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1 Frame and aims of the work 

Antibody-drug conjugates. Antibody-drugs conjugates (ADCs) are an emerging class of 

anticancer drugs. The concept of ADCs can be seen as conferring higher cytotoxicity to the 

antibody, or higher specificity to the drug. The antibody part of the ADC recognizes the tumor-

associated antigen on the tumor cell surface. Once the ADC is internalized, the drug, covalently 

attached to the antibody via a linker, is released and kills the tumor cell. Their high toxicity 

combined with their high specificity, as well as their stability and tolerability, make ADCs one 

of the most promising options for cancer treatment. To date, thirteen antibody-drug conjugates 

(ADCs) have been approved by various regulatory organizations, such as the Food and Drug 

Administration (USA), the European Medicines Agency (EU), the Pharmaceuticals and 

Medical Devices Agency (Japan), and the National Medical Products Administration (China) 

for the treatment of solid cancers (Aidixi, Elahere, Enhertu, Kadycla, Padcev, Trodelvy, 

Tivdak) and hematological cancers (Adcetris, Besponsa, Blenrep, Mylotarg, Polivy, Zynlonta). 

Of these thirteen ADCs, nine were first approved during the course of this work, and all major 

pharmaceutical companies have ADCs in their clinical pipelines. 

 

Figure 1. Antibody-drug conjugates. Schematic representation of an ADC, consisting of the antibody and the 

drug-linker (bottom), and an overall representation of its mechanism of action, in the case of an intracellularly 

cleavable linker (top). The ADC binds to the tumor-associated antigen and is subsequently internalized. Upon 

internalization, the linker is cleaved, releasing the drug which kills the tumor cell. Fab stands for fragment 

antigen-binding, Fc for fragment crystallizable, IgG for immunoglobulin G. VH is the heavy chain variable 

domain, CH1 the heavy chain constant domain 1, CH2 the heavy chain constant domain 2, and CH3 the heavy 

chain constant domain 3. VL is the light chain variable domain and CL is the light chain constant domain. The 

shape and size of the depicted elements are not representative, and the mechanisms depicted here are not 

exhaustive. 
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The ADC design is of crucial importance both in terms of production and its therapeutic value.  

Therefore, it is essential to carefully select and design the antibody (format, target), the drug 

(type, target), the linker (type), and the conjugation site(s) to ensure their developability, 

maximize the chances of clinical success, and provide the best possible outcome for the patient. 

Non-canonical amino acids. The non-canonical amino acids, distinct from the 20 canonical 

amino acids, can be ribosomal or non-ribosomal. The ribosomal non-canonical amino acids can 

be natural (Pyrrolysine, Selenocysteine) or non-natural. The unique structures and chemical 

functions of the latter enable tailor-made designs of protein conjugates. They can be 

incorporated at one or more chosen sites of the protein of interest during its translation using 

an orthogonal system and nonsense suppression. 

 

Figure 2. Non-canonical amino acids and orthogonal translation. Schematic representation of the acylation 

of an amino acid to tRNA by a synthetase (on the left), followed by translation (on the right). The orthogonal 

aminoacylated tRNA suppresses the stop codon, and the non-canonical amino acid (pink color) is introduced 

into the nascent peptide sequence. tRNA stands for transfer RNA (RNA, for ribonucleic acid), mRNA for 

messenger RNA, N-terminus for amino-terminus, C-terminus for carboxy-terminus, 5’ is upstream for the 

mRNA and 3’ downstream, and IgG1 stands for immunoglobulin 1. The shape and size of the depicted elements 

are not representative, and the mechanisms depicted here are not exhaustive. 

 

In addition to enabling unique designs with minimal modifications, the chemical functions 

allow for bio-orthogonal conjugation reactions under physiological conditions without the need 

for pre-functionalization steps or enzyme introduction. Therefore, the conjugation efficiency is 

not dependent on the functionalization efficiency or enzyme quality. Furthermore, the absence 

of functionalization eliminates the need for additional steps of handling, quantification, and 

characterization of the candidates, and promotes high-throughput screening.  

CHO-based cell-free protein synthesis. Monoclonal antibodies used in ADCs are synthesized 

in mammalian cells for both research and industrial production. Human embryonic kidney 
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(HEK) cells are commonly used in research due to their transfection ease, while stably 

transfected Chinese hamster ovary (CHO) cells are preferred for industrial production due to 

their growth and productivity. These systems ensure the production of high-quality antibodies, 

which is crucial for regulatory compliance in industrial production and permits the correct 

comparison of antibody candidates in research. The CHO-based cell-free protein synthesis, 

based on translationally active CHO lysates and CHO microsomes, is of high relevance since 

antibodies are produced in CHO cells at the industrial scale. In the case of cell-free protein 

synthesis, the cells are cultivated to prepare a lysate. Aside from mimicking CHO events, cell-

free synthesis enables features that are not possible in cell-based systems, such as the specific 

radioactive and orthogonal synthesis of a protein of interest, which allows for its specific 

quantification, detection, and evaluation in a mixture of  CHO endogenous proteins. Hence, the 

CHO-based cell-free protein synthesis represents a promising analytical tool for investigating 

the CHO translation, endoplasmic reticulum (ER)-related post-translational modifications, 

folding, and assembly of the protein of interest, as well as their effects on protein properties.  

 

Figure 3. CHO-based cell-free protein synthesis. Schematic representation of the process (in pink) leading 

to cell-free protein synthesis, followed by a schematic representation of the cell-free protein synthesis (in blue). 

CHO stands for Chinese hamster ovary, DNA for deoxyribonucleic acid, RNA for ribonucleic acid, and ER for 

endoplasmic reticulum. The shape and size of the depicted elements are not representative. 

 

Aims of the work. The aim of this doctoral work was to leverage the unique specificities and 

advantages of these non-canonical amino acids to address recurrent and unresolved challenges 

in ADCs, thereby enhancing their developability. Consequently, the idea of focussing the work 

on the antibody conjugation site was chosen. On the other hand, the other aim of this doctoral 

work was to harness the unique characteristics of this CHO-based cell-free protein synthesis to 

support the development of such ADCs. Thus, the idea of creating tools for the analysis of these 

antibodies containing non-canonical amino acids as well as their orthogonal synthesis in CHO 

systems was chosen. 
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2 Context and background of the work 

2.1 ADC design: antibody conjugation site matters 

2.1.1 Antibodies and effect of the antibody conjugation site on ADC properties 

Antibodies in ADCs. The main role of antibodies in the context of ADCs is to bind to a defined 

tumor-associated antigen and to be internalized to enable intracellular release of the drug. 

Almost all antibodies used in ADCs are of the immunoglobulin (IgG) type 1, 2, or 41. IgGs 

provide extended half-life and therefore tumor exposition by their binding to the neonatal 

fragment crystallizable (Fc) receptor (FcRn), enabling recycling and transcytosis, and by their 

size (~150 kDa for IgG1, IgG2, and IgG4), avoiding renal clearance2. In addition, IgGs provide 

to ADCs an excellent tolerability, due to their ability to withstand and compensate for the 

hydrophobicity of the conjugated drugs. Apart from their binding to tumor antigens, eliminating 

the antigen-associated cellular signaling, IgG1s also bind to the complement component 1 (C1) 

q (C1q), leading to the recruitment of the C1 complex and thus complement-dependent 

cytotoxicity (CDC). They also bind to Fcγ receptors (FcγRs) on monocytes, macrophages, 

neutrophils, and natural killer (NK) cells, resulting in antibody-dependent cellular phagocytosis 

(ADCP) and antibody-dependent cellular cytotoxicity (ADCC)2. In contrast, IgG2s with their 

low affinity for FcγRIIIa, IgG4s with their low affinity for FcγRIIIa and C1q, and engineered 

IgG1s are chosen to restrict the ADC mechanism of action to antigen binding and drug’s killing 

effect, while still benefiting from FcRn binding. Among the ADCs in clinical trials and 

approved at the start of this work, eighty-four were based on IgG1s, four on IgG2s, five on 

IgG4s, and two remained undisclosed1. Eighty-nine of these antibodies target fifty-seven 

different antigens, while the targets of the six remaining antibodies remain undisclosed. 

Effect of the antibody conjugation site on ADCs properties. Positions are chosen for their 

high surface accessibility to ensure maximum conjugation efficiency, necessary for 

developability, and essential for industrial production. Positions that reduce or prevent antibody 

binding to its receptors (tumor-associated antigen, FcRn, FcγRs, C1q, protein A) are 

conventionally avoided. In addition to these positions, recent data has shown that another 

parameter needs to be considered in the choice of the antibody conjugation site. Unlike IgG2s 

and IgG4s, IgG1s present the drawback of being cleaved in their hinge region in the tumor 

microenvironment3. This mechanism of resistance renders antibody effector functions no longer 

possible3–5. Although the involved metalloproteinases mainly induce a single cleavage, a full 

cleavage can also occur4, releasing the (fragment antigen-binding)2 ((Fab)2) from the Fc part. 

In the case of ADCs, if the conjugated drug is located at the C-terminal side of the cleavage 
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site, and full cleavage occurs, the part of the antibody that binds to the antigen to be internalized 

is devoid of the drug and therefore ADC loses its drug-related toxicity. 

 

2.1.2 Drugs and effect of the drug location on ADC properties 

Drugs in ADCs. Once the ADC is internalized by the tumor cell and the drug is released, the 

role of the drug is to kill the tumor cell. The drugs used in approved or clinically advanced 

ADCs have different mechanisms. Pyrrolobenzodiazepines/indolinobenzodiazepine dimers 

(e.g. AstraZeneca’s “PBD”, ImmunoGen’s “IGN”), calicheamicins (e.g. Pfizer/UCB’s 

N‑Acetyl-γ‑calicheamicin), and duocarmycins (e.g. BMS’ “BMS‑936561”, Byondis’ 

“ByonZine”) target DNA. Amatoxins (e.g. Heidelberg Pharma’s α-amanitin) target the RNA 

polymerase II. Camptothecins (e.g. Gilead Sciences’ “SN‑38”, Daiichi Sankyo’s “DX‑8951f”) 

target the topoisomerase I.  Anthracyclines (e.g. Genentech’s “PNU‑159682”) target the 

topoisomerase II. Auristatins (e.g. Seagen’s monomethyl auristatin E and F), maytansinoids 

(e.g. ImmunoGen’s “DM1” and “DM4”), and tubulysins (e.g. AstraZeneca’s “AZ13599185”) 

target microtubules. 

Effect of the drug location on ADC properties. The majority of drugs used in ADCs are 

hydrophobic or extremely hydrophobic, such as pyrrolobenzodiazepines, calicheamicins, and 

duocarmycins. The high hydrophobicity of these drugs is responsible for the high 

hydrophobicity of the ADC. This has both therapeutic and production-related consequences. In 

terms of production, this hydrophobicity leads to a higher propensity for aggregation and 

instability6,7, rendering the ADC completely ineffective and unusable. From a therapeutic 

perspective, this hydrophobicity results in hepatic uptake, particularly by Kupffer cells and 

endothelial sinusoidal cells, leading to low pharmacokinetics and ADC efficacy8,9. Aside from 

the drug-to-antibody ratio (DAR), VanBrunt et al.10 demonstrated that the antibody conjugation 

site also influences the hydrophobicity of the ADC. Trastuzumab was found to be less 

hydrophobic when conjugated with four drugs (“PBD”, pyrrolobenzodiazepine at positions HC-

K274AECK, IgG1-Eu11 numbering, and LC-E81AECK, Kabat12 numbering) (DAR4) than with 

two drugs (“PBD” at position HC-T359AECK, IgG1-Eu numbering) (DAR2). Later, Tumey et 

al.13 demonstrated that conjugating an auristatin derivative (“Aur0101”) at the position HC-

K334C (IgG1-Eu numbering) resulted in a hydrophobicity shift (by hydrophobic interaction 

chromatography) of only 47 seconds compared to the unconjugated antibody, while this shift 

was 244 seconds (fivefold increase) for conjugation at the position HC-L443C, highlighting the 

extreme importance of the drug location. Charged variants of drugs, such as monomethyl 

auristatin F (charged version of monomethyl auristatin E), “DM1” (charged version of “DM4”), 

or amphiphilic drugs like amatoxins, can be used to overcome this hydrophobicity. However, 
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these drugs do not exhibit bystander effects and therefore have significantly reduced efficacy 

compared to their hydrophobic counterparts1. 

