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MRI Magnetic resonance imaging 
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PROMs Patient reported outcome measures 
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The presented clinical case illustrations have been reproduced with permission of the 
Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, 
Charité-Universitätsmedizin Berlin, Berlin, Germany (Credits: Dr. Mats Böse and Dr. 
Stefano Pieralli). Informed written consent for publishing their pictures was obtained 
from all patients.   
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1 INTRODUCTION 

1.1 Implant prosthodontics 

Implant-supported restorations are successfully used to replace single and multiple 

missing teeth (1, 2). Moreover, reports from Oral Health Impact Profile (OHIP) scales 

and patient reported outcome measures (PROMs) confirm that partially and fully 

edentulous patients significantly increase life quality after an implant prosthodontics 

treatment (3). The current edition of the Glossary of Prosthodontic Terms defines 

implant prosthodontics as "the selection, planning, development, placement, 

replacement of missing teeth and/or associated structures, and maintenance of 

restoration(s) with dental implants" (4).  

1.1.1 Principles of dental implants 

A dental implant serves as an artificial root to retain or support a fixed or removable 

prosthesis (4). Modern implantology is based on the research group’s findings around 

Professor Per-Ingvar Brånemark, which named "osseointegration" the stable fixation 

of a titanium cylinder and the surrounding bone (5). Titanium alloys are, up to this day, 

the most investigated and clinically used implant bulk materials (6) (Fig. 1). A 

drawback of titanium is its grayish color, which can lead to increased esthetic 

impairment in case of < 3 mm peri-implant soft tissue thickness (7). An additional 

alternative for the clinician is offered by ceramic implants, which are zirconia based (8) 

and have a whitish color. According to the Delphi study of the European Association 
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for Osseointegration (EAO), evaluating the possible trends in implant dentistry, both 

bulk materials will coexist in the next decade (9). 

While the implant functions as a substitute for the dental root, the overhead abutment 

(Fig. 2) serves as a prepared natural tooth to retain the prosthetic restoration. Implant 

and abutment can be created as a single unit (one-piece design) or separately (two-

piece design), with the second type finding more clinical application. In the case of a 

two-piece design, the abutment can be prefabricated or personalized with different 

angulations and made of several materials such as titanium or zirconium dioxide, 

zirconia (ZrO2) (10). To fix the abutment to the implant, a screw is usually used.  

 

 

 

 

 

 

Figure 1: Close up of a dental implant for the rehabilitation of a missing maxillary central right incisor. 

This prefabricated screw-shaped cylindrical implant has a two-piece design and is made of titanium. 

For accurate implant installation, a surgical guide is used. 

 

 

 

 

 

 

Figure 2: Detail of a custom-made abutment in the position of the maxillary right central incisor. The 

CAD/CAM abutment is made of ZrO2 and screw retained to the implant below. Subsequently, the 

abutment is used for intraoral luting of the definitive single crown (SC). Manufactured by MDT Robert 

Nicic, Berlin.  
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1.1.2 Restorative materials and retention mode 

To restore single implants, ceramic materials are used either to veneer a metal or high-

performance ceramic framework or in a monolithic form (1, 2) (Fig. 3). Metal-ceramic 

single-unit restorations are the most documented in the literature, and Jung et al. 

reported a 95.8% 5-year survival rate (11). Moreover, when focusing on implant-

supported all-ceramic single crowns (SCs), an estimated survival rate of 96.1% was 

calculated after 3 years by Pjetursson et al. (1). No significant differences in terms of 

survival rate were assessed between the evaluated materials: monolithic and 

veneered reinforced glass‐ceramic, veneered densely sintered alumina, and veneered 

and monolithic ZrO2. However, monolithic SCs showed significantly lower porcelain 

fracture (chipping) rates compared to veneered ones. Chipping of the restorative 

material has a multifactorial origin and represents the most frequent technical 

complication (12). When focusing on partial span fixed dental prostheses (FDPs), 

veneered-ZrO2 shows a high 5-year survival estimate (98.3%) but also an increased 

chipping rate (22.8%) (13). Furthermore, insufficient data about monolithic restorations 

are available. According to a meta-analysis by Sailer et al., metal ceramic partial FDPs 

show an estimated 5-year survival rate of 98.7% and a chipping rate of 11.6% (2). 

Similar high survival rates between metal ceramic and veneered ZrO2 FDPs have been 

reported. However, chipping remains the most frequent technical complication also for 

FDPs. 

 

Cementation and screw retaining are the two most common retention modalities for 

implant-supported restorations (14). Nevertheless, removing the excess cement after 

intraoral luting is a priority to avoid peri-implant biological complications (15). Multiple 
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studies have confirmed that complete cleansing from cement residuals located ≤ 1 mm 

subgingivally is challenging or impossible (16, 17). Luting of the restoration onto single 

or multiple abutments can also occur in advance in the dental lab. In this case, the 

restoration-abutment complex is provided with a single passing screw for retention.  

 

 

 

 

 

 

 

 

Figure 3: Exemplary samples of all-ceramic CAD/CAM implant-supported SCs. The ceramic SCs are 

adhesively luted onto the prefabricated titanium abutment in the lab. Thereafter, they are delivered as 

occlusally screw-retained restorations. Manufactured by MDT Jürgen Mehrhof, Berlin.  

 

When planning a full-arch implant-supported rehabilitation, fixed and removable 

treatment options are available. Full-arch FDPs can be fabricated from all ceramic 

materials, based on ZrO2 (18), or show a metal framework veneered with ceramic (19) 

or resin (20). After 5 years, Papaspyridakos et al. reported a survival rate of 97.7% for 

full-arch ZrO2-based FDPs and of 98.2% for metal-ceramic FDPs (19). To rehabilitate 

an edentulous maxilla or mandible with a full-arch FDP, ≥ 4 implants are needed (21). 

Furthermore, to retain a removable prosthesis, also called an overdenture, at least 

four implants in the maxilla and two interforaminal implants in the mandible are 

required (22). A single implant placed in the mandible midline to retain an overdenture 

should be limited to selected cases because decreased survival rates were observed 

after 5 years. In addition, for initial cost savings, the expense to the patient increases 

over the years due to the necessary maintenance of the prosthesis, particularly the 
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attachment system (23, 24). Various prosthetic solutions are available to 

retain/support overdentures. One can distinguish between a fixed retentive element to 

splint the implants with primary locking (e.g., a bar) and secondary locking (e.g., 

locator attachments) (Fig. 4). In the latter case, the removable prosthesis itself serves 

to splint the implants. Furthermore, retentive elements can be divided into rigid (e.g., 

bars) and more "flexible" ones (e.g., locator attachment). The choice for the ideal 

retentive element depends on multiple parameters and relies, among others, on the 

number and distribution of the implants and the patient’s anatomical characteristics 

(22). 

 

 

 

 

 

 

 

Figure 4: Exemplary samples of rigid retentive elements. Two CAD/CAM titanium bars (a) serve to 

splint two implants each and support a metal-resin maxillary overdenture (b). Manufactured by MDT 

Wolf Wörner, Freiburg.  

 

With the advent of new digital features, including implant planning software, intraoral 

scanner (IOS) systems and computer-aided design/computer-aided manufacturing 

(CAD/CAM) technology, novel workflows become possible for implant prosthodontics. 

 

a b 
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1.2 From data acquisition to implant scanning in a digital workflow 

The term digital refers to anything involving or relating to the use of computer 

technology (25). The application of digital technologies to implant dentistry and 

prosthodontics radically changed the clinical routine, from data collection to 

manufacturing of the restoration (26). Section 1.2 describes the standard digital 

workflow for implant rehabilitation, from clinical data acquisition and virtual implant 

planning to guided implant installation and intraoral implant digitization. 

