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Summary

This thesis explores the spectroscopic properties and chemistry of di-
atomic molecules, which hold significant promise for applications in areas
like quantum information and ultracold chemistry.

Firstly, the Diatomic Molecular Spectroscopy Database, accessible through
a dynamic website, has been implemented. This database predominantly
consolidates spectroscopic information while enabling the computation and
visualization of Franck-Condon factors, and is adaptable for user contribu-
tions. Based on this database, machine learning models have been built to
effectively reveal relationships among spectroscopic constants, with input
features based on constituent atoms’ group and period. Similarly, a com-
prehensive dataset of contemporary experimental electric dipole moments
has been created. Utilizing this dataset, it has been shown that a machine
learning model can accurately predict dipole moments using spectroscopic
constants.

The availability of precise spectroscopic data allows for a rigorous assess-
ment of advanced quantum chemistry methods. Specifically, we investigated
the accuracy of coupled-cluster with single, double, and perturbative triple
excitations [CCSD(T)] in predicting electric dipole moments when com-
bined with different basis sets. Additionally, the hyperfine constants for
the a3Π state of aluminum monofluoride (AlF) have been computed and
compared to experimental values. Our study underscores the significance
of a thorough evaluation encompassing both experimental and theoretical
methodologies.

AlF and calcium monofluoride (CaF), among other metal monofluorides,
have emerged as highly promising options for experiments involving laser
cooling and trapping of cold molecules. We have compared the efficiency of
different fluorine-donor molecules producing AlF and CaF through metal
atom ablation in a buffer gas cell. Additionally, we present an efficient
machine learning method for fitting the potential energy surface of AlF-
AlF system, trained on relevant configurations from molecular dynamics
simulations at the CCSD(T) level.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Erforschung der spek-
troskopischen Eigenschaften und Chemie von zweiatomigen Molekülen,
die für Anwendungen in Bereichen wie Quanteninformation und ultrakalte
Chemie vielversprechend sind.

Zunächst wurde eine Datenbank zur Spektroskopie zweiatomiger Moleküle
implementiert, die über eine dynamische Website zugänglich ist. Diese
Datenbank konsolidiert hauptsächlich spektroskopische Informationen und
ermöglicht gleichzeitig die Berechnung und Visualisierung des Franck-
Condon-Faktors und ist für Benutzerbeiträge anpassbar.

Basierend auf dieser Datenbank wurden Machine-Learning-Modelle en-
twickelt, um die Beziehungen zwischen den spektroskopischen Konstanten
zweiatomiger Moleküle aufzudecken, wobei die Eingabemerkmale auf der
Gruppe und der Periode der beteiligten Atome basieren. Ebenso wurde ein
umfassender Datensatz mit aktuellen experimentellen elektrischen Dipol-
momenten erstellt. Unter Verwendung dieses Datensatzes wurde gezeigt,
dass ein Machine-Learning-Modell Dipolmomente genau vorhersagen kann,
indem es spektroskopische Konstanten verwendet.

Die Verfügbarkeit präziser spektroskopischer Daten ermöglicht eine gründliche
Bewertung fortschrittlicher quantenchemischer Methoden. Insbesondere
untersuchten wir die Genauigkeit des gekoppelten Clusteransatzes mit ein-
fachen, doppelten und perturbativen dreifachen Anregungen (CCSD(T))
bei der Vorhersage von elektrischen Dipolmomenten in Kombination mit
verschiedenen Basissätzen. Zusätzlich wurden die Hyperfeinstrukturkon-
stanten für den a3Π-Zustand von Aluminiummonofluorid (AlF) berechnet
und mit experimentellen Werten verglichen. Unsere Studie betont die Be-
deutung einer gründlichen Bewertung, die sowohl experimentelle als auch
theoretische Methoden umfasst.

AlF und Calciummonofluorid (CaF) haben sich neben anderen metallis-
chen Monofluoriden als äußerst vielversprechende Optionen für Experi-
mente zur Laserkühlung und zum Einfangen von kalten Molekülen heraus-
gestellt. Wir haben die Effizienz verschiedener Fluor-Donor-Moleküle ver-
glichen, die AlF und CaF durch Metallatom-ablation in einer Puffergaszelle
erzeugen. Darüber hinaus präsentieren wir eine effiziente Methode des
maschinellen Lernverfahrens zur Anpassung der potenziellen Energiefläche
des AlF-AlF-Systems, das auf relevanten Konfigurationen aus Molekular-
dynamik-Simulationen auf dem CCSD(T)-Niveau trainiert wurde.
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2 I N T R O D U C T I O N

1.1 Importance of accurate spectroscopic
information for diatomic molecules

Accurate and comprehensive diatomic molecular spectroscopic data have
long been vital in a wide variety of applications. Specifically, this informa-
tion serves as a crucial reference for advancing quantum chemistry methods.
Diatomic molecules, being considered the “simplest” molecules, offer valu-
able insights into the chemical bonds between different elements, potentially
shedding light on the properties of polyatomic molecules and materials.
Consequently, precise spectroscopic data for diatomic molecules is highly
desirable and has been used for benchmarking.

In particular, equilibrium molecular constants, such as the equilibrium
internuclear distance, bond dissociation energy, ionization potential, har-
monic/anharmonic vibrational frequency, etc., can be directly compared
to results from quantum chemistry. These properties play a crucial role
in developing quantum chemistry in various ways. For instance, energetic
properties, such as bond dissociation energy and electron affinity, can be
employed to assess the extent to which electron correlation energy is cap-
tured by a specific level of the electron correlation method [1, 2, 3, 4].
Additionally, comparing computed diatomic equilibrium internuclear dis-
tances with experimental values helps in understanding the convergence
patterns of computed geometric properties as electron correlation methods
and basis set sizes are refined. These behaviors also hold significance in the
advancement of basis set development [5, 6, 7, 8].

Certainly, it is also viable to benchmark quantum chemistry methods by
contrasting computed spectroscopic constants with those from established
theoretical references, such as the coupled cluster with single, double,
and perturbative triple excitations [CCSD(T)]. Purely theoretical reference
datasets have gained notable traction in contemporary quantum chemistry
advancements. Developers now prefer to scrutinize their models against
a substantial dataset, generated theoretically at the same level of theory
and utilizing consistent basis sets [9], rather than relying on a limited set of
molecules [10]. This approach is favored as it allows for better control over
reference errors. Meanwhile, the creation of such reference datasets has
become significantly more accessible compared to past decades, courtesy of
the advancements in supercomputing technology. As a result, it has become
customary, especially in the development of density functionals [11, 12, 9].

However, as elucidated in the insightful and thought-provoking discus-
sions in [13], the limited inclusion of experimental data in the presently
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favored reference datasets does not indicate the insignificance of experimen-
tal references. Instead, it stems from the pragmatic challenges of aligning
theoretical predictions with experimental outcomes. Indeed, there are
instances where theoreticians may need more expertise to interpret experi-
mental measurements accurately, including understanding the associated
errors and determining the appropriate comparison method [13]. Addition-
ally, they often face constraints in terms of time availability for extensive
literature searches [13]. This can lead to challenges and potential misin-
terpretations during the benchmarking, especially when experimental data
has not been appropriately preprocessed. A pertinent example can be found
in the discussions surrounding the accuracy of coupled cluster methods in
predicting dissociation energies of 3d transition metals in [1, 14, 4, 15].

Meanwhile, as highlighted in [16], obtaining updated experimental data,
which often offer higher precision and lower uncertainties, can be challeng-
ing. Remarkably, even in the present day, a significant number of researchers
heavily lean on the enduringly successful and comprehensive work of Huber
and Herzberg [17], published several decades ago, to obtain the equilibrium
spectroscopic constants [18], due to the scarcity of alternative datasets.
In the case of properties tied to energy derivatives, such as dipole mo-
ments, the absence of an accurate and all-encompassing dataset necessitates
benchmarking efforts to rely on theoretical references [19].

With the hope of addressing the aforementioned issues to some extent,
we have introduced the diatomic molecular spectroscopy database [20]. It
primarily incorporates equilibrium spectroscopic constants sourced mainly
from Huber and Herzberg [17]. Importantly, the data has been organized
for easy access and download via a user-friendly website. Additionally,
this database is designed to accommodate user contributions, making it
adaptable to future updates. Separately, we have curated an updated
compilation of experimental ground-state electric dipole moments [21].
Based on this dataset, we have benchmarked the accuracy of the CCSD(T)
method in predicting electric dipole moments. We employed a range of
basis sets, considering the inclusion or exclusion of diffuse functions, and
analyzed their performance. As shown in the corresponding chapters, our
results suggest the paramount significance of a meticulous assessment
encompassing experimental and theoretical methodologies.
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Figure 1: The results in this thesis indicate that with the incorporation of
suitable atomic and molecular features, machine learning methods
can proficiently forecast the spectroscopic constants and dipole
moments of diatomic molecules. These selected features encom-
pass a blend of molecular properties, contributing to enhancing
our understanding of the fundamental essence of spectroscopic
constants.

On the other hand, machine learning techniques provide a powerful tool
for uncovering relationships between diverse properties based on provided
datasets. In this context, we have utilized the previously introduced datasets
to apply machine learning methods, allowing us to discern the connections
between spectroscopic constants. Through thoughtful engineering of input
features, the resulting machine learning models offer interpretability. Re-
markably, they demonstrate the ability to accurately predict spectroscopic
constants without the necessity for labor-intensive quantum chemistry cal-
culations.
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1.2 Diatomic fluorides relevant for laser cooling

Molecules that have been laser-cooled exhibit distinct properties and find
applications in various fields, such as precision measurements in fundamen-
tal physics [22, 23] and the development of novel platforms for quantum
information processing. They also open new avenues for studying ultracold
molecular collisions and chemical reactions through precise control over
their initial quantum states.

Figure 2: The efficient production of AlF and CaF molecules has been
achieved in buffer gas cells. This thesis delves into the chemistry
of reactions responsible for generating AlF and CaF molecules,
alongside an investigation of the properties exhibited by the re-
sulting AlF-AlF dimers.

The intricate internal structure of molecules poses a challenge to trapping.
The feasibility of directly laser-cooling and trapping a molecule depends on
its electric, vibrational, and rotational characteristics, as these factors dictate
the efficiency of photon scattering in the cycling process, and consequently,
the complexity of the cooling laser system. Notably, having a nearly-diagonal
Franck-Condon matrix and corresponding vibrational branching is highly
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desirable. In such cases, the equilibrium internuclear distances in the ground
and excited electronic states are very close, allowing for efficient direct
excitation of electrons to the excited state during optical cycling. Meanwhile,
the diagonal Franck-Condon factors reduce the loss channels via vibrational
transitions [24]. Additionally, molecules with simple hyperfine structures
and rotational splittings are preferred, although technical solutions can
address these complexities [24]. The absence of intermediate electronic
levels is also preferred, as it simplifies the cooling scheme.

The first successful trapping of a diatomic molecule was achieved with
strontium monofluoride (SrF) using magneto-optical traps, capitalizing on
its A2Π1/2-X2Σ+ electronic transition in the cycling scheme [25]. Molecules
like CaF [26], MgF [27], YO [28], AlF [29, 30], and AlCl [31] also show
promise for laser cooling. The potential for laser-cooling polyatomic molecules
has been explored in several molecules, including CaOH and CaOCH3 [24].
In this thesis, the focus of investigation lies on the chemistry of diatomic
fluorides, specifically AlF and CaF.

1.3 Overview of the thesis

This thesis comprises two main segments. The first segment centers on
the spectroscopic constants of diatomic molecules. In Chapter 2, we in-
troduce the implementation and functionality of the diatomic molecular
spectroscopy database, characterized by a dynamic structure with a user-
friendly website interface. Chapter 3 leverages the spectroscopic constants
cataloged in the database to investigate the relationship between these con-
stants and the “periodicity” of the constituent atoms. Specifically, we focus
on the equilibrium internuclear distance in both ground and first-excited
states, as well as the harmonic vibrational frequency. Additionally, we ex-
plore the relationship between the ground-state dissociation energy and
other spectroscopic constants. To discover these relationships, we employ
machine learning (ML) regression methods, allowing for the automatic
modeling of the connection between input and output variables in a versa-
tile manner in the presence of reference datasets. Chapter 4 constructs a
comprehensive dataset of ground-state electric dipole moment, and extends
the ML approach to the dipole moment, aiming to ascertain its potential
correlation with other spectroscopic constants. We delve into not only those
molecules exhibiting a clear relationship between their dipole moments
and other spectroscopic constants but also those that deviate from this
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pattern. Next, we examine the accuracy of ab initio quantum chemistry
methods to reproduce experimentally measured spectroscopic constants.
Chapter 5 employs the spectroscopic information compiled in Chapters 2
and 4 to benchmark, for selected molecules, the accuracy of the coupled
cluster with single, double, and perturbative triple excitations [CCSD(T)]
method in predicting electric dipole moments. This method has served as a
benchmark standard for the implementation of other electronic structure
theory approaches. Finally, Chapter 6 involves the computation of hyper-
fine constants for AlF using quantum chemistry methods, which are then
compared with experimental measurements.

The second part of this thesis is dedicated to the study of the chemistry of
diatomic fluorides, with a specific focus on AlF and CaF. Chapter 7 directs
attention towards the production of AlF and CaF in buffer gas sources.
Through ab initio molecular dynamics simulations, we compare the effi-
ciency of producing AlF and CaF from different fluoride-donor molecules.
Additionally, once AlF molecules are formed, the formation of long-lived
complexes is deemed unfavorable as it compromises the utility of ultracold
molecules in many applications, leading to molecular loss. Therefore, in
Chapter 8, we develop an accurate hybrid ab initio-machine learning po-
tential energy surface for the AlF-AlF system, a crucial advancement for
investigating the formation of AlF-AlF complexes, playing a major role in
the stability of AlF molecules in the ultracold regime.

Finally, Chapter 9 concludes this thesis.





Part I

T H E S P E C T R O S C O P I C C O N S TA N T S O F
D I AT O M I C M O L E C U L E S
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T H E D I AT O M I C M O L E C U L A R S P E C T R O S C O P Y
D ATA B A S E
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2.1 Introduction
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The ability to control internal and external degrees of freedom of molecules
is the main driving force in atomic, molecular, and optical physics due to
its applications in quantum information sciences [32], cold and ultracold
chemistry [33, 34], coherent control, and the search of new particles and
fields beyond the standard model of particle physics [35, 36]. Most of these
applications require a cold sample of molecules in a well-defined quantum
state. In this regard, laser cooling is the most prominent tool to bring
down an ensemble of molecules to the cold and ultracold regime. However,
laser cooling can only be efficiently applied to molecules with nearly ver-
tical Franck-Condon factors (FCFs). These factors are contingent on the
spectroscopic properties of both the ground and excited electronic states.
Consequently, building a comprehensive database encompassing spectro-
scopic constants and FCFs for various states will aid in the identification of
prime candidates for molecular laser cooling.

Several valuable databases have been made available to the public
through various websites, including well-known resources like HITRAN [37],
ExoMol [38], NIST Chemistry WebBook [39], and OSDB [40], among oth-
ers [41, 42, 43, 44, 38, 45, 46], as reviewed in [16]. These platforms
primarily deliver spectral data for molecules, tailored explicitly for astro-
physics and atmospheric physics applications. For instance, platforms like
HITRAN [37] and ExoMol offer comprehensive rovibronic line lists for
tens of diatomic molecules. Additionally, DiRef [42] offers downloadable
reference papers for diatomic molecules, primarily sourced from 1974 to
2000. However, most existing databases do not typically include informa-
tion on the spectroscopic constants of diatomic molecules. Only the NIST
Chemistry WebBook offers such data, although not always retrievable in
convenient, readable formats like XML, JSON (JavaScript Object Notation),
or comma-separated values (CSV).

In this work, we implement a user-friendly database linked to an in-
teractive website that collates spectroscopic constants for polar diatomic
molecules, encompassing their ground and first excited electronic states.
Additionally, we provide calculations of FCFs, assuming a Morse potential
shape for all the relevant states 1.

Our database relies on the spectroscopic constants for diatomic molecules
sourced from the authoritative work of Huber and

1 This chapter is written based on reference [20]: Xiangyue Liu, Stefan Truppe, Gerard
Meijer, and Jesús Pérez-Ríos. The diatomic molecular spectroscopy database. Journal
of Cheminformatics, 12(1):1–8, 2020, https://doi.org/10.1186/s13321-020-00433-
8.
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Herzberg [17], the most comprehensive compendium of molecular spec-
troscopy data for diatomic molecules. The website is interactive, enabling
users to upload new data, subject to approval by the web administrators.
Consequently, the database is dynamic and has the potential for continuous
expansion as new spectroscopic measurements become available.
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2.2 Functionality of the database
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Our database provides access to the spectroscopic constants of diatomic
molecules’ ground and first excited states. These constants can be easily re-
trieved in user-friendly formats through the website. The website is built on
the Linux, Apache, MySQL, and PHP (LAMP) web service stacks. Specifically,
we use Linux as the operating system, Apache as the HTTP Server, MySQL as
the database management system, and PHP as the programming language
for the web. The website offers several key functionalities, such as querying
and contributing to the spectroscopic data and calculating the FCFs. PHP
and MySQL are responsible for data querying and editing in the database
and user information management. Dynamic generation of webpages is
accomplished using PHP in conjunction with HTML/CSS and JavaScript.
Notably, JavaScript is crucial in swiftly calculating and visualizing the FCFs.
Additionally, users can register and upload new data to the database.

It is worth emphasizing that MySQL provides a robust yet user-friendly
database management system known for its high efficiency in handling
various database operations. Customized, dynamic, data-driven websites
are enabled when seamlessly integrated with PHP, facilitating database
management, including creation, access, and operation. Additionally, both
MySQL and PHP offer robust security features, ensuring the integrity and
protection of data when implemented correctly.

This project is licensed under the Free-Libre/Open Source Software
(FLOSS) license Apache License 2.0, enabling unrestricted and open ac-
cess to the source codes and facilitating efficient collaboration in software
maintenance.

2.2.1 Database construction

The spectroscopic constants of diatomic molecules are sourced from Huber
and Herzberg [17] and stored in a MySQL database. The molecules in
the database, along with the states of these molecules, are indexed with
non-null integer numbers: “idMol” and “idAll_in”, respectively, within the
“molecule_data” table. “idAll_in” serves as the primary key for the table.
Each state is represented by a symbol in Latex format, stored as a string in
the database. In addition, the database retains the reduced mass of each
molecule as a non-null floating-point value. This incorporation of reduced
mass serves to differentiate isotopes within the constituent atoms.