 

2.1.3 Linkers and effect of the linker location on ADC properties 

Linkers in ADCs. The linkers covalently connect the drug to the antibody. In the case of non-

cleavable linkers, drug release relies solely on the proteolytic degradation of the antibody in the 

lysosome1. Thus, the released drug contains a portion of the linker. These non-cleavable linkers 

are only suitable if the remaining linker portion do not interfere with the drug’s efficacy. 

Cleavable linkers, more common, contain a self-immolative moiety (such as para-aminobenzyl 

carbamate, known as PABC or para-aminobenzyl ether, known as PABE14) between the 

cleavage site and the drug. This allows for the release of the drug without residual linker1. The 

cleavage mechanism can be based on reduced pH, reducing conditions, tumor-associated 

proteases, tumor-associated molecules, or UV/Vis/IR irradiation. In the case of a pH-based 

mechanism, linkers containing a hydrazone15, carbonate16, or silyl ether17 are cleaved by the 

reduced pH in lysosomes and in the tumor microenvironment. In the case of a mechanism based 

on reducing conditions, linkers containing a disulfide bridge18,19 are cleaved by the reduced 

glutathione present in the cytoplasm. In the case of a mechanism based on tumor-associated 

proteases present in lysosomes, linkers containing dipeptide20 (e.g. valine-citrulline, valine-

alanine), triglycyl21, cBu-Cit22 are cleaved by cathepsins, linkers containing β-glucuronide23 by 

β-glucuronidases, linkers containing β-galactoside24 by β-galactosidases, linkers containing 

pyrophosphate25 by phosphatases and pyrophosphatases, and linkers containing arylsulfate26 by 

sulfatases. In the case of a mechanism based on tumor-associated molecules, linkers containing 

1,2,4-trioxolane27 are cleaved by elevated levels of ferrous iron present in the cytoplasm, and 

linkers containing dsProc28 by Cu(I)-BTTAA present in the tumor microenvironment. In the 

case of an irradiation-based mechanism, linkers containing heptamethine cyanine fluorophore29 

are cleaved by irradiation with near-infrared light at λ = 650–900 nm, and linkers containing 

PC4AP30 are cleaved by irradiation with ultraviolet radiation (λ = 365 nm) followed by 

intramolecular addition with a nearby amine. 

Effect of the linker location on ADC properties. Aside from the drug hydrophobicity, issues 

related to conjugation sites have been observed for the linkers. The linkers containing the 

valine-citrulline dipeptide, normally cleaved by the tumor-associated proteases such as 

lysosomal cathepsins, were also shown to be cleaved unspecifically by murine extracellular 

carboxylesterase 1C20,31. Tian et al.32 have shown that the conjugation site can influence this 

unspecific cleavage. When the drug-linker containing this valine-citrulline dipeptide was 

conjugated at the position HC-S119AcF (IgG1-Eu numbering), the unspecific drug loss in rat 



Context and background of the work  10 

 

 

and mouse plasma was significantly higher than when the drug-linker was conjugated at the 

adjacent position HC-A118AcF, less surface-exposed. Although this unspecific cleavage is 

limited to mice and rats only, and does not concern humans, it is important to take this into 

account in the pre-clinical analysis of ADC properties. Besides, the linkers containing 

maleimides, used in linkers as attachment sites for antibody cysteines, also faced issues. The 

retro Michael-type addition reaction leads to ADC linker deconjugation, due to maleimide 

exchange with cysteine residues of plasma proteins such as albumin33. Tumey et al.13 have 

shown that with low surface-exposed antibody conjugation sites, no or low deconjugation 

occurs, even when succinimide hydrolysis did not take place. Although solutions have since 

been developed (hydrolysis of the succinimide ring by surrounding basic amino acids13,33, by 

post-conjugation incubation in alkaline conditions34, by special linkers35,36, or using maleimide 

alternatives37), it also shows the importance that the antibody conjugation site might have on a 

linker and therefore on ADC efficacy. 

 

2.1.4 Site-specific conjugation methods and enabled conjugation sites 

Site-specific conjugation methods for ADCs. The initial ADCs were based on nearly random 

conjugation, either involving surface-exposed lysine residues or interchain cysteines1. The 

heterogeneity of the generated ADC hinders their functional and biophysical characterization. 

Since then, stakeholders in the field have shifted towards conjugations at defined antibody sites. 

Among the methods based on cysteines, residues HC-A11833,38, HC-S23939–41, HC-S44241, LC-

Q12442, and LC-V20533,38 for example are replaced by cysteines to enable conjugation. 

According to the position, it may require a reduction and re-oxidation33,38–41, or no 

functionalization steps in rare cases42. Among the methods based on the use of non-canonical 

amino acids, residue HC-A118 is replaced by acetyl-phenylalanine (AcF)32,43–45, azido-

phenylalanine (AzF)25,46,47, or cyclopentadienyl-ethoxy-carbonyl-lysine (CypK)48,49; residue 

HC-S119 by AcF32; residue HC-S136 by azido-methylphenylalanine (AMF)50; and residue HC-

K274 by azido-ethoxy-carbonyl-lysine (AECK)10,51 or cyclopropene-lysine (CpHK)52 to enable 

conjugation. Among the methods based on glycans, fucose53,54, sialic acid55,56, or N-

acetylglucosamine (GlcNAc)57 are chemically53 or enzymatically54–57 modified to enable 

conjugation. Among the methods based on peptide motifs, KKQG58–60, KCXPXR61 (X=any 

amino acid), or LPETG62 are introduced to enable conjugation via the use of a transglutaminase, 

formylglycine enzyme, or sortase, respectively. 

Enabled antibody conjugation sites. While all these site-specific methods are suitable for 

industrial production and therapeutic applications, many of them only allow drug-linker 

conjugation at limited sites of antibodies, such as at the N-terminus, at the C-terminus, at the 
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glycans, or at specific motifs, thus limiting design possibilities. In contrast, chemical methods 

based on engineered cysteines and non-canonical amino acids allow for addressing more 

positions and generating tailor-made ADCs. Since non-canonical amino acids do not react with 

endogenous cysteines during synthesis, they allow for even more positions and therefore, 

designs. 

 

2.2 ADC generation: orthogonal synthesis of antibodies 

2.2.1 Mammalian cells: the gold-standard for antibody synthesis 

Since antibodies used in ADCs are of the IgG type, mammalian systems are primarily used in 

research as well as in production. In research, where transient transfections are more common, 

Human embryonic kidney (HEK) cells are mainly used due to their ease of transfection with 

polyethylenimine (PEI). In large-scale production, where cells are stably transfected and 

selected, Chinese hamster ovary (CHO) cells are primarily used due to their growth rate and 

high synthesis yield. These mammalian cells have machinery and quality control systems63–65 

that allow the synthesis of IgGs of extremely high quality. The machinery enables, among other 

things, N-glycosylation that is identical to or nearly close to human IgGs, proline and cysteine 

isomerization, formation of disulfide bonds, folding/unfolding assisted by foldases, all of which 

lead to the desired product (biophysical and functional characteristics). After translation and 

translocation into the endoplasmic reticulum, the antibody is transported to the Golgi apparatus 

before being secreted. The quality of the secreted antibodies is ensured through quality controls 

throughout the whole modification process. In the endoplasmic reticulum for example, the 

continuous quality control routes proteins that have successfully passed this control to the Golgi 

apparatus. Proteins identified as incorrect are for example returned to the cytoplasm  

(endoplasmic reticulum-associated degradation, ERAD) or sent to the lysosomes, (endoplasmic 

reticulum-to-lysosomes-associated degradation, (ERLAD) where they are degraded. This 

whole quality control prevents the generation of incorrect antibodies that could create 

immunogenic reactions in patients. Further upstream in research and development, this quality 

control allows the reliable characterization and comparison of candidates. In synthesis systems 

that do not allow for the separation of correct forms from incorrect forms (prokaryotic cells, 

prokaryotic and eukaryotic cell-free systems), it is not possible to determine for example 

whether differences in functionality are due to a suboptimal folding, assembly or modification 

of the product from one side, or is due to the product itself from another side. This, in turn, does 

not allow for a reliable comparison of candidates and leads to the mistaken exclusion of 

otherwise promising candidates. Just as the drug-linker conjugation efficiency to the antibody 

for the characterization of ADC candidates, the quality of the generated antibodies is crucial 
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for the biophysical and functional characterization of antibody and ADC candidates. More than 

that, only mammalian cells allow the generation of human or human-like N-glycosylation, with 

a few rare exceptions66. 

 

2.2.2 Orthogonal synthesis in mammalian cells 

In the chemical method using non-canonical amino acids, the non-canonical amino acid is 

introduced into the antibody during translation, and the synthesized antibody is then ready-to-

click. To carry out the incorporation of the non-canonical amino acid into the IgG, the non-

canonical amino acid is first supplemented in the cell culture medium. Once in the cell, the non-

canonical amino acid is aminoacylated on the orthogonal transfer ribonucleic acid (tRNA) by 

the orthogonal aminoacyl-tRNA synthetase (abbreviated as synthetase), both produced by the 

transiently or stably transfected cell. In the case of synthesis in mammalian cells for ADC 

applications, an orthogonal pair (synthetase and tRNA) from archaeal systems such as 

Methanosarcina mazei10,48,49,51,52 or bacterial systems such as Escherichia coli25,32,43–47 is used, 

native or engineered. The non-canonical amino acid and the orthogonal compounds must not 

cross-react with endogenous amino acids, synthetases, or tRNAs. Once the orthogonal tRNA is 

aminoacylated with the non-canonical amino acid, it recognizes a nonsense codon (stop codon) 

on the mRNA encoding the antibody. The nonsense codon, amber (uag), ochre (uaa), or opal 

(uga) is placed at the position where the non-canonical amino acid has to be introduced in the 

antibody. Consequently, the non-canonical amino acid is introduced in the nascent sequence 

during translation. This event is called suppression since the nonsense codon is suppressed by 

the aminoacylated orthogonal tRNA. The generated product, containing the non-canonical 

amino acid, is called the suppression product. However, when the orthogonal system is not 

optimal, the translation terminates, due to the nonsense codon. This event is called termination 

and the generated product is called termination product. Although the orthogonal system also 

targets endogenous nonsense codons, Roy et al.51 have shown that amber (uag) suppression 

does not impact the growth, viability, yields, or quality of the produced antibody. Reduced cell 

viability was only observed with some non-canonical amino acids, due to the non-canonical 

amino acid itself, independently of the orthogonal system or amber suppression. They also 

described its suitability for industrial application, outperforming with 3 g/L the yields 

previously reported10,32,43. Aside from enabling unique ADC designs, these non-canonical 

amino acids enable direct and highly efficient conjugation under physiological conditions, 

without the need for pre-functionalization steps or enzyme introduction, which are associated 

with extensive handling, quantification, and characterization steps, and are susceptible to 

affecting the conjugation efficiency. This promotes reliable assessment and parallelization of 
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candidates for research applications and represents an attractive way to avoid the introduction 

of additional batch-to-batch variations for industrial production. More than that, the conjugation 

efficiencies10,50 far outperform those of other conjugation methods in the field. 