1.2.1 Clinical data acquisition 

Computed tomography (CT) and cone beam computed tomography (CBCT) are used 

to deliver 3D radiographic images (27). Besides being developed after the CT, the 

CBCT technology rapidly took over CT for its decreased irradiation dose and costs 

(28). Nevertheless, the radiation dose of a CBCT full-arch scan ranges between 10 

and 1000 μSv and reaches up to 200 times that of a two-dimensional (2D) panoramic 

image (29). Irrespective of two- or three-dimensional (3D) imaging, the potential risk 

of developing radiation-induced cancer due to repeated X-rays for dental purposes 

must not be underestimated (30). According to the EAO Delphi study, a consensus of 

> 80% was obtained in favor of 3D compared to 2D imaging in providing adequate 

information for virtual implant planning (9). In fact, 2D imaging (e.g., periapical, and 

panoramic radiographs) delivers inferior diagnostic information and is more prone to 

distortion (27).  
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For each CBCT scan, multiple images are acquired and subsequently exported from 

the tomography device as digital imaging and communication in medicine (DICOM) 

files. The DICOM format was created as a universal standard extension for medical 

data to facilitate information acquisition, management, and transmission (31). In a 

review article by Kernen et al., all evaluated virtual implant-planning systems were 

DICOM compliant (32). Guidelines for imaging in implant dentistry were published in 

2011 by the EAO and included the call for novel techniques to reduce patients’ 

exposure to ionizing irradiation (33). More than a decade later, attempts to reduce 

irradiation are scarce and include, among others, reducing the milliamperage and the 

voxels’ size (34, 35). Specific instructions for virtual implant planning with reduced 

radiation dose protocols still need to be included (35). 

 

For planning purposes, intraoral surface scans are combined with 3D radiographic 

data. IOS systems are used for digitization (36), whereas indirect digitization in the lab 

of stone casts produced from the analog impression is also possible. Both techniques 

deliver a virtual surface image to import into the planning software for registration. 

Intraoral scans replace conventional impression techniques with hydrocolloids or 

elastomers in the digital workflow. Both Siqueira et al. and Bishti et al. reported more 

favorable PROMs scores for intraoral scans than for conventional impressions (37, 

38). 

 

The accuracy of an intraoral scan depends on multiple factors. Light condition (39), 

room temperature and scanning path (40) are only some of the parameters that can 

affect the accuracy of digitization and must be kept in mind. After intraoral digitization, 

the surface scan is exported, usually in standard tessellation language (STL) file 
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extension (41). The STL file format carries the information about the shell of the object 

based on a mosaic of geometric shapes (in this case, triangles) (42).  

 

  

 

 

 

 

 

 

 

 

 

Figure 5: Computer-aided implant planning of two posterior 3-unit FDPs. 3D radiography in gray (a) 

and surface scans in green were superimposed for registration (b). Thereafter, a prosthetic set up/wax 

up (in orange) was aligned and used as a reference to position the implants (c).  Four implants, two on 

each side, were planned for the support of all-ceramic FDPs (d).  

1.2.2 Computer-aided implant planning 

Considering the immobility of implants once osseointegrated, precise backward 

planning based on the future prosthetic restoration(s) is mandatory to achieve 

predictable results and avoid complications (43) (Fig. 5). Dedicated implant planning 

software is used to plan the implant prosthodontic treatment in advance. By virtually 

combining 3D radiographic (DICOM) and intraoral surface (STL) images, a 3D patient 

can be created (32).  

 

Both DICOM and STL datasets are imported into the planning software and 

superimposed by a best-fit algorithm in a process called registration (44). Mutual 
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d
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reference objects, such as natural teeth, can help to match the different datasets, and 

final manual fine tuning may be required for ideal registration. Accurate registration is 

mandatory to avoid planning errors, which lead to implant mispositioning (45). After 

accurate registration, the implant is virtually positioned according to the combined 

DICOM/STL images and then locked to the STL scan. Based on the implant position 

and the surface scan, a surgical guide is virtually created by CAD/CAM. To accurately 

transfer the virtual implant position into the patient’s mouth in a digital workflow, static 

(s) or dynamic (d) computer-assisted implant surgery (CAIS) can be adapted (46). For 

sCAIS, custom-made templates based on the previous virtual planning are created to 

guide the drilling procedure and to install the implant (47). Furthermore, for dCAIS, 

implants are installed while real-time tracking of the drills on a monitor (48). In the 

present thesis, the focus was set on sCAIS.  

1.2.3 Implant selection 

A virtual portfolio containing dozens of implant brands and types is available in most 

planning software and provides the user with a vast choice of options for ideal 

planning.  

 

Dental implants are mostly created by milling, but additive manufacturing (AM) (49) 

and injection molding techniques (50) are also described in the literature. As for the 

shape, prefabricated dental implants are similar to screws. They have either a 

cylindrical or conical profile or show a combination of both. Dental implants have a 

rough enossal part to enhance osseointegration (51). To increase and accelerate this 

phenomenon, mechanical and/or chemical modifications are applied to process the 
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surface of the implant (52). The most coronal parts of the implant, called the implant 

shoulder, can present a machined collar for better soft-tissue adaptation (53). 

Depending on the implant design, its shoulder is placed at the hard or soft tissue level 

(54). The implants’ length varies from 4 mm of the extra short ones (55) to ≥ 13 mm 

(56), whereas  the implant diameter ranges from < 3.0 mm of a "mini-implant" (57) to 

≥ 4.5 mm (58). 

 

Figure 6: Exemplary radiographic (a) and intraoral (b) images of a CAD/CAM RAI made of ZrO2 (left) 

and a prefabricated screw-shaped titanium implant (right). This type of RAI has a one-piece design, 

whereas the threaded implant shows a two-piece design. Clinical outcomes and PROMs of RAIs were 

collected and analyzed in Manuscript 2. X-ray and picture: Courtesies of Dr. Mats Böse. 

 

For an ideal fit with patients’ anatomy, custom-made root-analogue implant (RAI) 

systems represent an alternative to the standard prefabricated implants (59) (Fig. 6). 

First described by Hodosh et al. in the 1970s (60), various RAI types are currently 

being commercialized (61). The critical difference from prefabricated standard 

implants relates to their shape. Such a root-analogue design precludes screwing them 

into an implant bed prepared with a standard sequence of drills. In fact, RAIs are 

installed by pressing into the post-extraction site. To better adapt to the alveolar cavity 

anatomy and ensure it is ready to use immediately after the tooth extraction, custom-

made RAIs are digitally planned before the tooth extraction and, subsequently, 
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typically created by subtractive manufacturing (SM) (62). For this purpose, the DICOM 

images of the root(s) are segmented and thereafter exported to a design software (63). 

1.2.4 Computer-aided design and -manufacturing of the surgical guide 

Numerous preclinical and clinical investigations have demonstrated superiority in the 

accuracy of implant installation using sCAIS compared to free-hand techniques (64, 

65). Based on the ideal implant position, a surgical guide is created using the implant 

planning or an additional CAD software. Most of the market-available surgical guide 

types have a closed-frame design, which can limit the visibility and accessibility to the 

operator and the irrigation of the rotating instruments. To control the intraoral fit, 

windows are digitally added to the surgical guides with a closed-frame design. An 

alternative, open-frame tubular design is proposed by the implant planning software 

SMOP (Swissmeda AG, Baar, Switzerland) with selective support on the tooth surface 

(32), which allows the drilling procedures to be performed and the implant to be 

installed under direct sight. 

 

To manufacture the surgical guides in a digital workflow, either subtractive (e.g., 

milling) or additive (e.g., 3D printing) manufacturing technologies are used (Fig. 7). 

Henprasert et al. reported comparable accuracy in implant installation using AM- or 

SM-based surgical guides (66). To date, AM is preferred over SM due to the inferior 

production costs and waste of material. VAT polymerization is the most adapted AM 

technique to create surgical guides (67). It relies on the selective laser-induced 

polymerization of the liquid resin contained in a vat. Both stereolithography (SLA) and 

digital light processing (DLP) rely on VAT technology. The former utilizes a point laser 
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beam for photopolymerization, whereas the latter uses a larger light beam. SLA and 

DLP allow the creation of objects with high dimensional accuracy (68). Indeed, several 

parameters, such as resin type, build angle, and light intensity, affect the accuracy of 

the printing process (69). Once the printing procedure is completed, the object is 

washed with alcohol and successively light cured. Extensive postprocessing and high 

production costs represent the two main disadvantages of VAT polymerization (70). 

