durations/run # 3 uncued numerosities). The different
durations were balanced across runs. The alternatives for
each cued numerosity were computed according to the
respective sample (!3 pulses). Additionally, the target
stimulus and the cued sample never had the same dura-
tion, ensuring that memorizing the duration or average
frequency of the target does not help to perform the task.
We also performed a Fourier transformation of the stimuli,
which ensured that all stimuli were composed of similar
combinations of frequencies. Therefore, this stimulus de-
sign ensured that participants had to memorize the stim-
ulus numerosity since they could not use the temporal
density of the pulses or the stimulus length as WM mem-
oranda to solve the task.

Task
We used a DMTN paradigm in which participants re-

membered the estimated numerosity of a stimulus. Each
trial began with the presentation of two pulse sequences
with different numerosities. Next, a retro-cue (“1” or “2”)
indicated which of the two numerosities had to be remem-

Figure 1. Sample pulse sequences and experimental paradigm. A, Sample stimuli. Pulse sequences of 7, 9, 11, and 13 were used
as experimental stimuli. For each numerosity, there were four different durations (960, 1020, 1080, and 1140 ms), where each duration
was subdivided into 60 ms slots. The distribution of pulses to slots was randomized for each stimulus presentation. The first and the
last slot of each stimulus always contained a pulse. The stimuli displayed are for illustrative purposes. B, Experimental paradigm. A
delayed match-to-numerosity task was used, where two sample stimuli and a mask were presented consecutively. A visual retro-cue
that was presented simultaneously with the mask indicated which of the numerosities should be retained for the 12 s delay. After the
delay, participants performed a two-alternative forced choice, indicating which of the two test stimuli had the same numerosity as the
cued stimulus. The response period was 1.5 s. Please note that the stimulus duration and interstimulus interval changed depending
on the stimulus duration, but the onset of each event was locked to coincide with the onset of an image acquisition.
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bered. To suppress potential perceptual residues, in the
sense of afterimages (Sperling, 1960; Christophel and
Haynes, 2014; Christophel et al., 2015), a mask consisting
of the longest duration (1140 ms) with a pulse in each of
the 20 slots, was applied simultaneously with the onset of
the retro-cue. Following a 12 s retention phase, two test
stimuli were presented and a two-alternative forced
choice was given. Neither of the test stimuli were identical
to the encoded stimulus; however, one had the same
numerosity, while the duration and the frequency were
different. This ensured that participants used the approx-
imated numerosity of the stimulus instead of some other
stimulus feature to correctly match the test with the re-
membered stimulus. The numerosity of the alternative
stimulus was three pulses plus or minus the target stim-
ulus. To ensure that the number of pulses in a sequence
could not be easily counted, the lower alternative stimulus
for the lowest to-be-remembered numerosity (7), was set
to 5 and thus above a previously established subitizing
threshold of approximately 4 (for tactile modality, it was
shown to be 3–4; Riggs et al., 2006; Plaisier et al., 2009,
2010; Plaisier and Smeets, 2011; Spitzer et al., 2014a;
Tian and Chen, 2018). After the second target stimulus,
participants had 1.5 s to indicate, via button press with
their right middle or index finger, which of the two stimuli
had the same numerosity as the encoded stimulus (Fig.
1B, experimental design). Furthermore, the response
mapping was counterbalanced across participants. In to-
tal, a trial lasted 21 s and an experimental run, consisting
of all possible stimulus pairings presented equally often
(12 pairings # 4 presentations $ 48 trials) in a randomized
order, with intertrial intervals of 1.5 or 3.5 s, lasted 18.7
min. Four experimental runs were collected for each par-
ticipant, resulting in a total recording time of 74.8 min.

Before the fMRI experiment, each participant was fa-
miliarized with the timing and structure of the task by
performing up to two experimental runs outside the scan-
ner.

Number naming test assessing countability
Subsequent to the fMRI session, we applied a number-

naming task to ensure that participants were unable to
count the number of pulses used in the stimulus set.
Participants were asked to try to count the number of
pulses. The stimuli ranged from 1 to 15 pulses with 5
different duration and temporal pulse distribution combi-
nations of each numerosity were tested, resulting in 75
trials. The counting test was performed after fMRI data
acquisition so as to prevent biasing the participants to-
ward counting the pulses in the main experiment.

To ensure that the presented numerosities were above
participants’ subitizing thresholds, we calculated the
mean performance for each numerosity across partici-
pants and calculated each average estimated numerosity.
We then compared the slope of accuracy for estimating
numerosities with earlier studies that calculated subitizing
thresholds for tactile stimuli (Riggs et al., 2006; Plaisier
et al., 2009, 2010; Plaisier and Smeets, 2011; Spitzer
et al., 2014a; Tian and Chen, 2018). We performed a linear
trend analysis using linear regression to determine

whether the distance between the true and estimated
numerosity scales with increasing true numerosity in a
linear fashion.

fMRI data acquisition and preprocessing
fMRI data were acquired in four runs, with a Siemens 3

T Tim Trio MRI scanner (Siemens) equipped with a 32-
channel head coil. In each run, 565 images were collected
(T2!-weighted gradient echo EPI: 37 slices; ascending
order; 20% gap; whole brain; TR $ 2000 ms; TE $ 30 ms;
3 # 3 # 3 mm³; flip angle $ 70°; 64 # 64 matrix). After the
last functional run, a high-resolution structural scan was
recorded using a T1-weighted MPRAGE sequence (1 # 1
# 1 mm³; TR $ 1900 ms; TE $ 2.52 ms; 176 sagittal
slices). fMRI data preprocessing was performed using
SPM12 (Wellcome Trust Center for Neuroimaging, Insti-
tute for Neurology, University College London, London,
UK). Functional images were slice time corrected and
spatially realigned to the mean image. To conserve the
spatiotemporal structure of the fMRI data for the multivar-
iate analyses, no smoothing or normalization was per-
formed. For the univariate control analysis, functional
images were normalized to MNI space and smoothed with
an 8 mm FWHM kernel.

First-level finite impulse response models
A time-resolved, multivariate searchlight analysis

(Kriegeskorte et al., 2006; Schmidt et al., 2017) was used
to identify brain regions encoding memorized numerosity
information. First, a general linear model (GLM) with a set
of finite impulse response (FIR) regressors was fit to each
participant’s data to obtain runwise parameter estimates
of each WM content (numerosity value of 7, 9, 11, or 13).
A single FIR regressor was estimated for each fMRI image
or 2 s time bin (1 TR); thus, the 20 s trial was divided into
10 time bins. We additionally included the first five prin-
cipal components accounting for the most variance in the
CSF and white matter signal time courses, respectively
(Behzadi et al., 2007), and six head motion regressors, as
regressors of no interest. Moreover, the data were filtered
with a high-pass filter of 128 s. The resulting parameter
estimates were used for the MVPA, performed with The
Decoding Toolbox (TDT) version 3.52 (Hebart et al., 2015).

Multivariate pattern analysis
For the decoding of memorized numerosity information,

a searchlight-based multivariate analysis using a support
vector regression (SVR) approach was performed with the
computational routines of LIBSVM (Chang and Lin, 2011),
as implemented in TDT. SVR MVPA (for more discussion,
see Kahnt et al., 2011; Schmidt et al., 2017) considers the
variable of interest (memorized numerosity) as a continu-
ous data vector with multiple independent variables (mul-
tivariate BOLD activities) as opposed to the commonly
used support vector machine approach that treats the
variable of interest as a categorical object. This means
that the SVR MVPA approach seeks a linear continuum for
the numerosities in which their distance is proportional to
the distances of the rank order.

We analyzed each time bin independently by imple-
menting a searchlight decoding analysis with a spherical
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searchlight radius of 4 voxels. For a given voxel, z-scaled
parameter estimates (across samples) corresponding to
each WM condition were extracted from all voxels within
the spherical searchlight for each run. This yielded 16
pattern vectors (4 WM contents # 4 runs), each corre-
sponding to the BOLD activity pattern for a specific WM
condition of a functional run. We then fitted a linear func-
tion to these pattern vectors such that the multivariate
distribution for the different numerosities follows a linear
mapping of numerosities. The z-scaled parameter esti-
mates were entered into an SVR model with a fixed
regularization parameter c that was set to 1.

We used a leave-one-run-out cross-validation scheme
for the subject-level decoding analysis. The SVR classifier
was trained on three runs (12 pattern vectors) and tested
on the data of the independent fourth run (4 pattern
vectors) for how well it predicted the values of the remain-
ing run. The allocation of training and test runs was iter-
ated so that each of the four functional runs was used as
a test run once, resulting in four cross-validation folds.
The prediction performance from each cross-validation
fold was reported by a Fisher’s z-transformed correlation
coefficient between the predicted and the actual numer-
osity information estimate. The mean prediction accuracy
across cross-validation folds was assigned to the center
voxel of the searchlight, and the center of the searchlight
was moved voxel by voxel through the brain, resulting in
a whole-brain prediction accuracy map. Consequently,
we obtained one prediction accuracy map for each time
bin for each participant, where the prediction accuracy
reflects how well a linear ordering according to the asso-
ciated numerosities could be read out from the locally
distributed BOLD activity pattern at a given voxel location
and time.

Next, prediction accuracy maps were normalized to
MNI space and smoothed with an 8 mm FWHM kernel.
They were then entered into a second-level, repeated-
measures ANOVA with subject and time (time bins) as
factors. To assess which brain regions exhibit WM
content-specific activation patterns during the delay pe-
riod, we computed a t-contrast across the six time bins
corresponding to the 12 s WM delay (time bins 3–8). The
results are presented at p % 0.05 family-wise error (FWE)
correction at the cluster level with a cluster-defining
threshold of p % 0.001. Cytoarchitectonic references are
based on the SPM anatomy toolbox where possible (Eick-
hoff et al., 2005). Presented images (e.g., surface projec-
tions with applied color scales) were created using
MRIcron version9/9/2016 (McCausland Center for Brain
Imaging, University of South Carolina, Columbia, SC).

Control analyses
In the first control analysis, we examined whether the

decoded numerosity information during WM retention
was specific to WM or could be assigned to perceptual
residues. To this aim, we defined a second, first-level
model with FIR regressors for the nonmemorized stimu-
lus. We then implemented the identical searchlight de-
coding procedure as the main analysis. Thus, this control

analysis tested for the presence of numerosity information
of the nonmemorized stimulus.

Next, we conducted a parametric univariate analysis to
ensure that the decoded information in the main analysis
is not due to the modulation of mean activity level. To this
end, we fitted a standard GLM with the following four
HRF-convolved regressors: one regressor to capture WM
processes, a parametrically modulated regressor for the
numerosity content of the WM memoranda as well as
eight [4 numerosities # 2 (sample, test)] additional para-
metrically modulated regressors for each sample and test
stimulus. First-level baseline contrasts for the parametric
effect of memorized numerosity were forwarded to a
second-level one-sample t test.

Finally, to test the specificity of the SVR analysis to the
parametric order of the four numerosities, we performed
exhaustive whole-brain SVR searchlight analyses for all
possible permutations of numerosity labels. To achieve
this, we computed distance rank order as a sum of the
absolute difference of adjacent ranks [e.g., 11, 13, 7, and
9 numerosity is distance 5 (|3–4|&|4–1|&|1–2|)] for all
possible permutations of the numerosity order. Then, the
permutations were grouped according to their distance
from the original rank order. We used 12 instead of 24
permutations as the distances of rank order permutations
are symmetric. Including the permutation with the correct
linear order, the 12 permutations are aggregated into five
classes depending on their distance from the correct
linear order. Then, for each permutation analysis, we ex-
tracted the prediction accuracies of the group-peak vox-
els that are defined in the original analysis. For statistical
assessment, we calculated the mean prediction accuracy
across related time bins (WM time bins 3–8) for each peak
voxel for each distance group (see Fig. 3C).

Results
Behavioral performance

Thirty-four participants performed with 65.36 ! 3.29%
(mean ! SD) accuracy in the demanding DMTN task
across the four experimental runs (Fig. 2A). To test
whether the behavioral performance differed for the four
numerosity values, we performed a one-way repeated-
measures ANOVA with four levels, one for each numer-
osity. This test revealed a significant main effect (F(3,135) $
7.52, p % 0.001). Post hoc t tests (Bonferroni corrected for
multiple comparisons) between performances were sig-
nificant for numerosity values 7 and 13 and 9 and 13 (p %
0.05/6; Fig. 2A). This is expected because we did not
control for the Weber–Fechner effect except for the low-
est numerosity (which we did due to subitizing concerns).
As a result, as the numerosity increases, it becomes more
difficult to differentiate between the sample and alterna-
tive stimuli, thus resulting in a lower performance for high
numerosities (Fechner, 1966) but is unlikely to affect WM
processing.

Behavioral performance on number naming test
assessing countability

To test whether participants were able to count the
numerosities used in the current study, participants per-
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formed an additional number-naming test. Previous re-
search in tactile numerosity indicated the subitizing
threshold for comparable stimuli to be four pulses (Riggs
et al., 2006; Plaisier et al., 2009; 2010; Plaisier and
Smeets, 2011; Spitzer et al., 2014a; Tian and Chen, 2018).
The approximation of the subitizing threshold identified in
the present study is in line with these reports (Fig. 2B). As
expected, participants’ perceptual accuracy decreased
with increasing numerosity, and performance decreased
to 50% when more than three pulses were presented.
Similarly, the distance between the true and estimated
numerosity increased with increasing numerosities (p %
0.001, linear trend analysis; Fig. 2C).

Multivariate mapping of regions that code
numerosity as WM content

The time-resolved, searchlight-based multivariate re-
gression analysis was performed to identify brain regions
representing estimated numerosity memoranda. The SVR
MVPA analysis for the WM retention period revealed
numerosity-specific responses in the left premotor cortex
(PMC) slightly extending to the primary motor area (MI),
left middle frontal gyrus (MFG), left superior frontal gyrus
(SFG) extending into bilateral supplementary motor areas
(SMA), right SFG extending to the right frontal pole, and
right MFG extending into the pars triangularis of the right
inferior frontal gyrus (IFG). Results are reported at p %
0.05, FWE corrected at the cluster level with a cluster-
defining threshold of p % 0.001 (Fig. 3, Table 1).

For the sake of completeness, we investigated whether
numerosity information could be decoded from the IPS at
an uncorrected statistical threshold of p % 0.001. We
found a cluster in the right PPC extending to the IPS (peak
at MNI: x $ 36, y $ '52, z $ 36 mm; z score $ 3.89; k $
164), which was identified as hIP1 with a 39.5% proba-
bility and hIP3 with a 5.9% probability using the SPM
anatomy toolbox (Eickhoff et al., 2005) at puncorrected %
0.001.

Control analyses
To test whether the identified decoded information is

indeed specific to the memorized numerosity representa-
tion, we applied the same searchlight procedure to the

nonmemorized numerosity stimulus. This analysis did not
reveal any clusters with above-chance prediction accu-
racy at pFWE-Cluster % 0.05.

Additionally, we conducted a univariate parametric
analysis to test whether the decoding results could be due
to differences in activation strength between WM con-
tents. A second level t test revealed no significant voxels
at pFWE-Cluster % 0.05, thus providing evidence for the
multivariate nature of the numerosity representations
identified in this study rather than the modulation of uni-
variate mean activity.

Finally, we performed label-permutation tests to ensure
the specificity of the linear ordering of stimuli in the SVR
MVPA. Higher prediction accuracies were expected when
the activation patterns in a given brain region represented
the correct order of the four numerosity labels, and it was
expected to decrease with the distance from the correct
ordering. As expected, the prediction accuracy during
WM was the highest for the true-labeled data and de-
creased with increasing distance from the correct order-
ing (Fig. 3C).