The spectroscopic constants comprise several key parameters for each
molecule and state, including:

• Minimum electronic energy (Te) measured in cm−1.
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• Harmonic frequency (ωe) measured in cm−1.

• First anharmonic correction (ωexe) measured in cm−1.

• Equilibrium rotational constant (Be) measured in cm−1.

• Anharmonic correction to the rotational constant (αe) measured in
cm−1.

• Centrifugal distortion constant (De) measured in cm−1.

• Binding energy (D0) measured in eV.

• Equilibrium internuclear distance (Re) measured in angstroms (Å).

• Ionization potential (IP) measured in eV.

“NULL” if the data is unavailable. Additionally, the database records
the reference from which the data are obtained, along with the reference
date. This meticulous record-keeping ensures that users can compare the
dates of different measurements for the same molecule and effortlessly
trace back to the original source. Moreover, each record in the database
includes contribution information, including the contributor’s identification
(“id_user”) and the date of data input into the database.

2.2.2 Search in the database

Figure 3: General search menu. The user needs to introduce the chemical
formula of a molecule. Figure reproduced from ref. [20].

The website allows users to retrieve spectroscopic constants from the
database by searching with the chemical formula of molecules, as shown
in Fig. 3. An example of a search results is displayed in a table that can be
conveniently downloaded in CSV format as displayed in Fig. 4), making it
easy for users to process the data.
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Figure 4: Example output after a search. The results are presented in a table
and can be downloaded to a CSV file. Figure reproduced from ref.
[20].

Furthermore, as introduced in Sec. 2.3.2, the website enables the calcu-
lation of FCFs for selected states of the molecules using the spectroscopic
constants of the ground and excited states. This feature provides users with
valuable insights into the favored vibrational transitions between differ-
ent electronic states of the molecules, enhancing their understanding of
molecular spectroscopy.

2.2.3 User contributions to the database

Following an initial search for a given molecule to access its existing spec-
troscopic information, users have the option to contribute new information
to the database, as illustrated in Fig. 5. The user can upload spectroscopic
data via an HTML form (Fig. 6), wherein the reduced mass and reference
information must be provided as non-null fields. The electronic states are
expected to be uploaded in Latex format, for example, X 1Σ+.

After submission (Fig. 7), contributions are inserted into the database
only after receiving authorization from web managers (Fig.8). In case of
rejection by the manager, the contributor will be notified of the reason via
email.

Additionally, users have the option to check their own contributions to
the database, ensuring transparency and accountability throughout the
contribution process.
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Figure 5: Users can search for a molecule before contributing, and check
their contributions to the database.

Figure 6: Contribution menu. The user needs to fill an HTML table with
new data. Figure reproduced from ref. [20].

Figure 7: After submission, the users can look at their contributions, while
an email is sent to the web managers to authorize the contribu-
tions. Figure reproduced from ref. [20].
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Figure 8: The web managers can compare the user contribution to the
existing records in the database, and decide to confirm or reject
the contribution. Figure reproduced from ref. [20].

2.2.4 The application programming interface (API)

An Application Programming Interface (API) is provided to allow users to
query the spectroscopic information of molecules in the database. The API
returns JSON objects in the format shown in Fig. 9.

By accessing “/api/?query=list_molecules”, users can obtain a list of all
molecules present in the database. This list comprises an array of objects
where each molecule is indexed by “id_molecule” and labeled with its
chemical formula.

The API endpoint “/api/?query=name_of_spectroscopic_constant” pro-
vides the spectroscopic constants of the ground and excited states for all
molecules that have data available for the specified constant.

For more detailed information about a specific molecule, users can search
using “/api/? chemical_formula=chemical _formula&
query= name_of_spectroscopic_constant”. For instance, entering “api/?chemical
_formula=AlF&query=Be” will return a JSON object containing the Be value
of AlF.

In case the “name_of_spectroscopic_constant" is undefined (e.g., “api/?
chemical_formula=AlF”, or “api/?chemical_formula=AlF&query=”), the
query will return all spectroscopic constants available for the specified
molecule. The information about the molecules (chemical formula), their
states (in Latex format), and masses (in atomic units) are also provided.
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(a) Format of the returned JSON object with the “query=list_molecules”.

(b) Format of the returned JSON object with “query=
name_of_spectroscopic_constant”.

(c) Format of the returned JSON object with the query keyword “chemical_formula
= chemical_formula”.

Figure 9: Sample returns of API’s. Figures reproduced from ref. [20].
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2.3 Implementation of the database
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2.3.1 Querying Data

Start

Get the chemical formula by 
$_GET['query']

Select data from table 'molecule_data' in the database with the 
keyword 'Molecule' equals to the queried chemical formula

Connect to the MySQL database

Show the data of the queried 
molecule in a table

Generate a <select> for the users to select two states for the 
FCF calculation

Calculate the FCFs

Show the FCFs

End

Figure 10: Flowchart of search_data.php. Figure reproduced from ref. [20].

The primary purpose of the website is to enable users to search the database
for the spectroscopic constants of a specific diatomic molecule. This function-
ality is implemented in “search_data.php”, as illustrated in Fig.10, showing
the flowchart of the search engine in the database. The query keyword
is the chemical formula of the molecule, obtained through the HyperText
Transfer Protocol (HTTP) GET method from the input field. Subsequently,
a query is performed in the MySQL table “molecule_data”, retrieving rows
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that contain the spectroscopic information of the queried molecule. If the
molecule exists in the database, the query results are displayed in a table
and can be downloaded in CSV format. Furthermore, an HTML <select>
tag is dynamically generated based on the available electronic states of this
molecule, allowing users to choose two electronic states for calculating the
Franck-Condon factors.

2.3.2 Calculation of Franck-Condon factor (FCF)

Under the Born-Oppenheimer approximation, during an electronic transi-
tion of a molecule, the nuclei, heavier than the electrons, can be considered
to maintain their configuration with minimal alteration. In this scenario,
the Franck-Condon principle states that the intensity of an electronic tran-
sition is proportional to the square of the overlap between the vibrational
wavefunctions, |Ψv⟩, of the two states of the transition as [47]

|⟨Ψv|Ψv′⟩|2. (1)

Therefore, the FCFs provide valuable information about the preferred vibra-
tional transitions between different electronic states of a molecule.

From Eq.(1), it is clear that the FCFs are very sensitive to vibrational
wavefunctions. Hence, it is necessary to count on accurate interatomic
potentials. In the case of vibrational levels near the minimum well of the
interatomic potentials, the influence of second and higher anharmonic cor-
rections is negligible. Accordingly, it is possible to describe the interatomic
potential via a Morse potential, the potential of choice for this work. Next,
we solve numerically the time-independent Schrödinger equation via a dis-
crete variable representation (DVR) method [48, 49] 2. In DVR, the basis
sets are associated with a specific set of quadrature points, ensuring that
the potential matrix is diagonal, while the kinetic energy operator contains
non-diagonal terms. For this implementation, the number of DVR quadra-
ture points is set to 200, which yields vibrational wavefunctions with an
error of less than 0.1%. The overlap between the vibrational wavefunctions
is calculated numerically using the trapezoidal rule.

The user can obtain FCFs, calculated on-the-fly, for any of the molecules
in the database. The results can be displayed as bar and density plots,

2 The DVR method offers efficient and accurate solutions to quantum mechanical
problems involving a small number of particles [50].



2.3 I M P L E M E N TAT I O N O F T H E D ATA B A S E 25

similar to those presented in Fig.12, with the assistance of the JavaScript
library D3.js[51, 52].

Figure 11: Calculation of the Franck-Condon factor. Figure reproduced from
ref. [20].
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Figure 12: Visualization of the Franck-Condon factor between different
states. Figure reproduced from ref. [20].
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2.3.3 User contribution

Users can register on the website to contribute new spectroscopic data to
the database through a web page interface containing input forms. This con-
tribution feature is implemented using several PHP scripts, including “con-
tribution_main.php”, “contribution_data.php”, “contribution_submit.php”.
Additionally, the web manager authorization is managed through “contribu-
tion_confirm.php” and “contribution_reject.php”. After the submission is
confirmed, the data is uploaded into the database via“contribution_insert_data.php”.
The flowcharts illustrating the contribution process are displayed in Figs. 13-
17.

N

Y

if the user is 
logged in

Start

Alert

Generate a <form> with the input 
box 'query_contribution' to search 
for the molecule to be contributed 

On submission, send 
'query_contribution' to 

contribute_data.php

Input the chemical formula to 
'query_contribution'

End

Figure 13: Flowchart of contribution_main.php. Figure reproduced from
ref. [20].
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In “contribution_main.php” (Fig. 13), logged-in users are presented with
an input field named “query_contribution” where they can enter the chemi-
cal formula of the molecule they wish to contribute to the database.

N

Y

if the user is 
logged in

Start

Alert

Get the chemical formula by 
$_GET['query_contribution']

Select data from table 'molecule_data' in the database with the 
keyword 'Molecule' equals to the queried chemical formula

Connect to the MySQL database

Show the existing data of the 
queried molecule in a table

Generate a <form> in the same table with <input> fields for 
the user to input the spectroscopy constants

On submission, send the values of input fields to 
contribution_submit.php

Show the existing data of the 
queried molecule in a table

End

Figure 14: Flowchart of contribute_data.php. Figure reproduced from ref.
[20].
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Upon submission, the input field action is directed to “contribute_data.php”
(Fig. 14), which retrieves data from the “molecule_data” table in the
database corresponding to the queried chemical formula. The results are
displayed in a table.

N

Y

if the user is 
logged in

Start

Alert

Get the chemical formula, mass, electronic state 
information, and the spectroscopy constants

Connect to the MySQL database

If the contributions are 
duplicated with existing 
records in the database

Y Alert

N

A link to contribution_confirm.php
is generated and sent to the web manager by email, from which 

the user submission can be either confirmed or rejected.

End

Show the submitted data in a table

Figure 15: Flowchart of contribution_submit.php. Figure reproduced from
ref. [20].

An HTML <form> is generated within the same table for users to in-
put the spectroscopic constants. This form’s action is set to “contribu-
tion_submit.php” (Fig. 15), where the input data is processed, and a dupli-
cate check is performed. The duplicate check compares the spectroscopic
constants in the current submission with the existing data in the database.
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The newly uploaded data is presented in a table to the user, along with a
link to “contribution_confirm.php”, which is sent to the web managers via
email.

Upon receiving the link, “contribution_confirm.php” presents the existing
data in the database alongside the user’s submission in tables. This compari-
son enables the web managers to review and decide whether to confirm or
reject the contribution (Fig.16).

Insert the contributions to the database

Start

Get the user submitted chemical formula, mass, electronic 
state information, and the spectroscopy constants

Connect to the MySQL database

If the 
contributions 

can be 
accepted

N Send the user 
information to 

contribution_insert_
data.php

Y

Show the existing data in the database, as 
well as the user submitted data in tables, 
enabling the web manager to compare.

End

Send an email to the user

Figure 16: Flowchart of contribution_confirm.php. Figure reproduced from
ref. [20].

The data provided by the user undergoes a two-step validation process.
First, it is checked whether the journal referenced by the user is indexed
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in the Web of Science. Second, the user-provided data is verified against
the data in the referenced paper. If the data is correct, the contribution is
accepted, ensuring high-quality data on the website. In the case of rejection,
“contribution_reject.php” generates an HTML form for the web managers to
enter the reasons for rejection (Fig.17), which is then communicated to the
contributor via email.

Start

Get the user information

Generate a HTML form where the web 
manager can write down the reason to the 

rejection of the user contribution

End

Send an email to the user

Figure 17: Flowchart of contribution_reject.php. Figure reproduced from
ref. [20].

2.3.4 Website and database security

Security and data protection are the main issues in web page design. A
webpage involving SQL queries and insertion operations needs a security
protocol to avoid SQL injection attacks. Specifically, we undertake several
security measures after receiving a query with the chemical formula as the
keyword:

• We check the length of the keyword to ensure it is not longer than 4
characters, which is impossible for diatomic molecules.

• To prevent SQL injection, we encode the keyword using “mysqli_real_
escape_string()”.
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With mysqli_ real_escape_string(), all user inputs are appropriately
sanitized. This function escapes special characters in the input data,
ensuring that malicious SQL queries are neutralized.

• Prepared statements are utilized for SQL SELECT and INSERT oper-
ations, ensuring the separation of SQL code from user input. These
statements separate the SQL code from user input, preventing poten-
tial SQL injection attacks. User input is treated as parameters rather
than being directly inserted into the SQL query, providing an extra
layer of security.

• We adopt a pre-checking approach to avoid potential security threats
regarding the APIs. Before executing the query, we verify whether
the provided keyword is part of the allowed list. This way, we avoid
potential unauthorized queries and guarantee that only valid input
is processed. These security measures collectively safeguard the
integrity of the website’s database and protect against SQL injection
vulnerabilities.

• The protection to passwords has been implemented with “password_
hash()”, with a fixed cost and automatically set salt. The above-
mentioned SQL injection protections are also made.

• Webpages, including “contribution_insert_data.php” and “contribu-
tion_reject_email.php” are accessible only for administrators, to avoid
anyone being able to use them without any authentication, for exam-
ple writing data to the database, or sending spam.

By combining these security measures, the website effectively guards
against SQL injection attacks, ensuring the integrity and safety of the
database and protecting user data from potential threats.

The complete database is accessible through the API in the website
https://rios.mp.fhi.mpg.de. The source code is available at
https://github.com/hlslxy/DMSD under the Apache License. The database
as well as its mirrored copy, are maintained by the Gesellschaft für wis-
senschaftliche Datenverarbeitung mbH Göttingen (GWDG), a service orga-
nization that collaborates with the University of Göttingen and the Max
Planck Society as a data and IT service center.
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2.4 Conclusion and outlook
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The diatomic molecule spectroscopic database offers open access to
both ground and excited state spectroscopic constants for polar diatomic
molecules, along with Franck-Condon factors that characterize transitions
between various electronic states. This database operates dynamically,
enabling registered users to contribute spectroscopic data.

Currently, the database encompasses a modest subset of the potential
diatomic polar molecules found across the periodic table. As of April 2020,
the database has 608 records, comprising 130 molecules in a Σ ground state,
34 molecules with a Π ground state, and 5 molecules with a ∆ ground state.
Currently (April 2023), the database has 177 molecules, 134 of which have
a Σ ground state, 35 have a Π ground state, 7 have a ∆ ground state, and 1
has a Φ ground state.

Further extensions of this work may entail:

• The incorporation of charged diatomic molecules.

• The inclusion of homogeneous diatomic molecules.

• The potential for users to upload data from CSV files.

Building on this research, the Database of Spectroscopic Constants of
Diatomic Molecules (DSCDM) [53] has been recently developed. It en-
compasses 344 diverse neutral diatomic molecules, both heterogeneous
and homogeneous, featuring the most current and accurate spectroscopic
constants. Additionally, it provides machine-learning predictors for spectro-
scopic constants.
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3.1 Background and methods
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In the early stages of the development of molecular spectroscopy within
chemical physics during the 1920s [54], researchers made intriguing em-
pirical observations regarding various spectroscopic properties [55, 56, 57].
Specifically, they noted a correlation between the equilibrium distance
(Re) and the harmonic vibrational frequency (ωe) in diatomic molecules.
Over time, this relationship between Re and ωe became more pronounced,
and additional empirical connections among spectroscopic constants were
uncovered [58, 59, 60, 61, 62, 63, 64, 65]. However, these empirical
relationships were typically valid only for specific atomic numbers or groups
of constituent atoms. These findings prompted the development of realistic
diatomic molecular potentials [57, 66, 67, 68, 69, 70] and sparked discus-
sions within the physical chemistry community about the “periodicity” of
diatomic molecules [71].

The advent of quantum chemistry brought insights into the underlying
physics behind empirical relations among spectroscopic constants. Notably,
through the application of the Hellmann-Feynman theorem, researchers
were able to establish a direct connection between ωe and the electronic
density at Re [72, 73, 74, 75]. Consequently, a first-principles-based ex-
planation, involving a few free parameters, emerged to account for the
observed empirical relationships among spectroscopic constants [76, 77,
78, 79, 80, 81, 82, 83]. Nevertheless, the derived relations based on elec-
tronic density remained applicable only to specific subsets of molecules. To
this day, a comprehensive set of general relations for spectroscopic constants
of diatomic molecules in terms of the properties of their constituent atoms
has remained elusive.

The accuracy of quantum chemistry methods relies on finite basis sets that
have been optimized for individual elements within specific constraints [84,
85]. Meanwhile, an accurate depiction of the electronic structure of the
system is imperative. This is accomplished through a hierarchical approach
that encompasses various treatments of electron correlation [84, 85]. On
the other hand, widely employed Kohn-Sham density functional theory
(DFT) methods necessitate precise electron exchange-correlation density
functionals. Non-empirical density functionals are formulated with specific
constraints and may incorporate numerous free parameters [86, 87, 88, 89].
In contrast, semi-empirical density functionals adopt more adaptable func-
tional forms, often characterized by multiple coefficients that are tailored to
match various experimental or theoretical reference properties [86, 90].

In a different vein, machine learning (ML) techniques unveil underlying
relationships from data, often referred to as the “training set”, and subse-
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quently construct predictive models based on these relationships. These
models can offer quantitative predictions for other systems that share simi-
lar underlying physical principles. Moreover, ML provides the potential to
uncover correlations between diverse properties within the system under
investigation [91].

This study seeks universal relationships between spectroscopic constants
in heteronuclear diatomic molecules, applicable to a wide range of molecular
species. Our findings are based on the application of state-of-the-art machine
learning (ML) models to a conventional dataset comprising experimental
spectroscopic constants for diatomic molecules. In particular, we employ the
Gaussian process regression (GPR) model [92] to predict key parameters,
namely Re, ωe, and the binding energy, D0, as functions of the constituent
atoms’ group and period. Additionally, our models are capable of predicting
Re and ωe for the A-excited electronic state of a given molecule 1.

Our approach, based on an ML perspective, extends the conventional
wisdom that some chemical properties of a system are contingent on the
group and period of the constituent atoms, finding accurate predictions
of spectroscopic constants based on atomic properties. Hence, our results
can be viewed as a stepping stone toward finding universal relationships
between spectroscopic constants, a dream that is over a century old.

3.1.1 The dataset

In this study, our primary focus is on heteronuclear molecules, given their
significance in laser cooling applications within the field of cold and ultra-
cold chemistry [94, 95, 34]. Our dataset comprises essential spectroscopic
constants included in the dataset introduced in Chapter 2, namely Re, ωe,
and D0, for the ground electronic state of heteronuclear diatomic molecules.
Specifically, it includes experimental values of Re and ωe for 256 heteronu-
clear diatomic molecules, while experimentally determined values of D0 are
available for 197 of these molecules.

