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Abstract 

Background:  Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a 
non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined 
microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine.

Methods:  Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples 
collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) 
and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed 
using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to 
discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC 
based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and 
between luminal and basal types.

Results:  Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) 
yielded an Area Under the Curve (AUC) of 0.92 ± 0.06 in discriminating between BC and CTRL, an accuracy which 
was superior either to miRNAs (AUC = 0.84 ± 0.03) or SERS data (AUC = 0.84 ± 0.05) individually. When evaluating 
the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC 
of 0.95 ± 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 ± 0.04) or SERS 
(AUC = 0.92 ± 0.05) individually, although SERS alone performed better in terms of classification accuracy.
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Introduction
Bladder cancer (BC) is one of the most common malig-
nant tumors, with approximately 549.000 new cases and 
200.000 deaths annually, 70% of them being non-muscle 
invasive (NMIBC) at the initial diagnosis (Saginala et al. 
2020). BC has the highest per-patient cost (Mossanen 
and Gore 2014), mainly because BC diagnosis, follow-up 
and risk stratification rely on pathology reports and mul-
tiple cystoscopies, an invasive and resource-consuming 
strategy.

BC patients usually present with lower urinary tract 
symptoms or hematuria, prompting immediate cystos-
copy for confirming the malignant cause. The bladder 
tumor is then resected using transurethral resection and 
sent for pathology analysis, which allows the staging in 
NMIBC or muscle-invasive BC (MIBC). Unfortunately, 
the predictive power of the current histological clas-
sification of BC is suboptimal, failing to account for the 
molecular underpinnings of BC (Kardoust Parizi et  al. 
2021). Molecular classification of BC in two major sub-
types with different prognostic significance has recently 
been proposed: (i) a basal subtype with a squamous dif-
ferentiation pattern and a more aggressive disease, and 
(ii) a luminal subtype with a milder prognosis (Choi et al. 
2014; Sjodahl et al. 2013; Cancer Genome Atlas Research 
N 2014; Rodriguez Pena et al. 2019). However, similarly to 
the histological classification, the stratification of BC into 
basal and luminal subtypes is possible only using RNA 
sequencing or immunohistochemistry analysis of tissue 
samples obtained during endoscopic procedures (Kouba 
et  al. 2020). Depending on the results of the pathology 
analysis, the recommended treatment can include either 
cystectomy, usually for MIBC, or transurethral resection 
of bladder tumor followed by lifelong follow-up by cys-
toscopy, usually for NMIBC (Babjuk et al. 2019).

There has been a continuous quest to develop liquid 
biopsy tools to overcome the need for invasive and costly 
endoscopic procedures in BC diagnosis, follow-up, and 
molecular stratification. For instance, microRNAs (miR-
NAs), short transcripts that fine-tune gene expression 
at the post-transcriptional level (Dragomir et  al. 2018, 
2021; Gebert and MacRae 2019), have been extensively 
explored as means to perform liquid biopsy (Matullo 
et al. 2016). We have previously demonstrated that using 
miR-30a-5p, let-7c-5p, miR-486-5p, and smoking status, 
it is possible to diagnose BC with an area under the curve 
(AUC) of 0.70 (Pardini et al. 2018). However, after almost 

two decades of miRNA research in oncology, no miRNA-
based diagnostic tool has been approved. We believe that 
ingenious strategies need to be developed to integrate 
miRNAs into clinical practice.

Surface-enhanced Raman spectroscopy (SERS) has 
recently tackled the complex task of performing liq-
uid biopsy in cancer (Guerrini and Alvarez-Puebla 
2019). SERS refers to the use of plasmonic substrates, 
most commonly silver and gold colloids, to amplify the 
Raman signal of molecules adsorbed onto the metal sur-
face (Bonifacio et al. 2015; Moisoiu et al. 2021). We have 
previously demonstrated the possibility to use SERS 
profiling of serum or urine for the diagnosis of both geni-
tourinary cancer (prostate cancer) (Stefancu et al. 2018) 
and non-genitourinary cancer (breast cancer) (Moisoiu 
et  al. 2019), yielding a diagnostic accuracy in the order 
of 90%. The most important advantage of SERS is that it 
provides information concerning the molecular structure 
of the sample within seconds (purine metabolites, carote-
noids etc.) through a simple laser scan, making it an ideal 
point-of-care diagnostic tool.

Building on previous studies suggesting that both 
miRNA or SERS profiling represent independent prom-
ising strategies for application in liquid biopsy, in this 
study, we assessed for the first time the synergism 
between miRNA and SERS profiling of urine for the 
point-of-care diagnosis and molecular stratification of 
BC.

Material and methods
Patients
We prospectively enrolled 15 patients with BC visiting 
the Clinical Institute of Urology and Renal Transplanta-
tion, Cluj-Napoca, Romania. In parallel, we enrolled 16 
controls (CTRL) visiting the same clinic: patients with 
lower urinary tract symptomatology similar to BC, but 
with no malignant disease after cystoscopy plus pathol-
ogy analysis (Additional file 1: Table S1). Additionally, any 
subject with other malignant diseases was excluded from 
the control patient cohort. The study was approved by 
the Ethics Committee of the Clinical Institute of Urology 
and Renal Transplant—No. 1/2018. For all these patients, 
40 ml of fresh urine samples were collected in standard 
tubes and centrifuged at 3600×g for 10 min. The super-
natant was collected and aliquoted for SERS and miRNA 
profiling. Additionally, if available, we also collected for 

Conclusion:  miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification 
of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged.
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research purposes a formalin-fixed paraffin-embedded 
tissue block for each BC patient.