 

2.2.3 CHO-based cell-free protein synthesis: an ermerging analytical tool 

The CHO-based cell-free protein synthesis is of high relevance since CHO cells are the most 

frequently used system for the industrial production of antibodies. In contrast to cell-based 

protein synthesis, where the cell directly synthesizes the protein of interest, cell-free protein 

synthesis involves the extraction of cell contents to synthesize the protein of interest. This CHO-

based cell-free protein synthesis is based on the use of translationally active lysate and 

endogenous microsomes67–77. These microsomes are vesicles derived from the endogenous 

endoplasmic reticulum, enabling post-translational modifications such as N-glycosylation (high 

mannose), signal peptide cleavage, and disulfide-bridge formation73, among others. In addition 

to mimicking cellular events, cell-free synthesis enables features that are not possible in cell-

based systems. This includes, for example, the specific radioactive69–78 and orthogonal77 

synthesis of a protein of interest, which allows for its specific quantification, detection, and 

evaluation in a mixture of endogenous proteins69–78. This is enabled, notably, by the digestion 

of endogenous mRNA during the lysate preparation and the possibility to change and to control 

the source of amino acids available for translation. Furthermore, the discontinuous nature of the 

microsomes and the absence of a continuous energy regeneration system allow for the 

generation of the different structural states of a protein of interest accumulated within the lumen 

of the microsome73. This might be used to determine for example if an antibody variant has a 

more challenging or, conversely, easier folding capacity, or if a variant is more likely to undergo 

post-translational modifications, or less likely. It might also be used to assess the influence of 

a structural state on the function or conjugability. Finally, the open nature of this approach 

allows for syntheses under the same conditions, as the cell content and the supplements are the 

same among the different reactions. This allows for example syntheses with known and defined 

concentrations of orthogonal components (synthetases, tRNA, non-canonical amino acids)77, 

independently of cell events (internalization, transfection, endogenous transcription, 

translation). Although the first CHO cell-free syntheses were described in 197279 and 197480, 

they have only been described twelve other times67–78 until the start of this work, almost 

exclusively by the same group67–77. CHO-based cell-free synthesis of antibodies within 

microsomes was described for the first time by Stech et al.73, and CHO-based cell-free 

orthogonal synthesis by Zemella et al.77. However, CHO-based cell-free orthogonal synthesis 

of antibodies as well as related technologies has not been described. 
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Abstract 

Background: Antibody-drug conjugates are cancer therapeutics that combine specificity and 

toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer 

cells. The conjugation of the drug-linker to the antibody is a key point in research and 

development as well as in industrial production. The consensus is to conjugate the drug to a 

surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the 

hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an 

increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver 

clearance and decreased stability. Methods: In contrast, we describe a non-conventional 

approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a 

ready-to-click antibody design was created in which an azido-based non-canonical amino acid 

is introduced within the Fab cavity during antibody synthesis using nonsense suppression 

technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to 

cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results: This antibody 

design significantly increased the hydrophilicity of the generated antibody-drug conjugates 

compared to the current best-in-class designs based on non-canonical amino acids, while 

conjugation efficiency and functionality were maintained. The robustness of this native 

shielding effect and the versatility of this approach were also investigated. Conclusions: This 

pioneer design may become a starting point for the improvement of antibody-drug conjugates 

and an option to consider for protecting drugs and linkers from unspecific interactions. 
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Introduction 

To date, a total of thirteen antibody-drug conjugates (ADCs) have been approved for cancer 

therapy by various regulatory organizations, such as the Food and Drug Administration (USA), 

the European Medicines Agency (EU), the Pharmaceuticals and Medical Devices Agency 

(Japan), and the National Medical Products Administration (China). The concept of ADCs can 

be seen as conferring greater cytotoxicity to the antibody, or higher specificity to the drug. The 

antibody part of the ADC recognizes the tumor-associated antigen on the tumor cell surface. 

Once the ADC is internalized, the drug, covalently attached to the antibody via a linker, is 

released and kills the tumor cell. Among the thirteen approved ADCs, eleven are based on IgG1, 

while two of them are based on IgG4. The use of these antibody formats allows a long half-life 

and stability of the ADCs. Since the mammalian cell machinery allows excellent quality control 

of proline isomerization, disulfide-bridge formation, N-glycosylation, and other post-

translational modifications required for the antibody quality, antibodies are industrially 

produced in chinese hamster ovary (CHO) cells for eleven of the currently approved ADCs, or 

in NS0 and Sp2/0 cells for the two remaining. The majority of drugs used for ADCs currently 

approved or having reached clinical trials target DNA (anthracyclines, benzodiazepines, 

calicheamicins, duocarmycins), RNA polymerase II (amatoxins), topoisomerase I 

(camptothecins), or microtubules (auristatins, maytansinoids, tubulysins). A linker, which may 

be cleavable or non-cleavable, covalently links the drug to the antibody. These drug-linkers are 

generally produced chemically. Once the drug-linker and the antibody are produced, they are 

conjugated by chemical, enzymatic, or a combination of enzymatic and chemical methods. 

Conjugation efficiency is a key issue in research and development since homogeneous products 

are required to draw meaningful conclusions about functional and biochemical properties. For 

production, reduced conjugation efficiency has a significant time and cost impact. To ensure 

maximum conjugation efficiency, surface-exposed conjugation sites are conventionally chosen. 

However, the drugs used for ADCs are often highly hydrophobic. This leads to an increased 

hydrophobicity of the generated ADCs, resulting in higher liver clearances by the Kupffer cells 

and sinusoidal endothelial cells (1) (2), which then reduces the therapeutic efficacy. Aside from 

the therapeutic aspect, this hydrophobicity also decreases ADC stability due to a higher 

propensity to aggregate. In contrast, we opted for a non-conventional approach, which can be 

seen as analogous to a Trojan Horse. We decided to conjugate the drug in a buried part of the 

antibody and specifically chose the cavity in the Fab region over the cavity in the Fc region 

(Figure 1a). Indeed, one issue of the IgG1-based antibodies is the cleavage in their lower hinge 

region in the tumor microenvironment by metalloproteinases (3). While the IgG1 remains full-
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length upon single chain cleavage, due to strong non-covalent interactions between both CH3 

domains, the full cleavage separates the Fc part from the (Fab)2 part. Hence, if the drug is 

located on the Fc region and full cleavage occurs, the Fab region, capable of targeting the tumor 

cell, no longer has a cytotoxic effect.  

Enzymatic and combination of enzymatic and chemical methods enable addressing the N-

terminus, C-terminus, or limited positions within the antibody, implying very limited design 

possibilities. On the other hand, chemical methods based on engineered cysteines and non-

canonical amino acids allow for addressing more positions and generating tailor-made ADCs. 

The non-canonical amino acids, due to their unique structures and reactive groups, enable new 

designs and conjugation strategies. Therefore, this technology was used to create a new design. 

Although the orthogonal system also targets endogenous nonsense codons, Roy et al. (4) have 

shown that amber (uag) suppression does not impact the growth, viability, yields, or quality of 

the produced antibody. Reduced cell viability was only observed with some non-canonical 

amino acids, due to the non-canonical amino acid itself, independently of the orthogonal system 

or amber suppression. They also described its suitability for industrial application, 

outperforming with 3 g/L the yields previously reported (5) (6) (7). Hence, the amber 

suppression technology was chosen to create a monoclonal antibody (mAb) design in which the 

non-canonical amino acid is located in a buried position of the Fab. This mAb design was 

assessed in respect of synthesis, conjugation, as well as of biochemical and functional properties 

of the generated ADCs. 

 

Results and discussion 

Antibody design. Based on 3D structures of human IgG1 (8), murine IgG1 (9), humanized 

IgG1-based Fab (10) (11) (12) (13) (14), and humanized IgG2-based Fab (15), we aimed to 

identify positions whose amino acid residue 1) has its α-carbon/β-carbon bond or β-carbon/γ-

carbon bond oriented towards the inside of the Fab cavity, 2) while being sufficiently far from 

the center of the cavity, to provide enough space for the drug-linker and to ensure the maximum 

shielding effect. For the selected positions, the possible rotamers of the lysine and tyrosine 

residues were then evaluated. Among the canonical amino acids, lysine is structurally the 

closest to azido-ethoxy-carbonyl-lysine (AECK), a non-canonical amino acid used for the 

generation of ADCs (4) (7). Similarly, tyrosine is structurally the closest canonical amino acid 

to p-azido-phenylalanine (AzF), another non-canonical amino acid used for the generation of 

ADCs (16) (17) (18). Positions were numbered according to the IgG1-Eu described by Edelman 

et al. (19). We determined the position HC-152 in combination with AECK as the best-suited 

design (Figure 1b).  
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Figure 1. Antibody design (a) 3D (PDB: 1HZH) and schematic representations of a monoclonal antibody, and 

schematic representation of an antibody-drug conjugate with the drug within the Fab cavity. (b) 3D 

representation (PDB: 1HZH) of one of the two Fab regions. Each point represents the α-carbon of the amino 

acid. The amino groups, the carboxy groups, and the side chains are not represented to simplify the visualization. 

The sphere represents the α-carbon of the glutamic acid HC-152. (c) Schematic representations of the native 

antibody sequence with the sphere representing the α-carbon of the glutamic acid HC-152, the antibody 

sequence with AECK introduced at the position HC-152, and the antibody sequence with AECK at the position 

HC-152 conjugated to a DBCO-based drug-linker. Only one of the two triazole regioisomers (1,4) is 

represented. Amino acids are numbered according to the IgG1-Eu described by Edelman et al. (19). 

 

For AzF however, rotamers at this position that are suitable for conjugation may not guarantee 

an inward orientation of the drug. Therefore, AzF was not further investigated. Position HC-

152 has the advantage of being located C-terminal of the proline residue HC-151, a checkpoint 

for IgG folding. Isomerization of this proline to cis-conformation is essential for the folding of 

the CH1 domain and its assembly with the CL domain (20). Furthermore, it is located N-

terminal of the proline residue HC-153, also one of the three cis prolines of the CH1 domain. 

As a result, the side chain orientation of the amino acid HC-152 is more likely to be 

energetically maintained. In combination with AECK containing an azido group, 
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dibenzocyclooctyne (DBCO) containing the alkyne counterpart was chosen to conjugate the 

drug-linker to the antibody by strain-promoted azide-alkyne cycloaddition (SPAAC) (Figure 

1c). Unlike bicyclononyne (BCN) which forms a single triazole regioisomer upon SPAAC, or 

simple alkyne which forms a single triazole regioisomer upon copper-catalyzed azide-alkyne 

cycloaddition (CuAAC), DBCO enables the generation of two possible regioisomers, thus 

maximizing the chances of addressing this difficult-to-access position. 

Antibody synthesis. To determine whether the production of this antibody design would be 

suitable for industrial application, two additional antibody designs based on different positions 

for the incorporation of AECK were tested as references. The first reference design is based on 

position HC-118 (IgG1-Eu numbering). This position was described for the incorporation of 

the non-canonical amino acids acetyl-phenylalanine (AcF) (5) (6) (21) (22) (23), AzF (16) (17) 

(18), and cyclopropene-lysine (CypK) (24) (25) to generate ADCs, allowing an enhanced ADC 

stability over the position HC-119 (6). Indeed, this is the position used in ARX517 and ARX788 

(A118AcF), respectively anti-PSMA and anti-HER2 ADCs currently investigated in clinical 

phases I and II. More widely, this is also the position used in the THIOMAB™ technology 

based on engineered cysteines (A118C) (26) (27). The second reference design is based on 

position HC-274. This position was described for the incorporation of AECK (4) (7) and 

cyclopentadienyl-ethoxy-carbonyl-lysine (CpHK) (28) to generate ADCs, showing the highest 

ADC hydrophilicity over several positions (7). Both positions HC-118 and HC-274 were 

reported as suitable positions for the industrial production of antibodies containing non-

canonical amino acids using amber suppression (4) (6) (7). In this article, mAb design A refers 

to the antibody design in which the non-canonical amino acid AECK is introduced at position 

HC-118, mAb design B at position HC-152, and mAb design C at position HC-274 (Figure 2a). 

Since human embryonic kidney (HEK) cells are more commonly used in research for antibody 

synthesis, due to their ease of transfection with polyethylenimine (PEI), and CHO cells are 

mainly used for industrial production, the feasibility assessment of the designs was performed 

in both systems. A Methanosarcina mazei orthogonal system in combination with amber 

suppression was chosen to introduce the non-canonical amino acid AECK, and two IgG1-based 

monoclonal antibodies (mAb1 and mAb2) were used as models. As a proof-of-concept, 

antibody synthesis was performed by transient transfections. Four plasmids, encoding the 

antibody heavy chain, the antibody light chain, the orthogonal Methanosarcina mazei AECK-

transfer ribonucleic acid (AECK-tRNA), and the orthogonal Methanosarcina mazei AECK-

tRNA synthetase (AECK-RS), were co-transfected in equimolar ratios. Yields were quantified 

by affinity chromatography using the MabSelect™ SuRe™ column. The protein A of this 
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column is modified to only recognize the heavy chain at its CH2-CH3 interface, in contrast to 

the native protein A which additionally recognizes the variable domain of the heavy chain for 

VH3-type antibodies. As a result, the suppression product can be selectively purified and 

quantified in a single step. 

