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Abstract
Incorporating a progressive income tax into an economic decision problem raises 
the question whether this tax does not create arbitrage opportunities. We investigate 
this problem in a riskless (multi-period) economy. With a convex tax function we 
identify a particular kind of arbitrage (called bounded arbitrage): In this case the 
gain achievable through arbitrage trade is limited and cannot reach infinity.We are 
able to give a complete characterisation based on prizes of the traded assets as to 
whether bounded as well as unbounded arbitrage opportunities will exist.

Keywords No-arbitrage with taxation · Fundamental theorem of asset pricing · Non-
constant tax rates · Application of convex optimization problems

JEL Classification C61 · E62 · G12 · H24

1 Introduction

1.1  Nonlinear taxes and decision making

One cannot ignore taxes when making economic decisions. This is true in particular 
for taxes at the personal level that will be the subject of our paper. If we want to con-
ceive individual behavior when a personal income tax is present we need to under-
stand the impact of this levy. Typically, the literature assumes a linear income tax 
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(i.e., the tax liability being a constant multiple of the tax base) since it is straightfor-
ward to handle.1 Exactly this simplification is the focus of our paper because we do 
not know any personal income tax worldwide that is linear.

If a tax is nonlinear then the first step can be to linearize the tax—resulting 
in a range of tax rates that might be applicable in the decision making process. 
One could argue that the variation of these rates is not that sizeable and hence 
tax nonlinearity might be neglected. That is not true, national tax rates are typi-
cally progressive—and tax rates vary within a wide range.

The tax code of two large economies illustrates this point. The current 
statutory federal tax rate in the US on interest income increases from 0  % to 
39.6 % (cf. Fig. 1a) and had reached a peak of 90 % between 1953 and 1963.2 
The German income tax offers a progressive tax rate going from 0 % to 45 % 
(cf. Fig. 1b). It is very difficult to find empirical evidence for some “natural tax 
rate” that could be used in a linearization.3 Thus the impact of tax nonlinearity 
becomes pertinent.

Individual economic decisions are typically formulated as a (utility) maxi-
mization problem. We specifically investigate the impact of a nonlinear tax on 
this maximization problem. Of course, the first and most important question 
is whether a nonlinear income tax does not generate arbitrage opportunities, 
making utility maximization impossible (i.e., the maximization problem would 
have no optimal solution). Such a tax arbitrage can arise for various reasons 
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(a) US American Federal income tax rates reg-
ulated by 26 U.S. Code §1c.
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Fig. 1  Comparison of marginal and average tax rates for the US American and German income tax code 
2022 (for single households)

1 Two examples shall illustrate that such linear transformations do not change the analysis. Brennan 
(1970) writes “...we assume for simplicity that each investor has marginal tax rates on dividend and capi-
tal gains income tdi , and tgi which are constant and independent of their portfolio choice” Similar to this, 
Bradford (2000) states “linearity is a desideratum of a tidy tax system.”
2 See taxfoundation.org for an overview of the statutory federal tax rate between 1913 and 2013.
3 Sialm (2009) tried to identify marginal investment tax rates for US companies. The Institute of Audi-
tors in Germany agreed on a standardized tax rate of 35 % for valuation purposes without reasoning, for 
details see Heintzen et al. (2008, in German).
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(and often discussed under the keywords timing or qualification arbitrage, see 
Rosembuj 2011 or Brennan and McDonald 2015).

It is important to point out an immediate consequence of our approach. By 
looking at individual economic decisions, we have to assume that investors take 
prices as given. An equilibrium model that endogenizes these prices would 
only play a role in a second step, after we have fully determined the individual 
demand of all investors. Thus, in our paper prices will be given as exogenous 
quantities and we consider only one investor, not several different investors, or 
even an equilibrium.

To this end, we need to simplify our analysis, as for now we can only answer 
this question for the case under certainty; uncertainty raises (technical) issues 
that further complicate the investigation. Therefore, we will limit ourselves 
here only to the case of secure assets and it will be seen that the investigation is 
extensive enough.

Besides personal income taxes also corporate taxes play an important role. 
But we will disregard corporate taxes in our paper because they raise com-
pletely different issues and would unnecessarily complicate our analysis with-
out gaining new knowledge.

1.2  Intuition of the main result

We start with an illustration of our main result. Whether a market is arbitrage-
free or whether it allows arbitrage can be determined exclusively by analyzing 
prices of the traded securities. The typical procedure is as follows: One fixes 
some securities (the starting point) and then checks whether, relative to this 
starting point, other securities make it possible to realize a gain. If this is the 
case, there is an arbitrage; otherwise, the market is arbitrage-free.

The choice of the starting point seems arbitrary. In a multi-period model, for 
example, the starting point could be a zero-coupon bond or a coupon-paying 
bond. However, it is clear that at the end of the analysis, the property of the 
pricing system (arbitrage-free or allowing arbitrage) does not depend on the 
choice of this starting point. Rather, it follows from mathematical logic that the 
starting point determines, at best, whether the analysis becomes cumbersome or 
simple.

We will choose as the starting point of our investigation a coupon bond that 
pays a fixed interest rate of rf  throughout its life. The rate rf  corresponds to 
“the interest rate” of the model so that the price of the bond is normalized to 1. 
Then we will raise the question to what extent another risk-free asset generates 
arbitrage opportunities. We do not restrict the structure of the payments of the 
other asset.
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In order to exemplify our result, we will assume the simplest conceivable case in 
which a nonlinear income tax occurs. We consider the case of one period ( t = 0 and 
t = 1 ) as well as only two different assets. Furthermore, the investor has an endow-
ment that pays w in t = 1 (for the sake of readability, we will already use the sym-
bols from the latter part of our paper here).

We turn to the tax base (tax is paid only in t = 1 ). For the coupon bond the tax 
base will be the interest payment rf  . For the second asset its tax base can (and will) 
be different from its cash flow due to periodization. In order to be as generic as 
possible we assume that the tax basis is known, it will be denoted by a number b 
whereby we will not place any further restrictions in this number. If, for example, an 
asset is tax exempt its tax base will be zero, bt = 0 . Furthermore, the taxable amount 
of the endowment payment is given by w̄.

Given the tax base the tax due is stipulated by a tax liability function T(⋅) . To 
exemplify our main result, we assume that this function is differentiable and satisfies 
the usual Lagrange conditions.4 Furthermore, we assume that T is strictly convex. 
This allows us to present an intuitive depiction of our main result.

Let h0 be the amount of coupon bond that pays 1 + rf  in one period. The coupon 
bond costs 1 today. The investor holds h1 of the second bond. Its price today is p and 
this bond pays x one period later. p determines whether the market is free of arbi-
trage or not.

Arbitrage is given iff a self-financing portfolio today earns a gain tomorrow, i.e., 
for some numbers h0, h1 we have

This condition is handled in a straightforward manner by substituting h0 and solving 
the maximization problem

By looking at the optimal h1 , we can immediately identify whether an arbitrage 
exists. The case h1 = 0 corresponds to an objective function (gain of the self-financ-
ing portfolio) being zero or a market free of arbitrage. But for an optimal h1 ≠ 0 
an arbitrage opportunity exists since the objective function must have a value 
above zero. By evaluating the optimal h1 and using the usual FOC, we arrive at the 
characterisation

h0 + h1p = 0

h0(1 + rf ) + h1x + w − T
(
h0rf + h1b + w̄

)
> w − T(w̄).

sup
h1

−h1p(1 + rf ) + h1x − T
(
− h1prf + h1b + w̄

)
+ T(w̄).