Discussion
The current study, to our knowledge, is the first to

identify brain regions that code approximate numerosity
WM content using human neuroimaging methods. Thus,
this study extends the broad literature on ANS perception
to the maintenance of mental representations, which can
be used for higher-order cognitive functions. We used a
well established, whole-brain, searchlight, DMTN para-
digm to identify representations of tactile approximate
numerosity memoranda. Specifically, we used an SVR
technique, which, in contrast to support vector machines,
treats the retained WM content as a continuous variable
and thus predicts the ordering of content along the vari-
able, rather than a singularly specific class label. Conse-
quently, an above-chance prediction accuracy in a brain
region means that the content-specific activation patterns
follow a linear ordering according to the associated nu-
merosity. Our searchlight analysis identified a distributed
network spanning the left PMC, bilateral SFG, bilateral
SMA, and right MFG extending into right IFG. Therefore,

Figure 2. A, Mean rate of correct responses across participants (n $ 34) for different numerosities in the main WM DMTN task. The
figure shows that the WM performance decreases with increasing numerosity. Error bars represent standard derivation (SD). Asterisks
indicate statistical significance for pairwise t tests, Bonferroni corrected for multiple comparisons (p % 0.05/6). B, Mean performance
across subjects for estimated numerosity in number naming task (mean ! SD). C, True numerosities versus mean numerosity
estimations (error bars show SD).
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these regions contain linearly ordered, multivariate WM
representations of the numerosities.

Our results are in line with previous numerosity WM
studies in NHPs and human EEG, which have established
the central role of the PFC. Indeed, previous unimodal and
multimodal studies have identified content-specific repre-
sentations in the PFC (Nieder and Miller, 2004; Tudusciuc
and Nieder, 2009; Spitzer et al., 2014a; Nieder, 2016;
Jacob et al., 2018). More specifically, in humans, para-
metric modulation of upper-# oscillations in the right lat-

eral PFC has been shown to reflect analog numerosity
estimation that has been derived from discrete se-
quences, both within and between stimulus modalities
(Spitzer et al., 2014a). Thus, the numerosity representa-
tions in the PFC are likely to be supramodal in nature.
However, those studies used either electrophysiological
recordings from an a priori brain region or have used
univariate data analysis methods. The present study ex-
tends the literature on numerosity WM in the following two
ways: first, to whole-brain fMRI data; and second, to

Figure 3. A, Brain regions coding information for the memorized estimated numerosities. Group-level results of a t-contrast testing
the 12 s WM delay for above-chance prediction accuracy. Brain regions carrying information about memorized scalar magnitudes are
as follows: IFG, MFG, PMC, SMA, and SFG. B, Time courses of decoding accuracies of remembered (red) and nonremembered (gray)
stimuli for all identified brain regions in the main analysis (Fig. 3A). Error bars indicate standard error of the mean (SEM). The figure
shows that, for all clusters depicted in the main analysis, there is more numerosity-specific WM information for the remembered than
for the forgotten numerosity, and the information is present throughout the WM delay period. C, Results of the label permutation tests.
Five bars are shown for each brain region, respectively. Each bar displays the mean prediction accuracy estimated from the distance
to correct order groups. The shade of the bar color, ranging from black to white, depicts the different distance to correct ordering.
Black bars indicate the mean prediction performance of the group with the correct linear order, while white bars represent the mean
prediction accuracy derived from the most linearly unordered data. Brain regions tested for label permutation are: IFG, MFG, PMC,
SMA, and SFG. Error bars indicate SEM.
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multivariate data analysis methods, specifically the SVR
MVPA. The benefits of multivariate over univariate analy-
sis methods have been well established (Haynes, 2015).
Multivariate analysis techniques are sensitive to the com-
binatorial aspects of voxel activity, thereby enabling the
identification of spatially distributed representations
(Haynes, 2015; Hebart and Baker, 2018). Thus, our results
agree with and extend the previous NHP and human EEG
numerosity WM findings to whole-brain, spatially distrib-
uted activity patterns, suggesting that estimated numer-
osity WM content is maintained in the LPFC (Nieder et al.,
2002; Nieder and Miller, 2003, 2004; Tudusciuc and Nie-
der, 2009; Spitzer et al., 2014a; Nieder, 2016).

It should be noted that we used temporally distributed
tactile numerosity stimuli as the WM memoranda, namely
the numerosity, was presented as a sequence of pulses.
Evidence exists for potential differences in perceptual
processing of spatially and temporally distributed numer-
osities, where spatially distributed stimuli appear to be
processed in parietal regions while temporarily distributed
stimuli do not (Cavdaroglu and Knops, 2019). In line with
the finding of Cavdaroglu and Knops (2019), we used
temporally distributed stimuli and did not find evidence of
WM representations in posterior regions in our full brain
FWE-corrected analysis. However, a small cluster (k $
164) extending to right IPS was observed to represent
remembered numerosity content at an uncorrected
threshold of p % 0.001. While our results agree with
numerosity WM findings in NHPs that suggest frontal
rather than parietal coding for spatial numerosity stimuli
during WM retention (for review, see Nieder, 2016), further
investigation is needed to conclusively decide for the role
of the IPS. The role of the IPS could be interpreted as
specific to perceptual processing, and therefore was only
revealed at a lower threshold in our analysis, while the
PFC contains WM instead. Alternatively, a potentially dif-
ferent nature of the neuronal code (e.g. spatial distribution
of a multivariate code) in the IPS might lead to the ob-
served findings (Hebart and Baker, 2018). That is, it might
be the temporarily distributed nature of the applied stimuli
that drives the effects in the PFC, and the IPS would be
more specialized for spatially distributed presentations as
used by most previous studies. A future direct compari-
son of our results with spatial numerosity stimuli is nec-
essary to test for differences determined by the stimulus
types.

Moreover, while the literature relating to numerosity
WM is limited, there is extensive work exploring the WM
representation of abstract quantities more generally. Spe-
cifically, the frequency discrimination task has been sys-
tematically explored in a multitude of modalities with a
wide range of methods (Romo et al., 1999; Lemus et al.,
2009; Spitzer et al., 2010; Spitzer and Blankenburg, 2011;
2012; Fassihi et al., 2014; Vergara et al., 2016; Schmidt
et al., 2017; von Lautz et al., 2017; Uluç et al., 2018; Wu
et al., 2018). Numerosity and frequency share several
traits, particularly that they are both abstract magnitudes
that may be represented in a supramodal fashion (Nieder
and Miller, 2003; Spitzer and Blankenburg, 2012; Nieder,
2016; Vergara et al., 2016). However, whether their under-
lying WM representations are maintained by a shared
network has yet to be explored. The present study pro-
vides an initial step toward resolving this question by
providing the first evidence that frequency and numeros-
ity WM representations are maintained in overlapping
brain regions. We identified numerosity-specific WM con-
tent in the right IFG, SMA, and left PMC, which is in
agreement with results from frequency studies also using
an fMRI MVPA approach in humans (Schmidt et al., 2017;
Wu et al., 2018; Uluç et al., 2018). Unimodal and multi-
modal research in both NHPs and humans has identified
frequency-specific content in the right LPFC and SMA,
thereby suggesting that the WM representations are mo-
dality independent in nature (Romo et al., 1999; Hernán-
dez et al., 2002, 2010; Barak et al., 2010; Spitzer et al.,
2010; Spitzer and Blankenburg, 2011, 2012; Vergara
et al., 2016; Schmidt et al., 2017; Wu et al., 2018). How-
ever, the explicit relationship between frequency and nu-
merosity still needs to be explored, particularly with
respect to the underlying neural codes of numerosity and
frequency representations (Nieder, 2017).

Additionally, we identified numerosity-specific content
in the left PMC. Previous findings from frequency WM
fMRI MVPA studies identified abstract quantity informa-
tion in the PMC (Schmidt et al., 2017; Uluç et al., 2018; Wu
et al., 2018) . Moreover, the dorsal PMC has been shown
to represent abstract numerical rules, such as comparison
and calculation (Gruber et al., 2001; Eger et al., 2003;
Nieder, 2005). This is in line with the present task, which
required the comparison of numerical quantities, suggest-
ing representation of task-relevant, numerosity-specific
information to be used in numerical comparison.

Table 1: Anatomic label and MNI coordinates of brain areas depicting memorized numerosity information during WM

Peak MNI coordinates
Cluster size Anatomical region x y z z-score Prediction accuracy

4557 Left PMC/MI '50 2 52 4.78 0.082
Left SFG '28 0 60 7.74 0.146
SMA '6 10 74 4.48 0.114

1342 Right SFG 32 50 10 4.17 0.135
Right IFG (pars triangularis) 60 24 2 4.17 0.075
Right MFG 40 50 30 3.69 0.069

All results are reported at pFWE-Cluster % 0.05 with a cluster-defining threshold of p % 0.001. Mean prediction accuracy over the delay period is reported. Ar-
eas were, where possible, identified using the SPM anatomy toolbox (Eickhoff et al., 2005).
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In summary, the data at hand is in line with the sugges-
tion of a domain general, abstract magnitude processing
system. This abstract processing system can be identified
by multivariate WM representations of tactile numerosity
stimuli within the right PFC. Together with previous find-
ings that found WM representations of tactile frequency
(Spitzer et al., 2010, 2014a; Spitzer and Blankenburg,
2012; Schmidt et al., 2017; Wu et al., 2018), visual flicker
frequency (Spitzer and Blankenburg, 2012; Spitzer et al.,
2014a; Wu et al., 2018), auditory frequency (Spitzer and
Blankenburg, 2012, Uluç et al., 2018), and the reports of
number coding (Nieder et al., 2002; Nieder and Miller,
2003, 2004; Tudusciuc and Nieder, 2009; Nieder, 2016) in
the PFC, the present study provides additional evidence
suggesting that the PFC is capable of representing both
analog quantities as well as parametric stimulus properties
as frequencies. Thus, we provide preliminary evidence for a
higher-level, modality- and format-independent, abstract
quantitative WM system that resides within the PFC.
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A B S T R A C T

Working memory (WM) representations are generally known to be influenced by task demands, but it is not clear
whether this extends to the somatosensory domain. One way to investigate the influence of task demands is with
categorization paradigms, wherein either a single stimulus or an associated category is maintained in WM. In the
somatosensory modality, category representations have been identified in the premotor cortex (PMC) and the
intraparietal sulcus (IPS). In this study we used multivariate-pattern-analysis with human fMRI data to investigate
whether the WM representations in the PMC, IPS or other regions are influenced by changing task demands. We
ensured the task-dependent, categorical WM information was decorrelated from stimulus features by (1) teaching
participants arbitrary, non-rule based stimulus groupings and (2) contrasting identical pairs of stimuli across
experimental conditions, where either a single stimulus or the associated group was maintained in WM. Impor-
tantly, we also decoupled the decision and motor output from the WM representations. With these experimental
manipulations, we were able to pinpoint stimulus-specific WM information to the left frontal and parietal cortices
and context-dependent, group-specific WM information to the left IPS. By showing that grouped stimuli are
represented more similarly in the Group condition than in the Stimulus condition, free from stimulus and motor
output confounds, we provide novel evidence for the adaptive nature of somatosensory WM representations in the
IPS with changing task-demands.

1. Introduction

Working memory (WM) is the ability to maintain and manipulate
representations of stimuli which are no longer being perceived (Baddeley
and Hitch, 1974) and underlies fundamental human behaviours and
abilities (Logie and Cowan, 2015). As a result, identifying the neural
correlates of WM is a major focus of scientific interest. Presently, a large
body of evidence suggests that the localization of WM content depends
on the to-be-maintained stimulus feature (Postle, 2006) as well as the
goals of the experimental condition (Lee et al., 2013). However, while
the topography of brain regions that retain specific stimulus features has
been thoroughly investigated (for a review see Christophel et al., 2017),
the influence of top-down task-demands on the localization of WM rep-
resentations is less well understood.

One means by which to investigate the influence of task-demands is
by employing categories or groups of stimuli. The act of categorizing a

stimulus abstracts the WM representation away from the stimulus’
physical features to a label or exemplar (Seger and Miller, 2010). Pre-
vious work, wherein non-human primates (NHPs) were trained to cate-
gorize images of gradual transitions between cats and dogs found that
neurons in the lateral intraparietal cortex (LIP), analogous to the human
intraparietal sulcus (IPS, Grefkes and Fink, 2005), represented the cate-
gorical decision instead of a continuous change with the stimulus feature
(Freedman et al., 2001). Moreover, LIP neurons have also been shown to
change their categorical firing pattern with changing category definitions
(Freedman and Assad, 2006), known as adaptive coding (Duncan, 2001).
Recently, an optogenetic study in mice went a step further and showed
that parietal neurons are necessary for learning new olfactory category
boundaries and generalizing from category exemplars to novel stimuli
(Zhong et al., 2019).

While extensive work has been done exploring visual categorization
in NHPs (Fitzgerald et al., 2011; Fitzgerald et al., 2012; Freedman and
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Assad, 2016; Freedman et al., 2001; Sarma et al., 2016; Swaminathan
and Freedman, 2012), the generalizability of the findings to other mo-
dalities is poorly understood. Rossi-Pool et al. (2016) adapted the classic
delayed-match-to-sample (DMTS) comparison paradigm to explore the
neuronal response of somatosensory categorical-match decisions in
NHPs. The researchers recorded from primary somatosensory (SI) and
premotor cortices (PMC) and found distinct neuronal firing patterns for
the respective WM categories in the PMC. Moreover, a recent study using
whole-brain multivariate pattern analysis (MVPA) of human fMRI data
identified perceptual categories of vibrotactile stimulation in the PMC
(Malone et al., 2019). Interestingly, also using MVPA with fMRI data,
supramodal auditory and somatosensory category representations were
identified in the IPS (Levine and Schwarzbach, 2017). Thus, somato-
sensory categorical-information has been consistently identified in the
IPS and PMC. The present study was designed to extend this finding by
identifying brain regions which maintain somatosensory WM represen-
tations in a context-dependent manner.

To this end, we defined four stimuli, composed of different pulse
sequences similar to those employed by Rossi-Pool et al. (2016), which
participants were pseudorandomly trained to pair together into two
groups of two stimuli. We used a DMTS paradigm with two conditions: a
Stimulus condition where participants were instructed to maintain only
the temporal nature of the cued stimulus, and a Group condition where
participants maintained the cued stimulus’ group. Using a multivariate
ANOVA approach (MANOVA, Allefeld and Haynes, 2014) with human
fMRI data, we first identified regions maintaining condition-general
stimulus-specific WM information and, in a second step, identified
context-dependent group-specific WM information. We hypothesized
that our experimental manipulation, maintaining individual stimuli in
the Stimulus condition as opposed to groups of stimuli in the Group
condition, would result in the condition-dependent modification of the
multivariate WM representations, such that, in the Group condition, the
group members’ representations would be more similar to one another
than in the Stimulus condition.

2. Materials & methods

2.1. Participants

In total, data from 38 participants was collected and two were
excluded from the analysis due to low task performance, which was
defined as a mean performance on either condition, Stimulus or Group,
two standard deviations below the group mean. The final data set con-
sisted of 36 participants between the ages of 20 and 39 (mean 26.92 !
4.66 (SD) years, 19 male and 17 female). All participants provided
written informed consent to take part in the study which was approved
by the Ethics Committee of the Freie Universit€at Berlin and corresponded
to the Human Subject Guidelines of the Declaration of Helsinki.

2.2. Procedure

The experiment took place across two sessions: training and fMRI
data collection. The training session was used to determine the partici-
pant’s sensory threshold and to adjust the subjective amplitude as well as
familiarize participants with the stimuli (detailed in 2.3) and the
experimental procedure (detailed in 2.4).

The training session lasted between 40 min to an hour. First, the
participant-specific stimulation intensity was determined by estimating
the participant’s subjective detection threshold (mean: 2.33 mA ! .75
(SD)). The chosen amplitude, about double the detection threshold, was
always below the participant’s motor and pain thresholds resulting in a
mean factor increase of 2.13 (! .50). Next, the four experimental stimuli
were presented to the participant. The participant was able to freely
replay each of the stimuli until they felt confident that they could
differentiate the stimuli. The participant was then taught their assigned
grouping. The groupings were introduced by playing the group members

one after another and then participants were able to freely replay the
grouped stimuli. To ensure participants had learned their assigned
grouping, two stimuli were chosen at random and the participant indi-
cated whether they belonged to the same group. This was repeated ten
times. Next, the participant completed one block of each experimental
condition (see 2.4). Performance above 80% on all of the behavioural
tests was used to determine whether participants could perform the task.
The training session thus served to familiarize participants with the
stimuli, groupings and trial structure, including their assigned response
and cue-mappings.

