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Tag der Disputation: 25.08.2023



Abstract

Representing molecules in a computer-interpretable way plays a crucial role in
enabling the application of computational method to the field of chemistry and
pharmaceutical drug development in particular. Recently, there has been a surge
of interest in using machine learning to predict molecular properties such as the
binding affinity to protein targets of interest or to generate molecular structures
with desirable properties. However, as chemical entities are challenging to
represent in an expressive and computer-interpretable way, much work in the field
of cheminformatics has concerned itself with defining clever feature extractors,
which encode the chemical graph structure in a uniform, fixed-sized, numerical
manner. Recently Deep Neural Networks have shown great success in learning to
extract meaningful features directly from raw data representations, outperforming
hand-crafted feature extraction protocols and revolutionizing fields such as
image analysis or natural language processing. Deep Neural Networks have also
been directly applied on raw data representations of molecules such as their
structural graph. However, the capabilities of these method in pharmaceutical
drug development is usually limited by the scarcity of labeled data as their
collection usually involves running expensive wet lab experiments. Unsupervised
Learning, on the other hand, is a powerful machine learning strategy that enables
the training of Deep Neural Networks without the need of labeled training data.
In this thesis we discuss how Unsupervised Learning can be used to train powerful
feature extractors on unlabeled chemical structures. We propose for different
input representations of molecules (such as line notations, graphs and point
clouds) novel methods to extract expressive representations. We show how those
representations can efficiently be used as input for downstream molecular property
prediction models or to generate novel molecules with desirable properties.
Moreover, we discuss how certain symmetries of molecular representations are
crucial to respect (e.g. permutation invariance of molecular graphs or rotation and
translation invariance of molecular conformations) and develop novel methods
particularly designed to extract invariant representations.



Zusammenfassung

Die Darstellung von Molekülen in einer computerlesbaren Form spielt eine un-
verzichtbare Rolle für die Anwendung von Computermodellen in der Chemie
und der pharmazeutischen Wirkstoffentwicklung. Seit Kurzem gibt es zudem ein
wachsendes Interesse an der Nutzung von Machine Learning Algorithmen zur
Vorhersage von Moleküleigenschaften wie der Bindungsaffinität zu bestimmten
Proteinen oder der Generierung von neuen Molekülen mit wünschenswerten
Eigenschaften. Da es jedoch schwierig ist, chemische Entitäten in einer ex-
pressiven und computerinterpretierbaren Weise darzustellen, haben sich viele
Arbeiten auf dem Gebiet der Chemieinformatik mit der Entwicklung von clev-
eren Darstellungsalgorithmen befasst, bei denen die chemische Struktur in einer
einheitlichen, numerischen Form kodiert wird. In jüngster Zeit haben tiefe
neuronale Netze großen Nutzen beim Erlernen der Extraktion aussagekräftiger
Darstellungen direkt aus Rohdatendarstellungen gezeigt, wodurch sie von Hand
erstellten Protokolle zur Darstellung von Daten übertrafen und Bereiche wie
die Bildanalyse oder die automatische Spracherkennung revolutionierten. Tiefe
neuronale Netze wurden auch direkt auf Rohdatendarstellungen von Molekülen, z.
B. deren Strukturformel angewendet. Die Möglichkeiten dieser Methoden sind je-
doch in der pharmazeutischen Wirkstoffentwicklung durch den Mangel an Daten
mit bekannten Eigenschaften (sogenannte gelabelte Daten) in der Regel begrenzt,
da die Erfassung dieser Daten oft die Durchführung teurer Laborexperimente er-
fordert. Dahingegen ist sogenanntes Unüberwachtes Lernen eine leistungsstarke
Strategie des maschinellen Lernens, die das Training von tiefen neuronalen
Netzen ermöglicht, ohne dass gelabelte Trainingsdaten benötigt werden. In
dieser Arbeit diskutieren wir, wie Unüberwachtes Lernen verwendet werden
kann, um nützliche Darstellungsextraktoren auf nicht gelabelten chemischen
Strukturen zu trainieren. Wir haben für verschiedene Rohdatendarstellungen von
Molekülen (z. B. Textdarstellungen, Graphen und Punktwolken) neue Methoden
zur Extraktion aussagekräftiger Darstellungen entwickeln, die als Grundlage für
nachgelagerte Modelle zur Vorhersage molekularer Eigenschaften oder zur Gener-
ierung neuartiger Moleküle mit erwünschten Eigenschaften verwendet werden
können. Darüber hinaus erörtern wir, inwiefern die Berücksichtigung bestimmter
Symmetrien in molekularen Darstellungen von entscheidender Bedeutung sind
(z. B. Permutationsinvarianz molekularer Graphen oder Rotations- und Trans-
lationsinvarianz molekularer Konformationen) und diskutieren neue Methoden,
die wir speziell für die Extraktion invarianter Darstellungen entwickelt haben.
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(2019). Learning continuous and data-driven molecular descriptors by
translating equivalent chemical representations. Chemical science, 10(6),
1692-1701.

• Winter, Robin, Montanari, Floriane, Steffen, Andreas, Briem, Hans, Noé,
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invariant variational autoencoder for graph-level representation learning.
Advances in Neural Information Processing Systems, 34.

• Winter, Robin, Bertolini, Marco, Le, Tuan, Noé, Frank & Clevert,
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Chapter 1

Introduction

Representing molecules in a computer-interpretable way plays a crucial role
in enabling the application of computational method to the field of chemistry
and manifests in the field known as cheminformatics [Todeschini and Consonni,
2008]. A major application of cheminformatics methods is the prediction of
molecular properties such as biological activity or physicochemical properties
and are essential for pharmaceutical drug development [Bender and Brown, 2018].
In fact, the average time to bring a drug from the first idea to the market takes
approximately 10-15 years and costs ∼ 1 billion USD [Wouters et al., 2020, Ertl,
2014]. Moreover, it was estimated that approximately one year of patient life
is lost for every 12 seconds of delay in the drug development process [Stewart
et al., 2015]. One the other hand, the space of potential drug candidates is
vast (1023–1060 molecules) [Polishchuk et al., 2013], emphasizing the necessity of
computational method to help in the search for desirable compounds.

In the following we describe why expressive molecular representations are im-
portant and how they can be generated and utilized for pharmaceutical drug
development. In particular, we discuss the published works that are part of this
thesis and put them in the context of related works.
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1.1 Molecular Property Prediction

A commonly employed cheminformatics methodology are so-called Quantitative
Structure-Activity Relationship (QSAR) or Quantitative Structure-Property Re-
lationship (QSPR) models [Cherkasov et al., 2014]. As the name suggests, these
models aim to link chemical similarity to molecular property similarity, following
a fundamental assumption of medicinal chemistry: similar chemical structure
results into similar bio-chemical function [Bajorath, 2004, Bender and Glen,
2004]. In practice, such models are designed by fitting a parameterized function
fθ : M → Y , on a dataset of molecules mi ∈ M with associated properties
yi ∈ Y (e.g. measured in an experiment). After fitting the function on a set
of compounds with known properties, the resulting function can be used to
evaluate novel compounds in silico, e.g. to prioritize and select compounds to be
evaluated next in an in vitro experiment, potentially saving significant amounts
of time and money.

Function fθ is usually parameterized by a machine learning method such as
a Logistic Regression, Support Vector Machine or Artificial Neural Network.
However, such models usually require a fixed-sized numerical input. Hence,
the question arises: How can the physical entity of a molecule be mapped to
such a fixed-sized numerical representation, while being expressive enough to
reflect (bio-) chemical similarities of different compounds and thus be useful to
fit downstream models?

1.2 Hand-Crafted Molecular Representation

Probably the most common ways to represent chemical entities is either by
their molecular formula, i.e. the atomic composition of a molecule (e.g. H2O)
or their structural formula, which also includes the molecule’s atoms spacial
arrangement and bonding information. The latter is usually represented by
a graph, where nodes represent atoms (including element type, charge, etc.)
and edges represent bonds (including bond type). Alternatively the molecular
topology can be represented by a line notation like the International Chemical
Identifier (InChi) [McNaught, 2006] or the Simplified Molecular-Input Line-
Entry System (SMILES) [Weininger, 1988]. In Figure 1.1 we depict these
aforementioned representations for an example molecule. Although expressive,
these representations are not fixed-size (e.g. for different molecules with different
number of atoms) and do not properly reflect chemical similarity (e.g., a SMILES
string might change significantly upon changing a single atom).

Molecules can also be represented by scalar descriptors of either experimentally
measured (e.g. octanol-water partition coefficient, aqueous solubility) or calcu-
lated (number of carbon atoms, number of proton donors/acceptors, molecular
weight, total polar surface area, etc.) properties. Although these descriptors
are fixed-sized and can reflect chemical similarity (as expressed by the used
properties), they might lack in expressiveness, as similar molecules might have
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Figure 1.1: Different representations of the drug Aspirin. a) Structural formula.
b) Matrix representation of the structural formula (graph), with node features
X and edge features A. Here, different atom and edge types are represented by
different integers (X: 0 for carbon, 2 for oxygen, A: 0 for no edge, 1 for single
bond, 2 for double bound, 4 for aromatic bound). c) Different line notations
of Aspirin. d) Example conformation, represented by Cartesian coordinates X
(only heavy atoms). e) Definition of internal coordinates: bond length dab, bond
angle θabc and dihedral angle Φa,b,c,d.
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identical properties or important properties are not reflected by the chosen
descriptors.

Over the last decades, a large body of works has been concerned with designing
more expressive molecular representations [Todeschini and Consonni, 2008]. As
of today, one of the most commonly used molecular descriptor is the extended-
connectivity fingerprint (ECFP) [Rogers and Hahn, 2010]. The ECFP descriptor
is a variation of the Morgan algorithm [Morgan, 1965] that calculates a fingerprint
from a molecule’s graph by hashing individual local atom environments to unique
integer values v and transforming (folding) them into a n dimensional vector
(e.g. by taking the modulo v mod n). The resulting vector is a fixed-sized
representation which comprises a collection of molecular substructure identifiers.
While important global features might be missed and the folding step can
lead to so-called folding collisions (i.e., different substructures are mapped to
same value), ECFPs and its variations have been successively applied in QSAR
models for target binding affinity [Wale and Karypis, 2009, Lounkine et al.,
2012], ADME (absorption, distribution, metabolism, and excretion) [Glen et al.,
2006, Wang et al., 2012, Zang et al., 2017, Göller et al., 2020] and toxicity [Mayr
et al., 2016] prediction or virtual screening and similarity search [Hu et al.,
2012, Cereto-Massagué et al., 2015].

1.3 Supervised Molecular Representation Learn-
ing

With the recent rise of Deep Learning [LeCun et al., 2015, Schmidhuber, 2015],
many machine learning fields that traditionally relied on extensive feature
engineering, such as image analysis, machine translation or speech recognition
have recently been revolutionized by deep artificial neural networks trained on
raw input signals in an end-to-end fashion [Krizhevsky et al., 2012, Sutskever
et al., 2014, Vaswani et al., 2017]. This recent success can be attributed to
the significant development of computational hardware such as the graphics
processing unit (GPU), the increasing amount of (labeled) data available for
training and the development of novel algorithms and network architectures such
as Convolutional Neural Networks (CNN) [LeCun et al., 1998] for image-like
data, efficient Recurrent Neural Networks (RNN) like Long Short-Time Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] or the recent Transformer network
[Vaswani et al., 2017] for sequence-like data.

Motivated by this success, there has been a increasing interest in applying Deep
Artificial Neural Networks on graph structured data [Bruna et al., 2013, Henaff
et al., 2015, Defferrard et al., 2016, Kipf and Welling, 2016b, Gilmer et al., 2017].
These so-called Graph Neural Networks (GNN) can be seen as a generalization
of Convolutional Neural Networks from regular grids (e.g. images) to arbitrary
graphs with varying node degrees. Each GNN layer updates each node by
aggregating messages passed from neighbouring nodes, where messages are
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usually outputs of a learnable parameterized function that takes the connected
node (hidden) features and potential edge features as input. This procedure
gives GNNs also the name Message Passing Neural Network (MPNN) [Gilmer
et al., 2017].

One major application of GNNs are molecular graphs. In their seminal paper,
Duvenaud et al. [Duvenaud et al., 2015] proposed a GNN that was trained end-
to-end on molecular graphs for aqueous solubility, drug efficacy and photovoltaic
efficiency prediction, outperforming classical ECFP fingerprint based machine
learning models. In the following years, there was a surge of work proposing
novel GNN architectures and their application on molecular property prediction
tasks [Yang et al., 2019, Xiong et al., 2019, Corso et al., 2020, Xu et al., 2018].
Similar to other fields where Deep Learning celebrated success in the recent
years, a GNN trained end-to-end on raw input signals (molecular graph) learns
to extract its own, task-specific features from the graph. Hence, given enough
training data, such features are able to outperform ad-hoc and hand-crafted
feature extractors such as the ECFP protocol.

Another line of work uses the SMILES representation of molecules as raw input
representation. While holding the same information as molecular graphs, SMILES
are a one-dimensional string representation. Hence, Recurrent Neural Networks
and Transformers that where mainly developed for Natural Language Processing
are a natural choice. SMILES strings effectively represent a molecular graph as a
sequence of atom symbols and bond types encountered in a depth-first traversal
of the graph. As graphs can be traversed in many different ways, there exist
multiple different SMILES strings representing the same molecule. Bjerrum et
al. [Bjerrum, 2017] exploited this fact to augment a dataset of SMILES, training
an RNN to predict a molecule’s ability to inhibit Dihydrofolate reductase from
its SMILES string. Recently, Transformer architectures have been proposed
that are pretrained on large unlabeled datasets of SMILES and finetuned on
a smaller datasets labeled with molecular property of interest [Wang et al.,
2019, Chithrananda et al., 2020].

1.4 Unsupervised Molecular Representation Learn-
ing

The aforementioned work on Deep Neural Networks for molecular representation
learning is based on supervised learning. In supervised learning a function (here
parameterized by a neural network) is trained on a supervisory signal in form
of labeled data points, e.g. by optimizing the log-likelihood of predicting the
corresponding label given a training sample. While supervised learning is a
powerful regime to train a Neural Network to extract expressive task-specific
representations to accurately predict molecular properties (e.g. see [Duvenaud
et al., 2015]), it can fail to generalize if insufficient labeled training data is
available [Bengio et al., 2012]. In fact, a major limiting factor of early drug
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discovery is the cost of experimental evaluation, as it involves the synthesis of
a compound and measurement of the property of interests in lab experiments.
Hence, in an early state of drug development process, only a few hundred of
labeled data points might be available, limiting the effectiveness of supervised
Deep Neural Networks.

On the other hand, unsupervised learning is tasked to learn representations
from data without providing additional labeled information. Probably the most
prominent unsupervised learning framework is the so-called Autoencoder (AE).
An AE consist of an encoder and decoder function that can be parameterized by
a Neural Network. The encoder is tasked to map (encode) input data to a latent
representation while the decoder has to reconstruct the input signal as accurately
as possible from this latent representation. Often the latent representation is
chosen to be of lower dimensionality than the input data, forcing the encoder
to compress input signals into a more expressive, higher-level representation.
Encoder and decoder are trained jointly on the reconstruction objective, without
the need of labels as supervisory signal. For a more in-depth discussion of AE
variants and their application we refer to [Tschannen et al., 2018, Bank et al.,
2020].

Publication 1: Learning Continuous and Data-Driven Molecular De-
scriptors by Translating Equivalent Chemical Representations. In the
first publication [Winter et al., 2019a], we propose an unsupervised learning
framework to extract expressive molecular representations. While labeled data
points are usually scarce in the field of drug development, there is effectively an
unlimited amount of (unlabeled) drug-like compounds that can be procedurally
generated [Ruddigkeit et al., 2012, Polishchuk et al., 2013]. Building up on
the seminal work by Gómez-Bombarelli et al. [Gómez-Bombarelli et al., 2018]
for molecular generative modeling (see section 1.5 for more details), we train
an autoencoder-like model on encoding and decoding molecules to and from a
low-dimensional latent representation.

A key aspect of the proposed framework is the use of a so-called sequence-to-
sequence model, originally proposed for natural machine translation (NMT)
[Sutskever et al., 2014]. Analogous to a NMT model that is trained on encoding
a sequence in a query language (e.g. English) and decoding it to a target
language (e.g. German), our proposed model is trained on translating between
two different line-notations of a molecule, e.g. from InChI to SMILES. In our
work we demonstrate how this design choice acts as additional regularization
on the encoder, forcing the model to encode only the essential information both
input and target line-notation have in common, the molecular topology, and not
solely string patterns.

We trained the model on a large dataset of drug-like molecules and demonstrated
how the resulting model’s encoder can be utilized to extract expressive molecular
representations for downstream tasks. In an extensive benchmark study, we
compared descriptors extracted by our model with classical descriptors like
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ECFPs and end-to-end trained GNNs and found them to perform competitively
in QSAR modeling and significantly outperforming the baselines in ligand-based
virtual screening.

As of today, our proposed method is used in a variety of works that either benefit
from an expressive molecular representation or from a continuous representation
of chemical compounds. For example, many QSAR models of Bayer’s in silico
ADMET platform are based on our proposed representation [Göller et al., 2020].
In follow-up work, we also demonstrated that our continuous representation of
chemical compounds can be utilized as regression target to predict a molecular
structure from its supposedly non-invertible ECFP fingerprint [Le et al., 2020] or
from a depiction taken from the literature or drawn by hand [Clevert et al., 2021].
Combined with an unsupervised learned protein descriptor (by training a similar
approach based on the amino acid sequence of a protein) we also demonstrated
how our proposed descriptor can be used for proteochemometric modelling [Kim
et al., 2020].

Moreover, Hoffman et al. proposed the use of zeroth order optimization in
combination with our pretrained representation to further optimize existing
SARS-CoV-2 Main Protease inhibitors toward higher binding affinity [Hoffman
et al., 2022]. Kang et al. utilized the pretrained representations to predict the
components of kerogen in shale oil/gas from NMR spectra [Kang and Zhao,
2022].

1.5 Generative Models

Another major line of work at the intersection of Deep Neural Networks and
cheminformatics is the field of automated de novo drug design. The ultimate goal
of drug development is to find a chemical compound with desirable properties,
such as high binding affinity to a target protein while minimizing off-target
binding (i.e., minimizing side effects), keeping a high solubility, and many more.
As the space of potential drug candidates is vast (1023–1060 molecules) [Polishchuk
et al., 2013] this task can be compared with the proverbial search for the needle
in the haystack. Consequently, in the early days of cheminformatics, computer
assisted de novo design models haven been introduced to help medicinal chemist
in this search [Danziger and Dean, 1989, Hartenfeller and Schneider, 2010, Mauser
and Guba, 2008, Schneider and Fechner, 2005]. In general an automated de novo
design model can be split up into a sampling, scoring and optimization part
[Schneider and Fechner, 2005], where the model has to efficiently sample novel
molecules, score them based on their desirability (e.g. by a QSAR model) and
optimize them, i.e navigate the chemical space.

In their seminal work, Segler et al. [Segler et al., 2018] proposed an RNN
trained on generating SMILES representations of novel molecules with desirable
properties. Similar to a language model trained on next word prediction, their
model is trained on next SMILES character prediction. In their work, they
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show how fine-tuning of a pretrained model (on a larger dataset to learn general
concepts like SMILES syntax) on a set of molecules with desirable properties
leads to a model that is biased in generating SMILES strings of molecules with
similar properties.

In an alternative approach, Olivecrona et al. [Olivecrona et al., 2017] proposed the
use of Reinforcement Learning [Sutton and Barto, 1998] to alter the generation
process of an RNN towards more desirable molecules. Work was also done to
utilize Generative Adversarial Neural Networks (GANs) [Goodfellow et al., 2014]
to generate molecules with desirable properties [Guimaraes et al., 2017, Putin
et al., 2018, Schwalbe-Koda and Gómez-Bombarelli, 2020].

One aspect the aforementioned generative methods have in common, is that they
are specifically trained to generate molecules that follow a certain distribution,
e.g. reassemble molecules from a dataset or maximize a certain property. Hence,
if the notion of desirability changes (as it is usually the case over the course of a
drug development project), the model needs to be retrained. Moreover, often one
is not interested in generating a set of molecules from a distribution of desirable
molecules, but rather in further optimizing a few so-called lead compounds (e.g.
promising compounds that were found in an initial high throughput screen to
be active on a target of interest).

An alternative approach to this distribution-learning focused methods are goal-
directed focused methods [Brown et al., 2019], i.e. methods that try to find the
overall best molecule that optimizes a predefined value function.

In their seminal work Gómez-Bombarelli et al. proposed a variational au-
toencoder trained on SMILES representation for automated chemical design
[Gómez-Bombarelli et al., 2018]. Pretrained on large molecular dataset, the
resulting model can be used to encode molecules to and from a continuous
latent representation. As discussed before, one of the major three challenges
in automated denovo design is the navigation of the discrete chemical space
[Schneider and Fechner, 2005]. With a model that can map the discrete chemical
space to and from a continuous latent space, navigation is significantly simpli-
fied, as different molecules can be transformed into each other by simple vector
operations in the latent space. In their work, Gómez-Bombarelli et al. utilized
this property to apply Bayesian Optimization for a guided search to find points
in the space corresponding to compounds with high drug-likeness and synthetic
accessibility [Gómez-Bombarelli et al., 2018].

Publication 2: Efficient Multi-Objective Molecular Optimization in a
Continuous Latent Space. In the second publication [Winter et al., 2019b],
we build upon the continuous representation developed in Publication 1. In this
work we tackle two issues not addressed in the related work. First, retraining a
generative model or utilizing Bayesian Optimization in high dimensional space
can quickly get computationally expensive. We propose the use of a simple yet
efficient heuristic optimization method, namely Particle Swarm Optimization
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[Kennedy and Eberhart, 1995], to navigate the continuous latent space proposed
in Publication 1. Secondly, we demonstrate how our proposed method can
be used to optimize multiple challenging objectives at the same time, as it is
often required in a drug development process. This is in contrast to related
works that mostly limit themselves to the optimization of single and more
trivial properties such as the octanol-water partition coefficient (logp) or the
quantitative estimate of drug-likeness score (QED). In fact, as our proposed
optimization method is based on our proposed continuous molecular descriptor,
which showed good performance in QSAR modelling, we were able to include
trained QSAR models based on this representation as value function to guide the
optimization. For example, we demonstrated how our proposed method is able
to find molecules that are predicted to selectively bind to a protein target while
having desirable ADME properties, i.e. solubility, metabolic stability and cell
membrane permeability. We also demonstrate how our proposed method can be
used to optimize a query molecule while keeping a substructure of it fixed and
successfully benchmark it against state-of-the-art methods [Brown et al., 2019].

Publication 3: grünifai: Interactive Multiparameter Optimization of
Molecules in a Continuous Vector Space. In the third publication [Winter
et al., 2020], we developed a web application to interactively steer an in silico
molecular optimization based on the methods developed in Publications 1 and 2.
The web application enables the user to sketch an initial query molecule that is
used as starting point for the optimization (e.g. a lead compound). Next, the
user can select from a range of pretrained QSAR and rule-based models to define
the objective function used for the optimization. Further customization is made
possible by selecting desirable ranges for the different models and individual
weights for the total score. The optimization can then be started by the user
and further customized by rating intermediate results, making compounds that
are structurally similar to those up-rated molecules more likely.

Overall, this application makes our developed methods more accessible to a
broader range of potential users interested in in silico molecular optimization
and further enables them with multiple ways to interact with and customize the
optimization.

1.6 Representing Molecular Conformations

Up to this point, we only considered the molecular topology, i.e. the two di-
mensional structure of a molecule. However, naturally a molecule is a three
dimensional entity and can exist in many different spatial arrangements. These
different spatial arrangements of a molecule (with the same topology) are com-
monly referred to as conformations or geometries of a molecule. Arguably, a
molecule’s geometry is one of its most relevant property as it determines its
interaction with other molecules such as a protein-target it binds to. Still,
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most QSAR models are based on 2D representations, as discussed above, and
so-called 3D QSAR has not found much success in comparison [Cherkasov et al.,
2014, Doweyko, 2004]. Probably the main reason for that is the fact that there
exist an infinite amount of conformations for each molecule (although the amount
of local minima is usually limited) and it is often not known which conformations
corresponds to a (measured) property used as target in a QSAR model. Still,
approaches like Comparative Molecular Field Analysis (CoMFA) showed success
to a certain degree suggesting biological differences can be explained as effects of
molecular field difference [Cherkasov et al., 2014, Cramer et al., 2008]. However,
most of these method require sampling and alignment of many conformations
to make different molecules comparable which can get computational expen-
sive quickly for larger or more flexible molecules. Hence, the question arises
whether we can use methods discussed in section 1.4 to learn representations of
conformations.

Probably the most common way to represent a molecular conformation is by
assigning Cartesian coordinates to each atom in the molecule. However, this
representation does not reflect crucial symmetries of molecules that should be
accounted for in a representation learning model. Most notably, a molecule’s
representation should be invariant to rigid translations and rotations, as those
do not change the molecule itself. However, if e.g. an autoencoder is trained
based on a Cartesian coordinated representation of conformations, which are
not invariant under such transformations, the learned latent representations will
not be invariant either. One way to address this problem is by choosing an
input representation that respects the symmetries of interest, e.g. in our case
the special euclidean group in three dimensions SE(3) (compare e.g. [Kirillov Jr,
2008]). An example for such a representation are internal coordinates (see
Figure 1.1e), where a molecular spatial arrangement is described by the distance
between bonded atoms (bond length), the angle between two atoms connected
by the same atom (bond angle) and the angle between the two intersecting
plains defined by four connected atoms (dihedral or torsion angle). That way,
the geometry is only defined by relative properties, hence, they do not change
under distance-preserving transformations.

Publication 4: Auto-Encoding Molecular Conformations. In the fourth
publication [Winter et al., 2021a], we propose an autoencoder model to transform
molecular conformations expressed by internal coordinates to and from a fixed-
sized continuous latent space. The main idea behind this work is to decouple
the conformation and the topology of a molecule. In a separate GNN, we first
extract node features for every atom in the molecule that are afterwards used
as condition in encoding and decoding internal coordinates. For example, bond
lengths are encoded conditioned on the node features of the bonded atoms,
and similar for bond angles and dihedral angles. That way, we encode every
internal coordinate in latent features that are pooled (averaged) in the final
step of the encoder to construct a fixed-sized (i.e. independent of the size
of the molecule) representation. The decoder uses this single representation
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together with the node features extracted from the topology graph (as condition)
to decode all individual internal coordinates, ultimately decoding the whole
molecular conformation. To the best of our knowledge, this is the first method
to encode conformations of molecules in a shared fixed-sized latent space.

As we decouple molecular topology from geometry, we demonstrate how different
energetically reasonable conformations can be efficiently sampled by sampling
different conformation embeddings for the same molecule topology (i.e. the
node features used as condition in the decoder stay the same). Similar to the
representation for molecular topologies proposed in Publication 1, this proposed
method can be used to represent, compare, generate and interpolate different
molecular conformations. Combining both methods, we demonstrate how a
molecule and its conformation can be optimized for certain geometry-dependent
properties, which could be used to find molecules in the chemical space that
have desirable spatial properties.

1.7 Representing Molecular Graphs

As discussed in Section 1.3, graph neural networks achieved great success in
learning to extract expressive representations from the molecular graph by means
of supervised learning. Unsupervised learning for graph representations has
mainly focused on node-level representation learning, which aims at encoding the
local structure of nodes in a graph [Cao et al., 2016, Wang et al., 2016, Kipf and
Welling, 2016a, Qiu et al., 2018, Pan et al., 2018]. Node-level graph representation
are for example useful when predicting a property about single users in a social
network or when predicting the existence of an edge between two nodes like it is
done in recommender system models [Ying et al., 2018, Fan et al., 2019].

On the other hand, there are many interesting problems, such as molecular prop-
erty prediction, that require a graph-level representation. However, unsupervised
learning of graph-level representations has not received much attention. This can
probably be explained by the high representation complexity of graphs arising
from their inherent invariance to permutations of their nodes. Hence, following
the line of argument in section 1.6, graph representations should respect the
permutation group symmetry Sn.

In general, a graph G can be represented in a vector format by a node matrix
X ∈ RN×D and a adjacency matrix A ∈ RN×N , where N is the number of
nodes in a graph and D is the number of node features (see Figure 1.1b). Note
however, that a permutation of nodes in the graph will lead to a different graph
representation G(X ′, A′). In fact, a graph with N nodes can be represented by N !
different node and adjacency matrices. Hence, training e.g. a regular autoencoder
on such graph representations will lead to latent representations that are not
permutation invariant, i.e. each permutation will lead to a different representation
of the same graph. For example, the variational graph autoencoder originally
proposed by Kipf and Welling [Kipf and Welling, 2016a] solves the reconstruction
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task by encoding individual node representations that are used by the decoder
to decide if two nodes are connected or not. A graph-level representation
could be extracted by concatenation of all node-level representations. However,
the resulting representation, would change (equivariantly) under permutation
of nodes. Alternatively, nodes could be pooled (e.g. averaged) to extract
a permutation invariant graph-level representation. However, without this
node order information in the embedding, reconstruction of the input graph’s
representation G(X,A) in the right order is not possible and calculation of the
order-dependent reconstruction loss used to train the autoencoder not feasible.

Another line of work concerns itself with so-called contrastive learning approaches
for unsupervised graph-level representation learning. Narayanan et al. proposed
a skipgram method on rooted subgraphs, similar to the popular word2vec method
in Natural Language Processing [Narayanan et al., 2017]. Bai et al. proposed a
Siamese network architecture, enforcing similar graphs (as measured by graph
editing distance) to have similar representations (small Euclidean distance) [Bai
et al., 2019]. Sun et al. proposed a method similar to Deep InfoMax [Hjelm
et al., 2018] to extract graph-level representations [Sun et al., 2019].