In order to further validate the miRNAs of interest, we 
retrospectively analyzed a second cohort (Italian cohort) 
for which next-generation sequencing (NGS) data of 
the whole miRNome were already available. The study 
population consisted of 116 urine samples from men 
enrolled in the Turin Bladder Cancer Study (TBCS) and 
fully described in (Pardini et  al. 2018; Sabo et  al. 2020). 
In the study were included 66 BC cases and 50 CTRLs 
(Additional file  1: Table  S2). BC patients were all newly 
diagnosed, histologically confirmed cases of BC regis-
tered at two Urology Departments of A.O.U. Città della 
Salute e della Scienza, in Turin (Italy). CTRLs were males 
recruited randomly from patients treated at the same 
urology departments for non-neoplastic disease (pro-
static hyperplasia, cystitis, and other) or from patients 
treated at the medical and surgical departments for 
hernias, vasculopathy, diabetes, heart failure, asthma, 
or other benign diseases. Subjects with cancer, liver, or 
renal diseases, and smoking-related conditions were 
excluded. Urine was collected from all study participants 
who signed a written consent to participate in the study 
according to the Helsinki Declaration. The study was 
approved by the Interhospital Ethical Board of San Gio-
vanni Battista/C.T.O./C.R.F./Maria Adelaide hospitals 
(Turin, Italy) and the Institutional Review Boards of the 
Italian Institute for Genomic Medicine (IIGM). miRNA 
expression levels measured in urine of the Italian cohort 
were previously reported in Pardini et al. (2018).

Immunohistochemistry staining and image acquisition
Formalin-fixed and paraffin-embedded tissue samples 
of BC were cut into 4  μm sections. For the subsequent 
immunohistochemical staining, a BenchMark XT immu-
nostainer (Ventana Medical Systems, Tucson, AZ) was 
used. For antigen retrieval, sections were incubated in 
CC1 mild buffer (Ventana Medical Systems, Tucson, AZ) 
for 30 min at 100 °C or in protease 1 for 8 min. The sec-
tions were stained with anti-p53 antibody (DO-7, Dako, 
1:50), anti-GATA 3 antibody (HG3-31, SantaCruz, 1:50), 
anti-ER (SP1, Ventana, ready to use), anti-Her2neu (4B5, 
Ventana, ready to use), anti-CK5/6 (EP24,EP67, abcam, 
1:100), anti-CD44 (DF1485, Dako, 1:50), anti-CK20 
(KS20.8, Dako, 1:100) and anti-Uroplakin III (AU1, Pro-
gen, ready to use) for 60 min at room temperature, and 
visualized using the avidin–biotin complex method and 
DAB. A detailed description of the antibodies used for 
the study can be found in Additional file  1: Table  S3. 
We stained the cell nuclei by additionally incubating for 
12  min with hematoxylin and bluing reagent (Ventana 
Medical Systems, Tucson, AZ).

The stains were evaluated using an Olympus BX50 and 
Olympus BX46 microscopes (Olympus Europe). Histo-
logical images were acquired with the digital slide scan-
ner PANNORAMIC 1000 (3DHISTECH).

Immunohistochemistry scoring
Two pathologists (MPD and SS) performed all histologi-
cal analyses, and all scores represent the average of their 
independent scoring.

For cellular tumor antigen suppressor p53 (TP53) scor-
ing, we used the Allred et  al. score (Allred et  al. 1998), 
which was proposed by Stec et al. as a prognostic marker 
for NMIBC (Stec et al. 2020). Briefly, we analyzed the BC 
tumor area and scored between 0 and 5 the percentage of 
stained cell nuclei (proportion score—PS) and between 0 
and 3 the intensity of nuclear staining (intensity score—
IS). The final score represented the sum of PS and IS. A 
detailed presentation of the Allred score can be found 
in Additional file  1: Table  S4. We considered a score > 7 
(intense nuclear accumulation of TP53 in most tumor 
cells) or = 0 (complete loss of TP53 in most tumor cells) 
as TP53 mutated.

Trans-acting T-cell-specific transcription factor 
GATA-3 (GATA 3); Estrogen Receptor alpha (ER alpha); 
Keratin, type II cytoskeletal 5 and 6 (CK5/6); Keratin, 
type I cytoskeletal 20 (CK20); CD44 antigen (CD44); and 
Uroplakin III staining intensity were evaluated for per-
centage of extent (0–100%) in the entire tumor area of a 
slide of interest. Receptor tyrosine-protein kinase erbB-2 
(Her2neu) was analyzed using scores established in gas-
tric cancer and BC. Briefly, Her2neu was given a score of 
0 if it stained < 10% of tumor cells; 1 + if it stained weak/
only one part of the membrane of ≥ 10% of tumor cells; 
2 + if it stained moderate/weak the complete/basolateral 
membrane of ≥ 10% of tumor cells; and 3 + if it stained 
strong complete/basolateral membrane ≥ 10% of tumor 
cells (Abrahao-Machado and Scapulatempo-Neto 2016).

We slightly modified the protocol of Rodriguez Pena 
et  al. to classify luminal and basal BC (Rodriguez Pena 
et al. 2019) by replacing Uroplakin II with Uroplakin III, 
which is the established uroplakin antigen at our Institute 
(Kaufmann et  al. 2000). Briefly, we divided the tumors 
into luminal and basal by using CK20 and Uroplakin III 
scores as surrogates for the luminal subtype and CD44 as 
well as CK5/6 scores as surrogates for the basal subtype. 
Each BC was assigned to luminal or basal based on the 
highest of any of the four surrogate markers (i.e., a BC 
sample with a CK5/6 score higher than the other three 
markers was classified as a basal subtype).

miRNA profiling by next‑generation sequencing
The protocol for urine collection, storage, and process-
ing together with library preparation has been previously 
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described elsewhere (Pardini et  al. 2018; Ferrero et  al. 
2018). For both cohorts, the same methodology was used. 
Briefly, total RNA was extracted from urine supernatant 
samples (Ferrero et al. 2018) using the Urine microRNA 
Purification kit (Norgen Biotek, Canada), according to 
the manufacturer’s standard protocol. RNA quality and 
quantity were verified according to MIQE guidelines 
(http://​miqe.​gene-​quant​ifica​tion.​info/). For all samples, 
RNA concentration was quantified by Invitrogen Qubit® 
4 Fluorometer with Qubit® microRNA Assay Kit (Invit-
rogen, Milan, Italy).