2.3. Stimuli & groupings

Stimuli were presented to the participant’s left median nerve using a
Digitimer DS7A constant current neurostimulator (Digitimer Ltd, Hert-
fordshire, UK) with MR-compatible adhesive electrodes (GVB-geliMED
GmbH, Bad Segeberg, Germany). Four stimuli, each consisting of a
different pulse sequence lasting 0.75 s, were created and used for all
participants (Fig. 1A). The stimuli were composed of four 50 μs pulses
with two of the pulses marking the on- and offset of each stimulus. The
timing of the two remaining pulses was chosen to create a stimulus set
with similar differentiability and performance rates across the stimuli, as
assessed using behavioural pilot data. Stimuli were presented using
custom MATLAB code (R2013b, The MathWorks, Inc., Natick, Massa-
chusetts, United States) and the Psychophysics Toolbox extension
(Brainard, 1997).

Each participant was pseudorandomly assigned a grouping. For four
stimuli, three permutations of two groups of two stimuli exist (1) group
A: s1 þ s2 vs group B: s3 þ s4, 2) A: s1 þ s3 vs B: s2 þ s4, and (3) A: s1 þ
s4 vs B: s2 þ s3). To protect against potential naming confounds, three
additional groups were included with the group A vs group B label
exchanged (4) group A: s3 þ s4 vs group B: s1 þ s2, etc.). Therefore, six
stimulus groupings were used in total, and each was pseudorandomly
assigned to six participants. Arbitrary groupings were implemented
because, while neurophysiological recordings can dissociate categorical
from stimulus feature-specific neuronal activity, the distinction is more
nuanced with fMRI data. Rule-based categorization, wherein categories
are formed by applying a rule to stimulus features, is inherently coupled
with the neuronal response to the underlying features. This is in contrast
to arbitrary categorization, which we refer to as grouping, which clas-
sifies stimuli without the use of a stimulus-based rule (Seger and Miller,
2010). Consequently, a group can consist of physically unrelated mem-
bers whereas category members share common features. Therefore, the
use of arbitrary groups of stimuli, where groups are not defined according
to physical attributes, provides a means of exploring the effect of
task-demands on WM stimulus representations while maintaining the
ability to dissociate condition-effects from stimulus features with neu-
roimaging data, a technique that has previously been employed in visual
(Li et al., 2007; Fitzgerald et al., 2011; Senoussi et al., 2016) and
audiotactile (Levine and Schwarzbach, 2018) studies.

2.4. Experimental conditions and design

The experiment comprised two independent blocks of WM condi-
tions: Stimulus and Group. The trial timing and structure was identical in
the two conditions and each experimental run consisted of one Stimulus
and one Group block of trials (Fig. 1B). Each trial began with the
sequential presentation of two different 0.75 s stimuli with a 0.5 s inter-
stimulus-interval. Stimuli from the same group were never presented
together in a trial. Additionally, during stimulus presentation, the fixa-
tion cross increased in brightness to help participants attend to the
stimulus as well as ensure that the on- and offset of each stimulus was
well defined. A 0.5 s visual retro-cue, square or diamond, presented after
the second stimulus, indicated which of the two stimuli should be
maintained in WM for the following 7.5 s delay period. In the Stimulus
trials, participants were instructed to maintain only the cued stimulus. A
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target stimulus, one of the four experimental stimuli, was presented after
the delay. In the Stimulus condition, participants decided whether the
target stimulus was identical to the maintained stimulus. In contrast, in
the Group condition, participants were instructed to maintain the group
to which the cued stimulus belonged in WM and indicated whether the
target was either the cued stimulus or it’s group member. Thus, the
target-specific decision and response differed between the two
conditions.

For both conditions, the correct target, meaning the target matching
the cued stimulus, or the cued-stimulus’ group member in the Group
condition, was presented in 50% of trials. After the target was presented,
a question mark replaced the fixation cross and a yellow and blue circle
appeared on either side. Participants indicated whether the target was a
match to the cued stimulus by selecting, via button press using the right
index or middle finger, either the blue or yellow circle according to a
pseudorandomly-defined response mapping. The response period was
limited to 1.5 s. The quick response encouraged participants to actively
keep the maintained stimulus or group in WM, thereby allowing a fast
comparison to the target stimulus. Feedback was provided after each
trial. Importantly, we implemented retro-cues (shapes) to dissociate
perceptual processes from WM content as well as unpredictable response
colour-map locations (left, right) to prevent a direct mapping between
WM content and the decision. Furthermore, we counter-balanced the
retro-cues and response choices across participants.

For each participant, four fMRI runs of experimental data were
collected. Each run consisted of one Stimulus and one Group condition
block, the order of which was counter-balanced across runs for each
participant and was verbally communicated to the participant at the
beginning of each run. The transition between blocks was indicated by
the visual presentation of the mean performance on the first block, fol-
lowed by the fixation cross for 12 s before beginning the second block.
Moreover, we ensured that participants performed the correct task by
monitoring their performance and asking after each run. The conditions
consisted of identical trials, meaning that we presented the same stimulus
pairings in each condition, and the trial order was randomized sepa-
rately. In each condition, participants remembered each stimulus eight
times, resulting in a total of 32 trials/condition (8 repetitions x 4 stimuli)
and 64 trials/run (32 trials x 2 conditions). A trial lasted 12 s and inter-
trial intervals (2 or 4 s) were equally distributed across trials. A run lasted
15 min. Finally, after data collection was completed, participants

underwent a debriefing session wherein they drew a portrayal of the
stimuli and explained the approach they used to represent the stimuli and
groups.

2.5. Data acquisition

Functional imaging was performed on a 3T Siemens Tim Trio system
(Siemens Medical Solutions, Erlangen, Germany) equipped with a 32-
channel head coil at the Centre for Cognitive Neuroscience Berlin. 475
volumes were acquired in each of the four experimental runs using a
gradient-echo echoplanar T2*-weighted imaging sequence (TR ¼ 2000
ms, TE ¼ 30 ms, 37 contiguous slices, ascending order, gap ¼ 20%,
matrix size¼ 64$ 64, 3$ 3$ 3 mm3, flip angle¼ 70%, FOV¼ 192 mm).
Additionally, a T1-weighted, whole-brain structural scan was obtained
using a Magnetization Prepared Rapid Gradient Echo sequence (TR ¼
1900 ms, TE ¼ 2.52 ms, 176 slices, matrix size ¼ 256 $ 256, 1 $ 1 $ 1
mm3, flip angle ¼ 9%, FOV ¼ 256 mm). Furthermore, we implemented
‘delay-locked’ acquisition timing, wherein the onset of the retro-cue
coincided with the onset of a volume acquisition. Delay-locking en-
sures that a given slice is always measured at the same time relative to the
experimental paradigm (Christophel et al., 2012; Schmidt et al., 2017).

2.6. fMRI data analysis

All data analyses were performed using SPM12 (Wellcome Trust
Centre for Neuroimaging, Institute for Neurology, University College
London, London, UK) in combination with the cvMANOVA Toolbox
(Allefeld and Haynes, 2014) and custom MATLAB code (R2013b, The
MathWorks, Inc., Natick, Massachusetts, United States; code available
upon request). We hypothesized that our experimental manipulation,
maintaining individual or groups of stimuli in WM, would result in the
context-dependent modification of WM information such that the
multivariate representations of grouped stimuli should be more similar to
one another in the Group condition than in the Stimulus condition. To
identify differences between WM representations across conditions, we
took advantage of the cvMANOVA’s ability to perform interaction ana-
lyses in multivariate space. All reported coordinates correspond to MNI
space and, where possible, the SPM anatomy toolbox was used to
establish cytoarchitectonic references (Eickhoff, 2007). The brain figures
were made using MRIcron (www.nitrc.org).

Fig. 1. Experimental Design. A. Visual depiction of the tactile stimuli used in the study. Four 0.75 s duration stimuli, each composed of four 50 μs electrical pulses
and participant-specific amplitude (mA), with different stimulation pulse timings were used. The stimuli were pseudorandomly grouped into two groups of two
stimuli, with group assignment balanced across participants. Six different groupings were used, for example: group A ¼ stimulus 1 þ 2 vs group B ¼ stimulus 3 þ 4. B.
The design consisted of two blocks of conditions: Stimulus and Group. For both conditions, each trial began with the sequential presentation of two different stimuli. A
visual retro-cue indicated which stimulus should be maintained in WM during the delay period. In the Stimulus trials, participants maintained only the cued stimulus,
whereas in the Group trials they were instructed to maintain the group which the cued stimulus belonged to. An example of the WM content is shown for the Stimulus
trials in the thought bubble above the experimental paradigm, and below for the Group trials. After the delay, participants indicated with a button response whether a
target stimulus matched the maintained stimulus (Stimulus trials) or was a member of the same group (Group trials). Visual feedback was provided after each trial.
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2.6.1. Data pre-processing
A 1/192 Hz high pass filter was used to remove slow varying trends in

the data. To preserve the spatiotemporal structure of the data for the
cvMANOVA, pre-processing was limited to slice-time correction and
motion-correction, wherein images are initially realigned to the first
image and then to the mean using six parameter rigid body trans-
formation, to reduce slice order and movement-related artefacts. Func-
tional images were normalized to standard MNI space using SPM’s
unified segmentation. Structural images were coregistered to the mean
functional image.

2.6.2. First-level models
General Linear Models (GLMs) were defined for each participant to

yield run-wise beta estimates of voxel-wise activation for the regressors
of interest. First, we defined a regressor for each cued stimulus for each
condition separately (4 stimuli x 2 conditions ¼ 8 regressors). The re-
gressor onsets coincided with the retro-cue offset and spanned the WM
delay period. We refer to the Stimulus condition regressors as S1, S2, S3,
and S4 and the associated Group condition regressors as A1, A2, B3, and
B4. The regressor label indicates the stimulus number (1:4) as well as the
associated group (A, B). Importantly, the regressors for both conditions,
Stimulus and Group, were defined according to the participant-specific
grouping. Thus, the regressors S1 and A1 refer to the same physical
stimulus in the Stimulus and Group condition respectively. Nine impulse
regressors of no interest were included with the onsets defined according
to the respective trial timing: stimulus perception collapsed over first and
second presentation (4 stimuli), visual retro-cues (2 cues), target pre-
sentation (1) and response (2 options). Thus, each run was modelled with
17 regressors and the first level models included 72 regressors ((17 re-
gressors x 4 runs) þ 4 run constants) which were convolved with the
hemodynamic response function.

2.6.3. Searchlight cvMANOVA
The resulting run-wise beta parameter estimates were used in a

whole-brain searchlight, cross-validated, multivariate analysis of vari-
ance (cvMANOVA, Allefeld and Haynes, 2014) which allowed the iden-
tification of WM information in a spatially-unbiased manner
(Kriegeskorte et al., 2006). Analogous to well-established multivariate
decoding methods such as support vector machines, the cvMANOVA
identifies brain regions which show a difference between the multivar-
iate BOLD activation patterns for contrasted stimuli. In the present study,
the cvMANOVA was chosen instead of other multivariate decoding
methods for a number of reasons. First, the cvMANOVA provides a
parameter-free analysis built on a data-specific probabilistic model.
Second, the resulting pattern distinctness value (Ds) directly estimates
the amount of multivariate variance accounted for by the contrast. Thus,
the pattern distinctness value indicates the dissimilarity of, in the present
case, the contrasted WM representations. Third, and most importantly,
the cvMANOVA enables interaction analyses to be performed in multi-
variate space which is not possible using classifiers (for a more in-depth
description, see Allefeld and Haynes, 2014).

Using the cvMANOVA toolbox (https://github.com/allefeld/cvmano
va), a 4-voxel radius searchlight was defined (~257 voxels) which
delineated which voxels would be included in the analysis. The run-wise
beta estimates for voxels contained within the searchlight were then fit
with a multivariate normal distribution for each contrasted condition
separately (e.g. S1 – S2). The pattern distinctness is defined as the
magnitude of the covariance between contrasted conditions normalized
with respect to the error covariance. Thus, the pattern distinctness esti-
mates the amount of variance which can be explained by the contrast,
measured in error variance units (Allefeld and Haynes, 2014). In other
words, the larger the pattern distinctness, the more variance is accounted
for by the contrast, the more distinctive the WM representations. More-
over, we employed a cross-validation approach wherein data from three
of the four runs were used to fit the multivariate normal distributions and
the remaining data were used to test the generalizability of the fit. This

cross-validated, pattern distinctness estimate (Ds) was recorded as the
value at the centre of the searchlight. The searchlight then progressed,
voxel by voxel, through the brain producing a participant-specific,
whole-brain pattern distinctness image for the contrast of interest. A
whole-brain searchlight analysis was performed because, while we had a
strong a priori hypothesis regarding the cortical regions (IPS, PMd),
mainly from NHPs, the relevant subregions were unknown.

2.6.4. Stimulus-specific WM information
First, for each participant, we performed pair-wise stimulus contrasts

to identify brain regions maintaining stimulus-specific WM information
in both, Stimulus and Group, experimental conditions. To ensure that the
cvMANOVA identified stimulus-specific information and not information
relating to the different experimental conditions, stimuli in each condi-
tion were first contrasted separately and a second level conjunction
analysis (Nichols et al., 2005) was used to identify stimulus-specific WM
information across both conditions (explained in detail below). More-
over, to ensure that the identified information related to the cued and not
the uncued stimulus on each trial, pair-wise contrasts were performed on
a specific set of stimulus comparisons. The experimental design
comprised trials where stimuli from the same participant-specific group
were never presented together (i.e., A1 and A2 or B1 and B2). Thus, on
trials when A1 was cued to be maintained in WM, B3 or B4 was the
uncued stimulus. The same is true for trials where A2 was cued: B3 or B4
was uncued. Thus, regressors for A1 and A2 (and B3 and B4) were
defined using trials where the cued stimulus differed (A1 or A2) but the
uncued stimuli are the same within a regressor (B3, B4). We refer to these
regressors as matched with respect to the uncued stimuli. Consequently,
regressors for A1 and B3 were not matched with respect to the uncued
stimuli. The same was true for the Stimulus condition: S1 and S2, S3 and
S4 are matched for the uncued stimuli. To ensure that the WM infor-
mation was specific to the cued stimuli and not confounded by activation
relating to the uncued stimuli, only regressors matched for the uncued
stimuli were contrasted (condition-specific contrast matrices: Ds(Stimu-
lus condition) ¼ mean([(S1 – S2), (S3 – S4)]), Ds(Group condition) ¼
mean([(A1 – A2), (B3 – B4)]). Thus, the stimulus-specific WM analysis
identified brain regions with pattern distinctness estimates greater than
zero (Ds > 0). Thereby identifying regions with multivariate represen-
tations for contrasted stimuli in the Stimulus and Group conditions
respectively. The complete contrast matrices are provided in the Sup-
plemental Table 1a.

The resulting whole-brain, participant-specific pattern distinctness
(Ds) images for both the Stimulus and Group condition contrasts were
normalized to MNI space, smoothed with an 8 mm FWHM kernel and
entered into a second-level repeated-measures ANOVA. A conjunction
across the two experimental conditions identified brain regions main-
taining condition-general stimulus-specific WM information (Ds > 0)
regardless of the experimental task demands (Ds(Stimulus-specific) ¼
mean([(S1 – S2), (S3 – S4)]) \ mean([(A1 – A2), (B3 – B4)]).

All statistical maps were thresholded at p < 0.05 family-wise error
(FWE) corrected at the cluster level with a cluster-defining threshold of p
< 0.001. In SPM, FWE correction relies on random field theory assuming
smooth spatial maps of activation (for a description see Ostwald et al.,
2019).