1 This chapter is written based on reference [93]: Xiangyue Liu, Stefan Truppe,
Gerard Meijer, and Jesús Pérez-Ríos. On the relationship between spectroscopic
constants of diatomic molecules: A machine learning approach. RSC advances,
11(24):14552–14561, 2021, https://doi.org/10.1039/D1RA02061G, with permis-
sion from the Royal Society of Chemistry.
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Figure 18: Ratio of the equilibrium distance, Re, to the sum of the atomic
radii of the atoms forming a molecule, R1 + R2, vs. Re. The
background color indicates the nature of the molecular bond
in each of the molecules. The density in the upper part of the
figure shows the kernel density distribution of Re. The box plot
shows the minimum, the maximum, the sample median, and the
first and third quarterlies of Re. The empirical atomic radii of
the atoms are taken from Ref. [96]. Figure reproduced from ref.
[93].

To the best of our knowledge, this dataset represents one of the most
comprehensive collections of experimental ground state properties for het-
eronuclear diatomic molecules2. Figure 18 illustrates the distribution of
equilibrium distances and their ratios to the sum of the atomic radii of the
constituent atoms, denoted as R1 +R2, within the dataset. Notably, most
molecules exhibit equilibrium distances ranging from 1.4 Å to 3.8 Å, with a
peak occurrence at approximately 1.7 Å. Furthermore, an examination of
the values of Re/(R1 +R2) reveals that the molecules in the dataset exhibit
a diverse range of bond types, encompassing covalent, van der Waals, and
ionic bonds.

2 Recently, I have been involved in a new effort towards a more extensive database
(https://dscdm.physics.stonybrook.edu) [53]
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Figure 19: Molecules in the dataset classified by the types of their con-
stituent atoms. Figure reproduced from ref. [93].

We have categorized the dataset based on the constituent atoms present
within each molecule, and the results are presented in Figure 19. Upon
analysis, we observed that the dataset predominantly comprises a diverse
range of metal and non-metal halides, hydrides, and metalloid compounds.
Over 20% of the dataset comprises transition metal compounds, including
elements from the f-block. Consequently, the present dataset is inclusive,
extending beyond the realm of main-group diatomic molecules and encom-
passing more intricate and complex atoms from a chemical perspective.
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Furthermore, we also investigated a set of 131 molecules for which Re and
ωe data are available for the A-excited electronic state. The A-state dataset
primarily features metal and non-metal compounds, including transition
metal compounds and several f-block compounds.

3.1.2 Machine learning method

The quest to uncover universal relationships among spectroscopic constants
is closely linked to the challenge of understanding how atomic and molecular
properties collectively contribute to defining a molecule’s spectroscopic
property, denoted as y = f (x). In this context, x = (x1,x2, ...,xn) represents a
collection of various atomic properties of the constituent atoms or molecular
properties, where n indicates the number of input features relevant to the
specific problem at hand. Here, we adopt a GPR approach to model those
relationships.

GPR adopts a Bayesian perspective and posits a prior distribution over the
space of functions. This approach allows for a more flexible and data-driven
exploration of the relationships between spectroscopic constants. A GPR is
defined as

f (xi) ∼ GP(m(xi),K(xi,x j)), (2)

with a joint multivariate-Gaussian distribution, centered at m(xi) and charac-
terized by the covariance function K(xi,x j), which specifies the correlation
(or “similarity”) between data points [92]. The spectroscopic properties,
denoted as y, are modeled as follows:

P(yi| f (xi),xi) ∼N (yi|h(xi)
T

β + f (xi),σ2
y ). (3)

where N (µ ,σ) represents a normal distribution of mean µ and standard
deviation σ . Here, the basis functions, represented as h(xi), project the
set {xi} into a new, possibly higher-dimensional feature space character-
ized by coefficients β . The term σy encompasses the noise present in the
observations [92, 97].

The training set denoted as D = {(xi,yi)|i = 1, · · · ,N}, comprises N ob-
servations and serves to constrain the distribution of available functions
through Bayes’ theorem. For prediction purposes, the mean of the posterior
distribution is employed. The specific functional forms of K(xi,x j) and h(x)
can be tuned during the optimization of GPR models, and an optimal model
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can be selected based on the cross-validation performances. More details
about the GPR methods can be found in the Appendix.

While GPR is a powerful tool for modeling non-linear relationships be-
tween variables, it can be beneficial to engineer features to make the regres-
sion problem more amenable to a linear model. By introducing non-linear
terms or transformations of the input features, one can potentially capture
complex relationships more cheaply. This may lead to a model that is easier
to interpret and understand and can also reduce the risk of overfitting. In
this study, we have tested different input features x generated from atomic
or molecular properties and compared the performance.

3.1.3 Model performance evaluation

In training and evaluating regression models, as customary in machine
learning, we divide the ground state dataset into two subsets: the training
set and the test set. The training set is used for learning a given spectro-
scopic constant based on the atomic properties of the constituent atoms. In
contrast, the test set consists of molecules that have not been part of the
learning process and are thus new to the regression algorithm. For example,
when learning the equilibrium internuclear distance (Re) and the harmonic
vibrational frequency (ωe), the training set comprises 231 molecules, while
the test set contains 25 molecules. For learning log D0

R3
eZ1Z2

, the dataset is
split into a training set of 172 molecules and a test set of 25 molecules.
Finally, in the case of excited states spectroscopic constants, the training set
encompasses 106 molecules, and the test set includes 25 molecules.

From a machine learning perspective, the present dataset may be consid-
ered relatively small. When splitting the dataset into training and test sets,
there’s a potential for the training set to not fully represent the underlying
data distribution, potentially leading to bias in test set performance. At the
same time, it would be crucial to examine whether the relationships between
spectroscopic constants, as modeled from different subsets of molecules,
hold true universally. To this end, we have developed a Monte Carlo (MC)
approach. This approach stratifies the dataset into 25 strata based on the
true values of the labels (Re, ωe, and log D0

R3
eZ1Z2

in this work).
Our MC approach involves two loops, as illustrated in panel (a) of Fig-

ure 20, one for training and another for evaluation of the models. We divide
the dataset into training and test sets in the outer loop. The training set is
used for model learning, while the test set is reserved for model evaluation.
In the inner loop, we further divide the training set into five stratified folds
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for cross-validation (CV) during hyperparameter optimization. As depicted
in panel (b), in the outer loop, we employ an MC approach to perform the
training/test split. We randomly select 25 test molecules from the dataset,
which has been previously stratified into 25 strata based on the levels of
the true values of the labels. This stratification helps maintain the propor-
tional composition of the dataset upon splitting [98]. A regression model is
trained in each MC step, providing predictions for the training and test sets.
Consequently, we report the mean and standard deviation of the predictions
for each molecule when they are used in both the training and test sets,
derived from all 1000 MC steps for model performance evaluation and 500
MC steps for generating learning curves.

The performance of the models is assessed using three distinct estimators.
The first estimator is the mean absolute error (MAE), defined as

MAE =
1
N

N

∑
i=1
|yi− y∗i |, (4)

where y∗i are the true values, yi are the predictions, and N is the number of
observations. The second estimator is the root mean square error (RMSE),
which is given by

RMSE =

√
1
N

N

∑
i=1

(yi− y∗i )
2. (5)

The last estimator is the normalized error rE , defined as the ratio of the
RMSE to the range of y,

rE =
RMSE

ymax− ymin
. (6)

3.1.4 The learning curves

Learning curves illustrate the training and test performance of a model as a
function of the training set size N. These curves provide valuable insights
into a model’s bias and variance. Moreover, they enable us to discern
whether the model’s performance benefits from an increase in the training
set size.

For each data point on the learning curve, the training process is executed
with the aid of 500 different training/test splittings, accomplished through
the MC approach.
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Model evaluation: 
Monte-Carlo sampling for the training/test splitting

Model training: 
Stratified 5-fold cross-validation

(a)

Model evaluation: 
Monte-Carlo sampling for the training/test splitting

Model training: 
Stratified 5-fold cross-validation

...
(Stratified, in the order of levels of true labels)

(b)

Training set Test set

Training set Validation set

Figure 20: Scheme of the training/test set splitting in the model evaluation.
(a) There are two loops: The outer loop for the model perfor-
mance evaluation, and the inner loop for the training of model
and hyperparameter optimization. (b) In the outer loop, the data
are stratified based on the true values of the labels, and each
stratum is randomly split into training and test sets. In learning
the properties, the training sets are further split into training
and validation sets to perform a stratified 5-fold cross-validation.
Figure reproduced from ref. [93].
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3.2 The quest of relationships between
spectroscopic constants of diatomic
molecules
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As soon as molecular spectroscopy became an indispensable tool for
analyzing the unique characteristics of molecules, researchers began to
amass a wealth of molecular spectra. In the process, they discovered
approximate relationships among spectroscopic constants, suggesting that
these constants might be correlated on empirical grounds. Notably, in
the case of hydrogen halides [55, 99, 100, 101], it was observed that the
equilibrium distance and the harmonic vibrational frequency were related
by the expression R2

eω2
e m = const, where m represents the reduced mass

of the molecule. This correlation later evolved into Badger’s rule [59],
expressed as Ri

eω2
e m = const, with i as a natural number.

Figure 21: Predictions of ωe with R−2
e by a linear regression model. Figure

reproduced from ref. [93].

Conversely, Mecke and Birge, in their study encompassing 16 molecules,
including homonuclear molecules and molecular ions, found that the ex-
pression R2

eωe = const provided a better description of the observed spec-
tra [56, 102]. Applying a linear regression with this relationship on the
current dataset to predict ωe as a function of R−2

e , the test-set RMSE is
297.3±1.4 cm−1, and rE is 7.27±0.03%, as shown in Fig. 21. In this figure,
the largest errors come from the predictions of hydrides, deuterides, and
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several fluorides. This model underestimates ωe of hydrides while over-
estimating ωe of deuterides because Re does not have an obvious isotope
effect.

Figure 22: Distribution and box plots of Ra
eωb

e with different powers com-
bined with the reduced mass m and number of valence electrons
n. Figure reproduced from ref. [93].

Similarly, Morse proposed an empirical relationship in line with a spe-
cific functional form for the interatomic interaction, expressed as R3

eωe =
const [57]. Furthermore, more intricate relationships between equilib-
rium distance and vibrational harmonic frequency were suggested, such
as mR6

eω2
e na, where n denotes the number of valence electrons, and a is a

rational number [70]. However, when examined with a more extensive
dataset, as in our current study, none of these empirical relationships prove
to be universally applicable, as depicted in Figure 22.

At the same time, as more comprehensive spectroscopic data on molecules
became accessible and advanced, precise quantum chemistry tools were
developed, enabling researchers to seek a first-principles explanation for the
empirically observed relationships among spectroscopic constants. Leading
this endeavor, Parr and his colleagues investigated the electron density
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within molecules as the underlying source of these relationships. Their
model posits that the electron density created by one atom in the vicinity of
another atom is equivalent at the equilibrium distance, which corresponds
to the sum of the atomic radii. Specifically, within a molecule, the electron
density of atom 1 at the position of atom 2 is expressed as [80]

ρ1(2) =CZ1 exp{(−ξ R1)}, (7)

where C is a fitting parameter, ξ represents the decay constant of the
electron density. Within this model, a connection emerges between the
atomic numbers of the two atoms, denoted as Z1 and Z2, and the equilibrium
internuclear distance, Re, of a diatomic molecule, expressed as [80, 103,
82, 83]

Z1Z2 = Aexp(ξ Re), (8)

where A is a free parameter. According to this relationship, Re is linearly
dependent on log(Z1Z2), as

Re = ξ
−1 logZ1Z2−ξ

−1 logA. (9)

Nevertheless, the validity of this relationship has solely been assessed for
molecules featuring atoms originating from the same group of the periodic
table [82]. Indeed, as shown in Fig. 23, the above linear relationship
no longer holds in the current dataset, giving a mean test-set RMSE of
0.3591±0.0006 Å and rE being 10.41±0.01%.
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Figure 23: Predictions of Re with log(Z1Z2) by a linear regression model.
Figure reproduced from ref. [93].

Anderson, Parr, and their colleagues also proposed a relationship between
ωe and Re [82], expressed as

mω
2
e = 4πCZ1Z2e−2Re , (10)

based on the Born-Oppenheimer approximation, the electron density de-
scribed in Eq. (7), and the Hellman-Feynman theorem. Eq. (10) allows one
to express the harmonic vibrational frequency in terms of the equilibrium
distance and atomic properties as

ωe =

√
C′Z1Z2e−2Re

m
. (11)

where m is the reduced mass of the molecule. Applying this relationship to
predict ωe using a linear regression model with

√
Z1Z2e−2Re /m as indepen-

dent variable, as shown in Fig. 24, the mean test RMSE is 529.5±1.2 cm−1,
and rE is 12.95±0.03%.
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Figure 24: Predictions of ωe with
√

Z1Z2e−2Re /m by a linear regression
model. Figure reproduced from ref. [93].

In a similar vein, by extending the connection between equilibrium
distance and harmonic vibrational frequency, one can establish a rela-
tionship between the atomic number Zi, Re, and the dissociation energy
De [80, 103, 82, 83], as

De

Rl
e
= 4πCZ1Z2 exp(−ξ

′Re), (12)

which can be rewritten as

log
De

Rl
eZ1Z2

= −ξ
′Re + log(4πC). (13)

For the derivation of Eq. (12), it is assumed that De =Amω2
e Rl

e without any
additional justification [83]. In Eq. (13), the values are l = 3 and ξ ′ = 0.97.
Eq. (13) has been tested on a dataset of 150 molecules, yielding satisfactory
results, although no further characterization of the model’s performance
was provided to assess its quality objectively. Finally, by employing the
relationship between the dissociation energy, De, and the binding energy,
D0,
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De = D0 +
1
2
ℏωe−

1
4
ℏωexe, (14)

where ωexe represents the first anharmonic correction to the harmonic
vibrational frequency, it should be feasible to construct a linear regression
model for log D0

Rl
eZ1Z2

. The predictions are shown in Fig. 25. We notice that
most of the outliers are highly ionic molecules. This is due to the fact that
Parr and coworkers presumedan exponentially decaying functional form for
the electron density that is descriptive of covalent molecules.

Figure 25: Predictions of log D0
R3

eZ1Z2
with Re by a linear regression model.

Figure reproduced from ref. [93].



52 R E L AT I O N S H I P S B E T W E E N S P E C T R O S C O P I C C O N S TA N T S

3.3 Prediction of spectroscopic constants with
Gaussian process regression
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3.3.1 Learning ground state spectroscopic constants

Figure 26: GPR performance on predicting Re using (g1,g2, p1, p2) as input
features classified by the types of the constituent atoms. In
particular, the MAE of the test set is reported. The inset shows
the test set predictions of Re versus the true values. The values
shown are the average of predictions from 1000 MC sampled
training/test splittings. The GPR model gives predictions of
the test and training sets. Shown are the mean and standard
derivation of each molecule’s predictions when used as training
data (green symbols) and test data (orange symbols).

Inspired by the concept of molecular periodicity (as discussed in Ref.[71]
and related references), we incorporate the group, denoted as gk, and the
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period, denoted as pk, of each atom within a molecule (where k can be 1 or
2) as input features for a GPR model.

This model is employed to predict various combinations of spectroscopic
constants, including Re, ωe, and log

(
D0

R3
eZ1Z2

)
, as elaborated upon in Section

3.2. Furthermore, training sets are permuted before being utilized by the
learning algorithm to ensure that the GPR models maintain permutational
invariance. This ensures that the relevant properties remain unaffected
when two atoms in a molecule are interchanged.

The performance of our GPR model in predicting ground state Re, based
on the input features (g1,g2, p1, p2), is depicted in Fig. 26. This Figure
presents the MAE associated with each distinct type of molecule. The
majority of molecules are accurately described by the GPR model, with the
exception of transition metal-metal and bi-alkali molecules, as evident in
the inset of Fig. 26.

To further quantify the performance of the GPR model, we calculate the
RMSE of predicted Re based on 1000 randomly selected test sets. This
results in an RMSE of 0.0968 ±0.0070 Å(Table 1), along with relative error
rE of 2.80 ±0.20%. These results demonstrate that our model’s performance
improves as the number of molecules in the training set N increases. This
is clearly illustrated in the learning curve in panel (a) of Fig. 27. Notably,
the model’s performance has not yet converged for N = 231, indicating that
further improvement can be achieved by incorporating additional data into
the training set.

In the quest to predict ωe, we have identified (R∗e
−1,giso

1 ,giso
2 ,

p1, p2, ḡ) as the most effective combination of features. Here, R∗e represents
the predicted equilibrium distance derived from (g1,g2, p1, p2), while giso

k
encodes information regarding the hydrogen isotopes of the k-th atom in the
molecule. Additionally, ḡ represents the average of the groups of the two
atoms involved. However, we observe significantly improved performance
when using the actual Re value. The GPR model’s performance is shown
in the inset of Fig. 28, where it is evident that the predicted values closely
align with the true values. Indeed, the MAE and RMSE for the test set stand
at 46.7±0.6 cm−1 and 73.4±0.2 cm−1, respectively, while rE is calculated
to be 1.80±0.005%, as indicated in Table 1.

Despite the impressive performance of the GPR model, certain molecules
still pose challenges in accurate prediction, as illustrated in Fig. 28. Notably,
these challenging cases encompass HF, DF, and HgH. The notable errors
in predicting ωe for HF and DF can be attributed to their unique bonding
mechanisms compared to other halogen hydrides.



3
.3

P
R

E
D

IC
T

IO
N

O
F

S
P

E
C

T
R

O
S

C
O

P
IC

C
O

N
S

T
A

N
T

S
W

IT
H

G
P

R
55

Figure 27: Performance of the GPR models as a function of the training set size N. (a) The learning curve of Re
as a function of the size of the training set, predicted with the groups and periods of the two atoms,
(g1,g2, p1, p2). (b) Learning curve of ωe as a function of the size of training set, using the equilibrium
internuclear distance Re, as well as the groups and periods and the average of groups of the two atoms
(Re
−1, giso

1 , giso
2 , p1, p2, ḡ) as the input feature. (c) Learning curve of log

(
D0

R3
eZ1Z2

)
as a function of the

size of training set, using the equilibrium internuclear distance Re, as well as the averages of groups
and periods of the two atoms (Re, ḡ, p̄) as the input feature. The shade around the points denotes the
variance of the errors regarding the MC method.
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Table 1: Regression model predictions of Re, ωe, and D0. gi and pi represent
the group and period of the i-th atom, respectively. giso

i stands
for the group encoding the information of isotopes of hydrogen,
and p̄, ḡ are the average of groups and periods of the two atoms,
respectively. R∗e is the GPR-predicted value from (g1, g2, p1, p2).