(1)p =
x − bT �(z)

1 + rf (1 − T �(z))
, with z ∶= w̄ − h1prf + h1b.

4 Since we have worked out all mathematical details meticulously in the appendix, we will be faintly 
negligent with the formal elements in this section.
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Equation (1) now clearly elucidates our intuition.
Without taxes (i.e., T(⋅) = 0 ) it follows that only p =

x

1+rf
 is compatible with the 

(well-known) no-arbitrage condition. This is straightforward.
If the tax is linear (i.e., T(y) = � ⋅ y ) we see that only p =

x−�b

1+rf (1−�)
 is compatible 

with the no-arbitrage condition. This relation is also well-known in the literature.5
If the tax is nonlinear, the condition of no-arbitrage can be interpreted in the fol-

lowing manner. We use the just stated equation from the linear case for the observed 
price p as definition of an implied tax rate � , i.e.,

If this implied tax rate � is equal to the marginal tax rate T �(w̄) the optimal solu-
tion must be h1 = 0 (because the tax liability is strictly convex) and hence the mar-
ket is free of arbitrage. If the implied tax rate is not equal the marginal tax rate at 
the endowment T �(w̄) , then h1 ≠ 0 and hence an arbitrage opportunity must exist. In 
summary, it can be stated that a market is free of arbitrage if and only if the implied 
tax rate is equal to the marginal tax rate at the endowment. This is intuitive: If both 
rates are not equal, the investor can increase her taxable income and with it the mar-
ginal tax rate until the discrepancy between the tax rate implied by the prices and 
her own marginal tax rate is eliminated.

1.3  The outline of the paper

Once the intuition of the result is clear it should be realized that at least two assump-
tions made in the previous section are challenging at best:

• We assumed a differentiable and strictly convex tax liability function. We do not 
know of any country in the world where this function satisfies only differentiabil-
ity, let alone strict convexity. Already having an allowance (as it is typically the 
case in any national tax code) with an otherwise linear tax violates strict convex-
ity and leads to a kink and it is not clear what a “marginal tax rate” at this kink 
should be. Also, it is by no means straightforward that the mathematical tech-
nique that we used in our introductory example is still applicable in this case.

  Therefore, another assumption is necessary. To this end, we presuppose a 
tax liability function that comprises a very broad class of existing national tax 
codes. Apart from other minor technical conditions, we will rely on convex tax 
liabilities as a function of the tax base. Examples of convex tax liabilities include 
piecewise linear functions with two or more different tax rates (cf. the American 
federal income tax in 2022 as shown in Fig. 1a) or tax rates that are affine as in 
the case of German income tax system in 2022, see Fig. 1b. Tax allowances, as 

p =∶
x − �b

1 + rf (1 − �)
or � ∶=

p(1 + rf ) − x

prf − b
.

5 For an example, see Ross (1987, p. 380).
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is the case with the German capital income tax 2022 (“Abgeltungsteuer”), ensure 
convexity as well.

  In this context we will clarify the relation between progressive tax rates and 
convexity. Both notions are not equivalent.

  Furthermore, convexity in the tax liability forces us to generalize the classical 
arbitrage approach by augmenting the terminology. Typically an arbitrage oppor-
tunity is a riskfree gain that can be increased to an arbitrary scale. Once we find a 
trading strategy paying out a positive amount today without any expenses in the 
future, we can repeat this strategy over and over again and therefore become end-
lessly rich. When tax liabilities are non-linear, the situation is different. It may be 
the case that we find an arbitrage opportunity with a positive payment today and 
no cash outflow tomorrow, but the maximum amount of money obtained using 
this strategy multiple times is still limited to a constant K < ∞ . Therefore, we 
call such an arbitrage opportunity bounded in contrast to the classic (unbounded) 
arbitrage opportunity. Such a bounded arbitrage is not possible in our intuitive 
example above.

• Arbitrage is typically considered in a setup with more than one period. Since we 
already provide all mathematical details using convex analysis it is only a minor 
step to include multiple periods. And it will also allow us to investigate problems 
of periodization, i.e., what effect the taxation of capital gains has on the asset’s 
value.

Our main result will be a complete characterisation of prices that are compliant with 
the no-arbitrage principle for bounded as well as unbounded arbitrage opportunities. 
Moreover, we show that the absence of arbitrage opportunities is closely connected 
to the properties of the tax liability function—a link that has not been made in the 
literature so far.

1.4  Literature

The impact of non-linear taxation on asset prices (and therefore on investment deci-
sions) has been examined to some extent.6

Miller (1977) is probably the first author who investigated personal and corporate 
income taxes. Although a progressive income tax is mentioned in his paper (p. 268) 
only constant tax rates are considered.

Schaefer (1982) is one of the first to analyze a non-linear tax liability. Concentrat-
ing on riskfree assets he uses the example of two investors; equilibrium prices nec-
essarily exists if the marginal tax rates of both investors overlap. If net discount fac-
tors are not unique, arbitrage opportunities will exist and therefore an equilibrium is 
unattainable. To overcome this dilemma Schaefer assumes constraints on short sales 
showing that the introduction of non-linear tax liabilities enables clientele effects, 
i.e., allowing investors in different tax brackets to hold different amounts of assets 
and/or pay different prices for the same assets.

6 There is a long list of literature focusing on linear taxation which we will disregard here. For recent 
works on this topic see, e.g., Gallmeyer and Srivastava (2011).
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From our point of view Schaefer’s model reveals a fundamental weakness: mar-
ginal tax rates “to avoid pointless complication” are unique and for two different tax 
bases there are two different marginal tax rates, see Schaefer (1982, p. 168). Using 
this assumption Schaefer requires that marginal tax rates are strictly monotone 
which we prove to be equivalent to strict convexity—a property that does not seem 
to hold for any tax code in the world.

One important work combining arbitrage theory and taxes is Ross (1987). He 
develops a fundamental theorem for riskless as well as risky assets. The tax base 
comprises cash flows and he assumes a convex tax liability function. Ross differenti-
ates between local and global arbitrage. An arbitrage is local (abbreviated LAO, see 
his definition 1 on p. 376) if it offers a classical arbitrage in the sense of a positive 
income with non-positive costs given a particular initial portfolio (endowment). For 
another investor with a different initial endowment, this arbitrage does not necessar-
ily have to result in a positive income. An arbitrage is said to be global if it offers a 
local arbitrage at every endowment.

This concept is related to our approach, but there are important differences. What 
we call a bounded arbitrage is not defined in Ross (1987), but it resembles a LAO 
that is not “extendable” (see his definition 3 on p. 376). Ross (1987) is focused on 
the question whether conditions on LAOs imply the existence of a risk-neutral prob-
ability measure. He does not examine conditions for non-extendable LAOs and 
therefore cannot ascertain the connection between arbitrage opportunities and par-
ticular properties of the tax code as we do.

Furthermore, the definition of a local arbitrage seems to be more general and 
less restrictive than the usual arbitrage condition. And because Ross forbids such 
an opportunity, the absence of a local arbitrage is a stronger assumption than the 
classical one. Also, without proof Ross claims that his results can be transferred into 
the multi-period or continuous framework. But the associated problems are not easy 
to deal with. For example, Ross’ assumption of a piecewise linear tax (his Lemma 
5 on p. 378) rules out the case of the German income tax of 2022 having quadratic 
tax liability functions for small- to medium-sized income or any (partially) strictly 
convex tax function, see Ross (1987, p. 392).