2.6.5. Context-dependent WM information
Next, as the core test of group-specific WM, we identified brain re-

gions maintaining context-dependent WM information. We hypothesized
that our experimental manipulation, forming groups of stimuli in the
Group condition, would result in the modification of the multivariate
representation of stimuli from the same group such that the stimuli share
a more similar WM representation in the Group condition than in the
Stimulus condition. Thus, the experimental manipulation should result in
an interaction across conditions such that the pattern distinctness esti-
mates between group members should differ in the two conditions
(Ds(Group condition) < Ds(Stimulus condition)). Note, it is insufficient
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to identify group-specific WM information by contrasting the groups
against one another ([A1, A2] - [B3, B4]) because the groups were
composed of physically distinct stimuli. Thus, contrasting group A
against group B would identify a mixture of stimulus- and group-specific
WM information. Instead, to isolate context-dependent, group-specific
information, we performed an interaction analysis across the Stimulus
and Group conditions (interaction contrast matrix Ds(interaction) ¼
mean([(A1 – A2) – (S1 – S2)], [(B3 – B4) – (S3 – S4)]). Importantly,
analogous to the stimulus-specific WM analysis, this interaction only
contrasts regressors which were matched for the respective uncued
stimuli. The complete contrast matrix is provided in the Supplemental
Material Table 1b. Analogous to the stimulus-specific WM information,
the resulting whole-brain, interaction pattern distinctness contrast im-
ages were normalized to MNI space and smoothed with an 8 mm FWHM
kernel. Participant-specific images were forwarded to a second level one-
sample t-test against zero to identify brain regions containing context-
dependent group-specific WM representations.

As an additional step to visualize the interaction results, we plotted
the mean participant-specific, context-dependent pattern distinctness
values obtained for each condition (Ds(Stimulus condition)¼mean([S1 –
S2, S3 – S4]); Ds(Group condition) ¼ mean([A1 - A2, B3 – B4]) from the
whole-brain searchlight group-level interaction result peaks.

2.7. Control analyses

2.7.1. Group representation control analysis
While the interaction analysis indicates a differential representation

of the stimuli across the two experimental conditions, it does not warrant
the presence of a group representation in the Group condition. It is
possible that, instead of being represented according to group member-
ship, all stimuli are represented more similarly in the Group condition
than in the Stimulus condition. Contrasting different-group members
against same-group members is the most direct method for determining
whether group representations were formed in the Group condition,
because grouped stimuli should share a more similar WM representation
than stimuli from different groups (Ds(different-group) > Ds(same-
group)). Unfortunately, this analysis is confounded. Contrasts of stimuli
from different groups (i.e., A1 - B3) are unbalanced with respect to the
uncued stimulus (see 2.6.4 for an explanation) resulting in an over-
estimation of the pattern distinctness for contrasts of stimuli from
different groups.

However, with this confound in mind, we performed an additional
searchlight cvMANOVA analysis to determine whether, in the Group
condition, stimuli from different groups were represented more differ-
ently than stimuli from the same group. We defined four different-group
contrasts (A1 - B3, A1 - B4, A2 - B3, A2 - B4) and two same-group contrast
(A1 - A2, B3 - B4). Next, we extracted the pattern distinctness values for
the peak voxels identified by the context-dependent WM analysis (2.6.5)
and performed a paired t-test to determine whether the mean participant-
specific different-group pattern distinctness values were significantly
different from the same-group values.

2.7.2. Behavioural control analysis
In a second control analysis, we aimed to identify whether the neu-

roimaging results were driven by the observed behavioural differences
across stimuli and conditions. To this end, we median-split the partici-
pants according to the participant-specific difference in performance
between stimulus 3 and 4 in the Stimulus condition. We chose this
definition because this was the major cause of the observed behavioural
effects. The two sub-samples (n¼ 18) were composed of participants who
either performed similarly across all four stimuli and those who per-
formed differently. We then re-ran the stimulus-specific (2.6.4) and
context-dependent WM analyses (2.6.5) for each sub-sample indepen-
dently. We expected that we would be able to replicate our main findings
in both sub-samples, thereby demonstrating that the observed neuro-
imaging results are independent of the differences in behaviour.

However, if only the differently-performing sub-sample was able to
reproduce the results, then the neuroimaging results were indeed driven
by the difference in behavioural factors.

2.7.3. Response time control analysis
Next, we performed a control analysis to determine whether the

neuroimaging results were influenced by the observed difference in
response times. To this end, we defined new first level models and
included an HRF-convolved parametric response time regressor of no-
interest. We then repeated both the stimulus-specific (2.6.4) and the
context-dependent WM (2.6.5) main analyses. We expected that we
would be able to replicate our main findings, thereby demonstrating that
our neuroimaging findings are independent of the observed differences
in response times.

2.7.4. WM-specificity control analysis
Next, we performed a control analysis to ensure that the identified

regions were specific to the stimulus in WM and not corrupted by
ongoing perceptual processes. To this end, we repeated both the
stimulus-specific (2.6.4) and the context-dependent (2.6.5) WM ana-
lyses with new first level models with regressors modelling the uncued
stimuli. This control analysis enabled the detection of information
relating to the uncued stimulus and provided a method for testing the
specificity of our results.

2.7.5. Multivariate control analysis
In a final control analysis, we aimed to determine whether the iden-

tified WM information was indeed multivariate in nature, or if the neu-
roimaging results could be explained by mass-univariate differences
between the conditions. We repeated both the stimulus-specific (2.6.4)
and the context-dependent (2.6.5) analyses using a searchlight
comprising only one voxel. This analysis collapsed the multivariate
cvMANOVA to a single dimension and tested whether the identified WM
information comprised a univariate representation.

3. Results

3.1. Behavioural results

Overall, participants performed with a mean accuracy of 81.87%
(!7.59% (SD) range: 68.36–97.27%). To test for potential performance
differences between experimental conditions or stimuli, we performed a
4 $ 2 repeated-measures ANOVA with the stimuli (1:4) and conditions
(Stimulus, Group) as within-subject factors. The ANOVA identified a
significant main effect of stimulus (F(3, 105)¼ 10.9367, p¼ 2.6098e-06,
η2¼ 0.1207) and condition (F(1, 35)¼ 5.0929, p¼ 0.0304, η2¼ 0.0234)
and no interaction between the factors (F(3, 105)¼ 2.2282, p¼ 0.0892).
Post-hoc, Bonferroni-corrected, paired t-tests of the stimulus effect
revealed it to be driven by differences in performance between stimulus 1
and 3, and stimulus 4 and all other stimuli (mean performance stimulus
1: 81.38 ! 1.52% (SE), S2: 82.55 ! 1.56%, S3: 86.15 ! 1.59%, S4:
77.39% ! 1.65%; S1 vs S3: T(35) ¼ 3.0014, p ¼ 0.0049, Cohen’s d ¼
0.5116, S1 vs S4: T(35) ¼ 2.9083, p ¼ 0.0063, d ¼ 0.4195, S2 vs S4:
T(35) ¼ 3.8237, p ¼ 0.0005, d ¼ 0.5366, S3 vs S4: T(35) ¼ 4.9355, p <
0.0001, d ¼ 0.9019). The mean performance results across participants
are shown in Fig. 2A with the stimulus labelling referring to the physical,
and not participant-specific labelling. The significant differences be-
tween stimuli (p < 0.05, Bonferroni-corrected) are indicated by grey
lines.

Participants responded with a mean of 735.1 ms ! 105.5 ms (SD),
well-within the allotted 1.5 s response window. We performed a second
4 $ 2 repeated-measures ANOVA using response time as the dependent
variable and found a main effect of condition, with Stimulus condition
response times significantly shorter than the Group condition (Stimulus
mean: 663.5 ! 17.5 ms (SE), Group mean: 807.1 ! 19.4 ms, F(1, 35) ¼
162.3934, p ¼ 1.0436e-14, η2 ¼ 0.6313), and no main effect of stimulus
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(F(3, 105) ¼ 0.5766, p ¼ 0.6316). However, an interaction between the
factors was present (F(3, 105) ¼ 5.9177, p ¼ 9.0422e-04, η2 ¼ 0.0142,
Fig. 2B). The main effect of condition is expected given the Group con-
dition required two stimuli, the two maintained group members, to be
compared with the target stimulus, thereby requiring more time than the
single comparison in the Stimulus condition. The influence of the
observed behavioural effects on the neuroimaging results is explored in
subsequent control analyses (2.7.2, 2.7.3).

Finally, we investigated whether participants performed according to
the experimental manipulation and represented groups in the Group
condition. We theorised that grouping the stimuli would influence the
congruency effect by creating an intermediate level between congruent
trials (target is identical to cued stimulus) and incongruent trials (target
is not the cued stimulus). To test this, we defined two independent 2 $ 2
repeated measure ANOVAs for the performance and response time data
with factors congruency (target stimulus from the same group as cued
stimulus or different group) and stimulus identity (same or different
stimulus from cued). Thus, the ANOVAs were composed of four cells:
congruent-same stimulus (CS: e.g. cued A1 – target A1), congruent-
different stimulus (CD: cued A1 – target A2), incongruent-‘same’ (IS),
incongruent-‘different’ (ID). For the IS and ID cells, the trials (cued A1 -
target B3 or B4) were equally divided between the two levels. Each trial
type (B3 or B4 as target) was repeated twice in each experimental run.
Thus, the IS cell comprised the first trial-instance and the ID cell the
second. The performance data ANOVA identified a main effect of con-
gruency (F(1, 35) ¼ 13.9126, p ¼ 6.7655e-04, η2 ¼ 0.1169), no effect of
group-member identity (F(1, 35) ¼ 3.3718, p ¼ 0.0748), and an inter-
action between the factors (F(1, 35) ¼ 5.8944, p ¼ 0.0205, η2 ¼ 0.0488;
Fig. 2C). The response time data replicated the performance data results
with the addition of a main effect of stimulus identity which, as seen in
Fig. 2D, is the result of the near-identical response times on incongruent
trials (congruency: F(1, 35) ¼ 52.6285, p ¼ 1.7985e-08, η2 ¼ 0.4343;
group-member identity: F(1, 35) ¼ 9.1019, p ¼ 0.0047, η2 ¼ 0.0315;
interaction: F(1, 35) ¼ 14.2528, p ¼ 5.9488e-04, η2 ¼ 0.0359). Thus,
trials when the target stimulus was a group-member of the cued stimulus
were intermediate in performance and response time to congruent and
incongruent trials, thereby providing evidence for participants having
likely maintained groups in the Group condition.

3.2. Neuroimaging results

3.2.1. Stimulus-specific WM information
Using the whole-brain, searchlight cvMANOVA, we identified regions

maintaining stimulus-specific WM information in the Stimulus and

Group experimental conditions respectively (condition-specific results
are shown in Supplemental Figure 1). Moreover, to ensure that the results
are independent from the uncued stimuli, we contrasted pairs of re-
gressors which were matched for the uncued but differed with respect to
the maintained (cued) stimulus. Because we were interested in regions
which maintain stimulus-specific WM information across experimental
conditions, we performed a second-level conjunction analysis (logical
AND, Friston et al., 2005) across the two experimental conditions to
identify regions which maintain context-general, stimulus-specific WM
(Fig. 3A (blue), Table 1a). This analysis identified a cluster in the left
inferior frontal gyrus (IFG) extending to the middle frontal gyrus (MFG)
as well as a cluster in the left superior parietal lobule (SPL) as main-
taining stimulus-specific WM information independent of experimental
context.

3.2.2. Context-dependent WM information
We hypothesized that our experimental manipulation, grouping

stimuli in the Group condition and treating them as individuals in the
Stimulus condition, would result in the context-dependent modification
of the group members’ pattern distinctness estimates. We expected a
smaller difference between the multivariate WM representations of the
grouped stimuli in the Group as compared to the Stimulus condition
(Ds(Group condition) < Ds(Stimulus condition)). Therefore, regions
which maintain context-dependent group-specific WM information
should display different pattern distinctness estimates between group
members across the two conditions, which is accessible with an inter-
action analysis (see 2.6.5). Moreover, because the implemented inter-
action only contrasts physically identical pairs of stimuli while also
controlling for the uncued stimuli (see 2.6.4), the contrast is not
confounded by stimulus feature information. The interaction contrast
identified the left IPS (Fig. 3A (yellow), Table 1b). Thus, the WM rep-
resentations of the grouped stimuli in the left IPS are represented
differently in the two conditions, or put another way, the left IPS adap-
tively modifies its WM information with respect to the experimental
condition. Additionally, due to strong a priori expectations regarding the
presence of group-specific somatosensory information in the PMC
(Malone et al., 2019; Rossi-Pool et al., 2016, 2017, 2019), we further
explored the interaction contrast result and identified context-dependent
WM representations in the left PMd at an uncorrected threshold (p <
0.001). Other regions with effects detectable at this threshold included
the right middle frontal gyrus, left inferior frontal gyrus, left premotor
cortex and the cluster in the left intraparietal sulcus extending from the
superior parietal lobule to the angular gyrus (see the unthresholded
statistical maps at Neurovault: https://identifiers.org/neurovault.collec

Fig. 2. Behavioural Results A. The mean
behavioural performance across participants
for the four stimuli, in both conditions:
Stimulus (white) and Group (black). The
grey brackets indicate significant differences
(p < 0.05, Bonferroni-corrected) in perfor-
mance between stimuli across conditions. B.
The mean response time across participants
for the four stimuli, in both conditions. C.
The mean performance across participants in
the Group condition with trials sorted ac-
cording to the relationship between the cued
and target stimulus. CS: same group – same
stimulus, CD: same group – different stim-
ulus, IS: different group – ‘same’ stimulus,
ID: different group – ‘different’ stimulus. D.
Shows the same as C with response time
data. In both C. and D., the CD trials are in-
termediate to the CS and incongruent trials
suggesting that a group was maintained in
the Group condition. Error bars for all plots
indicate standard error of the means.
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tion:5623).
We additionally visualized the two halves of the interaction analysis,

the Stimulus and Group condition, for the peaks identified by the whole-
brain, context-dependent searchlight analysis (L IPS, L PMd, Fig. 3B). As
expected, the pattern distinctness estimates for grouped stimuli are
smaller in the Group condition than in the Stimulus condition, indicating
that the IPS represented grouped stimuli more similarly in the Group
condition than in the Stimulus condition.

3.3. Control analyses results

3.3.1. Group representation control analysis results
To ensure that the context-dependent WM analysis identified groups

in the Group condition and not condition-general changes in pattern
distinctness, we performed a control analysis to test whether grouped
stimuli were represented more similarly in the Group condition than
stimuli from different groups. In the IPS, the grouped stimuli were more
similarly represented than stimuli from different groups (same-group
mean: 2.8334e-04 ! 0.9532e-04 (SE); different-groups mean: 5.6038e-
04 ! 1.1092e-04; T(35) ¼ 2.6518, p ¼ 0.0119, Cohen’s d ¼ 0.4465).
Whereas there was no evidence of stimulus grouping in the PMd (same-
group mean: 2.3017e-04 ! 0.8008e-04, different-groups mean: 3.4602e-
04 ! 0.8626e-04; T(35) ¼ 1.6302, p ¼ .1120). Thus the IPS and not the

PMd represented the grouped stimuli significantly more similarly than
stimuli from different groups in the Group condition.

3.3.2. Behavioural control analysis results
In a second control analysis, we aimed to identify the influence of the

behavioural effects on the neuroimaging results. To this end, we median-
split the participant sample according to the performance difference
between stimuli resulting in two sub-samples: similarly- (SIM) and
differently-performing participants (DIF). For the SIM sub-sample, the 4
$ 2 ANOVA on performance data identified no main effect of stimulus
(F(3,51)¼ 0.7833, p¼ 0.5088), no effect of condition (F(1,17)¼ 3.6479,
p ¼ 0.0732) and no interaction between the factors (F(3,51) ¼ 0.8678, p
¼ 0.4639). Moreover, the 4 $ 2 ANOVA on response time data identified
a large condition effect (F(1,17) ¼ 82.8068, p ¼ 6.0569e-08, η2 ¼
0.6579) and no stimulus effect (F(3,51) ¼ 0.3274, p ¼ 0.8055) or
interaction between the factors (F(3,51)¼ 1.6130, p¼ 0.1978). Thus we
were able to remove all but the condition difference in response times
(addressed in 2.7.3). The neuroimaging results for the SIM sub-sample
identified a cluster overlapping with the left SPL cluster in the
stimulus-specific WM analysis (peak: &22, &50, 62, T-statistic ¼ 2.65)
and in the left IPS in the context-dependent WM analysis (peak: &26,
&64, 54, T-statistic ¼ 2.40).