Small RNA transcripts were converted into barcoded 
cDNA libraries with the NEBNext Multiplex Small RNA 
Library Prep Set for Illumina (New England BioLabs, 
USA) and run on Illumina NextSeq 500 platform (Illu-
mina, USA).

Raw reads adapter clipping was performed with the 
Cutadapt software (version 1.18) (Martin 2011). Reads 
longer than 14 nucleotides were mapped to a small non-
coding RNA (sncRNA) reference with the bwa alignment 
software (version 0.7.17-r1188) (Li 2012), using the mem 
algorithm and a seed length of 10. Only alignments with-
out mismatches or indels were considered, and those 
with the highest quality were used to assign each read to 
a unique sncRNA. Thus, sncRNAs were quantified for 
each sample and then merged into a single count matrix, 
setting missing sncRNAs to zero.

Differential expression analysis was performed with the 
DESeq2 Bioconductor’s package (version 1.22.2) (Love 
et al. 2014). For each model, samples with missing covari-
ates were dropped, and only sncRNAs where at least 70% 
of the remaining samples had counts greater than 5 were 
tested. sncRNAs were considered significantly associated 
with a condition or a trend if their p-value, after adjust-
ment for multiple testing by false discovery rate (FDR), 
was below the 0.05 threshold.

miRNA RT‑qPCR
Candidate miRNA biomarkers were replicated in urine 
samples using the miRCURY LNA miRNA PCR Assays 
(Qiagen, Milan, Italy). Reverse transcription (RT) was 
performed using the miRCURY LNA™ RT kit (Qiagen, 
Milan, Italy) according to the manufacturer’s instruc-
tions. For RT-qPCR, complement DNA (cDNA) was 
diluted 1:60.

3 μL of 1:60 water-diluted cDNA products were mixed 
at 5  μL of 2 × miRCURY SYBR Green Master mix with 
0.5 μL of ROX Reference dye, and 1 μL of specific miRNA 
probe (Qiagen). All cDNA products were prepared in 
triplicate PCR reactions following the manufacturer’s 
instructions. For quality control purposes, one RNA sam-
ple was measured twice, and a sample containing nucle-
ase-free water and carrier RNA was profiled as a negative 

control. All the reactions were run on an ABI Prism 7900 
Sequence Detection System (Applied Biosystems, Foster 
City, CA, USA), according to the manufacturer`s instruc-
tions. A melt curve analysis was performed for amplifi-
cation specificity of each individual target per sample. 
The following specific primers from Qiagen miRCURY 
LNA system were used: hsa-miR-185-5p (#YP00206037), 
hsa-miR-205-3p (#YP00205602), hsa-miR-210-3p 
(#YP00204333), hsa-miR-204-5p (#YP00206072), 
hsa-miR-1246 (#YP00205630, hsa-miR-615-3p 
(#YP00204453), and hsa-miR-34a-5p (#YP00204486).

The analyses were performed calculating delta Ct (ΔCt) 
values by global mean normalization (ΔCt = Ct gene—
Ct mean of 7 analyzed miRNAs of interest). MiRNAs 
with a Ct value > 38 were deemed to be not detected. To 
avoid biased inference due to RT-qPCR non-detects (Ct 
value = 40), a left-censoring approach was employed. 
Ct values of 40 were in fact substituted with the high-
est observed Ct value for a given miRNA (McCall et  al. 
2014). Finally, the relative expression of each miRNA was 
calculated using the Equation 2−ΔCT.

For determining differently expressed miRNAs, we 
first assessed whether the data followed a normal distri-
bution using the Shapiro‐Wilk normality test. Then, we 
identified and excluded outliers using the ROUT method 
with a Q = 1% (Motulsky and Brown 2006). Finally, for 
the comparison between groups, p‐values were deter-
mined with an unpaired t-test if the data were normally 
distributed, while the non‐parametric Mann‐Whitney‐
Wilcoxon test was applied on tied values with a non‐nor-
mal distribution, whereas Kolmogorov–Smirnov test was 
applied on untied values with a non‐normal distribution 
(Dragomir et al. 2019).

SERS profiling
For the SERS analysis, 50 µL of urine was mixed with 450 
µL of methanol and centrifuged for 10  min at 5800×g. 
The supernatant was carefully collected in order not 
to disturb the pellet. The SERS analysis was performed 
using silver nanoparticles synthesized by reduction with 
hydroxylamine hydrochloride (hya-AgNPs) (Leopold and 
Lendl 2003). Nine µL of hya-AgNPs were mixed with 
1  µL of centrifuged urine. Then, the hya-AgNPs were 
activated by adding 1 µL of Ca(NO3)2 10–2 M (final con-
centration of Ca2+ 10–3 M). A drop of 5 µL from this mix-
ture was deposited on a microscope slide covered with 
aluminum foil, and the SERS spectra were immediately 
acquired. The experimental setup consisted of a portable 
Raman spectroscope (iRaman, BW-Tek) equipped with a 
laser emitting at 532  nm and a 20X (NA 0.4) objective. 
The background was acquired as a separate spectrum 
and then subtracted from the SERS spectrum of the 
samples. Each measurement consisted of an average of 2 

http://miqe.gene-quantification.info/
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acquisitions, 10s each, and was performed with the laser 
power set to 30% (18 mW).

The SERS spectra were pre-processed using Quasar-
Orange software, Orange-Spectroscopy library (Bioinfor-
matics Laboratory of the University of Ljubljana) (Toplak 
et  al. 2021). The pre-processors applied to the SERS 
spectra presented in this study are similar to the ones 
employed in other studies and the final aim was to bring 
SERS liquid biopsy closer to a standardized method. The 
spectral region between 400 and 1800  cm−1 was used 
for further analysis. Pre-processing consisted of vector 
normalization, Rubber-band baseline subtraction, and 
smoothing (Savitzky-Golay, with the window set to 5 
and the polynomial order set to 2). To explore the data 
and to reduce the dimensionality, principal component 
analysis (PCA) was performed. Then, the first 11 princi-
pal components (PCs) (which explain 98% of the initial 
variance of the data) were ranked based on the difference 
in score values between the BC and CTRL groups using 
the p-value yielded by Student’s t-test. A probability 
p-value of less than 0.05 was considered significant. The 
score values of statistically significant PCs were then used 
as input for supervised classification algorithms (naïve 
Bayes, logistic regression, and random forest).