Property Model Feature Test MAE Test RMSE Test rE (%)
Re (Å) GPR (g1, g2, p1, p2) 0.0662±0.0037 0.0968±0.0070 2.80±0.20

LR log(Z1Z2) 0.2605±0.0018 0.3591±0.0006 10.41±0.01
ωe(cm−1) GPR (R−1

e , g1, g2, p1,
p2)

126.7±2.1 207.2±2.6 5.07±0.06

(R∗e
−1, g1, g2, p1,

p2)
152.5±3.6 227.5±4.6 5.56±0.11

(R−1
e , giso

1 , giso
2 ,

p1, p2)
61.5±2.9 142.8±7.0 3.49±0.17

(R∗e
−1, giso

1 , giso
2 ,

p1, p2)
96.9±2.9 176.0±13.1 4.30±0.32

(R−1
e , giso

1 , giso
2 ,

p1, p2, p̄)
67.5±1.0 151.8±9.5 3.71±0.2

(R∗e
−1, giso

1 , giso
2 ,

p1, p2, p̄)
101.8±5.4 188.7±25.4 4.61±0.62

(R−1
e , giso

1 , giso
2 ,

p1, p2, ḡ)
46.7±0.6 73.4±0.2 1.80±0.005

(R∗e
−1, giso

1 , giso
2 ,

p1, p2, ḡ)
81.0±0.82 121.8±0.8 2.98±0.02

LR
√

Z1Z2e−2Re /m 376.5±6.6 529.4±1.2 12.95±0.03
R−2

e 209.6±5.4 297.3±1.4 7.27±0.03
log D0

R3
e Z1Z2

GPR (Re, ḡ, p̄) 0.249±0.008 0.357±0.007 3.52±0.07

(R∗e , ḡ, p̄) 0.270±0.006 0.451±0.007 4.45±0.07
LR Re 0.833±0.004 1.018±0.014 10.03±0.14
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Figure 28: GPR performance based on the MAE predicting ωe for molecules
in the test set using (Re

−1,giso
1 ,giso

2 , p1, p2, ḡ) as input features
classified by the types of the constituent atoms. The inset shows
the test set predictions of ωe compared with respect to the true
values. The values shown are the average of predictions from
1000 MC sampled training/test splittings. The GPR model as
learned from the training set gives predictions of the test and
training set. Shown are the mean and standard derivation of
each molecule’s predictions when used as training data (green
symbols) and test data (orange symbols).

Among the features (Re
−1,giso

1 ,giso
2 , p1, p2, ḡ), the introduction of the aver-

age of groups, denoted as ḡ and defined as ḡ = g1+g2
2 , proves to be instru-

mental in learning ωe. In particular, incorporating ḡ results in a significant
reduction of approximately 20% in the model’s MAE compared to predic-
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tions solely using (Re
−1,giso

1 ,giso
2 , p1, p2) as input features, as summarized

in Table 1. Furthermore, the standard deviation of the MC training/test
splitting predictions becomes notably smaller, indicating that the model
exhibits greater robustness across various types of molecules within the
dataset.

Figure 29: GPR performance on predicting log D0
R3

eZ1Z2
using (Re, ḡ, p̄) as

input features classified by the types of the constituent atoms. In
particular, the MAE of the test set is reported. The inset shows the
test-set predictions of log D0

R3
eZ1Z2

compared with respect to the true
values. The values shown are the average of predictions from
1000 MC sampled training/test splittings. The GPR model gives
predictions of the test and training set. Shown are the mean and
standard derivation of each molecule’s predictions when used as
training data (green symbols) and test data (orange symbols).

Remarkably, the introduction of ḡ yields the most significant improve-
ments in the predictions for bi-alkali molecules, where the MAE can be
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reduced by a factor of three. While HF and DF remain challenging cases for
the model, introducing ḡ does lead to a 2-fold reduction in prediction errors
for these molecules. On the contrary, introducing the average of periods,
denoted as p̄ and defined as p̄ = p1+p2

2 , does not contribute to improving the
model’s performance. This suggests that ωe depends on the total number
of valence electrons of the two atoms rather than the number of electron
shells.

Motivated by the pioneering work of Anderson, Parr, and colleagues [80,
103, 82, 83], we have delved into the prediction of log D0

R3
eZ1Z2

using GPR.
The results are presented in Fig. 29. In particular, the inset of the figure
illustrates the GPR model’s predictions of log D0

R3
eZ1Z2

against its true values,
demonstrating strong performance with an RMSE of 0.357±0.007 and a rE

of 3.52±0.07%, as detailed in Table 1. For this prediction, the GPR model
is supplied with the input features (Re, ḡ, p̄). It exhibits rapid convergence
concerning the size of the training set, with notable stability achieved around
N = 150, as depicted in panel (c) of Fig. 27. The primary outlier is NaK,
which is a van der Waals molecule. In this case, D0 for NaK is overestimated.
This discrepancy may be attributed to the unique nature of NaK as the sole
bi-alkali molecule in the dataset possessing a D0 value. Additionally, there
are some outliers featuring first-row elements and 3d transition metals.

A comprehensive summary of the GPR models’ performance in predicting
various combinations of ground state spectroscopic constants is provided in
Table 1. We compare the model’s performance against the models proposed
by Parr, Anderson, and colleagues [80, 103, 82, 83], as reviewed in Sec. 3.2.

Remarkably, our GPR model demonstrates superior performance com-
pared to the linear model (denoted as LR in the table) based on specific
functional forms of the electron density within the molecule. In some in-
stances, the GPR model achieves a relative error that is five times better than
the linear model. This highlights the effectiveness of utilizing the group
and period (which are correlated with the number of valence electrons and
the number of electron shells, respectively) of constituent atoms within a
molecule as valuable indicators of spectroscopic constants, as opposed to
relying on simple functional forms for the electron density, as employed in
the models proposed by Parr, Anderson, and colleagues [80, 103, 82, 83].

It is worth noting that when predicting Re and ωe, the inclusion of the
groups and periods of each atom in the molecule is essential. In contrast, for
predicting log D0

R3
eZ1Z2

, the model performs well with only the average of the

group and period of the two atoms involved. This suggests that log D0
R3

eZ1Z2
is
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more strongly correlated with the additive properties of groups and periods
for the two atoms rather than the differences between the two atoms arising
from their distinct groups.

To further assess the generalizability of our ML approach, we have se-
lected 26 molecules from the dataset that were unseen by the ML algo-
rithm. These molecules include CoO[104], CrC[105], InBr[106], IrSi[107],
MgD[108], MoC[109], NbC[109], NiBr[110], NiC[111], NiO[112], NiS[113],
PbI[114], PdC[109], RuC[109], RuF[115], ScBr[110], SnI[114], TiBr[110],
UF[116], UO[117], WC[118], YC[109], ZnBr[110], ZrC[109], ZrCl[119],
and ZrF[119]. The GPR model’s MAE in predicting the ground state Re for
this additional test set is 0.066 Å, with an average relative error (defined
as the absolute errors of each molecule divided by their true Re) of 3.3%.
Notably, for CrC, InBr, MgD, ZnBr, and ZrCl, the relative errors are less
than 1%. Within this extra test set, experimental ground state ωe values are
available for 14 molecules: InBr, MoC, NbC, NiC, NiO, NiS, PbI, PdC, RuC,
SnI, UO, WC, YC, and ZnBr. The GPR model achieves a MAE of 30 cm−1

(4%) in predicting these values. For RuC and ZnBr, the relative errors are
below 1%, and for NiS and MoC, the relative errors are below 2%. Addi-
tionally, for MoC, NbC, PbI, SnI, YC, and ZrC, where experimental binding
energy data is available, the GPR model achieves a MAE of 0.32 eV (7.6%)
in predicting D0. Overall, our models perform quite well on this extra test
set, demonstrating their robustness and generalizability.

Furthermore, we have checked some molecules in the above-mentioned
extra test set whose multireference configuration interaction (MRCI) results
are available. For MoC, it has been determined that Re = 1.676 and ωe =
1008± 9 cm−1 experimentally in Ref. [109], MRCI results lead to Re =
1.693 and ωe = 971 cm−1 in Ref. [120], whereas our GPR model gives
Re = 1.62± 0.02 and ωe = 1020± 10 cm−1, which leads to a more precise
prediction of ωe. For RuC, the experimental Re = 1.6079 and ωe = 1102
cm−1 are found in Ref. [109], the MRCI calculation of Ref. [121] gives
Re = 1.616 and ωe = 1085 cm−1, and our GPR model gives Re = 1.63±0.04
and ωe = 1111± 8 cm−1. As a result, for some molecules, ML can be as
accurate as MRCI. Therefore, although the ML models might not be as
accurate as MRCI for all the molecules, considering that ML models can give
predictions of thousands of molecules in one shot within seconds, they can
be helpful in a rough screening of molecules for certain applications before
the more expensive quantum chemistry calculations.
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3.3.2 Learning the first excited state spectroscopic
constants

Figure 30: The test set MAE predicting A excited electronic state Re by GPR,
using (g1,g2, p1, p2,Re(X),D(IP,EA)) as input features, classified
by the types of the constituent atoms. The inset shows the test-set
predictions of the A-excited electronic state Re compared with
respect to the true values. The values shown are the average of
predictions from 1000 MC sampled training/test splittings. The
GPR model as learned from the training set gives predictions
of the test and training set. Shown are the mean and standard
derivation of each molecule’s predictions when used as training
data (green symbols) and test data (orange symbols).

To model the equilibrium internuclear distance Re of the A excited electronic
state for different molecules, we have found that it is necessary to utilize
atomic features of the two constituent atoms, including g1, g2, p1, p2,
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D(IP,EA), and the ground state Re(X) when constructing the GPR models.
Interestingly, including D(IP, EA), which is defined as

D(IP,EA) =

{
EA2− IP1, if χ1 < χ2

EA1− IP2, otherwise

has proven to improve the predictions (Table 2). Here, IPi, EAi, and χi are
the ionization potential, electron affinity, and electronegativity of atom i,
respectively. Hence, D(IP,EA) provides a qualitative measure of the electron
transfer between the two constituent atoms.

The resulting test-set MAE, RMSE, and rE for the A-state Re are 0.0691±
0.0062, 0.098±0.0097, and 5.32±0.53, respectively. The results are displayed
in Fig. 30, showing similar outliers as those of the ground state Re: transition
metal-metal compounds. To predict ωe for the A excited electronic state, it
is found to be crucial to include not only the ground state R−1

e (X) but also
the A state R−1

e (A).

Additionally, incorporating the ground state ωe(X) as an input feature
improves the model’s performance. The outcomes are displayed in Fig. 31,
where the combination of features (ωe(X), R−1

e (X), R−1
e (A), g1, g2, p1, p2)

yields an RMSE of 105.1±1.1 and rE = 11.0±0.12%. Notably, including the
average of groups ḡ or isotope information does not provide further en-
hancement model performance, as this information is already encompassed
within the ground state ωe.

A summary of our models’ performance in predicting the spectroscopic
constants for the A excited electronic state, including Re and ωe, is sum-
marized in Table 2. Comparatively, the errors associated with predicting
these properties for the excited state are roughly twice as large as those
for the ground state. This suggests that predicting excited state proper-
ties is inherently more challenging, which may be attributed, in part, to
more experimental uncertainties associated with excited states compared to
ground states. Nevertheless, similar to ground state molecules, we observe
a correlation between ωe and the inverse of Re(A) for the A excited elec-
tronic state. This finding aligns with the historical notion of a relationship
between Re and ωe in the early days of molecular spectroscopy, as discussed
in Section 3.2.
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Figure 31: The test-set MAE predicting A excited electronic state ωe by GPR,
using (ωe(X), R−1

e (X), R−1
e (A), g1, g2, p1, p2) as input features,

classified by the types of the constituent atoms. The inset shows
the test-set predictions of A-excited electronic state ωe compared
with respect to the true values. The values shown are the average
of predictions from 1000 MC sampled training/test splittings.
The GPR model as learned from the training set gives predictions
of the test and training set. Shown are the mean and standard
derivation of each molecule’s predictions when used as training
data (green symbols) and test data (orange symbols).
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Table 2: Regression model predictions of the A excited electronic state Re and ωe. gi and pi are
the groups and periods of the i-th atom, respectively, whereas giso

i stand for the group
encoding the information of isotopes of hydrogen. p̄, ḡ are the average of groups and
periods of the two atoms, respectively. Re(X) and Re(A) refer to the ground state and
A-state Re, respectively. ωe(X) refers to the ground state ωe.

Property Model Feature Test MAE Test RMSE Test rE (%)
Re (Å) GPR (Re(X), g1, g2, p1, p2) 0.0783±0.0018 0.107±0.0026 5.81±0.14

(Re(X), g1, g2, p1, p2, D(IP,EA)

)

0.0691±0.0062 0.098±0.0097 5.32±0.53

ωe(cm−1) GPR (ωe(X), R−1
e (X), R−1

e (A), giso
1 , giso

2 , p1, p2,
ḡ)

71.8±1.4 107.9±4.4 11.3±0.46

(ωe(X), R−1
e (X), R−1

e (A), giso
1 , giso

2 , p1, p2) 70.4±0.9 105.1±1.5 11.0±0.15
(ωe(X), R−1

e (X), R−1
e (A), g1, g2, p1, p2) 70.6±0.9 105.1±1.1 11.0±0.12
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3.4 Conclusion
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In summary, our study demonstrates that the GPR model can effectively
reveal relationships between the main spectroscopic constants of diatomic
molecules. This finding reaffirms the century-old vision of Kratzer and
Mecke [56, 55]. These relationships are relatively independent of the nature
of the chemical bond in diatomic molecules. Specifically, we have shown that
using only the group and period of the constituent atoms within a molecule
as input features, one can predict certain combinations of spectroscopic
constants with an error of less than 5%. Therefore, our GPR models can
efficiently learn from relevant datasets and accurately predict the values
of spectroscopic constants. Moreover, we have demonstrated that GPR can
also effectively learn spectroscopic relationships for excited electronic states
of molecules, achieving an error of less than 11%.

It is worth noting that machine learning methods are sometimes per-
ceived as mere fitting techniques or black-box algorithms from which it is
challenging to gain meaningful insights. This perception is only partially ac-
curate. As demonstrated in our study, we have been able to extract valuable
insights from our machine-learning approach:

• It has been a common assumption that certain molecular properties
can be qualitatively predicted based on the positions of the constituent
atoms in the periodic table [122]. However, these predictions have
typically been qualitative rather than quantitative. For example,
one might be able to anticipate the type of bond in a molecule but
not accurately predict its dissociation energy. Machine learning has
allowed us to break through this limitation, demonstrating that it is
indeed possible to make reasonably accurate quantitative predictions
of spectroscopic constants by considering only the group and period
of the constituent atoms.

• We have discovered that ωe and Re exhibit a significant dependence
on the number of valence electrons and the number of electron shells
in the atoms that comprise a molecule. Simultaneously, the average
count of valence electrons emerges as a vital factor in characterizing
ωe. Furthermore, log D0

R3
eZ1Z2

showcases a reliance on the average
number of valence electrons and electron shells within the molecule.

• The potential to acquire knowledge about the properties of excited
electronic states in diatomic molecules could pave the way for predict-
ing Franck-Condon factors relevant to intriguing transitions. These
transitions, in turn, hold promise for directly influencing the cooling
processes of ultracold molecules [123, 124, 125, 126, 94].
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Our approach has the potential to propel spectroscopy into the informa-
tion era, which is particularly noteworthy, contributing to a more profound
comprehension of spectroscopic properties. Additionally, our findings may
offer valuable insights for developing features and geometric representations
within material science. Along these lines, we have envisioned different
points that can boost machine learning applications in spectroscopy and the
quest for universal relationships between spectroscopic constants:

• Inclusion of more molecules. There exists a sizable pool of approx-
imately 7,000 heteronuclear molecules, yet our GPR models solely
rely on a subset of 256 among them. This choice is largely due to the
limited availability of spectroscopic data, encompassing only about
3% of the potential heteronuclear diatomic molecules. This stark
contrast underscores the vast untapped potential within the domain
of diatomic molecule spectroscopy.

As we gather more data, the predictive accuracy of our GPR models
is poised to improve, even before it reaches the point of convergence
in its learning curve. Moreover, it promises to enhance the collective
knowledge base concerning the fundamental attributes of diatomic
molecules. From our vantage point, this endeavor serves as a catalyst,
stimulating data science-driven investigations in diatomic molecule
spectroscopy.

Based on this idea, it has recently been shown that more accurate
GPR models can be obtained when using a dataset including both
homogeneous and heterogeneous diatomic molecules with updated
spectroscopic constants[127]. From this approach, we acquire fresh
insights into the various forms of chemical bonding.

• Inclusion of input uncertainty. In the standard GPR models, the inputs
are considered to be accurate and do not contain any measurement
of their uncertainty. The output values are subject to some random
noise following a Gaussian distribution, characterized by a constant
variance, i.e. the noise level is assumed to be the same across all data
points.

However, in reality, as in the cases of our works on spectroscopic
constants, the measurements are rarely perfectly precise, and the
input points are associated with different uncertainties. Therefore,
it can be helpful to include the input uncertainty during regressions.
Indeed, it has been shown in [128] that the performance of the
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regression models can be improved when the input points are not
treated as a fixed value, but instead as a random variable following a
Gaussian distribution with approximations.

• Causal machine learning. In the current models, we learn the rela-
tionships between spectroscopic constants in relation to each other.
Looking ahead, it could be intriguing to explore causal effects using
advanced machine learning methods tailored for causal inference and
find analytical expressions linking spectroscopic constants.
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4.1 Introduction
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In the previous chapter, we have demonstrated the existence of univer-
sal relationships among spectroscopic constants. These relationships hold
regardless of the specific nature of the molecular bond. However, despite
being a fundamental molecular property, the electric dipole moment of
molecules has not received significant attention in previous studies investi-
gating connections among spectroscopic constants.

Only recently have researchers begun to explore the relationship between
the dipole moment and molecular spectroscopic constants. Notably, Hou
and Bernath have made noteworthy strides in understanding the dipole
moment in the context of spectroscopic constants [129, 130]. Their findings
have implications for the conventional expression of the dipole moment,
denoted as d and commonly taught in introductory chemistry courses, given
by

d = qRe, (15)

where q is the effective charge and Re corresponds to the equilibrium bond
length of the molecule. However, Eq. (15) does not adequately capture
the underlying physics of the dipole moment in numerous molecules [129,
130]. Subsequent research by Hou and colleagues has revealed that the
dipole moment of certain molecules can be predicted more accurately by
considering the effective charge, which is determined through quantum
chemistry calculations, and the spectroscopic constants of molecules.