Notice that the concept of bounded arbitrage is nothing new. A significant body 
of research is dedicated to the phenomenon that capital flows only slowly between 
markets to exploit existing arbitrage opportunities (see, for example, Duffie 2010; 
Oehmke 2011; Gromb and Vayanos 2018). In these models the arbitrageurs face illi-
quidity frictions between segmented markets. Hence, there arbitrage opportunities 
effectively turn out to be bounded. The main driver of boundedness in those models 
are illiquidity affects as well as market segmentation, while in our paper the arbi-
trage bound arises from progressive taxation.

Prisman (1986) investigates convex tax liabilities and includes transaction costs 
in the model (which we will neglect here). By using a standard dual theory of con-
vex optimization, he is able to derive a non-linear and investor-specific pricing 
operator. Unlike us, Prisman does not work out the exact link between arbitrage-free 
asset prices and the structure of tax liability functions.

Dybvig and Ross (1986) generalize the model of Schaefer (1982) for arbitrary 
risky assets revealing that marginal tax rates may influence asset prices under the 
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premise of short sale constraints. Dammon and Green (1987) extend the model of 
Dybvig and Ross by permitting short sales and proving an existence theorem for a 
competitive equilibrium. The definition of no-tax arbitrage that Dammon and Green 
use is closely connected (in the one-period model) to our definition of bounded arbi-
trage. But again the authors fail to give a clear statement of the structure of prices 
that prevent tax-arbitrage.

Dermody and Rockafellar (1991) analyze non-linear taxes in a multi-period bond 
framework, including transaction costs. They assume future tax payments depend 
solely on prices rather than the specific amount that an investor holds. This assump-
tion is critical. Investors can easily avoid paying taxes, which Dermody and Rockaf-
ellar have to rule out. Because long and short prices do not coincide in their model, 
the authors conclude that net discount factors (term structure) are not unique, and 
further “[t]here are strong mathematical reasons for believing that the non-unique-
ness indicates underlying non-linearities in the behavior of value that cannot be cap-
tured by a single term structure”, see Dermody and Rockafellar (1991, p. 32).

2  Arbitrage‑free asset pricing under certainty

2.1  Convex tax liability function and its properties

In the analysis of income taxation, we have to rely on two basic concepts: tax 
base and tax liability. Let x denote the tax base. Then the tax liability is a function 
T(x) ∶ ℝ ⟶ ℝ that is also applied for a negative tax base, thus including the pos-
sibility of taxable losses. Real world tax codes rarely pay negative taxes back but 
define complicated carryback or -forward mechanisms. These mechanisms are 
hardly tractable mathematically, in particular because they often involve caps. On 
the other hand, if the investor has sufficient positive income from endowments, a 
negative tax base actually corresponds to a lower tax payment. With this in mind, 
we refrain from modeling a tax carryforward mechanism.

The following is a reasonable definition of a tax rate or tax scale:

Definition 1 (Average tax rate) An average tax rate (or also tax scale) is the function 
t(⋅) ∶ ℝ⧵{0} → ℝ for which

holds.

At x = 0 the average tax rate is undefined. We will later ensure that t(x) ∈ [0, 1) 
holds.

Marginal tax rates display the coefficient of incremental tax over incremental 
income. Without further assumptions, we cannot guarantee the differentiability of 
T(⋅) at all x. This happens to be the case when there are jumps in the tax rates or 

(2)T(x) = t(x) ⋅ x
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in the presence of tax allowances, see Fig. 1. Thus the following definition only 
holds for bases in which the limits below exist.

Definition 2 (Marginal tax rate, left- and right-derivative) The marginal tax rate 
T �(⋅) ∶ ℝ → ℝ at a base x0 is

whenever the limit exists and is unique. Further we call

and

left- and right-derivative respectively.

We call a tax function differentiable if the marginal tax rate exists at all x0 ∈ ℝ or 
equivalently if we have T �

−
(x0) = T �

+
(x0) for all x0 . As stated above, differentiability 

clearly does not hold for a variety of tax functions.
We focus on convex tax liability functions.

Definition 3 (Convex tax function) A tax liability function T(⋅) is convex if for all 
0 ≤ � ≤ 1 and x, y ∈ ℝ we have

Many tax systems have the property of monotonically increasing average tax rates 
t(x) in x. Such average tax rates will be denoted as progressive. The two concepts of 
convexity and progression are not logically equivalent. Convexity of a tax implies 
progression due to the increasing slope property since

is increasing on ℝ ⧵ {0} , see Hiriart-Urruty and Lemaréchal (2001, proposition 
6.1). But the opposite implication is not true; we have provided an example in the 
Appendix 1 where a progressive tax is not convex. In this respect the assumption of 

T �(x0) ∶= lim
x→x0

T(x) − T(x0)

x − x0
,

T �
−
(x0) ∶= lim

x↑x0

T(x) − T(x0)

x − x0
= sup

x<x0

T(x) − T(x0)

x − x0

T �
+
(x0) ∶= lim

x↓x0

T(x) − T(x0)

x − x0
= inf

x>x0

T(x) − T(x0)

x − x0

(3)T(�x + (1 − �)y) ≤ �T(x) + (1 − �)T(y).

T(x) − T(0)

x − 0
= t(x)



3496 M. Becker, A. Löffler 

convexity of the tax liability is somewhat stronger than the assumption of a progres-
sive tax scale.

And it is perfectly reasonable to assume convexity: From an economic perspec-
tive this means that tax payers with higher taxable income are charged at higher 
marginal tax rates in order to ensure the so called “vertical tax justice”.7 Therefore, 
many tax codes are convex by law. As Graham and Smith Jr. (1999) point out, inves-
tors try to obtain the highest degree of convexity by exploiting the variety of interde-
pendent tax laws and thereby flattening their tax payments which may result in strict 
convex tax liability functions. Vice versa, if we allow for non-convex tax functions, 
we allow for cases in which higher taxable income is marginally taxed at a lower 
rate than for smaller taxable income, leading to tax injustice.

Tax functions that are convex and defined on ℝ are necessarily continuous, see 
Rockafellar (1997, corollary 10.1.1). This rules out the possibility of an exemption 
limit, where at a certain income level of F the whole income is taxed and not just the 
excess amount over F.8

For continuous tax functions convexity is equivalent the weaker statement of con-
dition (3) only for � =

1

2
 or

This inequality is quite intuitive when we look at the regulation of splitting income 
as it can be found in many European countries as well as in the US: Instead of taxing 
each spouse, the average income of the couple is taxed, thus resulting in tax savings.

We will furthermore assume that there shall be no tax paid without income, or 
conversely

The condition is appropriate insofar as for typical tax functions with tax scales below 
one the property T(x) ≤ x holds for all x ≥ 0 . If T(0) < 0 , we have an arbitrage for 
doing nothing. This obvious arbitrage opportunity cannot hold in our analysis.9

In the appendix (see subsection 2) we have shown a very general result covering 
convex tax liability functions that involves some mathematical concepts that require 
considerable effort (the so-called subdifferential). We believe that for almost every 

2T
(x + y

2

)
≤ T(x) + T(y).

(4)T(0) = 0.

7 Notice however, we observe particular (minor) cases in national tax law in which the above assumption 
is not satisfied and the tax liability function is not convex. One example is the German tax code. The rea-
son is (see OECD 2006, p. 65, in German) that individuals (single parent or single-income families with 
two children) after an increase in income will face a marginal tax rate above 100 % (all transfer payment 
included) due to an increase of the average tax rate from 50 % to 55 %.
8 A typical tax with exemption limit has the structure

Note that the function is neither continuous at x = F nor is it convex, but marginal tax equals average tax 
at all x ≠ 0.