Next, we performed the same analysis with the differently-performing
sub-sample. In contrast to the SIM sub-sample, the 4 $ 2 ANOVA on the
performance data identified a main effect of stimulus (F(3,51) ¼
22.4457, p¼ 2.1093e-09, η2¼ 0.3191), no effect of condition (F(1,17)¼
1.8571, p ¼ 0.1907) but an interaction between the factors was present
(F(3,51) ¼ 6.3505, p ¼ 9.6535e-04, η2 ¼ 0.0722). Moreover, the 4 $ 2
ANOVA on response time data identified a large condition effect (F(1,17)
¼ 76.2258, p ¼ 1.0885e-07, η2 ¼ 0.6047), no stimulus effect (F(3,51) ¼
2.2522, p ¼ 0.0934) and an interaction between the factors (F(3,51) ¼
6.8480, p¼ 5.7756e-04, η2 ¼ 0.0315). Once again, we identified clusters
overlapping with those identified in the main analyses. The left SPL
contained stimulus-specific WM information (peak: &22, &50, 56, T-
statistic ¼ 5.09) whereas the left IPS contained context-dependent WM
information (peak: &24, &62, 50, T-statistic ¼ 5.22). The greater T-sta-
tistics observed with the differently-performing sub-sample, combined
with our ability to replicate our findings with both sub-samples, suggests
that the effect identified in the IPS might result from the combination of
context-dependent WM amplified by task-difficulty.

Fig. 3. Neuroimaging cvMANOVA results A. We
identified brain regions which maintain condition-
general stimulus-specific (blue) and context-
dependent group-specific (yellow) WM information
with overlapping regions shown in green. Using a
conjunction analysis across the Stimulus and Group
condition results, we identified condition-general
stimulus-specific WM information in the left IFG and
SPL whereas context-dependent WM information was
identified in the left IPS. Results are reported at p <

0.05FWE with p < 0.001cluster. The left PMd cluster was
significant at, and shown at, an uncorrected threshold
(p < 0.001). Coloured bars indicate the respective
voxel-wise T-statistic values. PMd: dorsal premotor
cortex, SPL: superior parietal lobule, IPS: intraparietal
sulcus, IFG: inferior frontal gyrus. B. To visualize the
interaction, we extracted the mean pattern distinct-
ness values across participants at the context-
dependent WM analysis peaks (L IPS, L PMd) for the
two experimental conditions (Stimulus, Group). The
error bars indicate the standard error of the means.
Unthresholded group contrast images for the Stimulus
and Group condition stimulus-specific and context-
dependent WM results are available on Neurovault
(https://identifiers.org/neurovault.collection:5623).

Table 1
Neuroimaging results overview. 1a. Regions maintaining stimulus-specific WM
information independent of experimental context as revealed by a conjunction
analysis. 1b. Regions maintaining context-dependent WM information as
revealed by an interaction analysis. For both Table 1a and b, the Anatomy
Toolbox (Eickhoff, 2007) was used, where possible, to establish the label and the
x, y, z coordinates refer to MNI space. The T-stat value refers to the peak voxel in
the cluster with size k. Ds is the cross-validated pattern distinctness estimate with
1a referring to the mean Ds across the two conditions and 1b referring to the
interaction contrast value.

Table 1a: Stimulus-specific WM information

Label X Y Z T-stat k Ds x 10&4

L IFG &42 36 14 4.76 1373 8.0137
L SPL &22 &48 60 4.74 1071 6.7954

Table 1b: Context-dependent group-specific WM information

L IPS &26 &66 54 5.09 1441 7.6486
L PMd &42 &12 58 4.39 207 6.4042
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3.3.3. Response time control analysis results
Thirdly, to identify whether the observed condition-difference in

response times influenced the neuroimaging results, we reproduced the
main analyses results with new first level models including an additional
parametric response time nuisance regressor. We identified stimulus-
specific WM information in the left SPL (peak &22, &48, 60, T-statis-
tic ¼ 4.69) and IFG (peak &40, 36, 14, T-statistic ¼ 4.69) and context-
dependent WM in the left IPS (peak &24, &66, 54, T-statistic ¼ 5.06).
Thus suggesting that the neuroimaging results are independent from the
observed differences in response times.

3.3.4. WM-specificity control analysis results
To ensure that the results are specific to WM information, we per-

formed a control analysis wherein we repeated the two main analyses,
stimulus-specific (2.6.4) and context-dependent WM (2.6.5), with re-
gressors defined for the uncued stimuli. The analyses did not identify any
region with uncued stimulus-specific WM information even at an un-
corrected threshold of p< 0.001 and did not identify any region showing
an interaction across conditions at the corrected significance threshold.
Therefore, both the stimulus-specific regions as well as the context-
dependent group-specific regions are indeed maintaining information
which is specific to WM.

3.3.5. Multivariate control analysis results
Finally, we tested whether the identified WM representations are

multivariate in nature. To this end, we repeated the stimulus-specific
(2.6.4) and context-dependent WM analyses (2.6.5) using a single
voxel instead of the 4-voxel radius searchlight. Neither the stimulus-
specific nor the interaction analysis identified any significant clusters
of univariate WM content at the corrected statistical threshold, thereby
demonstrating that the WM representations are multivariate in nature.

4. Discussion

Using whole-brain fMRI in humans in combination with the cross-
validated, searchlight, multivariate ANOVA, we explored which brain
regions maintain WM representations of individual and groups of so-
matosensory pulse sequences. In a first step, we identified the left IFG and
SPL as maintaining stimulus-specific information in WM, across experi-
mental conditions. Next, by comparing the differences in pattern
distinctness across conditions, where participants were asked to maintain
either an individual stimulus or group-information in WM, we identified
an interaction between conditions in the left IPS (and in the left PMd at
an uncorrected threshold). Moreover, in the left IPS, group members
shared a more similar multivariate WM representation in the Group than
in the Stimulus condition. Thus, our results suggest that the left IPS
contains context-modulated WM information such that the stimuli from
the same group are more similarly represented in the Group condition
than in the Stimulus condition. Accordingly, our results provide addi-
tional insight into the adaptive coding ability of the parietal cortex,
where task-demands influence WM representations.

4.1. Stimulus-specific WM representations

The present study identified condition-general stimulus-specific WM
content within the left IFG and SPL. Moreover, we revealed that the WM
representations maintained in the IFG and SPL are both specific to the
cued WM content and employ a multivariate code. The identified
stimulus-specific WM regions are well in line with previous findings
which suggest that the IFG and SPL are capable of maintaining a wide-
range of features in WM (Christophel et al., 2017; Sreenivasan &
D’Esposito, 2019). Using the well-established vibrotactile WM paradigm,
frequency-specific WM information has been identified in human
(Schmidt et al., 2017; Spitzer et al., 2010) as well as NHP IFG (Romo
et al., 1999). Moreover, experiments employing trains or sequences of
stimuli, similar to those used in the present study, have shown that the

IFG is involved in the perception of visual sequences (Cavdaroglu and
Knops, 2018) and the maintenance of auditory sequences in WM (Uluç
et al., 2018). Notably, a majority of participants (83.3%) reported in the
debriefing session having remembered the stimuli by mentally verbal-
izing or internally singing the stimuli, thus it is not surprising that the left
IFG, which is known to be involved in language production (Binder et al.,
1997) and has been shown to maintain roman characteristic-specific WM
content (letters) in WM (Polanía et al., 2011), maintained
stimulus-specific WM information in the present study. In agreement
with our results, Polanía and colleagues also found evidence for WM
letter representations in the left posterior parietal cortex. The posterior
parietal cortex, or SPL more specifically, has previously been shown to
maintain a wide variety of WM information including locations (Jerde
et al., 2012; Sprague et al., 2014, 2016), shapes (Christophel and Haynes,
2014a) and patterns composed of colour (Christophel et al., 2015;
Christophel et al., 2012) and motion (Christophel and Haynes, 2014b). In
line with this, we identified stimulus-specific WM information in the SPL
using stimuli comprising temporal patterns of somatosensory pulses.
Thus, it’s possible that the SPL also maintains temporal patterns in
addition to colour and motion patterns. However, previous studies have
shown a divergence where frontal areas represent temporally-distributed
stimuli and parietal regions represent spatially-distributed stimuli (Cav-
daroglu and Knops, 2018). Therefore, participants likely transformed the
stimulus features into a different representational code which was sub-
sequently maintained in the SPL. Future studies which probe the nature
of theWM representation are required to further explore the nature of the
code maintained in the SPL. Consequently, we provide evidence for the
maintenance of WM representations of somatosensory pulse sequences,
independent of experimental context, in higher-order, frontoparietal
regions.

4.2. Context-dependent WM representations

Next, we identified the left IPS and (found preliminary evidence for)
the left dPMC as regions that modify their WM representations in
response to changing task-demands. We expected that, by training par-
ticipants on pseudorandom groupings, the resulting WM representations
would be modulated such that representations of grouped stimuli would
be more similar to each other when the task required the maintenance of
the group, than when an individual stimulus was maintained in WM.
Thus, using an interaction contrast, we localized WM representations
which adapted to the changing task-demands in the left IPS. Moreover,
because we compared the same physical pairs of stimuli across experi-
mental conditions while controlling for the uncued stimuli, the identified
adaptive WM information is independent of stimulus features and spe-
cific to the cued stimulus. This is significant because, due to the sluggish
and indirect nature of the BOLD response, distinguishing between group-
and stimulus-specific information is more nuanced with neuroimaging
than with neurophysiological data. Thus, by contrasting identical pairs of
stimuli across the two experimental conditions, we can be certain that the
resulting WM information is specific to the group and not contaminated
by stimulus feature-specific BOLD responses.

Additionally, to visualize the interaction, we plotted the group
members’ multivariate pattern distinctness estimates for the two exper-
imental conditions separately (Fig. 3B). Due to a strong a priori hy-
pothesis regarding the presence of group-specific WM information in the
PMC (Malone et al., 2019; Rossi-Pool et al., 2016, 2017, 2019), we
included a cluster in the left PMd which did not survive multiple com-
parison correction for completeness. This visualization illustrates that,
for the left IPS and PMd, the group members were more similarly rep-
resented in the Group than in the Stimulus condition. In a control anal-
ysis, we additionally found evidence for the grouped stimuli to be
represented more similarly than non-grouped stimuli in the Group con-
dition in the left IPS but not the PMd. While this control analysis may be
confounded (see 2.7.1), these analyses provide additional evidence for
the maintenance of context-dependent temporal patterns of vibrotactile
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stimuli in WM in the left IPS. Of note, in the present study we employed
cluster-based correction thresholding which may result in larger brain
regions (e.g. the PPC) crossing the statistical threshold more easily than
smaller regions (e.g. the PMd). This is however unlikely to have biased
the reported results as post-hoc analyses with different searchlight radii
(2 to 5 voxels) did not change the location of the identified clusters.

The finding of task-modulated WM information in the IPS is in line
with previous work which has shown that representations of task-
relevant features in the IPS change with task demands and difficulty
(Jackson and Woolgar, 2018; Liu and Hou, 2013; Woolgar et al., 2011).
Moreover, the IPS has been suggested to be an integral member of the
multiple-demand or task-positive network, a network which processes
and maintains features essential for the successful performance of a task,
across changing task demands, and is influenced by rule complexity,
memory load, attentional switching among other factors (Fedorenko
et al., 2013; Wen et al., 2018). This is especially relevant for the present
study. According to these studies, the effect of task-difficulty is to in-
crease the resolution or strength of a task-relevant representation. Our
results show the opposite effect. In the more difficult task, the Group
condition, the representations of grouped-stimuli becomemore similar to
one another instead of more distinct. Thus, it is evidence in favour of a
group representation. To further explore the influence of task-difficulty
in our data, we median-split the participant sample according to the
consistency of the performance across stimuli. While we were able to
replicate our findings with both sub-samples, the sub-sample with larger
behavioural effects demonstrated larger neuroimaging effects. Thus, it is
conceivable that the effect identified in the IPS is the result of a combi-
nation of context-dependent WM modification amplified by
task-difficulty.

The central role of the IPS in grouping and categorizing stimuli across
sensory domains and species has been well established (Freedman and
Assad, 2016). A large body of research has been accumulated demon-
strating the maintenance of categorical and group-specific WM infor-
mation across stimulus modalities in the LIP, the IPS homologue in NHPs
(Fitzgerald et al., 2011, 2013, 2012; Freedman and Assad, 2006, 2016;
Freedman et al., 2001; Sarma et al., 2016; Swaminathan and Freedman,
2012). Furthermore, a new study has shown that the NHP IPS is neces-
sary for the transformation of a stimulus representation into a
more-abstract category label which is then passed to motor-selective
neurons in the NHP IPS (Zhou and Freedman, 2019). More generally,
Nieder (2012) has shown that both the LIP as well as NHP prefrontal
regions represent auditory and visual percepts of number sets, tanta-
mount to abstract numerical categories, in a supramodal fashion. Indeed,
the PPC has been shown to be involved in a wide variety of abstract
cognitive functions including the representation of cognitive sets (Oris-
taglio et al., 2006; Stoet and Snyder, 2004), numerosity (Nieder et al.,
2006; Nieder andMiller, 2004; Tudusciuc and Nieder, 2007) and salience
(Leathers and Olson, 2012), all of which can be considered various forms
of categorization (Freedman and Assad, 2016). Recently, using opto-
genetics in combination with calcium imaging, the mouse PPC was
shown to be central for the categorization of auditory frequencies (Zhong
et al., 2019). The authors provide evidence for the stable representation
of category exemplars in the PPC over several days and show that the PPC
is necessary for the generalization from category exemplars to novel
stimuli as well as for the updating of category boundaries. Furthermore, a
recent study exploring cross-modal categorization employed an auditory
and tactile delayed-match-to-category paradigm in humans, in combi-
nation with multivariate pattern analysis, and found overlapping tactile
and auditory category information in the IPS (Levine and Schwarzbach,
2017). Taken together, the evidence across species provides a strong
argument for the involvement of the IPS, and PPC more generally, in the
categorization and grouping of stimuli. Indeed, a recent article merged
the various LIP functions into a single role: the identification of behav-
iourally relevant stimuli (Freedman and Ibos, 2018). The authors suggest
that the nonlinear nature of responses observed in LIP neurons in DMTS
tasks points to the integration and comparison of incoming bottom-up

signals with the specific top-down task-goals. Thus, taken across spe-
cies, the IPS likely maintains WM representations indicating the current
task goal, for example, the stimulus or group which is to be compared
with the target at the end of the trial.

The PPC, prefrontal cortex, and PMC have been suggested to act
together in a network which implements abstract cognitive computa-
tions, including categorization and grouping of stimuli (Freedman and
Assad, 2016). Indeed, previous work investigating the representation of
somatosensory categories also identified category-specific information in
ventral human (Malone et al., 2019) and NHP PMd (Rossi-Pool et al.,
2016, 2017, 2019). Importantly, both studies used explicit categorical
rules on stimulus feature properties to define their categories (high vs
low frequencies; same vs different stimulus) whereas, with the present
study, we wanted to explore how abstract group representations, unre-
lated to the stimulus features and dissociated from an explicit rule, would
affect the WM representations. In line with the NHP findings, we iden-
tified a trend towards a pattern distinctness difference for the group
members in the two experimental conditions in the PMd. Of note, we
identified smaller pattern distinctness values for the PMd than for the SPL
and IPS across all analyses. Because the pattern distinctness value is an
estimate of the amount of variance explained by a contrast, normalized
by the error covariance, it is interpretable. However, it is difficult and
ill-advised to compare across brain regions. Different regions are known
to have different neural vasculature (Gardner, 2010), connectivity
(Zalesky et al., 2012), and morphology (Bianchi et al., 2013), all of which
may influence the hemodynamic response and recorded fMRI signal
(Handwerker, Ollinger, & D’Esposito, 2004) making it difficult to
compare the results across regions (for more information see Haynes,
2015).