The SERS spectra of the CTRL group showed bands in 
the 500–550  cm−1 region and an increased background 
in the 1730–1800  cm−1 range; however, no assignment 
was found for these spectral features. Thus, for basal 
and luminal BC classification we kept only the 550–
1730 cm−1 spectral range. We tested the statistical differ-
ence of the first 11 PCs (which explain 99% of the initial 
variance) between basal and luminal groups and PC8 
was the only PC with a p-value < 0.05 (Student’s t-test). 
Hence, the classifiers (naïve Bayes, logistic regression, 
and random forest) were implemented on PC8 scores.

When comparing high-grade with low-grade BC, none 
of the PCs reached statistical significance. Thus, all the 
first 11 PCs (explaining 99% of the initial variance) were 
used for high-grade and low-grade classification.

miRNA target enrichment analysis
Functional enrichment analysis of miRNA target genes 
was performed using RBiomirGS v0.2.12 (Zhang and Sto-
rey 2018) considering the set of validated miRNA-target 
interactions retrieved from miRTarBase v8.0 (Huang 
et al. 2020) and miRecords (Xiao et al. 2009). The analysis 
was performed on gene sets from the Molecular Signa-
tures Database v7.4 (Liberzon et  al. 2015) for the Gene 
Ontology Biological Processes (c5.go.bp.v7.4), Reactome 
(c2.cp.reactome.v7.4), and KEG  (c2.cp.kegg.v7.4) gene set 
libraries. The log2FC and adjusted p-value computed in 
the differential expression analysis were used as input for 
the analysis. Gene sets characterized by an FDR-adjusted 

p-value lower than 0.05 and involving at least two target 
genes were considered as significantly enriched.

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 8 software and Quasar-Orange software (Bioinfor-
matics Laboratory of the University of Ljubljana) (Toplak 
et al. 2021).

For logistic regression, the regularization type was set 
to Lasso and C parameter 80. For random forest, 5 trees 
were implemented. All the models were cross-validated 
by leave-one-out (LOO) method. A receiver operating 
characteristic (ROC) curve of the probabilities predicted 
by all the classifiers was built. AUC of ROC curve, clas-
sification accuracy, F1 score, precision and recall were 
used to interpret the classifiers capacity to discriminate 
the groups. Precision (positive predicted values) is the 
number of true positive results divided by the sum of true 
and false positive results. Recall (sensitivity) represents 
the ratio between true positive results and the sum of 
true positive and false-negative results. F1-score is used 
in statistical analysis for binary classification and repre-
sents the harmonic mean of precision and recall.

Classification accuracy is the mean of sensitivity (true 
positive rate) and specificity (true negative rate). The 
quality performance metrics are represented as average 
of the values from each repetition of the cross valida-
tion. For the classification based on SERS and miRNAs, 
data were normalized to unity prior to the building of the 
model.

Results
Combined urine miRNA and SERS profiling can accurately 
distinguish patients with bladder cancer from controls
NGS-based miRNome profiling of urine of the prospec-
tive cohort yielded expression levels for 200 testable miR-
NAs between BC and CTRL. Thirty-three differentially 
expressed miRNAs achieved statistical significance, of 
which 20 were upregulated, and 13 were downregulated 
(Additional file  1: Table  S5 and Additional file  1: Fig. 
S1A).

Target gene enrichment analysis yielded a total of 737 
significantly enriched (adj. p < 0.05) functional terms 
(683, 29, and 25 from GO Biological Processes, Reac-
tome, and KEGG, respectively) for the validated targets 
of differentially expressed miRNAs (Additional file 1: Fig. 
S1B and Additional file  2: Table  S6). Targets of upregu-
lated miRNAs were enriched for processes related to cell 
death and adipocyte proliferation (Additional file 1: Fig. 
S1B). Conversely, targets of downregulated miRNAs were 

F1 = 2
Precision ∗ Recall

Precision+ Recall
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enriched in processes related to nucleotide metabolism 
and development (Additional file 1: Fig. S1B).

Heat map and unsupervised clustering for the 33 dif-
ferentially expressed miRNAs are shown in Fig. 1A. The 
results of the unsupervised clustering showed that there 
is a tendency for samples to cluster in the BC and CTRL 
groups. Since we were interested in developing a classi-
fier that can be easily translated into clinical practice, 
we selected a short set of miRNAs consisting of the top 
three differentially expressed miRNAs (the most signifi-
cant adj. p-values and highest fold change) between BC 
and CTRL: miR-34a-5p, miR-205-5p, and miR-210-3p 
(Fig.  1B). We confirmed these three miRNAs by RT-
qPCR to be overexpressed in BC vs CTRL (Additional 
file 1: Fig. S1C) and further validated their upregulation 
by NGS in a large retrospective cohort of BC (n = 66) vs. 
CTRL (n = 50) (Additional file 1: Fig. S2).

Next, three machine learning algorithms (naïve Bayes, 
logistic regression, and random forest) were run using 
the NGS expression data from the prospective cohort 
on the panel consisting of miR-34a-5p, miR-205-5p, and 
miR-210-3p, yielding an AUC of 0.87 for naïve Bayes, 
0.84 for logistic regression, and 0.81 for random forest 
(average AUC 0.84 ± 0.03). A detailed report concerning 
the classification accuracy yielded by the three miRNAs 
is shown in Additional file 1: Table S7.