T(x) =

{
0 if x ≤ F,

� x otherwise.

9 A negative income tax would be a counterexample, see Friedman (1962, chapter XII).
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application using existing national tax codes we can restrict ourselves to a subset of 
convex tax liability functions. To understand what we mean we look at the following 
example of a tax liability function:

For positive income the above tax function has marginal tax rates of 1 − 1

2
√
x+1

 , thus 
monotone increasing towards 100 % without ever reaching its limit. For any national 
tax system such a behavior is atypical. To the contrary, we observe that all national 
income tax systems have constant tax rates at higher income, i.e., the tax function is 
an affine function on the boundaries. Including this property will allow for a much 
simpler characterisation of all arbitrage opportunities then the more general result 
shown in the appendix.10 We assume this property from now on:

Definition 4 A tax function T(⋅) is affine on the boundaries iff there is a sufficiently 
large tax base x0 ≫ 0 and two numbers T+, T− such that for all x > x0 we have

and for all x < −x0

with 0 ≤ 𝜏min ≤ 𝜏max < 1 denoting the minimal and the maximal marginal tax rate.

Given these elements of the tax we can now turn to the description of our main 
model.

2.2  Assets and trading strategies

Our presentation of the model will follow the standard procedure in a multi-
period setup. We consider a framework with different points in time denoted by 
s = 0, 1… , S . The investor’s initial endowments at time s = 1,… , S are given by 
ws . Investors are subject to payment of taxes on their taxable income. Given their 
endowment ws , at time s = 1,… , S the amount w̄s is taxable.

Tax liability comprises of a (time independent) convex function T(⋅) which is due 
to a yet-to-be-defined tax base. Furthermore, T(0) = 0 holds. Without trading the 
investor’s net income stream is ws − T(w̄s).

In s = 0,… , S − 1 it is possible to trade securities on the capital market. The the-
ory of arbitrage-free asset pricing is characterised by a relative valuation: the price 
of one asset or trading strategy is determined by the price of another asset or trading 
strategy with known market prices, offering the same cash flows as the asset to be 

T(x) =

�
x + 1 −

√
x + 1 x ≥ 0,

x

2
x < 0.

T(x) = T+ + �max ⋅ x

T(x) = T− + �min ⋅ x

10 We are grateful to Tyrrell Rockafellar who suggested these boundary conditions.
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valued (also called duplication or replication principle). Both prices have to be iden-
tical; otherwise an arbitrage opportunity can be realized.

For this reason we will presume the existence of a coupon bond. The theory of 
arbitrage then explains how to compute prices of other assets. If we allow that the 
coupon bond can be sold and bought at any point in time (dynamic trading strategy), 
we can achieve any arbitrary (riskfree) payout structure after taxes. Therefore, under 
certainty it is sufficient to assume one single asset with given prices.

There exists a standard coupon bond with constant interest payments of the risk-
free rate rf > −100% ; the price for one coupon bond with taxes is normalized to 
one. If the investor holds the bond she receives cash flows which are given by a vec-
tor x0 = (rf ,… , rf , 1 + rf ) ∈ ℝ

S . The price vector for one unit of the coupon bond 
is p0 = (1,… , 1, 0) ∈ ℝ

S+1 . The terminal price, for reasons of convenience, is set to 
zero since there is no trade carried out at the last point in time. The tax base of the 
coupon bond is equal the interest payment rf  at any point in time.

We introduce a second asset with arbitrary payout structure and investigate which 
properties of prices lead to the no-arbitrage condition in our market. Cash flows of 
the second bond are denoted by x1 = (x1

1
,… , x1

S
) ∈ ℝ

S where the index states the 
time of capital inflow. Prices for one unit are p1 = (p1

0
,… , p1

S−1
, 0) ∈ ℝ

S+1.
In most countries throughout the world, taxable income is not equal to actual cash 

flows because very detailed legal provisions must be considered (periodisation). 
Owners of securities might receive payments that do not have the character of divi-
dends or (in this case) interest, such as repayment of capital. Such payments do not 
incur income taxes. So as not to mix such payments with taxable income, we intro-
duce another variable b1

s
 that comprises the income tax base for the second asset. 

The only requirement is that at time s, the asset possesses an income tax base of

This tax base can be the cash flow of the second asset, part of or the entire capital 
gain or even zero if the second asset is tax exempt. Which value is to be used for b1

s
 

is determined by the tax law. Notice that the tax base of a standard coupon bond are 
given by b0 = (rf ,… , rf ).

The total tax base of a portfolio amounts to the sum of all tax bases, weighted by 
portfolio holdings which we denote by h0 = (h0

0
, h0

1
,… , h0

S−1
) ∈ ℝ

S for the first bond 
and, analogously, h1 ∈ ℝ

S for the second. We simplify h0
−1

= h0
S
= 0 . After trading 

the securities our investor can implement an after-tax-withdrawal for consumption 
purposes of

Note that this definition differs from the usual model without taxation only in terms 
of the introduction of endowment-specific tax payments T( ⋅) . The cost of the trading 
strategy h is independent of ws and given by

b1
s
.

(5)
Δs(h,w, w̄) ∶= − p1

s
h1
s
− p0

s
h0
s
+
(
p1
s
+ x1

s

)
h1
s−1

+
(
p0
s
+ x0

s

)
h0
s−1

+ ws

− T
(
b1
s
h1
s−1

+ b0
s
h0
s−1

+ w̄s

)
s = 1,… , S.
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We define arbitrage as follows.

Definition 5 (Arbitrage) A trading strategy h is called arbitrage opportunity iff 
Δs(h,w, w̄) ≥ ws − T(w̄s) for all s = 1,… , S and −Δ0(h) ≤ 0 where at least one 
inequality is strict. If no arbitrage opportunities exist, we call the market free of 
arbitrage.

In the theory of arbitrage without taxation, the initial endowments ws are canceled 
out of the above definition and the investor trades as if her initial income is zero. The 
same holds true for linear taxes. Each arbitrage opportunity h then can be multiplied 
by a constant 𝜆 > 0 so that the arbitrage profits of h are multiplied by �—arbitrage 
gains are theoretically unbounded. In the presence of convex taxes it is possible to 
realize arbitrage profits that cannot be increased on an arbitrary scale, i.e., the opti-
mal arbitrage gain remains constant at a certain level.

To see this we focus on the following minimization problem (P) given by

where p∗ denotes the optimal value (withdrawal) of (P). This problem determines 
the lowest cost for a strategy that pays at least as much as doing nothing. Since h ≡ 0 
is feasible, the optimal value must be non-positive ( p∗ ≤ 0 ). If an arbitrage opportu-
nity exists we can assume without loss of generality that the optimal value is nega-
tive ( p∗ < 0).11 By definition the arbitrage gain is −p∗ . Arbitrage-free markets cor-
respond to an optimal value of p∗ = 0.

If taxes do not exist arbitrage opportunities always imply p∗ = −∞ . If a con-
vex tax function is present, it might be that the optimal solution of (P) is finite 
( −∞ < p∗ ). This gives rise to the following definition.

Definition 6 (Bounded and Unbounded Arbitrage) The market has bounded arbi-
trage opportunities iff for the optimal value p∗ in (P) p∗ > −∞ holds. The market 
has unbounded arbitrage opportunities iff p∗ = −∞ in (P).

In the presence of linear taxes, bounded arbitrage opportunities do not exist.