These contrastive learning approaches belong to the so called self-supervised
regime [Jaiswal et al., 2020]. Self-supervised learning still belongs to unsu-
pervised learning as no labeled information is needed, however it provides a
supervisory signal by defining a specific task that needs to be solved during
training. This supervisory signal can be utilized to aggregate graph-level features
in a permutation invariant way, similar to supervised learning. However, it has
to be noted that contrastive learning methods cannot be used to reconstruct or
generate novel graphs as only an encoding model is trained in this framework
(in contrast to autoencoders).

Publication 5: Permutation-Invariant Variational Autoencoder for
Graph-Level Representation Learning. In the fifth work [Winter et al.,
2021b], we propose a graph autoencoder framework for permutation invariant
graph-level representation learning. We address the ordering ambiguity in the
reconstruction by training alongside the permutation invariant encoder and
decoder a third model that predicts the permutation matrix to align encoded
and decoded graph to the same node order.

Our proposed model can extract permutation-invariant representation of the
whole graph that can also be used to generate novel graphs or to interpolate
between two graphs. To the best of our knowledge, our proposed model is the
first method that can extract permutation invariant graph-level representations
that can also be used for graph generation. To demonstrate the effectiveness
of our proposed model, we run a variety of graph reconstruction, generation
and interpolation experiments and evaluate the expressive power of extracted
representations for downstream graph-level classification and regression tasks.
Notably, we demonstrate the model’s ability to extract expressive molecular
descriptors from molecular graphs that outperform ECFP fingerprints.
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We also show how the proposed method can be used to autoencode molecular
conformations as discussed in Section 1.6. As the model is designed to encode and
decode densely connected graphs (i.e. a graph where every node is connected to
every other node), a conformation can be represented to the model by including
the Euclidean distance between two (connected as well as unconnected) atoms
as additional edge attribute. In our work, we demonstrate how such graphs
can be encoded and decoded and used to sample molecular conformations.
Notably, in contrast to Publication 4, the learned representations not only hold
the conformational information but also the topology in the same fixed-sized
continuous vector space. Hence, those representations can directly be used to
optimize both over the topology as well as the conformational space.

1.8 Group Invariant Representation Learning

There has been a recent surge of interest in incorporating knowledge about
underlying symmetries of a problem in neural networks as an inductive bias
[Cohen and Welling, 2016, Bronstein et al., 2021]. For example Convolutional
Neural Networks [LeCun et al., 1995] are by design equivariant with respect
to translations of objects in an image and Message Passing Neural Networks
[Gilmer et al., 2017] are equivariant to permutations of nodes in the graphs. Still,
many properties, such as the class label of an image or the ground-state energy
of a molecule, are inherently invariant to a certain symmetry [Miller et al., 2020].
Hence, it is common practice to predict such invariant properties by a model
that consists of an equivariant neural network followed by a symmetric function
(e.g. a pooling layer).

As discussed in Section 1.7, such models are usually trained in a supervised
setting. Unsupervised learning of group invariant representations is challenging,
as for instance, an autoencoder with a group-invariant bottleneck can only
reconstruct its input up to a group transformation which makes the evaluation
of the (transformation-dependent) reconstruction loss unfeasible.

In essence, Publication 5 proposes a method that disentangles the encoded
representation of a graph into a permutation invariant part and a permutation
equivariant group action (where the predicted permutation matrix is a linear
representations of the action of symmetric group Sn). By combining both these
representations during reconstruction, we were able to train a model that extracts
all permutation-invariant information in one representation, while still using an
autoencoder framework with an permutation-dependent reconstruction objective.
In a followup work we generalize this concept to any group G.

In general, we can define a group G as a pair (G, ·) containing a set G and
a binary operation · : G × G → G which is associative and for which there
exists an identity element as well as inverse elements. Groups are a general
framework that can be used to describe transformations that act on a space,
or in particular to describe the symmetries of objects or sets represented in a
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certain way. Prominent examples are the symmetric group Sn to e.g. describe
permutations of sets or graphs as discussed above or the already mentioned
special euclidean group SE(n) that describes rigid rotations and translations in
n-dimensional space.

Often, data is represented in ways that do not reflect inherent symmetries of
properties of interest. As discussed in Section 1.7, representing graphs by node
and adjacency matrices does not reflect the permutation-invariance of graph-
level features. Similarly, the class-label of an image or the ground-state energy
of a molecular conformation does not change upon translation or rotation of
the image or conformation, while the data representation itself (i.e. pixels or
Cartesian coordinates of images and atoms in conformations respectively) does.

In group theory, a map f : X → X is said to be invariant with respect to a
group-action g : G×G→ X, (g, x) 7→ g.x iff

∀x ∈ X, ∀g ∈ G, f(g.x) = f(x). (1.1)

Group invariance is a special case of group equivariance:

∀x ∈ X, ∀g ∈ G, f(g.x) = g.f(x). (1.2)

Publication 6: Unsupervised Learning of Group Invariant and Equiv-
ariant Representations. In the sixth work [Winter et al., 2022], we propose
a general learning strategy based on an encoder-decoder framework to learn
group invariant representations of any data type and group. The key idea is to
jointly train a group invariant encoder, a decoder and a group equivariant model
that predicts the group action to solve the reconstruction task. In this work,
we characterize the necessary conditions of these three different parts of our
proposed framework independently of specific groups or network architectures.
We evaluate our proposed framework on a variety of groups and data types
demonstrating its validity and flexibility.

Most notably, we demonstrate the use of our framework for autoencoding point
clouds. As discussed in Section 1.6, molecular conformations can be naturally
represented by assigning Cartesian coordinates to each atom in the molecule,
which corresponds to a point cloud in three dimensions. However, training
a classical autoencoder on such an input representation will lead to a latent
code that does not respect crucial symmetries like translation- and rotation
symmetry. Our proposed framework can be used to encode point clouds in a
translation-, rotation- and permutation-invariant latent code by training along
side an invariant encoder an additional model that predicts the translation-,
rotation-, and permutation group action to align the input point cloud with
the point cloud decoded from the invariant embedding. The proposed model is
therefore able to extract representations of molecular conformations that respect
translation-, rotation- and permutation symmetries directly from the Cartesian
coordinates without e.g. first transforming to an internal coordinate system (as
was done in Publication 4).
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2.1 Publication 1: Learning Continuous and Data-
Driven Molecular Descriptors by Translating
Equivalent Chemical Representations

Full Reference: Winter, Robin, Montanari, Floriane, Noé, Frank, & Clev-
ert, Djork-Arné (2019). Learning continuous and data-driven molecular descrip-
tors by translating equivalent chemical representations. Chemical science, 10(6),
1692-1701.

DOI: 10.1039/C8SC04175J

Licence: CC-BY

Journal/Conference: Chemical Science (Impact Factor: 9.8)

Source Code: https://github.com/jrwnter/cddd

Paper’s main contributions:

• We propose a novel method for learning to extract expressive molecular
descriptors from molecular line notations.

• We utilize methods originally developed for natural machine translation to
translate between two different molecular line notations.

• We demonstrate the competitive performance of our extracted descriptors
in extensive QSAR and virtual screening benchmarks.

• We discuss the application of the extracted continuous molecular descriptor
for chemical space exploration and generation of novel molecules.

Author’s contribution to the paper:

• Conceptualization of the original idea and its application to molecular
representation learning.

• Development of the methodology and implementation.

• Design and evaluation of experiments, data curation and analysis.

• Preparation and creation of initial draft and visualizations.

Acknowledgement: Reproduced from Chemical Science, 10(6), 1692-1701
with permission from the Royal Society of Chemistry.
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Learning continuous and data-driven molecular
descriptors by translating equivalent chemical
representations†

Robin Winter, *ab Floriane Montanari, a Frank Noé b and Djork-Arné Clevert a

There has been a recent surge of interest in using machine learning across chemical space in order to

predict properties of molecules or design molecules and materials with the desired properties. Most of

this work relies on defining clever feature representations, in which the chemical graph structure is

encoded in a uniform way such that predictions across chemical space can be made. In this work, we

propose to exploit the powerful ability of deep neural networks to learn a feature representation from

low-level encodings of a huge corpus of chemical structures. Our model borrows ideas from neural

machine translation: it translates between two semantically equivalent but syntactically different

representations of molecular structures, compressing the meaningful information both representations

have in common in a low-dimensional representation vector. Once the model is trained, this

representation can be extracted for any new molecule and utilized as a descriptor. In fair benchmarks

with respect to various human-engineered molecular fingerprints and graph-convolution models, our

method shows competitive performance in modelling quantitative structure–activity relationships in all

analysed datasets. Additionally, we show that our descriptor significantly outperforms all baseline

molecular fingerprints in two ligand-based virtual screening tasks. Overall, our descriptors show the

most consistent performances in all experiments. The continuity of the descriptor space and the

existence of the decoder that permits deducing a chemical structure from an embedding vector allow

for exploration of the space and open up new opportunities for compound optimization and idea

generation.

1 Introduction

Molecular descriptors play a crucial role in chemoinformatics,
since they allow representing chemical information of actual
molecules in a computer-interpretable vector of numbers.1

While chemical information can be represented by experi-
mental measurements such as physico-chemical property
measurements,2 a lot of work has been done to derive molecular
descriptors from a symbolic representation of a molecule. A
widely used concept to generate such theoretical molecular
descriptors is molecular ngerprints. Molecular ngerprints
encode structural or functional features of molecules in a bit
string format and are commonly used for tasks like virtual
screening, similarity searching and clustering.3–5 In particular,
circular ngerprints like the extended-connectivity ngerprints

(ECFPs) were introduced to model quantitative structure–
activity relationships (QSAR) for biological endpoints by way of
classical machine learning approaches as well as for ligand-
based virtual screening (VS).6,7

Recent advances in the eld of Deep Neural Networks
(DNNs)8,9 also showed an impact in chemoinformatics-related
tasks such as molecular property and activity prediction.10–12

The proposed DNNs have in common that they use pre-
extracted molecular descriptors (mostly ECFPs) as input
features. This, however, contradicts the fundamental idea of
representation learning: DNNs should learn a suitable repre-
sentation of the data from a simple but complete featurization,
rather than relying on sophisticated human-engineered
representations.9,13

Following these considerations, work was also done to apply
DNNs directly on supposedly more complete and lower-level
representations of a molecule such as the molecular graph14

or the sequential SMILES (Simplied Molecular Input Line
Entry Specication) representation.15–17 By training a DNN
directly on a comprehensive and low-level representation, it can
automatically learn to extract useful descriptors best suited for
the specic task it is trained on, resulting in a specic
descriptor set for a given dataset. The downside, however,

aDepartment of Bioinformatics, Bayer AG, Berlin, Germany. E-mail: robin.winter@
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directly follows from this property. Since features have to be
learned from scratch for every new dataset, these methods are
prone to overtting if trained on limited data. This is an issue
when it comes to bioactivity data, due to the relatively high cost
of generating a data point.11,18,19

Recently, work was also done to learn molecular descriptors
in an unsupervised and data-driven way. Gómez-Bombarelli
et al. proposed a variational autoencoder20 to convert the
discrete SMILES representation of a molecule to and from
a multidimensional continuous representation.21 Although
their main purpose was to build a framework for de novo
molecular design, the authors showed that the resulting
representations could also be used as descriptors for a down-
stream classication task. Xu et al. proposed a related unsu-
pervised approach based on sequence to sequence learning.22,23

Both studies use an autoencoder24 methodology applied on
the SMILES representation. An autoencoder comprises two
neural networks, an encoder and a decoder. The encoder
network transforms the input, here a SMILES sequence of
variable length with discrete values, to a xed size continuous
representation (latent representation). The decoder network
takes the latent representation as the input and aims at trans-
forming it back to the input sequence. The whole autoencoder
network is trained on minimizing the mean reconstruction
error on a single-character level for each input sequence. By
introducing an information bottleneck between the encoder and
the decoder, the network is forced to compress the essential
information of the input, so that the decoder still makes as few
errors as possible in the reconstruction. If the trained autoen-
coder is able to encode all the necessary information of a given
molecular representation to accurately reconstruct the original
molecular representation, Xu et al. argue that it may also
capture more general chemical information about the molecule
and could be used as a molecular descriptor. However, training
an autoencoder on reconstructing a sequence which represents
a molecule bears the risk that the network solely focuses on
syntactic features and repetitive patterns of this sequence,
neglecting its semantics and failing to encode higher-level
concepts such as molecular properties.

In this work, we want to address this issue by proposing
a method that is based on a translation rather than a recon-
struction methodology (see Fig. 1). Similar to a human trans-
lating a sentence from one language to another by rst reading
the whole sentence to get a general understanding before
starting translation, a so-called Neural Machine Translation
(NMT)23 model rst reads the whole input sequence and
encodes it into an intermediate continuous vector representa-
tion (latent representation) which is then used by the decoder to
emit a respective translation. This latent representation can be
thought of as the model's “understanding” of the input
sequence's “meaning”, incorporating all the semantic infor-
mation shared by the input and output sequences. Here, we
want to exploit this translation methodology to extract the
“meaning” of a molecular representation like an InChI (Inter-
national Chemical Identier)25 by translating it to another
syntactically different one, e.g. SMILES. Since the decoder uses
the encoded latent representation to generate a semantically

equivalent but syntactically different representation, the
network does not benet from encoding unnecessary informa-
tion about the input sequence. However, the decoder can only
succeed in generating the right translation for a givenmolecular
representation if the encoder compresses a comprehensive
description of the chemical structure in the latent
representation.

By training the translation model in a data-driven way on
a large set of chemical structures, we propose a model that can
extract the information contained in a comprehensive but
discrete and variable-sized molecular representation (e.g.
SMILES) and transform it into a continuous and xed-sized
representation. Once trained, the resulting model can be used
to extract meaningful molecular descriptors for query structures
without the need for retraining or including labels. To analyse
the quality of the resulting molecular descriptors, we perform
a variety of experiments on predictive QSAR and virtual
screening tasks. Finally, we show that it is possible to navigate
smoothly in this new continuous chemical descriptor space by
modifying slightly the molecular representation of an existing
compound in a given direction and using the decoder to obtain
new chemical structures.

2 Methods
2.1 Molecular representations

While translation could be performed between arbitrary
molecular representations, in this work we focus on the
sequence-based SMILES and InChI representations.

The InChI notation represents molecular structures as
a sequence of characters divided into layers and sub-layers
providing different types of information such as the chemical
formula, bonds and charges.

The SMILES notation also represents molecular structures as
a sequence of characters. In contrast to the InChI notation,
however, a SMILES is not divided into different information
layers but encodes the whole molecular structure in one
sequence of characters including identiers for atoms as well as
identiers denoting topological features like bonds, rings and
branches. Since a molecule can typically be represented by
many of equally valid SMILES, various algorithms have been
developed to guarantee the uniqueness of a SMILES notation for

Fig. 1 General architecture of the translation model using the
example of translating between the IUPAC and SMILES representations
of 1,3-benzodioxole.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 1692–1701 | 1693
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a molecule. In this work we use the library RDKit26 to generate
such canonical SMILES.

Table 1 visualizes how the different notations differ in their
syntax while representing the same molecule. Although both
SMILES and canonical SMILES share the same identiers and
general syntax, the two sequences, coming from different
algorithms, are not identical. Hence, not only could translation
be performed between InChI and canonical SMILES, but also
between any SMILES representation of a molecule and its
canonical version. We utilized the SMILES enumeration
procedure proposed by E. Bjerrum to generate a random
SMILES variant for a given molecule.16 In order to be invariant
to the SMILES representation at inference time, we also used
the canonical SMILES as the input half of the time.

In order to use the aforementioned sequence-basedmolecular
representations as the input and output of the translationmodel,
we tokenized the sequences and encoded them in a one-hot
vector representation. By dening a lookup table T for the N
tokens in sequence representations (e.g. T2 ¼ C, T5 ¼ Br), a one-
hot representation of token Ti is dened by an N-dimensional
vector with a one in the i-th entry and zeros elsewhere.We dened
different lookup tables for both SMILES and InChI representa-
tions, mostly tokenizing the sequences on a character level except
for “Cl”, “Br” and “InChI ¼ 1S/”. We tokenized 38 and 28 unique
characters for SMILES and InChI sequences, respectively.

2.2 Translation model

Fig. 1 depicts the general concept of the model for an example
of translating from the IUPAC representation of a given mole-
cule to its SMILES representation. For the encoder network, we
tried both convolutional neural network (CNN) and recurrent
neural network (RNN) architectures of different size and depth
followed by a fully connected layer that maps the output of the
CNN or the concatenated cell states of the RNN to the latent
space, respectively (see the ESI† for an introduction to the basic
concepts of these different neural network architectures). The
decoder network consists of an RNN, whose cell states are
initialized by an individual fully connected layer for each layer
in the RNN, taking the latent space as the input.

To further encourage the model to learn a meaningful
representation of a molecule, we extend the translation model
by an additional classication model for certain molecular
properties. Similar to the method proposed by Gómez-

Bombarelli et al., this classication model takes the latent
representation of the translation model as the input and
predicts certain molecular properties which can be directly
deduced from the molecular structure. We xed the classica-
tion model as a 3-layer fully connected neural network,
mapping the latent space to the molecular property vector.

The output of the decoder network's RNN is a sequence of
probability distributions over the different possible characters
dened in the respective lookup table. The complete model is
trained on minimizing the cross-entropy between these proba-
bility distributions and the one-hot encoded correct characters
in the target sequence as well as minimizing the mean squared
error in predicting the molecular properties (classier network).
For the decoder RNN we utilized teacher forcing27 during
training and a le-to-right beam search23 during inference.

We monitored the translation accuracy of the model on
a single-character level, by comparing the correct character in
the target sequence with the most probable character in the
decoder RNN's output at each position. To select the best
combination of translation task and architecture, we used the
predictive performance of machine learning models built on
two QSAR datasets using the respective latent representations
as descriptors. This ensures that the translation model not only
works well at translating (high single-character accuracy) but is
also well suited to extract meaningful molecular descriptors
from the input sequence (good performance of a simple QSAR
model build on the embedding).

2.3 Datasets and preprocessing

The translation model was pretrained on a large dataset
composed of molecular structures from the ZINC15 (ref. 28) and
PubChem29 databases. Both databases were merged, the
duplicates removed and ltered with RDKit using the following
criteria: only organic molecules, molecular weight between 12
and 600, more than 3 heavy atoms and a partition coefficient
log P between �7 and 5. Additionally, we removed the stereo-
chemistry, stripped the salts and only kept the largest frag-
ments. For each molecule, nine molecular properties were
extracted: log P, the maximal and minimal partial charge, the
number of valence electrons, the number of hydrogen bond
donors and acceptors, Balaban's J value,30 the molar refractivity
and the topological polar surface area. Molecules which could
not be processed by RDKit were removed. Aer applying this
preprocessing procedure the resulting dataset consisted of
approximately 72 million compounds.

For the evaluation of the molecular descriptors extracted by
the nal translation model, we performed eight QSAR and two
VS experiments. The QSAR datasets (see Table 2) were taken
from various sources and were preprocessed in the same way as
the pretraining dataset. Two of the datasets (Ames mutagenicity
and lipophilicity) were used to validate the different translation
models' architectures. The remaining eight datasets were solely
used for evaluating the nal model.

The VS experiments were performed on 40 targets of the
Directory of Useful Decoys (DUD) and 17 targets of the
Maximum Unbiased Validation (MUV) dataset.31,32

Table 1 Different sequence-based molecular representations for the
example 1,3-benzodioxole

Graph

IUPAC 1,3-Benzodioxole
SMILES c1ccc2c(c1)OCO2
Canonical SMILES c2ccc1OCOc1c2
InChI InChI ¼ 1S/C7H6O2/c1-2-4-7-6(3-1)8-5-9-7/

h1-4H,5H2
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All compounds of the evaluation datasets were removed from
the pretraining dataset.

2.4 Evaluation and baseline

Our new molecular descriptors were benchmarked against
state-of-the-art descriptors in QSAR and VS experiments.

For modelling structure–activity relationships, we compare
three different approaches: classical machine learning models
applied on our descriptors and on circular ngerprints of
different radii and folding as implemented in RDKit (see details
in the ESI†) as well as an end-to-endmolecular graph convolution
method as implemented in DeepChem.43 The rst two methods
require selecting the learning algorithm to plug on top of the
molecular representation. For this, we used Random Forest
(RF),44 support vector machine (SVM) with an RBF kernel45 and
Gradient Boosting (GB)46 as implemented in scikit-learn.47 A
preliminary check on the two validation tasks showed that SVM
was the method that worked best in combination with our
descriptors and was therefore the only method applied to all
other QSAR datasets for our descriptors. Our descriptors were
standardized to zero mean and unit variance for each task indi-
vidually. We performed an extensive hyperparameter optimiza-
tion in a nested cross-validation (CV) fashion to select the best set
of descriptor, model and hyperparameters for each task (see the
ESI† for the detailed hyperparameter grid for each model).

The graph convolution models were trained directly on the
different QSAR datasets. Hyperparameters such as learning rate
and lter size were optimized in a cross-validation (see the ESI†
for the detailed architecture and hyperparameter grid).

Each dataset was split in two different ways for the valida-
tion. The random CV corresponds to ve random splits while
the cluster CV corresponds to ve clusters obtained by K-means
clustering with K ¼ 5 on MACCS ngerprints.48

To select the best performing combinations, we specically
looked at the coefficient of determination (r2) and the area
under the receiver operating characteristic curve (ROC AUC) for
the regression and classication tasks, respectively.

For the ligand-based virtual screening experiments, we fol-
lowed the benchmarking protocol proposed by Riniker et al.49 For
each target in both VS databases, ve active compounds were
picked randomly and the remaining compounds were ranked
according to their similarity to the active set as measured by

a similarity metric in the respective descriptor space. The process
was repeated 50 times for each dataset, each time selecting a new
random set of active and decoy compounds. We compared the
performance of our descriptors with the 14 molecular nger-
prints provided in the benchmark protocol (see the ESI†). The
similarity in the discrete baseline ngerprint spacewas calculated
using the Tanimoto similarity. For our continuous descriptors
(per-target standardized to zero mean and unit variance) we used
cosine similarity. The resulting ranking of the compounds is
evaluated by calculating the mean ROC-AUC over the 50 repeti-
tions for each target. Additionally, aWilcoxon signed-rank test50 is
performed to analyse the statistical signicance of the differences
in the mean ranks of our descriptor to the baseline descriptors.

3 Results and discussion

Our translation model is a data-driven method for generating
meaningful compound representations by forcing translation of
all necessary information between two sequence-based repre-
sentations of a molecule into a low dimensional continuous
embedding (latent space). Since sequence-based representa-
tions of molecules such as SMILES or InChI are easily obtained
from cheminformatics packages, the pretraining of the model
can be performed on a vast chemical space (here, around 72
million compounds were used). Once the pretraining is nal-
ized, the translation model can be used to encode compounds
into the embedding or to decode embeddings into compounds.
The obtained compound embedding can be utilized as a new
continuous and reversible molecular descriptor that can be
used to evaluate similarity in chemical space or train machine
learning models to predict properties and biological activities.

3.1 Pretraining

We evaluate the different network architectures of the translation
model (see Fig. 1) in terms of performance of the extracted
descriptors for the two validation tasks. Fig. 2 shows both
translation accuracy and predictive performance on the valida-
tion sets during the rst 20 000 training steps. We show the best
performing model for both translation tasks (SMILES to canon-
ical SMILES and InChI to canonical SMILES) as well as the best
model for the regular canonical SMILES autoencoding task.

Table 2 Ten different QSAR datasets used for benchmarking our molecular descriptor. The final number of compounds in each task after
preprocessing is mentioned

Dataset Acronym Task Split Number of compounds Reference

Ames mutagenicity ames Classication Validation 6130 33
HERG inhibition herg Classication Test 3440 34
Blood–brain barrier penetration bbbp Classication Test 1879 35
b-Secretase 1 inhibition bace Classication Test 1483 36
Toxicity in honeybees beet Classication Test 188 37
Epidermal growth factor inhibition egfr Regression Test 4451 38
Plasmodium falciparum inhibition plasmo Regression Test 3999 39
Lipophilicity lipo Regression Validation 3817 40
Aqueous solubility esol Regression Test 1056 41
Melting point melt Regression Test 184 42

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 1692–1701 | 1695
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Generally, as the models get better at translating the input to
the output sequence, the predictive performance of an SVM
based on the latent representation also improves. Since the
translationmodel is trained on producing the correct translated
sequence for a given input sequence, it is forced to store all
important information necessary to do this translation in the
bottleneck of the network: the latent representation (see Fig. 1).
The more the information of a molecule encoded in the latent
representation, the better it is suited as a molecular descriptor
to predict certain properties of this molecule. Hence, the
prediction performance on QSAR tasks increases.

The overall best performance was achieved with a translation
model based on an RNN architecture for the encoder network
that was trained on translating from a SMILES representation to
its canonical version (see the ESI† for the detailed network
architecture). Themodel based on the InChI to canonical SMILES
translation is also able to accurately translate between the two
representations. Its intermediate latent representation, however,
is not as well suited for training an SVM on the validation task.

We also tried to train models on translating from canonical
SMILES to InChI representations. These models, however,
failed (in contrast to the opposite task) to learn anything. This is
probably due to the higher complexity of the InChI format
(including counting and arithmetic as already discussed by
Gómez-Bombarelli et al.), making the generation of a correct
InChI string for a given molecule a difficult task to learn.

In order to assess the impact of the additional classication
task of molecular properties, Fig. 2 also shows the performance
of the best model without this additional task during training.

Since this model solely focuses on translating, it reaches better
translation accuracies faster. However, this difference seems to
diminish as training time increases. The additional classica-
tion task seems to have a clear positive impact on the predictive
performance of the lipophilicity task, while resulting in a small
improvement on the Ames mutagenicity task. The improvement
on the lipophilicity task is probably mainly due to its correlation
with molecular properties (such as the partition coefficient
log P) that were included in the classication task.

All models based on translating between two different molec-
ular representations show a clear improvement over models
trained on reconstructing the same input sequence. Interestingly,
translating between two molecular representations seems harder
to learn than reconstructing the same input representation (see
Fig. 2a). This can be explained by the fact that the translation
models cannot simply store sequence-based features or patterns in
the latent space, but have to learn to extract the information that
both the input and output sequences have in common: the
molecule they are both representing. These ndings imply that,
indeed, the translation task encourages the model to encode more
relevant information of the molecule in the latent space, resulting
in a potentially powerful molecular descriptor.

3.2 QSAR modelling

Next, we extracted molecular descriptors of the remaining (test)
QSAR datasets (see Table 2) with the best performing trans-
lation model and benchmarked them as described in the
Methods section. Fig. 3 shows the results of this evaluation for

Fig. 2 Performance of the best model on four different translation tasks during the first 20 000 training steps. The Sml2canSml* run was trained
without the additional classification task of molecular properties. (a) Translation accuracy. (b) Mean performance on the lipophilicity regression
task. (c) Mean performance on the Ames classification task. For (b) and (c), the translation model at the respective step was utilized to extract the
molecular descriptors fed into an SVM to model both tasks.

1696 | Chem. Sci., 2019, 10, 1692–1701 This journal is © The Royal Society of Chemistry 2019
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random-split and cluster-split cross-validation respectively,
comparing our molecular descriptor to the best model based on
the different circular ngerprints and the graph-convolution
networks trained end-to-end for each QSAR dataset individu-
ally (see the ESI† for detailed results).

Generally, the hyperparameter-optimized methods perform
on a comparable level for most of the QSAR tasks, each method
showing at least on one task a slightly better mean performance
over the different splits.

The lipophilicity and aqueous solubility datasets show the
largest variance in performance between the models. The
graph-convolution method outperforms the models based on
the baseline ngerprint in predicting these physico-chemical
endpoints. For the solubility endpoint, however, this is only
true in the case of random splits. In the case of cluster splits, the
graph-convolution model apparently fails to generalize on the
hold-out clusters. This is probably due to the relatively small
size of the solubility dataset. Since the graph-convolution
method is trained end-to-end, it has to learn to extract mean-
ingful features for each dataset from scratch which could lead to
overtting, if training data are limited. In contrast, the baseline
ngerprints and our descriptors are built upon predened or
pretrained feature extraction methods respectively, indepen-
dently from the task at hand. Our proposed molecular
descriptors show good performance in predicting physico-
chemical endpoints (lipophilicity, solubility and melting
point) even in the cluster cross-validations on the small datasets
(solubility and melting point).

Summing up, our proposed molecular descriptors exhibit
competitive or better performance than the best baseline
models in all investigated QSAR tasks.

Additionally, we would like to emphasize that we xed our
feature extraction method based on two datasets (Ames and

lipophilicity on random splits) to avoid a model selection bias
on the remaining test sets. This, however, was not done for the
baseline methods. The ngerprint-based models could choose
between nine different avours of circular ngerprints and
three different learning algorithms for each task respectively
and due to the considerable training time the graph-
convolution models were not trained in a nested cross-
validation. Hence, it is remarkable that, although we applied
a much harsher evaluation scheme on our method, it still
achieved comparable – if not better – results to the baseline
methods.

3.3 Virtual screening

The goal of ligand-based virtual screening (VS) is to rank a large
set of compounds with respect to their activity on a certain
target based on their similarity to some known active query
compounds. It is based on the assumption that similar
compounds will have a similar biological activity.