 

Figure 7: Exemplary sample of a surgical guide designed (a) with an open frame and subsequently 

created (b) by SLA for immediate implant installation in the position of the central maxillary right incisor. 

This surgical guide was made of resin and underwent two steps of postprocessing, namely washing 

with alcohol and light curing.  

 

An alternative, easier, and more economical 3D printing method is material extrusion 

(ME), also called fused filament fabrication (FFF) or fused deposition modeling (FDP) 

(71). Dentistry has recently shown increased interest in this technology (72). ME 

technology is based on using thermoplastic filaments to print objects, layer by layer, 

onto a printing bed. A broad spectrum of feedstock materials (among others, polymers) 

are available for ME (73). ME relies on a straightforward printing process, minimal 

postprocessing time, and inferior production costs compared to SLA or DLP (74). The 

quality of extruded objects is strictly dependent on the printing parameters. Studies 

have reported a lack of dimensional accuracy or low surface characteristics as the 
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main potential drawbacks of ME (75). In dentistry, customized impression trays, 

models, and surgical guides can be created by ME (72) (Fig. 8). 

 

 

 

 

 

 

 

Figure 8: Surgical guides planned with a closed frame design and two implant planning software (a. 

coDiagnostiX, DentalWings, Montreal, Canada; b. ImplantStudio, 3Shape, Copenhagen, Denmark). 

Both surgical guides were made of an experimental biocopolyester, and created by ME. This type of 

surgical guide was tested in Manuscript 4. Picture: Courtesy of Mr. Severin Rothlauf. 

1.2.5 Intraoral implant digitization  

After guided implant installation, the information regarding the intraoral implant 

position must be communicated to the lab to create the prosthetic reconstruction. To 

transfer the information from the clinic to the lab, within a digital workflow, a scan body 

is screwed onto the implant and digitized using an IOS (Fig. 9). Scan bodies are 

usually made of polyether-ether-ketone (PEEK) and represent the equivalents of 

copings for conventional impressions. They serve as an intermediate reference for the 

IOS to capture the subgingival implant position by providing a point cloud dataset. 

Market-available IOS systems are based on various technologies, such as confocal 

microscopy or optical triangulation, which can influence their accuracy (76, 77). In 

addition, multiple other factors, such as scan body design (78), material (79), and 

scanning strategy (80), can affect the digitization process.  

 

a b 
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The accuracy of a system can be defined as the combination of trueness and 

precision, according to ISO standard 5725 (81). On the one hand, trueness describes 

the nearest representation of the arithmetic mean from multiple measurements to a 

“true or accepted reference number.” On the other hand, the consistency and 

repeatability across the test results are referred to as precision. A system’s precision 

is related to the standard deviation intervals. To date, equal or even higher accuracy 

can be achieved when directly digitizing a single (82) or two adjacent implants (83) 

compared to conventional impressions with elastomers. Differently, significant 

discrepancies in terms of accuracy have been measured in the case of full-arch 

implant scans (84). Major deviations are caused by multiple image stitching, reflective 

surfaces, mobile mucosa, and further factors (85). For full-arch scans, using scanning 

aids to splint the implants seems to improve the trueness of the procedure significantly. 

However, future clinical studies must confirm the in vitro results (86). 

 

 

 

 

 

 

 

 

 

 

Figure 9: Digitized maxilla for the rehabilitation of the right central incisor with (a) and without (b) the 

scan body in situ. The scan on the left provides information regarding the implant position/angulation, 

and the one on the right offers data on the emergence profile.   

  

a b 



 22 

1.3 Scientific question(s) 

The aim of the studies included in the present thesis, was to investigate four different 

steps of the digital workflow applied to the implant prosthodontic rehabilitation. Our 

research group investigated the topics of virtual implant planning (Manuscript 1), 

implant selection (Manuscript 2), surgical guide manufacturing (Manuscripts 3, 4, and 

5), and intraoral implant digitization (Manuscript 6). 

 

The first manuscript evaluated the registration accuracy when decreasing the 

radiographic field of view (FOV) size for virtual implant planning. The focused question 

was formulated as follows: Does reducing the FOV volume for sCAIS impact the 

trueness and precision of the registration procedure? (Manuscript 1).  

 

Moreover, the second manuscript focused on implant selection. For this purpose, a 

CAD/CAM RAI system was investigated. Clinical outcomes and PROMs of 31 patients 

were retrospectively collected and analyzed. The focused question for this study was, 

Are clinical results and PROMs when using a CAD/CAM RAI system comparable 

to data from the literature regarding prefabricated screw-shaped immediate 

implants? (Manuscript 2) 

In the third, fourth, and fifth included manuscripts, ME-based sterilizable surgical 

guides made of polylactic acid (PLA) were evaluated regarding trueness (Manuscript 

3), trueness and precision (Manuscript 4), and short-term biocompatibility in the oral 

environment (Manuscript 5). The scientific questions of the three research projects 

were, 
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 Do the printing technology (test: ME, control: SLA) and the use of metal 

sleeves affect the trueness of guided implant installation? (Manuscript 3) 

 Do variables such as planning software and surgical guide design affect 

the final position of implants installed with ME-based drilling guides? 

(Manuscript 4)  

 Does the experimental biocopolyester used to create the surgical guides 

in Manuscripts 3 and 4 respect, in vitro, the biocompatibility standards for 

short-term intraoral usage? (Manuscript 5) 

After surgical installation, the exact intraoral implant position must be transferred to 

the dental lab for fabrication of the prosthetic reconstruction. For this purpose, scan 

bodies are mounted onto the implants and digitized to deliver the information to the 

lab within a digital workflow. In the fifth manuscript, we investigated if modern IOS 

systems were able to digitize the abutment of a one-piece ZrO2 implant system with 

the same accuracy as for a standard PEEK scan body mounted onto a bone-level two-

piece titanium implant. Furthermore, a virtual tool was created for the accurate 

reconstruction of incomplete scans of the tested one-piece implant type. The focused 

question of the research was: Can we avoid using scan bodies when digitizing 

one-piece ZrO2 implants? Furthermore, is it possible to accurately reconstruct 

incomplete scans of the tested implant (Manuscript 6)? 
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2  PERSONAL RESEARCH PROJECTS 

2.1 Manuscript 1 – Influence of reducing the radiographic field of view on 

the accuracy of registration with intraoral surface scans  

CBCB or CT scans are used as imaging techniques for computer-aided implant 

planning, but they also expose patients to a variable amount of ionizing irradiation (87). 

Therefore, considering  the “as low as diagnostically acceptable” (ALADA) and “as low 

as reasonably achievable” (ALARA) principles, attempts to reduce the irradiation of 

the head and neck region are necessary (29).  

 

In this non-interventional retrospective pilot study, two operators combined the 

intraoral scans of 15 patients with three different radiographic FOV volumes: full-arch, 

quadrant, and adjacent tooth/teeth, performing 657 superimpositions in total. They 

used a beta version of the implant planning software SMOP (Swissmeda) to perform 

the registration procedure. The operators comprised a beginner with 1 week of 

intensive training in dataset registration and a long-time professional in virtual implant 

planning.   

 

The University Medical Center Freiburg Ethics Committee granted authorization to 

execute the study (Study number: 20/1205; Decision of the Ethics Committee: 

11/24/2020). This study was conducted according to the EQUATOR guidelines 

(http://www.equator-network.org) and the STROBE Statement 2020 for observational 

studies (http://www.strobe-statement.org).  
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The results of this research were presented as oral communication in the basic 

research category at the 28th Annual Scientific Meeting of the EAO (Digital Days, 

online) in 2021, and the abstract was subsequently published in Clinical Oral Implant 

Research (88). Mr. Christoph Beyer also presented the study as a digital poster at the 

35th Congress of the German Association of Oral Implantology e.V. (DGI) of 2021 in 

Wiesbaden, Germany. 