−Δ0(h) ∶= p1
0
h1
0
+ p0

0
h0
0

(P)
inf
h∈ℝS

−Δ0(h)

s.t. Δs(h,w, w̄) ≥ ws − T(w̄s) s = 1,… , S,

11 Suppose there are riskfree profits in a subsequent period s with Δs(h,w, w̄) > ws − T(w̄s) and zero 
price today ( −Δ0(h) = 0 ). By selling short some amounts of the coupon bond in s − 1 we can realize 
a strategy with net payoffs of zero in s and positive net-payoffs in s − 1 . We can repeat our strategy and 
defer money in the prior period s − 2 and so on, resulting in a positive withdrawal in s = 0 . This is the 
case whenever average tax rates are lower than 100 % which we explicitly presupposed beforehand. For 
a more recent analysis on the issue of local versus global tax arbitrage in an after tax setting, see Kühn 
(2019).
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2.3  Characterization of all possible arbitrage opportunities

We now turn to the main result of our paper. To formulate necessary and sufficient con-
ditions for arbitrage-free markets we introduce the concept of implied tax rates deduced 
from current market prices. There are s points in time with s = 0,… , S − 1 . Let ps be 
the market price of an asset at time s with cash flow payments x1

s
 . The tax due is deter-

mined by the income tax function T(b1
s
) . If the tax is linear with a constant tax rate �s at 

time s, it is a well-known fact that the market is free of arbitrage if and only if for all s12

If p1
s−1

≠
b1
s

rf
 (we will look at this case in a later section), we can solve for �s in the 

above formula and get

That gives reason for the following definition.

Definition 7 (Implied tax rates) Suppose b1
s
≠ rf p

1
s−1

 for all s. The numbers �s that 
satisfy (7) are called implied tax rates of prices p1

s
 in time s.

The following statement gives a clear characterisation whether a market is 
free of arbitrage in the presence of a nonlinear tax where the tax liability is aff-
ine on the boundary. The proof is in the appendix.

Theorem 8 Let �s be the implied tax rates for given market prices ps which satisfy 
equality (7). Then the following results hold true. 

1. The market is free of arbitrage iff T �
−
(w̄s) ≤ 𝜏s ≤ T �

+
(w̄s) for all s.

2. There are unbounded arbitrage opportunities iff for at least one implied tax rate 
we have 𝜏s < 𝜏min or 𝜏s > 𝜏max.

3. There are bounded arbitrage opportunities iff �min ≤ �s ≤ �max for all s and for at 
least one s′ the condition 𝜏s� < T �

−
(w̄s) or T �

+
(w̄s) < 𝜏s� holds.

We have illustrated the results in Fig.  2. Whether the market is free of 
arbitrage or not depends on how the left- and right-derivatives at the endow-
ment are made up. Because we are dealing here with a model under certainty, 

(6)p1
s−1

=
p1
s
+ x1

s
− �s ⋅ b

1
s

1 + rf ⋅ (1 − �s)
.

(7)�s =
(1 + rf )p

1
s−1

− p1
s
− x1

s

rf p
1
s−1

− b1
s

.

12 Note that this is the same fundamental property that Ross (1985, S. 379–380) deduces from his funda-
mental theorem by replacing the actual tax base b1

s
 by x1

s
 in the above formula. Ross does not differentiate 

between actual cash flows and taxable cash flows.
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τs
0% τmin T− (w̄s ) T+ (w̄s ) τmax 100%

no arbitrage bounded arbitragebounded arbitrage
unbounded
arbitrage

unbounded
arbitrage

Fig. 2  Illustration of theorem 8. The figure shows a “tax line” that all values of an implicit tax rate �
s
 can 

attain. If the actual value is in the interval [T �
−
(w̄

s
),T �

+
(w̄

s
)] prices are free of arbitrage. If the value is in 

the interval [𝜏
min

,T �
−
(w̄

s
)) or (T �

+
(w̄

s
), 𝜏

max
] there are bounded arbitrage opportunities. In all other cases 

there exist an unbounded arbitrage opportunity

F
x

T (x)

(a) Tax with allowance.

x

T (x)

τmax

τmin

(b) Gains di�erentially taxed
than losses.

−A

A
x

T (x)

τmax

τmin

τ

(c) Three tax brackets.

Fig. 3  Three examples of tax liability functions

an endowment with other securities can be transformed into a corresponding 
endowment without further ado. We will discuss three applications of this theo-
rem using typical tax functions in the next section.

Investors in asset markets are highly heterogeneous in terms of their per-
sonal tax schedules: they could invest through their tax-free retirement plans, 
some investors do pay personal taxes, but a subset of them may carry forward 
tax losses from previous periods. Different investors will thus determine differ-
ent prices according to our considerations. Within our arbitrage theory, this is 
unproblematic because only one investor is considered. In an equilibrium model 
with several heterogeneous investors, however, there must be a uniform price for 
each asset. This problem can no longer be solved with the help of our arbitrage 
theory; for this, other methods are needed which go beyond our paper. In any 
case, however, an equilibrium theory must take into account what the individual 
calculus of an investor is, and our work makes an important contribution to this.

2.4  Three explanatory examples with zero endowment

We assume in the following that w̄s = 0 holds for all s. We analyze three different 
tax liability functions, see Fig. 3.
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In order to highlight the relative evaluation with other bonds, we would like to focus 
on the special case of a tax-exempt zero-coupon bond. We assume that the second asset 
is a so-called zero-coupon bond, which makes no further payments until maturity. In 
addition, let us assume that the capital gains of this zero-coupon bond are tax-free.13 All 
these conditions lead to the following parameters of our second asset:

We want to determine those prices for the zero-coupon bond in the three examples 
that do not generate arbitrage. For this purpose we use Theorem 8. If prices cannot 
generate arbitrage, we can exploit the relation with the implicit tax rates (6) and use 
(8). If s < S we have

and for s = S we have

The following applies together for all s = 1,… , S

and it now only remains to characterise the tax rates �s in more detail.
Tax with allowance
We start analyzing a tax with allowance (see Fig. 3a). The corresponding tax lia-

bility function is

Tax payments apply when income exceeds F > 0 , otherwise the tax is zero. Based 
on the notation of Theorem 8 we have

(8)
x1
s
=

{
0 if s < S,

1 if s = S,

b1
s
= 0 if s = 1,… , S.

p1
s−1

=
p1
s
+ 0 − �s ⋅ 0

1 + rf (1 − �s)
⟹ p1

s−1
=

p1
s

1 + rf (1 − �s)

p1
S−1

=
0 + 1 − �s ⋅ 0

1 + rf (1 − �S)
⟹ p1

S−1
=

1

1 + rf (1 − �S)
.

(9)p1
s−1

=
1

1 + rf (1 − �s)
⋯

1

1 + rf (1 − �S)

T(x) = � max(x − F, 0), � ∈ [0, 1).

13 We have introduced the second asset on the understanding that we will not make any further assump-
tions on the tax base bs . However, it is important to realize that this is a consequence of the fact that only 
one second asset is examined in the arbitrage theory. If not one but several other securities are introduced 
(for example, tax-exempt zero-coupon bonds with different maturities), there will likely be tax interac-
tions among the securities. If, for example, a coupon bond can be replicated by the zero-coupon bonds, 
then the tax base of the coupon bond is zero as well—which contradicts our assumption about its tax 
base equal to the interest payment. We will not go into the problems involved because in the framework 
of arbitrage theory, we do not analyze such overdetermined models.
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and T �(0) = 0 . Theorem 8 states that the only prices compatible with no-arbitrage 
are those for which �s = 0 holds so that taxes could be neglected in pricing. Note 
that the result remains the same for tax functions which are not necessarily linear 
beyond F but, for example, quadratic (as is the case in Germany). For all arbitrage 
opportunities to be bounded, one must have an implied tax rate �s ∈ (0, �] for all s. 
For all other tax rates, the arbitrage opportunity is unbounded.