In this work, we introduce a data-driven methodology for assessing
dipole moments in diatomic molecules and examining their correlation
with spectroscopic constants. We demonstrate that, by assembling the most
comprehensive compilation of dipole moment data for diatomic molecules
to date (to the best of our knowledge) into a dataset, we can predict the
dipole moment of diatomic molecules with a relative error of less than 5%
based on atomic and molecular properties. Fig. 33 shows the number of
molecules in our dataset categorized by the types of constituent atoms 1.

Our findings indicate that predicting a molecule’s dipole moment solely
from atomic properties is not feasible, although this is achievable for spec-

1 This chapter is written based on reference [21]: Xiangyue Liu, Stefan Truppe,
Gerard Meijer, and Jesús Pérez-Ríos. A data-driven approach to determine dipole
moments of diatomic molecules. Phys. Chem. Chem. Phys.,22:24191–24200, 2020,
https://doi.org/10.1039/D0CP03810E, with permission from the Royal Society of
Chemistry.
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troscopic constants, as demonstrated in the previous chapter. Instead, it is
imperative to incorporate molecular characteristics.

4.1.1 An overview on the nature of the electric dipole
moment of molecules

The nature of the electric dipole moment in molecules is a long-standing
subject in quantum chemistry that has captivated the chemical physics
community for nearly a century. The earliest attempt to elucidate the
essence of the electric dipole moment in molecules can be attributed to
Linus Pauling in the 1930s [131]. Specifically, after thoroughly examining
hydrogen halide molecules, Pauling postulated that a molecule’s dipole
moment is intricately linked to the prevalence of its ionic structure compared
to its covalent structure at the molecule’s equilibrium bond length.

According to this model, the dipole moment arises as a consequence of the
charge transfer occurring between the atoms within the molecule. Hence,
the greater the extent of charge transfer, the larger the dipole moment
becomes. The quantification of this charge transfer is achieved through the
measure of ionic character (IC), which is defined by

IC =
d

eRe
. (16)

Here, e represents the electron charge. By comparing Eqs.(16) and (15), it
becomes evident that the ionic character is analogous to the effective charge,
denoted as q, positioned at the center of each of the atoms composing the
molecule, as defined by Eq.(15). However, it should be noted that Pauling’s
model does not anticipate a 100% ionic character for molecules entirely
ionic, such as alkali metal halides. Despite the slight deviation of Pauling’s
model when predicting dipole moments, it is important to underscore that
Pauling recognized that a molecule’s dipole moment must be intricately
linked to other molecular properties through the molecular bond.

The next significant advancement came with the introduction of a novel
concept known as the homopolar dipole moment, denoted as dh, pioneered
by Mulliken. Specifically, Mulliken recognized that due to the varying sizes
of atomic orbitals, their overlap results in a charge displacement relative
to the midpoint of the equilibrium bond length, influencing the molecule’s
electric dipole moment [132]. Furthermore, Mulliken observed that the
asymmetry in the charge distribution of hybrid orbitals gives rise to what is
termed the atomic dipole moment, represented as da.
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The models of Mulliken and Pauling were summarized and further ex-
panded upon by Coulson [133], who proposed the ultimate expression for
the dipole moment of a diatomic molecule as

d = eRe + da + dh + dp, (17)

where dp represents the contribution arising from the polarization of atomic
orbitals to the molecule’s dipole moment. It is important to note that while
Eq. (17) offers greater precision compared to Eq. (15), it necessitates input
from quantum chemistry calculations. For a comprehensive overview of
the Pauling and Mulliken models, we recommend consulting the extensive
review by Klessinger [134].

The models proposed by Pauling and Mulliken have long been embraced
by the physical chemistry community and incorporated into introductory
chemistry courses, despite the fact that neither model provides a fully
satisfactory explanation. Recently, Hou and Bernath [129, 130], following
an examination of experimentally determined dipole moments for a wide
range of molecules and employing quantum chemistry calculations, have
put forward a new perspective regarding the electric dipole moment of a
molecule, suggesting that it should be expressed as

d = qRd . (18)

In this expression, q denotes the effective charge, and Rd represents an
effective length, which is contingent on fundamental spectroscopic constants
of the molecule, with the condition that Rd is less than Re. Both Eq. (18)
and Eq. (17) hinge on quantum chemistry calculations, specifically relying
on outcomes derived from a natural bond orbital analysis. Therefore, the
electric dipole moment of diatomic molecules remains without a completely
satisfactory and precise elucidation in terms of fundamental spectroscopic
constants.
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4.2 The dataset

The dataset utilized in this study comprises ground-state dipole moments of
162 polar diatomic molecules, with 139 of them featuring both information
on the equilibrium bond length, denoted as Re, and the harmonic vibrational
frequency denoted as ωe. The detailed dataset is given in Table 12 of
the Appendix, and it represents the most extensive compilation of dipole
moments for diatomic molecules to our knowledge.
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Figure 32: The equilibrium bond length Re versus the electric dipole moment
of the molecules in the dataset. The blue-filled circles are the
molecules that can be learned by the GPR model in this work.
The red-filled circles indicate the molecules that can hardly be
described by the GPR model in this work. These molecules are
labeled by their chemical formula. The density in the right part
and upper part of the figure shows the kernel density distribution
of Re and dipole moments, respectively. The box plot shows the
minimum, the maximum, the sample median, and the first and
third quarterlies of Re (right) and dipole moments (top). Figure
reproduced from ref. [21].

For a more comprehensive understanding of the dataset’s characteristics,
we present in Fig. 32 a graphical representation of the equilibrium bond
length, Re, versus the electric dipole moment of these diatomic molecules.
The density plots and box plots provide insights into the distribution of Re

(on the right) and the dipole moment, d (at the top). The equilibrium bond
lengths of the molecules span a range from 0.9 to 3.9 Å, with a median
value of approximately 1.5 Å. Most of the molecules exhibit equilibrium



76 M A C H I N E L E A R N I N G O N D I AT O M I C D I P O L E M O M E N T S

bond lengths between 1.2 and 3.2 Å. Regarding the dipole moment values
in the dataset, they span from 0.0043 Debye to 11.69 Debye, with a median
value of roughly 2.45 Debye. This diversity in dipole moments reflects the
broad spectrum of molecules encompassed in the dataset.

The dataset can also be classified based on the types of atoms compris-
ing the molecules, as illustrated in Fig. 33. This figure reveals that most
molecules in the dataset exhibit a highly ionic bond, formed between a
transition metal and a nonmetal atom. The second most prevalent category
of molecules consists of combinations involving a halogen atom and an
alkaline metal atom, resulting in an ionic bond. The remaining molecules
display a range of bond types, spanning from partially ionic to highly ionic,
highlighting the dataset’s remarkable diversity.
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Hydrogen halides

Figure 33: Molecules in the whole dataset classified by the types of their
constituent atoms. Figure reproduced from ref. [21].

4.3 Machine learning approach

4.3.1 Gaussian process regression

Discovering relationships between the dipole moment and spectroscopic
constants can be approached as a regression problem. In this context, the
objective is to establish a mapping from the input atomic and molecular
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features, denoted as x, to the target property, which, in this case, is the
electric dipole moment. This mapping is represented by a function, denoted
as y = f (x). Similar to the approach introduced in Sec.3.1, we employ
Gaussian Process Regression (GPR) to approximate the function f (x).

4.3.2 Model evaluation

To learn dipole moments, the dataset is partitioned into training and test
sets with a Monte Carlo (MC) approach, in the same way as introduced in
Sec. 3.1. In this data-driven approach, GPR learns the connection between
the input features and dipole moments by observing the training set, while
the predictive accuracy of the GPR models is assessed using the test set. In
this study, a total of 20 molecules are designated for the test set, with the
remainder assigned to the training set. The assessment of the GPR model’s
performance is conducted using the mean absolute error (MAE), the root
mean square error (RMSE), and the normalized error, rE , as introduced in
Sec. 3.1.
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4.4 Prediction of dipole moments
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4.4.1 Performance of the dipole moment models

A GPR has been built to predict the dipole moments of diatomic molecules,
utilizing a variety of atomic and molecular properties as input features.
Specifically, we have considered the following atomic properties: electron
affinity (EA) obtained from references [135, 136, 137], ionization potential
(IP) sourced from reference [138], electronegativity (χ), and polarizability
(α), both extracted from reference [135]. These properties are chosen due
to their relevance to the intrinsic chemical nature of the dipole moment,
associated with the polarity of a molecular orbital in molecular-orbital bond
theory or the ionic character of the molecular bond within valence-bond
theory [133]. Additionally, we have incorporated molecular properties,
such as the reduced mass (µ), equilibrium bond length (Re), and harmonic
vibrational frequency (ωe).

Table 3: GPR Predictions on the ground-state dipole moments. gi, pi, EAi,
IPi, χi, αi are groups, periods, electron affinity, ionization potential,
electronegativity and polarizability of the atom i, respectively. µ is
the reduced mass of a molecule. For these results, we employ 118
from the dataset out of the 139 molecules having values for both
Re and ωe.

Feature Test RMSE (D) Test MAE (D) Test rE (%)
(EA1,EA2,IP1,IP2,

√
µReω2

e ) 0.56±0.02 0.43±0.0004 4.8±0.1
(χ1, χ2,

√
µReω2

e ) 0.70±0.05 0.52±0.03 6.0±0.4
(EA1,EA2,IP1,IP2, χ1, χ2) 0.86±0.006 0.65±0.02 7.4±0.05
(EA1,EA2,IP1,IP2) 0.97±0.05 0.74±0.05 8.3±0.4
(EA1,EA2,IP1,IP2, Re) 1.04±0.02 0.81±0.04 9.1±0.2
(χ1, χ2, α1, α2) 1.29±0.004 1.01±0.007 11.2±0.04
(χ1, χ2) 1.35±0.002 1.05±0.009 11.7±0.01
(
√
|χ1−χ2|, ᾱ, D−1

0 ) 1.21±0.03 0.96±0.03 10.5±0.3
(p1,p2,g1,g2, Re) 1.25±0.02 0.94±0.04 10.8±0.1

The performance of our GPR models using different sets of features
is summarized in Table 3, focusing on 118 out of the 139 molecules in
the dataset for which both Re and ωe values are available. To ensure
the permutational invariance of the GPR models when swapping the two
elements within a molecule (e.g., switching from molecule AB to BA),
permutation of the training sets is employed.
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Ntraining

Figure 34: The GPR predictions of the ground-state dipole moments. The
values shown in this figure are the average of predictions from
1000 MC sampled training/test splittings. The test set contains
20 molecules, while the training set contains 98 molecules. The
mean and standard deviation of the predictions are shown for
each molecule when they are used as training data (shown in
blue) and test data (shown in orange). The inset shows the
learning curve, which shows the training and test RMSE of the
model with respect to the number of training data NTraining. The
shade in the learning curve shows the variance of training/test
RMSE, obtained for each point from an MC approach of 500
training/test splittings. Figure reproduced from ref. [21].

After exploring various combinations of atomic and molecular properties,
we have determined that the GPR model best predicts the dipole moment of
a diatomic molecule when utilizing the following input features: (EA1, EA2,
IP1, IP2,

√
µReω2

e ). The performance of this model is visually represented
in Fig. 34. The predicted values closely match the true values, exhibiting
only a minor deviation that results in a normalized error rE of less than 5%
(RMSE= 0.56±0.02 Debye).

Furthermore, we have computed the learning curve for this GPR model,
providing insight into the model’s learning and generalization capabilities
as a function of the training set size. The results are depicted in the inset
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of Fig. 34. The training RMSE and test RMSE are shown with respect to
the number of training data points, denoted as NTraining. The shading in the
learning curve illustrates the variance of training/test RMSE, derived from
500 training/test splits using a MC approach. As the number of training data
points increases, the mean test error diminishes, demonstrating that the
model’s performance improves with more training data. Particularly, with 80
training data points, the learning curve approaches convergence, suggesting
that further data from the same dataset would not significantly benefit the
model’s performance. The decreasing variance of the test RMSE as the
number of training data points increases indicates the model’s robustness
and ability to be applied to different subgroups of molecules, with the
variance eventually stabilizing at less than 0.02 Debye with 60 training data
points.

In Chapter 3, we have demonstrated that it is possible to predict certain
properties of diatomic molecules, such as Re, ωe, and the binding energy,
by using features derived from the groups and periods of the constituent
atoms. However, it is important to note that the same features prove
to be significantly less effective when attempting to predict the dipole
moment of diatomic molecules. In this case, we observe test errors with a
RMSE of 1.25±0.02 Debye and a normalized error rE of 10.8±0.1%. This
discrepancy in predictive performance suggests that the dipole moment is
a more intricate property to model compared to the other spectroscopic
constants of diatomic molecules. The dipole moment depends on a more
complex interplay of factors, making it less amenable to simple feature-
based predictions compared to properties like Re and ωe.

In Reference [139], it was demonstrated that the dipole moment of
diatomic alkali–alkaline earth molecules can be empirically calculated
using a formula involving the difference in electronegativity of the con-
stituent atoms,

√
|χ1−χ2|, the mean atomic polarizabilities, ᾱ = (α1 +

α2)/2, and the dissociation energy, De. Building upon this idea, we have
extended it through a Gaussian Process Regression (GPR) model by em-
ploying (

√
|χ1−χ2|, ᾱ , D−1

0 ) as the input features. It is noteworthy that we
substituted the dissociation energy, De, with the binding energy, D0, in our
model as it is more frequently tabulated.

Remarkably, even though the dataset lacks alkali-alkaline earth molecules,
our model’s performance results in a normalized error of 10.5±0.3%. This
outcome suggests that some of the underlying physics governing the dipole
moment of alkali-alkaline earth molecules applies to a broader range of
diatomic molecules. This unexpected result underscores the underlying
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universality of the physics governing the dipole moment, extending its
applicability beyond specific molecular combinations.

0 25 50 75 100 125
Ionic character (Eq.( 1)) (%)

0.0

0.1

0.2

D
en

si
ty

The whole dataset

The ML-learned subset

2

0 25 50 75 100 125
Ionic character (Eq.( 0)) (%)

0.00

0.05

0.10

0.15

D
en

si
ty

2

0 2 4 6 8 10 12
Dipole moment (D)

0.0

0.1

0.2

D
en

si
ty

Figure 35: Comparison of the histograms of ionic characters and dipole
moments in the whole dataset (shown in grey) and the ML-
learned subset of 118 molecules (shown in blue). Panel (a) and
(b) show the ionic characters calculated from Eqs. (21) and (20),
respectively. Panel (c) plots the histogram of the dipole moment
of the molecules. It is worth noticing that the dark blue regions
appear in regions where the grey and light-blue bars overlap.
Figure reproduced from ref. [21].
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4.4.2 Interpretation of the input features

The remarkable performance of the feature set (EA1, EA2, IP1, IP2,
√

µReω2
e )

suggests that the conventional chemical perspective, wherein the difference
in electronegativity between atoms in a molecule determines the ionic
character of the molecular bond [133, 140, 131], is insufficient to fully
characterize a molecule’s dipole moment. When we introduce electron
affinity and ionization potential as features, the predictive performance
improves by 25%. However, it is only when we include

√
µReω2

e as a
feature that the dipole moment can be predicted with an RMSE below 0.7
Debye. Therefore, our findings highlight the critical importance of including√

µReω2
e as a feature when describing the dipole moment of a diatomic

molecule.
It is worth noting that this particular feature is closely related to the

derivative of the electronic kinetic energy, denoted as T (R), at the equilib-
rium bond length, that, as demonstrated by Borkman in 1968 [74], from

−dT (R)
dR

∣∣∣∣
R=Re

= µReω
2
e , (19)

represents a force within the molecule. By equating this force to the pure
electrostatic force, one can derive the value of Rd . Subsequently, using
Eq. (18), it becomes possible to define the ionic character as

IC = 100
(

d
√

µReω2
e

)1/2

, (20)

where the value of IC is presented as a percentage. It is evident that IC
does not have a direct dependence on the electronegativity differences of
the atoms, which challenges the conventional understanding of chemistry.

The feature
√

µReω2
e was initially introduced by Hou and Bernath [129,

130] as an empirical relationship. In our study, we employ this feature to
define the ionic character of a molecular bond.

Alternatively, the ionic character can also be defined based on the elec-
tronegativity difference between the two atoms constituting a molecule
as

IC = 16|χ1−χ2|+ 3.5|χ1−χ2|2, (21)

following the work of Hannay and Smyth [140]. It is surprising to observe
that Eqs. 20 and 21 yield distinct outcomes for the ionic character of the
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molecules contained in the database, as illustrated in Fig. 35. Indeed, the
distribution of ionic character, as predicted by Eq. 21, appears to be the
inverse of what is obtained from Eq. 20. This discrepancy can be attributed
to the fact that the model proposed by Hou and Bernath (Eq. 20) consistently
results in a higher ionic character when compared to the model by Hannay
and Smyth.

4.4.3 Discussions on the outliers

The GPR model utilizing input features (EA1, EA2, IP1, IP2,
√

µReω2
e ) ex-

hibits a presence of several outliers. In order to assess the significance of
these outliers, we have conducted a comparison between the distributions
of ionic character and dipole moment for the molecules, as depicted in
Fig. 35 (displayed in grey), and the same magnitudes for the subset of
118 molecules that are amenable to learning within this study (displayed
in blue). The subset of molecules learned via machine learning exhibits
similar overall distributions of dipole moments and ionic characters when
compared to the entire dataset. Consequently, it can be concluded that
the outliers do not substantially alter the underlying distribution that the
molecules follow.

Table 4: Outliers for learning the electric dipole moment of diatomic
molecules. These molecules are labeled in Fig. 32 and classified
with the types of constituent atoms and the molecular bonds.