 

The following text corresponds to the abstract of the article: 

Pieralli, S., Beyer, C., Wesemann, C., Vach, K., Russe, M. F., Kernen, F., Nelson, K., 

& Spies, B. C. (2022). Impact of radiographic field-of-view volume on alignment 

accuracy during virtual implant planning: A noninterventional retrospective pilot study. 

Clinical oral implants research, 33(10), 1021–1029. https://doi.org/10.1111/clr.13983 

 

Impact of the radiographic field of view volume on the alignment accuracy 

during virtual implant planning: A non-interventional retrospective pilot study   

 

Objective  

To evaluate the impact of reducing the radiographic field of view (FOV) on the trueness 

and precision of the alignment, between cone beam computed tomography (CBCT) 

and intraoral scanning data, for implant planning.   

Materials and Methods 

Fifteen participants presenting with one of three clinical scenarios: single tooth loss 

(ST, n=5), multiple missing teeth (MT, n=5), and presence of radiographic artifacts 

(AR, n=5) were included. CBCT volumes covering the full-arch (FA) were reduced to 

the quadrant (Q) or the adjacent tooth/teeth (A). Two operators, an expert (exp) in 
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virtual implant planning and an inexperienced clinician performed multiple 

superimpositions, with FA-exp serving as a reference. Deviations were calculated at 

the implants’ apex and shoulder level. Thereafter, linear mixed models were adapted 

to investigate the influence of FOV on the discrepancies.  

Results  

Evaluation of trueness compared to FA-exp resulted in the largest mean (AR-A: 0.10 

± 0.33mm) and single maximum discrepancy (AR-Q: 1.44mm) when in presence of 

artifacts. Furthermore, for the ST group, the largest mean error (-0.06 ± 0.2mm, 

shoulder) was calculated with the FA-FOV, while for MT, with the intermediate volume 

(-0.07 ± 0.24mm, Q). In terms of precision, mean SD intervals were ≤ 0.25mm (A-exp). 

Precision was influenced by the FOV volume (FA<Q<A) but not by the operators’ 

expertise.   

Conclusion 

For single posterior missing teeth, an extended FOV did not improve the accuracy of 

registration. However, in the presence of artifacts or multiple missing posterior teeth, 

caution is recommended when reducing the FOV.   
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2.2 Manuscript 2 – Clinical outcomes and Patient-Reported Outcome 

Measures of CAD/CAM root-analogue implants 

Implant selection is a crucial part of implant prosthodontic rehabilitation. Based on 

available 3D data on hard and soft tissue, dental implants with different designs, 

dimensions, and materials can be selected. As an alternative to prefabricated threaded 

implants, RAIs are available for immediate implant free-hand installation. To be ready 

immediately after tooth extraction, the CAD/CAM RAI is produced in advance based 

on the segmented CBCT images of the root(s). In this manuscript, clinical results and 

PROMs of 28 patients rehabilitated with 31 CAD/CAM custom-made RAIs were 

assessed after a mean follow-up of 18.9 ± 2.4 months after surgery. The study was 

designed as a retrospective clinical case series. Approval to conduct the investigation 

was obtained from the Ethical Committee of the Charité—Universitätsmedizin Berlin, 

Germany (Study number: EA4/140/18).  

 

Dr. Mats W. H. Böse presented this research as a digital poster in the surgery category 

at the Digital Days Meeting of the EAO, October 8 to 10, 2020. The abstract was 

published in Clinical Oral Implants Research (89). 

 

The following text corresponds to the abstract of the original article:  

Böse, M. W. H., Hildebrand, D., Beuer, F., Wesemann, C., Schwerdtner, P., Pieralli, 

S., & Spies, B. C. (2020). Clinical Outcomes of Root-Analogue Implants Restored with 

Single Crowns or Fixed Dental Prostheses: A Retrospective Case Series. Journal of 

clinical medicine, 9(8), 2346. https://doi.org/10.3390/jcm9082346  
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Clinical Outcomes of Root-Analogue Implants Restored with Single Crowns or 

Fixed Dental Prostheses: A Retrospective Case Series. 

Objective 

The objective was to investigate clinical and radiological outcomes of rehabilitations 

with root-analogue implants (RAIs).  

Methods  

Patients restored with RAIs, supporting single crowns or fixed dental prostheses, were 

recruited for follow-up examinations. Besides clinical and esthetical evaluations, X-

rays were taken and compared with the records. Patients were asked to evaluate the 

treatment using Visual Analogue Scales (VAS). For statistical analyses, mixed linear 

models were used.  

Results 

A total of 107 RAIs were installed in one dental office. Of these, 31 were available for 

follow-up examinations. For those remaining, survival has been verified via phone. 

RAIs were loaded after a mean healing time of 6.6 ± 2.5 months. 12.1 ± 6.9 months 

after loading, a mean marginal bone loss (MBL) of 1.20 ± 0.73 mm was measured. 

Progression of MBL significantly decreased after loading (p = 0.013). The mean pink 

and white esthetic score (PES/WES) was 15.35 ± 2.33 at follow-up. A survival rate of 

94.4% was calculated after a mean follow-up of 18.9 ± 2.4 months after surgery. 

Conclusion 

Immediate installation of RAIs does not seem to reduce MBL, as known from the 

literature regarding screw-type implants and might not be recommended for daily 

routine. Nevertheless, they deliver esthetically satisfying results. 
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2.3 Manuscript 3 – Trueness of implant installation using sterilizable 

surgical guides fabricated in office by material extrusion 

Performing sCAIS allows for higher accuracy compared to free-hand surgery (90). To 

date, CAD/CAM surgical guides are mainly created by SLA or DLP technique (67). 

The main drawbacks of both methods are the high production costs and the time-

consuming postprocessing procedures. To overcome such limits, surgical guides 

made by ME might represent a viable option. In this study, surgical guides created by 

ME were compared in terms of trueness of implant installation to market-available 

SLA-based ones. In addition, the impact of using metal sleeves was assessed. All 

surgical guides were steam sterilized before use.  

 

Dr. Valentin Hromadnik presented this study as a digital poster in the basic research 

category at the 26th Annual Scientific Meeting of the EAO in 2019 in Lisbon, Portugal. 

The abstract was published in Clinical Oral Implants Research (91). Furthermore, the 

research was awarded with the prize for “best preclinical investigation” at the 33rd. 

Annual Scientific Meeting of the DGI in 2019 in Hamburg, Germany.  

 

The following text corresponds to the abstract of the article: 

Pieralli, S., Spies, B. C., Hromadnik, V., Nicic, R., Beuer, F., & Wesemann, C. 

(2020). How Accurate Is Oral Implant Installation Using Surgical Guides Printed from 

a Degradable and Steam-Sterilized Biopolymer? Journal of clinical medicine, 9(8), 

2322. https://doi.org/10.3390/jcm9082322 
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How Accurate Is Oral Implant Installation Using Surgical Guides Printed from a 

Degradable and Steam-Sterilized Biopolymer? 

 

Objective  

3D printed surgical guides are used for prosthetically-driven oral implant placement. 

When manufacturing these guides, information regarding suitable printing techniques 

and materials as well as the necessity for additional, non-printed stock parts such as 

metal sleeves is scarce. The aim of the investigation was to determine the accuracy 

of a surgical workflow for oral implant placement using guides manufactured by means 

of fused deposition modeling (FDM) from a biodegradable and sterilizable biopolymer 

filament. Furthermore, the potential benefit of metal sleeve inserts should be 

assessed.  