A potentially important distinction between the present study and
that of Malone et al. (2019) and Rossi-Pool et al. (2016) concerns the
ability to prepare a motor decision. Traditionally, the PMC has been
deemed responsible for the organization and planning of movements
(Wise, 1985). Thus, one hypothesized role of the PMC in categorization
suggests that the PMC maintains information relating to ‘motor ideas’
which may provide the basis for cognitive functions (Fadiga et al., 2000).
In support of this hypothesis, the PMC has been shown to represent rules
in a behaviourally relevant manner (Muhammad et al., 2006; Vallentin
et al., 2012; Wallis and Miller, 2003). In the present study, participants
maintained WM information and were not able to prepare a prospective
motor plan as they did not know whether the target would match the
maintained stimulus. Moreover, we included an additional precaution
and pseudorandomly alternated the locations of the motor targets,
thereby ensuring that participants could neither select a decision nor a
motor plan. In contrast, Malone et al. (2019) did not require participants
to respond to a target and therefore participants were able to select a
motor response at the onset of the stimulus presentation. Similarly,
Rossi-Pool et al. (2016) identified categorical representations in the PMd
during the delay between the presentation of the target and the motor
output, a timepoint when the NHPs had already made but not yet
communicated their decision. Thus, the inability of participants in the
present study to select a decision and prepare a motor output may have
prevented the transformation of group-specific WM information in the
IPS into a motor plan in the PMC. In line with this, the PMC has been
implicated in the preparation of so-called virtual motor plans which can
be transformed into a motor plan (Nakayama et al., 2008; Yamagata
et al., 2012, Yamagata et al., 2009). Indeed, Rossi-Pool et al. (2019)
recently re-analysed their data and found that, while there was category
information in the PMd, the majority of neuronal variance could be
explained by experimental timing. Thus, it is possible that the PMC is
mainly responsible for determining the specific timing of events and
coordinating the associated network regions, such as the
stimulus-specific WM information in the IFG and SPL and the
context-dependent, group-specific WM information in the IPS.
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4.3. WM representations

Finally, by considering both the context-dependent and the stimulus-
specific results together, we can speculate on the probable nature of the
WM representational codes in the various regions. Regions identified by
the stimulus-specific conjunction analysis, area 5A of the SPL and area 45
of the IFG, likely maintain stimulus feature information in WM inde-
pendent of experimental conditions. Moreover, regions identified by the
interaction analysis, the IPS and PMd, may maintain stimulus feature
information only in the stimulus condition and an abstracted categorical
or group label in the group condition (e.g. stimulus A1 and A2 main-
tained as A). This would also result in the difference in pattern distinct-
ness estimates observed in the interaction analysis. Finally, the region
identified by the overlap of the two analyses, area 7A of the SPL, likely
maintains a combination of stimulus features as well as abstracted WM
information in the group condition. Future studies are required to further
probe the representational nature of the WM codes implemented by the
different regions under various task-demands.

5. Conclusion

In conclusion, we present evidence for the maintenance of WM in-
formation in frontoparietal regions across experimental conditions
wherein participants were instructed to maintain either individual or
groups of somatosensory sequences. Additionally, we identified the
maintenance of context-dependent, group-specific WM representations
in the left IPS independent of stimulus properties in a paradigm that
disentangled the WM representation from the categorical decision and
the motor response. We show that the WM representations in the IPS
adaptively change with task-demands such that, in the Group condition,
group members are represented more similarly than in the Stimulus
condition. Thus, we provide novel evidence for the adaptive nature of
somatosensory WM representations in the IPS and suggest that somato-
sensory WM representations are maintained in the IPS in an adaptive,
context-dependent manner.
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a b s t r a c t 
Previous electrophysiological studies in monkeys and humans suggest that premotor regions are the primary 
loci for the encoding of perceptual choices during vibrotactile comparisons. However, these studies employed 
paradigms wherein choices were inextricably linked with the stimulus order and selection of manual movements. 
It remains largely unknown how vibrotactile choices are represented when they are decoupled from these senso- 
rimotor components of the task. To address this question, we used fMRI-MVPA and a variant of the vibrotactile 
frequency discrimination task which enabled the isolation of choice-related signals from those related to stimulus 
order and selection of the manual decision reports. We identified the left contralateral dorsal premotor cortex 
(PMd) and intraparietal sulcus (IPS) as carrying information about vibrotactile choices. Our finding provides 
empirical evidence for an involvement of the PMd and IPS in vibrotactile decisions that goes above and beyond 
the coding of stimulus order and specific action selection. Considering findings from recent studies in animals, 
we speculate that the premotor region likely serves as a temporary storage site for information necessary for the 
specification of concrete manual movements, while the IPS might be more directly involved in the computation 
of choice. Moreover, this finding replicates results from our previous work using an oculomotor variant of the 
task, with the important difference that the informative premotor cluster identified in the previous work was 
centered in the bilateral frontal eye fields rather than in the PMd. Evidence from these two studies indicates that 
categorical choices in human vibrotactile comparisons are represented in a response modality-dependent manner. 

1. Introduction 
In everyday life, we are continuously encountering situations 

wherein we need to make decisions based on comparisons between 
stimuli occurring at different times. Imagine choosing an avocado at 
a grocery store: one squeezes two or more avocados sequentially and 
decides for one based on their firmness. Neural processes underlying 
this type of decision have been extensively studied in the somatosen- 
sory domain using the vibrotactile frequency discrimination task (re- 
viewed in Romo and de Lafuente, 2013 ). In their seminal work, Romo 
and colleagues trained monkeys to compare frequencies of two sequen- 
tially presented vibrotactile stimuli and report with a manual response 
whether the second frequency (f2) was higher or lower than the first 
(f1). Crucially, firing rates in premotor regions implicated in the plan- 
ning and execution of manual movements, such as the supplementary 
motor area (SMA), ventral (PMv), and dorsal premotor cortices (PMd), 
have been consistently found to reflect vibrotactile choices (i.e., the cat- 
egorical outcomes of the vibrotactile decision process; Hernández et al., 
2002 , 2010 ; Romo et al., 2004 ). 

∗ Corresponding author. 
E-mail address: yuanhao.wu@nyulangone.org (Y.-h. Wu). 

The involvement of motor-related regions during vibrotactile com- 
parisons agrees well with findings from an influential line of decision- 
making research in the visual domain. Monkey neurophysiological 
experiments employing random motion dot tasks with saccade re- 
sponses consistently reported decision-related signals in regions impli- 
cated in saccadic movement (reviewed in Gold and Shadlen, 2007 ), 
such as the lateral intraparietal area (LIP, Shadlen and Newsome, 2001 ; 
Roitman and Shadlen, 2002 ), the frontal eye fields (FEF, Kim and 
Shadlen, 1999 ; Ding and Gold, 2012 ), and the superior colliculus 
( Horwitz and Newsome, 1999 ; Ratcliff et al., 2003 ). Findings from these 
two lines of work have converged to the view that decisions are directly 
implemented in regions involved in the planning and execution of the 
resultant action ( Gold and Shadlen, 2007 ; Cisek and Kalaska, 2010 ). 
In other words, decisions are implemented in a response modality- 
dependent manner. Moreover, the posited response modality-specific 
implementation appears to translate to human vibrotactile comparisons. 
Herding and colleagues (2016, 2017) reported premotor regions as the 
most likely source of choice-selective beta oscillatory activity in the EEG 
signal. The choice-related modulation was localized in the medial part of 
the premotor cortex when human observers used button presses to indi- 
cate their choices ( Herding et al., 2016 ). However, when they reported 
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their choices with saccades, the source of the choice-related modulation 
shifted to the FEF ( Herding et al., 2017 ). 

Importantly, most findings in the context of vibrotactile comparisons 
were yielded from experimental settings wherein categorical choices 
were inextricably linked to various sensory and motor components of 
the task. For instance, f1 typically served as the reference stimulus 
against which f2 (the comparison stimulus) was compared. Thus, ob- 
servers would mostly decide for the percept “higher ” if frequencies were 
presented in an increasing order (f1 < f2), and “lower ” if presented in a 
decreasing order (f1 < f2). Contents of the choices were directly bound 
with the physical properties of the stimulus order. Moreover, vibrotac- 
tile choices in these studies were linked with specific motor require- 
ments at different levels. That is, observers had explicit foreknowledge 
of the required response effector for decision reports; and in addition, 
decisions were typically implemented as choices between two alterna- 
tive actions within the required response modality (e.g., specific saccade 
directions, button presses) so that choosing a particular percept was the 
same as choosing a specific action with the required effector. Due to 
these dependencies, the reported choice-related signals in the above- 
mentioned studies may reflect a multiplicity of choice and task-specific 
sensorimotor components rather than the choice per se ( Park et al., 
2014 ; see also Huk et al., 2016 for a review). Indeed, human neuroimag- 
ing studies in the visual domain showed that decision-related signals 
are reflected by different or additional regions than the motor-related 
regions when choices were decoupled from specific motor requirements 
( Liu and Pleskac, 2011 ; Hebart et al., 2012 ; Filimon et al., 2013 ). These 
findings lead to the question of how categorical choices during vibrotac- 
tile comparisons in humans are represented when they are disentangled 
from one or another of the above-mentioned sensorimotor aspects. 

Our previous work ( Wu et al., 2019 ) was the first to address this ques- 
tion. We investigated brain regions representing vibrotactile choices in- 
dependent of stimulus order and specific saccade direction by using hu- 
man fMRI and a novel variant of the vibrotactile frequency discrimina- 
tion task. Intriguingly, although participants’ choices were decoupled 
from the preceding stimulus orders and ensuing saccade movements 
used for reporting the decisions, regions implicated in saccade plan- 
ning and selection such as the FEF and intraparietal sulci (IPS) were 
identified as representing vibrotactile choices. The finding suggests that 
choice-related activities in these motor-related regions do not merely re- 
flect specific action selection but might be involved in the computation 
of categorical choices in perceptual decision-making tasks. Moreover, it 
hints at the possibility that such categorical choices may also be repre- 
sented in an effector-specific manner. 

In the present fMRI study, we sought to further explore the inter- 
play between the topographic organization of categorical choice repre- 
sentations and response modality during vibrotactile comparisons. We 
asked participants to perform an analogous version of the vibrotactile 
frequency discrimination task as in our previous work, with saccadic 
responses replaced by manual button presses. Further, the same whole- 
brain searchlight multivariate analysis routines ( Kriegeskorte et al., 
2006 ) as implemented in the previous work was employed to identify 
brain regions that carry information about vibrotactile choices. Follow- 
ing the interpretation drawn from our previous study, we expected vi- 
brotactile choice representations in premotor regions implicated in the 
selection of manual responses such as the PMd, PMv, or SMA. 
2. Materials and methods 
2.1. Participants 

Thirty-one volunteers participated in the fMRI experiment. They 
were right-handed, had no history of neurological or psychiatric im- 
pairment, and normal or corrected-to-normal vision. Data of four par- 
ticipants were excluded due to poor behavioral performance (accuracy 
rate < 0.5 in at least one stimulus pair), leaving the data of 27 partici- 
pants in the analyses (18 females and 9 males; mean age: 25, range: 18 –

34). All participants provided written informed consent as approved by 
the ethics committee of the Freie Universität Berlin and received mone- 
tary compensation for their time. 
2.2. Task design and stimuli 

We asked participants to complete a variant of the vibrotactile fre- 
quency discrimination task ( Fig. 1 ). Similar to standard versions of the 
task, participants compared two sequentially presented vibrotactile fre- 
quencies and decided whether the frequency of the comparison stimu- 
lus was higher or lower than that of the reference stimulus. It differed 
from standard versions in two important aspects: First, we introduced 
task rules that alternately designate f1 or f2 as the comparison/reference 
stimulus across trials so that the perceptual choices were independent of 
the physical properties of the stimulus order. Second, instead of using a 
direct choice-motor response mapping, participants reported a match or 
mismatch between their percept and the proposition of a visual match- 
ing cue. After the decision phase, participants selected a color-coded 
target, from which their perceptual choice was inferred. Hence, partici- 
pants were not able to plan a specific manual movement or anticipate a 
target color during the decision phase. As a consequence of these mea- 
sures, if there were detectable choice-related signals during the decision 
phase, it would be unlikely to result from the physical properties of the 
stimulus order or selection of specific button presses. 

Each trial was preceded by a variable fixation period (3 – 6 s), dur- 
ing which participants were asked to fixate on a white cross presented 
centrally on the screen. The trial started with a switch from the fixation 
cross to either a square or a diamond for 500 ms, instructing partic- 
ipants which task rule applied. In half of the trials, participants used 
f1 as the comparison stimulus and evaluated whether it was higher or 
lower than the reference stimulus f2. In the other half, participants made 
comparisons in the reversed direction. That is, they evaluated f2 relative 
to f1. The rule cue was followed by two sequentially presented vibro- 
tactile stimuli with different frequencies administered to participants’ 
left index finger (each of 500 ms separated by a 1 s retention). After 
a decision phase of 2 s, a visual matching cue in the form of either an 
upward-pointing or a downward-pointing equilateral triangle appeared 
centrally on the screen for 500 ms, indicating a comparison stimulus of 
higher or lower frequency, respectively. Following the offset of the vi- 
sual matching cue, a target screen with a central fixation cross and two 
color-coded targets (blue and yellow disks) in the periphery along the 
horizontal meridian was displayed for 1.5 s. During this period, partic- 
ipants reported a match or mismatch between their perceptual choice 
(‘higher’ vs. ‘lower’) and the visual matching cue by selecting one of the 
color-coded targets corresponding to their report. Depending on the spa- 
tial location of the corresponding target, participants pressed the left or 
right button of a response box held in their right hand with their index 
or middle finger. 

Visual stimuli were generated using MATLAB version 8.2 (The Math- 
Works, Inc, Natick, MA) and the Psychophysics toolbox version 3 
( Brainard, 1997 ). Except for the two peripheral, color-coded discs on tar- 
get screens, all other visual symbols were presented centrally in white 
on a black background. During the fMRI session, visual stimuli were 
projected with an LCD projector (800 × 600, 60 Hz frame rate) onto 
a screen on the MR scanner’s bore opening. Participants observed the 
visual stimuli via a mirror attached to the MR head coil from a dis- 
tance of 110 ± 2 cm. Suprathreshold vibrotactile stimuli with a consis- 
tent peak amplitude were applied to participants’ distal phalanx of the 
left index finger using a 16-dot piezoelectric Braille-like display (4 × 4 
quadratic matrix, 2.5 mm spacing), controlled by a programmable stim- 
ulator (QuaeroSys Medical Devices, Schotten, Germany). Frequencies of 
the first vibratory stimuli (f1) varied between 16 and 28 Hz in steps of 
4 Hz. The second stimulus was either 4 Hz higher or lower than the 
preceding f1, yielding a total of eight possible stimulus pairings. 

Participants performed six experimental runs of the vibrotactile fre- 
quency discrimination task, each lasting ~12.5 min. During each run, 
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Fig. 1. Trial schematic. A rule cue (square or diamond) indicated whether f1 or f2 served as the comparison stimulus. The stimuli presentation was followed by a 
decision phase. Thereafter, a matching cue (equilateral triangle) was presented. An upward-pointing triangle represented a comparison stimulus of higher frequency, 
while a downward-pointing triangle represented a lower comparison frequency. Participants compared their perceptual choice with the matching cue. A match or 
mismatch was indicated by choosing one of the color-coded disks presented in the periphery via a button press. See Wu et al. (2019) for an oculomotor variant of 
the task. 