Type of bond Molecule
Nonmetal-nonmetal IO, CS, SiS, CSe
Nonmetal-F SF, BF, CF, OF
Metal-halogen GaBr
Alkaline earth-nonmetal BaO, SrO, MgO, SrS, BaS
Alkaline earth-H MgD, CaH
Metalloid-H BH, SiH
Transition metal-nonmetal VS, ScS, ThS
van der Waals LiNa, NaCs

Table 4 presents a categorization of the outliers based on their molec-
ular bonds and constituent atoms. Additionally, we have computed the
effective atomic charges for these molecules using a density functional
theory (DFT) approach, as detailed in Table 5, employing various charge
partitioning methods. These calculations were carried out using the B3LYP
functional[141] and the def2-TZVP basis set [142, 143, 144], and were
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performed with the Gaussian 16 package [145]. Notably, we have ob-
served that the natural bond orbital (NBO) method yields higher effective
atomic charges compared to the Mulliken population for these outliers.
Furthermore, all the molecules exhibiting an NBO charge exceeding 1.0
also demonstrate an ionic character exceeding 100% according to Eq. 20.
Concerning the outliers within the van der Waals molecules, we have identi-
fied LiNa and NaCs. LiNa possesses the smallest equilibrium bond length
(Re) and dipole moment among the bialkali molecules in this dataset, while
NaCs features the largest Re and dipole moment.

To comprehend the impact of various bonding types on dipole moments,
we illustrate in Fig. 36 the relationships between Re and dipole moments
for different categories of molecules in the current dataset, with outliers
depicted as red circles. It is evident that the relationships between Re and
dipole moments are contingent upon the type of molecule being considered.

Table 5: The effective atomic charges of the outliers with different charge
partitioning methods, calculated with the B3LYP functional[141]
and def2-TZVP basis set [142, 143, 144] with the Gaussian 16
package. [145]

Molecule Mulliken Hirschfeld NBO
MgO 0.694 0.576 1.278
SrO 0.871 0.714 1.496
BaO 0.838 0.640 1.508
BaS 0.759 0.660 1.437
BF 0.099 0.073 0.549
CF 0.030 0.014 0.315
OF 0.017 0.012 0.063
SF 0.198 0.108 0.431
MgD 0.187 0.241 0.657
CaH 0.276 0.318 0.738
BH -0.036 0.072 0.349
SiH 0.048 0.122 0.349
SiS 0.231 0.222 0.656
CS -0.081 -0.087 -0.174
SeC 0.180 0.104 0.263
IO 0.412 0.214 0.625
GaBr 0.331 0.265 0.627
ScS 0.529 0.452 0.743
VS 0.425 0.247 0.343
CsNa 0.140 0.161 0.279
NaLi -0.074 0.001 0.007
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As depicted in panel (a) of Fig. 36, there is a linear relationship be-
tween Re and dipole moments for metal-nonmetal molecules, wherein the
nonmetal atoms belong to the same group in the periodic table. This lin-
ear behavior is akin to what has been observed for group IV/VI diatomic
molecules in a previous study (Ref. [146]). In panel (b), focusing on the
oxygen halides, we observe that Re increases nearly linearly with the dipole
moment.

Figure 36: The equilibrium bond lengths Re as a function of dipole moments,
classified by the type of the constituent atoms. The molecules
that can be described by the GPR models from (EA1, EA2,IP1,IP2,√

µReω2
e ) are shown in blue circles, while the outliers are shown

in red circles. Figure reproduced from ref. [21].
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In panel (c), we notice that molecules containing a transition metal and a
nonmetal atom exhibit a different trend in equilibrium distance concerning
the dipole moment compared to molecules formed by main-group metal
elements and nonmetal atoms, as seen in panel (a). Within this category of
molecules, the outliers are characterized by having both the largest dipole
moments and the largest Re values in panel (c).

Remarkably, in panel (d) of Fig. 36, we find that all 4 alkaline earth-
nonmetal molecules in the dataset are outliers. This observation aligns
with an NBO population exceeding 1.0, as outlined in Table 5. Specifically,
SrO, BaO, and BaS have the most substantial atomic charges among all the
molecules in the dataset.
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4.5 Conclusion
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In summary, we have demonstrated that a GPR model can establish a re-
lationship between the ground state dipole moments of diatomic molecules
and their spectroscopic constants, specifically Re and ωe. We achieved accu-
rate predictions of dipole moments, consistently with errors below 5%, all
without the need for quantum chemistry calculations. This success is due to
utilizing atomic features, encompassing electron affinity and ionic potential,
combined with molecular spectroscopic constants, notably

√
µReω2

e .
Furthermore, our study has revealed a significant departure from the com-

monly assumed notion in general chemistry, which asserts that differences in
electronegativity between constituent atoms sufficiently describe the dipole
moments of diatomic molecules. Instead, our data-driven approach has
unveiled the intricate nature of dipole moments, highlighting their strong
correlation with the fundamental essence of chemical bonding.

It is essential to underscore that the insights gained from our research
have been made possible through the development of a comprehensive and
unbiased dataset.



5

B E N C H M A R K I N G T H E A C C U R A C Y O F C C S D ( T ) O N
D I P O L E M O M E N T O F D I AT O M I C M O L E C U L E S

91



92 C C S D ( T ) A C C U R A C Y O N D I AT O M I C D I P O L E M O M E N T S

5.1 Background
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5.1.1 Motivation

Coupled cluster with single, double, and perturbative triple excitations
(CCSD(T)) stands out as one of the most widely used methods in electronic
structure theory. Notably, it serves as a benchmark reference for the devel-
opment of various other electronic structure theory approaches, including
density functional theory (DFT). CCSD(T) is valued for its size-consistency
and its place within the coupled cluster family, making it amenable to sys-
tematic improvements. When coupled with specific corrections, CCSD(T) is
recognized for its ability to approach sub-chemical accuracy, particularly in
properties such as bond energies [14] at the complete basis set (CBS) limit
[6].

Traditionally, benchmarking studies in the realm of DFT primarily concen-
trate on energetic properties [147, 148, 149, 150, 151, 152, 153, 154, 155,
156, 3, 2, 1, 14, 4, 18]. Nevertheless, there has been a growing interest in
recent times concerning the assessment of other aspects of the wavefunction,
such as the electric dipole moment [157, 158, 11, 12, 19, 9].

Most literature about benchmarking dipole moments relies on assess-
ing the performance of CCSD(T), primarily focusing on molecules com-
posed of light main-group elements. However, in modern applications
such as catalysis and materials synthesis, molecules containing elements
from the third row and beyond (Z > 18), especially transition-metal com-
pounds, play a vital role due to their electronic and magnetic properties
[159, 160, 161]. Many of these applications demand an accurate descrip-
tion of energetic properties and electron densities, driving the increasing
popularity of CCSD(T) among various quantum chemistry methods. Never-
theless, CCSD(T) primarily relies on single Slater-determinant Hartree-Fock
references, which can pose challenges in systems with multi-reference char-
acteristics [162, 1]. Another concern is the accuracy of approximations that
can be applied in CCSD(T) calculations. For instance, the frozen-core ap-
proximation is a commonly used strategy when dealing with heavy elements
in calculations. However, the computational cost associated with core-core
and core-valence correlations in CCSD(T) calculations becomes impractical
as the number of electrons in systems with effective core potentials (ECPs)
increases.

Hence, given the central role of CCSD(T) in modern quantum chem-
istry and its significance in benchmarking other computational chemistry
methods, it becomes essential to scrutinize its performance. In particular,
benchmarking CCSD(T) against available experimental data on spectro-
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scopic constants or molecular properties, such as dipole moments, is a
necessary step. Fortunately, the availability of reliable experimental data
concerning spectroscopic and molecular properties is expanding. In this
context, diatomic molecules, though small, prove to be highly effective
model systems for benchmarking, as they exhibit a diverse range of bond-
ing and spin configurations that can reflect trends observed in polyatomic
systems [151]. Indeed, experimental diatomic datasets have gained promi-
nence as valuable choices for various DFT and wavefunction methods in
benchmarking studies concerning equilibrium geometries and bond ener-
gies [147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 3, 2, 1, 14, 4, 18].
However, investigations focusing on the performance of CCSD(T) against
experimental dipole moments are still relatively scarce [153, 10].

The present study aims to comprehensively examine the accuracy and
limitations of CCSD(T) in predicting dipole moments of diatomic molecules.
Initially, our investigation involves comparing the performance of CCSD(T)
methods using different basis sets against recently collected experimentally
measured dipole moments, as reported in Ref. [163]. Additionally, in line
with the aforementioned objective, we assess the accuracy of CCSD(T) in
predicting equilibrium bond lengths and harmonic frequencies, drawing
from experimental data. The dataset comprises 32 diatomic molecules
encompassing both main-group and transition metal elements, each char-
acterized by diverse bonding characteristics. The dipole moments in this
dataset are derived from well-controlled experimental measurements, such
as microwave spectroscopy, with reported uncertainties typically below 0.05
D1.

5.1.2 The basis sets

In practical quantum chemistry implementations, the unknown molecular
orbitals are represented as linear combinations of basis functions, making
the problem computationally solvable. Various types of functions can be
used, such as polynomial or exponential functions, plane waves, wavelets,
etc.

1 This chapter is written based on reference [164]: Xiangyue Liu, Laura McKemmish,
and Jesús Pérez-Ríos. The performance of CCSD(T) for the calculation of dipole
moments in diatomics. Physical Chemistry Chemical Physics, 25(5):4093–4104, 2023,
https://doi.org/10.1039/D2CP05060A, with permission from the Royal Society of
Chemistry.
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Using a complete basis set would involve no approximation in the expan-
sion. However, in reality, an infinite number of basis functions would be
required, which is not feasible. Therefore, actual calculations use a finite
set of basis functions due to the rapid increase in computational complexity
with the number of functions. The selection criteria for basis functions
include their ability to converge rapidly towards the complete basis set
limit as the number of functions increases. This necessitates physically
"correct" basis functions tailored to the specific problem. For this reason,
Slater-type orbitals (STOs) were once commonly used. STOs consist of
spherical harmonic functions with exponential dependence on the nucleus-
electron distances, similar to the exact solutions of hydrogen atomic orbitals.
Another option is Gaussian-type orbitals (GTOs). However, GTOs offer
a less accurate description of the electronic structure compared to STOs.
They lack the discontinuous derivative at the nucleus region and converge
unrealistically fast to zero at long-range distances from the nucleus, leading
to poor representations in both regions. Consequently, achieving the same
accuracy as STOs with GTOs requires more basis functions. Despite this
limitation, GTOs remain the preferred choice for non-periodic systems due
to the easier and more cost-effective calculation of electron integrals.

As mentioned above, using the fewest basis functions possible is desirable
to reduce computational costs. The minimum basis set involves only one
function for each type of orbital (s-, p-, d-, etc.). For example, a minimum
basis set for hydrogen consists of only one s-type function for the 1s electron.
For sodium (Na), one can use three s-type functions to describe the 1s,
2s, and 3s orbitals, and two sets of p-type functions for the 2p and 3p
orbitals. However, the accuracy of the minimum basis set is quite limited. To
improve the accuracy, the functions in the minimum basis set can be doubled,
creating a “double zeta (ζ , DZ)” basis. Optimized DZ basis sets usually
have different exponential parameters for functions describing each type of
orbital to account for broken spatial symmetries in molecules. In the same
way, the accuracy of the basis set can be further improved with “triple zeta
(TZ)”, “quadruple zeta (QZ)” basis sets, etc. Additionally, higher angular
momentum functions might be necessary to describe the polarized electron
distribution better. For electron-correlated calculations, additional higher
angular momentum functions become important to account for angular
dependencies in electron correlations.

In the early stages of quantum chemistry, people used to take the opti-
mized orbitals from atomic calculations as the basis functions for molecular
calculations[165, 6]. Later, Almöf and co-workers explored the possibility
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of systematically improving basis sets to better account for the correlation
energy in their seminal work on atomic natural orbital analysis. Encouraged
by their findings, Dunning and co-workers developed a series of basis sets
[6], which is the correlation consistent polarized cc-pVXZ basis, with X
being the “cardinal number” showing the level of the basis set. The primary
consideration behind developing correlation-consistent basis sets is properly
describing the dynamical electron correlations [6]. It is because the accu-
racy of quantum chemistry methods on electron correlations, including the
near-degeneracy (static) correlation effects, as well as the nondynamical
and dynamical correlation effects, is limited by the form of basis functions.
Dunning’s basis sets are popular for their ability to extrapolate the (post-
Hartree Fock) correlation energies from finite basis sets to the CBS limit,
as the CBS is not practically applicable. It is achieved via a “consistent”
treatment of correlation effects, as it is shown to be imperative to incor-
porate polarization functions in sets [6]. In the pioneering work in 1989,
Dunning advocated the inclusion of all functions within a particular electron
shell group, like 1s, 2p, 3d, 4f, as well as functions from higher groups.
This approach resulted in sets of basis functions like (1d), (2d1f), (3d2f1g),
or (4d3f2g1h) in the correlation-consistent basis sets [6]. This approach
ensures that functions within the same set make comparable contributions
to the correlation energy. As a result, the correlation energy is improved
systematically with respect to the increase of the highest angular momentum
in the basis set and approaches the CBS limit following an inverse power
rule. The basis set convergence behaviour of self-consistent field (Hartree-
Fock or DFT) energies has been later discussed by Jensen and co-workers
[166, 8, 167], revealing a remarkably faster convergence in comparison to
correlation energies.

In a different vein, Ahlrichs and co-workers proposed the Karlsruhe basis
sets, particularly the segmented contracted def2-basis sets [168, 144, 169],
with the aim of reducing the number of basis functions and, consequently,
lowering computational costs. In this approach, the valence basis sets were
optimized based on the SCF energy. The low-angular momentum polar-
ization functions were optimized with the nearly degenerate excited states
when possible. For higher polarization functions, crucial in correlation
calculations, optimization was based on second-order Møller–Plesset pertur-
bation theory (MP2) energy since the atomic HF energy is independent of
polarization functions [170]. The optimizations were carried out following
the principle of achieving an “energetically balanced” basis [171]. This
means that the energy defect should be roughly equivalent for each angular
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momentum quantum number l. As a result, these basis sets accurately
reproduce cc-pVQZ atomization energies with chemical accuracy.



98 C C S D ( T ) A C C U R A C Y O N D I AT O M I C D I P O L E M O M E N T S

5.2 Method
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5.2.1 Computational approach

In this work, two basis set families have been employed to calculate the
electric dipole moment: The augmented Dunning’s weighted core-valence
basis set aug-cc-pwCVT/QZ(-PP) basis [172, 6, 173, 174, 7, 5, 175, 176,
177, 178, 179, 180, 181, 182, 183, 184, 185], and the segmented def2-
QZVPP basis set [168, 144, 169]. The aug-cc-pwCV basis includes the
core-correlations and, therefore is expected to be very accurate. On the
other hand, the def2-QZVPP basis is much cheaper than the aug-cc-pwCV
basis. For elements with Z > 36, the effective core potentials have been
employed.

The core-correlated CCSD(T) method implemented in the CFOUR pack-
age [186] has been used to calculate the dipole moment for diatomic
molecules. Unrestricted Hartree-Fock (UHF) wavefunctions have been used
as references. In the case of closed-shell molecules with def2-QZVPP basis,
the results are provided via the Molpro package [187, 188].

5.2.2 Zero-point vibrational corrections

Experimental dipole moments often exhibit deviations from theoretical
predictions at the equilibrium bond length due to the anharmonic nature
of molecular interactions. Vibrational corrections have been established as
crucial components in achieving accurate dipole moment calculations that
align with experimental values [189, 190, 191, 192, 10]. The extent of their
importance hinges on the anharmonicity exhibited by the potential energy
curve underlying the molecular system. In the context of dipole moments,
which are first-order molecular properties, it becomes crucial to account for
the discrepancy between the equilibrium bond length (as determined by the
potential energy curve) and the most probable interatomic distance defined
by the ground state vibrational wave function.

Consequently, in addition to reporting the dipole moment at the equi-
librium bond length, denoted as µe, we compute the vibrational average
dipole moment µ0. This can be achieved by numerically averaging the
radial-dependent dipole moment in conjunction with the vibrational ground
state wavefunction of the molecule under examination. Specifically, we
employ a Discrete Variable Representation (DVR) approach to address the
single-channel Schrödinger equation associated with the vibrational degrees
of freedom over the Born-Oppenheimer potential energy curve obtained.
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More precisely, for each molecule, we perform point-wise potential energy
computations using a grid of data points spanning from 0.4 times the
experimental equilibrium bond length (Re(Exp)) to 3 times Re(Exp) 2. The
spin states of the molecules are determined based on the potential energy
curve, selecting the spin state with the lowest energy compared to the
other possible states. These determined spin states align with experimental
observations.

Subsequently, we extract the equilibrium bond length (Re) and the har-
monic vibrational frequency (ωe) by fitting the potential energy curve. The
electric dipole moments (µ) are computed by calculating the analytic gradi-
ents at each single-point geometry. This process yields both the dipole mo-
ment at the equilibrium bond length (µe) and the dipole moment corrected
for zero-point vibrational effects (µ0). The latter incorporates vibrational av-
erage corrections using the DVR method for the vibrational wavefunctions 3.
Additionally, the overlap is determined through numerical integration. In
this study, we focus solely on the magnitude of the dipole moments and do
not delve into discussions regarding their directional aspects.

5.2.3 The CBS extrapolation

For Dunning basis sets, the CBS limits are determined utilizing the conven-
tional two-point extrapolation scheme [193, 194, 195]

Predicted CBS(n1/n2)
corr =

n3
1d1−n3

2d2

n3
1−n3

2
, (22)

where di represents the correlation contribution of the molecular property
(either ωe or µ) evaluated at a specific basis set characterized by ni. Specifi-
cally, for the aug-cc-pwCVTZ and aug-cc-pwCVQZ basis sets, the values of
n1 and n2 are set to 3 and 4, respectively. However, there is no need for
extrapolation when calculating Re since predictions at the quadruple-ζ level
are already very close to convergence.

For elements computed with the aug-cc-pwCVT/QZ-PP basis sets, it is
worth mentioning that relativistic effects have been considered by incorpo-
rating effective core potentials, which have been found to have minimal

2 Specifically, we evaluate the potential energy at points -0.4x, -0.35x, -0.3x, -0.24x,
-0.18x, -0.12x, -0.08x, -0.04x, -0.02x, 0, 0.02x, 0.04x, 0.08x, 0.12x, 0.2x, 0.28x, 0.36x,
0.45x, 0.5x, 0.6x, 0.8x, 1.0x, 1.5x, 2.0x, 3.0x, where x = Re(Exp)

3 We employ 200 DVR points to ensure convergence of vibrational energies with an
accuracy better than 0.1%.
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Table 6: Molecules in the dataset classified by classes of their constituent
elements.