To investigate how well our descriptors are suited for ligand-
based virtual screening, we followed the benchmark protocol of
Riniker et al. to compare our extracted descriptors against other
state-of-the-art molecular descriptors. In Table 3 the ranking
performance of the descriptors is compared on the DUD and
MUV databases respectively. On both databases our descriptor
signicantly outperformed the second best descriptor (p < 0.05).
Thus, similarities measured between compounds in our
proposed descriptor space are better correlated with their
pharmacological similarity than similarities measured in the
baseline ngerprint spaces.

Interestingly, the best baseline descriptor in the DUD screen
(laval) is only h in the MUV screen. The best baseline
descriptor in the MUV screen (ap) is not even represented in the

Fig. 3 Results of the 5 regression and 5 classification QSAR-tasks. Separate results are shown for both cross-validation on random splits (random
CV) and cross-validation on cluster splits (cluster CV). We compare the results of an SVM trained on our descriptors with the best model (SVM, RF
and GB) trained on the best performing circular fingerprint as well as an end-to-end trained graph-convolution model after extensive hyper-
parameter optimization.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 1692–1701 | 1697
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top ten performing descriptors in the DUD screen. Our
descriptor, however, shows robust performance over all ana-
lysed targets (see Fig. 4), even though the translation model was
selected based on its performance on two QSAR validation
tasks.

3.4 Exploring the continuous descriptor space

As opposed to the previously discussed baseline ngerprints,
our proposed descriptor is continuous and the encoding into
the descriptor space is reversible, due to the decoder part of our
translation model. This opens new possibilities in terms of
compound optimization and exploration of the chemical space.
As already shown by Gómez-Bombarelli et al., a continuous
encoding of a molecular structure enables us to explore the
neighbourhood of this molecule by decoding from points close
to the query molecule's embedding.

In Fig. 5, we incrementally shi the embedding of a query
molecule in two different directions and decode it back to
a molecule. The directions we are shiing the molecule's
embedding along are dened by the rst and second principal
component of the pretraining dataset (molecules from

PubChem and ZINC) in our descriptor space. We observe that
the incremental shis in the continuous descriptor space
correspond to smooth transitions in the discrete chemical
space. Apparently, the rst principal component of our pre-
training dataset correlates with the size of molecules: adding or
subtracting a value along this axis corresponds to adding or
removing atoms from the structure. Shis along the second
principal component of the pretraining dataset seem to be
correlated with altering the molecule's polarity. To objectively
analyse potential correlations between certain axes in the
continuous descriptor space and molecular properties, we
repeated the experiment with 1000 randomly picked
compounds from the validation dataset and shied each of
them 10 steps in the negative and 10 steps in the positive
direction along the two principle components, respectively. The
mean Spearman correlation coefficient r between the
compound's molar weight and the respective step along the rst
principle component was r ¼ 0.9470 (p ¼ 0.00048). The mean
correlation between the compound's partition coefficient log P
and the respective step along the second principle component
was r ¼ �0.916 (p ¼ 0.00015). These results suggest a general

Table 3 Results of the VS-experiment on the DUD andMUV databases for the best 10 descriptors respectively. p-Values of theWilcoxon signed-
ranked test between our descriptor and the second best are given respectively

(a) DUD: p ¼ 5 � 10�38

Descriptor ours laval tt lecfp4 lecfp6 ecfp4 rdk5 avalon ecfp6 fcfp4

ROC-AUC 0.949 0.899 0.890 0.887 0.886 0.884 0.884 0.881 0.881 0.874

(b) MUV: p ¼ 0.04

Descriptor ours ap tt avalon laval ecfc4 rdk5 ecfc0 fcfc4 fcfp4

ROC-AUC 0.679 0.677 0.670 0.644 0.643 0.637 0.627 0.626 0.615 0.605

Fig. 4 ROC-AUC of the VS experiments for each target for the overall best descriptors as well as ecfc4 fingerprints.

1698 | Chem. Sci., 2019, 10, 1692–1701 This journal is © The Royal Society of Chemistry 2019

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 3

/2
3/

20
22

 1
:5

2:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online



correlation between shis in certain directions in the descriptor
space and certain molecular properties.

All analysed points along these two axes, when decoded,
resulted in a valid SMILES (interpretable by RDKit). To further
investigate how well our model is suited to explore around
arbitrary molecule representations in arbitrary directions, we
iteratively moved along 100 random directions for 1000
randomly picked compounds, respectively (see the ESI† for
examples of generated compounds). Table 4 shows the aggre-
gated results for this exploration. As expected, we observed
a clear correlation between the (Euclidean) distance in our
descriptor space and the (Tanimoto) distance in the circular
ngerprint space. Thus, shiing the representation of a mole-
cule in our descriptor space corresponds to gradual transitions
in the chemical space. On average, even if shied over long
distances, our model succeeds in generating a high proportion
of valid SMILES (>97%). If the most probable output of the
model's beam search decoder results in an invalid SMILES, we
observe that it is likely that one of the next most probable
sequences results in a valid SMILES (>99%).

In a similar study Blaschke et al., for example, analyzed 4
different autoencoder frameworks on the SMILES to SMILES
reconstruction task and reported a valid SMILES proportion of
only approximately 20% using their best model, if moved away

by a similar (Tanimoto) distance (note, however, that a direct
comparison is problematic since Blaschke et al. sampled
directly from the probability distribution of the last decoder
layer and did not perform a beam search as we did).51 Another
study by Segler et al. demonstrates that a simple RNN solely
trained on generating SMILES sequences (no encoder/decoder
framework) can obtain similar high valid SMILES ratios of
96% with random sampling.52

4 Conclusion

We proposed a novel methodology that is able to learn to extract
meaningful molecular descriptors, solely by an unsupervised
training on a large dataset of molecular structures. We showed
that the molecular descriptors extracted by our method signif-
icantly outperform state-of-the-art molecular ngerprints in
ligand-based virtual screening (VS) experiments. Moreover, we
show that machine learning models based on our descriptor
perform similarly – if not better – on various quantitative
structure–activity relationships (QSAR tasks), when compared
to multiple state-of-the-art molecular ngerprints and compu-
tationally expensive graph-convolution models. Generally, our
proposed descriptors show, compared to the baseline methods,
consistent performance in all experiments, even across

Fig. 5 Shifting of an example query molecule (here acetylsalicylic acid) along the first (top) and second (bottom) principal components of the
pretraining dataset. The query molecule (dashed box) was encoded in our descriptor space, which was iteratively shifted – in both negative and
positive directions – and decoded back to a SMILES.

Table 4 Aggregated results of the exploration of our descriptor space in 100 different random directions for 1000 different compounds in
successive steps. For each step, dEuclidean is the mean Euclidean distance between the representations at this step and the representation of the
respective starting compounds. dTanimoto is themean Tanimoto distance between the ecfc4 fingerprints of the successfully decoded compounds
and their starting compounds at each step. Rate1, rate2, and rate3 describe the mean valid SMILES reconstruction rate, taking the first one, two
and three most probable beam search outputs into account respectively

dEuclidean 2.0 3.9 5.7 7.5 9.2 10.7 12.2 13.5 14.8 15.9 16.9 17.7
dTanimoto 0.02 0.02 0.05 0.10 0.19 0.31 0.46 0.60 0.71 0.78 0.83 0.86
Rate1 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
Rate2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99
Rate3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 1692–1701 | 1699
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different experimental concepts such as QSAR and VS. We
believe that our method combines the advantages of both
baseline models. Our method does not depend on xed feature
extraction rules but learns its own extraction method in a data-
driven way. However, since it is pretrained on a large set of
molecules, the resulting features generalize well and are less
prone to overtting.

As we focused in this work on translating between different
string-based molecular representations, an evident follow-up
would be the translation of conceptually different molecular
representations such as the molecular graph or 3D-structure-
based representations like the van der Waals and/or electro-
negative potential surface.

Since our proposed molecular descriptors are continuous
and can be translated back into a validmolecular structure, they
open new possibilities in terms of compound optimization and
navigation of the chemical space. We observe smooth and
meaningful transitions in the chemical structure when a mole-
cule's embedding is shied in certain directions, where shis
along different axes in our descriptor space correspond to
different structural and functional properties in the chemical
space.

Moreover, Gómez-Bombarelli et al. already showed that their
autoencoder framework could be utilized to automatically
design molecules with respect to multiple properties such as
synthetic accessibility and drug-likeness. Since our model's
latent space was shown to be signicantly better correlated with
the molecule's biochemical properties, we think that our
proposed translation method could signicantly improve such
a method's ability to generate and optimize molecules, also
enabling optimization with respect to biological activity. These
aspects will be explored and discussed in an upcoming study.

Availability

The source code and a pretrained model (to extract our
proposed molecular descriptors out of the box) are available at
https://github.com/jrwnter/cddd.
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4 A. Cereto-Massagué, M. J. Ojeda, C. Valls, M. Mulero,
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Common neural network architectures

In the following we introduce the basic concepts of the different neural network architectures

used in our translation model

Fully-connected Neural Network

The most basic form of a Deep Neural Network is the Fully-connected Neural Network

(FNN). In an FNN, each neuron in a layer of the network is connected to each neuron in

the previous layer (see Figure 1 a). Thus, the output of a neuron in a fully-connected layer

is a linear combination of all outputs of the previous layer, usually followed by a non-linear

function.
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Convolutional Neural Network

A convolutional neural network (CNN) builds up on multiple small kernels which are con-

volved with the outputs of the previous layer. In contrast to a neuron in a fully-connected

layer, each output of a convolutional-layer is only a linear combination of neighboring out-

puts in the previous layer (see Figure 1 b). The number of considered neighbors is defined

by the size of the kernel. Since the same kernels are applied along all outputs of the previous

layer, a convolutional architecture is especially well suited for recognition of patterns in the

input, independently of their exact position. Hence, CNNs are popular in image analysis

tasks but were also successfully applied on sequence-based data.1,2

1 c c c c c c 1 

FNN 

1 c c c c c c 1 

CNN 

1 c c c c c c 1 

RNN 

a) b) c) 

Figure 1: Three different 2-layer neural network architectures with SMILES representation
of benzene as input. a) Fully-connected Neural Network (FNN): Each neuron is connected
with each neuron/input of the previous layer. b) Convolutional Neural Network (CNN): The
Input to a certain layer is convolved with a kernel of size 3. c) Recurrent Neural Network
(RNN): Illustration of a RNN with an unrolled graph. Note that a 2-layer of RNN has two
separate cell states (blue boxes)

Recurrent Neural Network

A more tailored architecture for sequence-based data is the Recurrent Neural Network (RN-

N). In contrast to FNN and CNN where all information flows in one direction, from the input

layer through the hidden layers to the output layer (feed-forward neural networks), an RNN
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has an additional feedback loop (recurrence) through an internal memory state. An RNN

processes a sequence step by step while updating its memory state concurrently. Hence, the

activation of a neuron at step t is not only dependent on the input at t but also on the state

at position t− 1. By including a memory cell, an RNN is in theory able to model long-term

dependencies in sequential data, such as keeping track of opening and closing brackets in the

SMILES syntax. The concept of a neural network with a feedback loop can be simplified by

unrolling the RNN network over the whole input sequence (see Figure 1 c). Unrolling the

graph emphasizes that an RNN which takes long sequences as input becomes a very deep

neural network suffering from problems such as vanishing or exploding gradients3. To avoid

this problem, Hochreiter et al. proposed the Long short-term memory (LSTM) network,

which extends the RNN architecture by an input gate, an output gate and a forget gate.4 In

this work we use a modified version of the LSTM: the gated recurrent unit (GRU).5

Baseline Molecular Descriptors

In this section we will introduce the basic concepts of the different molecular descriptors we

used as baseline.

Circular fingerprints like the extended-connectivity fingerprints (ECFPs) were introduced

for the purpose of building machine learning models for quantitative structure-activity rela-

tionships (QSAR) models. This class of fingerprints iterates over the non hydrogen atoms of

a molecular graph and encodes the neighbourhood up to a given radius using a linear hash

function. The resulting set of neighbourhood hash codes for a dataset can then be handled

as a sparse matrix or folded to a much smaller size (1024 or 2048 are typical folding size

choices). Folding such a potentially large bit space (232) to a much smaller space produces

collisions in the final fingerprint vector, where two different neighbourhood codes could end

up at the same position in the folded vector, resulting in a loss of information. Additionally,

once folded, it is impossible to trace back important bits to actual compound substructures,
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and therefore the model interpretability is lost.

In the ligand-based virtual screening experiments we followed the benchmarking protocol pro-

posed by Riniker et al.6 In this protocol we benchmarked our proposed descriptor against

the 14 fingerprints available in the pipeline. Accordingly Rinker et al., these fingerprints

can be divided into four different classes: dictionary-based (e.g. Molecular ACCess System

MACCS), topological or path-based (e.g. atom pair (AP) fingerprints or topological torsions

(TT) ), circular fingerprints (e.g. ECFP) and pharmacophores (eg. FCFP). For a more com-

prehensive description of the different baseline fingerprints we refer to the work of Rinker et

al..

QSAR modelling

We used the Python library RDKit (v.2017.09.2.0) to calculated Morgan fingerprints with

radius 1, 2 and 3 (equivalent to ecfc2, ecfc4, ecfc6) each folded to 512, 1024 and 2048 bits,

resulting in nine different baseline molecular descriptors.

Three different machine learning algorithms were used to model the QSAR tasks: Random

Forest (RF), Support Vector Machine (SVM) and Gradient Boosting (GB). We utilized

the Python library sklearn (v.0.19.1) to build, train and cross-validate the models. The

hyperparameter optimization was performed for each QSAR task, model and fingerprint

triplet individually. The hyperparameter grid for the different models was defined as follows:

• Random Forest:

– Number of estimators (trees): 20, 100 and 200

• Support Vector Machine:

– Penalty parameter C of the error term: 0.1, 0.5, 1 , 3 5, 10, 30 and 50

– Coefficient gamma for the RBF-kernel: 1/(Nf + b), where Nf is the number of

features and b is picked from −300, −150, −50, −15, 0, 15, 50, 150 and 300
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• Gradient Boosting:

– Number of estimators: 20, 100 and 200

– Learning rate: 0.5, 0.1 and 0.01

In addition to the classical machine learning methods trained on circular fingerprints we

also trained graph-convolution models on the different QSAR tasks. Briefly, the architecture

consists of two successive graph convolution layers, an input atom vector of size 75 and

rectified linear units (ReLU) were used as non linearity. For each task a individual graph-

convolution model were trained and optimized with respect to following hyperparameters:

• batch size: 64, 128 and 256

• learning rate: 0.0001, 0.0005, 0.001 and 0.005

• convolutional filters: 64, 128 and 256

• dimension of the dense layer: 128, 256, 512, 1024, and 2048

• number of epochs: 40, 60 and 100

Translation Model Architecture

As final translation model we selected the model with the best performance on the validation

QSAR tasks (see Figure 2). For the encoding part we stacked 3 GRU cells with 512, 1024

and 2048 units respectively. The state of each GRU cell is concatenated and fed into a fully-

connected layer with 512 neurons and hyperbolic tangent activation function. The output

of this layer (values between -1 and 1) is the latent space which can be used as molecular

descriptor in the inference time. The decoding part takes this latent space as input and

feeds it into a fully-connected layer with 512 + 1024 + 2048 = 3584 neurons. This output

is split into 3 parts and used to initialize 3 stacked GRU cells with 512, 1024 and 2048

units respectively. The output of the GRU cells is mapped to predicted probabilities for the
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different tokens via a fully-connected layer.

The classifier network consists of a stack of three fully-connected layers with 512, 128 and 9

neurons respectively, mapping the latent space to the molecular property vector. The model

was trained on translating between SMILES and canonical SMILES representations. Both

sequences were tokenized as described in the method section and fed into the network.

In order to make the model more robust to unseen data, input dropout was applied on a

character level (15%) and noise sampled from a zero-centered normal distribution with a

standard derivation of 0.05. We used an Adam optimizer7 with a learning rate of 5 ∗ 10−4

which was decreased by a factor of 0.9 every 50000 steps. The batch size was set to 64.

To handle input sequences of different length we used a so-called bucketing approach. This

means that we sort the sequences by their length in different buckets (in our case 10) and

only feed sequences from the same bucket in each step. All sequences were padded to longest

sequence in each bucket. We used the framework TensorFlow 1.4.18 to build and execute

our proposed model.

Figure 2: Final model architecture.
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QSAR results

Tables 1, 2, 3 and 4 show the detailed results for the hyperparameter optimized models.

For the baseline fingerprint models, only the result for the best performing fingerprint is

shown. For each task we show the performance of an SVM on our descriptor (ours), the

performance of a graph-convolution model (GC) and the best performing model-fingerprint

combination (RF, SVM or GB). For the classification tasks we measure the area under the

Receiver Operating Characteristic curve (roc-auc), the area under the precision-recall curve

(pr-auc) accuracy (acc), F1-measure (f1). For the regression tasks we measure the coefficient

of determination (r2), Spearman’s rank correlation coefficient (r), mean squared error (mse)

and mean absolute error (mae).

Table 1: Averaged results for the four classification QSAR task in random-split cross-
validation after hyperparameter optimization.

Task roc-auc pr-auc acc f1 Descriptor Model

ames
0.89 0.91 0.81 0.83 ecfc2 1024 RF
0.88 0.90 0.81 0.83 - GC
0.89 0.91 0.82 0.83 ours SVM

herg
0.85 0.94 0.82 0.89 ecfc4 1024 RF
0.86 0.94 0.83 0.89 - GC
0.86 0.94 0.82 0.88 ours SVM

bbbp
0.93 0.97 0.90 0.94 ecfc2 512 RF
0.92 0.97 0.88 0.92 - GC
0.93 0.97 0.90 0.94 ours SVM

bace
0.91 0.89 0.84 0.82 ecfc2 512 RF
0.91 0.88 0.82 0.81 - GC
0.90 0.86 0.84 0.83 ours SVM

beetox
0.91 0.88 0.89 0.69 ecfc6 2048 RF
0.89 0.79 0.88 0.69 - GC
0.92 0.83 0.92 0.80 ours SVM

VS Results

Tables 5 and 6 show the detailed results for the virtual screening experiments performed

on the DUD and MUV databases. Our descriptor (ours) is compared to different baseline
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Table 2: Averaged results for the four regression QSAR task in random-split cross-validation
after hyperparameter optimization.

Task r2 r mse mae Descriptor Model

lipo
0.69 0.83 0.42 0.46 ecfc2 1024 SVM
0.73 0.84 0.36 0.44 - GC
0.72 0.83 0.38 0.46 ours SVM

egfr
0.70 0.84 0.62 0.57 ecfc4 2048 RF
0.67 0.83 0.68 0.60 - GC
0.70 0.85 0.62 0.57 ours SVM

plasmo
0.23 0.45 0.25 0.38 ecfc2 2048 SVM
0.18 0.41 0.27 0.40 - GC
0.23 0.45 0.25 0.38 ours SVM

esol
0.58 0.82 1.38 0.91 ecfc6 1024 SVM
0.86 0.92 0.58 0.56 - GC
0.92 0.96 0.34 0.42 ours SVM

melt
0.38 0.62 1700 33 ecfc2 2048 SVM
0.39 0.67 1700 34 - GC
0.42 0.64 1600 32 ours SVM

Table 3: Averaged results for the four classification QSAR task in cluster-split cross-
validation after hyperparameter optimization.

Task roc-auc pr-auc acc f1 Descriptor Model

ames
0.79 0.81 0.74 0.70 ecfc4 2048 SVM
0.80 0.80 0.74 0.74 - GC
0.80 0.82 0.74 0.71 ours SVM

herg
0.73 0.89 0.76 0.85 ecfc4 2048 RF
0.72 0.89 0.77 0.86 - GC
0.75 0.90 0.76 0.84 ours SVM

bbbp
0.72 0.88 0.79 0.84 ecfc4 2048 RF
0.75 0.90 0.77 0.83 - GC
0.74 0.88 0.81 0.86 ours SVM

bace
0.76 0.70 0.67 0.59 ecfc2 2048 GB
0.70 0.67 0.55 0.52 - GC
0.74 0.67 0.65 0.55 ours SVM

beetox
0.62 0.39 0.75 0.00 ecfc6 512 GB
0.67 0.48 0.72 0.20 - GC
0.69 0.45 0.78 0.21 ours SVM
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Table 4: Averaged results for the four regression QSAR task in cluster-split cross-validation
after hyperparameter optimization.

Task r2 r mse mae Descriptor Model

lipo
0.38 0.70 0.84 0.68 ecfc4 2048 RF
0.49 0.69 0.68 0.64 - GC
0.47 0.69 0.71 0.65 ours SVM

egfr
0.34 0.58 1.01 0.77 ecfc6 1024 RF
0.26 0.51 1.16 0.86 - GC
0.30 0.55 1.09 0.81 ours SVM

plasmo
-0.02 0.21 0.33 0.44 ecfc6 1024 RF
0.02 0.20 0.32 0.44 - GC
0.05 0.24 0.31 0.43 ours SVM

esol
0.58 0.82 1.38 0.91 ecfc6 2048 SVM
0.55 0.76 1.62 0.96 - GC
0.70 0.89 1.01 0.75 ours SVM

melt
0.22 0.51 1800 34 ecfc2 1024 SVM
0.21 0.48 1930 34 - GC
0.28 0.55 1700 32 ours SVM

descriptors by the are under the Receiver Operating Characteristic curve (ROC-AUC), the

Enrichment Factor (EF) for the top 5% ranked compounds 5%, the Robust Initial Enhance-

ment (RIE) with parameter α = 20 and the Boltzmann-Enhanced Discrimination of ROC

(BEDROC) with parameter α = 20. For detailed description of the baseline descriptors and

evaluation metrics, we refer the reader to the work of Riniker et al.6
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Table 5: Results of the ligand-based virtual screen of the DUD database.

Descriptor ROC-AUC BEDROC RIE EF5
ours 0.949 0.792 12.485 15.294
laval 0.899 0.746 11.750 14.216
tt 0.890 0.744 11.718 14.257
lecfp4 0.887 0.771 12.138 14.813
lecfp6 0.886 0.767 12.072 14.691
ecfp4 0.884 0.764 12.024 14.623
rdk5 0.884 0.747 11.761 14.291
avalon 0.881 0.733 11.537 13.922
ecfp6 0.881 0.755 11.879 14.429
fcfp4 0.874 0.754 11.868 14.472
ap 0.868 0.717 11.298 13.676
ecfc4 0.867 0.749 11.782 14.354
maccs 0.863 0.667 10.511 12.730
fcfc4 0.852 0.728 11.459 13.891
ecfc0 0.805 0.570 8.969 10.634

Table 6: Results of the ligand-based virtual screen of the MUV database.

Descriptor ROC-AUC BEDROC20 RIE20 EF5
ours 0.679 0.195 3.826 4.258
ap 0.677 0.176 3.440 3.737
tt 0.670 0.191 3.746 4.066
avalon 0.644 0.174 3.403 3.661
laval 0.643 0.172 3.375 3.659
ecfc4 0.637 0.181 3.540 3.895
rdk5 0.627 0.177 3.473 3.747
ecfc0 0.626 0.130 2.541 2.816
fcfc4 0.615 0.163 3.184 3.471
fcfp4 0.605 0.175 3.420 3.706
lecfp4 0.601 0.178 3.480 3.774
lecfp6 0.599 0.178 3.481 3.768
ecfp4 0.599 0.176 3.447 3.753
ecfp6 0.591 0.175 3.433 3.776
maccs 0.578 0.127 2.482 2.705
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Timing

Another point to consider, when comparing our proposed method with the baseline, is the

time needed to extract the molecular descriptors and train the machine learning algorithm.

Calculating Morgan fingerprints with RDKit takes on a single CPU only a few seconds

for a dataset of 10.000 compounds. If ran on a modern GPU, our proposed model takes

approximately the same time. On a single CPU core, however, this computational time

increases approximately by a factor of 100. Training an RF for this size of dataset on our

descriptors is in the order of seconds. An SVM, that scales with number of input features,

takes, in the order of minutes for the best baseline fingerprints (ecfpc4 2048), and in the order

of seconds for our descriptors (512 dimensional). The best performing graph-convolution

model, on the other side, takes approximately 30 minutes to train on a modern GPU (on a

single CPU this method would not be computational feasible). Thus, with a GPU at hand,

running a QSAR experiment with our proposed descriptors is on the same timescale as with

state-of-the-art molecular fingerprints, while being significantly faster than training a graph-

convolution model. One way to make our encoder faster would be to replace the GRU cells

by one-dimensional convolutional layers. In our experiments however these do not perform

as well in the downstream QSAR validation sets.

Generated compounds

Figure 3 and 4 depicts examples of compounds generated for the experiment in section 3.4 in

the main article. The compounds shown are randomly picked and had a (ecfp4-) tanimoto

distance greater than 0.5 to the starting compound.
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Figure 3: Examples of generated compounds.

12



Figure 4: Examples of generated compounds.
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Figure 5: Examples of generated compounds.
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Figure 6: Examples of generated compounds.
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Efficient multi-objective molecular optimization in
a continuous latent space†

Robin Winter, *ab Floriane Montanari, a Andreas Steffen,a Hans Briem,a

Frank Noé b and Djork-Arné Clevert a

One of the main challenges in small molecule drug discovery is finding novel chemical compounds with

desirable properties. In this work, we propose a novel method that combines in silico prediction of

molecular properties such as biological activity or pharmacokinetics with an in silico optimization

algorithm, namely Particle Swarm Optimization. Our method takes a starting compound as input and

proposes new molecules with more desirable (predicted) properties. It navigates a machine-learned

continuous representation of a drug-like chemical space guided by a defined objective function. The

objective function combines multiple in silico prediction models, defined desirability ranges and

substructure constraints. We demonstrate that our proposed method is able to consistently find more

desirable molecules for the studied tasks in relatively short time. We hope that our method can support

medicinal chemists in accelerating and improving the lead optimization process.

1 Introduction

A key challenge in small molecule drug discovery is to nd novel
chemical compounds with desirable properties. Computational
methods have long been used to guide and accelerate the search
through the huge chemical space of druglike molecules. In
virtual screening, for instance, computational models can be
utilized to rank virtual libraries of chemical structures
regarding selected properties such as the predicted activity
towards a target of interest.2,3 However, given the estimated vast
amount of druglike molecules (1023–1060),4 a complete search
through this space is computationally infeasible.

An alternative approach is to computationally generate new
molecules (de novo design) with optimized properties without
the need for enumerating large virtual libraries. Heuristic
methods such as genetic algorithms were used to optimize
selected properties on-the-y.5–7 However, due to the discrete
nature of the chemical space, dening rules to transform one
molecule into another (e.g.mutation and crossover rules for the
genetic algorithms) largely depends on human expert knowl-
edge. Moreover, dening a nite set of possible transformation
rules limits the optimization possibilities and thereby prom-
ising molecules might be missed.

With the recent rise of deep learning8,9 in the eld of
computational chemistry, new approaches for de novo drug
design have emerged (for a comprehensive review of this eld
the interested reader is refered to ref. 10 and 11). Segler et al.
trained a Recurrent Neural Network (RNN) to model a larger set
of molecules represented by the Simplied Molecular Input
Line Entry Specication (SMILES) notation.12 The resulting
model was not only able to reproduce the molecules in the
training set, but also to generate novel structures. By further
training on a focused set of structures with a certain property
distribution (e.g. the activity towards a biological target) the
novel generated molecules could be enriched with structures
following this desired property distribution. Another strategy
for ne-tuning a generative model is Reinforcement Learning.13

Reinforcement Learning aims at learning the optimal set of
actions to optimize a dened reward in a given environment. In
the case of de novo design, the reward can e.g. be dened by the
molecular properties to be optimized. Olivecrona et al. utilized
this concept to alter the generative process of a pre-trained
RNN, in order to generate more molecules with desirable
properties.14

Besides RNNs trained on the SMILES representation, other
groups also utilized Generative Adversarial Neural Networks15–17

or other molecular representations such as the molecular
graph.18–20 While these method differ in how they generate
molecules, they all apply Reinforcement Learning to enrich the
generated molecules with structures that have desirable prop-
erties. The main drawback of such methods is the need to
retrain the generative model every time the reward function
changes. This becomes impractical in a typical drug discovery
project as the optimization criteria usually change over time.

aDepartment of Digital Technologies, Bayer AG, Berlin, Germany. E-mail: robin.

winter@bayer.com
bDepartment of Mathematics and Computer Science, Freie Universität Berlin, Berlin,

Germany

† Electronic supplementary information (ESI) available: Details of the desirability
scaling functions, high resolution gures and detailed results of the GuacaMol
benchmark. See DOI: 10.1039/c9sc01928f

Cite this: Chem. Sci., 2019, 10, 8016

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 18th April 2019
Accepted 2nd July 2019

DOI: 10.1039/c9sc01928f

rsc.li/chemical-science

8016 | Chem. Sci., 2019, 10, 8016–8024 This journal is © The Royal Society of Chemistry 2019

Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ju

ly
 2

01
9.

 D
ow

nl
oa

de
d 

on
 3

/2
3/

20
22

 1
:5

5:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue



A method that decouples the generation of molecules from
the optimization problem was originally proposed by Gómez-
Bombarelli et al.21 In their work, a variational autoencoder was
trained on the SMILES notation of a large set of molecules. As
a result, a new continuous vector representation of chemical
structures was obtained. Points in this continuous space
correspond to molecules in the discrete chemical space (as
represented by the SMILES notation) and vice versa. Novel
structures can be generated by sampling arbitrary points in the
continuous space and then transforming them back to the
SMILES notation. A molecular transformation can be achieved
by a simple shi in the vector representation. Thus, optimizing
chemical structures with respect to selected properties can be
directly performed by optimizing a reward function in the
continuous space. In their work, Gómez-Bombarelli et al.
utilized Bayesian Optimization to nd points in the space that
correspond to molecules with a high drug-likeness and
synthetic accessibility. More recently, Jin et al. also used
Bayesian Optimization to optimize molecules generated by
a variational autoencoder based on molecular graphs.22

Bayesian Optimization is a powerful method that has proven
useful in the optimization of functions that are computationally
expensive to evaluate as it needs a comparably low amount of
function evaluations.23 However, its computational complexity
increases exponentially with the number of dimensions of the
optimization space.24 In the case of molecular optimization,
though, function evaluations are relatively cheap (prediction of
molecular properties) and the dimensionality of the search
space (continuous molecular representation) relatively high.