 
Figure 2. Antibody synthesis (a) Schematic representations of the mAb designs A, B, and C, with their 

intended drug location. (b) Amino acid context, codon context, theoretical iPASS score, and antibody yields in 

CHO and HEK systems for designs A, B, and C with mAb1 and mAb2. The reference amino acid or reference 

codon is indicated as underlined. X represents the non-canonical amino acid. iPASS scores were calculated 

based on the amber codon context by using the website shiny.bio.lmu.de:3838/iPASSv2. An iPASS score of ≥ 

1 should indicate above-average relative non-canonical amino acid incorporation efficiency in HEK cells with 

the orthogonal Methanosarcina mazei pyrrolysine-tRNA/pyrrolysine-RS pair. Antibody yields were quantified 

from the culture supernatants by affinity chromatography using the MabSelect™ SuRe™ column in an ÄKTA 

pure 25 L system. Transient transfections were independently performed three times. Amino acids are 

numbered according to IgG1-Eu described by Edelman et al. (19). 

 

Analysis of the synthesis showed that yields obtained from design B were between those of 

designs A and C, for both mAb1 and mAb2, in both HEK and CHO systems (Figure 2b). 

Interestingly, iPass (identification of permissive amber sites for suppression) scores, calculated 

based on amber codon context and supposed to predict suppression efficiency in HEK cells 

with the orthogonal Methanosarcina mazei pyrrolysine-tRNA/pyrrolysine-RS pair (29), did not 

correspond at all with the obtained yields (Figure 2b), emphasizing the fact that although codon 

context is important for suppression efficiency, other factors are much more determining. 
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ADC Hydrophobicity. To evaluate ADC hydrophobicity, hydrophobic interaction 

chromatography (HIC) was utilized. This mild condition-based method enables the analysis of 

ADCs in a non-denatured state. DBCO-C4-PEG3-VC-PABC-AE (named SLAE, for standard 

linker auristatin E) was conjugated to purified antibodies. Auristatin E (AE) used in SLAE is 

widely known as monomethyl auristatin E, the main reference for ADC technologies. After 

conjugation, the generated ADCs were then purified, and HIC-ultraviolet (HIC-UV) analysis 

showed that ADCs based on design B were the most hydrophilic among the three investigated 

designs (Figure 3). The drug-to-antibody ratio = 2 (DAR2) species of design B were even more 

hydrophilic than the DAR1 species of design A. Interestingly, design C, which was reported to 

lead to the less hydrophobic ADCs among several designs (7), here led to the less hydrophilic 

ADCs. 

 

Figure 3. ADC hydrophobicity. Left: HIC chromatograms (214 nm) of ADCs based on mAb1 or mAb2, with 

designs C, A, and B (from top to bottom), and containing SLAE (DBCO-C4-PEG3-VC-PABC-AE). The arrows 

indicate the corresponding DAR species in each sample. For the chromatograms presented here, 125 ng of 

mAb1 wild-type (wt) or mAb2 wt were added to the sample (5 µg) as internal standard before injection. Right: 

schematic representations of ADCs based on designs C, A, and B (from top to bottom). The arrow indicates the 

increasing hydrophobicity. SLAE stands for standard linker auristatin E and is schematically represented in 

Figure 4a. 

 

Shielding effect. To determine the limit of this shielding effect, antibodies were conjugated 

with a drug via a longer linker (Figure 4a), to place the drug further outside the cavity. For this 

purpose, DBCO-C6-PEG8-VC-PABC-AE, named LLAE (for long linker auristatin E) was used 
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to generate new ADCs. Compared to ADCs based on SLAE, ADCs based on LLAE showed an 

increase in retention time of 4 seconds with mAb1 and 5 seconds with mAb2 for the ADCs 

based on design C. For ADCs based on design A, an increase in retention time of 8 seconds 

with mAb1 and 9 seconds with mAb2 was observed. For ADCs based on design B, an increase 

in retention time of 40 seconds with mAb1 and 66 seconds with mAb2 was observed (Figure 

4b). This strong hydrophobic shift for design B indicates a drastically reduced shielding effect. 

However, ADCs based on design B still remained much more hydrophilic than the ADCs based 

on designs A and C (Figure 4c), showing that even with this unusually long linker, the shielding 

effect is still present. 

 
Figure 4. Shielding effect (a) Chemical structures of the standard linker (SL), long linker (LL), and auristatin 

E derivatives (AE). SLAE is the combination of SL and AE, in which X is a methyl substituent. LLAE is the 

combination of LL and AE, in which X is a hydrogen substituent. The dashes at the C-terminus of the linker 

and at the N-terminus of the drug represent the bond between the linker and the drug. (b) Differences in retention 

time (RT) between ADCs based on LLAE and ADCs based on SLAE were calculated as follows: RT difference 

= RTLLAE-based ADC – RTSLAE-based ADC. (c) HIC chromatograms (214 nm) of ADCs based on mAb1 or mAb2, with 

designs C, A and B (from top to bottom), containing LLAE (DBCO-C6-PEG8-VC-PABC-AE). The arrows 

indicate the corresponding DAR species in each sample. For the chromatograms presented here, 125 ng of 

mAb1 wt or mAb2 wt were added to the sample (5 µg) as internal standard before injection. 

  

Conjugation efficiency. To determine conjugation efficiency, areas under the curve obtained 

from the HIC-UV chromatograms were analyzed. Even though the non-canonical amino acid 

AECK is more difficult to access in design B, the conjugation efficiencies were in fact similar 

between the three different designs (Table 1). Conjugation with LLAE was more efficient than 
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with SLAE (Table 1). This may be explained by the fact that the conjugation conditions, in 

particular the dimethyl sulfoxide (DMSO) concentration, were not optimal for SLAE (which is  

ADC DAR Conjugation 

efficiency 

DAR0 

species 

DAR1 

species 

DAR2 

species 

mAb1DesignA-SLAE 1.83 92% 0% 17% 83% 

mAb1DesignB-SLAE 1.69 85% 2% 26% 72% 

mAb1DesignC-SLAE 1.67 84% 0% 33% 67% 

mAb2DesignA-SLAE 1.79 90% 0% 21% 79% 

mAb2DesignB-SLAE 1.77 88% 1% 21% 78% 

mAb2DesignC-SLAE 1.69 85% 0% 31% 69% 

mAb1DesignA-LLAE 2.00 100% 0% 0% 100% 

mAb1DesignB-LLAE 1.96 98% 0% 4% 96% 

mAb1DesignC-LLAE 1.95 97% 0% 5% 95% 

mAb2DesignA-LLAE 1.98 99% 0% 2% 98% 

mAb2DesignB-LLAE 1.90 95% 1% 8% 91% 

mAb2DesignC-LLAE 1.96 98% 0% 4% 96% 

Table 1. DAR, conjugation efficiency, DAR0, DAR1, and DAR2 species of the generated ADCs. Samples 

(5 µg) were analyzed by HIC (214 nm) without addition of the reference mAb wt. 

 

 
Figure 5. In vitro efficacy. Cytotoxic activity of (a) SLAE-based ADCs, (b) LLAE-based ADCs, (c) mAb wt, 

drug-linkers, and isotype ADC on high antigen-expressing cancer cell lines. Cytotoxic activity of (d) SLAE-

based ADCs, (e) LLAE-based ADCs, (f) mAb wt and drug-linkers on low antigen-expressing cancer cell lines. 

The means and the standard deviations are the results of 3 independent experiments performed in triplicates. 
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less polar than LLAE). Even though LLAE resulted in more hydrophobic ADCs, due to the 

drug being more exposed on the surface of the antibody, it showed that 100% conjugation 

efficiency could be achieved (Table 1), which corroborates the fidelity of this Methanosarcina 

mazei orthogonal system (4) and the excellent conjugability of this non-canonical amino acid 

(7). 

In vitro efficacy. To determine whether shielding the drug in the Fab cavity reduces the ADC 

efficacy at the cellular level, in vitro cytotoxic assays were performed. As the cleavable linker 

is less accessible for design B and therefore more strongly dependent on lysosomal degradation 

compared to designs A and C, it was expected that ADCs based on the latter two designs show 

better efficacy. However, analysis of cytotoxic activity on high-antigen expressing cancer cell 

lines showed that ADCs based on design B perform as well as ADCs based on designs A and 

C (Figure 5a,b). Additionally, ADCs based on design B did not show cytotoxicity on low-

antigen expressing cancer cell lines, similar to ADCs based on designs A and C (Figure 5a,b). 

The antibody wild-type (wt) alone, the drug-linkers alone, and the isotype ADC showed low 

cytotoxicity (Figure 5c).  

Versatility. The proof-of-concept of this approach has been completed with auristatin E 

derivatives as ADC payload. To determine if this is not only applicable to auristatin E 

derivatives, this approach was repeated with a chemical molecule having a very different 

structure. DBCO-Cyanine5 (Figure 6b), a highly hydrophobic fluorophore, rarely used 

compared to its more hydrophilic sulfonated equivalent (DBCO-sulfo-Cyanine5), was 

conjugated to mAb1 designs A and B (Figure 3a) (Figure 4c). Due to its higher hydrophobicity, 

design C was not investigated anymore. As similarity in respect of hydrophobicity and 

conjugation efficiency was observed between both antibodies (Figure 3, 4, table 1), further 

investigations were done with either mAb1 or mAb2. To quantify and compare the 

hydrophobicity of ADC designs, the relative hydrophobicity (RH) was calculated based on the 

retention times (RT) from HIC-UV chromatograms, using the equivalent ADCs based on design 

A as reference (Figure 6a). For this, 125 ng of the corresponding antibody wt were added to the 

sample (2 µg) as internal standard before injection into the HIC-UV system. It was observed 

that the shielding effect is also present when conjugating DBCO-Cyanine5 (Cy5) (RH = 0.14) 

(Figure 6c). It seems that the shorter the linker, the stronger the shielding effect (RH = 0.62, 

0.46, and 0.14 with mAb1DesignB conjugated with LLAE, SLAE, and Cy5 respectively) 

(Figure 6c). This suggests that the potential of this approach with our auristatin E-based drug-

linkers can further be exploited. 
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Figure 6. Relative hydrophobicity. (a) Formula of the relative hydrophobicity (RH). For the determination of 

the relative hydrophobicity, 125 ng of mAb wt were added to the sample (2 µg) as internal standard before 

injection into the HIC-UV system. Relative hydrophobicity was calculated with design A-based ADC sharing 

the same antibody and the same drug or fluorophore as reference. A low RH value indicates a low 

hydrophobicity. (b) Schematic representations of the antibody sequence with AECK introduced at position HC-

118 (mAbDesignA), the antibody sequence with AzF introduced at position HC-118 (mAbDesignD), the 

antibody sequence with AECK introduced at position HC-119 (mAbDesignE), and the chemical structure of 

Cy5 (DBCO-Cyanine5). Amino acids are numbered according to IgG1-Eu described by Edelman et al. (19). (c) 

Relative hydrophobicity (RH) of the generated ADCs. RH of design A-based ADCs, which are equal to 1 by 

definition, are shown in Table S1. 

 

Additional reference design. Since design A (AECK introduced at position HC-118) was used 

as a reference but unlike design C has not yet been described in the literature, an additional 

antibody design, here referred to as design D, was generated. In this design, the non-canonical 

amino acid p-azido-phenylalanine (AzF) is introduced at position HC-118 (Figure 6b) using an 

Escherichia coli-based orthogonal system in mammalian cells, as described by other groups 

(16) (17) (18). Designs A and D differ only by the nature of the non-canonical amino acid. 

Although AzF has a very different structure than AECK, both designs displayed a similar 

hydrophobicity (RH = 0.94) (Figure 6c), indicating that design B (RH = 0.46) is also superior 

to this reference design (16) (17) (18). 

