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Abstract: Radical trifluoromethoxylation is an attractive
approach to prepare compounds featuring the important
OCF3 group, however most existing methods have
focused on aromatic substrates. Here, we report novel
methodologies with alkenyl substrates employing
bis(trifluoromethyl)peroxide (BTMP) as a practical and
comparatively atom economical trifluoromethoxylating
reagent. With silyl enol ether substrates, switching
reaction solvent allows for the synthesis of either α-
(trifluoromethoxy)ketone products or unprecedented
alkenyl-OCF3 species. Furthermore, allyl silanes have
been employed as substrates for the first time, affording
allyl(trifluoromethyl)ether products in good yields. In
each case, the methods operate at room temperature
without large excesses of the alkene substrate while, in
contrast to previous radical trifluoromethoxylation re-
actions, no catalyst, light or other activators are
required.

Introduction

The trifluoromethoxy (OCF3) group and its introduction
into organic molecules is of growing interest in several
different fields, especially agro- and medicinal chemistry,
due to its unique properties and good metabolic stability.[1]

Often referred to as a “superhalogen”, the OCF3 group
exhibits high lipophilicity (π=1.04) and comparable electro-
negativity to an individual fluorine atom (χOCF3 =3.7, χF=

4.0), however its electron-withdrawing effect is somewhat

lower than many other fluorinated groups.[2] The unique
stereoelectronic requirements of OCF3 moieties can also
result in unconventional conformational preferences rarely
encountered with alternative groups. Incorporating a
trifluoromethoxy group onto a valuable molecule therefore
can result in better fine tuning of its properties and an
improved overall activity. Furthermore, with perfluoroalkyl
substances (PFAS) currently attracting concern as so-called
“forever chemicals”, the comparatively lower environmental
persistence of trifluoromethoxy moieties could make these
motifs attractive alternatives to CF3 and other fluorinated
groups in pharmaceuticals, agrochemicals and materials.[3]

Despite this great potential, only a handful of OCF3-
containing molecules are currently employed commercially
with only 0.01% of the fluorinated pharmaceuticals on the
market and 0.02% of fluorinated agrochemicals being
trifluoromethoxylated.[1e,g] A major contributing factor for
this is the lack of practical methods for introducing OCF3,
especially at a late stage of a synthetic route. Compared to
indirect approaches involving fluorination of pre-functional-
ised ether motifs[4] or trifluoromethylation of alcohols,[5]

direct trifluoromethoxylation methods, wherein the whole
OCF3 moiety is attached in one step, are particularly
attractive in this regard. The available methods can be
categorised into nucleophilic and radical approaches, where
nucleophilic methods can be challenging due to the insta-
bility of the � OCF3 anion towards β-fluoride elimination.[6]

As a result, considerable attention has been devoted to the
development of new radical trifluoromethoxylation
reactions.[7] In 2018, the groups of Ngai and Togni both
introduced bench stable reagents which release *OCF3

radicals upon activation of an N� O bond.[8] These com-
pounds represented a major breakthrough for the field that
opened up novel synthetic routes towards OCF3-substituted
molecules directly from unfunctionalised aromatics.[7,9] In
2021, our groups explored bis(trifluoromethyl)peroxide
(BTMP) as an alternative source of *OCF3 radicals in related
photocatalytic and TEMPO-induced reactions of arenes and
heteroarenes.[10] First reported by Swarts in 1933[11] and
reinvestigated by Cady in 1957,[12a] BTMP is a remarkably
stable (no thermal decomposition below 200 °C) and easy to
handle gas which can be synthesised on a large scale from
the relatively inexpensive industrial chemicals CO and
F2.