Fig. 2. Behavioral performance. The bar plots show the mean accuracy rates across participants over all runs for different stimulus orders, rules, and f1 magnitudes. 
Error bars represent 95% confidence intervals (CIs) of the means. 
each stimulus pair was presented eight times, each time with a unique 
combination between rule cues (diamond vs. square), matching cues 
(upward-pointing vs. downward-pointing triangles), and target screens 
(blue-left, yellow-right vs. yellow-left, blue-right). This yielded a total 
of 64 trials per run, which were presented in a randomized order. Fur- 
thermore, the association between visual symbols and task rules as well 
as between target colors and match reports was counterbalanced across 
participants. 
2.3. FMRI data acquisition 

The fMRI data were obtained with a 3 T Tim Trio MRI scanner 
(Siemens, Erlangen, Germany) equipped with a 12-channel head coil at 
the Center for Cognitive Neuroscience Berlin. Functional volumes sensi- 
tive to the BOLD signal were acquired using a T2 ∗ weighted echo planar 
imaging sequence (TR = 2000 ms, TE = 30 ms, field of view = 192 mm, 
flip angle = 70°). Each volume consisted of 37 axial slices and was ac- 
quired in an ascending order (64 × 64 in-plane, 3 mm isotropic with 
0.6 mm gaps between slices). 378 functional volumes were obtained in 
each experimental run. In addition to the six experimental runs, a T1 
weighted structural volume was acquired for co-registration and spatial 

normalization purposes using a 3D MPRAGE sequence (TR = 1900 ms, 
TE = 2.52 ms, 256 × 256 in-plane, 1 mm isotropic). 
2.4. Data preprocessing and analyses 

FMRI data preprocessing and general linear model es- 
timation (GLM) were performed with SPM12 version 6685 
(www.fil.ion.ucl.ac.uk/spm) and custom MATLAB scripts (https:// 
github.com/yuanhaowu/DecodingAbstractChoices) while multi- 
variate decoding analyses were performed using The Decoding 
Toolbox version 3.991 ( Hebart, Goergen and Haynes, 2015 ; https:// 
sites.google.com/site/tdtdecodingtoolbox/ ). During the preprocessing, 
functional volumes were corrected for slice acquisition time differences 
and spatially realigned to the mean functional volume. 
2.4.1. Decoding choices 

The focus of the present study was to identify brain regions that carry 
information about choice-related information independent of stimulus 
order and selection of specific manual response. To this end, we used 
MVPA combined with a whole-brain searchlight routine to pinpoint 

https://sites.google.com/site/tdtdecodingtoolbox/
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brain regions that show distinguishable local activity patterns between 
different choices during the decision phase. 

We first obtained run-wise beta estimates for choice-related activity 
during the decision phase for each voxel. We fitted a GLM (192 s high- 
pass filter) to each participant’s data. Separate impulse regressors were 
defined to model the two choices (‘higher’ vs. ‘lower’), convolved with 
the canonical hemodynamic response function at the onset of the de- 
cision phases. To minimize the number of potential indecisions during 
decision phases, only correctly answered trials were modelled. Incor- 
rectly answered and missed trials were modelled with a separate re- 
gressor of non-interest and not included in the subsequent MVPA. In 
addition, six movement parameters, the first five principal components 
explaining variance in the white matter and cerebrospinal fluid signals 
respectively ( Behzadi et al., 2007 ), and a run constant were added as 
nuisance regressors, culminating in a total of 120 parameter estimates 
per participant (20 × 6 runs). 

To identify brain regions that exhibit choice-selective activity pat- 
terns, a searchlight MVPA was performed on each participant’s data us- 
ing linear support vector machine classifiers (SVM) in the implementa- 
tion of LIBSVM 2.86 ( Chang and Lin, 2011 ) with a fixed cost parameter 
of c = 1. We generated a 4-voxel radius spherical searchlight and moved 
it voxel-by-voxel through the entire measured volume. The searchlight 
was centered on each voxel in turn and comprised a maximum of 251 
voxels (note that searchlights with 3 and 5 voxel radii yielded simi- 
lar results). At each brain location, run-wise beta estimates for each of 
the two choice regressors extracted from voxels within the searchlight 
formed the 12 response patterns (2 conditions x 6 runs) for the decod- 
ing analysis. To avoid overfitting, we estimated the classifier’s decod- 
ing accuracy using a leave-one-run-out cross-validation routine. That 
is, we iteratively trained the classifier to distinguish between response 
patterns corresponding to participant’s choices with data from five runs 
and tested how well the classifier predicted participant’s choices based 
on response patterns in the remaining run. This procedure was repeated 
until all runs were used as the test set. The decoding accuracy of the 
classifier was estimated as the number of correct predictions divided by 
the total number of predictions. Decoding accuracy resulting from the 
searchlight analysis around a given voxel was stored at the correspond- 
ing location of a whole-brain volume before the searchlight moved to 
the next voxel. The searchlight analysis was applied to all voxels in the 
measured volume so that a continuous whole-brain accuracy map could 
be obtained. For each voxel in the measured volume, the resulting ac- 
curacy map displayed the extent to which the multivariate signal in the 
local spherical neighborhood was selective for choices. Notably, due to 
the use of a balanced design, different perceptual choices were expected 
to have approximately the same number of trials associated with each 
stimulus order and motor response. That is, each choice regressor con- 
tained roughly the same amount of information about stimulus order 
and button press. Thus, choice-selective activity detected during the de- 
cision phase would be unlikely to result from the physical properties of 
stimulus order or planning of button press responses. 

For the group inference, each participant’s accuracy map was trans- 
formed to MNI space, resampled to 2 × 2 × 2 mm 3 voxel size, and 
smoothed with a 3 mm full width at half maximum Gaussian filter. The 
transformed maps were submitted to a group, one-tailed, one-sample 
t -test to assess whether the decoding accuracy at any voxel was signif- 
icantly higher than chance level (50%). Thus, a voxel with significant 
above-chance decoding accuracy would indicate that the local activity 
pattern around that voxel carries information about choices. 
2.4.2. Behavioral control analyses 

By virtue of the balanced experimental design, the implemented vari- 
ant of the vibrotactile frequency discrimination task has proven to be ca- 
pable of disentangling choice-related activity from that related to stim- 
ulus order and selection of a specific action ( Wu et al., 2019 ). However, 
it remains possible that the classifier could exploit the subtle difference 
in the distributions of the two stimulus orders (f1 > f2 vs. f1 < f1) or 

motor responses (left vs. right button press) between choice conditions 
to achieve above-chance decoding accuracy ( Görgen et al., 2018 ; Hebart 
and Baker, 2018 ). This is of particular relevance for the present study 
as the balanced number of trials across conditions might not hold af- 
ter the exclusion of incorrectly answered trials and have a biasing ef- 
fect on MVPA on fMRI data. To address this concern, we applied the 
same decoding analysis pipeline for neuroimaging data to behavioral 
data, which enabled us to directly test whether choices can be predicted 
based on the number of trials associated with different stimulus orders 
and motor responses within each choice. 

For each of the variables of interest, we performed an independent 
analysis with the following procedure: For each choice in each run, we 
generated a two-dimensional vector using the number of trials asso- 
ciated with different variable levels. For instance, if a participant re- 
sponded 15 times with a left and 17 times with a right button press to 
indicate a comparison stimulus of higher frequency, it was coded as [15 
17]. The remainder of the analysis proceeded in a manner analogous to 
the fMRI data analysis pipeline. Twelve data vectors (2 choices x 6 runs) 
were used to predict participant’s choices in a decoding analysis with a 
leave-one-run-out cross-validation routine. For the group inference, we 
used one-tailed Wilcoxon sign rank tests to probe the statistical signif- 
icance against chance accuracy (50%). Significant results would imply 
potential confounds due to the biased distributions of stimulus orders 
or/and motor responses. 
2.4.3. Neuroimaging control analysis 

As informative clusters identified in the main fMRI analysis include 
brain regions typically implicated in the planning and execution of man- 
ual movements (see result), we did an additional analysis on the fMRI 
data to test whether the result might be driven by specific action selec- 
tion. We repeated the searchlight choice decoding analysis 100 times 
for each participant. In each repetition, we randomly sampled a subset 
of trials so that the number of trials associated with the left and right 
button presses was fully balanced across choices and runs. We then per- 
formed the same GLM and searchlight analysis as described above on a 
subset of data to obtain a decoding accuracy map per repetition, yield- 
ing a total of 100 accuracy maps per participant. The within-participant 
averaged accuracy maps were then forwarded to a group level t -test 
to identify brain regions that carry choice-related information. Impor- 
tantly, by keeping the number of left and right button presses balanced 
across choices and runs, this analysis eliminated potential confounds 
related to motor planning. If informative clusters reported in the main 
result were mainly driven by motor planning rather than by choices, we 
would not expect choice-related information in the reported regions. Re- 
versely, a similar pattern of informative clusters would strengthen the 
result of the main analysis. 
3. Results 
3.1. Behavior 

The overall behavioral performance of participants during the scan- 
ning session was highly accurate ( Fig. 2 ). The average accuracy rate was 
0.881 (SD: 0.057; range: 0.778 – 0.99), while the average reaction time 
(latencies between the onsets of the target screens and button presses) 
was 0.554 s (SD: 0.104, range: 0.359 – 0.77). 

We further examined participants’ behavioral accuracies and reac- 
tion times with three-way repeated measure ANOVAs with task rule 
(compare f1 against f2 vs. f2 against f1), stimulus order (f1 > f2 vs. f1 < 
f2), and f1 frequency (16 Hz, 20 Hz, 24 Hz, and 28 Hz) as within-subject 
factors, respectively. For the behavioral accuracy, there was no task rule 
effect observable (F(1,26) = 1.663, p = 0.209). The performance re- 
mained stable regardless of which particular rule was applied, suggest- 
ing that the cognitive demands were equivalent across rules. In addition, 
we observed a significant effect of stimulus order (F(1, 26) = 7.749, 
p = 0.001), with a slightly better performance in f1 > f2 trials than in 
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Fig. 3. FMRI decoding results. The left IPS and the PMd were found to carry choice-related information independent of stimulus order and ensuing button press, 
contralateral to the response effector (pFDR < 0.05, cluster corrected for multiple comparisons). Coordinates refer to MNI space and indicate the peak voxel of each 
region respectively. The unthresholded statistical map can be inspected at https://www.neurovault.org/images/256,861/ .The bar plot shows decoding accuracies 
at the reported peak voxels and at the equivalent positions in the right hemisphere, ipsilateral to the response effector. Error bars represent 95% CIs of the means, 
while dots indicate individual participants’ decoding accuracies in each brain region. Asterisks indicate statistically significant differences between hemispheres at p 
< 0.05, Holm corrected for multiple comparisons. Participant-specific decoding accuracy maps are available at https://doi.org/10.6084/m9.figshare.9920111.v2 . 
f1 < f2 trials (mean f1 > f2 = 0.911, mean f1 < f2 = 0.851, CI 95 = [0.0166 
0.1035]). Moreover, there was a significant interaction between stimu- 
lus order and f1 frequency (F(3, 78) = 11.239, p < 0.001). As indicated 
by linear trend analyses, participants’ performance decreased slightly 
with an increasing f1 in f1 > f2 trials (slope = − 0.0113, p < 0.001), 
while the performance was unaffected by f1 frequency in f1 < f2 tri- 
als (slope = 0.003, p = 0.233). Contrary to the behavioral accuracy, we 
did not reveal any difference in reaction times between conditions (all 
p > 0.05). 

Considering the possibility that response biases and the exclusion 
of incorrect trials from fMRI analysis may cause differences in stimulus 
order and motor response distributions between choices and thereby 
distort the outcome of the fMRI analysis, we performed Pearson chi- 
square tests on data included in the fMRI analysis, for each participant 
respectively. The tests did not reveal significant differences in the distri- 
bution of stimulus orders and motor responses between choices in any 
of the participants (all p > 0.1, uncorrected), suggesting that partici- 
pants’ choice behavior included in the fMRI analysis was not biased by 
the stimulus order or motor response. 

In addition, the same decoding analysis routine as used for the fMRI 
data was performed to test whether the numbers of trials associated 
with different stimulus orders and motor responses were predictive 
of choices. As the results of one-sided, one-tailed Wilcoxon sign rank 
tests show, neither stimulus order nor motor response was predictive of 
choices (all p > 0.05, Holm corrected). 

Collectively, there is no evidence from our behavioral analyses in- 
dicating that the fMRI results reported below were confounded by the 
physical properties of the stimulus order and selection of the ensuing 
motor responses. 
3.2. Neuroimaging results 

The main objective of the present study was to identify brain re- 
gions that carry information about categorical choice independent of 
the physical properties of stimulus orders and selection of the ensuing 
manual responses during vibrotactile comparisons. Using whole-brain 
searchlight MVPA, we tested for brain regions exhibiting distinguish- 
able local activity patterns between choices during the 2 s decision 
phase. The result of the whole-brain searchlight analysis is shown in 

Fig. 3 (displayed at p < 0.05, FDR corrected for multiple comparisons 
at the cluster level with a cluster-defining voxel-wise threshold of p < 
0.001). We were able to decode perceptual choices from the intrapari- 
etal sulcus (IPS, mainly in area hIP3; cluster size = 130, peak voxel: [ − 34 
− 52 50], t26 = 5.115, mean decoding accuracy at the peak = 57.737%, 
CI95 = [54.628% 60.847%]) and the dorsal premotor cortex (PMd, BA 
6) in the left hemisphere, contralateral hemisphere to the response effec- 
tor (cluster size = 109, peak voxel: [ − 20 2 70], t26 = 4.864, mean decod- 
ing accuracy = 60.504%, CI95 = [56.066% 64.943%). To test whether 
choices are indeed represented in a lateralized manner, we conducted 
two-sided paired t-tests between decoding accuracies extracted from the 
identified peak voxels and those extracted from the corresponding loca- 
tions in the right hemisphere (right panel in Fig. 3 ). These tests show that 
decoding accuracies extracted from the identified peak voxels were sig- 
nificantly higher than those in the right hemisphere, ipsilateral to the re- 
sponse effector (IPS: t26 = 2.413, p = 0.002, CI95 = [0.928% 11.619%]; 
PMd: t26 = 4.43, p < 0.001, CI95 = [7.137% 19.467%]), corroborating 
the lateralized representation of choice-related information. 

We were further interested in whether decoding accuracies in the 
reported regions predicted behavioral performance. To this end, we es- 
timated the Pearson correlation between the decoding accuracy and 
behavioral performance. We were not able to find statistical evidence 
for such a linkage between them in any of the reported regions (IPS: 
rho = 0.089, p = 0.659; PMd: rho = − 0.016, p = 0.938). 

Importantly, the pattern of informative clusters at the group level re- 
mains similar across different searchlight radii. We performed the same 
MVPA with searchlight radii of 3 – 5 voxels and found that locations of 
significant informative clusters remain centered in the left IPS and PMd 
( Fig. 4 ). Moreover, results of two-sided paired t-tests between all possi- 
ble pairs showed that decoding accuracies do not differ across search- 
light radii (all p > 0.05, Holm corrected). 

We performed an additional decoding analysis to explore whether 
the identified brain regions with significant above-chance decoding ac- 
curacies may result from a bias toward a particular choice-response 
association. We repeated the searchlight choice decoding analysis and 
eliminated the potential motor-related confound by keeping the left and 
right button presses balanced across choices and runs. This analysis 
yielded a highly similar pattern of brain regions carrying choice-related 
information as in the main analysis. As shown in Fig. 5 (reported at 

https://www.neurovault.org/images/256,861/
https://doi.org/10.6084/m9.figshare.9920111.v2


Y.-h. Wu, L.A. Velenosi and F. Blankenburg NeuroImage 226 (2021) 117592 

Fig. 4. FMRI decoding results using three different searchlight radii. The left panel depicts the informative clusters (one column for each radius, indicated by r). 
Bar plot in the right panel displays decoding accuracies at peak voxels of the IPS and PMd clusters for each radius respectively. The unthresholded statistical maps 
are available at https://www.neurovault.org/collections/5936/ . Error bars indicate 95% CIs of the means. Gray dots and lines represent individual participants’ 
decoding accuracies. 

Fig. 5. FMRI control analysis result. The left panel displays significant clusters detected by the analysis controlling for motor-related confounds (displayed at p < 
0.001, uncorrected). The unthresholded statistical map is available at https://www.neurovault.org/images/256,864/ .The right panel shows box plots for IPS and 
PMd separately. Box edges indicate the 25th and 75th percentiles, central horizontal lines correspond to the median. Gray dots represent individual participants’ 
decoding accuracies. 
p < 0.001 uncorrected due to significantly reduced amount of data as 
compared to the main analysis), choice-related information was again 
found in the left IPS ([ − 34 − 52 52], t 26 = 5.173, cluster size = 128, 
mean = 56.157%, CI 95 = [53.711% 58.603%]) and in the left PMd ([ − 20 
0 72], t 26 = 4.443, cluster size = 76, mean = 57.662%; CI 95 = [54.117% 
61.207%]). Altogether, the results of both behavioral and neuroimaging 
control analyses suggest that the main results were not driven by motor- 
related confounds. 