In this work, we propose the use of a more light weight
heuristic optimization method termed Particle Swarm Optimi-
zation (PSO). Hartenfeller et al. already proposed in 2008 to
apply PSO on a discrete chemical space represented by a large
library of molecular building blocks and chemical reactions.25

Here, we apply PSO in our continuous chemical representation
reported previously.26 As particles of the swarm navigating this
representation correspond to actual molecules in the chemical
space, we term our method Molecule Swarm Optimization
(MSO). In three different experiments we show how our
proposed method can be utilized to optimize molecules with
respect to a single objective, under constraints with regard to
chemical substructures and with respect to a multi-objective
value function.

2 Methods
2.1 Continuous chemical representation

Our approach can be used with any continuous representation
of the chemical space, such as those found in.21,22,27 In this study
we build upon the continuous molecular representation
framework reported earlier.26 This molecular representation
was learned using a Deep Neural Network to translate from one
molecular string representation (e.g. SMILES) to another. In this
way, the model learns the common “essence” between both
syntactically different string notations, i.e. the molecule which
both notations are representing. By introducing a bottleneck in
the architecture of the neural network, the molecule is encoded

in a compressed embedding, that can be utilized as latent
representation of the chemical space. As the model is trained on
a huge dataset of approximately 75 million chemical structures
stemming from various sources, the resulting latent space
represents a wide range of the chemical space that can be
explored.

In this earlier work, we also showed that the learned
molecular representation can be utilized as powerful molecular
descriptors for quantitative structure activity relationships
(QSAR) models. Moreover, transformations in the latent space
result, if decoded back, in smooth transformations in the
discrete chemical space in regard of structural as well as
molecular properties. The interested reader is directed to the
original publication for technical details of our framework.26

2.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is a stochastic optimization
technique that mimics swarm intelligence to nd an optimal
point in a search space as dened by an objective function. The
particle swarm consists of individual agents (particles) that
explore the search space, utilizing information gained during
their search and “communicating” with other particles in the
swarm.28

This concept can be dened by a few simple equations.
The N particles in the swarm are dened by their position x and
velocity v. The potential surface of the search space can be
evaluated by the objective function f. The movement of the i-th
particle at iteration step k is inuenced by the best point it has
yet discovered

xbesti ¼ argmaxf(xi
k) (1)

as well as the overall best point yet discovered

xbest ¼ argmaxf(xbesti ). (2)

Aer each iteration, each particle updates its velocity vi and
position xi in the following way:

vi
k+1 ¼ wvi

k + c1r1(x
best
i � xi

k) + c2r2(x
best � xi

k) (3)

xi
k+1 ¼ xi

k + vi
k+1 (4)

where c1 and c2 are constants that weight the contribution of the
particles individual experience versus the swarm experience. r1
and r2 are random numbers drawn from independent uniform
distributions between 0 and 1. The so called inertia weight w is
a constant that controls the momentum of the particle from the
previous iteration.

2.3 Objective function

The search of the Particle Swarm is guided by the objective
function that is dened to be maximized. In drug discovery, the
optimized objective can be both complex, conicting, ill-
dened or evolving over time. For example, at the early stages
of lead discovery, a higher emphasis is put on increasing bio-
logical activity and gaining structure-activity-relationship

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 8016–8024 | 8017
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knowledge. A set of targets that should not be hit by the
compounds can also be introduced at that stage. Later on, when
the overall activity landscape is well understood by the team, the
focus of the optimization evolves more towards
pharmacokinetics-related properties (ADME) such as improving
solubility, metabolic stability or cell permeability, etc. These
different objectives can contradict themselves, for example
increasing the solubility of a compound might lead to perme-
ability problems. This makes a multi-parameter optimization
notoriously challenging.

In order to keep the method exible, we propose different
individual objective functions that can be combined and
weighted:

� Fixed ranges for molecular properties such as molecular
weight, number of H-bond donors, octanol–water partition
coefficient, stereocenters etc.

� Ad-hoc QSARmodels to predict the biological activity of the
molecules with respect to targets of interest.

� ADME models to predict solubility, metabolic stability, cell
permeability and efflux rate.

� Scoring functions for chemical reasonableness like the
synthetic accessibility (SA) score29 or drug-likeness (QED).30

� Penalties for unwanted (e.g. toxic) or uncommon
substructures.

� Rewards for dened substructures (e.g. xing a scaffold) or
similarity to a certain compound.

These functions either work directly on the continuous
representation (e.g. QSAR models, similarity) or on the decoded
SMILES representation utilizing the chemoinformatics library
RDKit.31 In this study, we build two biological activity models
for prediction of Epidermal Growth Factor Receptor (EGFR) and
asparyl protease b-site APP cleaving enzyme-1 (BACE1) activity.
These targets were choosen as the QSAR models build for these
targets showed reasonable predictive performance in our prior
work.26 Compounds with reported IC50 values were extracted
from ChEMBL32 and preprocessed as described in this prior
work. We encoded the molecules in the continuous represen-
tation and trained Support Vector Machine (SVM) regression
models (as implemented in the Python library scikit-learn33) on
predicting the IC50 values of the compounds. Moreover, we
trained SVMs on solubility, metabolic stability and membrane
permeability endpoints utilizing in-house data. SVM hyper-
parameters were optimized in a 5-fold cross-validation.

In order to lter for unwanted substructures, we extracted
known toxic substructures from a published collection by
SureChEMBL.34,35 Moreover, to lter for possible unstable
structures we created a list with extended-connectivity nger-
prints (ECFP4) of substructures that occur in more than 5
individual compounds in ChEMBL. Roughly 1% of the
compounds in ChEMBL have substructures that occur less
oen and are here considered as potentially unstable. During
the optimization, generated structures are penalized if they
contain such known toxic substructures or have uncommon
ECFP4 bits.

In order to combine the scores of the different functions in
a multi-objective setting, we follow the approach reported in36

and scale each function between 0 and 1 reecting values of low

to high desirability (see ESI† for more details). The scaled scores
of each function are combined as the weighted average, where
the weights correspond to priorities in different tasks. The
resulting desirability score (dscore) is subsequently used as the
objective function for the PSO algorithm.

2.4 Optimization model

The nal optimization model combines the parts mentioned
above, i.e. the continuous molecular representation, the opti-
mization algorithm and the objective functions. Either a query
molecule is encoded in the continuous space or a random point
is sampled. The PSO algorithm is initialized by generating
a xed amount of particles (in the order of 100) at this position
with randomly drawn initial velocities. Aer the rst position
update, the objective function is evaluated for each individual
particle of the swarm. The search is continued until a certain
number of iterations or a break condition (e.g. desired value) is
met. Since the PSO algorithm is a stochastic optimization
technique, multiple restarts are performed.

3 Results and discussion

By combining our encoder-decoder framework, computational
models to predict properties and/or biological activities of
compounds, and an optimization algorithm, we optimize
a query molecule with respect to the objective function resulting
in a set of compounds with more desirable (predicted) proper-
ties. In the rst part we show the optimization of molecules with
regard to a single objective. Next, we further restrict the opti-
mization by adding substructure constraints and then demon-
strate that our framework can be utilized to perform multi-
objective optimization of compounds. In our nal experiment
we benchmark our proposed model with the GuacaMol1

package.

3.1 Single-objective optimization

As a rst proof-of-principle, we run experiments on the opti-
mization of molecules with respect to single molecular prop-
erties. Similar to related works,15,20,21,37 we perform individual
optimizations on the drug-likeness, the octanol–water partition
coefficient logP as well as the synthetic accessibility of a mole-
cule. We utilize the RDKit implementation of the Quantitative
Estimate of Druglikeness (QED) score to evaluate the drug-
likeness and the penalized logP score37 that combines the
partition coefficient and the synthetic accessibility (SA) score of
a compound. Moreover, we optimize compounds with respect to
their predicted biological activity on EGFR and BACE1.

For each optimization task, we run the PSO algorithm 100
times for 100 steps each. Table 1 shows for each task the highest
score achieved. For the drug-likeness and the penalized logP
tasks, we compare our method to the best results of state-of-the-
art optimization models as reported by You et al.20 Our
proposed method achieves the same performance on the drug-
likeness task as the best state-of-the-art approach and outper-
forms all other approaches on the penalized logP task. More-
over, our method consistently generated molecules with very

8018 | Chem. Sci., 2019, 10, 8016–8024 This journal is © The Royal Society of Chemistry 2019
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high predicted binding-affinities (IC50 < 1 nM) for both bio-
logical targets respectively. As the compounds used to train
both QSARmodels were not included in the pre-training dataset
of the encoding-decoding framework, these high scores can not
be attributed to an information leakage or bias in the generative
model. In fact, we investigate if including these compounds in
the pre-training inuences the optimization results. We found
that both models performed similarly with overlapping con-
dence intervals, suggesting that time-costly ne-tuning steps
are not needed here. Fig. 1 depicts the average scores during the
optimization process for the different tasks. To better under-
stand the impact of the starting point for the optimization, we
show results for a xed starting point (benzene) and for variable
starting points, randomly sampled from ChEMBL. In all tasks,
the model consistently optimizes the respective property,
reaching relatively high scores already aer a few iterations.
Although starting from different points, the variance between
the scores at a given optimization step is similar to the variance
obtained when repeatedly starting from benzene. As a matter of
fact, the variance seems to be higher for the xed starting point.
Moreover, starting from a molecule picked from ChEMBL
seems to result in faster and more successful optimizations,
except for the optimization of the penalized logP score. This is
probably due to the increased size and structural complexity of
these molecules compared to a simple benzene ring. Moreover,
initializing the particle swarm algorithm with more particles
helps nding more optimal points in the search space in less
iterations (at the expense of increased computational time).

Similar to related work,21,22 we also tried to optimize the
latent space of our autoencoder framework with Bayesian
Optimization (BO). However, trying different BO frameworks,
we were not able to nd good solutions within reasonable
computation time. This is probably due to the high dimen-
sionality of our search space (512 dimensions), since BO's
computational complexity grows exponentially with the number
of dimensions.24

It has to be mentioned that the baseline methods in Table
1 were trained on signicantly less data (z250.000
compounds) which might lead to an unfair advantage for our
proposed method. To investigate the impact of a smaller pre-
training dataset on our optimization results, we retrained our
encoder-decoder framework with the same dataset as used in
ref. 20. We nd that for this model different runs have
a higher variance in performance, however, the best solutions

still have a similar high score as the solutions reported in
Table 1. Thus, the performance of our proposed model cannot
only explained by the increased size of the pre-training
dataset.

Using one GPU for passing the molecules in the swarm
through the encoder-decoder model and one CPU core to
perform the PSO algorithm and objective function evaluation,
computational time is in the order of a few minutes for a 100-
steps run. The run time on a 32-core CPU machine without
GPU support is in the order of 10 minutes. This is in contrast
to baseline methods in Table 1 which have a reported wall
clock running time of multiple hours to one day on a 32-core
CPU machine.20 This substantial speed-up is mainly due to
the fact that our proposed method separates the training of
the generative model (the decoder of the utilized encoder-
decoder framework) and the optimization procedure. Since
we use the same pre-trained generative model for each opti-
mization task, we do not have to spend computational
resources on training this model in every new run. This is in
contrast to the methods used for comparison, as they
approach the optimization task by re-training/ne-tuning the
generative model for every new task.

Fig. 2 shows a few example molecules randomly picked
from the nal iteration for each optimization task. It is
evident that, by optimizing a single objective function, the
model exploits its ability to freely navigate the chemical space
and solely focuses on this very objective. While the optimi-
zation of drug-likeness obviously results in pleasant-looking
molecules, the three other optimization tasks result into
comparably “unusual” chemistry. Since long aliphatic chains
are both maximizing the partition coefficient while being
scored as easy to synthesize, they are the inevitable outcome
when optimizing for penalized logP. Moreover, if the objective
is solely maximizing the prediction of a QSAR model, the
resulting molecules will aggregate the evidence the QSAR
model found in the potent molecules of its training set. This,
however, will most likely guide the optimizer into parts of the
chemical space that are not well covered by training set
molecules, leading to inaccurate and overoptimistic predic-
tions. Thus, nal molecules are likely to be artifacts of the
underlying QSAR model.

Summing up, we demonstrated that our method is able to
very quickly improve upon a given starting molecule in terms of
predicted drug-likeness or predicted biological activity. This
conrms that our optimization method is able to navigate the
chemical space dened by our pre-trained embedding and
perform single-parameter optimization in a timely fashion.
However, these examples are far from actual drug design cases.
At this stage, we do not apply any structural constraints for
guiding the structure generation. This means that the new,
optimized compounds might be structurally remote from the
dened starting points or contain toxic or unstable moieties
(e.g. 1,3-pentadiyne substructure in Fig. 2d). Usually, drug
discovery projects are conned within chemical series and
closely related analogues. Hence, we propose to add constraints
on the chemical structure during optimization in the following
section.

Table 1 Best results for the different single-objective optimization
tasks. Our Method is compared to the results of three recently pub-
lished optimizations methods as reported by You et al.20

ORGAN JT-VAE GCPN MSO

Reference 15 22 20 Ours
Penalized logP 3.63 5.30 7.98 26.1
QED 0.896 0.925 0.948 0.948
EGFR [pIC50] — — — 10.3
BACE1 [pIC50] — — — 11.5
Run time �1 d �1 d �8 h �10 m

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 8016–8024 | 8019
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3.2 Constrained single-objective optimization

In this experiment, we perform a single property optimization,
while constraining the explorable chemical space using
a dened molecular scaffold that needs to be present in the
generated molecules. This task is more closely related to a real
drug-development process, as it mimics a typical lead optimi-
zation task.

We base our experiment on a lead optimization paper by
Stamford et al. in which an iminopyrimidine lead series was
optimized for BACE1 inhibition.38 In order to evaluate whether
our method can optimize for biological activity while con-
straining the explorable chemical space, we start the optimi-
zation from the same initial compound as in38 (Fig. 3b). We x
the iminopyrimidinone scaffold (Fig. 3a) by penalizing gener-
ated compounds that do not contain this substructure in the
objective function. For the prediction of BACE1 activity we
retrain the BACE1 model from the previous section, excluding
all compounds with an iminopyrimidinone scaffold.

On the 17 iminopyrimidinone compounds reported by
Stamford et al. the QSAR model achieves a Spearman correla-
tion coefficient of r ¼ 0.7 (p-value ¼ 0.004) compared to the
reported IC50 values. This means that although we did not

include compounds with an iminopyrimidinone scaffold in the
training, the BACE1 activity prediction model shows a reason-
able performance in the part of the chemical space we are
interested in (i.e. compounds with iminopyrimidinone
scaffold).

In addition to xing the scaffold, we further restrict the
chemical space by penalizing compounds with more than 26
heavy atoms (one more heavy atom than the best reported
compound by Stamford et al. depicted in Fig. 3d). Moreover, we
penalize for known toxic and uncommon substructures.

We run the optimization model for 100 steps and restart
the optimization 200 times. Fig. 3d–f depicts the compounds
with the best scores found in the in silico optimization. In the
course of the optimization the most active BACE1 inhibitor
(compound c) from Stamford et al. was passed by in 2 out of
the 200 runs but was not part of the nal set of proposed
molecules. This can be explained as the members of the nal
set of molecules all have higher predicted activities than
compound c. As a proof of principle, we also performed an
experiment where the Euclidean distance of a particle to
compound c's embedding was used as objective function. In
this experiment, we could consistently (200 out of 200 times)
recover compound c as the optimal solution. Hence, we

Fig. 1 Best score of the particle swarm over the course of optimization averaged over 100 runs for four optimization tasks: (a) quantitative
estimation of drug-likeness, (b) penalized octanol–water partition coefficient, (c) binding affinity (pIC50) to Epidermal Growth Factor Receptor, (d)
binding affinity (pIC50) to asparyl protease b-site APP cleaving enzyme-1. Optimizations were either started from benzene or a random picked
compound from ChEMBL with either 50 or 200 particles.

8020 | Chem. Sci., 2019, 10, 8016–8024 This journal is © The Royal Society of Chemistry 2019

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ju

ly
 2

01
9.

 D
ow

nl
oa

de
d 

on
 3

/2
3/

20
22

 1
:5

5:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online



suppose that our approach does not contain compound c
within the nal set of molecules because this region of
chemical space is not the most attractive for the applied
BACE1 model. Our reported in silico solutions do contain the
required scaffold and are predicted to have a higher potency,
so they might possibly give useful new ideas to medicinal
chemists working on BACE1 inhibitors with an iminopyr-
imidone scaffold.

3.3 Multi-objective optimization

In this last section, we evaluate the ability of our proposed
method to optimize a molecule with respect to a multi-objective
value function. In accordance to a typical multi-objective lead
optimization process, we dene the value function as a combi-
nation of multiple molecular properties. We conduct three
experiments:

1. Maximizing the predicted binding affinity to EGFR while
minimizing the predicted binding affinity to BACE1.

2. Maximizing the predicted binding affinity to BACE1 while
minimizing the predicted binding affinity to EGFR.

3. Maximizing the predicted binding affinity to both EGFR
and BACE1.

Additionally for all experiments, we maximize the predicted
solubility, metabolic stability, cell permeability, drug-likeness
as well as the predicted synthetic accessibility (SA) of the
molecule and penalize for known toxic or uncommon
substructures and molecular weight below 200 or above 600
Dalton. Each of the ten different objectives was scaled by
a desirability function between 0 and 1, where low values
correspond to undesirable ranges and high values to acceptable
or good ranges of a molecular property (see ESI† for details on
the scaling functions). The nal optimization objective is the
weighted average of the different scaled objective functions. In
all experiments, we weighted the maximization of binding
affinities with a factor of 5, minimization of binding affinity
with a factor of 3 and all other properties with 1.

Each of the three optimization tasks was run 100 times for
200 steps, starting from a randomly picked molecule from
ChEMBL. The aggregated results for the different properties
over the course of the optimization are depicted in Fig. 4. Our

Fig. 2 Compound examples resulting from optimizing (a) quantitative estimation of drug-likeness, (b) penalized octanol–water partition
coefficient, (c) binding affinity to Epidermal Growth Factor Receptor, (d) binding affinity to asparyl protease b-site APP cleaving enzyme-1.

Fig. 3 (a) Iminopyrimidinone scaffold fixed in the optimization. R1 and
R2 are aromatic rings. (b) Starting point of the optimization. (c) Best
reported compound by Stamford et al. (d–f) Top 3 compounds found
by our method. All compounds are depicted with their predicted
binding affinity to asparyl protease b-site APP cleaving enzyme-1
(BACE1).

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 8016–8024 | 8021
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proposed method is consistently able to optimize a query
molecule with respect to the dened multi-objective value
function. The weighted average of the different objective func-
tions (dscore) increases on average from 0.64, 0.63 and 0.53 to
0.85, 0.9 and 0.82 for the three different experiments respec-
tively. The method is able to nd solutions that are predicted to
meet the respective activity-prole while keeping desirable
ADMET properties as well as QED and SA scores high. In
experiment 3, however, the methods nds solutions that on
average have a comparably lower SA score in order to meet the
desired activity-prole.

Table 2 shows a few example molecules picked from the best
nal iteration for each of the three optimization tasks. Although
the value function consists of many different and partially
conicting individual objectives our proposed method is
consistently able to nd molecules in the vast chemical space
that meet the desirable ranges for all of the dened objectives.

4 GuacaMol benchmark

In order to asses our proposed model's performance in a more
standardized framework we utilized the recently published
benchmark package GuacaMol proposed by Brown et al.1 The
benchmark consists of 20 optimization tasks including a range
of single-, constrained and multi-objective optimization tasks
(goal-directed benchmarksuit v2). In contrast to the previous
evaluations, this benchmark does not only consider the highest-
scoring solution, but also takes up to top-250 solutions for

scoring into account. For a fair comparison, we retrained our
encoder-decoder framework with the same subset of ChEMBL
that is dened in the benchmark. For each optimization task we
used a particle swarm with 200 particles that was run for 250
iteration and 40 restarts.

We found that our proposed method achieves a higher
average score when compared with the baselines methods
included in the benchmark. We were able to outperform these
methods in 9 out of the 12 tasks that were not already perfectly
solved by the best baseline method (Graph-GA). For detailed
(task-wise) solutions we refer the reader to Table 1 in the ESI.†

5 Conclusion

We propose the use of Particle Swarm Optimization (PSO)
heuristic to optimize molecules in a continuous latent repre-
sentation. We show that our model is able to consistently
optimize molecules with respect to single objectives such as
maximizing the predicted drug-likeliness, partition coefficient
logP or target binding affinity as modeled by quantitative
structure activity relationship (QSAR) model. Not only does our
proposed method exhibit competitive or better performance in
nding optimal solutions compared to baseline method, it also
achieves signicant reduction in computational time. In the
more standardized benchmark package GuacaMol we outper-
form the baseline methods in 9 out of 12 tasks that were not
already perfectly solved by the best baseline method. In further
experiments we show how the proposed method can be utilized

Fig. 4 Results for the best scoring (dscore) particle in the swarm over the course of optimization for 200 steps averaged over 100 runs for the
three different optimization tasks. In addition to the objective (dscore) that is optimized, the average predicted potency (pIC50) on both BACE1
and EGFR as well as the average scaled predicted solubility, metabolic stability, permeability, SA score and QED of the best scoring (dscore)
particle is shown.

8022 | Chem. Sci., 2019, 10, 8016–8024 This journal is © The Royal Society of Chemistry 2019
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to support medicinal chemists in a lead optimization process by
proposing in silico solutions for relevant tasks. Finally, we
perform multi-objective optimizations of compounds with
respect to relevant properties such as specic target activity
proles and pharmacokinetics-related properties. We demon-
strate that our proposed method is consistently able to optimize
the joined objective function and results in compounds that
exhibit desirable ranges for all included computed properties.

Although we show promising results for optimizing molecular
properties in this work, it has to be noted that the optimization
cycles are based on predicted values for the properties. This can
be particularly problematic for QSAR models that are applied
outside their domain of applicability. Hence, we advocate the
use of our proposed method only in combination with reason-
able constraints to parts of the chemical space that can be
modeled by the applied functions with reasonable condence.
An even more suitable approach would be combining the in
silico optimization with real world experiments in an active
learning manner. By doing so, the QSARmodel could be retted
while evolving into yet unexplored regions of the chemical space
and hopefully remain reasonably accurate in its predictions.

Availability

Source code of the proposed model will be made openly avail-
able on GitHub (https://github.com/jrwnter/mso) upon
publication.
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Supporting Information: Efficient Multi-Objective

Molecular Optimization in a Continuous Latent Space

Robin Winter, Floriane Montanari, Andreas Steffen,
Hans Briem, Frank Noé, Djork-Arné Clevert

1 Desirability Scaling

We followed the approach proposed by Cummins and Bell [1] and scale each molecular property
function prediction between 0 and 1, reflecting values of low to high desirability. For each
property we defined a range of values with a respective desirability score. Between these points
we interpolated linearly. The resulting scaling functions are depicted in Figure 1.
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Figure 1: Scaling functions for different molecular properties.
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Figure 2: High resolution version of Figure 2(a).

Figure 3: High resolution version of Figure 2(b).

Figure 4: High resolution version of Figure 2(c).
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Figure 5: High resolution version of Figure 2(d).

Table 1: Results of the GuacaMol benchmark for baseline methods and our proposed method

Benchmark
Best of
Data Set

SMILES
GA

Graph
MCTS

Graph
GA

SMILES
LSTM

MSO
(ours)

Celecoxib
rediscovery

0.505 0.732 0.355 1.000 1.000 1.000

Troglitazone
rediscovery

0.419 0.515 0.311 1.000 1.000 1.000

Thiothixene
rediscovery

0.456 0.598 0.311 1.000 1.000 1.000

Aripiprazole
similarity

0.595 0.834 0.380 1.000 1.000 1.000

Albuterol
similarity

0.719 0.907 0.749 1.000 1.000 1.000

Mestranol
similarity

0.629 0.790 0.402 1.000 1.000 1.000

C11H24 0.684 0.829 0.410 0.971 0.993 0.997
C9H10N2O2PF2Cl 0.747 0.889 0.631 0.982 0.879 1.000
Median molecules 1 0.334 0.334 0.225 0.406 0.438 0.437
Median molecules 2 0.351 0.380 0.170 0.432 0.422 0.395
Osimertinib MPO 0.839 0.886 0.784 0.953 0.907 0.966
Fexofenadine MPO 0.817 0.931 0.695 0.998 0.959 1.000
Ranolazine MPO 0.792 0.881 0.616 0.920 0.855 0.931
Perindopril MPO 0.575 0.661 0.385 0.792 0.808 0.834
Amlodipine MPO 0.696 0.722 0.533 0.894 0.894 0.900
Sitagliptin MPO 0.509 0.689 0.458 0.891 0.545 0.868
Zaleplon MPO 0.547 0.413 0.488 0.754 0.669 0.764
Valsartan SMARTS 0.259 0.552 0.040 0.990 0.978 0.994
Scaffold Hop 0.933 0.970 0.590 1.000 0.996 1.000
Deco Hop 0.738 0.885 0.478 1.000 0.998 1.000
Total 12.144 14.396 9.009 17.983 17.340 18.086

3



References

[1] D. J. Cummins and M. A. Bell, Journal of medicinal chemistry, 2016, 59, 6999–7010.

4



68



2.3 Publication 3: grünifai: Interactive Multi-
parameter Optimization of Molecules in a
Continuous Vector Space

Full Reference: Winter, Robin, Retel, Joren, Noé, Frank, Clevert, Djork-
Arné & Steffen, Andreas (2020). grünifai: interactive multiparameter opti-
mization of molecules in a continuous vector space. Bioinformatics, 36(13),
4093-4094.

DOI: 10.1093/bioinformatics/btaa271

Journal/Conference: Bioinformatics (Impact Factor: 6.9)

Source Code: https://github.com/jrwnter/gruenifai

Paper’s main contributions:

• We develop a web application for interactive molecular optimization.

• We utilize the continuous molecular representation and molecular optimiza-
tion algorithm proposed in our previous works and make them accessible
to a broader user group through a web application.

• We implement various ways for the user to actively steer the optimization
process.

Author’s contribution to the paper:

• Conceptualization of the original idea.

• Design of tools for active steering of the optimization.

• Implementation of the web application’s backend.

• Preparation and creation of initial draft and visualizations.
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2.4 Publication 4: Auto-Encoding Molecular Con-
formations

Full Reference: Winter, Robin, Noé, Frank & Clevert, Djork-Arné (2021).
Auto-encoding molecular conformations. arXiv preprint arXiv:2101.01618

DOI: 10.48550/arXiv.2101.01618

Licence: CC-BY

Journal/Conference: Machine Learning for Molecules Workshop at NeurIPS
2020

Source Code: NA

Paper’s main contributions:

• We propose a novel method for representing molecular conformations in
a continuous and fixed-size space and generation of novel conformations
from molecular topology only.

• We demonstrate how different conformations can be represented in a
continuous space, where similar conformations cluster together.

• We show how our proposed method can be used to sample energetically
reasonable conformations for a given molecular topology.

Author’s contribution to the paper:

• Conceptualization of the original idea and its application to molecular
conformation representation and generation.

• Development of the methodology and implementation.

• Design and evaluation of experiments, data curation and analysis.

• Preparation and creation of initial draft and visualizations.
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Abstract

In this work we introduce an Autoencoder for molecular conformations. Our
proposed model converts the discrete spatial arrangements of atoms in a given
molecular graph (conformation) into and from a continuous fixed-sized latent
representation. We demonstrate that in this latent representation, similar confor-
mations cluster together while distinct conformations split apart. Moreover, by
training a probabilistic model on a large dataset of molecular conformations, we
demonstrate how our model can be used to generate diverse sets of energetically
favorable conformations for a given molecule. Finally, we show that the continuous
representation allows us to utilize optimization methods to find molecules that have
conformations with favourable spatial properties.

1 Introduction

Representing chemical matter in a meaningful and expressive way plays a crucial role when it
comes to computer-aided modeling in the field of chemistry (Todeschini and Consonni, 2009).
Recently, substantial progress has been made in many molecule-related tasks, such as bio- and
physicochemical property prediction (Montanari et al., 2020), inverse design of desirable molecules
(Gómez-Bombarelli et al., 2018; Winter et al., 2019; Le et al., 2020), retrosynthetic analysis and
synthesis planning (Segler et al., 2018). Most of these advancements can be attributed to the use
of deep neural networks that enable representation learning of chemical matter. While traditional
methods are mostly based on features, generated by rule-based algorithms extracting structural
information (e.g. extended-connectivity fingerprints), these novel methods are directly trained on a
discrete but more comprehensive representation of molecules. In particular, Graph Neural Networks
utilizing the molecular graph with atoms as nodes and bonds as edges (Duvenaud et al., 2015) or
Recurrent Neural Networks utilizing the one-dimensional line notation of molecules, namely SMILES
(Segler et al., 2018). Still, the underlying molecular representation of the aforementioned methods
are limited in the sense that they do not reflect the spatial arrangement of the atoms in the molecule.
However, many interesting molecular properties, such as its ability to fit inside a protein binding
pocket, inducing a pharmacological effect, are driven by its possible (energetically stable) spatial
arrangements (conformations). Recently, work has been done to apply neural networks directly
on specific conformations of molecules to predict properties such as the equilibrium energy or the
HOMO-LUMO gap (Schütt et al., 2018). Moreover, models have been proposed to generate molecular
conformations for a given molecular graph (Mansimov et al., 2019; Simm and Hernández-Lobato,

Machine Learning for Molecules Workshop at NeurIPS 2020. https://ml4molecules.github.io

ar
X

iv
:2

10
1.