[13,14] In comparison to the previous reagents, which are
themselves prepared from expensive electrophilic
trifluoromethylating reagents and generate significant waste,
BTMP offers promise as a practical and atom-economical
alternative.
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While there have been a number of reports in recent
years on the radical trifluoromethoxylation of arenes and, to
a lesser extent, heteroarenes, applications for the synthesis
of other important classes of OCF3-containing molecules are
scarce (Figure 1a). In particular, radical methodologies that
afford products substituted with OCF3 groups at sp3-
hybridised carbon atoms have been seldom reported. In
2021, a collaborative study between the Magnier, Dagousset
and Dell’Amico groups investigated *OCF3 radical addition
to enol carbonate substrates using the Togni trifluorometh-
oxylating reagent (Figure 1b).[15] Although requiring 5 equiv-
alents of the alkene substrates and employing photoredox
catalysis conditions, the success of this process demonstrates
the potential of radical trifluoromethoxylation to generate
diverse OCF3-containing products, delivering α-
trifluoromethoxylated ketones in generally moderate
yields.[16] Inspired by this report and by our previous work
on the radical trifluoromethoxylation of aromatics,[10] we
considered whether BTMP could be employed as a reagent

for preparing a wider range of OCF3-containing molecules.
Here we report the results of this investigation, which not
only led to efficient methods for preparing α-trifluorometh-
oxylated ketones and allyl(trifluoromethoxy)ethers from
silyl enol ethers and allyl silanes, respectively, but also gave
access to unprecedented alkenyl-OCF3 products. Moreover,
in addition to its practical and atom-economical nature, the
use of BTMP also allowed for trifluoromethoxylation to be
conducted under catalyst-free conditions without large
excesses of the substrate and employing inexpensive potas-
sium carbonate as the only additive (Figure 1c).

Results and Discussion

At the beginning of the study, we investigated potential
alkenyl substrates that could serve as acceptors of *OCF3

radicals, and selected silyl enol ethers as representative
substrates. To our delight, an initial test reaction employing
the established photocatalytic conditions from our prior
work with the trimethylsilyl enol ether of acetophenone (1a,
1.5 equiv.) provided the desired α-(trifluoromethoxy)ketone
2a in a 19F NMR yield of 16% (internal standard: PhCF3,
Table 1, Entry 1).[17] Product 2a was also generated in 6%
19F NMR yield when 1a was reacted in the presence of
BTMP, TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl,
25 mol%) and K2CO3 (1.0 equiv.) under conditions also
developed in our previous study with (hetero)arene sub-
strates (Table 1, Entry 2). In both cases, almost complete
desilylation of 1a was observed during the reaction suggest-
ing the relatively low yields could result in part from
undesired background hydrolysis of the trimethylsilyl enol
ether. We therefore investigated the more hydrolytically
stable compound 3a, which features a sterically more
demanding triisopropylsilyl (TIPS) group in place of the
trimethylsilyl (TMS) motif. Pleasingly, under the TEMPO-
mediated conditions, 3a reacted smoothly to afford 2a in an
increased 19F NMR yield of 44%. Furthermore, analysis of
the crude NMR spectra revealed the presence of small
amounts of trifluoromethoxylated side-products, which
could be assigned as the (Z) and (E) isomers of the silyl
enol ether 4a ((Z)-4a, 4%; (E)-4a, 5%, Table 1, Entry 3).
To the best of our knowledge, products featuring an alkenyl
OCF3 group have not been obtained previously via radical
trifluoromethoxylation. Silyl enol ethers of general structure
4 could serve as useful building blocks for the construction
of diverse OCF3-containing compounds. An investigation of
the reaction stoichiometry revealed 1.5 equivalents of 3a to
be optimum with 1.0 or 2.0 equivalents leading to lower
yields of 2a (Table 1, Entries 4&5). Such a low loading of
the alkene is remarkable and stands in contrast to other
radical trifluoromethoxylation methodologies, which typi-
cally require 5 equivalents or more of the organic substrate.
Reducing the TEMPO catalyst loading to 5 mol% sup-
pressed the formation of silyl enol ethers 4a and led to an
increase in 19F NMR yield of ketone product 2a to 48%
(Table 1, Entry 6). Moreover, omitting the catalyst entirely
did not lead to the expected suppression of reactivity but
rather resulted in a further small increase in 19F NMR yield