In parallel, we also performed SERS profiling of the 
same urine samples. The average SERS spectra of urine 
for the BC and CTRL groups are shown in Fig. 1C. The 
most prominent spectral differences between the two 
groups regarded SERS bands attributed to purine metab-
olites (mainly uric acid and hypoxanthine) and creati-
nine (Additional file  1: Table  S8). Higher intensities of 
the SERS bands at 644, 725, 1350 cm−1 (assigned to uric 
acid and hypoxanthine) in urine samples from cancer 
patients, compared to controls, were reported earlier 
(Phyo et  al. 2021; Mistro et  al. 2015; Iancu et  al. 2022). 
Indeed, higher levels of uric acid and hypoxanthine in 
samples from cancer patients, compared to controls were 
expected since cancer is associated with a rise in cellular 
turnover rate (Ridi and Tallima 2017) and xanthine oxi-
doreductase, which converts hypoxanthine to xanthine, 
is downregulated in cancer (Linder et  al. 2005). Next, 
PCA was performed to reduce the data dimensionality. 

The first 11 PCs, that explained 98.3% of the initial vari-
ance, were kept for further analysis (Additional file 1: Fig. 
S3A, B). Out of the 11 PCs, 4 of them (PC2, PC6, PC10, 
and PC11) exhibited a statistically significant difference 
between BC and CTRL groups (Fig. 1D), as revealed by 
t-test feature selection. Unfortunately, no urine was avail-
able for the retrospective cohort to validate the differen-
tially expressed PCs. The score values of PC2 and PC6 
indicated a clear tendency for the unsupervised cluster-
ing of the two groups (Fig.  1E). Next, the 4 previously 
selected PCs containing different SERS peaks (Fig.  1F), 
were employed as input for supervised classification 
algorithms, yielding an AUC of 0.86 for naïve Bayes, 0.87 
for logistic regression, and 0.78 for random forest (aver-
age AUC 0.84 ± 0.05) (Additional file 1: Table S7).

Additionally, we sought to explore the synergism 
between the two orthogonal liquid biopsy strategies. 
For this, the NGS expression of the three selected miR-
NAs (miR-34a-5p, miR-205-5p, and miR-210-3p) was 
combined with the previous four selected PCs, and the 
supervised machine learning algorithms ran on the set of 
combined data. Head-to-head comparisons of the clas-
sification accuracy yielded by miRNA alone, SERS alone, 
or the combination of the two showed that the latter 
achieved the best results across all 3 classification algo-
rithms yielding an average AUC of 0.92 ± 0.06 (AUC of 
0.97, 0.94, and 0.86 for naïve Bayes, logistic regression, 
and random forest, respectively), (Fig.  1G–I and Addi-
tional file 1: Table S7).

Combined urine miRNA and SERS profiling does 
not predict BC grade but correlates with the molecular 
classification of BC
Among the 15 patients with BC from the prospective 
cohort, 8 exhibited high-grade tumors and 7 low-grade 
tumors (Additional file  1: Fig. S4A). The only differen-
tially expressed miRNA between high-grade and low-
grade groups was miR-1246 (Additional file  1: Fig. 
S4B–D, Additional file 1: Table S9). We further checked 
the expression of miR-1246 using RT-qPCR and observed 
its upregulation in high-grade tumors although not 
reaching statistical significance (Additional file  1: Fig. 
S4E). In our retrospective cohort consisting of 26 low-
grade and 40 high-grade BCs, we detected no difference 

(See figure on next page.)
Fig. 1  Combined urine miRNA and SERS profiling can accurately distinguish bladder cancer (BC) patients from controls. A Heat map of differentially 
expressed miRNAs by NGS analysis in urine between BC patients and controls (CTRL). The color scale shows the log10 of the normalized counts. 
B The top three differentially expressed miRNAs by NGS analysis between BC and CTRL. C The average SERS spectra of urine for the BC and CTRL 
groups (line) and standard deviation (shade). D The distribution of score values for principal component (PC) 2, 6, 10, 11 for BC and CTRL. E Score 
plot of PC6 and PC2 for BC and CTRL patients. F SERS peaks of PC2, PC6, PC10, and PC11. G–I Head-to-head comparison of the receiver operating 
characteristic (ROC) curves for the classification accuracy yielded by miRNA alone, SERS alone, or the combination of the two using three supervised 
classification algorithms (naïve Bayes (G), logistic regression (H), and random forest (I)). Mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
Abbreviation: DE- differentially expressed
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Fig. 1  (See legend on previous page.)
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between the two subgroups (Additional file 1: Fig. S4F). 
Despite this, miR-1246 being our only candidate, we 
decided to test its capacity to stratify patients with BC in 
high- and low-grade.

The average SERS spectra of urine for high- and low-
grade BC are shown in Additional file  1: Fig. S4G. The 
results of the PCA analysis showed that none of the PC 
achieved statistical significance between the high- and 
low-grade groups and that there was a weak tendency 
for the unsupervised clustering of the two groups (Addi-
tional file  1: Fig. S4H). As expected, neither miR-1246 
NGS expression levels (average AUC of 0.47) nor SERS 
profiling (average AUC of 0.46) could efficiently predict 
tumor grade, the combined miRNA and SERS dataset 
yielding an AUC of 0.39 for logistic regression, 0.64 for 
naïve Bayes, and 0.62 for random forest (Additional file 1: 
Fig. S4I–K, and Additional file 1: Tables S10). These data 
point out how little the tumor grade reflects the pheno-
type of a tumor.

Thus, we assessed the accuracy of miRNA and SERS 
profiling of urine in achieving a molecular stratification 
of the patients. To this aim, we performed immunohis-
tochemistry (IHC) analysis on the available prospective 
BC samples (n = 13). In regard to TP53 mutation status, 
only three samples exhibited a TP53 mutated expression 
pattern (Additional file 1: Fig.S5A). Not surprisingly, two 
of them had developed MIBC and underwent radical 
cystectomy. Most of the analyzed tumors showed high 
GATA3 expression (average GATA3 expression across 
all samples 93.15 ± 11.32); on the contrary, most tumors 
lacked ER expression (2.88 ± 5.21). Finally, BCs showed 
widely distributed Her2neu scores (1.58 ± 1.05, Addi-
tional file  1: Fig. S5A and Additional file  1: Table  S11). 
Because of the heterogeneous expression of these mark-
ers, none of them could be used to classify BCs. Hence, 
we further classified BCs into luminal and basal subtypes 
using an IHC surrogate classification (Rodriguez Pena 
et  al. 2019). Of the 13 BCs, 7 showed a luminal pheno-
type, with high expression of CK20 and/or Uroplakine 
III versus CD44 and CK5/6 (Fig. 2A and Additional file 1: 
Table  S11). The other 6 tumors were of basal subtype, 
showing higher expression for CD44 and CK5/6 (Fig. 2B 
and Additional file 1: Table S11).