Methods 

A surgical guide was designed for the installation of two implants in the region of the 

second premolar (SP) and second molar (SM) in a mandibular typodont model. For 

two additive manufacturing techniques (stereolithography [SLA]: reference group, 

FDM: observational group) n = 10 surgical guides, with (S) and without (NS) metal 

sleeves, were used. This resulted in 4 groups of 10 samples each (SLA-S/NS, FDM-

S/NS). Target and real implant positions were superimposed and compared using a 

dedicated software. Sagittal, transversal, and vertical discrepancies at the level of the 

implant shoulder, apex and regarding the main axis were determined. MANOVA with 

posthoc Tukey tests were performed for statistical analyses. 

Results  

Placed implants showed sagittal and transversal discrepancies of < 1 mm, vertical 

discrepancies of < 0.6 mm, and axial deviations of ≤ 3°. In the vertical dimension, no 
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differences between the four groups were measured (p ≤ 0.054). In the sagittal 

dimension, SLA groups showed decreased deviations in the implant shoulder region 

compared to FDM (p ≤ 0.033), whereas no differences in the transversal dimension 

between the groups were measured (p ≤ 0.054). The use of metal sleeves did not 

affect axial, vertical, and sagittal accuracy, but resulted in increased transversal 

deviations (p = 0.001).  

Conclusion 

Regarding accuracy, biopolymer-based surgical guides manufactured by means of 

FDM present similar accuracy than SLA. Cytotoxicity tests are necessary to confirm 

their biocompatibility in the oral environment. 
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2.4 Manuscript 4 – Impact of planning software and template design on 

the accuracy of implant installation using surgical guides created by 

material extrusion 

In the previous manuscript, the authors focused on the manufacturing method for 

surgical guide fabrication. Surgical guides with an open-frame design were 

manufactured by ME (test) and SLA (control) and compared in terms of the trueness 

of implant installation. In Manuscript 4, the focus was set on the computer-aided 

design part of the surgical guide creation process. Two planning software types and 

two surgical guide designs were applied to create surgical guides by ME. The main 

outcomes were the trueness and precision of implant positioning. All surgical guides 

underwent steam sterilization at 121 °C and 2 bar for 60 min before use.  

 

The investigation was presented as an oral communication in the basic research 

category at the Annual Scientific Meeting of the EAO in 2022 in Geneva, Switzerland. 

The abstract was published in Clinical Oral Implants Research (92). Furthermore, this 

investigation was also displayed as a poster presentation at the 36th. Annual Scientific 

Meeting of the DGI in 2022 in Hamburg, Germany. 

 

The following text corresponds to the abstract of the article:  

Rothlauf, S.*, Pieralli, S.*, Wesemann, C., Burkhardt, F., Vach, K., Kernen, F., & 

Spies, B. C. (2023). Influence of planning software and template design on the 

accuracy of static computer assisted implant surgery performed using guides 

fabricated with material extrusion technology: An in vitro study. Journal of dentistry, 

132, 104482. Advance online publication. https://doi.org/10.1016/j.jdent.2023.104482 
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* Authors contributed equally 

Influence of planning software and template design on the accuracy of static 

computer assisted implant surgery performed using guides fabricated with 

material extrusion technology: An in vitro study. 

Objectives 

This in vitro study aimed to assess the influence of the planning software and design 

of the surgical template on both trueness and precision of static computer assisted 

implant surgery (sCAIS) performed using guides fabricated using material extrusion 

(ME). 

Methods 

Three-dimensional radiographic and surface scans of a typodont were aligned using 

two planning software (coDiagnostiX, CDX; ImplantStudio, IST) to virtually position the 

two adjacent oral implants. Thereafter, surgical guides were fabricated with either an 

original (O) or modified (M) design with reduced occlusal support and were sterilized. 

Forty surgical guides were used to install 80 implants equally distributed amongst four 

groups: CDX-O, CDX-M, IST-O, and IST-M. Thereafter, the scan bodies were adapted 

to the implants and digitized. Finally, inspection software was used to assess 

discrepancies between the planned and final positions at the implant shoulder and 

main axis level. Multilevel mixed-effects generalised linear models were used for 

statistical analyses (p = 0.05). 

Results 

In terms of trueness, the largest average vertical deviations (0.29 ± 0.07 mm) were be 

assessed for CDX-M. Overall, vertical errors were dependant on the design (O < M; p 

≤ 0.001). Furthermore, in horizontal direction, the largest mean discrepancy was 0.32 

± 0.09 mm (IST-O) and 0.31 ± 0.13 mm (CDX-M). CDX-O was superior compared to 
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IST-O (p = 0.003) regarding horizontal trueness. The average deviations regarding the 

main implant axis ranged between 1.36 ± 0.41° (CDX-O) and 2.63 ± 0.87° (CDX-M). 

In terms of precision, mean standard deviation intervals of ≤ 0.12 mm (IST-O and –M) 

and ≤ 1.09° (CDX-M) were calculated. 

Conclusion 

Implant installation with clinically acceptable deviations is possible with ME surgical 

guides. Both evaluated variables affected trueness and precision with negligible 

differences. 
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Reference to the full-text: Rothlauf, S.*, Pieralli, S.*, Wesemann, C., Burkhardt, F., 

Vach, K., Kernen, F., & Spies, B. C. (2023). Influence of planning software and 

template design on the accuracy of static computer assisted implant surgery 

performed using guides fabricated with material extrusion technology: An in vitro 

study. Journal of dentistry, 132, 104482. Advance online publication. 

https://doi.org/10.1016/j.jdent.2023.104482 
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2.5 Manuscript 5 – Cytotoxicity of polymers intended for the additive 

manufacturing of surgical guides by material extrusion 

Surgical guides come into direct contact with intraoral hard and soft tissues during 

implant surgery. Since the experimental biocopolyester filament used in Manuscripts 

3 and 4 was not certified for clinical usage, our research group conducted a preliminary 

study to test, in vitro, its potential cytotoxicity in the oral environment. A further 

polypropylene-based material meant for ME was included in the analysis, and a 

medically certified resin for SLA printing served as the control group. The aim of the 

study was to evaluate, in vitro, the short-term intraoral biocompatibility by assessing 

the biological risk on human gingival keratinocytes (HGK) according to ISO 10993-

5:2009 and ISO 10993-12:2021. Furthermore, markers were used in quantitative real-

time PCR (qRT-PCR) for the expression analysis of the following genes: ANXA5, 

CASP8, and CASP9 for apoptosis and IL1B, IL6, and TNF for inflammation. 

 

This research was presented as a digital poster in the basic research category at the 

28th Annual Scientific Meeting of the EAO (Digital Days) in 2021, and the abstract was 

published in Clinical Oral Implant Research (93). Dr. Felix Burkhardt presented the 

study at the Deutsche Implantologentag / 35th DGI-Kongress in 2021 in Wiesbaden, 

Germany, and was awarded the prize for “best preclinical investigation.” 
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The following text corresponds to the abstract of the article: 

Burkhardt, F., Spies, B. C., Wesemann, C., Schirmeister, C. G., Licht, E. H., Beuer, 

F., Steinberg, T., & Pieralli, S. (2022). Cytotoxicity of polymers intended for the 

extrusion-based additive manufacturing of surgical guides. Scientific reports, 12(1), 

7391. https://doi.org/10.1038/s41598-022-11426-y 

Cytotoxicity of polymers intended for the extrusion-based additive 

manufacturing of surgical guides 

Objective 

Extrusion-based printing enables simplified and economic manufacturing of surgical 

guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) 

and a polypropylene (PP), intended for the fused filament fabrication of surgical guides 

was evaluated.  

Methods  

For comparison, a medically certified resin based on methacrylic esters (McE) was 

printed by stereolithography (n = 18 each group). HGKs were exposed to eluates of 

the tested materials and an impedance measurement, and a tetrazolium assay (MTT) 

were performed. Modulations in gene expression were analyzed by quantitative PCR. 

One-way ANOVA with post-hoc Tukey tests were applied.  

Results 

None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) 

according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, 

reflecting cell proliferation, showed little deviations from the control, while McE caused 

a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal 

modulations caused by BE while PP induced a down-regulation of genes encoding for 
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inflammation and apoptosis (p < 0.05). In contrast, the 72 h McE eluate caused an up-

regulation of these genes (p < 0.01).  