Figure 1. a) Radical trifluoromethoxylation of arenes and alkenes. b)
Previous report on the photoredox catalysed trifluoromethoxylation of
enol carbonates affording α-(trifluoromethoxy) ketones. c) This work:
Catalyst-free trifluoromethoxylation of silyl enol ethers and allyl silanes
with BTMP. 4-CzIPN: 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanoben-
zene, Td: decomposition temperature.
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of 2a to 50% (Table 1, Entry 7). This surprising result
implies that independent activation of BTMP is not required
for a successful reaction and that substrate 3a may itself
directly react with the peroxide. Increasing the amount of
the K2CO3 additive did not influence the yield of 2a,
however reducing down to 0.5 equiv. resulted in a decreased
yield of 31% (Table 1, Entries 8&9). K2CO3 likely serves to
mop up any HF side-product generated under the reaction
conditions. During the solvent screening, a solvent-depend-
ent product distribution was observed. When acetone was
used as the solvent, 2a was selectively formed in a 19F NMR
yield of 55% (Table 1, Entry 10). However, when conducted
in diethyl ether, nitromethane or dichloromethane (DCM),
silyl enol ethers 4a were generated as the major products of
the reaction, with DCM leading to the highest yield
(Table 1, Entries 11–13). Finally, both the DCM and acetone
methods were tested using inverted stoichiometry using 3a
as the limiting reagent and maintaining a BTMP:K2CO3

ratio of 1 :1 (Table 1, Entries 14 & 15). In acetone, the
reaction proceeded with only a slight decrease in 19F NMR
yield of 2a relative to the standard conditions, however, the
reaction in DCM affording 4a was considerably less

efficient. In both reactions, increased formation of aromatic
OCF3 side-products was observed. For these reasons, the
conditions from Table 1, entries 10 and 13 were used for
further studies. Overall, the optimisation study led to the
development of two practical sets of conditions for radical
trifluoromethoxylation that employ only a slight excess of
the alkenyl substrate, do not require any catalyst and
proceed at room temperature with only K2CO3 as an
additive.

We next set out to evaluate the scope and limitations of
the method affording α-(trifluoromethoxy)ketone products 2
(Scheme 1). To our delight, common substituents on the
aromatic ring of acetophenone-derived silyl enol ethers such
as alkyl moieties and halogens were well tolerated and
afforded the corresponding products in moderate to good
isolated yields up to 75%.[18] The halogenated products 2d–f
are particularly noteworthy as they offer the potential for
further elaboration, for example through cross-coupling
methodologies. The reactions with silyl enol ethers bearing
strongly electron-withdrawing groups on the aromatic ring,
on the other hand, showed reduced reactivity with the α-
(trifluoromethoxy)ketones 2g and 2h being both obtained
in 17% isolated yield. This observation is consistent with
our findings in aromatic trifluoromethoxylation reactions
with BTMP.[10] Interestingly, NMR analysis of the crude
reaction mixture with the methoxy-substituted silyl enol
ether 3 i revealed the formation of not only the desired

Table 1: Optimisation of the direct trifluoromethoxylation of silyl enol
ethers using BTMP.

Entry [Si] Catalyst
(mol%)

K2CO3

(equiv.)
Solvent Yield

2a[a]
Yield
4a[a]

(Z/E)

1[b] TMS [Ru(bpy)3](PF6)2
(4 mol%)

– MeCN 16 –

2 TMS TEMPO
(25 mol%)

1.0 MeCN 6 –

3 TIPS TEMPO
(25 mol%)

1.0 MeCN 44 4 :5

4[c] TIPS TEMPO
(25 mol%)

1.0 MeCN 16 –

5[d] TIPS TEMPO
(25 mol%)

1.0 MeCN 42 5 :3

6 TIPS TEMPO
(5 mol%)

1.0 MeCN 48 –

7 TIPS – 1.0 MeCN 50 –
8 TIPS – 1.5 MeCN 50 –
9 TIPS – 0.5 MeCN 31 –
10 TIPS – 1.0 Acetone 55 –
11 TIPS – 1.0 MeNO2 12 49 :6
12 TIPS – 1.0 Et2O 12 34 :22
13 TIPS – 1.0 DCM 5 57 :12
14[e] TIPS – 1.5 Acetone 49 –
15[e] TIPS – 1.5 DCM 2 28 :6

[a] 19F NMR yields using α,α,α-trifluorotoluene (PhCF3) as an internal
standard. [b] Reaction was performed under irradiation from blue
LEDs. [c] With 3a (1.0 equiv.). [d] With 3a (2.0 equiv.) [e] inverted
stoichiometry: with 3a (1.0 equiv.) and BTMP (1.5 equiv.). TMS=

trimethylsilyl, bpy=2,2’-bipyridine, TEMPO=2,2,6,6-tetrameth-
ylpiperidin-1-yl)oxyl, TIPS= triisopropylsilyl. DCM=dichloromethane.