Out of the 202 urinary miRNAs tested by NGS, 25 were 
differentially expressed between luminal and basal types 
of BC (Additional file 1: Table S12). The volcano plot of 

the tested miRNAs and the heat map of the 25 differen-
tially expressed miRNAs are reported in Additional file 1: 
Fig. S5B, C. The top three differentially expressed miR-
NAs between luminal and basal groups were miR-615-3p, 
miR-185-5p (Fig.  2C, Additional file  1: Table  S12), and 
miR-204-5p (Additional file  1: Fig.  S5D and Table  S12). 
Next, we checked the expression of these three miRNAs 
by RT-qPCR and confirmed the upregulation of miR-
615-3p and downregulation of miR-185-5p in basal vs. 
luminal type BC and observed no difference between the 
two groups for miR-204-5p (Additional file  1: Fig.  S5E). 
Therefore, for the subsequent analyses, we used only 
miR-615-3p and miR-185-5p. These two miRNAs meas-
ured by NGS, yielded an AUC of 0.86 for naïve Bayes, 
0.93 for logistic regression, and 0.88 for random forest 
(average 0.89 ± 0.04) (see Additional file 1: Table S13 for 
more details).

In regard to the SERS profiling, the spectral difference 
between the luminal and basal subtypes exhibited a com-
plex pattern, involving several SERS bands attributed to 
purine metabolites and creatinine (Fig.  2D and Addi-
tional file 1: Table S8). To explore the data, PCA was per-
formed, yielding only one PC that exhibited a statistically 
significant difference between the luminal and basal sub-
types (PC8) (Student t-test, p < 0.001) (Fig. 2E). The rela-
tionship between the number of PCs and the explained 
variance is shown in Additional file 1: Fig. S5F. The load-
ing plot of PC8 is shown in Fig. 2F. Next, the previously 
selected PC8 was employed as input for supervised 
machine learning algorithms, yielding an AUC of 0.91, 
0.98, and 0.88 for naïve Bayes, logistic regression, and 
random forest, respectively (average 0.92 ± 0.05) (Addi-
tional file 1: Table S13).

Finally, synergisms between miRNA and SERS were 
found in all three classification algorithms in terms of 
AUC (Fig.  2G–I). Thus, the combination of miRNA 
and SERS profiling averaged an AUC of 0.95 ± 0.03 
across the three machine learning algorithms (AUC of 
0.95, 0.98, and 0.93 for naïve Bayes, logistic regression, 
and random forest, respectively), more than miRNA 
(AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) alone. 
Of note, in terms of classification accuracy, SERS alone 
performed better than miRNA alone or miRNA and 
SERS combined (Additional file 1: Table S13). These data 
clearly confirm that combining two liquid biopsy meth-
ods improves the diagnosis and stratification of BC.

Fig. 2  Combined urine miRNA and SERS profiling correlates with the molecular classification of bladder cancer (BC). A Immunohistochemical 
staining aspect of luminal type BC. B Immunohistochemical staining aspect of basal type BC. C The two differentially expressed miRNAs by NGS 
analysis between luminal and basal BC. D The average SERS spectra of urine for the luminal and basal BC. E The score values of principal component 
(PC) 8 in luminal versus basal BC. F Loading plot of PC8. G–I Head-to-head comparison of the receiver operating characteristic (ROC) curves for the 
classification accuracy yielded by miRNA alone, SERS alone or the combination of the two using three supervised classification algorithms (naïve 
Bayes (G), logistic regression (H) and random forest (I)) for luminal and basal BC. Mean ± SD. ***p < 0.001

(See figure on next page.)
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Discussion
Our study is the first to evaluate the combination of 
SERS and miRNA profiling as a diagnostic and molecular 
stratification tool for BC, proving the synergism between 
these two orthogonal liquid biopsy strategies.

We initially focused on differentiating BC patients 
from CTRL by identifying altered expression levels of 
33 miRNAs. A panel consisting of the top three differ-
entially expressed miRNAs (miR-34a-5p, miR-205-5p, 
and miR-210-3p) achieved a mean AUC of 0.84 ± 0.03 
in differentiating the two groups, a result which is in line 
with previous reports (Braicu et al. 2019). miR-34a-5p is 
a tumor suppressor miRNA that inhibits BC cell motil-
ity through matrix metalloproteinase‑2 silencing (Chou 
et al. 2021) and is involved in cell junction regulation and 
epithelial to mesenchymal transition (EMT) (Braicu et al. 
2019). EMT also seems to be linked with the function of 
miR-205-5p (Braicu et al. 2019), while miR-210-3p seems 
to inhibit the tumor growth and metastasis of BC via tar-
geting fibroblast growth factor receptor-like 1 (Yang et al. 
2017) and is also strongly associated with markers of 
tumor hypoxia like HIF-1α, CA9, Glut-1 protein (Irlam-
Jones et al. 2016).