01
61

8v
1 

 [
cs

.L
G

] 
 5

 J
an

 2
02

1



For all 𝑑!,# ∈ 𝔇, 𝜙!,#,$ ∈ Φ and 𝜓!,#,$,% ∈ Ψ

Decoder

ℎ!
ℎ"
𝑧#

#𝑑!,"

ℎ!
ℎ"

𝑧#

ℎ%

𝑧#

ℎ&

ℎ!
ℎ"
ℎ%

𝛿(𝒟)

𝛿(*)

𝛿(+)

&𝜙!,",%

&𝜓!,",%,&

Encoder

average 
over all z

𝑧#

ℎ!
ℎ"
𝑑!,"

𝑧,!,#

ℎ!
ℎ"

𝜙!,",%

ℎ%

𝜓!,",%,&

ℎ&

ℎ!
ℎ"
ℎ%

ρ(𝔇)

ρ(*)

𝑧.!,#,$,%

For all 𝑑!,# ∈ 𝔇, 𝜙!,#,$ ∈ Φ and 𝜓!,#,$,% ∈ Ψ

𝑧/!,#,$

ρ(+)

ℎ!

ℎ"𝑑"!

ℎ!
ℎ"

𝜙",!,$ ℎ$

ℎ!

ℎ"

𝜓",!,$,%

ℎ$

ℎ%

Internal Coordinates

Figure 1: Model architecture of the conformation encoder (middle) and decoder (right). The encoding
functions ρ(D), ρ(Φ) and ρ(Ψ) encode their respective internal coordinates into a latent representation.
The decoding functions δ(D), δ(Φ) and δ(Ψ) are conditioned on the averaged latent representations
(conformer embedding) to reconstruct their respective internal coordinates, given a set of node
embeddings hi ∈ H. On the left hand side, the definition of the internal coordinates, bond length
di,j ∈ D, bond angle φi,j,k ∈ Φ and dihedral angle ψi,j,k,l ∈ Ψ, is visualized.

2019) or chemical formula (Hoffmann and Noé, 2019).
In this work we propose a novel model that converts a molecular conformation to and from a fixed-
sized latent representation (conformation embedding), independent of the number of atoms and bonds
of a molecule. Moreover, training the model in a probabilistic setting, we show that we can model the
conformational distributions of molecules. We demonstrate that sampling from this model results into
a diverse set of energetically reasonable conformers. Finally, combining the conformation embedding
with a continuous molecular structure embedding, we demonstrate how molecules can be optimized
with respect to spatial properties.

2 Methods

2.1 Representing Molecular Conformations

The three-dimensional arrangement of atoms of a molecule can be represented in many different
ways. Annotating each atom with a Cartesian coordinate is probably the most straight-forward way,
however, does not reflect a molecules invariance to rigid translations and rotations. In this work we
utilize the internal coordinate representation, also known as Z-matrix. In this notation, a molecules
spatial arrangement (conformation) Ξ is defined by the set of distances D = {d1, . . . , dND} between
bonded atoms (bond length), the angles Φ = {φ1, . . . , φNΦ} of three connected atoms (bond angles)
and the torsion angles (dihedral angles) Ψ = {ψ1, . . . , ψNΨ

} of three consecutive bonds (see Figure
1). This representation is invariant to rotations and rigid translations and can always be transformed
to and from Cartesian coordinates.

2.2 Conformation Autoencoder

The overall goal of the proposed model is to find functions fΘ and gΘ that map a conformation ΞG of
a molecule G to and from a fixed-sized latent representation zΞ ∈ RFz , respectively. This introduces
two major challenges. Firstly, the model has to map molecules with a different number of atoms and
bonds to the same fixed-sized space. Secondly, fΘ has to invariant with respect to the ordering of
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atoms in the input. Our proposed model consist of a conformation-independent and a conformation-
dependent part. The conformation-independent part comprises a Graph Neural Network utilizing the
molecular graph to extract node-level features for a given molecule. The conformation-dependent
part utilizes these extracted node-level features either to encode the internal coordinates of a specific
molecular conformation into a latent representation (conformation embedding) or to reconstruct a
conformation by predicting the internal coordinates of sets of connected atoms, given their respective
node features and a conformation embedding. The whole model is trained on minimizing the
reconstruction error of the internal coordinates Ξ for a given molecule:

CΞ =
1

ND

∑

d∈D
‖d, d̂‖22 +

1

NΦ

∑

φ∈Φ

‖φ, φ̂‖22 +
1

NΨ

∑

ψ∈Ψ

min((‖ψ, ψ̂‖22, 2π − ‖ψ, ψ̂‖22), (1)

where the last term accounts for the periodicity of the dihedral angle. Our proposed model can easily
be extended to a probabilistic generative model by employing the ideas from Kingma and Welling
(2013), effectively defining the model as a variational auto encoder.

2.2.1 Molecular Graph Encoder

In this work we define the conformation-independent molecular graph as an undirected Graph
G = (V, E), with vertices or nodes vi ∈ V and edges eij = (vi, vj) ∈ E connecting vi and vj . Where
nodes vi ∈ RFv represent atoms and encode atom features such as element type and charge. Edges
eij ∈ RFe represent bonds between atoms and encode the bond type (i.e. single, double, triple or
aromatic bond).
We utilize a Graph Neural Network (GNN) to extract a node-level representation of a molecular
graph. Given a molecular graph with initial node and edge features defined by the atoms and bonds
of the molecule, a GNN iteratively updates node embeddings by aggregating localized information of
connected nodes respectively.

In particular, we use the Graph Attention Network (GAT) (Veličković et al., 2017) framework which
updates the node embeddings hi by the following rule:

h
′
i = αi,jΘhi +

∑

j∈N (i)

αi,jΘhj , (2)

with neighbouring node indices N (i) = {j ∈ (0, . . . , N)|∀j((vi, vj) ∈ E)}. The attention coeffi-
cients αi,j are computed as

αi,j =
exp(σ(aT [Θhi‖Θhj ]))∑

k∈N (i)∪{i} exp(σ(aT [Θhi‖Θhk]))
, (3)

where ·T is the transposition and ‖ the concatenation operation. The attention function a is defined as
a single-layer feedforward neural network.
To incorporate edge attributes ei,j (bond-type information) in the model we also utilize the so-called
edge-conditioned graph convolution (EConv) layer (Simonovsky and Komodakis, 2017), defined by
the following update rule:

h
′
i = Θhi +

∑

j∈N (i)

hj · fΘ(ei,j), (4)

where fΘ denotes a multi layer perceptron.

In particular, we utilized edge-conditioned graph convolution (EConv) (Simonovsky and Komodakis,
2017) and Graph Attention Network (GAT) (Veličković et al., 2017) layers. To aggregate information
about higher-order neighbours, we combine one EConv (to encode edge information) with multiple
consecutive GAT layers:

hli = GATl−1 ◦ . . . ◦ GAT1 ◦ EConv(h0
i ). (5)

where h0
i = vi ∈ RFv are the atom features of the input molecular graph.

2.2.2 Conformation Encoder

To this end, we define the molecular conformation representation learning task as a learning task on
sets. In particular, our proposed model learns to extract a latent representation zΞ of a set of internal
coordinates Ξ for a given molecule:

zΞ = fΘ(H,Ξ) = fΘ(H,D,Φ,Ψ), (6)
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Figure 2: a) Learning curves for the autoencoder (AE) and variational autoencoder (VAE) during
training, with evaluation loss as defined in (1) and root means squared deviation (RMSD) between
predicted and input conformations on a holdout set. b) Four example conformations generated by
our proposed model. c) First two principle components of the latent representation (conformation
embedding) of 200 conformations with a corresponding representative conformation for each cluster.

with the permutation invariant function fΘ, parameterized by a neural network and conditioned on
the node embeddings H = {h1, . . . hN}, extracted by the molecular graph encoder defined in the
previous section. Following Zaheer et al. (2017), we define the permutation invariant function fΘ as

zΞ = fΘ(H,Ξ) = σ


∑

ξ∈Ξ

ρ(H, ξ)


 =

1

NΞ

∑

ξ∈Ξ

ρΘ(H, ξ)

=
1

ND +NΦ +NΨ


∑

d∈D
ρ

(D)
Θ (H, d) +

∑

φ∈Φ

ρ
(Φ)
Θ (H, φ) +

∑

ψ∈Ψ

ρ
(Ψ)
Θ (H, ψ)


 .

(7)

The functions ρ(D)
Θ , ρ(Φ)

Θ and ρ(Ψ)
Θ are defined as feed-forward neural networks that take bond lengths,

bond angles and dihedral angles as input respectively. Additionally, to put an internal coordinate into
context of the graph, ρΘ is conditioned on corresponding node embeddingsH as well. This means, if
ρ

(Φ)
Θ encodes the angle φi,j,k between atoms vi and vk connected by atom vj , function ρ(Φ)

Θ takes
also node embeddings hi, hj and hk as argument (see Figure 1). Most importantly, equation (7) is
invariant to the order of internal coordinates and node indices and the dimensionality of the resulting
zΞ is invariant of the size of the input molecule.

2.2.3 Conformation Decoder

To reconstruct a molecular conformation back from its latent representation, we train three additional
neural networks δ(D)

Θ , δ(Φ)
Θ and δ(Ψ)

Θ for each type of internal coordinate respectively (see Figure 1).
Each neural network is conditioned on the conformation embedding and takes the node embeddings of
the corresponding internal coordinate as input. For example, to predict the bond length di,j between
atoms vi and vj , the network takes hi, hj and zΞ as input.

3 Results and Discussion

We trained our model on the public PubChem3D dataset (Bolton et al., 2011), which comprises
molecules (organic, up to 50 heavy atoms) with multiple conformations generated by the forcefield
software OMEGA (Hawkins et al., 2010). Upon convergence, our model is able to predict internal
coordinates for a given molecule that result into conformations that are similar (with respect to
the RMSD) to the input conformations (see Figure 2). To quantitatively analyze how energetically
reasonable the reconstructed conformations are, we calculated their internal energy with the MMFF94
forcefield (Halgren, 1996) as implemented in the Python package RDKit (Landrum et al., 2006).
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The median energetic difference between the input and reconstructed conformation is approximately
80 kcal/mol, which corresponds to small deviations from local minimas, without e.g. clashes of atoms
(see example molecules in Figure 2). Moreover, since the model does not only reconstruct any
possible conformation for a molecule but is trained on reconstructing a specific input conformation,
differences between these conformations have to be encoded in the latent representation. On the
right side of Figure 2, we show this for a simple example of a small molecule in four different
conformations.
As described in Section 2.2, we can easily extend the proposed model to a variational autoencoder,
which can be used to sample conformations from the learned distribution. A major challenge in
conformation generation is to efficiently sample diverse conformers. Therefore, we analyzed the
average interconformer RMSD (icRMSD) for a set of 200 sampled conformers per molecule for the
holdout set. Comparing the icRMSD of our proposed model with a state-of-the-art conformation
generation algorithm ETKDG (Riniker and Landrum, 2015) as implemented in RDKit, we see a
similar performance, with our model having a slightly higher average icRMSD of 0.07 Å.
Since the proposed model gives means to directly infer conformations for a given molecule, it is
possible to optimize molecules in the continuous conformation embedding with respect to spatial
properties. When combined with a latent representation of the molecular structure (Winter et al.,
2019), optimization of molecules can even be performed with respect to both the molecular graph and
its conformation. As a proof of principle, we optimized molecules with respect to a combination of
the conformation-independent quantitative estimate of drug-likeness (QED) score (values between 0
and 1) (Bickerton et al., 2012) and the conformation-dependent property asphericity (Todeschini and
Consonni, 2009) (values between 0 and 1), which quantifies a molecules deviation from a spherical
shape. We utilized the genetic Particle Swarm Optimization algorithm (Kennedy and Eberhart, 1995),
to optimize both latent representations at the same time. Starting from the already drug-like molecule
aspirin with a combined score of 0.76, we could already find after 50 iterations molecules with a
score of 1.82. In general this method could also be used to optimize molecules for other interesting
spatial properties, such as fitting pharmacophores or the shape of known bio active molecule.
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Abstract

Recently, there has been great success in applying deep neural networks on graph
structured data. Most work, however, focuses on either node- or graph-level
supervised learning, such as node, link or graph classification or node-level un-
supervised learning (e.g., node clustering). Despite its wide range of possible
applications, graph-level unsupervised representation learning has not received
much attention yet. This might be mainly attributed to the high representation
complexity of graphs, which can be represented by n! equivalent adjacency ma-
trices, where n is the number of nodes. In this work we address this issue by
proposing a permutation-invariant variational autoencoder for graph structured
data. Our proposed model indirectly learns to match the node order of input and
output graph, without imposing a particular node order or performing expensive
graph matching. We demonstrate the effectiveness of our proposed model for graph
reconstruction, generation and interpolation and evaluate the expressive power of
extracted representations for downstream graph-level classification and regression.

1 Introduction

Graphs are an universal data structure that can be used to describe a vast variety of systems from
social networks to quantum mechanics [1]. Driven by the success of Deep Learning in fields such
as Computer Vision and Natural Language Processing, there has been an increasing interest in
applying deep neural networks on non-Euclidean, graph structured data as well [2, 3]. Most notably,
generalizing Convolutional Neural Networks and Recurrent Neural Networks to arbitrarily structured
graphs for supervised learning has lead to significant advances on task such as molecular property
prediction [4] or question-answering [5]. Research on unsupervised learning on graphs mainly
focused on node-level representation learning, which aims at embedding the local graph structure
into latent node representations [6, 7, 8, 9, 10]. Usually, this is achieved by adopting an autoencoder
framework where the encoder utilizes e.g., graph convolutional layers to aggregate local information
at a node level and the decoder is used to reconstruct the graph structure from the node embeddings.
Graph-level representations are usually extracted by aggregating node-level features into a single
vector, which is common practice in supervised learning on graph-level labels [4].
Unsupervised learning of graph-level representations, however, has not yet received much attention,
despite its wide range of possible applications, such as feature extraction, pre-training for graph-level
classification/regression tasks, graph matching or similarity ranking. This might be mainly attributed
to the high representation complexity of graphs arising from their inherent invariance with respect

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Figure 1: Network architecture of the proposed model. Input graph is depicted as fully connected
graph (dashed lines for not direct neighbours) with the additional embedding node v0 and edges to it
(black color). Different node and edge types are represented by different colors and real edges by
solid lines between nodes. Transformations parameterized by a neural network are represented by
block arrows.

to the order of nodes within the graph. In general, a graph with n nodes, can be represented by
n! equivalent adjacency matrices, each corresponding to a different node order. Since the general
structure of a graph is invariant to the order of their individual nodes, a graph-level representation
should not depend on the order of the nodes in the input representation of a graph, i.e. two isomorphic
graphs should always be mapped to the same representation. This poses a problem for most neural
network architectures which are by design not invariant to the order of their inputs. Even if carefully
designed in a permutation invariant way (e.g., Graph Neural Networks with a final node aggregation
step), there is no straight-forward way to train an autoencoder network, due to the ambiguous
reconstruction objective, requiring the same discrete order of input and output graphs to compute the
reconstruction loss.
How can we learn a permutation-invariant graph-level representation utilizing a permutation-variant
reconstruction objective? In this work we tackle this question proposing a graph autoencoder
architecture that is by design invariant to the order of nodes in a graph. We address the order
ambiguity issue by training alongside the encoder and decoder model an additional permuter model
that assigns to each input graph a permutation matrix to align the input graph node order with the
node order of the reconstructed graph.

2 Method

2.1 Notations and Problem Definition

An undirected Graph G = (V, E) is defined by the set of n nodes V = {v1, . . . , vn} and edges
E = {(vi, vj)|vi, vj ∈ V}. We can represent a graph in matrix form by its node features Xπ ∈ Rn×dv
and adjacency matrix Aπ ∈ {0, 1}n×n in the node order π ∈ Π, where Π is the set of all n!
permutations over V . We define the permutation matrix P that reorders nodes from order π to order
π′ as Pπ→π′ = (pij) ∈ {0, 1}n×n, with pij = 1 if π(i) = π′(j) and pij = 0 everywhere else. Since
Graphs are invariant to the order of their nodes, note that

Gπ = G(Xπ,Aπ) = G(Pπ→π′Xπ,Pπ→π′AπP
>
π→π′) = G(Xπ′ ,Aπ′) = Gπ′ , (1)

where > is the transpose operator. Let us now consider a dataset of graphs G = {G(i)}Ni=0 we would
like to represented in a low-dimensional continuous space. We can adopt a latent variable approach
and assume that the data is generate by a process pθ(G|z), involving an unobserved continuous
random variable z. Following the work of Kingma and Welling [11], we approximate the intractable
posterior by qφ(G|z) ≈ pθ(G|z) and minimize the lower bound on the marginal likelihood of graph
G(i):

log pθ(G(i)) ≥ L(φ, θ;G(i)) = −KL
[
qφ(z|G(i))||pθ(z)

]
+ Eqφ(z|G(i))

[
log pθ(G(i)|z)

]
, (2)
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where the Kullback–Leibler (KL) divergence term regularizes the encoded latent codes of graphs G(i)
and the second term enforces high similarity of decoded graphs to their encoded counterparts. As
graphs can be completely described in matrix form by their node features and adjacency matrix, we
can parameterize qφ and pθ in Eq. (2) by neural networks that encode and decode node features X(i)

π

and adjacency matrices A(i)
π of graphs G(i)π . However, as graphs are invariant under arbitrary node

re-ordering, the latent code z should be invariant to the node order π:

qφ(z|Gπ) = qφ(z|Gπ′), for all π, π′ ∈ Π. (3)

This can be achieved by parameterizing the encoder model qφ by a permutation invariant function.
However, if the latent code z does not encode the input node order π, input graph Gπ and decoded
graph Ĝπ′ are no longer necessarily in the same order, as the decoder model has no information
about the node order of the input graph. Hence, the second term in Eq. (2) cannot be optimized
anymore by minimizing the reconstruction loss between encoded graph Gπ and decoded graph Ĝπ′ in
a straight-forward way. They need to be brought in the same node order first. We can rewrite the
expectation in Eq. (2) using Eq. (1):

E
qφ(z|G(i)

π )

[
log pθ(G(i)π′ |z)

]
= E

qφ(z|G(i)
π )

[
log pθ(P̂π→π′G(i)π |z)

]
. (4)

Since the ordering of the decoded graph π′ is subject to the learning process of the decoder and
thus unknown in advance, finding Pπ→π′ is not trivial. In [12], the authors propose to use ap-
proximate graph matching to find the permutation matrix Pπ→π′ that maximizes the similarity
s(Xπ′ ,Pπ→π′X̂π;Aπ′ ,Pπ→π′ÂπP>π→π′), which involves up to O(n4) re-ordering operations at
each training step in the worst case [13].

2.2 Permutation-Invariant Variational Graph Autoencoder

In this work we propose to solve the reordering problem in Eq. (4) implicitly by inferring the
permutation matrix Pπ′→π from the input graph Gπ by a model gψ(Gπ) that is trained to bring input
and output graph in the same node order and is used by the decoder model to permute the output
graph. We train this permuter model jointly with the encoder model qφ(z|Gπ) and decoder model
pθ(Gπ|z,Pπ′→π), optimizing:

L(φ, θ, ψ;G(i)π ) = −KL
[
qφ(z|G(i)π )||pθ(z)

]
+ Eqφ(z|G(i))

[
log pθ(G(i)π |z, gψ(G(i)π ))

]
. (5)

Intuitively, the permuter model has to learn how the ordering of nodes in the graph generated by the
decoder model will differ from a specific node order present in the input graph. During the learning
process, the decoder will learn its own canonical ordering that, given a latent code z, it will always
reconstruct a graph in. The permuter learns to transform/permute this canonical order to a given input
node order. For this, the permuter predicts for each node i of the input graph a score si corresponding
to its probability to have a low node index in the decoded graph. By sorting the input nodes indices
by their assigned scores we can infer the output node order and construct the respective permutation
matrix Pπ→π′ = (pij) ∈ {0, 1}n×n, with

pij =

{
1, if j = argsort(s)i
0, else

(6)

to align input and output node order. Since the argsort operation is not differentiable, we utilizes the
continuous relaxation of the argsort operator proposed in [14, 15]:

P ≈ P̂ = softmax(
−d(sort(s)1>,1s>)

τ
), (7)

where the softmax operator is applied row-wise, d(x, y) is the L1-norm and τ ∈ R+ a temperature-
parameter. By utilizing this continuous relaxation of the argsort operator, we can train the permuter
model gψ in Eq. (5) alongside the encoder and decoder model with stochastic gradient descent. In
order to push the relaxed permutation matrix towards a real permutation matrix (only one 1 in every
row and column), we add to Eq. (5) a row- and column-wise entropy term as additional penalty term:

C(P) =
∑

i

H(pi,·) +
∑

j

H(p·,j), (8)

3



with Shannon entropy H(x) = −∑i xi log(xi) and normalized probabilities pi,· =
pi,·∑
j pi,j

.

Propositions 1. A square matrix P is a real permutation matrix if and only if C(P) = 0 and the
doubly stochastic constraint pij ≥ 0 ∀(i, j), ∑i pij = 1 ∀j, ∑j pij = 1 ∀i holds.
Proof. See Appendix A.
By enforcing P̂→ P, we ensure that no information about the graph structure is encoded in P̂ and
decoder model pθ(Gπ|z,P) can generate valid graphs during inference, without providing a specific
permutation matrix P (e.g., one can set P = I and decode the learned canonical node order). At this
point it should also be noted, that our proposed framework can easily be generalized to arbitrary sets
of elements, although we focus this work primarily on sets of nodes and edges defining a graph.

Graph Isomorphism Problem. Equation (5) gives us means to train an autoencoder framework
with a permutation invariant encoder that maps a graph f : G → Z in an efficient manner. Such
an encoder will always map two topologically identical graphs (even with different node order) to
the same representation z. Consequently, the question arises, if we can decide for a pair of graphs
whether they are topologically identical. This is the well-studied graph isomorphism problem for
which no polynomial-time algorithm is known yet [16, 17]. As mentioned above, in our framework,
two isomorphic graphs will always be encoded to the same representation. Still, it might be that two
non-isomorphic graphs will be mapped to the same point (non-injective). However, if the decoder is
able to perfectly reconstruct both graphs (which is easy to check since the permuter can be used to
bring the decoded graph in the input node order), two non-isomorphic graphs must have a different
representation z. If two graphs have the same representation and the reconstruction fails, the graphs
might still be isomorphic but with no guarantees. Hence, our proposed model can solve the graph
isomorphism problem at least for all graphs it can reconstruct.

2.3 Details of the Model Architecture

In this work we parameterize the encoder, decoder and permuter model in Eq. (5) by neural networks
utilizing the self-attention framework proposed by Vaswani et al. [18] on directed messages represent-
ing a graph. Figure 1, visualizes the architecture of the proposed permutation-invariant variational
autoencoder. In the following, we describe the different parts of the model in detail1.

Graph Representation by Directional Messages. In general, most graph neural networks can be
thought of as so called Message Passing Neural Networks (MPNN) [19]. The key idea of MPNNs is
the aggregation of neighbourhood information by passing and receiving messages of each node to
and from neighbouring nodes in a graph. We adopt this view and represent graphs by its messages
between nodes. We represent a graph G(X,E), with node features X ∈ Rn×dv and edge features
E ∈ Rn×n×de , by its message matrix M = (mij) ∈ Rn×n×dm :

mij = σ ([xi||xj ||eij ]W + b) , (9)

with non-linearity σ, concatenation operator || and trainable parameters W and b. Note, that nodes in
this view are represented by self-messages diag(M), messages between non-connected nodes exists,
although the presence or absence of a connection might be encoded in eij , and if M is not symmetric,
edges have an inherent direction.

Self-Attention on Directed Messages. We follow the idea of aggregating messages from neigh-
bours in MPNNs, but utilize the self-attention framework proposed by Vaswani et al. [18] for
sequential data. Our proposed model comprises multiple layers of multi-headed scaled-dot product
attention. One attention head is defined by:

Attention (Q,K,V) = softmax
(
QK>√
dk

)
V (10)

with queries Q = MWQ, keys K = MWK , and values V = MWV and trainable weights WQ ∈
Rdm×dq , WK ∈ Rdm×dk and WV ∈ Rdm×dv . For multi-headed self-attention we concatenate
multiple attention heads together and feed them to a linear layer with dm output features. Since
the message matrix M of a graph with n nodes comprises n2 messages, attention of all messages
to all messages would lead to a O(n4) complexity. We address this problem by letting messages

1Code available at https://github.com/jrwnter/pigvae
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mij only attend on incoming messages mki, reducing the complexity to O(n3). We achieve this by
representing Q as a (m× n× d) tensor and K and V by a transposed (n×m× d) tensor, resulting
into a (m× n×m) attention tensor, with number of nodes m = n and number of features d. That
way, we can efficiently utilize batched matrix multiplications in Eq. (10), in contrast to computing
the whole (n2 × n2) attention matrix and masking attention on not incoming messages out.

Encoder To encode a graph into a fixed-sized, permutation-invariant, continuous latent represen-
tation, we add to input graphs a dummy node v0, acting as an embedding node. To distinguish
the embedding node from other nodes, we add an additional node and edge type to represent this
node and edges to and from this node. After encoding this graph into a message matrix M(enc, 0)

as defined in Eq. (9), we apply L iterations of self-attention to update M(enc, L), accumulating the
graph structure in the embedding node, represented by the self-message m

(enc, L)
0,0 . Following [11],

we utilize the reparameterization trick and sample the latent representation z of a graph by sampling
from a multivariate normal distribution:

z ∼ N (fµ(m
(enc, L)
0,0 ), fσ(m

(enc, L)
0,0 )I), (11)

with fµ : m0,0 → µ ∈ Rdz and fσ : m0,0 → σ ∈ Rdz , parameterized by a linear layer.

Permuter To predict how to re-order the nodes in the output graph to match the order of nodes in
the input graph, we first extract node embeddings represented by self-messages on the main diagonal
of the encoded message matrix m

(enc, L)
i,i = diag(M(enc, L)) for i > 0. We score these messages by

a function fs : mi,i → s ∈ R, parameterized by a linear layer and apply the soft-sort operator (see
Eq. (7)) to retrieve the permutation matrix P̂.

Decoder We initialize the message matrix for the decoder models input with the latent representa-
tion z at each entry. To break symmetry and inject information about the relative position/order of
nodes to each other, we follow [18] and define position embeddings in dimension k

PE(i)k =

{
sin(i/100002k/dz ), for even k
cos(i/100002k/dz ), for odd k

(12)

It follows for the initial decoder message matrix M(dec, 0):

m
(dec, 0)
ij = σ ([z + [PE(i)||PE(j)]]W + b) , (13)

Since the self-attention based decoder model is permutation equivariant, we can move the permutation
operation in Eq. (5) in front of the decoder model and directly apply it to the position embedding
sequence (see Figure 1). After L iterations of self-attention on the message matrix M, we extract
node features xi ∈ X and edge features ei,j ∈ E by a final linear layer:

xi = mi,iW
v + bv ei,j = 0.5 · (mi,j + mj,i)W

e + be, (14)
with learnable parameters Wv ∈ Rdm×dv , We ∈ Rdm×de , bv ∈ Rdv and be ∈ Rde .

Overall Architecture We now describe the full structure of our proposed method using the in-
gredients above (see Figure 1). Initially, the input graph is represented by the directed message
matrix M(enc, 0), including an additional graph embedding node v0. The encoder model performs L
iterations of self-attention on incoming messages. Next, diagonal entries of the resulting message
matrix M(enc, L) are extracted. Message m(enc, L)

0,0 , representing embedding node v0, is used to
condition the normal distribution, graph representation z is sampled from. The other diagonal entries
m

(enc, L)
i,i are transformed into scores and sorted by the Soft-Sort operator to retrieve the permutation

matrix P̂. Next, position embeddings (in Figure 1 represented by single digits) are re-ordered by
applying P̂ and added by the sampled graph embedding z. The resulting node embeddings are
used to initialize message matrix M(dec, 0) and fed into the decoding model. After L iterations of
self-attention, diagonal entries are transformed to node features X and off-diagonal entries to edge
features E to generate the output graph. In order to train and infer on graphs of different size, we pad
all graphs in a batch with empty nodes to match the number of nodes of the largest graph. Attention
on empty nodes is masked out at all time. To generate graphs of variable size, we train alongside
the variational autoencoder an additional multi-layer perceptron to predict the number of atoms of
graph from its latent representation z. During inference, this model informs the decoder on how many
nodes to attend to.
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Table 1: Negative log likelihood (NLL) and area under the receiver operating characteristics curve
(ROC-AUC) for reconstruction of the adjacency matrix of graphs from different families. We compare
our proposed method (PIGAE) with Graph Autoencoder (GAE) [8] and results of Graphite and Graph
Autoencoder (GAE*) reported in [20]. PIGAE∗ utilize topological distances of nodes in a graph as
edge feature.