Scheme 1. Scope of the reaction of silyl enol ethers 3 with BTMP
affording α-(trifluoromethoxy)ketones 2. Isolated yields. [a] Reaction
with DCM as the solvent. After reaction time, trifluoroacetic acid (TFA,
3.0 equiv.) was added and reaction mixture was stirred for an additional
4 h at rt. [b] Single diastereomer, configuration not determined.
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ketone 2 i but also the corresponding enol 5 i. Two spots
were observed by thin layer chromatography (TLC), how-
ever, upon purification by column chromatography, both
isolated fractions exhibited NMR spectra in CDCl3 consis-
tent with 5 i, implying tautomerisation to the seemingly
more stable enol form had occurred (total isolated yield=

28%).[19,20] Products 2j and 2k, which feature substituents at
the ortho- and meta- positions, as well as ketones 2 l–n
derived from internal silyl enol ethers could also be obtained
in good yields up to 70%. The ortho-methyl-substituted
product 2k was a solid and allowed for confirmation of the
structure by single crystal X-ray diffraction (Figure 2).[21]

Overall, the yields are largely comparable with those
obtained by Magnier, Dagousset and Dell’Amico employing
the Togni trifluoromethoxylating reagent and enol
carbonate substrates under photoredox catalysis
conditions.[15] Moreover, in some ways, the two systems are
complementary with the photocatalytic method working
somewhat better for relatively electron-deficient substrates
and the catalyst-free method with BTMP affording higher
yields with more electron-rich derivatives. Finally, to eval-
uate the applicability of the method for late-stage function-
alisation, a selection of silyl enol ethers derived from
ketones used in the perfumery industry were tested. Product
2o derived from the aromatic ketone tonalide was delivered
in 43% isolated yield while silyl enol ethers generated from
α-ionone and exaltone also reacted smoothly indicating that
alkenyl and aliphatic α-(trifluoromethoxy)ketone products
are also readily accessible using BTMP (yield of 2p=40%,
yield of 2q=24%).

After evaluating the method affording α-(trifluorometh-
oxy)ketones 2, we next turned our attention to the synthesis
of OCF3-substituted silyl enol ethers 4. Compounds that
feature an OCF3 group at an electron-rich alkene function-
ality have not been obtained previously as products of
radical trifluoromethoxylation and we were therefore eager
to investigate the efficiency of this process with a range of
different substrates.[22] In each case, the crude yield and Z/E
ratio was measured by 19F NMR, and the major isomer was
then isolated by preparative HPLC (Scheme 2). As for the
reaction in acetone affording α-(trifluoromethoxy)ketones,
the process in DCM showed good tolerance of common
substituents and substitution patterns on the aryl ring of
acetophenone-derived silyl enol ethers 3. Substrates contain-
ing halogens and alkyl groups at the para-position reacted

smoothly while both electron-withdrawing groups such as
CF3 and electron-donating substituents such as OBn were
tolerated. The isolated major isomer of the benzyloxy-
substituted product 4r was a solid which allowed for the
configuration to be confirmed as Z by X-ray crystallography
(Figure 3).[21] NOE analysis of the major isomer obtained
from silyl enol ether 3a was also consistent with a Z-
configuration and, by analogy, we tentatively assume that
the reaction is moderately selective for this isomer for all
the substrates tested with diastereomeric ratios averaging
around 4 :1.[23] Methyl substitution at the ortho- and meta-
positions of the aryl ring was also well tolerated with the

Figure 2. Molecular structure, determined by X-ray diffraction, of ketone
2k. Thermal ellipsoids set at 50% probability.