The only prices for the zero-coupon bond that exclude arbitrage are given by (9) 
and hence p1

s
=

1

(1+rf )
S−s

.
Different taxation of gains and losses
The second example represents a tax in which gains and losses are taxed differ-

ently (see Fig. 3b). We have

There are no arbitrage opportunities if the implied tax rates are contained in 
[�min, �max] . For all implied tax rates that do not fall into this interval we have 
unbounded arbitrage opportunities. Note that there are no bounded arbitrage 
opportunities.

Again the price of the zero-coupon bond that does not generate an arbitrage 
opportunity can be determined by (9). If p1

s
 is from the interval 

p1
s
∈
[

1

(1+rf (1−�max))
S−s
,

1

(1+rf (1−�min))
S−s

]
 , the market is free of arbitrage.

Three tax brackets
The third example shows a tax function with three different values of marginal 

rates 𝜏min < 𝜏 < 𝜏max (see Fig. 3c):

Then

Thus, the only implied tax rate offering no arbitrage is �s = � . For all 
�s ∈ [�min, �max] ⧵ {�} there are bounded arbitrage opportunities. For all other values 
of �s the arbitrage opportunity is unbounded.

In this example, it is surprising that the upper tax bracket does not seem to play 
a role. This is simply due to our assumption that the investor has no initial endow-
ment, i.e., she is in the zero tax bracket. If we assume a sufficiently high initial 
endowment, the upper marginal tax rate would determine whether an arbitrage exists 
or not.

�min = 0, �max = �,

T �
−
(0) = �min, T �

+
(0) = �max.

T(x) =

⎧⎪⎨⎪⎩

𝜏min ⋅ x + (𝜏min − 𝜏) ⋅ A if x < −A

𝜏 ⋅ x if − A ≤ x ≤ A

𝜏max ⋅ x + (𝜏 − 𝜏max) ⋅ A if A < x.

T �(0) = �.
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Once again we can determine the price of the zero-coupon bond using (9): p1
s
 has 

to equal to 1

(1+rf (1−�))
S−s

 to prevent an arbitrage opportunity.

2.5  The case of an investment neutral tax

Finally, we turn to a case that has so far remained open. In order to define implied 
tax rates, a condition that seems technical was necessary. In order to convert to � , 
the denominator of the expression (7) must not become zero. But what happens 
when prices satisfy the equation b1

s
= rf p

1
s−1

?
In a one-period model ( S = 1 ) it is straightfoward to show that this assumption 

is always satisfied if the tax base of an asset is given by the difference of cash flows 
and prices. But it turns out that in a multi-period model this case is far more signifi-
cant than a technical note. To understand this, we assume that at each time point this 
equality holds. Then we can show that only prices that are as in a market without 
taxes ensure the absence of arbitrage opportunities.

Theorem 9 Let b1
s
= rf p

1
s−1

 for all s. Then the market is free of arbitrage iff

If there is at least one point in time s for which the above equality does not hold, 
unbounded arbitrage profits exist.

For this result to hold it is necessary that the tax base at each point in time has a 
certain form, which is known as economic gain in the literature.14 Assuming this, only 
prices as in an economy without taxes are arbitrage-free. This result is well known for 
the case of linear taxes, but not for the case of a nonlinear tax. That this result also 
holds under non-linear taxation is an additional contribution of this work.

3  Conclusion

We investigate arbitrage opportunities in a capital market model under certainty with 
multiple trading periods and convex tax liability functions. By deducing period-spe-
cific implied tax rates from prevailing market prices of bonds, we can give a complete 
characterisation of arbitrage depending on the investor’s initial taxable income. If all 
implied tax rates equal marginal tax rates at the tax base of the investor’s initial taxable 
income, then the no-arbitrage condition holds. This condition is necessary as well as 
sufficient.

p1
s−1

=
p1
s
+ x1

s

1 + rf
s = 1,… , S.

14 This was first introduced by Preinreich (1951) and Samuelson (1964).



3505Arbitrage and non-linear taxes  

In addition, we show that arbitrage opportunities can be bounded or unbounded. 
Arbitrage opportunities are unbounded iff there is at least one point in time s where the 
implied tax rate �s is not equal to any possible marginal tax rate T �(⋅) . In all other cir-
cumstances, bounded arbitrage opportunities exist.

Appendix 1: A progressive tax that is not convex

Consider two tax rates 𝜏0 > 𝜏1 at income level x0 and x1 that satisfy 𝜏1
𝜏0

+
x0

x1
> 1 . The 

following example T ∶ ℝ → ℝ of a tax liability

is obviously continuous. It is not convex: This follows from 
T �
+
(x0) = 𝜏0 > 𝜏1 = T �

+
(x1) and x0 < x1 . But the tax rate

is always monotonically increasing and hence the tax is progressive: This is the case 
because from 𝜏1

𝜏0

+
x0

x1
> 1 it follows that 𝜏1x1 − 𝜏0(x1 − x0) > 0.

Appendix 2: Subdifferential, subgradient, and conjugate tax function

In many countries we observe tax systems that are piecewise linear with different tax 
brackets so that the marginal tax rate takes different values for different income.15 
The simplest case is when profits are taxed differently from losses,

Figure  4 shows an income tax of type (10) where losses are taxed at a rate of 
�− = 5% and gains are taxed by �+ = 25% . The tax function is convex and not dif-
ferentiable at x = 0.16

As we observe in Fig.  4a, there is not one but multiple straight lines forming 
a tangent of T(⋅) at x = 0 . The set of all possible slopes is given by the interval 
[�−, �+] . We call the union of all possible tangent slopes subdifferential of T(⋅) at 

T(x) =

⎧
⎪⎨⎪⎩

0, x ≤ x0,

𝜏0 ⋅ (x − x0), x0 < x ≤ x1,

𝜏1 ⋅ (x − x1) + 𝜏0(x1 − x0), x1 < x,

t(x) =

⎧⎪⎨⎪⎩

0, 0 < x ≤ x0,

𝜏0 −
𝜏0x0

x
, x0 < x ≤ x1,

𝜏1 −
𝜏1x1−𝜏0(x1−x0)

x
, x1 < x,

(10)T(x) = �− ⋅min(x, 0) + �+ ⋅max(x, 0)

15 This is formally not the same as linear although in some literature these terms are used interchange-
ably.
16 Since the kink lies in the origin, we can observe the identity of marginal and average tax rate for all 
x ≠ 0.
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x denoted by �T(x) , which represents a generalization of the first derivative in the 
context of convex functions. Only if the tax function is differentiable at x, the sub-
differential is a single element given by �T(x) = {T �(x)} . In the case of non-differ-
entiability, �T(x) is not a single number but rather a set of numbers, and in our one-
dimensional case it is always an interval. In the setting of Fig. 4a, �T(0) is equal to 
[T �

−
(0), T �

+
(0)] = [�−, �+].

We refer to the formal definition of a subdifferential from the theory of convex 
analysis.17

Definition 10 (Subdifferential and Subgradient) The subdifferential of a convex tax 
function T(⋅) at x is given by the following set of real numbers

An element g ∈ �T(x) is called a subgradient of T(⋅) at x.

Finally we need the definition of a conjugate tax function in order to explain pos-
sible arbitrage opportunities. In particular, we are interested in the domain, the set of 
numbers for which the conjugate is finite.