MODELS ERDOS-RENYI BARABASI-ALBERT EGO

NLL ROC-AUC NLL ROC-AUC NLL ROC-AUC
PIGAE 20.5± 0.9 98.3± 0.1 27.2± 0.9 96.7± 0.2 23.4± 0.5 97.8± 0.3
PIGAE∗ 19.5± 0.8 99.4± 0.1 15.2± 0.8 99.5± 0.1 22.4± 0.5 98.8± 0.3
GAE 186± 3 57.9± 0.1 199± 3 57.4± 0.1 191± 4 59.1± 0.1
GAE∗ 222± 8 - 236± 15 - 197± 2 -
GRAPHITE 196± 1 - 192± 2 - 183± 1 -

Key Architectural Properties Since no position embeddings are added to the input of the encoders
self-attention layers, accumulated information in the single embedding node v0 (m0,0) is invariant
to permutations of the input node order. Hence, the resulting graph embedding z is permutation
invariant as well. This is in stark contrast to classical graph autoencoder frameworks [8, 20, 21], that
encode whole graphs effectively by concatenating all node embeddings, resulting in a graph-level
representation that is different for isomorphic graphs, as the sequence of node embeddings permutes
equivalently with the input node order. As no information about the node order is encoded in the graph
embedding z, the decoder learns its own (canonical) node order, distinct graphs are deterministically
decoded in. The input node order does not influence this decoded node order. As the decoder is based
on permutation equivariant self-attention layers, this canonical order is solely defined with respect to
the sequence of position embeddings used to initialize the decoders input. If the sequence of position
embeddings is permuted, the decoded node order permutes equivalently. Thus, by predicting the right
permutation matrix, input and output order can be aligned to correctly calculate the reconstruction
loss. Input to the permuter model [m1,1, . . . ,mn+1,n+1] is equivariant to permutations in the input
node order (due to the equivariant self-attention layers in the encoder). Since the permuter model
itself (i.e., the scoring function) is also permutation equivariant (node-wise linear layer), resulting
permutation matrices P are equivariant to permutations in the input node order. Consequently, if
the model can correctly reconstruct a graph in a certain node order, it can do it for all n! input node
orders, and the learning process of the whole model is independent to the node order of graphs in the
training set.

3 Related Works

Most existing research on unsupervised graph representation learning focuses on node-level represen-
tation learning and can be broadly categorized in either shallow methods based on matrix factorization
[22, 23, 24, 25] or random walks [26, 27], and deep methods based on Graph Neural Networks (GNN)
[2, 3]. Kipf and Welling [8] proposed a graph autoencoder (GAE), reconstructing the adjacency
matrix by taking the dot product between the latent node embeddings encoded by a GNN. Grover et al.
[20] build on top of the GAE framework by parameterizing the decoder with additional GNNs, further
refining the decoding process. Although graph-level representations in GAE-like approaches can be
constructed by concatenating all node-level representations, note, that as a consequence they are only
permutation equivariant and not permutation invariant. Permutation invariant representations could
be extracted only after training by aggregating node embeddings into a single-vector representation.
However, such a representation might miss important global graph structure. Samanta et al. [21]
proposed a GAE-like approach, which parameters are trained in a permutation invariant way, fol-
lowing [28] utilizing breadth-first-traversals with randomized tie breaking during the child-selection
step. However, as graph-level representations are still constructed by concatenation of node-level
embeddings, this method still encodes graphs only in a permutation-equivariant way. A different line
of work utilized Normalizing Flows [29] to address variational inference on graph structured data
based on node-level latent variables [30, 31, 32].
Research on graph-level representations has mainly focused on supervised learning, e.g., graph-level
classification by applying a GNN followed by a global node feature aggregation step (e.g., mean or
max pooling) [4] or a jointly learned aggregation scheme [33]. Research on graph-level unsupervised
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a)

c)

b)

Figure 2: a) Euclidean distance over graph editing distance, averaged over 1000 Barabasi-Albert
graphs with m = 2. b) t-SNE projection of representations from ten different graph families with
different parameters. Example graphs are shown for some of the clusters. c) Legend of t-SNE
plot explaining colours and symbols. Graph family abbreviations: Binomial (B), Binomial Ego
(BE), Barabasi-Albert (BA), Geometric (G), Regular (R), Powerlaw Tree (PT), Watts-Strogatz (WA),
Extended Barabasi-Albert (EBA), Newman-Watts-Strogatz (NWA), Dual-Barabasi-Albert (DBA).

representation learning has not yet received much attention and existing work is mainly based on
contrastive learning approaches. Narayanan et al. [34] adapted the doc2vec method from the field of
natural language processing to represent whole graphs by a fixed size embedding, training a skipgram
method on rooted subgraphs (graph2vec). Bai et al. [35] proposed a Siamese network architecture,
trained on minimizing the difference between the Euclidean distance of two encoded graphs and
their graph editing distance. Recently, Sun et al. [36], adapted the Deep InfoMax architecture [37] to
graphs, training on maximizing the mutual information between graph-level representations and rep-
resentations of sub-graphs of different granularity (InfoGraph). Although those contrastive learning
approaches can be designed to encode graphs in a permutation invariant way, they cannot be used to
reconstruct or generate graphs from such representations.
Another line of related work concerns itself with generative models for graphs. Besides methods
based on variational autoencoders [8, 20, 12] and Normalizing Flows [30, 31, 32], graph generative
models have also been recently proposed based on generative adversarial neural networks [38, 39]
and deep auto-regressive models [40, 28, 41]. Moreover, due to its high practical value for drug dis-
covery, many graph generating methods have been proposed for molecular graphs [42, 43, 44, 45, 21].
Although graph generative models can be trained in a permutation invariant way [42, 21], those
models can not be used to extract permutation invariant graph-level representations.
Recently, Yang et al. [46] proposed a GAE-like architecture with a node-feature aggregation step to
extract permutation invariant graph-level representations that can also be used for graph generation.
They tackle the discussed ordering issue of GAEs in the reconstruction by training alongside the
GAE a Generative Adversarial Neural Network, which’s permutation invariant discriminator network
is used to embed input and output graph into a latent space. That way, a permutation invariant
reconstruction loss can be defined as a distance in this space. However, as this procedure involves
adversarial training of the reconstruction metric, this only approximates the exact reconstruction loss
used in our work and might lead to undesirable graph-level representations.

4 Experimental Evaluation

We perform experiments on synthetically generated graphs and molecular graphs from the pub-
lic datasets QM9 and PubChem. At evaluation time, predicted permutation matrices are always
discretized to ensure their validity. For more details on training, see Appendix C.
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Table 2: Classification Accuracy of our method (PIGAE), classical GAE, InfoGraph (IG), Shortest
Path Kernel (SP) and Weisfeiler-Lehman Sub-tree Kernel (WL) on graph class prediction.

PIGAE GAE IG SP WL

0.83± 0.01 0.65± 0.01 0.75± 0.02 0.50± 0.02 0.73± 0.01

4.1 Synthetic Data

Graph Reconstruction In the first experiment we evaluate our proposed method on the reconstruc-
tion performance of graphs from graph families with a well-defined generation process. Namely,
Erdos-Renyi graphs [47], with an edge probability of p = 0.5, Barabasi-Albert graphs [48], with
m = 4 edges preferentially attached to nodes with high degree and Ego graphs. For each family
we uniformly sample graphs with 12-20 nodes. The graph generation parameters match the ones
reported in [20], enabling us to directly compare to Graphite. As additional baseline we compare
against the Graph Autoencoder (GAE) proposed by Kipf and Welling [8]. As Grover et al. [20]
only report negative log-likelihood estimates for their method Graphite and baseline GAE we also
reevaluate GAE and report both negative log-likelihood (NLL) estimates for GAE to make a better
comparison to Graphite possible (accounting for differences in implantation or the graph generation
process). In Table 1 we show the evaluation metrics on a fixed test set of 25000 graphs for each graph
family. On all four graph datasets our proposed model significantly outperforms the baseline methods,
reducing the NLL error in three of the four datasets by approximately one magnitude. Utilizing the
topological distance instead of just the connectivity as edge feature (compare [49]) further improves
the reconstruction performance.

Qualitative Evaluation To evaluate the representations learned by our proposed model, we trained
a model on a dataset of randomly generated graphs with variable number of nodes from ten different
graph families with different ranges of parameters (see Appendix B for details). Next, we generated a
test set of graphs with a fixed number of nodes from these ten different families and with different
fixed parameters. In total we generated graphs in 29 distinct settings. In Figure 2, we visualized
the t-SNE projection [50] of the graph embeddings, representing different families by colour and
different parameters within each family by different symbols. In this 2-D projection, we can make
out distinct clusters for the different graph sets. Moreover, clusters of similar graph sets tend to
cluster closer together. For example, Erdos-Renyi graphs form for each edge probability setting (0.25,
0.35, 0.5) a distinct cluster, while clustering in close proximity. As some graph families with certain
parameters result in similar graphs, some clusters are less separated or tend to overlap. For example,
the Dual-Barabasi-Albert graph family, which attaches nodes with either m1 or m2 other nodes,
naturally clusters in between the two Barabasi-Albert graph clusters with m = m1 and m = m2.

Graph Editing Distance A classical way of measuring graph similarity is the so called graph
editing distance (GED) [51]. The GED between two graphs measures the minimum number of graph
editing operations to transform one graph into the other. The set of operations typically includes
inclusion, deletion and substitution of nodes or edges. To evaluate the correlation between similarity
in graph representation and graph editing distance, we generated a set of 1000 Barabasi-Albert
(m = 3) graphs with 20 nodes. For each graph we successively substitute randomly an existing edge
by a new one, creating a set of graphs with increasing GED with respect to the original graph. In
Figure 2, we plot the mean Euclidean distance between the root graphs and their 20 derived graphs
with increasing GED. We see a strong correlation between GED and Euclidean distance of the learned
representations. In contrast to classical GAEs, random permutations of the edited graphs have no
effect on this correlation (see Appendix D for comparison).

Graph Isomorphism and Permutation Matrix To empirical analyse if our proposed method
detects isomorphic graphs, we generated for 10000 Barabasi-Albert graphs with up to 28 nodes
a randomly permuted version and a variation only one graph editing step apart. For all graphs
the Euclidean distance between original graph and edited graph was at least greater than 0.3. The
randomly permuted version always had the same embedding. Even for graphs out of training domain
(geometric graphs with 128 nodes) all isomorphic and non-isomorphic graphs could be detected.
Additionally, we investigated how well the permuter model can assign a permutation matrix to graph.
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Start

End

Figure 3: Linear interpolation between two graphs in the embedding space. Start graph’s edges are
colored red. End graph’s edges are colored blue. Edges present in both graphs are colored black.
Thick lines are present in a decoded graph, thin lines are absent.

As the high reconstruction performance in Table 1 suggest, most of the time, correct permutation
matrices are assigned (See Appendix E for a more detailed analysis). We find that permutation
matrices equivalently permute with the permutation of the input graph (See Appendix E).

Graph Classification In order to quantitatively evaluate how meaningful the learned represen-
tations are, we evaluate the classification performance of a Support Vector Machine (SVM) on
predicting the correct graph set label (29 classes as defined above) from the graph embedding. As
baseline we compare against SVMs based on two classical graph kernel methods, namely Shortest
Path Kernel (SP) [52] and Weisfeiler-Lehman Sub-tree Kernel (WL) [53] as well as embeddings
extracted by the recently proposed contrastive learning model InfoGraph (IG) [36] and averaged
node embeddings extracted by a classical GAE. Our model, IG and GAE where trained on the same
synthetic dataset. In Table 2 we report the accuracy for each model and find the SVM based on
representations from our proposed model to significantly outperform all baseline models. Notably,
representations extracted from a classical GAE model, by aggregating (averaging) node-level em-
beddings into a graph-level embedding, perform significantly worse compared to representations
extracted by our method. This finding is consistent with our hypothesis that aggregation of unsuper-
vised learned node-level (local) features might miss important global features, motivating our work
on graph-level unsupervised representation learning.

Graph Interpolation The permutation invariance property of graph-level representations also
enables the interpolation between two graphs in a straight-forward way. With classical GAEs such
interpolations cannot be done in a meaningful way, as interpolations between permutation dependent
graph embeddings would affect both graph structure as well as node order. In Figure 3 we show how
successive linear interpolation between the two graphs in the embedding space results in smooth
transition in the decoded graphs, successively deleting edges from the start graph (red) and adding
edges from the end graph (blue). To the best of our knowledge, such graph interpolations have not
been report in previous work yet and might show similar impact in the graph generation community
as interpolation of latent spaces did in the field of Natural Language Processing and Computer Vision.

4.2 Molecular Graphs

Next, we evaluate our proposed model on molecular graphs from the QM9 dataset [54, 55]. This
datasets contains about 134 thousand organic molecules with up to 9 heavy atoms (up to 29
atoms/nodes including Hydrogen). Graphs have 5 different atom types (C, N, O, F and H), 3
different formal charge types (-1, 0 and 1) and 5 differ bond types (no-, single-, double-, triple- and
aromatic bond). Moreover, the dataset contains an energetically favorable conformation for each
molecule in form of Cartesian Coordinates for each atom. We transform these coordinates to an
(rotation-invariant) Euclidean distance matrix and include the distance information as additional edge
feature to the graph representation (More details in Appendix F).

Graph Reconstruction and Generation We define a holdout set of 10,000 molecules and train the
model on the rest. Up on convergence, we achieve on the hold out set a balanced accuracy of 99.93%
for element type prediction, 99.99% for formal charge type prediction and 99.25% for edge type
prediction (includs prediction of non-existence of edges). Distances between atoms are reconstructed
with a root mean squared error of 0.33Å and a coefficient of determination of R2 = 0.94.

9



Dataset PIGAE (ours) ECFP

Classification (ROC-AUC ↑)
BACE 0.824± 0.005 0.82± 0.02
BBBP 0.81± 0.04 0.78± 0.03

Regression (MSE ↓)
ESOL 0.10± 0.01 0.25± 0.02
LIPO 0.34± 0.02 0.39± 0.02

Table 3: Downstream performance for
molecular property prediction tasks.

Original Sampled

Figure 4: Example Molecular conformations sam-
pled around original graph representation.

In the field of computational chemistry and drug discovery, the generation of energetically reasonable
conformations for molecules is a topic of great interest [56]. Since our model is trained on approxi-
mating the data generating process for molecules and their conformations, we can utilize the trained
model to sample molecular conformations. To retrieve a set of conformations, we encode a query
molecule into its latent representation and randomly sample around this point by adding a small
noise and decode the resulting representations. We utilize Multidimensional Scaling (MDS) [57] to
transform a decoded distance matrix back to Cartesian Coordinates. In Figure 4, we show examples
of molecular conformations sampled from the trained model. Under visual inspection, we find that
sampled conformations differ from encoded conformations, while still being energetically reasonable
(e.g., rotation along rotatable bonds while avoiding clashes between atoms).

Molecular Property Prediction Finally, we evaluate the learned representations for molecular
property prediction. In order to accurately represent molecular graphs from different parts of the
chemical space, we train our proposed model on a larger dataset retrieved from the public PubChem
database [58]. We extracted organic molecules with up to 32 heavy atoms, resulting into a set of
approximately 67 million compounds (more details in Appendix F). We evaluate the representations
of the trained model based on the predictive performance of a SVM on two classification and two
regression tasks from the MoleculeNet benchmark [59]. We compare representations derived from our
pre-trained model with the state-of-the-art Extended Connectivity Fingerprint molecular descriptors
(radius=3, 2048 dim) [60]. For each task and descriptor, the hyperparameter C of the SVM was
tuned in a nested cross validation. The results are presented in Table 3. Descriptors derived from our
pre-trained model seem to represent molecular graphs in a meaningful way as they outperform the
baseline on average in three out of four tasks.

5 Conclusion, Limitations and Future Work

In this work we proposed a permutation invariant autoencoder for graph-level representation learning.
By predicting the relation (permutation matrix) between input and output graph order, our proposed
model can directly be trained on node and edge feature reconstruction, while being invariant to a
distinct node order. This poses, to the best of our knowledge, the first method for non-contrastive
and non-adversarial learning of permutation invariant graph-level representations that can also be
used for graph generation and might be an important step towards more powerful representation
learning methods on graph structured data or sets in general. We demonstrate the effectiveness of our
method in encoding graphs into meaningful representations and evaluate its competitive performance
in various experiments. Although we propose a way of reducing the computational complexity by
only attending on incoming messages in our directed message self-attention framework, in its current
state, our proposed model is limited in the number of nodes a graph can consist of. However, recently,
much work has been done on more efficient and sparse self-attention frameworks [61, 62, 63]. In
future work, we aim at building up on this work to scale our proposed method to larger graphs.
Moreover, we will investigate further into the generative performance of the proposed model, as this
work was mainly concerned with its representation learning capability.
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Appendix A

Propositions 1. A square matrix P is a real permutation matrix if and only if C(P) = 0 and the
doubly stochastic constraint pij ≥ 0 ∀(i, j), ∑i pij = 1 ∀j, ∑j pij = 1 ∀i holds.
Proof. A permutation matrix is a doubly stochastic matrix with only one 1 in every row and column.
(⇒) If P is a permutation matrix, C(P) = 0 and the doubly stochastic constraint are satisfied by
definition.
(⇐) If C(P) = 0⇒∑

iH(p̄ij) = 0 ∀j ∧ ∑j H(p̄ij) = 0∀i. Thus, if doubly stochastic constrain
are satisfied, p̄ij can only have one non-zero element in each row i and column j equal to 1.
Remark Since we apply the row-wise softmax in Eq. (7),

∑
j pij = 1 ∀i and pij ≥ 0 ∀(i, j) is

always fulfilled. If C(P) = 0, all but one entry in a column pi,· are 0 and the other entry is 1. Hence,∑
i pij = 1 ∀j is fulfilled.

Appendix B

Synthetic random graph generation To generate train and test graph datasets we utilized the
python package NetworkX [1]. We sampled from ten different graph families with different parameter
ranges, namely:

• Binominal graphs with edge probability p ∈ (0.2, 0.6).

• Ego graphs extracted from Binominal graphs (p ∈ (0.2, 0.6)) selecting all neighbours of
one random node.

• Watts-Strogatz small-world graphs with k ∈ (2, 6) nearest neighbours and edge probability
p ∈ (0.2, 0.6).

• Newman-Watts-Strogatz small-world graphs with k ∈ (2, 6) nearest neighbours and edge
probability p ∈ (0.2, 0.6).

• Random Regular graphs with degree d ∈ (3, 6).

• Barabási–Albert graphs with m ∈ (1, 6) edges preferentially attached to high degree nodes.

• Dual-Barabási–Albert graphs with m1 ∈ (1, 6) and m2 ∈ (1, 6) edges preferentially
attached to high degree nodes and probability p ∈ (0.1, 0.9) for sampling m1 edges.
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Figure 1: Distance in embedding space over increasing (approximated) graph editing distance
(GED) average over 1000 Barabási–Albert graphs with 16 nodes. We compare our method against a
classical graph autoencoder (GAE) for either the same graph ordering or random permutations of the
same/edited graph.

• Extended-Barabási–Albert graphs with m ∈ (1, 6) edges preferentially attached to high
degree nodes and probability p ∈ (0.1, 0.5) for adding an edge between existing nodes and
probability q ∈ (0.1, 0.5) for rewiring of existing edges.

• Random-Powerlaw-Tree graph with γ = 3.
• Random Geometric graph with edges between nodes in a unit square less than r ∈

(0.35, 0.65) units apart.

Appendix C

Training Details We did not perform an extensive hyperparameter evaluation for the different
experiments and mostly followed [2] for hyperparameter selection. We applied L = 16 layers of
self-attention in both encoder and decoder, with a hidden dim chosen from (256, 512) with either 16
or 32 attention heads with 64 hidden dimensions. Each self attention layer was followed by a point-
wise fully connected neural network with two layers (1024 hidden dim) and a residual connection.
We set the graph embedding dimension to 64. We tried different weightings of reconstruction
and permutation matrix penalty loss to maximize the reconstruction accuracy with a discretized
permutation matrix, while enabling stable training. In some settings we found it beneficial, to
slowly decay the temperature constant τ of the Soft-Sort operator during training. We performed all
experiments on a NVIDIA DGX-2 system, parallelizing models on up to 10 GPUs and training up to
5 days, depending on task and model size.

Appendix D

Graph Editing Distance In section 4.1 we describe how distances in the graph embedding space
of our proposed model correlates with the graph editing distance (GED). One important property
of the GED is its invariance to the node ordering of graphs that are compared. Thus, two similar
graphs should be assigned the same small distance irregardless of the specific node ordering both
graphs are represented in. Since embeddings produced by our proposed model are invariant to node
permutations, distances between graphs in this embedding space, like the GED, are invariant to the
node ordering as well. This is not the case for graph-level representations extracted by a classical
graph autoencoder (GAE) [3]. In Figure 1 we plot the Euclidean distance between a reference graph
representation and representations of graphs with increasing amount of variations applied to it. We
followed the protocol described in Section 4.1 and created variations of graphs by successively
substituting existing edges in the reference graph by new edges not present in the reference graph. We
compare representations encoded by our method with representations encoded by a classical GAE.
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Figure 2: Left: Predicted permutation matrices for 12 random Barabási–Albert graphs. Right:
Predicted permutation matrices after permuting the same input graphs by the transpose of the
previously predicted permutation matrices.

We can see a clear correlation between the distance in embedding space and the amount of editing
steps performed to the reference graph. However, in the case of the GAE, this correlation breaks, if
we change the order of nodes in the edited graphs. This is expected, since the graph-level embedding
of a GAE should permute equivalently with changes in the graph order. Since our graph-level
representation is permutation-invariant, random permutations of the edited graphs have no effect on
the Euclidean distance.
Interestingly, the distance of embeddings extracted by our method seem to converge after a certain
amount of graph editing steps, while distances of embeddings extracted by the GAE seem to increase
further. The reason for this might be that successively substituting edges of the reference graph with
new edges must not necessarily result into more dissimilar graphs at some point. It is for instance
possible to recreate the same graph again, just in a different node order. With increasing amounts of
editing steps a graph should be on average as far away as the average distance between any pair of
graphs (of the same size and family). In our case (Barabási–Albert graphs with m=4 and 16 nodes)
this average pairwise distance between 1000 randomly generated graphs is approximately 3.3, which
matches well with the value distances are converging against in Figure 1.
Also note, how random permutations of the same graph (isomorphic graphs) always resulted in a
Euclidean distance of 0 and all graphs one editing step away (non-isomorphic) had a distance greater
than 0.

Appendix E

Permutation Matrix As discussed in section 2.2 (Key architectural properties), we carefully
designed our proposed model to make it invariant to permutations of the input graphs. By utilizing the
permutation equivariant property of self-attention layers, the encoder and permuter model produce
permutation matrices that equivalently permute with permutations in the input graph. In Figure 2, we
show this for some example graphs (synthetic Barabási–Albert graphs). To better visually analyze the
impact of the permutation of the input graph on the permutation matrix, we did the following: We first
predicted permutation matrices for a set of random graphs (left hand side of Figure 2, note that we
did not discretize these permutation matrices for this experiment) and then permuted the input graphs
with permutation matrices that are defined by the transpose of these predicted permutation matrices.
As a consequence, the predicted permutation matrices for these permuted graphs, are approximately
(not discretized) equal to the identity matrix. This is exactly what we would expect. By permuting
the input graphs by the transposed predicted permutation matrices, we brought the input graph in
the canonical order learned by the decoder. Thus, no permutation is necessary and the permuter
model predicts the identity matrix. Moreover, we can see how the permutation matrices equivalently
permuted with the permutation of the input graph. A permutation of the input by PTG resulted in
an equivalent permutation of the predicted permutation matrices PTP = 1. Interestingly, in our
experiments, this is not always the case. In Figure 2, image 1 shows one deviation from this property
(not perfectly on the main diagonal). Inspecting the corresponding predicted permutation matrix
(image 1 on the left hand side), we can see two entries (nodes) that are not assigned unambiguously,
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resulting in bad approximation of a permutation matrix (which should only have one 1 in every
row and column and zeros everywhere else). During inference, we would usually discretize such a
permutation matrix to receive a valid permutation matrix. In fact, we find that for Barabási–Albert
graphs with 20 nodes, 98 % of nodes have a value (confidence) assigned greater than 0.9. Thus,
around 2 % of nodes cannot be assigned to the canonical order with a high confidence. Further
investigation of these nodes has shown that they tend to have similar neighbourhoods. Approximately
half of them are perfectly symmetric, meaning that they have the exact same neighbourhood, as
Weisfeiler-Lehman graph hashing of their ego graphs revealed. Since very similar nodes (with respect
to their neighbourhood) in a graph will receive similar node embeddings in the encoder model,
the permuter model will score them similarly, resulting in ambiguous assignment in the predicted
permutation matrix.
Still, graphs without such symmetric nodes, will receive a unambiguous permutation matrix. For
such graphs we found in further experiments where we constructed for 10000 graphs 64 random
permutations, that, as expected, the permutation matrix always permuted equivalently with the random
permutation of the input graph.

Appendix F

Molecular graph datasets Molecular graphs were constructed utilizing following information for
nodes:

• Atom type: 5 (C, N, O, F and H) for the QM9 dataset, 11 (C, N, O, F, S, Si, P, Cl, Br, I and
H) for the PubChem dataset.

• Charge type: 3 (-1, 0, 1) for the QM9 dataset, 5 (-2, -1, 0, 1, 2) for the PubChem dataset.
• Ring membership

and following information for the edges:

• Bond type: 4 (single-, double-, triple- and aromatic bond) + 1 (no bond)
• Topological distance: normalized topological distance between two connected nodes.
• Euclidean Distance: For the QM9 dataset we transformed Cartesian coordinates of atoms to

a normalized Euclidean distance matrix and used each entry as an additional edge feature.
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Paper’s main contributions:

• We propose a novel method for learning group invariant representations.
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• We characterize the mathematical conditions of the group function com-
ponent and we propose an explicit construction suitable for any group
G.

• We show in various experiments the validity and flexibility of our framework
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architectures.
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• Conceptualization of the original idea and its application to different data
types and groups.

• Development of the methodology and implementation.

• Design and evaluation of experiments, data curation and analysis.

• Preparation and creation of main parts of the initial draft and visualizations.

103

https://doi.org/10.48550/arXiv.2202.07559
https://creativecommons.org/licenses/by/4.0/
https://github.com/jrwnter/group-invaraint-ae


104



Unsupervised Learning of Group Invariant and
Equivariant Representations

Robin Winter∗
Bayer AG

Freie Universität Berlin
robin.winter@bayer.com

Marco Bertolini∗
Bayer AG

marco.bertolini@bayer.com

Tuan Le
Bayer AG

Freie Universität Berlin
tuan.le2@bayer.com

Frank Noé
Freie Universität Berlin

frank.noe@fu-berlin.de

Djork-Arné Clevert
Bayer AG

djork-arne.clevert@bayer.com

Abstract

Equivariant neural networks, whose hidden features transform according to rep-
resentations of a group G acting on the data, exhibit training efficiency and an
improved generalisation performance. In this work, we extend group invariant and
equivariant representation learning to the field of unsupervised deep learning. We
propose a general learning strategy based on an encoder-decoder framework in
which the latent representation is separated in an invariant term and an equivariant
group action component. The key idea is that the network learns to encode and
decode data to and from a group-invariant representation by additionally learning
to predict the appropriate group action to align input and output pose to solve the
reconstruction task. We derive the necessary conditions on the equivariant encoder,
and we present a construction valid for any G, both discrete and continuous. We
describe explicitly our construction for rotations, translations and permutations.
We test the validity and the robustness of our approach in a variety of experiments
with diverse data types employing different network architectures.

1 Introduction

An increasing body of work has shown that incorporating knowledge about underlying symmetries in
neural networks as inductive bias can drastically improve the performance and reduce the amount of
data needed for training Cohen & Welling (2016a); Bronstein et al. (2021). For example, the equivari-
ant design with respect to the translation symmetry of objects in images proper of convolutional neural
networks (CNNs) has revolutionized the field of image analysis LeCun et al. (1995). Message Passing
neural networks, respecting permutation symmetries in graphs, have enabled powerful predictive
models on graph-structured data Gilmer et al. (2017); Defferrard et al. (2016). Recently, much work
has been done utilizing 3D rotation and translation equivariant neural networks for point clouds
and volumetric data, showing great success in predicting molecular ground state energy levels with
high fidelity Miller et al. (2020); Anderson et al. (2019); Klicpera et al. (2020); Schütt et al. (2021).
Invariant models take advantage of the fact that often properties of interest, such as the class label of
an object in an image or the ground state energy of a molecule, are invariant to certain group actions
(e.g., translations or rotations), while the data itself is not (e.g., pixel values, atom coordinates).

There are several approaches to incorporate invariance into the learned representation of a neural
network. The most common approach consists of teaching invariance to the model by data augmenta-
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Figure 1: a) Schematic of the learning task this work is concerned with. Data points x ∈ X
are encoded to and decoded from latent space Z. Points in the same orbit in X are mapped
to the same point (orbit) z ∈ Z = X/G. Latent points z are mapped to canonical elements
x̂ ∈ {ρX(g)x|∀g ∈ G}. b) Schematic of our proposed framework with data points x, encoding
function η, decoding function δ, canonical elements x̂, group function ψ and group action g

tion: during training, the model must learn that a group transformation on its input does not affect
its label. While this approach can lead to improved generalization performance, it reduces training
efficiency and quickly becomes impractical for higher dimensional data Thomas et al. (2018). A
second technique, known as feature averaging, consists of averaging model predictions over group
transformations of the input Puny et al. (2021). While feasible with finite groups, this method requires,
for instance, sampling for infinite groups Lyle et al. (2020). A third approach is to impose invariance
as a model architectural design. The simplest option is to restrict the function to be learned to be a
composition of symmetric functions only Schütt et al. (2018). Such choice, however, can significantly
restrict the functional form of the network. A more expressive variation of this approach consists
of an equivariant neural network, followed by a symmetric function. This allows the network to
leverage the benefits of invariance while having a larger capacity due to the less restrictive nature
of equivariance. In fact, in many real-world application, equivariance is beneficial if not necessary
Smidt (2020); Miller et al. (2020). For example, the interaction of a molecule (per se rotational
invariant) with an external magnetic field is an intrinsically equivariant problem.