Classes of molecules Molecules
Metal/metalloid-halogen AlF (X1Σ+), GaF (X1Σ+), InCl (X1Σ+),

InF (X1Σ+)
Metal/metalloid/nonmetal-
metal/metalloid

GeTe (X1Σ+), GeO (X1Σ+), GeS (X1Σ+),
PbO (X1Σ+), PbS (X1Σ+), SiO (X1Σ+),
SiS (X1Σ+) SnO (X1Σ+), SnS (X1Σ+)

Nonmetal/halogen-halogen BrO (X2Π3/2), CF (X2Π), IBr (X1Σ+)
Nonmetal-nonmetal CN (X2Σ+), CO (X1Σ+), CS (X1Σ+),

CSe (X1Σ+), NO (X2Π1/2), PN (X1Σ+),
PO (X2Π), SO (X3Σ−)

Transition metal-halogen AgBr (X1Σ+), AgF (X1Σ+), AgI (X1Σ+),
CuF (X1Σ+), YF (X1Σ+)

Transition metal-nonmetal HfO (X1Σ+), ScO (X2Σ+), ZrO (X1Σ+)

impact [15]. Nevertheless, a correction for scalar relativistic effects has been
applied using the second-order Douglas-Kroll-Hess approximation (DK),
implemented in Molpro, for specific molecules when (aug-)cc-p(w)CVT/QZ-
DK(3) basis sets are available [196].

5.2.4 Dataset

Experimentally, the equilibrium bond length, harmonic frequency, and
dipole moment measurements have been conducted in over 100 diatomic
molecules, as documented in Ref. [163]. We have carefully selected 32
representative molecules from this extensive pool for an in-depth exploration
using high-level quantum chemistry techniques. These molecules were
chosen to encompass a wide range of chemical diversity among diatomic
species, as listed in Table 1.

To facilitate interpretation, we have categorized these molecules into six
distinct classes depicted in Fig. 37. Throughout this chapter, we will employ
this graphical representation to present our results consistently. Notably, this
dataset encompasses a diverse array of main-group metal and non-metal
compounds, showcasing both covalent and ionic bonds. Specifically, the
dataset includes 8 transition metal compounds.
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Figure 37: Number of molecules in the present dataset classified by classes
of their constituent elements. Figure reproduced from ref. [164].
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Figure 38: Uncertainties of experimental dipole moments of the molecules
included in the dataset. Figure reproduced from ref. [164].

The accuracy of experimentally measured electric dipole moments hinges
on precisely determining the magnitude of the applied electric field and its
uniformity. In curating the present dataset, we have selected molecules for
which dipole moments were determined through high-resolution spectro-
scopic methods, particularly microwave spectroscopy and molecular beam
electric resonance. Molecules with substantial uncertainties in their dipole
moments, such as BF and RbI, were excluded from consideration.

As illustrated in Fig. 38, this dataset predominantly features typical error
bars ranging from 0.1% to 5%, translating to errors of less than 0.05 D
for most of the molecules under investigation. However, a few molecules,
namely PbO, AgF, InCl, PbS, SnS, and SnO, are denoted in the figure due to
their uncertainties exceeding 0.1 D.
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5.3 Results and discussions
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The performance of CCSD(T) on the equilibrium bond length, Re, and
harmonic vibrational frequency, ωe, of diatomic molecules have been exhaus-
tively investigated in the literature by comparing them with experimental
measurements. Not only the accuracy of basis set families [180, 174, 172],
but also relativistic pseudopotentials have been discussed and compared
with full-electron relativistic treatments [177, 178, 179, 181, 182, 176, 175,
197]. Recently, it has been found that by using non-HF orbitals, the accuracy
of CCSD(T) ωe can be further improved for diatomic molecules consisting of
row 2 and row 3 elements [18]. For transition metal diatomic molecules, the
accuracy of CCSD(T) Re and ωe, as well as the influence of relativistic effect
and multi-reference character have been investigated based on a dataset of
60 molecules [15]. Nevertheless, we first report the calculated Re and ωe

for the dataset employed in this work. Then, we present and discuss the
theoretical predictions of dipole moments compared to their experimental
values for the molecules in the dataset.

The performance of computational predictions in comparison to experi-
mental data is assessed through:

• Residuals: the difference between the experimental value of a molec-
ular property and its computed value, xi(Exp.)− xi(CCSD(T)), where
xi is a property of molecule i.

• Root mean squared error (RMSE).

We report the results in two formats for each computational method
explored and each molecular property under investigation. Firstly, we
provide residual errors for all molecules, with special labeling for molecules
exhibiting significant errors. Secondly, we conduct a statistical analysis of
the errors by presenting the Root Mean Square Error (RMSE) categorized
by molecular class, as outlined in Table 6. Additionally, when necessary, we
report the relative error (rE) as

rE =
1
N

N

∑
i

|xi(Exp.)− xi(CCSD(T))|
xi(Exp.)

. (23)

Lastly, we present results utilizing both the aug-cc-pwCVQZ and def2-
QZVPP basis sets. Notably, the def2-QZVPP basis set contains slightly over
half the number of basis functions compared to the aug-cc-pwCVQZ basis
set.
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5.3.1 The accuracy of equilibrium bond lengths

When analyzing the equilibrium bond length (Re), both the aug-cc-pwCVQZ
and def2-QZVPP basis sets exhibit remarkably accurate predictions, with an
RMSE ≲ 0.008 Å (and a relative error rE of around 0.2%), as depicted in
Fig. 39. Based on this figure, it is clear that non-metal diatomic molecules,
as well as metal/metalloid/non-metal-metal/metalloid compounds, present
the smallest RMSE values of approximately 0.002 Å (with relative errors
around 0.1-0.2%). On the contrary, molecules containing transition metals
exhibit somewhat larger errors, with an RMSE of around 0.01 Å (resulting
in a relative error of approximately 0.5%). Additionally, a few outliers are
noticeable in this context, including CuF, AgBr, and AgI.

For CuF, Aoto et al. have demonstrated that the error in predicting Re

can be mitigated by incorporating relativistic corrections [15]. Our findings
corroborate these observations, as elaborated in Section 5.3.4. However,
for certain other molecules containing transition metals, such as ScO or
AgF, the correction for scalar relativistic effects appears to have a negligible
impact. Another potential source of discrepancy may arise from multi-
reference effects. Notably, previous studies have indicated that employing
multi-reference coupled-cluster theory for molecules like ScO and AgF yields
results similar to those obtained using single-reference methods [15].

There has been relatively limited research in silver-halogen molecules,
except for AgF and AgCl, finding that relativistic effects on the equilibrium
bond length prediction are negligible. Therefore, given these observations,
relativistic effects alone may not be sufficient to account for the substantial
errors in the predictions of Re for AgBr and AgI.



106 C C S D ( T ) A C C U R A C Y O N D I AT O M I C D I P O L E M O M E N T S

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Experimental Re (Å)

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025
Re

sid
ua

ls 
of

 c
al

cu
la

te
d 

R e
 (Å

)

AgBr

AgI

AlF

BrO
CuF

GaF
GeTe

HfO

IBr

InCl
InF

ScO
SnO

SnS

YF

Re(def2-QZVPP)
Re(aug-cc-pwCVQZ)

0.000 0.005 0.010
RMSE of Re (Å)

metal/metalloid - halogen

metal/metalloid/nonmetal - metal/metalloid

nonmetal - nonmetal

nonmetal/halogen - halogen

transition metal - halogen

transition metal - nonmetal

0.0080.002

0.004

0.002

0.0060.004

0.0120.007

0.007

Re(def2-QZVPP)
Re(aug-cc-pwCVQZ)

Figure 39: Calculated Re with def2-QZVPP (red symbols) and aug-cc-
pwCVQZ (blue symbols) basis sets. Upper panel: residuals of the
calculated Re. Lower panel: RMSE of the computed Re for differ-
ent classes of molecules. Figure reproduced from ref. [164].

In our calculations using the def2-QZVPP basis set, we have observed
systematically larger equilibrium bond length (Re) values that deviate fur-
ther from experimental values when compared to the aug-cc-pwCVQZ basis
set. Within the aug-cc-pwCV basis family, it is generally observed that in-
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creasing the number of basis functions tends to improve the predictions
of Re and brings them closer to experimental values. When moving from
aug-cc-pwCVTZ to the quadruple-ζ level, the Root Mean Square Errors
(RMSEs) for most classes of molecules can be significantly reduced, often
reaching approximately 50% improvement. Exceptions to this trend are the
molecules containing transition metals, for which the aug-cc-pwCVT/QZ
basis set yields RMSEs of a similar magnitude.

However, it is noteworthy that the reduction in the number of basis
functions in the def2-QZVPP basis sets does not necessarily deteriorate the
predictions of Re. In fact, the RMSEs obtained with the def2-QZVPP basis
set are generally comparable to those obtained with the aug-cc-pwCVQZ
basis set for most molecules studied, with the exception of metal/metalloid
halides. Particularly for transition metal halides, the def2-QZVPP basis
set can yield predictions much closer to the experimental results than the
aug-cc-pwCVQZ basis set.

5.3.2 The accuracy of vibrational harmonic frequencies

The performance of CCSD(T) in predicting the vibrational harmonic fre-
quency (ωe) compared to experimental data is presented in Fig. 40. In
this figure, the absolute error of CCSD(T) calculations and their RMSE are
depicted for each molecular class. For most molecules, CCSD(T) exhibits
rE ≲ 2%. The RMSE values with the predicted CBS(aug-cc-pwCVT/QZ) and
def2-QZVPP basis sets are 24.7 cm−1 and 16.3 cm−1, respectively.

CCSD(T) calculations for diatomic molecules involving main-group metal
elements yield very accurate results with both basis sets, resulting in an
RMSE of less than 10 cm−1. These findings are consistent with previous
research by Aoto et al., which indicated that diatomic molecules composed
of main-group nonmetals exhibit substantial errors [15]. Notably, some of
the most significant outliers in these cases include CN and NO, which are
correlated with the use of the unrestricted Hartree-Fock (UHF) reference.
Recent work has shown that these errors can be mitigated by employing
non-HF references [18].
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Figure 40: Calculated ωe with def2-QZVPP (red symbols) and aug-cc-
pwCVQZ (blue symbols) basis sets. Upper panel: residuals of the
calculated Re. Lower panel: RMSE of the computed Re for differ-
ent classes of molecules. Figure reproduced from ref. [164].

For most molecules, the predictions of ωe are already quite close to
experimental values at the aug-cc-pwCVTZ level. The difference in RMSE
between the aug-cc-pwCVTZ and aug-cc-pwCVQZ basis sets is only around
2.5 cm−1. Similarly, the RMSE obtained with the def2-QZVPP basis set
is very close to that of the aug-cc-pwCVQZ basis, and in some cases, it
even slightly outperforms the latter. However, we notice that for nonmetal
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diatomic molecules, the use of the aug-cc-pwCV basis significantly improves
the results.
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Figure 41: Dipole moment errors calculated with def2-QZVPP basis set ver-
sus experimental results, with or without vibrational average
corrections. Figure reproduced from ref. [164].

5.3.3 The accuracy of dipole moments

Effect of methodology

Vibrational corrections on dipole moment predictions In Figs. 41
and 42, we observe the residuals of CCSD(T) calculations for the dipole mo-
ments of the molecules in our dataset using the def2-QZVPP and CBS(aug-
cc-pwCVT/QZ) basis sets. These figures reveal that the vibrational aver-
aging has a negligible impact on the dipole moments, yielding differences
of approximately 0.01 D (2%) between the vibrational average and non-
vibrational average dipole moments for both basis sets.

However, there are a few outliers, which include diatomic molecules with
light elements and short bond lengths, such as CO (approximately 20%),
NO (approximately 10%), CF (approximately 10%), AlF (approximately
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4%), GaF (approximately 3%), and YF (approximately 2%). Notably, the
difference introduced by the vibrational average correction in these outliers
appears to correlate with their harmonic vibrational frequency.

Due to the slightly better performance of the vibrational average dipole
moment, we will use µ0 when referring to dipole moments from now on.
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Figure 42: Dipole moment errors calculated with aug-cc-pwCVQZ basis set
versus experimental results, with or without vibrational average
corrections. Figure reproduced from ref. [164].

Basis set family and size A detailed study on the influence of basis
sets on the dipole moments is presented in Figs. 43 and 44, where we
examine the residuals of the calculated dipole moments in comparison
to experimental values. Specifically, we investigate the performance of
CCSD(T) dipole moments calculated with cc-pwCV, aug-cc-pwCV, and def2-
QZVPP basis sets.
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respectively. Figure reproduced from ref. [164].
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A significant basis set size effect is observed in the case of the cc-pwCV
basis set. For most molecules, increasing the size of the basis set from cc-
pwCVTZ to cc-pwCVQZ reduces the underestimation of the dipole moment,
leading to an improvement in the RMSE from 0.30 D to 0.24 D. Notably, for
molecules containing main-group metal/metalloid elements, increasing the
size of the basis set from cc-pwCVTZ to cc-pwCVQZ results in a reduction
of the RMSE by a factor of two. However, for nonmetal-nonmetal and
nonmetal/halogen-halogen molecules, the improvement in dipole moment
accuracy from the triple-ζ to quadruple-ζ level is less than 0.02 D. Therefore,
for molecules with nonmetal elements, it is generally sufficient to use the
cc-pwCVTZ basis.
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Figure 44: The errors of dipole moment calculated with cc-pwCVT/QZ and
aug-cc-pwCVT/QZ basis sets. Figure reproduced from ref. [164].

When considering the aug-cc-pwCV basis, it becomes evident that dipole
moments are almost converged at the aug-cc-pwCVTZ level. Consequently,
the benefits of using the larger aug-cc-pwCVQZ basis are marginal, typically
less than 0.01 D. In some cases, especially for diatomic molecules with
metal atoms, the aug-cc-pwCVTZ predictions are slightly more accurate
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than the aug-cc-pwCVQZ level. The role of augmented functions will be
further discussed in Sec. 5.3.3.

Surprisingly, for most molecules, the use of the def2-QZVPP basis set
yields a similar level of accuracy to the aug-cc-pwCVQZ basis set, despite
the def2-QZVPP basis being much smaller than the aug-cc-pwCVQZ basis.
In some instances, the def2-QZVPP basis even provides dipole moments that
are closer to experimental values than the CBS(aug-cc-pwCVT/QZ) basis
set.

Influence of diffuse functions It has been demonstrated that adding
diffuse functions to the basis set can play a crucial role in improving dipole
moment predictions in hybrid and double-hybrid density functionals, as well
as wave function-based methods, to approach CCSD(T) results [19, 198].
To investigate whether the inclusion of diffuse functions enhances CCSD(T)
predictions towards experimental values, we used the cc-pwCVT/QZ basis
sets to calculate dipole moments and compared the results to those obtained
with augmented basis sets, as shown in Fig. 44.

As discussed in Sec. 5.3.3, the prediction of the dipole moment’s magni-
tude increases when transitioning from the cc-pwCVTZ to the quadruple-ζ
level. Adding augmentation functions further amplifies the dipole mo-
ment’s magnitude, occasionally resulting in an overestimation. Molecules
containing metal elements are more sensitive to augmentation due to the
longer-range nature of the wave function. On average, the RMSE can be
reduced by 0.10 D with the inclusion of augmented functions at the triple-ζ
level. However, at the quadruple-ζ level, the overall improvement from
augmentation diminishes to only 0.03 D, considerably smaller than at the
triple-ζ level. Therefore, for dipole moments of most molecules, the en-
hancement gained from including augmented functions is negligible at the
quadruple-ζ level.

Notably, exceptions are molecules containing metal/metalloid halides
(metal/metalloid-halogen and transition metal-halogen molecules), where
the improvement in RMSE by employing diffuse functions at the quadruple-
ζ level is approximately 0.07 D. Consequently, for these molecules, it is
advisable to use augmented basis sets.

Overall performance of CCSD(T) on the dipole moments

The performance of CCSD(T) predictions on the dipole moment µ0 using
the CBS(aug-cc-pwCVT/QZ) and def2-QZVPP basis sets is summarized in
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Fig. 45. Overall, the performance of Dunning’s and def2- basis sets is very
similar, with RMSE values of 0.215 D and 0.209 D, respectively. Significant
errors exceeding 0.2 D are primarily observed for molecules with dipole
moments greater than 3 D, although there is no clear correlation between
the dipole moment error and its absolute value.
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Figure 45: The errors of dipole moments calculated with def2-QZVPP and
aug-cc-pwCVQZ basis sets. The error bars of experimental mea-
surements are shown in gray. Figure reproduced from ref. [164].

Specifically, diatomic molecules containing main-group elements, espe-
cially non-metal elements, are well-described, with relative errors rE of less
than 5% and RMSE values of less than 0.08 D for non-metal-non-metal
molecules and less than 0.5 D for non-metal halides. For molecules contain-
ing main-group metals/metalloids, the RMSE values are larger (less than
0.15 D), but they remain close to the experimental uncertainty, except for
SnO and PbS.

In contrast, transition metal-containing systems exhibit larger errors.
With the predicted CBS(aug-cc-pwCVT/QZ), an RMSE of 0.32 D (relative
error rE of 5.5%) is observed for transition metal halides, and an RMSE of
0.51 D (relative error rE of 6.9%) is observed for other transition metal-
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nonmetal diatomic molecules. These errors are notably larger than the
experimental uncertainties.

The sources of the discrepancies between CCSD(T) predictions and ex-
perimental values can vary. The use of a relatively large basis set for the
predicted CBS suggests that the errors are not solely due to basis set size.
Another potential source could be the multi-reference character of the
molecules. However, in the current dataset, transition metal-containing
molecules or their analogs are generally dominated by single-reference
character [199, 15]. Furthermore, it is worth noting that the residuals of
CCSD(T) predictions do not consistently correlate with the experimental
uncertainties. While some molecules, such as PbO and InCl, have residuals
closer to the experimental uncertainty, others, like PbS, exhibit residuals
much larger than the experimental uncertainty. In the following section, we
will explore possible sources of these errors in more detail.
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5.3.4 Origin of the errors
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Figure 46: Errors of dipole moments as a function of errors of Re with
def2-QZVPP and predicted CBS(aug-cc-pwCVT/QZ). Figure re-
produced from ref. [164].

The analysis of possible sources of error in calculated dipole moments reveals
some interesting insights. One potential source could be inaccuracies in
predicting bond lengths, as the dipole moment is proportional to the charge
separation multiplied by the bond length 4. However, the analysis in Fig. 46
does not show a clear relationship between errors in equilibrium bond
lengths (Re) and dipole moments. This observation aligns with previous
studies on the nature of dipole moments in diatomic molecules [163]. For
instance, both the aug-cc-pwCV and def2- basis sets overestimate the dipole

4 For more details, please refer to Chapter 4.
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moment of AgI and CuF while simultaneously underestimating the dipole
moment of ScO, despite accurate predictions of Re with aug-cc-pwCVQZ for
these molecules. Conversely, several molecules with precise dipole moments
exhibit more significant errors in the prediction of Re, such as HfO, IBr, and
InF. Similarly, the errors in dipole moments do not correlate with errors in
ωe. These results suggest that benchmark studies based solely on energetic
properties may not adequately predict other properties related to electron
density.