Definition 11 (Conjugate tax function) The conjugate tax function T∗(⋅) of a tax lia-
bility function T(⋅) is given by

The domain is given by dom (T∗) = {𝜏 ∣ T∗(𝜏) < ∞}.

(11)�T(x) ∶= {g ∈ ℝ ∣ ∀y T(y) ≥ T(x) + g(y − x)}.

T∗(�) ∶= sup
x∈ℝ

�x − T(x).

17 For standard literature see (Rockafellar, 1997, p. 214-215), as well as Hiriart-Urruty and Lemaréchal, 
(2001, p. 165). There, one can find the proof that the subdifferential of a convex function, defined on ℝ , 
always exists and is represented by a closed interval.

− 2 0 1
x

− 0.1

+0 .25

T (x )

T (x )

∂T

(a) Losses and gains are taxed di�erentially.

− 2 0 2
x

5%

25%

T (x ) ,t (x )

(b) Marginal and average tax coincide.

Fig. 4  Example of a piecewise linear income tax with �− = 5% and �+ = 25%
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The conjugate tax function is convex on its domain (see Rockafellar, 
1997, p. 104). Lastly, we need another general result from the theory of conjugates.

Lemma 12 For all x the relation 𝜕T(x) ⊂ dom (T∗) holds.

Proof In Hiriart-Urruty and Lemaréchal, (2001, Theorem 1.4.1, p. 220) it is shown 
that � ∈ �T(x) is equivalent to

Therefore, T∗(�) is finite and it holds � ∈ dom (T∗) .   ◻

Appendix 3: Proof of Theorem 8

First we prove a general theorem that does not rely on taxes with affine boundaries.
Let us consider a single implied tax rate of �s . We will look at three different 

(mutually exclusive) possibilities for �s to depend on the tax function. The sets of 
interest involve 𝜕T(w̄s) and dom (T∗) . Since 𝜕T(w̄s) ⊂ dom (T∗) , by using Lemma 
12, it is only possible for �s to lie in 𝜕T(w̄s) or in dom (T∗) ⧵ 𝜕T(w̄s) or in neither of 
the two sets. Using this observation, we can establish a complete characterisation of 
all existing arbitrage opportunities in the market that are liable to income taxes.

Theorem 13 Let �s denote the implied tax rates of prices ps in s = 0,… , S − 1 which 
satisfy equality (7). Then the following is true. 

1. The market is free of arbitrage iff 𝜏s ∈ 𝜕T(w̄s) for all s.
2. There are unbounded arbitrage opportunities iff for at least one implied tax rate 

�s ∉ dom (T∗).
3. In all other cases, there are bounded arbitrage opportunities.

The third case is true iff �s ∈ dom (T∗) for all s, and for at least one s′ the condi-
tion 𝜏s� ∈ dom (T∗)⧵𝜕T(w̄s) holds.

In this special case, the domain of the conjugate is easy to compute since it coin-
cides with the union of all possible marginal tax rates. Because �T(ws) is convex 
and closed (on ℝ ), it represents an interval given by 𝜕T(w̄s) = [T �

−
(w̄s), T

�
+
(w̄s)] . 

If T(⋅) is differentiable at w̄s , the interval reduces down to a single element, i.e., 
𝜕T(w̄s) = {T �(w̄s)}.

The proof of Theorem 13 is based on standard arguments from dual convex anal-
ysis. We start with the following Lemma.

Lemma 14 For the conjugate tax function T∗(⋅) holds 

T∗(�) + T(x) − � ⋅ x = 0.
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 (i) T∗(�) ≥ � x − T(x) for all x ∈ ℝ (Fenchel’s inequality).
 (ii) T∗(�) = � x∗ − T(x∗) iff � ∈ �T(x∗).
 (iii) 0 < T∗(𝜏) − 𝜏x∗ + T(x∗) < ∞ iff � ∈ dom (T∗) ⧵ �T(x∗).

Proof 

 (i) follows directly from the definition of the conjugate function.
 (ii) follows immediately by Corollary 1.4.4 in Hiriart-Urruty and Lemaréchal, 

(2001, p. 221).
 (iii) by definition of dom (T∗) as well as property (i) and (ii).

  ◻

Starting with the primal problem (P) we analyze the dual Lagrange-Problem (D) 
given by

with � = (�1,… , �S)
� and the Lagrangian18

using vector notation for hs , ps and xs as well as bs for both assets (standard coupon 
bond and bond to be valued).

Let d∗ be the optimal value of (D). It is well known that (D) is a concave optimiza-
tion problem with d∗ ≤ p∗ (weak duality). Equality holds if the strong Slater condition 
is satisfied which we will show:

Lemma 15 There exists a strategy h such that all constraint inequalities are strict 
for this strategy, i.e., h is an inner point of (P).

Proof To show that such a strategy exists consider h where only the standard coupon 
bond is involved, (hs, 0) . The tax function T is concave and the supremum of the 
marginal tax rates was assumed to be below 1, i.e., there exists a 𝜏 < 1 such that

The withdrawal at time s for strategy h amounts to

(12)
sup
�∈ℝS

inf
h∈ℝS

L(h, �)

s.t. �s ≥ 0 s = 1,… , S,

L(h, y, 𝜆) ∶= (p0)
�h0 −

S∑
s=1

𝜆s

(
Δs(h,w, w̄) − ws + T(w̄s)

)

= (p0)
�h0 −

S∑
s=1

𝜆s

{
(ps + xs)

�hs−1 + T(w̄s) − T
(
(b)�

s
hs−1 + w̄s

)
− (ps)

�hs
}
,

∀x > y T(x) − T(y) < 𝜏 ⋅ (x − y) .

18 (⋅)� denotes the transpose of a vector. For the definition of Δs(⋅,w) see equation (5) respectively.
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Any strategy h with 
(
1 + rf (1 − �)

)
hs−1 − hs = 0 represents an inner point of (P) or 

Δs(h,w, w̄) > ws − T(w̄s) .   ◻

From lemma 15 it follows that strong duality holds and we have d∗ = p∗ . We trans-
form the variable in the dual problem

and rewrite (D) which leads to the following maximization problem

where � = (�1,… , �S)
� are new Lagrange multipliers with Lagrangian

Setting �0 = 1 and using that (pS)�hS = 0 for both bonds, we can combine sums to

which results in

Note that some infima and suprema in the above problem can be simplified such that 
(D) is written as

Δs(h,w, w̄) −
(
ws − T(w̄s)

)
= (1 + rf )hs−1 − hs −

(
T(rf hs−1 + w̄s) − T(w̄s)

)

> (1 + rf )hs−1 − hs − 𝜏(rf hs−1 + w̄s − w̄s)

=
(
1 + rf (1 − 𝜏)

)
hs−1 − hs.

ys ∶= (bs)
�hs−1 + w̄s

sup
(𝜆,𝜈)

inf
h,y

L̂(h, y, 𝜆, 𝜈)

s.t. 𝜆s ≥ 0 s = 1,… , S,

L̂(h, y, 𝜆, 𝜈) ∶=(p0)
�h0 −

S∑
s=1

𝜆s

(
(ps + xs)

�hs−1 + T(w̄s) − T(ys) − (ps)
�hs

)

+

S∑
s=1

𝜈s

(
(bs)

�hs−1 + w̄s − ys
)
.