Next, we complemented miRNA profiling of urine 
with that of SERS. Spectral differences between BC and 
CTRL groups were prominent in SERS bands attributed 
to purine metabolites and creatinine, yielding an AUC of 
0.84 ± 0.05, a result which is in line with previous reports 
(Li et al. 2015; Chen et al. 2019; Cui 2020; Hu 2021; Hut-
tanus 2020). However, the present study went further 
in proving the clinical translatability of SERS in at least 
two ways. First, the SERS spectra of urine were acquired 
with a portable Raman spectroscope operating in a real-
life clinical situation, whereas previous studies employed 
state-of-the-art Raman spectroscopes operated under a 
controlled environment. Second, the control subjects in 
this study were represented by patients with hematuria, 
a situation that better mimics the scenario encountered 
in the actual clinical setting, whereas previous investi-
gations considered healthy volunteers or patients with 
other types of malignancies as controls. When combining 
miRNA and SERS data, the resulting average classifica-
tion accuracy (AUC of 0.92 ± 0.06) was superior to both 
miRNA (AUC of 0.84 ± 0.03) and SERS alone (AUC of 
0.84 ± 0.05), suggesting that the two liquid biopsy meth-
ods exhibit synergism in the diagnosis of BC. From a 
biological standpoint, these data show that miRNA and 
SERS profiling provide different information concerning 
the molecular status of the bladder mucosa, and these 
can be used for developing synergistic diagnosis tools.

In the second part of the study concerned with the 
molecular stratification of BC, we identified 25 miR-
NAs differentially expressed between the luminal and 

basal BC groups. Based on the top most differentially 
expressed miRNAs which were also confirmed by RT-
qPCR (namely miR-615-3p, and miR-185-5p), the lumi-
nal and basal groups could be differentiated with an 
average AUC of 0.89 ± 0.04. In previous studies, urinary 
miR-615-3p has been shown to be overexpressed in BC 
patients compared to CTRLs (Wani et  al. 2017), while 
miR-185-5p appears to target part of the inflammasome 
pathway, a large complex containing NOD-like receptors, 
that drives tumor growth and progression (Mearini et al. 
2017).

When complementing miRNA profiling with SERS for 
better differentiation between luminal and basal groups, 
a synergism between the two liquid biopsy methods was 
also seen. Thus, the combination of miRNA and SERS 
profiling averaged an AUC of 0.95 ± 0.03 across the 
three machine learning algorithms, superior to miRNA 
(AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) alone.

Interestingly, neither miRNA nor SERS profiling could 
discriminate between low- and high-grade BC, suggest-
ing that tumor grade may not be enrooted in distinct 
molecular features by such approaches. Further studies 
exploring this matter using larger cohorts are warranted.

Despite having similar pathology and clinical presen-
tation, NMIBC tends to have different recurrence and 
progression rates, suggesting that the currently used 
diagnostic and risk stratification tools are not precise 
enough for a personalized follow-up and treatment, urg-
ing the development of a new molecular classification 
of BC as well as non-invasive diagnostic and follow-up 
tools (Lindskrog et  al. 2021). New data suggest that the 
molecular fingerprint of NMIBC and MIBC better pre-
dicts the risk of recurrence, progression, and response to 
chemotherapy but mass implementation is difficult since 
complex immunohistochemical and molecular tests are 
required (Lindskrog et al. 2021; Audenet et al. 2018; Sjo-
dahl 2021; Lu et al. 2021). In this context, to our knowl-
edge, this is the first report of a liquid biopsy strategy that 
successfully differentiates luminal and basal BC, proving 
that there is a potential for a fast and accurate molecular 
diagnosis of BC. Further studies are necessary to estab-
lish the exact clinical relevance of molecular classifica-
tion of BC and its relation to miRNA and SERS liquid 
biopsy strategy. The most important limitation of this 
study is the small sample size. To overcome this, we used 
three different algorithms to show that regardless of the 
type of classification method used, the performance of 
SERS combined with miRNA was higher than using any 
of the techniques alone. Random forest algorithm was 
employed due to its low sensibility to the preprocessing 
steps (Gromski et  al. 2015). However, random forest (a 
non-linear algorithm) yielded the lowest classification 
accuracy based on SERS, miRNA, and the combination 
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of SERS and miRNA data. We suppose we obtained these 
results mainly because of its higher sensibility to a low 
number of input data compared to linear algorithms. To 
overcome the limitation of the low number of samples, 
we used logistic regression and naïve Bayes for the classi-
fication of BC and CTRL, low- and high-grade, and basal 
and luminal BC based on SERS and miRNA data. Even if 
the logistic regression model is the most widely used sta-
tistical technique nowadays for binary medical outcomes 
(Steyerberg 2009), the naïve Bayes classifier was associ-
ated with the highest performances in the classification 
of BC and CTRL group based on miRNA only, SERS 
only, and miRNA and SERS together. The minimal user 
implication for the naïve Bayes algorithm recommends 
it for the standardization of analysis such as SERS liquid 
biopsy.

Conclusions
In this study, we demonstrated that urine miRNA profil-
ing synergizes with SERS profiling for a better BC’s diag-
nostic and molecular stratification. We consider that by 
combining two liquid biopsy methods, a clinically rel-
evant tool that can aid BC patients can be developed.
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Additional file 1: Figure S1. Differentially expressed miRNAs in urine 
of patients with bladder cancer (BC) and controls (CTRL) (prospective 
cohort). A Volcano plot showing the differentially expressed urine miRNAs 
between BC patients and CTRLs in the NGS analysis. The color intensity 
of the dots represents the expression level (as the log10 of the normalized 
mean counts), the x-axis represents the fold change, and the y-axis the 
nominal p-value. B Dot plot showing the statistical significance of the 
functional terms identified as enriched in the target genes of differentially 
expressed miRNAs between BC cases and controls. The size of the dot 
is proportional to the number of target genes belonging to each term, 
while the color code refers to the coefficient computed by RBiomirGS. 
Negative (in blue) and positive (in red) coefficients represent processes 
predicted to be, respectively, downregulated or upregulated based on 
the miRNA expression change between the two groups. C The expression 
of the three candidate miRNAs analyzed by RT-qPCR. The expression was 
normalized with the mean of 7 miRNAs used for this study. Mean ± SD. 
*p < 0.05, ***p < 0.001. Figure S2. Validation of the differentially expressed 
candidate miRNAs in urine of patients with bladder cancer (BC, n = 66) 
and controls (CTRL, n = 50) (retrospective cohort). The expression of 
the three candidate miRNAs (miR-34a-5p, miR-205-5p and miR-210-3p) 
analyzed by NGS. Mean ± SD. ***p < 0.001, ****p < 0.0001. Figure S3. SERS 
profiling for classifying bladder cancer (BC) and controls (CTRL). A Loading 
plots of the principal components that showed no statistical relevance in 
the classification of BC and CTRLs based on SERS spectra of urine samples. 