Relevance of the conjugation site. Another antibody design, here referred to as design E, was 

also generated to investigate the introduction of AECK at position HC-119 compared to 

position HC-118 (Figure 6b). ADCs based on design E were significantly more hydrophobic 

than those based on design A (RH = 1.32 and 1.32 with mAb2DesignE conjugated with SLAE 

and LLAE, respectively) (Figure 6c), possibly due to the drug-linker oriented outward from the 

antibody and being more exposed. This may explain the increased unspecific premature 

cleavage of the valine-citrulline linker in both mouse and rat plasma matrices observed by Tian 
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et al. (6) for the position HC-119 compared to HC-118 using AcF, and highlights, even more, 

the importance of the careful selection of the conjugation site. 

 

Conclusion 

Similar to a Trojan Horse design, we conjugated the drug into the Fab cavity of the antibody, 

via the non-canonical amino acid AECK introduced at position HC-152 using nonsense 

suppression technology. This approach resulted in a significant increase in the hydrophilicity 

of the ADCs, far surpassing the current best-in-class designs. The yields of this antibody design 

(mAb design B) in CHO and HEK systems turned out to be even higher than those of the 

reference antibody design (mAb design C), a design already described as suitable for industrial 

application, suggesting that yields of 3 g/L reported by Roy et al. (4) may even be improved. 

Moreover, the conjugation efficiency and cytotoxic activity on tumor cells were also 

maintained, while low-antigen cells remained unaffected. Although a shielding effect was 

observed for our design with all drug-linkers, it was observed that the shorter the linker, the 

better the shielding effect. This suggests that the design of the auristatin E-based drug-linkers 

used in this approach may still be optimized to fully exploit the potential of this approach. This 

includes optimizing or redesigning the linker to allow the drug to be more deeply embedded in 

the Fab cavity. Also of interest, the investigation of bidentate linkers (30) (31) (32) may be an 

option to consider for the generation of ADCs with a higher DAR. Although this work focused 

on the generation and early evaluation of ADC designs, it will remain interesting to measure 

the impact of the high hydrophilicity of design B on the long-term stability, pharmacokinetic 

properties, and in vivo antitumor activity, according to the ADC candidates and indications. 

During the course of this project, Coumans et al. (33) described a similar approach using 

engineered cysteines. In their approach, amino acid residues of the Fab region were replaced 

by cysteines, and drugs such as duocarmycin, auristatin E, and auristatin F were successfully 

conjugated. These designs, with the drug shielded in the Fab cavity, resulted in an outstanding 

hydrophilicity. An in vivo study (33) was performed with mice lacking the carboxylesterase 1c 

(CES1c), to ensure that differences in ADC efficacy were not due to unspecific premature 

cleavage of the valine-citrulline linker for designs in which more exposed positions are chosen. 

It was demonstrated that ADCs based on the design HC-P41C almost led to the complete 

elimination of the tumor, while ADCs based on a standard design did not show a significant 

reduction of the tumor volume at the same dose. Analysis of the pharmacokinetics showed a 

correlation with the antitumor activity.  

Although unspecific interactions of drugs with endogenous enzymes, transporters, receptors, or 

anti-drug antibodies have not been extensively reported in the literature yet, the approaches 
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described in this article and by Coumans et al. (33) may be considered to address such issues. 

Unlike current linker-based approaches to reduce hydrophobicity, these antibody-based 

approaches allow for shielding the drug by surrounding it, while removal of this native shield 

is simply achieved by lysosomal degradation of the antibody in the targeted cell. Due to the 

high frequency of optimal rotamers of the residue HC-152 combined with the long linear side 

chain of AECK, the antibody design described in this article increases the propensity of the 

drug-linker to be conjugated from the inside of the Fab cavity. Aside from this structural aspect, 

this design presents the rare advantage of enabling both direct and reliable drug conjugation. 

By rendering obsolete the processes of functionalization, buffer exchange, or enzymatic 

conversion, usually associated with extensive handling and characterization, this clickable 

design promotes reliable assessment and parallelization of candidates for research applications 

and represents an attractive way to avoid the introduction of additional batch-to-batch variations 

for industrial production. 

 

Material and methods 

3D structures. PDB structures 1HZH (8), 1IGY (9), 6OGE (10), 4HKZ (11), 6B9Z (12), 6MH2 

(13), and 1N8Z (14) 5SX4 (15) were used as models. Rcsb.org with viewer = NGL (WebGL) 

was used for the initial visualization of the backbone and side chains. Rcsb.org, with viewer = 

Jsmol (JavaScript), was used for visualization of hydrophobic regions, patches, and amino 

acids. WinCoot (0.9.4.1) was used for single amino acid mutation and rotamers identification. 

Antibodies. Amino acids were numbered according to the IgG1-Eu described by Edelman et 

al. (19). The constant domains of the heavy chain are of m17/-1/-2 allotype, where HC-214 is 

a lysine (G1m17), HC-356 is a glutamic acid (G1m-1), HC-358 is a methionine (G1m-1), and 

HC-431 is an alanine (G1m-2). The constant domains of the light chain are of Km3 allotype, 

where LC-153 is an alanine and LC-191 is a valine. mAb1 heavy chain variable domain is of 

VH3 humanized type, mAb2 heavy chain variable domain is of VH1 humanized type. mAb1 

and mAb2 light chain variable domains are of VKI humanized types. Signal peptides and signal 

peptide types remain undisclosed. Shiny.bio.lmu.de:3838/iPASSv2/ (29) was used to calculate 

theoretical iPass scores according to the user guide. 

Orthogonal synthetases and tRNAs. Orthogonal Methanosarcina mazei AECK-RS is also 

known as Methanosarcina mazei pyrrolysine-RS and was not modified. Orthogonal 

Escherichia coli AzFRS is a modified version of the Escherichia coli tyrosine-RS (Y37T-

D182S-F183A-D265R, sequential numbering) as described by Chin et al. (34). Orthogonal 

Methanosarcina mazei AECK-tRNA is a modified version of the Methanosarcina mazei 

pyrrolysine-tRNA (a10g-u14g-u16g-u20c-u25c-a52c, sequential numbering) as described by 
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Serfling et al. (35). Orthogonal Escherichia coli AzF-tRNA is a modified version of the 

Escherichia coli tyrosine-tRNA(-gua) (g35c, sequential numbering) as described previously 

(36) (37). The introduction of a nuclear export signal (NES) to the N-terminus of the orthogonal 

Methanosarcina mazei AECK-RS, supposed to increase its cytosolic localization and 

suppression in HEK cells (35) (38), did not significantly increase the yields in our HEK system 

and strongly reduced the overall yields in our CHO system, independently of the suppression 

efficiency. Therefore, antibody synthesis was performed in all systems without this NES. 

Plasmids and DNA sequences. pcDNA3.4 was used as a final vector for HC and LC and was 

initially ordered at ProteoGenix S.A.S. pcDNA3.1_Zeo(+) was used as a final vector for 

orthogonal aa-RSs and was initially ordered at BioCat GmbH. pcDNA3.1_Hygro(+) was used 

as a final vector for orthogonal tRNAs and was initially ordered at Life Technologies GmbH. 

DNA sequences for heavy chain constant domains, i.e. from HC-A118 to HC-K447, and DNA 

sequences for light chain constant domains, i.e. from LC-R108 to LC-C214, were optimized 

for CHO systems using the GeneOptimizer Algorithm (Geneart AG) and were initially ordered 

in pcDNA3.1(+) vectors at BioCat GmbH. DNA sequences for heavy chain variable domains 

and light chain variable domains as well as signal peptides for mAb1 and mAb2 (optimization 

undisclosed) were initially ordered at BioCat GmbH in pUC57-1.8k vectors. Orthogonal 

Methanosarcina mazei AECK-RS and orthogonal Escherichia coli AzF-tRNA synthetase 

(AzF-RS) were not DNA-optimized and were initially ordered in a pcDNA3.1(+) vector at 

BioCat GmbH. The DNA sequence for the NES was optimized as described by Serfling et al. 

(35). For Methanosarcina mazei AECK-tRNA and orthogonal Escherichia coli AzFtRNA, the 

U6 promoter, as in BLOCK-iT™ U6 RNAi Entry Vector (Invitrogen, reference K494500), was 

used as tRNA promoter, following the CMV promoter, and followed by the orthogonal tRNA, 

a cca-tail, and a tttttt-terminator, in 8 copies, each separated by a HindIII site. The sequences 

were ordered at Life Technologies GmbH. For all constructs, no tag was introduced. For all 

constructs intended to be translated, the aug codon of the Kozak sequence present in the vector 

was used as a start codon. 

Cloning. Gibson assembly technology was mainly used to modify vectors, signal peptides, 

transcription, and translation elements, as well as to generate amber mutants and final plasmids. 

For Gibson assembly, polymerase chain reaction (PCR) primers (melting temperature (Tm) 

annealing part = 60-64 °C; Tm non-annealing part = 48-52 °C) were ordered at Integrated DNA 

Technologies, BV., and used to generate DNA fragments using a Q5® Hot Start High-Fidelity 

DNA Polymerase (New England Biolabs GmbH, reference M0493L). The generated DNA 

fragments were extracted and purified from agarose gel electrophoresis using the Zymoclean™ 
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Gel DNA Recovery Kit (Zymo Research Europe GmbH, reference D4008) according to the 

manufacturer's protocol. Purified DNA fragments were then mixed between 1:1 and 1:10 molar 

ratio for Gibson assembly using NEBuilder® HiFi DNA Assembly, Master Mix (New England 

Biolabs GmbH, reference M5520AA) at 50 °C for 30 min. After purification using the DNA 

Clean & Concentrator™-5 (Zymo Research Europe GmbH, reference D4014) according to the 

manufacturer's protocol, 20-40 ng of the generated product was used to transform Escherichia 

coli JM109 electrocompetent cells (prepared in-house) using a GenePulser Cell™ 

electroporation system (Bio-Rad Laboratories GmbH). Clones were selected from Luria-

Bertani-agar plates containing 100 µg/ml ampicillin, and grown in 10 ml Luria-Bertani Broth 

(Scharlau, reference 02-406-500) medium containing 100 µg/ml ampicillin for 16 hours. 

Plasmids were extracted and purified using the QIAprep® Spin Miniprep Kit (Qiagen GmbH, 

reference 27106) according to the manufacturer's protocol, analyzed by agarose gel 

electrophoresis, and sequenced by LGC Genomics Berlin. 

Plasmid preparation. Transformed Escherichia coli JM109 cells were grown, respectively for 

midi- or maxi-preparation, in 100 or 250 ml Luria-Bertani Broth (Scharlau, reference 02-406-

500) medium containing 100 µg/ml ampicillin for 16 hours. Plasmid was extracted and purified 

using the PureLink™ HiPure Plasmid Midiprep Kit (Invitrogen / Thermo Fisher Scientific, 

K210005) or the PureLink™ HiPure Plasmid Maxiprep Kit (Invitrogen / Thermo Fisher 

Scientific, K210007) according to the manufacturer‘s protocol. Eluate was incubated with 

isopropanol (0.7 volumes per 1 volume eluate) at 25 °C for 2 min, before centrifugation 

(15000 x g, 4 °C, 60 min). The supernatant was discarded, before new centrifugation 

(15000 x g, 4 °C, 5 min). The supernatant was discarded, and 70% cold ethanol was gently 

introduced, before new centrifugation (10000 x g, 4 °C, 5 min). The supernatant was discarded, 

before new centrifugation (15000 x g, 4 °C, 5 min). The supernatant was carefully removed and 

discarded, and the pellet was dried (25 °C, 5-10 min). For midiprep or maxiprep, respectively 

50 µl or 150 µl ultrapure water were then introduced directly on the pellet, and incubated at 

37 °C for 5 min. The resuspended pellet was shaken on a Vibrax® VXR basic (IKA) at 1500 

revolutions per minute, 25 °C for 30 min. After the final centrifugation (15000 x g, 4 °C, 

30 min), the supernatant was collected. 