Scheme 2. Scope of the reaction of silyl enol ethers 3 with BTMP
affording trifluoromethoxylated silyl enol ethers 4. Isolated yields of the
major isomer. 19F NMR yields of the (Z) and (E) products using α,α,α-
trifluorotoluene (PhCF3) as an internal standard are given in paren-
theses. [a] Reaction was performed on a 2.4 mmol scale. 19F NMR yield
not measured. [b] Minor diastereomer could not be unambiguously
observed in the crude 19F NMR. [c] Stereochemistry not determined.

Figure 3. Molecular structure, determined by X-ray diffraction, of
trifluoromethoxylated silyl enol ether (Z)-4r. Thermal ellipsoids set at
50% probability.
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ortho-substituted product reacting with somewhat lower
diastereoselectivity (19F NMR yields of (Z)-4k and (E)-4k=

31% and 14%, respectively). While the silyl enol ether
derived from α-tetralone reacted smoothly (19F NMR yield
of 4n=46%), the reaction was found to be less successful
with other internal alkene substrates with methyl or benzyl
substitution at the 2-position suppressing product formation.
Subjecting the aliphatic silyl enol ether substrate 3s led to a
complex reaction mixture with the major product isolated by
preparative HPLC being the internal alkene product 4s
(isolated yield=11%). Finally, (trifluoromethoxy)silyl enol
ethers of the compounds derived from tonalide (4o) and α-
ionone (4p) could be obtained in moderate yields.

To probe the potential of trifluoromethoxylated silyl
enol ethers 4 as useful OCF3-containing building blocks, the
benchmark compound (Z)-4a was synthesised on a
2.4 mmol scale and subjected to further transformations.
Treatment with trifluoroacetic acid (TFA, 1.2 equiv.) in
DCM resulted in smooth desilylation affording the corre-
sponding α-(trifluoromethoxy)ketone 2a in 60% yield
(Scheme 3).[24] Moreover, following a literature-known
protocol,[25] product (Z)-4a could be successfully converted
into the Mukaiyama aldol product 6 in 72% yield (d.r.=
90 :10) upon reaction with n-butanal and titanium chloride.
In both reactions, no cleavage or elimination of the OCF3

group was observed.
Having established silyl enol ethers as suitable substrates

for catalyst-free radical trifluoromethoxylation with BTMP,
we next sought to explore alternative potential classes of
alkene reaction partner. By virtue of the silicon β-effect,
allyl silanes are competent radical acceptors with subsequent
desilylation affording functionalised allyl products. To the
best of our knowledge, general methods for radical
trifluoromethoxylation of alkenyl substrates other than enol
ether derivatives have not been reported previously while
the potential allyl(trifluoromethyl)ether products could
serve as useful OCF3-containing motifs that feature an
alkene handle for further derivatisation. In an initial test
reaction, trimethyl(2-phenylallyl)silane 7a was reacted
under the TEMPO-mediated reaction conditions developed
in our previous study: TEMPO (25 mol%), K2CO3

(1.0 equiv.), MeCN, rt, 1 h. To our delight, smooth con-
version to the desired product 8a was observed with 19F

NMR analysis indicating a yield of 53%. Moreover, switch-
ing to catalyst-free conditions without TEMPO led to a
significant improvement in efficiency with 8a being deliv-
ered in 90% 19F NMR yield.

A short scope and limitations study was then conducted
with a selection of allyl silane structures 7 (Scheme 4). The
para-substituted aryl derivatives 7b–d all reacted efficiently
in 19F NMR yields greater than 68% although product
volatility had a detrimental effect on the isolated yields. The
reaction with an internal allyl silane was also successful with
allyl(trifluoromethyl)ether 8e being generated in 88% 19F
NMR yield (57% isolated yield). With this unsymmetrical
allyl substrate, selective installation of the OCF3 group
within the carbocyclic ring was observed, indicating that
trifluoromethoxylation occurs at the alkenyl β-position and
not at the carbon directly bonded to silicon. Finally, to fully
probe the extent of suitable allyl silane substrates, the
simplest unsubstituted derivative, allyl(trimethyl)silane 7f,
was tested. Radical trifluoromethoxylation proceeded very
slowly in this case, however after 14 days at rt,
allyl(trifluoromethyl)ether (8 f) was observed in the crude
mixture with distillation providing the gaseous product as an
inseparable mixture with the TMS� F side-product (calcu-
lated isolated yield=48%).