B The relationship between the number of principal components (x-axis) 
and the explained variance in the original dataset (y-axis) of BC cases 
versus CTRLs. The first 11 principal components explain 98.3% of the vari-
ance in the original dataset. Figure S4. Urine liquid biopsy by combining 
miRNA and SERS profiling for classifying low- and high-grade bladder 
cancer (BC). A Representative H&E staining of low-grade (LG) versus 
high-grade (HG) BC patients. B Volcano plot of differentially expressed 
miRNAs by NGS analysis in the urine of LG and HG BC patients. The color 
intensity of the dots represents the expression level, the x-axis represents 
the fold change, and the y-axis the nominal p-value. C. Heat map of the 
differentially expressed miRNAs in urine between LG and HG BC patients. 
The color scale shows the log10 of the normalized counts. D Normalized 
expression levels of miR-1246 for LG and HG BC measured by NGS. E 
Relative expression levels of miR-1246 in LG and HG BC measured by RT-
qPCR. F Normalized expression levels of miR-1246 for LG and HG BC of the 
miRNA validation cohort measured by NGS. G The average SERS spectrum 
of urine from LG versus HG BC patients. H The distribution of score values 
for principal component (PC) PC5 and PC6 of patients with LG (red) 
versus HG BC (blue). I Receiver operating characteristic (ROC) curve for 
the classification of  LG and HG BC achieved by naïve Bayes algorithm run 
on datasets consisting of the differentially expressed miRNA alone (miR-
1246), SERS data alone (first 11 PCs), or a combination of the two. J ROC 
curve for the classification of LG and HG BC achieved by logistic regression 
algorithm run on datasets consisting of the differentially expressed miRNA 
alone (miR-1246), SERS data alone (first 11 PCs), or a combination of the 
two. K The ROC curve for the classification of LG and HG BC achieved 
by random forest algorithm run on datasets consisting of the differently 
expressed miRNA alone (miR-1246), SERS data alone (first 11 PCs), or 
a combination of the two. Mean ± SD. ns = not significant, **p < 0.01. 
Figure S5. Urine liquid biopsy by combining miRNA and SERS profiling 
for classifying luminal  and basal type bladder cancer (BC). A Representa-
tive immunohistochemistry (IHC) staining for TP53 mutated samples 
(TP53 accumulating nuclear), diffuse nuclear staining for GATA3 (100% of 
the tumor cells), weak ER staining (17.5%), and complete, circumferential 
staining of cell membranes for Her2neu (100% of the tumor cells = score 
3). B Volcano plot of differentially expressed miRNAs by NGS analysis in 
the urine of luminal and basal BC patients. The color intensity of the dots 
represents the expression levels, the x-axis represents the fold change, and 
the y-axis the nominal p-value. C Heat map of the differentially expressed 
miRNAs by NGS analysis in urine between luminal and basal BC. The color 
scale shows the log10 of the normalized counts. D Normalized expression 
levels of miR-204-5p in luminal and basal type BC measured by NGS. E 
Relative expression levels of miR-615-3p, miR-185-5p, and miR-204-5p 
in luminal and basal type BC measured by RT-qPCR. The expression was 
normalized with the mean of 7 miRNAs used for this study. F The relation-
ship between the number of principal components (x-axis) and the 
explained variance in the original dataset (y-axis) of luminal versus basal 
BC. The first 11 principal components explain around 98% of the variance 
in the original dataset. Mean ± SD. *p < 0.05, **p < 0.01, ****p < 0.0001. 
Table S1. Demographic data and information concerning patients 
with bladder cancer (BC) (grade, TNM, muscle invasiveness, evolution at 
3 months) and controls (CTRL). Table S2. Demographic data and informa-
tion concerning patients with bladder cancer (BC) (grade, T stage, muscle 
invasiveness, recurrence) and controls from the retrospective validation 
cohort. Table S3. Table with a detailed description of the antibodies used 
in this study. Table S4. Detailed presentation of the Allred score for TP53 
analysis. Table S5. Differentially expressed miRNAs in urine between 
bladder cancer patients and control subjects. Table S7. The diagnostic 
ability to distinguish bladder cancer and control group patients with three 
classification algorithms (naïve Bayes, logistic regression, and random 
forest) run on datasets consisting of the top three differently expressed 
miRNAs alone (miR-34a-5p, miR-205-5p, and miR-210-3p), SERS data 
alone, or a combination of the two (miRNA + SERS). Table S8. Tentative 
assignment of the SERS bands based. Table S9. Differentially expressed 
miRNA between the urine of low-grade and high-grade bladder cancer 
patients. Table S10. The diagnostic ability to distinguish low- and high-
grade bladder cancer with three classification algorithms (naïve Bayes, 
logistic regression, and random forest) run on datasets consisting of the 
only differentially expressed miRNA (miR-1246), SERS data alone (first 11 
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principal components (PC)), or a combination of the two (miRNA + SERS). 
Table S11. Immunohistochemistry-based analysis of the included BC 
patients. Table S12. Differentially expressed urinary miRNAs between 
luminal  and basal type bladder cancer patients. Table S13. The diagnostic 
ability to distinguish the luminal type and basal type bladder cancer 
with the three classification algorithms (naïve Bayes, logistic regression, 
and random forest) run on datasets consisting of top three differentially 
expressed miRNAs alone (miR-204-5p, miR-615-3p, and miR-185-5p), SERS 
data alone, or a combination of the two (miRNA + SERS).

Additional file 2: Table S6. A The list of gene sets significantly enriched 
in targets of miRNAs downregulated or upregulated in the differential 
expression analysis between cases and controls. B List of the validated 
miRNA-target interactions used for the enrichment analysis (Table 
attached as an additional Excel File).
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