Next, we compared the result of the present study with that of our 
previous study, in which decisions were communicated with saccades, 
instead of button presses ( Wu et al., 2019 , n = 30). Similar to the present 
study, choice-selective activity was found in premotor and intraparietal 
regions, with the difference that it was evident in both hemispheres. 
The previous study also reported choice-selective activity in the left 
prefrontal cortex (PFC), while it was absent in the current study. No- 
tably, although both studies identified premotor and intraparietal re- 
gions as carrying choice-related information, there were no overlapping 
clusters. In particular, the premotor clusters identified in the previous 

study were located at the junction of precentral gyri and the caudal-most 
part of the superior frontal sulci (peak left : [ − 32 10 62], peak right : [34 4 
52]), commonly referred to as the FEF (determined with the probabilis- 
tic maps by Wang et al., 2015 ; www.princeton.edu/~napl\vtpm.htm). 
In contrast, the premotor cluster detected in the current study lies in 
the adjacent PMd ( − 20 0 72), dorsocaudal to the FEF (determined with 
the SPM Anatomy toolbox version 3; Eickhoff et al., 2005 ), hinting that 
the location of choice-related information might shift between regions 
specialized for eye and hand movements depending on which response 
effector is used. 

To further assess this possibility, we ran a set of regions of interest 
(ROI) analyses. First, we took the peak voxels in the bilateral FEF from 
the previous study as the ROI for the current data. For each participant, 
we extracted decoding accuracies from these voxels and averaged them. 
The averaged decoding accuracies were then submitted to a one-tailed, 
one-sample t -test against the chance level. Likewise, we used the peak 
voxel of the PMd cluster from the present study as the ROI for the pre- 
vious study and tested whether choices could be reliably decoded from 
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Fig. 6. Comparison with results from the saccade version of the task 
( Wu et al., 2019 , n = 30). The upper panel displays brain regions carry- 
ing choice-related information as identified in the present study (in red- 
orange) and those detected in our previous work using saccades as de- 
cision reports (in blue-green, unthresholded statistical map available at 
https://www.neurovault.org/images/63,793/ ), both displayed at pFDR < 0.05, 
cluster corrected. The circles indicate the premotor and intraparietal clusters 
used for ROI analysis. The lower panel depicts mean decoding accuracies across 
participants collapsed across response modalities and effector-specific regions. 
Error bars indicate 95% CIs of the means. 
the PMd. The results of these ROI analyses support the interpretation of 
an effector-dependent shift of choice representation within the premo- 
tor cortex ( Fig. 6 ). Despite the higher sensitivity of ROI approach, the 
mean decoding accuracy computed from the bilateral FEF in the present 
study did not surpass the chance level (t 26 = 1.534, mean = 52.272%; 
CI 95 = [50.772% 55.315%], p = 0.137). Likewise, the mean decoding 
accuracy in the left PMd derived from the previous study did not dif- 
fer significantly from the chance level (t 29 = 2.172, mean = 54.301%; 
CI 95 = [50.250% 58.352%], p = 0.076, Holm corrected). That is, when 
a manual response was used, the choice could only be reliably decoded 
from the left PMd, but not from the FEF. Conversely, the choice could 
only be read out from the FEF, but not from the PMd, when a saccadic 
response was required ( Fig. 6 ). 
4. Discussion 

In the present study, we sought to identify human brain regions that 
represent categorical choices in the context of vibrotactile frequency 
comparisons. We used fMRI combined with a variant of the vibrotactile 
frequency discrimination task which allowed us to dissociate choice- 
selective BOLD signals from those related to the physical properties of 
stimulus orders and selection of specific manual responses. We iden- 

tified the left IPS and PMd, contralateral to the response effector, as 
carrying choice-related information. With this result, we replicated the 
finding from our previous work using the same task, but with saccades 
as response effector ( Wu et al., 2019 ). However, the informative premo- 
tor clusters identified with the previous oculomotor variant of the task 
were centered in the bilateral FEF rather than in the left PMd. Thus, 
the results of both studies suggest a response modality-specific organi- 
zation of categorical choice representations for vibrotactile comparisons 
in humans. 

The pivotal role of the premotor cortex in decision formation dur- 
ing vibrotactile comparisons has been established by the seminal work 
of Romo and colleagues using neurophysiological recordings in mon- 
keys (reviewed in Romo and de Lafuente, 2013 ). The premotor cortex 
is strongly implicated in the computation of comparisons between the 
two sequentially presented stimuli, based on the consistent observation 
of choice-predictive signals before the initiation of manual responses 
( Hernández et al., 2002 , 2010 ). In line with these reports, we identified 
the dorsal part of the premotor cortex as carrying choice-related infor- 
mation, with the crucial difference that choices in the present study were 
independent of stimulus order and selection of specific manual move- 
ments, while those in the above-mentioned monkey neurophysiological 
studies were inextricably linked with them. Taking this into account, the 
finding of such choice representations in a region that is primarily as- 
sociated with the planning and preparation of manual actions may not 
appear straightforward. Indeed, results from a few human fMRI stud- 
ies in the visual domain, wherein perceptual choices were disentangled 
from specific actions, are inconsistent. On the one hand, several studies 
failed to find evidence for decision-related BOLD signals in the premotor 
cortex when choices were decoupled from actions (e.g., Hebart et al., 
2012 ; Filimon et al., 2013 ). On the other hand, premotor activity re- 
flecting categorical choices regarding the stimulus identity independent 
of motor planning has been shown in other human fMRI studies (e.g., 
Hebart et al., 2014 ). With this study, we provide additional fMRI ev- 
idence for human premotor involvement in the representation of cat- 
egorical choices which cannot be merely attributed to specific action 
selection. 

Hereof, it is important to note that the analysis we used in the present 
study does not permit an inference about whether vibrotactile choices 
are indeed encoded in the PMd or generated elsewhere. Independent 
of whether this is the case, one possible explanation for our premotor 
finding is that the PMd serves as a node for short-term storage of cat- 
egorical choice representations and its transformation into commands 
for concrete manual movements once all information required for the 
execution of specific actions are known. In other words, choice-related 
information in the PMd can be regarded as an instruction cue that needs 
to be maintained throughout the entire decision phase to enable the 
flexible association between the succeeding visual matching cues, spa- 
tial targets, and button presses (see Hoshi and Tanji, 2007 ; Wu et al., 
2019 ). This interpretation agrees with a recent study showing a causal 
role of the premotor cortex in the flexible stimulus-response mapping in 
mice ( Wu et al., 2020 ) and monkey neurophysiological studies implicat- 
ing the PMd in the retrieval and integration of task-relevant information 
necessary for specification of particular actions (e.g., Nakayama et al., 
2008 ; Yamagata et al., 2009 , 2012) . 

While there is a vast amount of neurophysiological evidence for pre- 
motor involvement during vibrotactile comparisons, neural activities in 
the posterior parietal cortex (PPC) has remained largely unexplored in 
this context. Nevertheless, our finding of intraparietal choice representa- 
tion was not surprising. Similar to the premotor area, posterior parietal 
regions are thought to be crucially involved in various decision-making 
tasks, most prominently when decisions are communicated by saccades 
( Gold and Shadlen, 2007 ). In particular, activity in the monkey LIP (ho- 
mologous to the intraparietal subregions in humans) has been shown 
to mimic the presumed evidence accumulation toward one or the other 
saccade choices and thereupon regarded as the explicit neural repre- 
sentation of the evolving decisions ( Shadlen and Kiani, 2013 ; but see 
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Huk et al., 2017 for a critical review). Moreover, evidence from recent 
studies on a wide range of decision-making tasks suggests that PPC’s in- 
volvement is not confined to motor decisions but pertains to decisions 
at different levels of abstraction. For instance, both monkey and human 
PPC have been shown to represent choices that were independent of the 
planning of saccade responses ( Bennur and Gold, 2011 ; Hebart et al., 
2012 ). Among studies in the broader context of decision making, find- 
ings from monkey neurophysiological recordings using visual catego- 
rization tasks are particularly revealing (reviewed in Freedman and As- 
sad, 2016 ). In these studies, monkeys were trained to perform delayed 
match-to-category tasks in which they decide whether the motion direc- 
tion of the sample stimulus and the test stimulus belong to the same cat- 
egory based on a previously learned, arbitrarily defined boundary. After 
the test stimulus, monkeys indicated their decision on a match or mis- 
match with manual or saccadic responses. Using this task, LIP has been 
shown to exhibit signals reflecting the categorical choice which cannot 
be attributed to specific sensory stimulus properties nor action selec- 
tion ( Freedman and Assad, 2006 ; Swaminathan and Freedman, 2012 ; 
Swaminathan et al., 2013 ). Such categorical information is reminiscent 
of the choice-related information observed in our study as both are dis- 
sociated from the physical properties of stimuli as well as the selec- 
tion of manual movements and are thus, represented at a similar level 
of abstraction. The similarity between them opens the possibility of a 
common mechanism and thereby boosts the notion of the PPC, and IPS 
more specifically, as a central node mediating cognitive computations 
( Freedman and Assad, 2016 ). 

Given the above-mentioned functions ascribed to the PPC, one ques- 
tion which emerges from our results is whether the reported choice- 
related information is directly computed in the PPC via an evidence 
accumulation process or other mechanisms. Given our experimental de- 
sign, we are not able to answer this question. In this study, we only 
used stimulus pairs with supra-threshold differences to facilitate the de- 
codability of choice-related information. This is, however, problematic 
for assessing neural correlates of evidence accumulation as they would, 
according to the accumulation-to-bound model ( Ratcliff et al., 2016 ), 
provide strong momentary evidence signals which are difficult to dis- 
tinguish as such. As for the premotor cortex, it is possible that the IPS 
merely receives choice-related signals from elsewhere in the brain and 
thus, is not actively involved in the decision formation. However, there 
is evidence from several lines of research that warrants the IPS being 
a promising candidate region for decision formation during vibrotactile 
comparisons. 

First, vibrotactile comparisons as implemented in the present study 
can be regarded as a process in which a choice is made based on 
the relation between two magnitudes. Combined evidence from mon- 
key neurophysiology and human neuroimaging suggests that magni- 
tudes and the relation between them are encoded by a network com- 
prising the IPS and lateral PFC ( Jacob, Vallentin and Nieder, 2012 ). 
Moreover, the IPS appears to be the first region within this network 
to process magnitude information (reviewed in Nieder, 2016 ). Second, 
Herding et al. (2019) showed that the centro-parietal positivity (CPP) 
in EEG signal, which has been suggested as a proxy for accumulated ev- 
idence across a variety of decision-making tasks ( O’Connell et al., 2012 ; 
Kelly and O’Connell, 2013 ), also indexes the amount of sensory evi- 
dence during vibrotactile comparisons. More specifically, they identi- 
fied the left IPS as the likely source of the CPP component reflecting the 
signed subjectively perceived difference between two frequencies. No- 
tably, in this study, participants always compared f2 against f1. It would 
be interesting to explore whether and how this effect is modulated by 
comparisons in the reversed direction. Finally, using a reversible inacti- 
vation approach to investigate PPC’s contribution to sensory evaluation 
and action selection, Zhou and Freedman (2019) revealed that monkeys’ 
decisions were more severely affected when visual stimuli, rather than 
motor targets, were placed in the inactivated receptive fields of LIP neu- 
rons under investigation, providing compelling evidence for the causal 
role of the PPC in the sensory aspect of visual decisions. Given that the 

IPS is thought to have a similar role as a mediating node in the senso- 
rimotor transformation across multiple sensory domains, it is intriguing 
to see whether a causal effect could also be demonstrated during vibro- 
tactile comparisons. 

With the present finding of premotor and intraparietal choice- 
selectivity, we have also replicated the finding of our previous study us- 
ing the same task but with saccades as the response modality ( Wu et al., 
2019 ). When comparing both studies more closely, two differences are 
apparent. First, choice-related information was found in bilateral pre- 
motor and intraparietal regions when saccades were used. However, 
when manual responses were required, the premotor and intraparietal 
selectivity was only evident in the contralateral hemisphere. Moreover, 
we observed a relocation of choice-related information within the pre- 
motor area from the FEF to the PMd. Importantly, we did not assign 
these functional labels merely based on the response modalities required 
in the tasks. Both the FEF and the PMd were determined by means 
of well-established functional probability maps. In addition, the spa- 
tial arrangement of the FEF and the PMd clusters as identified by the 
spatially unbiased whole-brain searchlight routines in these two stud- 
ies corresponds well to that reported in monkeys (e.g. Petrides, 1982 ; 
Halsband and Passingham, 1982 ; Bruce and Goldberg, 1985 ) and hu- 
mans ( Amiez et al., 2006 ), with saccade-related premotor region ly- 
ing more anterior and ventral to premotor region exhibiting activi- 
ties related to manual movements. It is unlikely that these differences 
were merely a by-product of idiosyncratic differences between samples. 
Rather, the results from these two studies suggest that categorical choice 
information during vibrotactile comparisons are represented in a re- 
sponse modality-dependent manner. 

Intriguingly, our findings contrast with those derived from a num- 
ber of human fMRI studies in the visual system using multiple re- 
sponse effectors (e.g., Heekeren et al., 2006 ; Ho et al., 2009 ; Liu and 
Pleskac, 2011 ; Filimon et al., 2013 ). These studies were able to iden- 
tify brain regions showing decision-related BOLD signals in an effector- 
independent manner and implied the existence of a central decision- 
making hub in the brain, although with a wide variation of candidate 
brain regions across studies (e.g., the dorsolateral prefrontal cortex, in- 
sula, IPS, or inferior prefrontal sulcus). This discrepancy could be par- 
tially due to the methodological differences in disentangling decision- 
related from motor-related signals: The current study relied on a bal- 
anced experimental design and a multivariate technique that is sensitive 
to information encoded combinatorially in brain activity patterns. In 
contrast, the above-mentioned fMRI studies identified decision-related 
signals by elongating stimulus-response latencies while making specific 
assumptions about how sensory evidence is reflected in the average 
brain activity. Another possible, more intriguing reason for the discrep- 
ancy is that the response modality-dependent organization of choice in- 
formation is confined to a specific level of abstraction. For instance, the 
dependency observed in our studies may result from the explicit fore- 
knowledge of the required response effector, while such foreknowledge 
was lacking in some of the above-mentioned studies from the visual 
domain ( Liu and Pleskac, 2011 ; Filimon et al., 2013 ). Taking this into 
account, one conceivable explanation for our findings is that effector- 
specific regions may only take over the computations of categorical 
choices, or at least reflect the outcomes of those computations before 
the actual action selection, if the response effector for decision reports 
is predictable to the observer. In addition, it is important to note that 
the above-mentioned studies in the visual system and our studies aimed 
at different types of decision-related BOLD signals. Using an univariate 
activation-based approach, the above-mentioned studies in the visual 
system targeted brain regions that represent the decision formation via 
sensory evidence accumulation, while we employed a multivariate ap- 
proach to identify brain regions that carry information about the cate- 
gorical outcomes of any potential computations. Thus, it raises the pos- 
sibility that the computation of categorical choices during vibrotactile 
comparisons and sensory evidence accumulation in visual system are 
accommodated by different mechanisms. 
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In conclusion, our studies have shown that premotor and intrapari- 

etal regions carry information about categorical choice independent of 
stimulus order and specific action selection during vibrotactile com- 
parisons. The results suggest that, when the response effector is pre- 
specified, categorical choice information is represented in a response 
modality-dependent manner, with the PMd carrying information about 
categorical choices that are communicated by the manual movements 
and the FEF when saccades are utilized. Yet, it remains elusive whether 
such categorical choices are indeed computed in the identified regions 
and whether the modality-dependent organization holds when the re- 
quired response effector is unpredictable. In this light, future studies 
combining a wide range of response modalities, response options for 
each effector, and task difficulties will provide essential insights into 
how categorical choices are computed and represented in different con- 
texts. 
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