L̂(h, y, 𝜆, 𝜈) =

S∑
s=1

𝜆s−1 (ps−1)
�hs−1 −

S∑
s=1

(
𝜆s(ps + xs)

�hs−1 − 𝜈s(bs)
�hs−1

)

−

S∑
s=1

(
𝜈sys − 𝜆sT(ys) − 𝜈sw̄s + 𝜆sT(w̄s)

)
,

L̂(h, y, 𝜆, 𝜈) =

S∑
s=1

(
𝜆s−1ps−1 −

(
𝜆t(ps + xs) − 𝜈sbs

))�
hs−1

−

S∑
s=1

(
𝜈sys − 𝜆sT(ys) − 𝜈sw̄s + 𝜆sT(w̄s)

)
.
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Looking at the objective of (13) one has

Hence, (13) is equivalent to

We now prove that all feasible �s in (14) are strictly positive. Suppose there is a 
s′ with �s� = 0 in (14). Then d∗ = −∞ unless vs� = 0 in (14). Due to the recursion 
property in the constraints we get for all s < s′ immediately �s = �s = 0 and espe-
cially for s = 1 we have

which contradicts the existence of a riskfree coupon bond with p0
0
= 1 . Thus, we 

conclude positivity of all feasible Lagrange multipliers in (13).
In this case

Plugging in this term into (14) we get an equivalent problem

(13)

sup
(𝜆,𝜈)

S∑
s=1

inf
hs−1

(
𝜆s−1ps−1 − 𝜆s(ps + xs) + 𝜈sbs

)�
hs−1

−

S∑
s=1

sup
ys

(
𝜈sys − 𝜆sT(ys) − 𝜈sw̄s + 𝜆sT(w̄s)

)

s.t. 𝜆s ≥ 0 s = 1,… , S.

inf
hs−1

(
�s−1ps−1 − �s(ps + xs) + �sbs

)�
hs−1

=

{
0, �s−1ps−1 − �t(ps + xs) + �tbs = 0,

−∞, else.

(14)

sup
(𝜆,𝜈)

−

S∑
s=1

sup
ys

(
𝜈sys − 𝜆sT(ys) − 𝜈sw̄s + 𝜆sT(w̄s)

)

s.t. 𝜆s ≥ 0, 𝜆s−1ps−1 − 𝜆s(ps + xs) + 𝜈sbs = 0 s = 1,… , S.

�0p0 = p0 = 0

sup
ys

(
𝜈sys − 𝜆sT(ys) − 𝜈sw̄s + 𝜆sT(w̄s)

)
= sup

ys

[
𝜆s

𝜈s

𝜆s

ys − 𝜆sT(ys) −
𝜈s

𝜆s

w̄s + T(w̄s)

]

= 𝜆s sup
ys

[
𝜈s

𝜆s

ys − T(ys)

]
−

𝜈s

𝜆s

w̄s + T(w̄s)

= 𝜆s

[
T∗

(
𝜈s

𝜆s

)
−

𝜈s

𝜆s

w̄s + T(w̄s)

]
.
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with usual convention inf � = ∞ . Thus infeasibility of (15) results in p∗ = d∗ = −∞.
By substituting �s ∶=

�s

�s

 and looking at the standard coupon bond it follows for 
the optimal Lagrange multipliers

Iterating the above expression we get

We conclude that (15) is equivalent to

Using (16) we can finish the proof of Theorem  13. Obviously, �s are implied tax 
rates of the second bond. Then the following holds19: 

1. By using Fenchel’s inequality (see property (i) in 14) all summands in (16) are 
nonnegative and p∗ = d∗ = 0 iff T∗(𝜏s) = 𝜏sw̄s − T(w̄s) for all s being equivalent, 
after using (ii) in lemma 14, to 𝜏s ∈ 𝜕T(w̄s) for all s.

2. Since the sum in (16) is finite with nonnegative elements it follows p∗ = ∞ iff for 
at least one s we have �s ∉ dom (T∗).

3. By using (iii) in lemma 14 it follows −∞ < p∗ < 0 iff �s ∈ dom (T∗) for all s and 
for at least one s′ it holds 𝜏s� ∈ dom (T∗)⧵𝜕T(w̄s� ).

Having established Theorem 13 we can finally verify Theorem 8.

Proof First we proof that under piecewise linearity dom (T∗) = [�min, �max] . Since

(15)
− inf

(𝜆,𝜈)

S∑
s=1

𝜆s

[
T∗

(
𝜈s

𝜆s

)
−

𝜈s

𝜆s

w̄s + T(w̄s)

]

s.t. 𝜆s > 0, ps−1 =
𝜆s

𝜆s−1

(ps + xs) −
𝜈s

𝜆s−1

bs s = 1,… , S,

�s =
�s−1

1 + rf (1 − �s)
s = 1,… , S.

�s =
1∏s

u=1

�
1 + rf (1 − �u)

� s = 1,… , S.

(16)

− inf
𝜏s ∈ dom (T∗),

s = 1,… , S

S�
s=1

T∗(𝜏s) − 𝜏sw̄s + T(w̄s)∏s

u=1

�
1 + rf (1 − 𝜏u)

�

s.t. ps−1 =
ps + xs − 𝜏sbs

1 + rf (1 − 𝜏s)
s = 1,… , S.

19 Notice that the constraint in (16) is a vector equation and must hence hold for both assets. But looking 
at the coupon bond it can be rearranged to the trivial formulation rf (1 − �s) = (1 − �s)rf  which does not 
place a restriction in the implied tax rate. Only the second bond restricts �s.
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Fenchel’s inequality holds. Now suppose 𝜏 > 𝜏max and T∗(�) finite, then by definition 
� ∈ dom (T∗) . Using Fenchel’s inequality for sufficiently large x, exploiting piece-
wise linearity, we have

Since this inequality holds for all sufficiently large x and by assumption 𝜏 − 𝜏max > 0 
we get T∗(�) = +∞ which contradicts our assumptions. We conclude for all 
� ∈ (�max,∞) that � ∉ dom (T∗).

Analogously, it is shown that for all 𝜏 < 𝜏min we have T∗(�) = ∞ resulting in

Further from lemma 12 we have

and because of Rockafellar, (1997, Theorem 24.1, p. 227-229 i.c.w. Theorem 24.3, 
p. 232) accounting for differentiability at the boundaries we have

Together with inequality (17) this results in

and finally in dom (T∗) = [�min, �max].
The statement follows now directly from theorem 13.   ◻

Appendix 4: Proof of Theorem 9

Proof As shown in the proof of theorem 13, our primal problem (P) can be solved 
by using the dual problem (18) given by

Let now b1
s
= rf p

1
s−1

 hold for all s. By construction, for the coupon bond we also 
have

T∗(�) ∶= sup
x

�x − T(x) ⟹ ∀x T∗(�) ≥ �x − T(x)

T∗(�) ≥ (� − �max) ⋅ x − T .

(17)dom (T∗) ⊂ [𝜏min, 𝜏max].

⋃
x

𝜕T(x) ⊂ dom (T∗)

[�min, �max] =
⋃
x

�T(x).

[𝜏min, 𝜏max] ⊂ dom (T∗) ⊂ [𝜏min, 𝜏max].

(D*)
− inf

𝜏t1
,…,𝜏tS

∈ dom (T∗)

S�
s=1

T∗(𝜏s) − 𝜏sw̄s + T(w̄s)∏t

s=1

�
1 + rf (1 − 𝜏s)

�

s.t. ps−1 =
ps + xs − 𝜏sbs

1 + rf (1 − 𝜏s)
s = 1,… , S.
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and

Straightforward algebra shows that the constraints are independent of �s . Since 
the objective function in (18) is non-negative and we have for all s the relation 
𝜕T(w̄s) ⊂ dom (T∗) , (18) is equivalent to

with p∗ = d∗ = −∞ in case of infeasibility and null otherwise.   ◻
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