Antibody synthesis by transient transfection. Although not as optimal as the Expi293™ and 

ExpiCHO™ systems, HEK and CHO systems with established in-house protocols for further 

investigation by cell-free protein synthesis were used for antibody synthesis. For FreeStyle™ 

293-F cells (Gibco / Thermo Fisher Scientific, reference R79007), HEK TF medium (Xell AG, 

reference 861-0001) supplemented with 6 mM UltraGlutamine™ (Lonza, reference BE17-
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605E/U1) was used. Cells were maintained between 0.5x106 and 3x106 cells/ml at 37 °C, 

5% CO2, 90 rpm (50 mm shaking diameters) in non-baffled flasks without vent cap (cap not 

tightly closed). For CHO-K1 cells (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen, reference ACC 110), adapted in-house for serum-free and suspension culture, 

ProCHO™5 medium (Lonza, reference BELN12-766Q) supplemented with 6 mM 

UltraGlutamine™ (Lonza, reference BE17-605E/U1) was used. Cells were maintained between 

0.5x106 and 4x106 cells/ml at 37 °C, 5% CO2, 90 rpm (50 mm shaking diameters) in baffled 

flasks without vent cap (cap not tightly closed). For transfection, CHO and HEK cells were 

centrifuged (300 x g, 25 °C, 5 min), resuspended in fresh pre-equilibrated medium into a 

concentration of 4x106 cells/ml, and incubated at 37 °C for 2 hours. For 106 cells, 625 ng of 

plasmids were introduced in a 150 mM sodium chloride solution (50 ng/µl final). For 106 cells, 

2500 ng of polyethylenimine (PEI) linear molecular weight 25 000 (Polysciences, Inc, 

reference 23966-2) (1 mg/ml) were introduced in a 150 mM sodium chloride solution 

(200 ng/µl final). The PEI-based mix was introduced into the plasmid mix, and incubated at 

25 °C for 10 min. After complexation, the mix was introduced drop by drop on the cells while 

gently swirling. Cells were incubated for 5 hours at 37 °C, 5% CO2, 55 rpm (50 mm shaking 

diameters) for HEK cells, and 50 rpm (50 mm shaking diameters) for CHO cells. An equivalent 

volume (1:1) of fresh pre-equilibrated medium containing 4 mM of azido-ethoxy-carbonyl-

lysine (AECK) (Iris Biotech GmbH, reference HAA2080) or p-azido-phenylalanine (AzF) 

(Bachem, reference 4020250.0001) and 2.5 mM valproic acid (VPA) (Sigma, reference P4543-

10G) (39) was introduced on the cells, followed by an incubation of 9 days at 31 °C (39) (40), 

70 rpm (50 mm shaking diameters) for HEK cells and 60 rpm (50 mm shaking diameters) for 

CHO cells. For both HEK and CHO cells, 20 ml of 300 g/l glucose and 30 ml of 200 mM 

UltraGlutamine™ (Lonza, reference BE17-605E/U1) per liter of medium were supplemented 

4 days after transfection. All samples and solutions were filtered or centrifuged (16000 x g, 

4 °C, 60 min) with supernatant collection. 

Antibody purification. After centrifugation (10000 x g, 4 °C, 30 min), the pH of the cell 

culture supernatant was controlled and if necessary adjusted (pH 6.0-7.0) for optimal binding 

to protein A. Before introduction in the FPLC system, the sample was filtered at 0.2 µm 

(Sarstedt, reference 92.3940.001, reference 83.1826.102, or reference 83.3940.001 according 

to the sample volume) with filtrate collection, or was centrifuged (16000 x g, 4 °C, 30 min) 

with supernatant collection. The sample was introduced at 2.5 ml/min in a HiTrap MabSelect 

SuRe™ 5 ml column (Cytiva, reference 11003494), pre-equilibrated with 5 column volumes 

(CV) of 20 mM sodium phosphate 150 mM sodium chloride pH 6.9 solution in an ÄKTA 
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pure™ 25 L (Cytiva) at 4 °C. After a 20 CV-wash at 5 ml/min, the antibody was eluted with a 

linear gradient of 50 mM sodium citrate pH 3.0 solution at 2.5 ml/min over 8 CV, and eluates 

were immediately neutralized with 15% of 1 M Tris pH 9.0 solution (13% final). In the case of 

isocratic elution, eluates were neutralized with 25% of 1 M Tris pH 9.0 solution (20% final). 

After neutralization, eluates were formulated in the conjugation buffer, i.e. phosphate-buffered 

saline (PBS) containing 137 mM sodium chloride, 2.7 mM potassium chloride, and 10 mM 

sodium phosphate at pH 7.4 (VWR International GmbH, reference E404-200TABS) at 4-6 

mg/ml (Nanodrop quantification based on absorbance at 280 nm) using Amicon® Ultra-4 

10 kDa (Millipore, reference UFC8010), followed by sample centrifugation (16000 x g, 4 °C, 

60 min) with supernatant collection. For quantification purposes, the elution fractions were 

directly discarded. All solutions were filtered (Sarstedt, reference 92.3940.001, reference 

83.1826.102, or reference 83.3940.001 according to the solution volume) with filtrate 

collection. 

Drug- and fluorophore-linkers. DBCO-C4-PEG3-VC-PABC-AE (MedChemTronica, 

reference HY-111012) and DBCO-C6-PEG8-PABC-AE (Iris Biotech GmbH) were used as 

drug-linker models. DBCO-Cyanine5 (BroadPharm, reference BP-23775) was used as a 

fluorophore-linker model. 

Antibody conjugation. The final volume of the conjugation reaction was chosen according to 

the nature and the concentration of the drug-linker or fluorophore-linker while keeping the final 

antibody concentration higher than 0.5 mg/ml. The antibody (initially in PBS) was incubated 

(25 °C, 15 min) in 10%, 15%, or 18% of dimethyl sulfoxide (DMSO) (Sigma, reference D8418-

100ML), and the drug-linker or fluorophore-linker (initially in 100% DMSO) was incubated 

(25 °C, 15 min) in 60%, 50%, or 40% of DMSO before conjugation. Conjugation occurred at 

10-20% final DMSO (80-90% final PBS), with 2-4 molar equivalents of drug-linker or 

fluorophore-linker per site of conjugation, at 25 °C for 16 hours. Conjugates were purified and 

formulated again in PBS pH 7.4 at 0.5-1.0 mg/ml (Nanodrop quantification based on 

absorbance at 280 nm) using Amicon® Ultra-0.5 30 kDa (Millipore, reference UFC5030), 

followed by sample centrifugation (16000 x g, 4 °C, 60 min) with supernatant collection or 

were introduced at 0.5 ml/min in a HiTrap™ rProtein A FastFlow 1 ml column (Cytiva, 

reference 17507902), pre-equilibrated with 5 CV of 20 mM sodium phosphate 150 mM sodium 

chloride pH 6.9 solution in an ÄKTA pure™ 25 L (Cytiva) at 4 °C. After a 10 CV-wash at 

1 ml/min, the antibody was isocratically eluted with 3 CV of 50 mM sodium citrate pH 3.0 

solution at 0.5 ml/min and immediately neutralized with 25% of 1 M Tris pH 9.0 solution (20% 

final). After neutralization, eluates were formulated in the conjugation buffer (PBS pH 7.4) at 
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0.5-1.0 mg/ml (quantification based on absorbance at 280 nm) using Amicon® Ultra-0.5 

10 kDa (Millipore, reference UFC5010), followed by sample centrifugation (16000 x g, 4 °C, 

60 min) with supernatant collection. All samples and solutions were filtered (Sarstedt, reference 

92.3940.001, reference 83.1826.102, or reference 83.3940.001 according to the sample or 

solution volume) with filtrate collection or centrifuged (16000 x g, 4 °C, 60 min) with 

supernatant collection. 

Hydrophobic interaction chromatography. Hydrophobic interaction chromatography was 

performed on a TSKgel Butyl-NPR, 2.5 µm particle size, 4.6 mm ID × 3.5 cm column (Tosoh, 

reference 0014947) using an Agilent 1260 Infinity HPLC-DAD system (Agilent Technologies 

Deutschland GmbH). Mobile phase A consisted of 25 mM sodium phosphate, 1.5 M 

ammonium sulfate, pH 6.9 and mobile phase B consisted of 80% (v/v) 25 mM sodium 

phosphate, pH 6.9, and 20% (v/v) isopropanol. The column was pre-equilibrated with 5 CV of 

mobile phase A and 2 or 5 µg of the sample (0.25 mg/ml in PBS) were subjected to a gradient 

of 0% to 100% mobile phase B over 20 min at a flow of 0.4 ml/min. Detection was performed 

at 214 nm, and peaks and area under the curve (AUC) were automatically detected and 

calculated by the OpenLab CDS 2.14.29 software. For the determination of the relative 

hydrophobicity, 125 ng of mAb1 wt or mAb2 wt were added to the sample (2 or 5 µg) as internal 

standard before injection. 

In vitro cytotoxicity assays. Samples (1.5x10-12 M to 1x10-8 M) were introduced in wells 

(Corning, reference Costar 3917) containing 1000 adherent cancer cells (100 µl total volume), 

seeded 24 hours before, and usually maintained between 15.6x103 and 62.5x103 cells/cm2 for 

the high-antigen cancer cell line (undisclosed) and between 28.5x103 and 228.5x103 cells/cm2 

for the low-antigen cancer cell line (undisclosed) in Dulbecco's Modified Eagle's Medium - 

High glucose with 25 mM HEPES (Sigma, reference D6171-500ML), 10% FBS Supreme 

(PAN, reference P30-3031), 4 mM Stable Glutamine 200 mM (100X) (PAN, reference P04-

82100), 1 mM sodium pyruvate 100 mM (Biowest, reference L0642-100) at 37 °C, 5% CO2 

and 100% humidity. After 120 hours, supernatants (100 µl) were discarded, and 50 µl of a 

solution composed of 20% (v/v) CellTiter-Glo® 2.0 Cell Viability Assay (Promega GmbH, 

reference G9243) and 80% (v/v) PBS were introduced in the well, and chilled at 25 °C for at 

least 20 min protected from light. Luminescence was measured with a FLUOstar Omega plate 

reader (BMG Labtech). 
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3.2 Publication II (book chapter) 

3.2.1 General information 

• Title of the book chapter (digital object identifier) 

Synthesis of fluorescently labeled antibodies using non-canonical amino acids in eukaryotic 

cell-free systems (doi.org/10.1007/978-1-0716-1406-8_9). 

• Authors 

Marlitt Stech1, Nathanaël Rakotoarinoro1,2, Tamara Teichmann1, Anne Zemella1, Lena 

Thoring1, and Stefan Kubick1,2,3* 

1Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and 

Immunology (IZI), Potsdam, Germany. 

2Freie Universität Berlin, Institute of Pharmacy, Berlin, Germany. 

3Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology 

Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University 

of Potsdam, Senftenberg, Germany. 

*stefan.kubick@izi-bb.fraunhofer.de. 

• Abstract 

Cell-free protein synthesis (CFPS) enables the development of antibody conjugates, such as 

fluorophore conjugates and antibody-drug conjugates (ADCs), in a rapid and straightforward 

manner. In the first part, we describe the cell-free synthesis of antibodies containing 

fluorescent non-canonical amino acids (ncaa) by using pre-charged tRNA. In the second 

part, we describe the cell-free synthesis of antibodies containing ncaa by using an orthogonal 

system, followed by the site-specific conjugation of the fluorescent dye DyLight 650-

phosphine. The expression of the antibodies containing ncaa was analyzed by SDS-PAGE, 

followed by autoradiography and the labeling by in-gel fluorescence. Two different 

fluorescently labeled antibodies could be generated. 

• Keywords 

cell-free protein synthesis. antibody. antibody conjugates. IgG1. non-canonical amino acid. 

conjugation. 

• Book / Chapter / Date 

Structural Proteomics: High-Throughput Methods (Springer) / Chapter 9 / 2021. 
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This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/).  
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3.3 Publication III (research article) 

3.3.1 General information 

• Title of the research article (digital object identifier) 

A CHO-based cell-free dual fluorescence reporter system for the straightforward assessment 

of amber suppression and scFv functionality (doi.org/10.3389/fbioe.2022.873906). 