The success of the trifluoromethoxylation reactions
under such simple conditions without a catalyst or other
activators raises questions regarding the operating mecha-
nism. To provide insight into the potential pathways,
preliminary DFT calculations were conducted. A compar-
ison of the computed ionisation energy of silyl enol ether 3a
and electron affinity of BTMP in acetone implies that single
electron transfer affording the radical cation A and radical
anion B is thermodynamically feasible (ΔG= � 7.7 kJ/mol at
298.15 K, Scheme 5).[26] Subsequent mesolysis of B would
then provide an *OCF3 radical C and an � OCF3 anion D. In
principle, radical C could directly combine with the silyl

Scheme 3. Desilylation and Mukaiyama Aldol Reaction of trifluorometh-
oxylated silyl enol ether (Z)-4a. Isolated yields.

Scheme 4. Scope of the reaction of allyl silanes 7 with BTMP affording
allyl(trifluoromethyl)ethers 8. Isolated yields. 19F NMR yields using
α,α,α-trifluorotoluene (PhCF3) as an internal standard are given in
parentheses. [a] Reaction was performed on a 20 mmol scale over
14 days. Product 8 f was isolated as a 1 :1 mixture with TMS� F. 19F
NMR yield not measured.
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enol ether-derived radical cation B affording cation E
(Path I, Scheme 5) or the 1,2-di(trifluoromethoxy) com-
pound F upon additional trapping with � OCF3 (D). In an
alternative pathway, *OCF3 radical (C) could instead add to
another molecule of the starting material affording radical
species G, which could then be oxidised to cation E by
BTMP as part of a radical chain mechanism (Path II,
Scheme 5). To probe the involvement of such a radical chain
mechanism, the standard reaction with 3a in acetone was
performed again in the presence of benzene (10 equiv.,
Table 2). As shown in our previous work,[10] benzene is a

competent radical acceptor for free *OCF3 radicals C, and it
could be expected to provide competition to silyl enol ether
3a if a radical chain mechanism of the type described above
were operating. Analysis of the crude reaction mixture,
however, did not indicate the formation of (trifluorometh-
oxy)benzene (9) as a side-product, suggesting that free
*OCF3 radicals that then engage with a second molecule of
3a are not involved (Table 2, Entry 3). Interestingly, con-
ducting the same experiment with additional TEMPO
(25 mol%) as a catalyst did result in formation of 9,
implying free radicals C are involved in this case (Table 2,
Entry 4).[27] In light of these results, we tentatively propose
the mechanistic scenario shown as Path I in Scheme 5 where
initial single electron reduction of BTMP by the electron-
rich alkene substrate is followed by mesolysis and fast
radical combination within the solvent cage. Finally, desily-
lative elimination from 1,2-di(trifluoromethoxy) compound
F or cation E assisted by fluoride generated upon β-
elimination from � OCF3 (D) would afford α-(trifluorometh-
oxy)ketones 2, while α-deprotonation would lead to
trifluoromethoxylated silyl enol ethers 4.[28] Further studies
would be required, however, to fully elucidate the reaction
mechanism.

Conclusion

In conclusion, novel trifluoromethoxylation methodologies
of alkene substrates have been developed using
bis(trifluoromethyl)peroxide (BTMP). In contrast to previ-
ously developed radical trifluoromethoxylation approaches,
these methods proceed under catalyst-free conditions with-
out photoredox or any other activation, operate at room
temperature with only a slight excess of the organic
substrate and employ inexpensive potassium carbonate as
the sole additive. With silyl enol ether substrates, judicious
selection of the reaction solvent provides access either to α-
(trifluoromethoxy)ketones or unprecedented alkenyl-OCF3-
containing silyl enol ether products, which can serve as
useful trifluoromethoxylated building blocks. Moreover,
allyl silanes have been employed as novel substrates for
trifluoromethoxylation, delivering allyl(trifluorometh-
yl)ethers. Given the increasing importance of the OCF3

group and the attractive features of BTMP as a practical and
comparatively atom-economical reagent, we anticipate these
methods will find applications in many areas of chemistry.
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