Conclusion 

All evaluated materials can be considered biocompatible in vitro for short-term 

application. However, long-term contact to McE might induce (pro-)apoptotic/(pro-

)inflammatory responses in HGK. 
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2.6 Manuscript 6 – Accuracy of one-piece zirconia implant scan body–

free digitization  

Intraoral scans are increasingly finding application in implant prosthodontics. 

However, standard screw-retained scan bodies are usually not compatible when 

choosing implants with one-piece design. In fact, at study conceptualization, only 

conventional impression-taking of the investigated implant was possible.  

 

In Manuscript 6, the feasibility of a scan body–free digitization of a one-piece ZrO2 

implant type (ceramic.implant, vitaclinical, VITA Zahnfabrik, Bad Säckingen, 

Germany) was investigated in vitro. The comparison included a two-piece bone-level 

titanium implant with a scan body and a prepared natural tooth. Two scanning 

systems, Omnicam, software version 5.0.x (Dentsply–Sirona, York, USA), and Trios 

3, software version 1.4.7.3 (3shape, Copenhagen, Denmark), were utilized for 

digitization. Furthermore, a self-developed virtual reconstruction tool was applied to 

reconstruct partial scans of the implant abutment simulating different clinical situations.  

 

This research was presented as a digital poster in the prosthetics category at the 26th 

Annual Scientific Meeting of the EAO in 2019 in Lisbon, Portugal, and the abstract was 

published in Clinical Oral Implant Research (94). Ms. Valentina L. Kohnen presented 

this study as a digital poster at the 33rd. Congress of the DGI, November 28 to 30, 

2019, in Hamburg, Germany. The study received a grant from Progress in Science 

and Education with Ceramics (PROSEC) (grant number: 125280). 

 

The following text corresponds to the abstract of the article:  
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Pieralli, S., Spies, B. C., Kohnen, L. V., Beuer, F., & Wesemann, C. (2020). 

Digitization of One-Piece Oral Implants: A Feasibility Study. Materials (Basel, 

Switzerland), 13(8), 1990. https://doi.org/10.3390/ma13081990  

 

Digitization of One-Piece Oral Implants: A Feasibility Study. 

 

Objective 

For digital impression-making of two-piece oral implants, scan bodies are used to 

transfer the exact intraoral implant position to the dental laboratory. In this in vitro 

investigation, the accuracy of digitizing a one-piece ceramic oral implant without a 

scan body (OC) was compared to that of a standard two-piece titanium implant with a 

scan body (TT) and a preparation of a natural single tooth (ST). Furthermore, 

incomplete scans of OC simulating clinical compromising situations (OC1-4) were 

redesigned using a virtual reconstruction tool (RT) and superimposed to OC.  

Methods  

OC and TT oral implants and one ST were inserted into a mandible typodont model 

and digitized (N = 13) using two different intraoral scanners. The resulting virtual 

datasets were superimposed onto a three-dimensional (3D) laser scanner-based 

reference. Test and reference groups were aligned using an inspection software 

according to a best-fit algorithm, and circumferential as well as marginal discrepancies 

were measured. For the statistical evaluation, multivariate analyses of variance with 

post-hoc Tukey tests and students t-tests to compare both scanners were performed.  

Results 

A total of 182 datasets were analyzed. For circumferential deviations, no significant 

differences were found between ST, TT, and OC (p > 0.964), but increased deviations 
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for OC1-4 (p < 0.001) were observed. The measurements of the marginal deviations 

revealed that ST had the smallest deviations, and that there were no significant 

differences between TT, OC, and OC1-4 (p > 0.979). Except for marginal deviation of 

OC (p < 0.001), the outcome was not affected by the scanner.  

Conclusion 

Within the limitations of this study, digitization of OC is as accurate as that of TT, but 

less than that of ST. In the case of known geometries, post-processing of 

compromised scans with a virtual reconstruction tool results in accurate data. 
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3 DISCUSSION  

Throughout this thesis, the six included studies clarified some crucial points for 

successfully implementing digital technologies designed for current implant 

prosthodontic rehabilitation. Furthermore, the summarized results revealed significant 

implications in terms of virtual implant planning, implant selection, guided implant 

placement, and intraoral implant digitization. The main results are reported hereafter 

and compared with the current literature.   

3.1 Study outcomes 

The authors pointed out in Manuscript 1 that a wider FOV does not necessarily lead 

to more accurate registration intended as true and precise when performing virtual 

implant planning for sCAIS. The findings are consistent with the results proposed by 

Hamilton et al. in a similar investigation addressing registration precision (small FOV: 

0.37 ± 0.25 mm and large FOV: 0.35 ± 0.23 mm at implant entry point) (95). In the 

present study, mean SD intervals were limited to ≤ 0.25 mm at the implant shoulder. 

In the case of posterior rehabilitation on single implants and the absence of sources 

of artifacts, the reduction of FOV to adjacent teeth did not affect registration trueness 

by more than 0.1 mm compared with larger FOV extensions. However, due to the 

study’s pilot design, further comparisons with similar studies were not possible. Clinical 

advantages of smaller CBCT FOV volumes include fewer radiations for the patient 

(96), less time to acquire and reconstruct the 3D scan, and smaller areas to examine 

and report for the radiologist or dentist.  
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In Manuscript 2, the authors demonstrated that the clinically evaluated CAD/CAM RAI 

system has potential advantages and limitations compared to prefabricated screw-

shaped immediate implants. The investigated RAI system showed high esthetic 

outcomes with beneficial peri-implant soft tissue adaptation (97). This might be due to 

the selection of ZrO2 as the abutment material, which leads to increased esthetic 

results also with screw-shaped stock implants (98). In addition, the fully anatomical 

design, especially in the area of the emergence profile, might increase soft tissue 

adaptability and help to prevent peri-implant biologic complications (99). On the other 

hand, no advantages to screw-shaped implants were assessed in terms of marginal 

bone loss (0.40 ± 0.41 mm on average after 10.8 ± 7.0 months from loading). 

Moreover, a moderate survival rate of 94.4% was reported for the tested RAI system 

after less than 24 months on average. These results are comparable to 10-year data 

(94.6%) of screw-shaped implants available in the literature (100) and, therefore, 

considered below expectations. 

 

Manuscripts 3–5 referred to the following topic: AM by ME of sterilizable surgical 

guides made of PLA. In Manuscript 3, the authors pointed out that implant installation 

with high trueness is possible using the tested ME-based surgical guides. As a control 

group, market-available drilling guides created by SLA were used. Mean discrepancies 

between the test and control groups were limited to < 1 mm linear and ≤ 3° angular 

errors. In terms of final implant position, comparable errors were reported in vitro using 

surgical guides created by DLP and SLA (101). Furthermore, metal sleeves do not 

seem to increase implant positioning trueness in partially edentulous patients. This 

outcome is in accordance with the results from Adams et al. (102) and Tallarico et al. 

(103).  
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In Manuscript 4, the focus was set on the potential influence of using various implant 

planning programs or modifications of the original surgical guide design on both the 

trueness and precision of implant installation. Both variables, planning software and 

design, significantly influenced the outcome. However, deviations at the implant entry 

point of ≤ 0.32 mm and ≤ 2.63° might be considered clinically acceptable. Results are 

consistent with those of similar studies that used various 3D printing techniques for 

AM of the surgical guides (104, 105).  

 

The potential cytotoxicity of the polymers intended for fabrication of the surgical guides 

of Manuscripts 3 and 4 was investigated in Manuscript 5. The  ISO guidelines 10993-

5:2009 (106) and 10993-12:2021 (107) were respected in conducting this study. For 

this purpose, HGKs were exposed to eluates of the tested biocopolyester and of a 

polypropylene-based material, also intended for ME (108). As a control group, a 

medically certified resin meant for SLA printing was used. According to the results of 

Manuscript 5, none of the three evaluated materials exceeded the < 70% viability in 

MTT, which is considered the limit for cytotoxicity, according to ISO 10993-5:2009. 