• Authors 

Simon K. Krebs1,2†, Nathanaël Rakotoarinoro1,3†, Marlitt Stech1, Anne Zemella1 and 
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†These authors have contributed equally to this work and share first authorship. 

*stefan.kubick@izi-bb.fraunhofer.de. 

• Abstract 

Incorporation of non-canonical amino acids (ncAAs) with bioorthogonal reactive groups by 

amber suppression allows the generation of synthetic proteins with desired, novel properties. 

Such modified molecules are in high demand for basic research and therapeutic applications 

such as cancer treatment and in vivo imaging. The positioning of the ncAA-responsive codon 

within the protein’s coding sequence is critical in order to maintain protein function, achieve 

high yields of ncAA-containing protein and allow effective conjugation. Cell-free ncAA 

incorporation is of particular interest due to the open nature of cell-free systems and their 

concurrent ease of manipulation. In this study, we report a straight-forward workflow to 

inquire ncAA positions in regard to incorporation efficiency and protein functionality in a 

Chinese hamster ovary (CHO) cell-free system. As a model the well-established orthogonal 

translation components Escherichia coli tyrosyl-tRNA synthetase (TyrRS) and tRNATyrCUA 

were used to site-specifically incorporate the ncAA p-azido-L-phenylalanine (AzF) in 

response to UAG codons. Seven ncAA sites within an anti-Epidermal Growth Factor 

Receptor (EGFR) single-chain variable fragment (scFv) N-terminally fused to the red 
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fluorescent protein mRFP1 and C-terminally fused the green fluorescent protein sfGFP were 

investigated for ncAA incorporation efficiency and impact on antigen binding. The 

characterized cell-free dual fluorescence reporter system allows screening for ncAA 

incorporation sites with high incorporation efficiency that maintain protein activity. It is 

parallelizable, scalable and easy to operate. We propose that the established CHO-based cell-

free dual fluorescence reporter system can be of particular interest for the development of 

antibody-drug conjugates (ADCs). 

• Keywords 

antibody. cell-free protein synthesis. expanded genetic code. mRFP1. noncanonical amino 

acid. orthogonal system. sfGFP. unnatural amino acid. 

• Journal / Volume / Year 

Frontiers in Bioengineering and Biotechnology (Frontiers) / Volume 10 / 2022. 

 

https://doi.org/10.3389/fbioe.2022.873906 

This is an open access article distributed under the terms of the Creative Commons Attribution 

License. 
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4 Significance and impact of the work 

A new and unconventional clickable antibody design for the generation of ADCs. The 

manuscript I describes a design and, more broadly, a disruptive and innovative approach for 

generating antibody-drug conjugates (ADCs). So far, current approaches involve conjugating 

the drug-linker to a surface-exposed part of the antibody. The aim is to ensure efficient 

conjugation, which is a key point in research and development as well as in industrial 

production. The idea in this work was to take an opposite approach. Admittedly, targeting the 

drug-linker to a buried part of the antibody has the drawback of making conjugation more 

challenging or reducing linker cleavage and, therefore, drug release in the tumor cell. However, 

within each drawback, an advantage can be found. Hiding the drug-linker within the antibody 

(in a Trojan-horse manner) might help to reduce undesirable effects associated with their 

exposure, such as the drug-induced hydrophobicity of the ADCs, non-specific cleavage of the 

linkers, and non-specific interaction of drugs or linkers with endogenous elements. In this work, 

the position HC-152 in combination with the non-canonical amino acid AECK was chosen 

(referred to as mAbDesignB in manuscript I). The purpose was to conjugate the drug-linker 

within the Fab cavity. The Fab cavity was preferred over the Fc cavity to circumvent the issue 

associated with the cleavage of the lower hinge region of IgG1 by proteases in the tumor 

microenvironment. This antibody design proved to be producible at synthesis yields superior to 

mAbDesignC (HC-K274AECK)10,51, a design that has demonstrated its suitability for industrial 

production51. After drug-linker conjugation, the hydrophobicity of the ADCs generated from 

this mAbDesignB was significantly reduced compared to those of the reference designs 

mAbDesignA (HC-S118AECK) and mAbDesignC, already described as the best in terms of 

hydrophilicity10 and stability43. Although the conjugation site is difficult to access in this new 

antibody design, the conjugation efficiency was as high as that of the reference designs. 

Although the linker is buried within the Fab cavity, it did not hinder drug release in tumor cells. 

Conjugation of this design with other drug-linkers demonstrated that the shielding effect was 

maintained, proving the versatility of this design. 

Compared to conventional designs where the drug is conjugated in a surface-exposed part of 

the antibody, the significant gain in hydrophilicity achieved with this design has the potential 

to offer better stability, lower propensity for aggregation, and, from a purely therapeutic 

perspective, to reduce hepatic uptake by Kupffer cells or sinusoidal endothelial cells and thus 

improve patient outcome. Compared to linker-based approaches to reduce hydrophobicity8,81–

86, this design may protect drug-linkers from possible unspecific interactions. Compared to 

antibody designs based on conjugation within the Fc cavity39–41,57,59, this design overcomes the 
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challenge of ADC cleavage in the hinge region and is also applicable in the case of ADC formats 

based on Fab fused to half-life extenders such as albumin binding domains87–89. Unlike other 

antibody formats (single-chain variable fragment, diabody, single-domain antibody), the Fab 

has a hydrophobic cavity capable of containing a drug and therefore ensures the stability of the 

conjugates. Compared to antibody designs based on the use of engineered cysteines within the 

Fab cavity90, this design, through its direct and highly efficient conjugation, avoids significant 

handling, quantification, and characterization steps. Therefore, this design promotes reliable 

assessment and parallelization of candidates for research applications, and represents an 

attractive way to avoid the introduction of additional batch-to-batch variations for industrial 

production. Beyond its production aspect, this design also offers a structural advantage. The 

long AECK side chain, combined with the orientation of the α-carbon/β-carbon bond at position 

HC-152, ensures the drug conjugation from the inside of the cavity. All these points make this 

new design one of the best-known to date for the generation of ADCs. However, there are still 

interesting investigations that have not been explored in this work. One of these is the 

conjugation of other hydrophobic drugs than the standard auristatin and cyanine derivatives 

described in this work, such as pyrrolobenzodiazepines, calicheamicins, and duocarmycins. 

Another would be the conjugation of drug-linkers containing two drugs covalently attached to 

a single linker to generate double-loaded ADCs using the same antibody design (DAR4, instead 

of the DAR2 described in this work). 

The first CHO-based cell-free orthogonal synthesis of IgG1. The manuscript II describes, 

among others, a method for the CHO-based cell-free orthogonal synthesis and conjugation of 

IgG1 containing a non-canonical amino acid. So far, CHO-based cell-free orthogonal synthesis 

of membrane proteins and CHO-based cell-free synthesis of antibodies have been described. 

However, the CHO-based cell-free orthogonal synthesis of antibodies has never been described. 

In manuscript II, the first CHO-based cell-free orthogonal synthesis of antibody (IgG1), as well 

as its conjugation, have been described. The established orthogonal method has yielded IgG1 

with similar yields and characteristics to the IgG1 wild type synthesized without orthogonal 

system and to IgG1 synthesized using pre-charged suppressor tRNA (instead of the orthogonal 

system). In all three cases, it was possible to differentiate, using non-reducing SDS-

PAGE/autoradiography, the different antibody structural states in the microsome, namely the 

heavy chain alone (~50 kDa), the heavy chain associated with the light chain (~75 kDa), the 

two heavy chains associated (~100 kDa), the two heavy chains associated with a light chain 

(~125 kDa), and the full-length product (~150 kDa). The light chain alone was not visible due 

to the gel used. In addition to this, a conjugation method has been established. This method 
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enabled conjugation without even needing to purify the antibody or without optimal 

conjugation conditions. 

This cell-free method opens up new possibilities that were previously non-existent for the 

analysis of antibodies containing non-canonical amino acids and their synthesis. In cell-based 

synthesis, it is not possible to specifically detect or quantify the various structural states of the 

antibody of interest in the ER, or to assess their conjugability. Moreover, since the orthogonal 

system also targets nonsense codons of endogenous proteins, non-canonical amino acids are 

also introduced into endogenous proteins, which are then prone to conjugation as well. In the 

cell-free system, the digestion of endogenous mRNA during lysate preparation, combined with 

the introduction of radioactive amino acids, allows for the specific synthesis, conjugation, 

detection (autoradiography), and quantification (scintillation) of the antibody of interest. With 

this method, it is now possible to analyze the folding and assembly of these antibodies, 

especially if the non-canonical amino acid is located in a critical region, or to assess the 

antibody conjugability and to identify the cause of a suboptimal conjugation. 

The first CHO-based cell-free dual fluorescence technology. The manuscript III describes, 

for the first time, a CHO-based cell-free dual fluorescence technology. So far, dual fluorescence 

technologies have been used in CHO cells to enable the pre-selection of clones containing an 

orthogonal system48,51, and orthogonal synthesis has been described in a CHO-based cell-free 

system77. However, the combination of dual fluorescence technology and CHO-based cell-free 

system has never been described. In manuscript III, the first CHO-based cell-free dual 

technology is described. In this technology, monomeric red fluorescent protein 1 (mRFP1) is 

fused to superfolder green fluorescent protein (sfGFP) by a linker containing a non-canonical 

amino acid incorporation site. This cell-free technology has proven to be extremely reliable. 

mRFP1 did not emit fluorescence in the sfGFP range, and vice versa. At all tested 

concentrations, volumes, and fusion proteins, fluorescence was correlated with the protein 

amount in a linear manner. This is the first time this observation has been made with a dual 

fluorescence technology.  

This cell-free technology opens up new possibilities in the analysis of orthogonal antibody 

synthesis at the translational level in the CHO expression system. In CHO cell-based dual 

fluorescence technology, variations due to a lower/higher transcription or translation of a 

reporter protein variant compared to another one can lead to incorrect conclusions when the 

reported reporter protein is transiently co-transfected and in competition (at the transcriptional 

and translation level) with the orthogonal synthetase. Indeed, if the reporter protein variant ends 

up being expressed much more than the orthogonal synthetase (limiting), this will lead to a 
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higher concentration of termination product. Conversely, if the reporter protein variant ends up 

being expressed much less than the orthogonal synthetase (in excess), this will lead to a higher 

concentration of suppression product. Therefore, comparing codon contexts between variants 

can lead to incorrect conclusions. In the CHO-based cell-free dual fluorescence technology, the 

open nature of the system allows for the uniform distribution of the translation machinery in all 

reactions. Indeed, a master-mix containing the orthogonal components (synthetase, tRNA, non-

canonical amino acids) is prepared and then split into several reactions where templates for 

reporter proteins (e.g., codon context variants for a position) are added. As a result, the 

concentration of orthogonal components available for translation is controlled and consistent in 

each reaction, ensuring reliable comparisons. Compared to other cell-free technologies, this 

dual fluorescence technology brings a significant benefit. So far, the analysis of suppression 

efficiency in cell-free systems was carried out by using a single reporter protein (e.g. GFP, 

nanoluciferase). Thus, the suppression product is indicated by the fluorescence or 

luminescence. Zimmerman et al.50 evaluated 1760 mutants of a Methanocaldococcus 

Jannaschii synthetase by Escherichia coli-based cell-free protein synthesis to incorporate the 

non-canonical amino acid AMF, using GFP as a reporter protein. The selection of the best 

mutants was done by calculating the ratio between the GFP signal in the presence of AMF and 

the GFP signal without AMF. Hence, a high ratio indicates an excellent mutant. However, it 

was not controlled whether the GFP signals were influenced or not by overall synthesis yields. 