All aforementioned considerations require some sort of supervision to extract invariant representations
from data. Unsupervised learning of group invariant representations, despite its potential in the field
of representation learning, has been impaired by the fact that the representation of the data in general
does not manifestly exhibit the group as a symmetry. For instance, in the case of an encoder-decoder
framework in which the bottleneck layer is invariant, the reconstruction is only possible up to a group
transformation. Nevertheless, the input data is typically parametrized in terms of coordinates in some
vector space X , and the reconstruction task can only succeed by employing knowledge about the
group action on X .

Following this line of thought, this work is concerned with the question: Can we learn to extract both
the invariant and equivariant representations of data in an unsupervised way?

To this end, we introduce a group-invariant representation learning method that encodes data in a
group-invariant latent code and a group action. By separating the embedding in a group-invariant and
a group-equivariant part, we can learn expressive lower-dimensional group-invariant representations
utilizing the power of autoencoders (AEs). In particular, all our results trivially extend to variational
AEs (VAEs), thus advancing generative approaches of group-invariant data. We can summarize the
main contributions of this work as follows:

• We introduce a novel framework for learning group equivariant representations. Our repre-
sentations are by construction separated in an invariant and group action function (equivari-
ant) component.

• We characterize the mathematical conditions of the group action function component and
we propose an explicit construction suitable for any group G. To the best of our knowl-
edge, this is the first method for unsupervised learning of separated invariant-equivariant
representations valid for any group.

• We show in various experiments the validity and flexibility of our framework by learning
representations of diverse data types with different network architectures.
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2 Method

2.1 Background

We begin this section by introducing the basic concepts which will be central in our work.

A group G is a set equipped with an operation (here denoted ·) which is associative as well as having
an identity element e and inverse elements. In the context of data, we are mainly interested in how
groups represent geometric transformations by acting on spaces and, in particular, how they describe
the symmetries of an object or of a set. In either case, we are interested in how groups act on spaces.
This is represented by a group action: given a set X and a group G, a (left) action of G on X is a
map ρ : G×X → X such that it respects the group property of associativity and identity element. If
X is a vector space, which we will assume for the remainder of the text, we refer to group actions of
the form ρX : G → GL(X) as representations of G, where the general linear group of degree n
GL(X) is represented by the set of n× n invertible matrices. Given a group action, a concept which
will play an important role in our discussion is given by the fixed points of such an action. Formally,
given a point x ∈ X and an action (representation) ρX of G on X , the stabilizer of G with respect to
x is the subgroup Gx = {g ∈ G|ρX(g)x = x} ⊂ G.

In the context of representation learning, we assume our data to be defined as the space of
representation-valued functions on some set V , i.e., X = {f |f : V → W}. For instance, a
point cloud in three dimensions can be represented as the set of functions f : R3 → Z2, assigning to
every point r ∈ R3 the value f(r) = 0 (the point is not included in the cloud) or f(r) = 1 (the point
is included in the cloud). Representations ρV of a group G on V can be extended to representations
on f , and therefore on X , ρX : G→ GL(X), as follows

[ρX(g)f ] (x) ≡ ρW (g)f(ρV (g−1)x) . (1)
In what follows, we will then only refer to representations for the space X , implicitly referring to
equation (1) for mapping back to how the various components transform. A map φ : V →W is said
to beG-equivariant with respect to the actions (representations) ρV , ρW if φ(ρV (g)v) = ρW (g)φ(v)
for every g ∈ G and v ∈ V . Note that G-invariance is a particular case of the above, where we
take ρV , ρW to be the trivial representations. An element x ∈ X can be described in terms of a
G-invariant component and a group element g ∈ G, as follows: let φinv : X → X/G, be an invariant
map mapping each element x ∈ X to a corresponding canonical element x̂ in the orbit in the quotient
space X/G. Then for each x ∈ X there exist a g ∈ G such that x = ρX(g)φinv(x).

2.2 Problem Definition

We consider a classical autoencoder framework with encoding function η : X → Z and decoding
function δ : Z → X , mapping between the data domain X , and latent domain Z, minimizing the
reconstruction objective d(δ(η(x)), x), with a difference measure d (e.g., Lp norm). As discussed
above, we wish to learn the invariant map η (φinv in the previous paragraph), thus
Property 2.1. The encoding function η : X → Z is G-invariant, i.e., η(ρX(g)x) = η(x) ∀x ∈
X,∀g ∈ G.

The decoding function δ maps the G-invariant representation z ∈ Z back to the data domain X .
However, as z is G-invariant, δ can at best map η(x) ∈ Z back to an element x̂ ∈ X such that
x̂ ∈ {ρX(g)x|∀g ∈ G}, i.e., an element in the orbit of x through G. This is depicted in Figure 1a.
Thus, the task of the decoding function δ : Z → X is to map encoded elements z = η(x) ∈ Z to an
element x̂ ∈ X such that ∃ĝx ∈ G such that

δ(η(x)) = x̂ = ρX(ĝx)x . (2)
We call x̂ the canonical element of the decoder δ. We can rewrite the reconstruction objective with
a G-invariant encoding function η as d(ρX(ĝ−1)δ(η(x)), x). One of the main results of this work
consists in showing that x̂ and ĝx can be simultaneously learned by a suitable neural network. That is,
we have the following property of our learning scheme:
Property 2.2. There exists a learnable function ψ : X → G such that, given suitable η, δ as
described above the relation ρX(ψ(x))δ(η(x)) = x , holds for all x ∈ X .

We call any function ψ satisfying (2.2) a suitable group function. Figure 1b describes schematically
our proposed framework. In what follows, we will first characterize the defining properties of suitable
group functions. Subsequently, we will describe our construction, valid for any group G.
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2.3 Predicting Group Actions

In the following we further characterize the properties of ψ. We begin by stating two key results,
while we refer to the Appendix A for the proofs.

Proposition 2.3. Any suitable group function ψ : X → G is G-equivariant at a point x ∈ X up the
stabilizer Gx, i.e., ψ(ρX(g)x) ⊆ g · ψ(x)Gx.

Proposition 2.4. The image of any suitable group function ψ : X → G is surjective into G
GX

, where
GX is the stabilizers of all the points of X .

Let us briefly discuss an example. Suppose X = {x = (x0, x1, x2, x3) ∈ R4×2|xi =
ρR2(gθ=π/2)ix0, x0 ∈ R2} and G = SO(2). X describes all collections of vertices of squares
centered at the origin of R2, and it is easy to check that gX = Z4, generated by a π/2 rotation around
the origin. In this case, any such square can be brought to any other square (of the same radius) by a
rotation of an angle θ < π/2, thus Imψ ⊇ {gθ ∈ SO(2)|0 ≤ θ ≤ π/2} = SO(2)/Z4.

Combining the two propositions above we have the following

Lemma 2.5. Any suitable group function ψ is an isomorphism Ox ≃ G/Gx for any x ∈ X , where
Ox ⊂ X is the orbit of x with respect to G in X .

2.4 Proposed Construction

Next, we turn to our proposed construction of a class of suitable group functions that satisfy Property
2.2 for any data space X and group G. As we described above, these functions must be learnable.

Property 2.6 (Proposed construction). Without loss of generality, we write our target function
ψ = ξ ◦ µ, where µ : X → Y is a learnable map between the data space X and the embedding
space Y , while ξ : Y → G is a deterministic map. Our construction is further determined by the
following properties:

• We impose µ : X → Y to be G-equivariant, that is, µ(ρX(g)x) = ρY (g)µ(x) for all
x ∈ X and g ∈ G.

• We ask that Y is an homogeneous space, that is, given any element y0 ∈ Y , every element
y ∈ Y can be written as y = ρY (g)y0 for some g ∈ G.

• The map ξ : Y → G is defined as follows: ξ(y) = g such that y = ρY (g)y0 for any chosen
point y0 ∈ Y .

In what follows we will show that our construction satisfies the properties of the previous section.
For proofs see Appendix. We begin with the following

Proposition 2.7. Let ψ = ξ ◦ µ be a suitable group function and let µ : X → Y be G-equivariant.
Then, Gx = Gµ(x) for all x ∈ X .

The result of the above proposition is crucial for our desired decomposition of the learned embedding,
as it ensures that no information about the group action on X is lost through the map µ: if a group
element acts non-trivially in X , it will also act non-trivially in Y .

Proposition 2.8. Given y, y0, the element g such that y ≡ ρY (g)y0 is unique up to the stabilizer
Gy0 .

This proposition establishes the equivariant properties of the map ξ. Finally, we have

Proposition 2.9. Let ψ = ξ ◦ µ where µ and ξ are as described above. Then, ψ is a suitable group
function.

2.5 Intuition Behind the Proposed Framework

We conclude this rather technical section with a comment on the intuition behind our construction.
Assuming for simplicity that the domain set V admits the structure of vector space, Y represents
the space spanned by all basis vectors of V . The point y0 represent a canonical orientation of such
basis, and the element ξ(y) = g is the group element corresponding to a basis transformation. As
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all elements can be expressed in terms of coordinates with respect to a given basis, it is natural to
consider a canonical basis for all orbits, justifying the assumption of homonogeneity of the space Y .

Further, let us assume that the invariant autoencoder correctly solves its task, x ∼ δ(η(x)). Now
let x̂ ∈ Ox such that x̂ = δ(η(x)), and by definition, x̂ = ρV (g)x for some g ∈ G. Now, the
correct orbit element is identified when ψ(x̂) = e, since ψ(x) = g−1 · ψ(x̂) = g−1 and thus
ρX(g−1)δ(η(x)) = ρX(g−1)x′ = x. Hence, during training ψ needs to learn which orbit elements
are decoded as “canonical”, i.e., without the need of an additional group transformation. To clarify,
here “canonical” does not reflect any specific property of the element, but it simply refers to the
orientation learned from the decoder during training. In fact, different decoder architectures or
initializations will lead to different canonical elements.

Finally, note how the different parts of our proposed framework, as visualized in Figure 1b, can be
jointly trained by minimizing the objective d(ρX(ψ(x))δ(η(x)), x), which is by construction group
invariant, i.e., not susceptible to potential group-related bias in the data (e.g. data that only occurs in
certain orientations).

3 Application to Common Groups

In this section we describe how our framework applies to a variety of common groups which we will
then implement in our experiments. As discussed in Section 2.2 and visualized in Figure 1b, the main
components of our proposed framework are the encoding function η, the decoding function δ and the
group function ψ. As stated in Property 2.1, the only constraint for the encoding function η is that it
has to be group invariant. This is in general straightforward to achieve for different groups as we
will demonstrate in Section 5. Our proposed framework does not constrain the decoding function δ
other than that it has to map elements from the latent space Z to the data domain X . Hence, δ can be
designed independently of the group of interest. The main challenge is in defining the group function
ψ = ξ ◦ µ such that it satisfies Property 2.2. Following Property 2.6 we now turn to describing our
construction of ξ, µ and Y for a variety of common groups.

Orthogonal group SO(2). The Lie group SO(2) is defined as the set of all rotations about the
origin in R2. We take Y to be the circle S1 ⊂ R2, that is, the space spanned by unit vectors in R2.
Now, S1 is a homogeneous space: any two points s0, s1 ∈ S1 are related by a rotation. Without
loss of generality, we take the reference vector y0 to be the vector (1, 0) ∈ S1. Then given a vector
y ∈ S1, we can write

y =

(
yx
yy

)
=

(
yx −yy
yy yx

)(
1
0

)
. (3)

thus, the function ξ : S1 → SO(2) is determined by ξ(y) = gθ such that θ = arccos(yx) =
arcsin(yy).

Orthogonal group SO(3). We assume that X has no fixed points, as this is usually the case for
generic shapes (point clouds) in R3. It would be tempting to take Y to be the sphere S2 ⊂ R3,
that is, the space spanned by unit vectors in R3. While this space is homogeneous, it does not
satisfy the condition that the stabilizers of G are trivial. In fact, given any vector y1 ∈ S2, we have
Gy1 = {g ∈ SO(3)|g is a rotation about y1} .

In order to construct a space with the desired property, consider a second vector w2 ∈ S2 orthogonal
to y1, y2 ⊂ y⊥1 . Taking Y to be the space spanned by y1, y2 ∈ S2, it is easy to see that now all the
stabilizers are trivial. Finally, let y3 = y1 × y2 ∈ S2, then we construct the rotation matrix

R =

(
y1,x y2,x y3,x
y1,y y2,y y3,y
y1,z y2,z y3,z

)
,which satisfies

(
y1
y2

)
= R

(
1 0 0
0 1 0

)⊺
= Ry0 .

Symmetric group Sn. A suitable space Y is the set of ordered collections of unique el-
ements of the set M = {1, 2, . . . , n}. For instance, for n = 3, we have Y =
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. It is trivial to see that the action of the
permutation group on the set Y is free, that is, all the stabilizers are trivial. Explicitely, given any
permutation-equivariant vector w ∈ Rn, we obtain an element y = argsort(w) ∈ Y . Moreover, it is
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also obvious that any element in Y can be written as Pσ(1, 2, . . . , n) = (σ(1), σ(2), . . . , σ(n)) , that
is, a group element acting on the canonical y0 = (1, 2, . . . , n).

Translation group Tn. Here we take Y = Rn, which is homogeneous with respect to the translation
group. In fact, any vector y ∈ Y can be trivially written as y = y+ 0 = y+ y0, where 0 is the origin
of Rn. Our group function takes therefore the form ξ(y) = y.

Euclidean group SE(n). A generic transformation of the Euclidean group on a n-dimensional
representation v ∈ V is

v 7→ Av + b , A ∈ SO(n) , b ∈ Tn . (4)

Let µ = (µ1, µ2, . . . , µn+1) be a collection of n+ 1 n-dimensional SE(n)-equivariant vectors, that
is, µi(ρX(g)x) = ρY (g)µ(x), i = 1, . . . , n. We construct ŷa = (µa − µn+1)/||µa − µn+1|| ∈ Sn,
a = 1, . . . , n, where Sn is the unit n-dimensional sphere. These n ortho-normal vectors are
translation invariant but rotation equivariant, and are suitable to construct the rotation matrix

R = (ŷ1 ŷ2 · · · ŷn) , (5)

while the extra vector ŷn+1 = µn+1 can be used to predict the translation action. Putting all together,
the space Y is described by n vectors ya = ŷa + ŷn+1, and y0 = In is the n× n unit matrix, as

(R+ ŷn+1)In = (ŷ1 · · · ŷn)
⊺

+ ŷn+1In = (y1 · · · yn)
⊺
. (6)

4 Related Work

Group equivariant neural networks. Group equivariant neural networks have shown great success
for various groups and data types. There are two main approaches to implement equivariance in a
layer and, hence, in a neural network. The first, and perhaps the most common, imposes equivariance
on the space of functions and features learned by the network. Thus, the parameters of the model
are constrained to satisfy equivariance Thomas et al. (2018); Weiler & Cesa (2019a); Weiler et al.
(2018a); Esteves et al. (2020). The disadvantage of this approach consists in the difficulty of designing
suitable architectures for all components of the model, transforming correctly under the group action
Xu et al. (2021). The second approach to equivariance consists in lifting the map from the space
of features to the group G, and equivariance is defined on functions on the group itself Romero &
Hoogendoorn (2020); Romero et al. (2020); Hoogeboom et al. (2018). Although this strategy avoids
the architectural constraints, applicability is limited to homogeneous spaces Hutchinson et al. (2021)
and involves an increased dimensionality of the feature space, due to the lifting to G. Equivariance
has been explored in a variety of architecture and data structures: Convolutional Neural Networks
Cohen & Welling (2016a); Worrall et al. (2017); Weiler et al. (2018c); Bekkers et al. (2018); Thomas
et al. (2018); Dieleman et al. (2016); Kondor & Trivedi (2018); Cohen & Welling (2016b); Cohen
et al. (2018); Finzi et al. (2020), Transformers Vaswani et al. (2017); Fuchs et al. (2020); Hutchinson
et al. (2021); Romero & Cordonnier (2020), Graph Neural Networks Defferrard et al. (2016); Bruna
et al. (2013); Kipf & Welling (2016); Gilmer et al. (2017); Satorras et al. (2021) and Normalizing
Flows Rezende & Mohamed (2015); Köhler et al. (2019, 2020); Boyda et al. (2021). These methods
are usually trained in a supervised manner and combined with a symmetric function (e.g. pooling) to
extract group-invariant representations.

Group equivariant autoencoders. Another line of related work is concerned with group equivariant
autoencoders. Such models utilize specific network architectures to encode and decode data in an
equivariant way, resulting into equivariant representations only Hinton et al. (2011); Sabour et al.
(2017); Kosiorek et al. (2019); Guo et al. (2019). Feige (2019) use weak supervision in an AE to
extract invariant and equivariant representations. Winter et al. (2021) implement a permutation-
invariant AE to learn graph embeddings, in which the permutation matrix for graph matching is
learned during training. In that sense, the present work can be seen as a generalization of their
approach for a generic data type and any group.
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Figure 2: Input and predicted output for rotated versions of three MNIST images. Top row shows
the input image successively rotated by 45◦. Middle row shows the decoded (canonical) image and
bottom row shows the decoded image after applying the predicted rotation.

5 Experiments

In this section we present a diverse set of experiments for the various symmetry groups discussed in
Section 3. 2

5.1 Rotated MNIST

Figure 3: TSNE embedding of the encoded test
dataset for a classical and our proposed SO(2) in-
variant autoencoder.

In the first experiment, we train an SO(2)-
invariant autoencoder on the original (non-
rotated) MNIST dataset and validate the trained
model on the rotated MNIST dataset mni which
consists of randomly rotated versions of the
original MNIST dataset. For the functions η
and ψ we utilize SO(2)-Steerable Convolutional
Neural Networks Weiler & Cesa (2019b). For
more details about the network architecture and
training, we refer to Appendix B. In Figure 2
we show images in different rotations and the
respective reconstructed images by the trained
model. The model decodes the different rotated
versions of the same image (i.e., elements from the same orbit) to the same canonical output ori-
entation (second row in Figure 2). The trained model manages to predict the right rotation matrix
(group action) to align the decoded image with the input image, resulting in an overall low recon-
struction error. Note that the model never saw rotated images during training but still manages to
encode and reconstruct them due to its inherent equivariant design. We find that the encoded latent
representation is indeed rotation invariant (up to machine precision), but only for rotations of an angle
θ = n·π

2 , n ∈ N. For all other rotations, we see slight variations in the latent code, which, however,
is to be expected due to interpolation artifacts for rotations on a discretized grid. Still, inspecting the
2d-projection of the latent code of our proposed model in Figure 3, we see distinct clusters for each
digit class for the different images from the test dataset, independent of the orientation of the digits
in the images. In contrast, the latent code of a classical autoencoder exhibits multiple clusters for
different orientations of the same digit class.

5.2 Set of Digits

Next, we train a permutation-invariant autoencoder on sets of digits. A set withN digits is represented
by concatenating one-hot vectors of each digit in aN×D-dimensional matrix, where we takeD = 10.
Notice that this matrix-representation of a set is not permutation invariant. We randomly sampled
1.000.000 different sets for training and 100.000 for the final evaluation with N = 20, 30, 40, 100,
respectively, removing all permutation equivariant sets (i.e., there are no two sets that are the same
up to a permutation). For comparison, we additionally trained a classical non-permutation-invariant
autoencoder with the same number of parameters and layers as our permutation-invariant version. For
more details on the network architecture and training we refer to Appendix C. Here, we demonstrate
how the separation of the permutation-invariant information of the set (i.e., the composition of the set)
from the (irrelevant) order-information results in a significant reduction of the space needed to encode
the set. In Figure 4a, we plot the element-wise reconstruction accuracy of different sized sets for both

2Source code for the different implementations is publicly available at https://github.com/... (also
see Supplementary Information)

7



[0, 0, 100]

[100, 0, 0]

[0, 100, 0]

[50, 50, 0]

[50, 0, 50]

[0, 50, 50]

[8, 6, 2, 7, 9, 2, 8, 5, 8, 0, 9, 7, 
9, 6, 7, 3, 9, 4, 6, 9, 1, 7, 5, 9, 3, 
7,  3, 7, 6, 8, 8, 1, 1, 4, 5, 9, 2, 
0, 1, 8, 8, 3, 2, 5, 5, 7, 6, 7, 4, 1, 
1, 0, 2, 8, 7, 8, 4, 9, 6, 4, 0, 4, 2, 
9, 0, 5, 8, 8, 3, 4, 3, 9, 9, 7, 4, 4, 
3, 3, 7, 3,  9, 6, 1, 0, 1, 7, 2, 3, 
9, 9, 8, 8, 7, 5, 1, 9, 7, 6, 8, 0]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 4, 
4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 
0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 
6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 
8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 
7, 7, 7, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 
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𝑥 =
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a) b) c)

P =

Figure 4: a) Element-wise reconstruction accuracy of our proposed permutation invariant autoencoder
(cross) and a classical non-permutation invariant autoencoder (diamond) for different embedding and
set sizes. b) Example set x with 100 elements with its canonical reconstruction x̂ and the predicted
permutation matrix P (resulting into a perfect reconstruction). One can confirm for oneself that, e.g.,
x[38] = x′[0], matching P [38, 0] = 1. c) Best viewed in colour. Visualization of the two-dimensional
embedding of a permutation-invariant autoencoder for all 5151 sets of 100 elements with 3 different
element classes. Each point represents one set, colours represent set compositions (proportion of
each element class, independent of the order). The three element classes are represented by the three
colour channels (rgb). E.g., the higher the proportion of the third element class, the bluer the point,
while same proportions results into white (point in the center).

models for varying embedding (bottleneck) sizes. As the classical autoencoder has to store both the
composition of digits in the set (i.e., number of elements for each of the 10 digits classes) as well as
their order in the permutation-dependent matrix representation, the reconstruction accuracy drops for
increasing size of the set N for a fixed embedding size. For the same reason, perfect reconstruction
accuracy is only achieved if the embedding dimension is at least as large as the number of digits in the
set. On the contrary, our proposed permutation invariant autoencoder achieves perfect reconstruction
accuracy with a significant lower embedding size. Crucially, as no order information has to be stored
in the embedding, this embedding size for perfect reconstruction accuracy also stays the same for
increasing size N of the set. In Figure 4b we show one example for a set x with N = 100 digits, with
the predicted canonical orbit element x̂ and the predicted permutation matrix. As perhaps expected,
the canonical element clusters together digits with same value, while not using the commonly used
order of Arabic numerals. This learned order (here [1,9,4,0,3,6,8,7,2,5]) stays fixed for the trained
network for different inputs but changes upon re-initialization of the network.

In Figure 4c we show the two-dimensional embedding of a permutation invariant autoencoder trained
on set of N = 100 elements chosen from D = 3 different classes (e.g. digits 0,1,2). As the sets
only consists of 3 different elements (but in different compositions and order) we can visualize the(
D+N−1

N

)
=
(
102
100

)
= 5151 elements in the two-dimensional embedding and colour them according

to their composition. As our proposed auteoncoder only needs to store the information about the set
composition and not the order, the embedding is perfectly structured with respect to the composition
as can be seen by the colour gradients in the visualization of the embedding.

5.3 Point Cloud

Point clouds are a common way to describe objects in 3D space, such as the atom positions of a
molecule or the surface of an object. As such, they usually adhere to 3D translation and rotation sym-
metries and are unordered, i.e., permutation invariant. Hence, we investigate in the next experiment a
combined SE(3)- and SN -invariant autoencoder for point cloud data. We use the Tetris Shape toy
dataset Thomas et al. (2018) which consists of 8 shapes, where each shape includes N = 4 points in
3D space, representing the center of each Tetris block. To generate various shapes, we augment the 8
shapes by adding Gaussian noise with σ = 0.01 standard deviation on each node’s position. Different
orientations are obtained by rotating the point cloud with a random rotation matrix R ∈ SO(3) and
further translating all node positions with the same random translation vector t ∈ R3 ≃ T3. For
additional details on the network architecture and training we refer to Appendix D. In Figure 5 we
visualize the input points and output points before and after applying the predicted rotation. The
model successfully reconstructs the input points with high fidelity (mean squared error of∼ 4×10−5)
for all shapes and arbitrary translations and rotations. Figure 5b shows the two-dimensional embed-
ding of the trained SE(3)- and SN -invariant autoencoder. Augmenting the points with random noise
results into slight variations in the embedding, while samples of the same Tetris shape class still
cluster together. The embedding is invariant with respect to rotations, translation and permutations
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Visualization of Reconstructions: QM9
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a)

b) c)

Figure 5: a) Five different Tetris shapes represented by points at the center of the four blocks
respectively. Input points, output points and rotated (predicted group action) output points as
reconstructed by our proposed SE(3)- and S(N )-invariant autoencoder are visualized. b) Two-
dimensional latent space for all Tetris shapes augmented with Gaussian noise (σ = 0.01). Colors of
points match colors of shapes on the right. c) Two molecular conformations and their reconstructions
represented as point cloud and ball-and-stick model (left true, right predicted).
We only showcase the effect of aligning by applying the predicted rotation matrix, while the models
are still trained in predicting the permutation matrix and translation vector to perform the alignment.

of the points. Notably, the SE(3)-invariant representations can distinguish the two chiral shapes
(compare green and violet coloured shapes in the bottom right of Figure 5b). These two shapes are
mirrored versions of themselves and should be distinguished in an SE(3) equivariant model. Models
that achieve SE(3) invariant representations by restricting themselves to composition of symmetric
functions only, such as working solely on distances (e.g. SchNet Schütt et al. (2018)) or angles (e.g.
ANI-1 Smith et al. (2017)) between points fail to distinguish these two shapes Thomas et al. (2018).

Molecular Conformations. We showcase our learning framework on real-world data by autoen-
coding the atom types and geometries of small molecules from the QM9 database Ramakrishnan et al.
(2014). We achieved a reconstruction RMSE of 0.15± 0.07 Å for atom coordinates and perfect atom
type accuracy on 5000 unseen test conformations (see Figure 5c for two examples and Appendix E for
more reconstruction predictions). Given a point cloud of N nodes, notice that the G-inv. embedding
z has to store information about the Cartesian coordinates P ∈ R3N as well as the 5 distinct atom
types A ∈ {0, 1}5N represented as one-hot encodings. Given the largest molecule in the QM9
database with Nmax = 29 atoms, the degrees of freedom of the data space3 X can assumed to be
3 · 29 · 5 · 29 = 12615, making the input data high-dimensional, while we compress the molecular
conformations into z ∈ Z ⊂ R256 dimensions.

6 Conclusion

In this work we proposed a novel unsupervised learning strategy to extract representations from data
that are separated in a group invariant and equivariant part for any group G. We defined the sufficient
conditions for the different parts of our proposed framework, namely the encoder, decoder and group
function without further constraining the choice of a (G-) specific network architecture. In fact, we
demonstrate the validity and flexibility of our proposed framework for diverse data types, groups and
network architectures.

To the best of our knowledge, we propose the first general framework for unsupervised learning
of separated invariant-equivariant representations valid for any group. Our learning strategy can

3Notice that the data space X can be described as the product space between R3N and N5N .
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be applied to any AE framework, including variational AEs. It would be compelling to extend our
approach to a fully probabilistic approach, where the group action function samples from a probability
distribution. Such formalism would be relevant in scenarios where some elements of a group orbit
occur with different frequencies, enabling this to be reflected in the generation process. For instance,
predicting protein-ligand binding sites depends on the molecule’s orientation with respect to the
protein pocket or cavity. Thus, in a generative approach, it would be highly compelling to generate a
group action reflecting a candidate molecule’s orientation in addition to a candidate ligand. We plan
to return to these generalization and apply our learning strategy to non-trivial real-world applications
in future work.
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A Proofs

Proposition A.1. Any suitable group function ψ : X → G is G-equivariant at a point x ∈ X up the
stabilizer Gx, i.e., ψ(ρX(g)x) ⊆ g · ψ(x)Gx.

Proof : As the relation (see Property 2.2)
ρX(ψ(x))δ(η(x)) = x (7)

must hold for any x ∈ X , it must hold for any point x′ = ρX(g)x in the orbit of x, which then reads
x′ = ρX(ψ(x′))δ(η(x′))

= ρX(ψ(ρX(g)x))δ(η(x)) , (8)
where we used the invariance of η. On the other hand, applying ρX(g) to both sides of (7) we have

ρX(g)x = ρX(g)ρX(ψ(x))δ(η(x))

= ρX(gψ(x))δ(η(x)) , (9)
since η(ρX(g′)x) = η(x) and ρX(g1)ρX(g2) = ρX(g1g2). Combining (8) and (9) it follows that

ρX(ψ(x)−1 · g−1 · ψ(ρX(g)x))δ(η(x)) = δ(η(x)) , (10)

that is, ψ(x)−1 · g−1 · ψ(ρX(g)x)) ∈ Gδ(η(x)). Now, since x and δ(η(x)) by assumption belong to
the same orbit of G, it follows that they have isomorphic stabilizers, Gδ(η(x)) ≃ Gx. Thus, we have
shown that ψ(ρX(g)x)) = g · ψ(x) · g′, where g′ ∈ Gx, which proves our claim.
Proposition A.2. The image of any suitable group function ψ : X → G is surjective into G

GX
, where

GX is the stabilizers of all the points of X .