The cell proliferation, measured with impedance-related indices, revealed minimal 

differences between the biocopolyester and the polypropylene. Differently, the control 

group showed a significantly reduced cell proliferation after 72 hr. Moreover, when 

evaluating the PCR analysis of the 72-hr eluates, the resin-based specimens caused 

a significant up-regulation of genes encoding for apoptosis and inflammation. At the 

same time, the biocopolyester showed no regulation, and the polypropylene partially 

showed a down-regulation. Therefore, all investigated materials can be considered, in 

vitro, not cytotoxic for a short-term application in the oral environment. 
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Figure 10: Detail of the groups evaluated in Manuscript 6. ST = single tooth; TT = two-piece 

titanium implant with a scan body; OC = one-piece ZrO2 implant; OC1 = same as OC but used 

for superimposition with the reconstruction tool; OC2 = modification simulating 1.5-mm deeper 

implant installation; OC3 = modification simulating additional 1-mm occlusal reduction; OC4 = 

modification simulating additional lateral reduction.  

Reproduced with permission from: Pieralli, S., Spies, B. C., Kohnen, L. V., Beuer, F., & 

Wesemann, C. (2020). Digitization of one-piece oral implants: A feasibility study. Materials (Basel, 

Switzerland), 13(8), 1990. https://doi.org/10.3390/ma13081990 

 

The last included manuscript described the feasibility of one-piece ZrO2 implant 

digitization without a scan body. Our research group demonstrated that the integrated 

ZrO2 abutment could be digitized with comparable accuracy to a scan body mounted 

on a two-piece, bone-level, titanium implant. No significant differences in 

circumferential or marginal discrepancies resulted between TT, OC, and OC1–4 (p > 

0.964). The second objective of the study was to assess the feasibility of a self-

developed virtual reconstruction tool based on the known abutment geometry to 

complete partial scans automatically. Similar discrepancies between the four 

reconstructed scans were reported. Maximal mean differences in terms of marginal 

(OC: 45 ± 6 µm; OC1-4: < 38 ± 15 µm) and circumferential deviations (OC: 35 ± 16 µm; 

OC1-4: < 56 ± 31 µm) were assessed when comparing OC and OC1-4. Digitizing one-

third of the abutment was considered sufficient for reconstructive purposes. In 

addition, the conversion of surface data from a polygonal free form to a standard 

geometry allowed for automated determination of the implant shoulder margin. Prior 
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to this investigation, only conventional impression techniques were described for the 

presented implant system.  

3.2 Outlook and future perspectives 

The results of the six included studies highlighted some advantages and limitations of 

the current digital workflow in implant prosthodontics. The main limitations of the 

included studies are the in vitro setting (Manuscripts 1, 3, 4, 5, and 6) and the clinical 

retrospective design (2). Intraoperative limitations, such as reduced space, patient 

movement, and precarious visibility, were not reproduced in vitro. Furthermore, results 

from in vitro studies may underscore potential error risks compared with a clinical 

situation. Thus, the methodologies adapted, and the presented results should find 

confirmation in successive high-level prospective clinical investigations.  

3.2.1 Virtual implant imaging with reduced field of view 

Adhesion to the ALADA/ALARA principles must be pursued when virtual implant 

planning (109), and international guidelines for implant imaging with lower irradiation 

than today’s routine are still needed. As reported by Bornstein et al., narrowing the 

FOV can considerably reduce the effective radiation dose (96). Future investigations 

should include novel methods for FOV reduction, different FOV sizes, and more 

clinical indications, including the anterior region or cases with few residual teeth.  

 

Registration with reduced FOV and in the presence of metal-induced artifacts is 

challenging. Efforts to reduce radiographic artifacts are needed to increase the 
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registration accuracy. Registration tools, such as reference markers, positioned 

outside the artifact beam might be helpful, especially when using a small FOV. For this 

purpose, prefabricated registration trays to provide common landmarks (110) or metal 

artifact reduction tools, as described by Alhossaini et al. (111), are proposed. A further 

imaging technology applied to virtual implant planning and sCAIS and avoiding 

ionizing irradiation is magnetic resonance imaging (MRI) (112). As for CBCT 

technology, artifacts induced by certain dental restorations or dental implants are a 

technical complication for MRI as well (113), and methods for artifact reduction for MRI 

are being investigated (114).  

 

Additional studies should assess the cost benefit of virtual implant planning with 

reduced FOV size in terms of the time needed for registration or planning and 

calculating the time needed to examine and report the radiographic dataset. Currently, 

full-arch radiographic scans are used for sCAIS, irrespective of the clinical scenario 

(96). Based on the results of this investigation, the significance of this clinical routine 

practice might be questioned.  

3.2.2 CAD/CAM custom-made root-analogue implants for immediate 

placement  

Implant selection is crucial for successful implant prosthodontic rehabilitation. RAI 

systems are available on the market as an alternative to threaded implants for 

immediate implant installation. However, data regarding CAD/CAM RAI systems are 

mostly limited to case reports (115) or moderate patient cohorts (116). Clinical data 

from high-level prospective studies are scarce; therefore, mid- and long-term RCTs 
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addressing various CAD/CAM RAI systems are needed (61). Future perspectives 

include the preclinical and clinical evaluation of RAI systems with a two-piece design 

and made of different materials (e.g., titanium, ZrO2). The costs of a single RAI 

evaluated in Manuscript 2 exceed those of a standard screw-shaped implant. 

Therefore, novel methods for manufacturing RAIs, such as 3D printing, should also be 

investigated to reduce production expenses. 

 

One major advantage of using RAIs is their fit into the post-extraction sockets. 

Therefore, accurate manufacturing is crucial to avoid mismatch. In an in vitro 

comparative study by Aldesoki et al., the accuracy of 3D-printed and milled RAIs made 

of titanium and ZrO2 was evaluated. The highest precision in terms of surface anatomy 

was obtained by 3D-printed ZrO2 RAIs, especially in concave areas. In addition, the 

milled ZrO2 implants revealed the highest trueness compared to the virtually designed 

one (63). Depending on the bulk material used and the manufacturing technology 

applied, volumetric changes of the CAD/CAM RAI can occur and must be further 

evaluated. The investigated RAI system showed a limited survival rate and drawbacks 

in terms of marginal bone loss and restoration margin integrity. Therefore, the 

evaluated implant system cannot be clinically recommended. The investigated 

REPLICATE Immediate Tooth Replacement System was retired from the market in 

early 2020 when the manufacturer, Natural Dental Implants (NDI Berlin, Germany), 

ceased the activity. 
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3.2.3 Surgical guides fabricated with material extrusion technology 

Accurate implant installation can be achieved using the tested economic and 

straightforward ME method to produce surgical guides. Before Manuscript 3 was 

published, articles reporting on the accuracy of implant positioning with ME-based 

surgical guides in a preclinical setting were scarce (117). Almost 3 years later, an 

increasing number of in vitro and clinical studies include surgical guides created by 

ME in the analysis (118, 119). The mechanical properties of the object printed by ME 

are a function of the raw material used but are also strictly dependent on other 

parameters, such as printing speed and nozzle temperature (120). Therefore, future 

investigations should include new protocols for ME of surgical guides depending on 

the 3D printing system and the material used.  

 

According to the results of Manuscript 4, the planning software has a significant but 

clinically questionable impact on the accuracy of implant installation with ME-based 

surgical guides. Considering the fees charged annually or per unit for exporting the 

STL file of the surgical guide, alternative high-level software, such as 3D slicer (Slicer; 

https://www.slicer.org/) (121), might be considered for lower-budget options. 