Thus, an increase or decrease in the GFP signal due to lower or higher overall synthesis yields 

(pipetting error, synthesis not occurring or not being optimal, etc.) would affect the final 

calculated ratio, leading to the incorrect inclusion or exclusion of a mutant. To ensure that this 

increase or decrease in signal is not actually due to an increase or decrease in overall synthesis, 

it is necessary to control synthesis yields by radioactivity for each reaction, as done for example 

by Zemella et al.77. However, adding this quantification step makes high-throughput screening 

not suitable. In the new CHO-based cell-free dual fluorescence technology, the analysis of the 

suppression efficiency does not require post-synthesis handling anymore. Moreover, the unique 

feature of the linear fluorescence in this technology enables the direct and absolute 

quantification of the suppression product without the need to separate it from the termination 

product. With this technology, it is now possible to analyze the suppression efficiency in a 

direct, precise and reliable manner, and therefore the orthogonal synthesis of antibodies in CHO 

expression systems. 
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5 Joint discussion, conclusion, and outlook 

Joint discussion. While the manuscript I focuses on product development, the other two 

manuscripts (II and III) are oriented toward assisting in product development. The design 

developed in manuscript I has no issues (mAbDesignB), neither in terms of synthesis yields nor 

conjugability. However, if that had been the case, the cell-free tools developed in manuscripts 

II and III could have been used to identify the reasons and potentially find solutions.  

If the synthesis yields of design of interest (mAbDesignB in manuscript I) had been reduced 

compared to the reference designs (mAbDesignA and mAbDesignC), the method developed in 

manuscript II could have been used to determine at the post-translational level if this was due 

to a suboptimal folding kinetic. An analysis by SDS-PAGE/autoradiography would make 

possible to determine if there is a decrease in the proportion of heavy chains associated with a 

light chain compared to the wild type or the reference designs. If the conjugation efficiency of 

the design of interest had been reduced compared to the reference designs, this method could 

also have been used to determine whether the non-canonical amino acid is itself suboptimally 

oriented within the CH1 domain, or if the CL domain prevents access of the drug-linker to the 

non-canonical amino acid. After incubation of the fluorophore with the design of interest, only 

the heavy chain not associated with the light chains would be fluorescent in the latter case (CL 

domain preventing access to the non-canonical amino acids by the drug-linker). In the other 

case (non-canonical amino acid side chain suboptimally oriented within the CH1 domain), no 

fluorescence would occur at all, except maybe on poorly or completely unfolded heavy chains. 

The technology described in manuscript III can be used in conjunction with the method 

described in manuscript II to determine what might be the causes of poor yield of a design. If 

the design of interest in manuscript I had a low yield, this technology (manuscript III) could 

have been readapted and used to determine at the translational level if this was due to less 

efficient suppression of the amber codon at position HC-152. Comparing the sfGFP/mRFP1 

ratio of the reference design codon context with the sfGFP/mRFP1 ratios of the reference 

designs codon context would make it possible to determine if suppression is the cause. 

Thus, this technology described in manuscript III complements the method described in 

manuscript II for the evaluation of the orthogonal synthesis of antibodies. While the method 

described in manuscript II allows for the evaluation of antibodies containing non-canonical 

amino acids as well as their synthesis at the post-translational level (folding, assembly, 

conjugation), the technology described in manuscript III enables the evaluation of their 

synthesis at the translational level (suppression efficiency). 
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This work has not only enabled the creation of an antibody design based on non-canonical 

amino acids, but also the creation of complementary tools for their investigation. These tools 

are indeed the first method and the first technology for the orthogonal synthesis of antibodies 

in CHO-based cell-free systems. More broadly, this CHO-based approach is of high relevance, 

since antibodies are produced in CHO cells for eleven of the thirteen ADCs approved to date 

(Adcetris, Aidixi, Besponsa, Blenrep, Elahere, Enhertu, Kadcyla, Padcev, Polivy, Tivdak, 

Zynlonta). 

Conclusion. To summarize and to conclude, the aims of the work have been achieved. A 

groundbreaking ADC design based on a disruptive clickable antibody design has been created 

and characterized. At best, this design has the potential to revolutionize the performances and 

developability of current ADCs, and “at worst”, to reduce the risk of failures in clinical phases, 

which are quite critical for pharmaceutical groups. On the other hand, a CHO-based cell-free 

method and a CHO-based cell-free technology have been created. By opening up new 

perspectives for a broader and deeper investigation of antibodies containing non-canonical 

amino acids and their synthesis at the translational and post-translational level in CHO systems, 

these pioneer tools will contribute to a better understanding of clickable antibodies. More than 

the achieved aims, this work enabled major contributions and breakthroughs in the field of 

ADCs and CHO-based cell-free protein synthesis, and will raise awareness among ADC 

stakeholders about this type of design and, more broadly, approach, as well as the new 

complementary tools available for their characterization. 

Outlook. While this pioneer design or more broadly, approach, may become the new standard 

in the near future, ADCs will have to reach a new level. The use of these non-canonical amino 

acids, not only for the conjugation of drug-linkers but for the conjugation of paratope-masking 

peptide-linkers, is probably the approach of the future to generate better ADCs, such as 

probody-drug conjugates (PDCs)91,92. These ADCs, ideally activatable in the tumor 

microenvironment by proteases91,92, small molecules28, lower pH15–17, or on-demand by stimuli 

such as near-infrared light irradiation29,93, would be an interesting option to consider for 

enhancing specificity and targeting antigens which were not considered as suitable up to date. 

In this context, CHO-based cell-free methods and technologies will have to be developed 

accordingly to support the investigation of these clickable antibodies.  
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6 Summary in English 

Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity through 

the antibody and its conjugated drug, respectively. Due to their unique structures and chemical 

functions, non-canonical amino acids enable tailor-made designs of protein conjugates and their 

generation in a direct and efficient manner. The CHO-based cell-free protein synthesis, based 

on translationally active CHO lysates and microsomes, is of high relevance since antibodies are 

produced in CHO cells at the industrial scale. It represents a promising analytical tool for 

investigating the CHO-translation, ER-related post-translational modifications, folding, and 

assembly of a protein of interest, as well as their effects on the protein properties. The aim of 

this doctoral work was to leverage the unique specificities and advantages of these non-

canonical amino acids to address recurrent and unresolved challenges in ADCs, thereby 

enhancing their developability. The second aim of this doctoral work was to harness the unique 

characteristics of this CHO-based cell-free protein synthesis to support the development of such 

ADCs. In this context, a disruptive clickable antibody design based on non-canonical amino 

acids was created and evaluated. In this unconventional design, the drug-linker was buried 

within the Fab cavity, similar to a Trojan horse-type approach. This allowed for the decrease of 

the adverse effects associated with the exposition of the drug-linker, such as hydrophobicity. 

This design, which outperformed conventional and best-in-class designs, has the potential to 

significantly increase the developability of ADCs. Additionally, the first method for the CHO-

based cell-free orthogonal synthesis as well as the conjugation of IgG1 was established. This 

method opens, for the first time, the possibility of investigating the folding and assembly of 

IgG1 containing non-canonical amino acids synthesized in CHO systems as well as their 

conjugability at a post-translational level. Finally, the first CHO-based cell-free dual 

fluorescence technology was created and characterized. This technology enabled, for the first 

time, the direct, precise, and reliable analysis of amber suppression, which opens possibilities 

for investigating the orthogonal synthesis of antibodies containing non-canonical amino acids 

at a translational level. Aside from the achieved aims, this doctoral work brings major 

contributions and breakthroughs in the field of ADCs and CHO-based cell-free protein 

synthesis. 
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7 Summary in German (Zusammenfassung) 

Antikörper-Wirkstoff-Konjugate (Antibody-drug conjugates, ADCs) sind Krebstherapeutika, 

die Spezifität und Toxizität jeweils durch den Antikörper und den daran konjugierten Wirkstoff 

kombinieren. Aufgrund ihrer einzigartigen Strukturen und chemischen Funktionen 

ermöglichen nicht-kanonische Aminosäuren maßgeschneiderte Designs von Protein-

Konjugaten und deren Generierung auf direkte und effiziente Weise. Die CHO-basierte 

zellfreie Proteinsynthese, basierend auf translational aktiven CHO-Lysaten und Mikrosomen, 

ist von hoher Relevanz, da Antikörper in CHO-Zellen im industriellen Maßstab produziert 

werden. Sie stellt ein vielversprechendes analytisches Tool dar, um die CHO-Translation, ER-

assozierte post-translationale Modifikationen, Faltung und Assemblierung des Proteins von 

Interesse sowie deren Auswirkungen auf die Proteineigenschaften zu untersuchen. Das Ziel 

dieser Doktorarbeit war es, die einzigartigen Spezifika und Vorteile dieser nicht-kanonischen 

Aminosäuren zu nutzen, um wiederkehrende und ungelöste Herausforderungen bei ADCs 

anzugehen und damit ihre Entwicklung zu verbessern. Das zweite Ziel war es, die einzigartigen 

Merkmale der CHO-basierten zellfreien Proteinsynthese zu nutzen, um die Entwicklung solcher 

ADCs zu unterstützen. In diesem Kontext wurde ein disruptives, klickbares Antikörperdesign 

auf Basis nicht-kanonischer Aminosäuren kreiert und evaluiert. In diesem unkonventionellen 

Design wurde der Wirkstoff-Linker innerhalb der Fab-Kavität verborgen, ähnlich wie bei einem 

Trojanischen Pferd-Ansatz. Dies ermöglichte die Verringerung der nachteiligen Effekte, die 

mit der Exposition des Wirkstoff-Linkers, wie Hydrophobizität, verbunden sind. Dieses 

Design, das konventionelle und Best-in-Class-Designs übertraf, hat das Potenzial, die 

Entwickelbarkeit von ADCs signifikant zu erhöhen.  Zusätzlich dazu wurde die erste Methode 

zur CHO-basierten zellfreien orthogonalen Synthese sowie Konjugation von IgG1 etabliert. 

Diese Methode eröffnet für das erste Mal die Möglichkeit, die Faltung und Assemblierung von 

IgG1 mit nicht-kanonischen Aminosäuren, die in CHO-Systemen synthetisiert wurden, sowie 

deren Konjugierbarkeit auf post-translationaler Ebene zu untersuchen. Schließlich wurde die 

erste CHO-basierte zellfreie Dual-Fluoreszenztechnologie entwickelt und charakterisiert. Diese 

Technologie ermöglichte erstmalig, die direkte, präzise und zuverlässige Analyse der Amber-

Suppression in CHO-Systemen, und eröffnet Möglichkeiten zur Untersuchung der 

orthogonalen Synthese von Antikörpern mit nicht-kanonischen Aminosäuren auf 

translationaler Ebene. Neben den erreichten Zielen bringt diese Doktorarbeit bedeutende 

Beiträge und Durchbrüche auf dem Gebiet der ADCs und der CHO-basierten zellfreien 

Proteinsynthese. 
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9 Abbreviations 

AcF acetyl-phenylalanine 

ADC antibody-drug conjugate 

ADCC antibody-dependent cellular cytotoxicity 

ADCP antibody-dependent cellular phagocytosis 

AECK azido-ethoxy-carbonyl-lysine 

AMF azido-methylphenylalanine 

AzF azido-phenylalanine 

C-terminus carboxy-terminus 

C1 complement component 1 

C1q complement component 1q 

CDC complement-dependent cytotoxicity 

CH1 heavy chain constant domain 1 

CH2 heavy chain constant domain 2 

CH3 heavy chain constant domain 3 

CHO chinese hamster ovary 

CL light chain constant domain 

CpHK cyclopentadienyl-ethoxy-carbonyl-lysine 

CypK cyclopropene-lysine 

DAR drug-to-antibody ratio 

Db diabody 

DNA deoxyribonucleic acid 

ER endoplasmic reticulum 

Fab fragment antigen-binding 

Fc fragment crystallizable 

FcγR Fcγ receptors 

FcRn neonatal Fc receptor 

HC heavy chain 

HEK human embryonic kidney 

IgG immunoglobulin gamma 

LC light chain 

mAb monoclonal antibody 

mRFP1 monomeric red fluorescent protein 1 

mRNA messenger ribonucleic acid 
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N-terminus amino-terminus 

ncaa non-canonical amino acids 

NK natural killer 

PDC pro-antibody-drug conjugate 

PEI polyethylenimine 

qPCR real-time polymerase chain reaction 

scFv single-chain variable fragment 

sdAb single-domain antibody 

sfGFP superfolder green fluorescent protein 

tRNA transfer ribonucleic acid 

VH heavy chain variable domain 

VL light chain variable domain 
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