Proof : Let x ∈ X be such that x = δ(η(x)), that is, ψ(x) = Gx, the stabilizer of x. Note
that each orbit cointains at least one such element. For any element g ∈ G we have that, using
Proposition A.1, ψ(ρX(g)x) = g · ψ(x) · g̃, where g̃ ∈ Gx. Since ψ(x) · g̃ ∈ Gx as well, it then
follows that the image of ψ is G up to an action by an element of the stabilizer Gx. Applying
the above reasoning to every points x ∈ X , we have that Im(ψ) = ∪x∈X G

Gx
= G

∩x∈XGx
, where

∩x∈XGx = GX = {g ∈ G|ρX(g)x = x, ∀x ∈ X}, proving our claim.
Lemma A.3. Any suitable group function ψ is an isomorphism Ox ≃ G/Gx for any x ∈ X , where
Ox ⊂ X is the orbit of x with respect to G in X .

Proof : Surjectivity follows directly from Proposition A.2. To show injectivity, consider x, x′ ∈ Ox
such that ψ(x′) = ψ(x) · g̃, where g̃ ∈ Gx. From Proposition 2.3 it follows that x′ = x, which proves
the claim.
Proposition A.4. Let ψ = ξ ◦ µ be a suitable group function and let µ : X → Y be G-equivariant.
Then, Gx = Gµ(x) for all x ∈ X .

Proof : Let g ∈ Gx, that is, ρX(g)x = x. Applying µ to both sides of this equation we obtain
µ(x) = µ(ρX(g)x) = ρY (g)µ(x), where we used the G-equivariance of µ. Hence, Gx ⊆ Gµ(x).
To prove the opposite inclusion, let g ∈ Gµ(x) but g /∈ Gx, and let x′ = ρX(g)x. Now, µ(x′) =
ρY (g)µ(x) = µ(x), thus µ, and therefore ψ = ξ ◦ µ, maps the distinct element x, x′ to the same
group element ψ(x) = ψ(x′), in contradiction with Proposition 2.3.
Proposition A.5. Given y, y0, the element g such that y ≡ ρY (g)y0 is unique up to the stabilizer
Gy0 .

Proof : Suppose that there exist g1, g2 ∈ G such that ρY (g1)y0 = ρY (g2)y0, then ρY (g−1
2 g1)y0 = y0,

which implies g−1
2 g1 ∈ Gy0 .

Proposition A.6. Let ψ = ξ ◦ µ where µ and ξ are as described above. Then, ψ is a suitable group
function.

Proof : We show that our construction describes an isomorphism Ox ≃ G/Gx for all x ∈ X . Given
x ∈ X and g ∈ G, Propositions A.4 and A.5 imply

ξ (µ(ρX(g)x)) = ξ(ρY (g)µ(x)) ⊆ g · ξ(µ(g))Gx , (11)
that is, ψ possesses the G-equivariant property as required in Proposition 2.3, which in turns imply
injectivity, as in Lemma A.3. Surjectivity follows from the same argument as in Proposition A.2,
since the proof only relies on the equivariant properties of ψ, which we showed in (11).
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B Model architecture Rotated MNIST

We follow Weiler & Cesa (2019b) and use steerable CNNs to parameterize functions η and µ. In
contrast to classical CNNs, CNNs with O(2)-steerable kernels transform feature fields respecting the
transformation law under actions of O(2). We can define scalar fields s : R2 → R and vector fields
v : R2 → R2 that transform under group actions (rotations) the following:

s(x) 7→ s(g−1x) v(x) 7→ g · v(g−1x) ∀g ∈ O(2) . (12)
Thus, scalar values are moved from one point on the plane R2 to another but are not changed, while
vectors are moved and changed (rotated) equivalently. Hence, we can utilize steerable CNNs to
encode samples in R2 in O(2)-invariant scalar features and O(2)-equivariant vector features. We can
use the scalar features s as G-invariant representation z ∈ Z and following Section 3 (Orthogonal
group SO(2)) utilizing a single vector features v to construct the rotation matrix R as:

R =

[
v̄x −v̄y
v̄y v̄x

]
, v̄ =

v

∥v∥ . (13)

In our experiments we used seven layers of steerable CNNs as implemented by Weiler & Cesa
(2019b). We did not use pooling layers, as we found them to break rotation equivariance and only
averaged over the two spatial dimensions after the final layer to extract the final invariant embedding
and equivariant vector. In each layer we used 32 hidden scalar and 32 hidden vector fields. In the
final layer we used 32 scalar fields (32 dimensional invariant embedding) and one vector feature field.

The Decoding function δ : Z → R2 can be parameterized by a regular CNN. In our experiments we
used six layers of regular CNNs with 32 hidden channels, interleaved with bilinear upsampling layers
starting from the embedding expanded to a 2× 2× 32 tensor.

Training was done on one NVIDIA Tesla V100 GPU in approximately 6 hours.

We also implemented and trained the quotient autoencoder (QAE) approach proposed by Mehr et al.
(2018a) on the MNIST dataset for the group SO(2), discretized in 36 rotations with the loss

min
θ∈{10i,i=0,...,35}

{MSE(x− ρX(g(θ))y)} , (14)

where x is a MNIST sample and y is the reconstructed sample. We evaluated the resulting embeddings
on the rotated MNIST test set (in such a way that the evaluation is the same as for our model). In
Figure 6 we plot TSNE embeddings for this approach, and we can observe that the embedding space
shows a clearer structure, in comparison with the classical model. However, in comparison, our
approach results in a better clustering of the different digits classes. That shows that the discretization
step, while it helps in structuring the embedding space in “signal clusters”, still does not capture the
full continuous nature of the group. To further quantitatively compare the three methods (ours, QAE
(a) and classical AE), we evaluated the reconstruction loss as well as the (digit class) classification
accuracy of a KNN classifier trained on 1000 embeddings of each method. We present in the table
below the results for the reconstruction loss and for the classification accuracy of a KNN classifier
trained on the AE embeddings. To obtain a fair comparison, we kept the architecture and the training
hyperparameters exactly identical for all the strategies. We note that our strategy outperforms both
the classical AE as well as the strategy of (a) in both tasks.

We also performed an additional experiment, we trained a fully equivariant AE (that is, the embedding
itself is fully equivariant, i.e. multiple 2-dimensional vectors) on MNIST with G = SO(2), and we
perform an invariant pooling afterwards to extract the invariant part. Specifically, we have trained
KNN classifiers on (a) the invariant embedding corresponding to the norm of the 2-dimensional
vectors forming the bottleneck representation, (b) the angles between the first and all other vectors
and on (c) the full invariant embedding we obtained by combining the the norms and angles. We
choose the number of vectors in the bottleneck in such a way that the dimensionality of the full
invariant representation coincides with the one of our model. We visualized the resulting TSNE
embeddings in Figure 6 and show the downstream performance of the KNN classifiers in Table 1.
From the results we can see that, in comparison to the approximate invariant (QAE) and our invariant
trained model, the invariant projected equivariant representations perform inferior. Although we
extract a complete invariant representation (which performs better than a subset of this representation
like the norm or angle part), the resulting representation is apparently not as expressive and e.g.
useful in a downstream classification task. This aligns well with our hypothesis, that our proposed
framework poses a sensible supervisory signal to extract expressive invariant representations that are
superior to invariant projections of equivariant features.

17



Table 1: Comparison of our approach vs classical and quotient autoencoder (QAE) as well as an fully
equivariant AE with invariant pooling after training.

Model Rec. Loss KNN Acc.

classical 0.0170 0.68
QAE 0.0227 0.82

invariant (ours) 0.0162 0.90
equiv AE (norm) 0.0189 0.56
equiv AE (angle) 0.0189 0.53

equiv AE (complete) 0.0189 0.67

Figure 6: Top row: TSNE embedding of the encoded test dataset for a classical autoencoder, our
proposed SO(2) invariant autoencoder, and for the quotient autoencoder of Mehr et al. (2018a).
Bottom row: Fully equivariant trained autoencoder with invariant projection after training, either by
taking the norm, angles between vectors or the combination (complete).

C Model architecture Set of Digits

We can rewrite the equation Pσ(1, 2, . . . , n) = (σ(1), σ(2), . . . , σ(n)) , in vector form by represent-
ing set elements by standard n × 1 column vectors ei (one-hot encoding) and σ by a permutation
matrix Pσ whose (i,j) entry is 1 if i = σ(j) and 0 otherwise, then:

Pσei = eσ(i) (15)

Hence, encoding function η should encode a set of elements in a permutation invariant way and ψ
should map a set M to a permutation matrix Pσ:

ψ : M → Pσ (16)

We follow Zaheer et al. (2017) and parameterize η by a neural network γ that is applied element-wise
on the set followed by an invariant aggregation function Σ (e.g. sum or average) and a second neural
network β:

η(X) = β(Σx∈Xγ(x)) . (17)
In our experiments we parameterized γ and β with regular feed-forward neural networks with three
layers respectively, also using ReLU activations and Batchnorm.

The output of function γ is equivariant and can also be used to construct ψ. We follow Winter et al.
(2021) and define a function s : Rd → R mapping the output of γ for every set element to a scalar
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value. By sorting the resulting scalars, we construct the permutation matrix Pσ with entries pij that
would sort the set of elements with respect to the output of s:

pij =

{
1, if j = argsort(s)i
0, else

(18)

As the argsort operation is not differentiable, we utilizes a continuous relaxation of the argsort
operator proposed in (Prillo & Eisenschlos, 2020; Grover et al., 2019):

P ≈ P̂ = softmax(
−d(sort(s)1⊤, 1s⊤)

τ
), (19)

where the softmax operator is applied row-wise, d(x, y) is the L1-norm and τ ∈ R+ a temperature-
parameter.
Decoding function δ can be parameterized by a neural network that maps the permutation-invariant
set representation back to either the whole set or single set elements. In the letter case, where the same
function is used to map the same set representation to the different elements, additional fixed position
embeddings can be fed into the function to decode individual elements for each position/index. For
the reported results we choose this approach, using one-hot vectors as position embeddings and a
4-layer feed-forward neural network.

Training was done on one NVIDIA Tesla V100 GPU in approximately 1 hours.

D Model architecture Point Cloud - Tetris 3D

We implement a graph neural network (GNN) that transform equivariantly under rotations and
translations in 3D space, respecting the invariance and equivariance constraints mentioned in Eq. (5)
and (6) for n = 3.

Assume we have a point cloud of N particles each located at a certain position xi ∈ R3 in Cartesian
space. Now given some arbitrary ordering σ(·) for the points, we can store the positional coordinates
in the matrix P = [x1, ..., xN ] ∈ RN×3. Standard Graph Neural Networks (GNNs) perform message
passing Gilmer et al. (2017) on a local neighbourhood for each node. Since we deal with a point
cloud, common choice is to construct neighbourhoods through a distance cutoff c > 0. The edges of
our graph are specified by relative positions

xij = xj − xi ∈ R3 ,

and the neighbourhood of node i is defined as N (i) = {j : dij := ||xij || ≤ c}.
Now, our data (i.e., the point cloud) lives on a vector space X , where we want to learn an SE(3)
invariant and equivariant embedding wrt. arbitrary rotations and translations in 3D space. Let the
feature for node i consist of an invariant (type-0) embedding hi ∈ RFs , an equivariant (type-1)
embedding wi ∈ R3×Fv that transforms equivariantly wrt. arbitrary rotation but is invariant to
translation. Such a property can be easily obtained, when operating with relative positions.
Optionally, we can model another equivariant (type-1) embedding ti ∈ R3 which transforms
equivariantly wrt. translation and rotation. As our model needs to learn to predict group actions
in the SE(3) symmetry, we require to predict an equivariant translation vector (b ∈ T3), as well as
a rotation matrix (A ∈ SO(3)), where we will dedicate the t vector to the translation and the w
vector(s) to the rotation matrix.
As point clouds might not have initial features, we initialize the SE(3)-invariant embeddings as
one-hot encoding hi = ei for each node i = 1, . . . , N . The (vector) embedding dedicated for
predicting the rotation matrix is initialized as zero-tensor for each particle, i.e., wi = 0 and the
translation vector is initialized as the absolute positional coordinate, i.e. to, ti = xi.

We implement following edge function ϕe : R2Fs+1 7→ RFs+2Fv+k with

mij = ϕe(hi, hj , dij) = We[hi, hj , dij ] + be, (20)

and set k = 1 if the GNN should model the translation and k = 0 else. Notice that the message mij

in Eq. (20) only depends on SE(3) invariant embeddings. Now, (assuming k = 1) we further split the
message tensor into 4 tensors,

mij = [mh,ij ,mw0,ij ,mw1,ij ,mt,ij ] ,
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which we require to compute the aggregated messages for the SE(3) invariant and equivariant node
embeddings.
We include a row-wise transform ϕs : RFs 7→ RFs for the invariant embeddings using a linear layer:

h̃i = Wshi + bs , (21)

The aggregated messages for invariant (type-0) embedding hi are calculated using:

mi,h =
∑

j∈N (i)

mh,ij ⊙ h̃i ∈ RFs . (22)

where ⊙ is the (componentwise) scalar-product.
The aggregated equivariant features are computed using the tensor-product ⊗ and scalar-product ⊙
from (invariant) type-0 representations with (equivariant) type-1 representations:

mi,w =
∑

j∈N (i)

(xij ⊗mw0,ij + (wi × wj)⊙ (1⊗mw1,ij)) ∈ R3×Fv , (23)

where 1 ∈ R3 is the vector with 1’s as components and (a× b) denotes the cross product between
two vectors a, b ∈ R3.
The tensor in Eq. (23) is equivariant to arbitary rotations and invariant to translations. It is easy to
prove the translation invariance, as any translation t∗ ∈ T3 acting on points xi, xj does not change
the relative position xij = (xj + t∗)− (xi + t∗) = xj − xi.
To prove the rotation equivariance, we first observe that given any rotation matrix A ∈ SO(3) acting
on the provided data, as a consequence relative positions rotate accordingly, since

Axj −Axi = A(xj − xi) = Axji ∈ R3.

The tensor product ⊗ between two vectors u ∈ R3 and v ∈ RFs , commonly also referred to as outer
product is defined as

u⊗ v = uv⊤ ∈ R3×Fs ,

and returns a matrix given two vectors. For the case that a group representation of SO(3), i.e. a
rotation matrix R, acts on u, it is obvious to see with the associativity property

(Au)⊗ v = (Au)v⊤ = Auv⊤ = A(uv⊤) = A(u⊗ v) = Au⊗ v.

The cross product (wi × wj) ∈ R3×Fv used in equation (23) between type-1 features wi and wj is
applied separately on the last axis. The cross product has the algebraic property of rotation invariance,
i.e. given a rotation matrix A acting on two 3-dimensional vectors a, b ∈ R3 the following holds:

(Aa)× (Ab) = A(a× b) . (24)

Now, notice that the quantities that "transform as a vector" which we call type-1 embeddings are in
S = {xij , wi, ti}Ni,j=1.
Given a rotation matrix A acting on elements of S, we can see that the result in (23)

∑

j∈N (i)

(Axij ⊗mw0,ij + (Awi)× (Awj)⊙ (1⊗mw1,ij))

=
∑

j∈N (i)

(Axij ⊗mw0,ij +A(wi × wj)⊙ (1⊗mw1,ij))

= A
∑

j∈N (i)

(xij ⊗mw0,ij + (wi × wj)⊙ (1⊗mw1,ij))

= Ami,w

is rotationally equivariant.
We update the hidden embedding with a residual connection

hi ←− hi +mi,h ,

wi ←− wi +mi,w , (25)
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and use a Gated-Equivariant layer with equivariant non-linearities as proposed in the PaiNN architec-
ture Schütt et al. (2021) to enable an information flow between type-0 and type-1 embeddings.
The type-1 embedding for the translation vector is updated in a residual fashion

ti ←− ti +
∑

j∈N (i)

xij ⊗mt,ij

= ti +
∑

j∈N (i)

mt,ij ⊙ xij , (26)

where we can replace the tensor-product with a scalar-product, as mt,ij ∈ R. The result in Eq. (26)
is translation and rotation equivariant as the first summand ti is rotation and translation equivariant,
while the second summand is only rotation equivariant since we utilize relative positions.

For the SE(3) Tetris experiment, the encoding function η : X 7→ Z is a 5-layer GNN encoder with
F = Fs = Fv = 32 scalar- and vector channels and implements the translation vector, i.e. k = 1.
The encoding network η outputs four quantities: two SE(3) invariant node embedding matrices
H̃,M ∈ RN×F , one SO(3) equivariant order-3 tensor W̃ ∈ RN×3×F as well as another SE(3)
equivariant matrix T ∈ RN×3.
We use two linear layers4 to obtain the SE(3) invariant embedding matrix H ∈ RN×2 as well as
the SO(3) equivariant embedding tensor W ∈ RN×3×2. Notice that the linear layer returning the
W tensor can be regarded as the function ψrot that aims to predict the group action in the SO(3)
symmetry, while we use the identity map for the translation vector, i.e. ψtransl = T .
As point clouds can be regarded as sets, we obtain an permutation invariant embedding by averaging
over the first dimension of the {H,W, T} tensors,

h =
1

N

N∑

i=1

Hi ∈ R2 , (27)

t =
1

N

N∑

i=1

Ti ∈ R3 , (28)

w =
1

N

N∑

i=1

Wi ∈ R3×2 , (29)

while we use the M matrix to predict the permutation matrix Pσ with the ψperm function, in similar
fashion as described in Eq. (16). To construct the rotation matrixR out of 2 vectors in R3 as described
in Section 3, we utilize the SO(3) equivariant embedding w.
The decoding network δ : Z 7→ X is similar to the encoder a 5-layer SE(3)-equivariant GNN but does
not model the translation vector, i.e. k = 0. The decoder δ maps the SE(3) as well as S(N )-invariant
embedding h back to a reconstructed point cloud P̂ ∈ RN×3. At the start of decoding, we utilize a
linear layer to map the G−invariant embedding h ∈ R2 to a higher-dimension, i.e.

h̃ = W0h+ b0 ∈ RFs , (30)

Next, to “break” the symmetry and provide the nodes with initial type-0 features, we utilize fixed
(deterministic) positional encodings as suggested by Winter et al. (2021) for each node i = 1, . . . , N
to be summed with h̃. Notice that this addition enables us to obtain distinct initial type-0 embeddings
{ĥi}Ni=1.
For the start positions, we implement a trainable parameter matrix Pθ of shape (N × 3) for the
decoder.
Now, given an initial node embedding Ĥ ∈ RN×Fs , we apply the S(N ) group action, by multiplying
the predicted permutation matrix Pσ with Ĥ from the left to obtain the canonical ordering as

Ĥσ = PσĤ . (31)

To retrieve the correct orientation required for the pairwise-reconstruction loss, we multiply the
constructed rotation matrix R with the initial start position matrix Pθ

P̂r = PθR
⊤. (32)

4The transformation is always applied on the last (feature) axis.
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Target Fraction Pretrained From Scratch
H 0.05 0.7529 0.0970

0.25 0.9908 0.9093
G 0.05 0.7703 0.4758

0.25 0.9856 0.9751
U 0.05 0.6083 0.2574

0.25 0.9962 0.9808
⟨R2⟩ 0.05 0.7806 0.1468

0.25 0.9918 0.8546
µ 0.05 0.8698 0.8443

0.25 0.9718 0.9718
α 0.05 0.9455 0.9237

0.25 0.9937 0.9764

Table 2: Generalization performance in terms of the coefficient of determination R2 of models on a
held-out test set of 1000 samples. Higher R2 indicates better performance.

With such construction, we can feed the two tensors to the decoder network δ to obtain the recon-
structed point cloud as

P̂recon = δ(Ĥσ, P̂r) + t , (33)

where t ∈ R3 is the predicted translation vector from the encoder network, added row-wise for each
node position.

Architecture QM9. For the QM9 dataset, we use the same model components as described in the
Tetris experiment, with the difference of including atom species as SE(3)−invariant features and
setting Fs = 256, Fv = 32 and increasing the dimensionality of the latent space to 256.

Finetuning. We performed additional experiments on the pretrained group-invariant AE on the
extended GEOM-QM9 dataset Axelrod & Gomez-Bombarelli (2021) which, as opposed to the
standard QM9 dataset (≈ 130k samples), contains multiple conformations of small molecules. We
trained the autoencoder on a reduced set of GEOM-QM9 (≈ 641k), containing up to 10 conformations
per molecule and utilized this pretrained encoder network to regress (invariant) energy targets, such
as internal energy U or enthalpy H on the original QM9 dataset.

We observed that the pretrained encoder network learns faster and achieves better generalization
performance than the architectural identical network trained from scratch. In Figure 7 we illustrates
the learning curves for the two networks on different fraction on 5% and 25% labelled samples
from original QM9 dataset to analzye the benefit of finetuning a pre-trained encoder network on a
low-data regime, when regressing on the enthalpy H . On a held-out test dataset of 1000 samples, the
pretrained encoder network achieves superior generalization performance in terms of R2 with 0.7529
vs. 0.0970 in the 5% data regime, and 0.9908 vs. 0.9093 in the 25% data regime compared to the
encoder that was trained from scratch. In Table2 we show additional comparisons of the pretrained
network against a network that was trained from scratch for 50 epochs on the restricted dataset.
As shown in Table 2, the pretrained encoder achieves improved generalization performance on the
test dataset compared to its architectural identical model that was trained from scratch. We believe
that training the group-invariant autoencoder on a larger diverse dataset of (high-quality) molecular
conformations facilitates new opportunities in robust finetuning on different data-scarse datasets for
molecular property prediction.

E Molecular Conformations: Further Examples

We show additional reconstructions of 12 randomly selected small molecules from the QM9 test
dataset. Noticeably, our trained autoencoder is able to reconstruct molecular conformations with
complex geometries as depicted in the third column (from the left). We notice that the AE is not
able to perfectly reconstruct the conformation shown in the 4th column of the 2nd row. Although
this molecule does not exhibit a complicated geometrical structure, its atomistic composition (of
only containing nitrogen and carbon as heavy atoms) could be the reason why the encoding of the

22



0 20 40 60 80
Step

10 2

10 1

100

L2
-lo

ss
 in

 lo
g-

sc
al

e

(a) 5% of entire dataset
From-Scratch Train Loss
Pretrained Train Loss

0 200 400 600 800
Step

10 3

10 2

10 1

100

L2
-lo

ss
 in

 lo
g-

sc
al

e

(b) 25% of entire dataset
From-Scratch Train Loss
Pretrained Train Loss

Figure 7: Learning curves of models trained on limited enthalpy H targets.

Figure 8: 12 molecular conformations and their reconstructions represented as point cloud and
ball-and-stick model (left true, right predicted).
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Figure 9: Atomistic species count on the QM9 dataset.

Figure 10: TSNE embedding of the encoded dataset for a classical autoencoder and our proposed
SO(3) invariant autoencoder.

conformation is pointing into a non-densely populated region in the latent space, as nitrogen does not
have a large count in the total QM9 database, see Figure 9.

Training was done on one NVIDIA Tesla V100 GPU in approximately 1 day.

F ShapeNet

We also run experiments on the ShapeNet dataset. As the dataset comes in an aligned form (e.g. cars
are always aligned in the same orientation), we additionally applied random 90 degree rotations to
remove this bias. We utilized 3D Steerable CNNs proposed by Weiler et al. (2018b) as equivariant
encoder for the 3d voxel input space. We utilized the scalar outputs as rotation-invariant embedding
(z) and predict (analogously to our experiments on 3d point clouds) 2 rotation-equivariant vectors
to construct a rotation matrix (g). Similar to our MNIST experiment, we compared the resulting
embedding space to the embeddings produced by a non-invariant autoencoder model. In Figure 10
we visualize a TSNE projection of the embeddings of both models. We can see a well structured
embedding space for our model with distinct clusters for the different shape classes. On the other
hand, the embeddings produced by the non-invariant autoencoder is less structured and one can make
out different clusters for the same shape label but in different orientations. Moreover, we compared
the downstream performance and generalizability of a KNN classifier on shape classification, trained
on 1000 embeddings and tested on the rest. The classifier based on our rotation-invariant embeddings
achieved an accuracy of 0.81 while the classifier based on the non-invariant embeddings achieved an
accuracy of only 0.63.

G Additional Related Work Section

The field of unsupervised invariant representation learning can be roughly divided into two categories.
The first consists in learning an approximate group action in order to match the input and the
reconstructed data. For instance, Mehr et al. (2018b) propose (like us) to encode the input in quotient
space, and train the model with a loss that is defined by taking the infimum over the group G. While
this is feasible for (small) finite groups, for continuous groups they either have to approximately
discretize them or perform a separate optimization of h at every back propagation step to find the
best match. Other work Shu et al. (2018); Koneripalli et al. (2020) proposes to disentangle the
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embedding in a shape-like and a deformation-like component. While this is in spirit with our work,
their transformations are local (we focus on global transformations) and are approximative, that
is, the components are not explicitly invariant and equivariant with respect to the transformation,
respectively.

In the case of 2D/3D data, co-alignment of shapes can be used to match the input and the reconstructed
shapes. Some approaches are unfeasible Wang et al. (2012) as they are not compatible with a purely
unsupervised approach, while other Averkiou et al. (2016); Chaouch & Verroust-Blondet (2008, 2009)
leverage symmetry properties of the data and PCA decomposition, exhibiting however limitation
regarding scalability. For graphs, the problem of graph matching Bunke & Jiang (2000) has been
tackled in several works and with different approaches, for instance algorithmically, e.g., Ding et al.
(2020), or by means of a GNN Li et al. (2019).

On the topic of representation theory-based embedding disentanglement, the works Hosoya (2019);
Keurti et al. (2022), based on the definition of Higgins et al. (2018) of a disentangled representa-
tions, design unsupervised generative VAEs approaches for learning representation corresponding
to orthogonal symmetry actions on the data space. In our work, on the other hand, we disentangled
different representations, which all can act on our data space.
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Chapter 3

Conclusion

This thesis mainly concerned itself with the development of novel methods to
describe and represent molecules in a meaningful way and utilize such represen-
tations for molecular generation and optimization in pharmaceutical drug design.
An important aspect of representation learning for molecules is the necessity
of unsupervised learning approaches to extract such representations, as labeled
data is usually scarce. In the published works, we propose different methods,
handling the different challenging data types molecules are usually represented
by, such as line notations (e.g. SMILES), graphs and point clouds, defining
different unsupervised learning objectives to extracts expressive descriptors.

In the first publication, we proposed a Deep Learning methods that learns from
a large unlabeled dataset to extract meaningful molecular representations from
the SMILES line notation. We demonstrated its competitive if not superior
performance in various molecular property prediction and virtual screening
benchmarks.

In the second work, we utilized this novel representation for molecular de-novo
design and lead optimization. We showed how the proposed method can be used
to efficiently optimize a molecule with respect to a multi-objective value function
with potential structural constrains.

In the third publication, we combined the first two works to design an interactive
web application to steer a molecular optimization procedure from start to end.

In the forth work, we moved past representing just the molecular topology
and proposed a method that can learn expressive representations from the
molecular conformation. We demonstrated how the internal coordinates of
different molecules can be compressed in the same fixed-size latent space and
how such representation can be used to efficiently sample energetically reasonable
conformation for a given molecular topology.

In the fifth publication, we proposed a method to represent any graph (including
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molecular graphs) in a fixed-size permutation invariant way. We discussed the
benefits and necessity of such a permutation invariant graph-level representation
for a variety of task and demonstrated its superiority over other methods lacking
this property.

In the final publication, we generalized the concept of learning permutation-
invariant graph representations with an autoencoder framework to any other
data type and group. We derived the necessary conditions for the different
parts of the model independently of a specific data type, group or network
architecture. We demonstrated how our proposed method is able to represent
images in a rotation-invariant way, sets of digits in permutation-invariant way
and point clouds in a rotation, translation and permutation-invariant way. The
later approach can be used in future work to autoencode molecular conformations
represented in Cartesian coordinates.

In essence, this thesis investigated how unsupervised learning can be utilized
to extract powerful representations of molecular compounds that can be used
to improve or enable downstream applications relevant for pharmaceutical drug
development such as efficient molecular property prediction or molecular de novo
design.

We discussed how naive applications of unsupervised learning method might
lead to inferior representations if crucial symmetries of the data space are not
accounted for. We proposed novel methods that account for such symmetries,
either indirectly, by employing a self-supervised learning objective (translation
between different line notations of molecules) or directly, by modeling the
symmetry groups of interest (permutation group or Euclidean group).

While this thesis is mainly concerned with the representation of drug candidate
molecules, another interesting angle to investigate in future work is the use of
unsupervised learning methods to represent the target of a potential drug. The
methods developed, especially in publications five and six, could for example be
used to represent a protein pocket or cavity in a rotation-invariant and fixed-sized
descriptor. Such a descriptor could be combined with a ligand descriptor to
build powerful proteochemometric models [Van Westen et al., 2011], leveraging
not only the structural similarity of ligands but also of their targets.

The present work utilized many different raw representations of molecules (such
as line-notations, internal coordinates and Cartesian coordinates) as input for
the proposed unsupervised learning algorithms. Another interesting input not
discussed in this work could be the electrostatic potential or electron density
of a molecule. As the electrostatic interaction of a ligand with its target is the
main driver for binding, it could be beneficial to extract a molecular descriptor
directly from the electron density. In future work we would like to utilize the
method developed in publication six to develop such a model.
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As the development of drugs gets more challenging [Wouters et al., 2020], the
importance and necessity of computational methods to support this process gets
increasingly substantial. However, in order to apply any computational method
to the field of chemistry, the first step usually involves representing chemical
structures in a computer-interpretable way. If this representation fails to reflect
important properties of molecules, subsequent methods will inevitably fail to
model those properties. Hence, we argue that finding the most suitable and
meaningful molecular representations is a crucial part in enabling computational
chemistry and ultimately the discovery of novel cures for diseases. We hope
that the work presented in this thesis helped in pushing the field forward to the
development of such more desirable molecular representations.
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A. (2019a). Learning continuous and data-driven molecular descriptors by
translating equivalent chemical representations. Chemical science, 10(6):1692–
1701.

[Winter et al., 2019b] Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F.,
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