Talmazov et al. applied a nondental software, namely 3D modeling Blender (Blender 

Foundation, Amsterdam, Netherlands), to produce surgical guides by SLA with 

promising results (average horizontal deviation at implant apex level: 0.76 ± 0.3 mm) 

(122). Considering the low production costs per unit (approximately 0.40€) with the 

presented AM technology, also reducing the planning software–related fees would 

represent a chance to increase the number of sCAIS users worldwide. Furthermore, 

a modification of the original closed-frame design of the surgical guide did not increase 
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the accuracy of implant installation. This implies that complex shapes, such as the 

occlusal plane, can be reliably reproduced with the presented ME protocol.  

 

Future studies should include various designs of surgical guides and supports (e.g., 

teeth, mucosa), including multifunctional stackable templates, as described for other 

3D printing techniques (123). A steam-sterilization protocol in an autoclave was 

applied to the surgical guides of Manuscripts 3 and 4. Regardless of the 3D printing 

technique applied, sterilizing the surgical guides can decrease the risk of 

contaminating the surgical field (124). Future studies are needed to assess the ideal 

disinfection/sterilization procedures, including plasma sterilization, for surgical guides 

created by ME. 

 

The experimental biocopolyester used in Manuscripts 3 and 4 can be considered, in 

vitro, biocompatible for short-term intraoral use (Manuscript 5). For this investigation, 

HGKs were used as the target cell population. Future studies should include further 

cell types, such as fibroblasts (125) and osteoblasts (126), which can also be exposed 

during sCAIS. In this study, gene expression analysis was performed for ANXA5, 

CASP, CASP9, IL1B, IL6, and TNF. Subsequent studies should include a 

supplementary evaluation of genes related to cytotoxic cellular events. In addition, 

interactive cell systems can create a more reliable in vivo environment (108). 

Considering the availability of numerous raw materials for ME and the lack of data on 

their potential intraoral cytotoxicity, additional studies assessing the biological risk on 

human tissue-specific cells are urgently needed.    



 119 

3.2.4 Scan body–free implant digitization  

The scan body–free digitization of the investigated one-piece ZrO2 implant system 

revealed, in vitro, comparable results in terms of the accuracy to a two-piece titanium 

implant with a scan body (Manuscript 6). Future studies should include more implant 

systems with different bulk materials and modern scanning systems for digitization. In 

addition, validating the presented workflow for partial scan reconstruction is still 

necessary. Two-piece implants are more common than implants with a one-piece 

design (127). To digitize a two-piece implant, a scan body is needed and serves as a 

reference of the subgingivally positioned implant for the IOS. Nevertheless, 

parameters such as scan body bevel location (128) and material (79) can affect the 

scanning accuracy. As modern IOS systems claim accurate intra-radicular digitization 

(e.g., of the prepared post space) (129), the feasibility of the scan body–free 

digitization of two-piece implants should be further evaluated. For reconstructive 

purposes, the implant shoulder or internal geometry might be used as a reference by 

the CAD software instead of the scan body geometry. Both tissue- and bone-level two-

piece implants, gradually positioned at the subgingival level, should be included in 

future analyses regarding scan body-free digitization. The average price of a single 

scan body is approximately 30€; thus, avoiding the use of scan bodies could also 

reduce the costs and the time needed for implant digitization. 
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4 CONCLUSION  

Based on the results of the six included manuscripts of this thesis, the following 

conclusions can be drawn: 

 Reducing the FOV of CBCT scans does not affect the registration accuracy for 

single tooth gaps in the posterior area. Caution is required when reducing the 

FOV for multiple-tooth gaps, especially in the presence of metal-induced 

artifacts (Manuscript 1). 

 The CAD/CAM RAI system shows high esthetic results and peri-implant soft-

tissue affinity but also a moderate survival rate after less than 2 years. 

Therefore, it cannot be recommended as an alternative to stock implants. 

Furthermore, the implant system was retired from the market on January 31, 

2020 (Manuscript 2).  

 The presented ME-based surgical guides show comparable trueness in terms 

of implant installation to market-available surgical guides created by SLA. 

Moreover, metal sleeves do not increase the accuracy of implant installation 

(Manuscript 3). 

 Variables such as planning software and surgical guide design can affect the 

trueness and precision of implant installation using the presented ME-based 

surgical guides. However, mean errors at the entry point and main axis level 

are within clinical acceptability (Manuscript 4). 

 The biocopolyester used to create the surgical guides by ME in Manuscripts 3 

and 4 can be considered, in vitro, biocompatible for short-term intraoral usage. 

It shows, after a longer period of time (72 hr), less cytotoxic effects of apoptosis 
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and inflammation compared to a resin approved for VAT photopolymerization 

of medical devices (Class 1) (Manuscript 5). 

 Scan body–free digitization of the investigated one-piece ZrO2 implant is 

possible and comparable, in terms of accuracy, to scanning a two-piece 

titanium implant with a scan body. In addition, partial scans can be completed 

with a self-developed virtual reconstruction tool (Manuscript 6).  
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5 SUMMARY  

Implant prosthodontics refers to rehabilitating partially or edentulous patients with 

removable or fixed prostheses anchored to one (or more) dental implant(s). The 

workflow, intended through data collection to transfer the implants’ intraoral position 

to the dental lab in order to create a prosthesis, was once completely analog. To this 

day, various digital technologies have been applied to the reconstructive process, both 

in the clinic and the lab. However, many aspects still require investigation. 

To date, to install a single implant in the posterior area, full-arch CBCT scans are used 

and display anatomical structures outside of the region of interest. According to the 

results of Manuscript 1, the radiographic FOV reduction does not affect the accuracy 

of registration for single tooth gaps in the posterior area and in the absence of sources 

of artifacts. Improvements are needed to further decrease patients´ radiation dose for 

virtual implant planning purposes.  

After registration of the radiographic and surface scans, the ideal implant must be 

selected. Prefabricated titanium thread–shaped implants are founded on long-term 

data from the literature. An alternative option for immediate implant installation is 

offered by RAIs. CAD/CAM custom-made RAIs reproduce the shape of the dental 

root(s) based on the digitally segmented 3D radiographic dataset and are fabricated 

before surgery. In the included retrospective investigation (Manuscript 2), clinical 

outcomes and PROMs from a patient cohort rehabilitated with FDPs supported by 

custom-made RAIs were collected and analyzed. An optimal esthetic outcome and 

favorable results in terms of peri-implant soft tissues were reported after a mean 

follow-up of 19 months. Data regarding marginal bone loss (1.20 ± 0.73 mm after 12.1 

± 6.9 months) and survival rate (94.4% after 18.9 ± 2.4 months), however, were 
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comparable or inferior to data on threaded stock implants. It also appears that the 

implementation of RAIs bears, at this moment, no relation to the necessary expenses 

and production efforts. In addition, Natural Dental Implants (NDI Berlin), the company 

marketing the evaluated implant system, ceased operations at the end of January 

2020.  

For accurate implant installation, a surgical guide can be used. In Manuscripts 3 and 

4, a protocol to create economic and sterilizable surgical guides by ME was described. 

Comparable results in terms of the trueness of the final implant position to market-

available surgical guides created by SLA were assessed (Manuscript 3). In the second 

manuscript, the impact of variables (e.g., implant planning software and surgical guide 

designs) on the accuracy, intended as trueness and precision, of implant positioning 

was evaluated (Manuscript 4). Both evaluated variables revealed a significant 

influence on the outcome, but low mean deviations of ≤ 0.32 mm and ≤ 2.63° were 

assessed. Moreover, the cytotoxicity of the biopolymer used to create the surgical 

guides was tested in vitro in Manuscript 5 and confirmed the biocompatibility for short-

term intraoral use.  

The last study in the present thesis (Manuscript 6) investigated the feasibility of 

scanning a one-piece ZrO2 implant without a scan body, revealing comparable 

accuracy to a two-piece titanium implant with a scan body. Furthermore, a digital 

reconstruction tool was applied to complete incomplete scans. The use of one-piece 

implants is limited due to surgical and prosthetic limitations. Nevertheless, scan body–

free digitization might also be applicable to two-piece implants at some point. For 

reconstructive purposes, CAD systems might rely on the implant shoulder and internal 

conformation rather than the scan body geometry in the future. 
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