Furthermore, some outliers in Fig. 45 require additional discussion. While
one might expect these errors to be due to the single-reference nature of
CCSD(T) calculations, it has been previously demonstrated that molecules
with significant dipole moment errors often exhibit a dominant single-
reference character [15].

Another potential source of errors is the non-relativistic treatment. To
investigate the role of relativistic effects, CCSD(T) calculations were per-
formed, including the scalar relativistic correction, for 9 molecules with
significant dipole moment errors. The dipole moments (µe) were calculated
at the experimental geometry both with and without the relativistic correc-
tion, and the results are summarized in Tab. 7. In most cases, including
relativistic effects slightly decreases the magnitude of the predicted dipole
moment, with differences typically ranging from 0.01 to 0.07 D (0.3% to
1.5%). Notably, for CuF, the difference introduced by relativistic effects is
0.14 D (2.7%). For molecules where the non-relativistic CCSD(T) treat-
ment overestimated the dipole moment (e.g., PbS, AgI, CuF), the relativistic
dipole moment becomes closer to the experimental value. Conversely, for
other molecules, the underestimation of the dipole moment is further ex-
acerbated by the relativistic correction. Overall, including the relativistic
correction, the RMSE for the 9 molecules can be slightly improved from
0.252 D to 0.235 D.

Investigating individual molecules with the most significant errors, such
as ScO, CuF, and AgI, provides valuable insights into the origin of these
errors.

In the case of CuF, the dipole moment is overestimated by 0.28 D at
the CCSD(T)/CBS(aug-cc-pwCVT/QZ) level, compared to the experimental
value of 5.26(2) D, as determined by recent supersonic molecular beam high-
resolution optical Stark spectroscopy [200]. Additionally, there is a small
discrepancy of 0.02 Å between the experimental equilibrium bond length
(Re) and the CCSD(T)/aug-cc-pwCVQZ prediction. At the experimental Re,
the predicted dipole moment (µe) is 5.420 D with CCSD(T)/aug-cc-pwCVQZ,
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Table 7: Dipole moment at experimental equilibrium bond length µe, calculated with non-relativistic or scalar relativistic
CCSD(T).

Molecule µ0(Exp.) (D)
Non-relativistic Scalar relativistic
µe (D) Basis set µe (D) Basis set

AgF 6.22(20) 5.991 Ag:cc-pwCVTZ-PP; F:cc-pVQZ 5.956 Ag:cc-pwCVTZ-DK; F:cc-pVQZ-DK
AgBr 5.62(3) 5.789 Ag:cc-pwCVTZ-PP; Br:cc-pVQZ 5.716 Ag:cc-pwCVTZ-DK; Br:cc-pVQZ-DK
AgI 4.55(5) 5.139 Ag:cc-pwCVTZ-PP; I:cc-pwCVTZ-PP 5.087 Ag:cc-pwCVTZ-DK; I:cc-pwCVTZ-DK3
CuF 5.26(2) 5.420 Cu:aug-cc-pwCVQZ; F:aug-cc-pwCVQZ 5.278 Cu:aug-cc-pwCVQZ-DK; F:aug-cc-pwCVQZ-DK
InCl 3.79(19) 3.629 In:aug-cc-pwCVQZ-PP; Cl:aug-cc-pwCVQZ 3.616 In:aug-cc-pwCVQZ-DK3; Cl:aug-cc-pwCVQZ-DK
PbO 4.64(30) 4.479 Pb:aug-cc-pwCVQZ-PP; O:aug-cc-pCVQZ 4.460 Pb:aug-cc-pwCVQZ-DK3; O:aug-cc-pCVQZ-DK
PbS 3.59(10) 3.726 Pb:aug-cc-pwCVQZ-PP; S:aug-cc-pCVTZ 3.669 Pb:aug-cc-pwCVQZ-DK3; S:aug-cc-pCVTZ-DK
SnO 4.32(10) 4.106 Sn:aug-cc-pwCVQZ-PP; O:aug-cc-pCVQZ 4.074 Sn:aug-cc-pwCVQZ-DK3; O:aug-cc-pCVQZ-DK
SnS 3.18(10) 3.190 Sn:aug-cc-pwCVQZ-PP; S:aug-cc-pCVQZ 3.147 Sn:aug-cc-pwCVQZ-DK3; S:aug-cc-pCVQZ-DK
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Figure 47: Dipole moments of AgF, AgBr, and AgI. The theoret-
ical predictions are calculated at experimental Re with
CCSD(T)/(Ag:cc-pwCVTZ-PP; F/Br: cc-pVQZ; I:cc-pwCVTZ-
PP), and CCSD(T)/(Ag:cc-pwCVTZ-DK; F/Br:cc-pVQZ-DK; I:cc-
pwCVTZ-DK) with scalar DK relativistic corrections. The experi-
mental uncertainties are shown in gray. Figure reproduced from
ref. [164].

still 0.16 D away from the experimental dipole moment. Interestingly, when
scalar relativistic corrections (Douglas-Kroll method) are applied to CCSD(T)
calculations with corresponding relativistic-contracted basis sets (Cu:aug-
cc-pwCVQZ-DK; F:aug-cc-pwCVQZ-DK), the experimental Re is perfectly
reproduced with an error of only 0.001 Å, and the dipole moment obtained
is 5.28 D. This result is consistent with previous reports [201] and aligns
with studies on other diatomic molecules like CuH, AgH, and AuH, where
small changes in predicted Re due to the inclusion of relativistic effects have
been observed to lead to significant changes in µe(Re) [202].

For the Stark effect in the rotational spectrum of AgI, experimental mea-
surements yield a dipole moment of 4.55(5) D [203]. However, our cal-
culated value using the CBS(aug-cc-pwCVT/QZ) method, which includes
the vibrational average correction, stands at 5.15 D, indicating an overesti-
mation compared to the experimental result. Interestingly, our theoretical
prediction aligns closely with previous computational estimates [204].

On the other hand, for AgF, an isovalent analogue of AgI, CCSD(T) cal-
culations tend to underestimate the dipole moment. Additionally, when
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examining silver-halogen molecules, it becomes evident that experimentally,
there is a significant reduction in dipole moment as the halogen atom be-
comes heavier. However, theoretical predictions suggest a less pronounced
decrease, as illustrated in Fig. 47. The disagreement between CCSD(T)
calculations and experimental observations persists even when considering
scalar relativistic effects. The difference in dipole moment obtained by ap-
plying relativistic corrections (CCSD(T)/(Ag:cc-pwCVTZ-DK; I:cc-pwCVTZ-
DK)) and non-relativistic calculations (CCSD(T)/Ag:cc-pwCVTZ-PP; I:cc-
pwCVTZ-PP) amounts to only 0.05 D at the experimental equilibrium bond
length (Re).

Additionally, we notice that a previous measurement by the same research
group reported a dipole moment of µ0 = 5.10(15) D [205], which closely
aligns with our CCSD(T)/(aug-cc-pwCVT/QZ) predictions. This discrepancy
between different experimental measurements and theoretical calculations
calls for further revision and investigation.
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5.4 Conclusion
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In this study, we have comprehensively benchmarked CCSD(T) calcula-
tions for predicting dipole moments by comparing computational results,
particularly those obtained using large basis sets, with precise experimen-
tal measurements. Our investigation focused on 32 diatomic molecules,
encompassing a wide range of bonding characteristics and elemental compo-
sitions, for which accurate experimental dipole moment data were available.
This approach allowed us to assess the computational accuracy against
experimental reference values directly. Additionally, we have examined the
accuracy of equilibrium bond lengths and vibrational harmonic frequencies
and compared them to the precision of dipole moment predictions.

Our findings indicate that single-reference CCSD(T) calculations, utilizing
basis sets from the def2- and aug-cc-pwCVX families (with X representing T
and Q), generally provide satisfactory descriptions of the dipole moments
for most molecules within the dataset. The errors typically remain below
0.15 D, especially for molecules composed solely of main-group elements.
However, the choice of the most suitable basis sets depends on the specific
molecule under investigation. For instance, our study revealed that for the
cc-pwCV basis at the triple-ζ level, the inclusion of diffuse functions plays
a crucial role in improving accuracy, especially in molecules containing
metal elements. Nonetheless, the augmentation with diffuse functions has a
minor impact on dipole moment predictions at the quadruple-ζ level, where
the basis set already provides sufficient accuracy. Similarly, we observed
that basis set incompleteness errors are apparent at the triple-ζ level when
employing the cc-pwCV basis, while its augmented counterpart yields nearly
converged results. Notably, the def2-QZVPP basis exhibits comparable
performance to the much larger aug-cc-pwCVQZ basis set, making it a
preferable choice for dipole moment predictions in larger systems.

Our results indicate that non-relativistic predictions are generally accurate
enough for most molecules. While scalar relativistic corrections may be
essential in dipole moment calculations for certain molecules, such as CuF,
they do not appear to be the primary source of error in most cases. For
molecules like ScO and AgI, which exhibit significant discrepancies with
experimental data that cannot be satisfactorily explained by multi-reference
or relativistic effects, we recommend a comprehensive evaluation involving
both experimental and theoretical approaches, potentially including multi-
reference coupled-cluster calculations, to gain a deeper understanding of
dipole moments in these systems. Furthermore, expanding the dataset to
include molecules involving alkali metals and other relevant systems would
be valuable for future benchmark studies.
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Finally, our study highlights an important insight: errors in predicting
dipole moments do not necessarily correlate with inaccuracies in equilibrium
bond lengths. This observation underscores that errors in dipole moment
predictions are primarily associated with deviations in the electron distribu-
tion rather than differences in bond lengths. It reinforces the notion that
different properties are predicted with varying degrees of accuracy within
computational approximations, highlighting the need for a comprehensive
assessment of methods beyond energetic and geometric properties.
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6.1 The hyperfine constants of diatomic
molecules

The hyperfine structure of molecules stems from nuclear magnetic moments
and higher-order multipolar moments. Specifically, the hyperfine structure
arises from different magnetic interactions of the nuclear magnetic moments
with the electronic orbital angular momentum, the spin angular momentum,
the molecular rotation-induced magnetic field, and the interaction between
the magnetic moments of two nuclei, along with quadrupole interaction
[206].

In this study, we compute the magnetic hyperfine coupling constants
bF ,c,d, along with the electric hyperfine coupling constant (the nuclear
quadrupole coupling constant) eq0Q, following the definitions of c,d in-
troduced by Frosch and Foley to approximate the magnetic interactions
in open-shell electronic states of diatomic molecules [207], and the nota-
tions eq0Q, bF defined by Brown and Carrington[208]. A comprehensive
comparison between these hyperfine constants can be found in [208] 1.

bF is called the Fermi contact parameter, which relies solely on the
electron density of unpaired electrons at the nuclei as

bF ∼
∫

ψ
2(rrr)δ (rrr)drrr. (24)

bF encompasses the non-dipolar isotropic component of the electron-nuclear
spin interaction, given that it involves only the integration over the proba-
bility density of the wave function of the unpaired electron, which solely
depends on the electron-nuclear distance rrr. Indeed, a non-zero bF implies
the existence of an s-type component in a molecule’s molecular orbitals.
Therefore, bF can be calculated as the polarization of these molecular or-
bitals, which is the difference between the electronic densities of up and
down spins at the nucleus [210].

The hyperfine constants c and d characterize the axial and perpendicular
anisotropic components, respectively, and can be obtained from the Carte-
sian components of the dipolar hyperfine tensor calculated by quantum

1 This chapter is written based on reference [209]: Nicole Walter, Maximilian Dop-
pelbauer, Silvio Marx, Johannes Seifert, Xiangyue Liu, Jesús Pérez-Ríos, Boris G.
Sartakov, Stefan Truppe, and Gerard Meijer. Spectroscopic characterization of the
a3Π state of aluminum monofluoride. The Journal of Chemical Physics, 156(12),
2022, https://doi.org/10.1063/5.0082601.
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chemistry methods [211, 212]. The nuclear quadrupole coupling constant
eQ0Q (in MHz) can be determined by establishing its connection with
the electric field gradients (EFGs, in atomic units a.u.) and the nuclear
quadrupole moment Q (in MBarn), as[213, 214]

eq0Q =
Q⟨Vzz|Vzz⟩v
4.255958

, (25)

where Q = 146.6 MBarn for the 27Al atom [215],
and ⟨Vzz|Vzz⟩v = ⟨ψv|Vzz|ψv|ψv|Vzz|ψv⟩ stands for the expectation value of Vzz

based on a given vibrational state |ψv⟩.
This correlation is derived from the multipole expansion of the hyperfine

contribution to the Hamiltonian. For each vibrational state, it is necessary
to compute the expectation value of the EFGs.

6.2 Computational details

In this work, we have determined the hyperfine constants for the a3Π state
of AlF, which is the lowest state of the triplet manifold of AlF. We have
employed density functional theory (DFT) implemented in Gaussian 2016
[145], utilizing the CAM-B3LYP functional[216], which is a range-separated
hybrid density functional with a significant percentage of Hartree-Fock–
included in the long-range interactions. The basis set employed is the
aug-cc-pV5Z basis set[217, 218, 219].

The potential energy curve of AlF’s a3Π state has been derived from 23
DFT-calculated potential energies spanning a range of interatomic distances
from 1 to 6 Å. To ascertain the expectation values of the hyperfine constants
at various vibrational states, we have solved the vibrational Schrödinger
equation utilizing the discrete variable representation (DVR) approach [48,
49]. It has been shown that employing 200 grid points yields a converged
result 2.

6.3 Results

The spectroscopic constants, including the kinetic energy Te, equilibrium
internuclear distance Re, harmonic frequency ωe, are fitted from CAM-

2 The difference between the eq0Q results obtained from 200 and 300 DVR points is
less than 10−9 MHz.
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B3LYP/aug-cc-pV5Z potential energy curves and summarized in Table 8.
Both the ground states of the singlet and triplet states have been obtained,
and the fitted harmonic vibrational frequency aligns well with experimental
observations.

Table 8: Spectroscopic parameters of 27Al19F, including the kinetic energy
Te, equilibrium internuclear distance Re, harmonic frequency ωe
and at the CAM-B3LYP/aug-cc-pV5Z level. The experimental values
are taken from [30].

Te (cm−1) Re (Å) ωe (cm−1)

Exp. 27239.4529(53) 1.64708 830.280 7(11)

DFT 25587.86 1.655 818.72

The nuclear quadrupole coupling constants eq0Q, the isotropic Fermi
contact coupling constants bF , the anisotropic spin-dipole coupling constants
c and d of 27Al19F a3Π state are shown in Fig. 48, 49, 50 and 51, respectively,
for vibrational states v = 0 to v = 5, and summarized in Table 9.
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Figure 48: Black: The DFT-calculated eQq(27Al) of the a3Π state of 27Al19F
for different vibrational states, at CAM-B3LYP/aug-cc-pV5Z level.
Red: The experimental values taken from [5].

As shown in Fig. 48, the nuclear quadrupole coupling constant eq0Q(Al)
decreases for higher vibrational states, where eq0Q(Al)(v= 5)/eq0Q(Al)(v=
0) = 0.81, showing the same trend as the experimental measurements. The
calculated values of eq0Q agree with the experiment with deviations ≲ 5%.
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The change of hyperfine parameters from v = 0 to v = 5 can be attributed
to the increase of the internuclear distance. The discrepancies could arise
from inaccuracies in the electron correlation treatment within the DFT
calculations.

Table 9: The DFT-calculated hyperfine constants eQq(Al), bF(Al), bF(F),
c(Al), c(F), d(Al) and d(F) (in MHz) of the 27Al19F a3Π state for
different vibrational states, at CAM-B3LYP/aug-cc-pV5Z level.

v eq0Q(Al) bF (Al) bF (F) c(Al) c(F) d(Al) d(F)

0 -12.221 1186.2 150.1 -24.6 154.3 126.5 128.6

1 -11.763 1189.8 147.0 -25.3 160.8 126.9 127.1

2 -11.309 1193.1 144.0 -25.9 167.6 127.4 125.5

3 -10.857 1196.2 141.0 -26.6 174.7 127.8 124.0

4 -10.407 1199.1 138.0 -27.2 182.0 128.3 122.4

5 -9.957 1201.7 135.1 -27.9 189.7 128.7 120.8

Likewise, we observe a dependency on vibrational frequency in the calcu-
lated isotropic Fermi contact coupling constant bF (Fig. 49), as well as the
anisotropic coupling constants c (Fig. 50) and d (Fig. 51). The disparities be-
tween the experimental and computed d values are quite small, measuring
less than 5%. However, the deviations become more significant in the case
of c and bF . This discrepancy may arise from the necessity of maintaining
the c parameter constant in the fit, while bF is determined experimentally
through its relationship with the Frosch-Foley hyperfine constants, with
bF = b+ c/3 [5, 208].



130 T H E H Y P E R F I N E C O N S TA N T S O F A L U M I N U M M O N O F L U O R I D E

1000

1050

1100

1150

1200

1250

1300

b F
(A

l) 
(M

H
z)

0 1 2 3 4 5
v

60

80

100

120

140

160

180

b F
(F

) (
M

H
z)

Figure 49: Black: The DFT-calculated Fermi contact bF(Al) and bF(F) of
the 27Al19F a3Π state for different vibrational states, at CAM-
B3LYP/aug-cc-pV5Z level. Red: The experimental values taken
from [5].
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Figure 50: Black: The DFT-calculated anisotropic spin-dipole coupling con-
stants c(Al) and c(F) of the 27Al19F a3Π state for different vi-
brational states, at CAM-B3LYP/aug-cc-pV5Z level. Red: The
experimental values taken from [5].
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Figure 51: Black: The DFT-calculated anisotropic spin-dipole coupling con-
stants d(Al) and d(F) of the 27Al19F a3Π state for different vi-
brational states, at CAM-B3LYP/aug-cc-pV5Z level. Red: The
experimental values taken from [5].

6.4 Conclusion

Comparing experimental and calculated hyperfine constants is of paramount
importance in benchmarking studies. This is because hyperfine constants
are more sensitive to the accuracy of the electron-correlation treatment than
energetic properties. In this work, we have computed the hyperfine con-
stants, including the nuclear quadrupole coupling constants eq0Q, isotropic
Fermi contact coupling constants bF , and anisotropic spin-dipole coupling
constants c and d. We have noted that both the sign and magnitude of the
calculated hyperfine parameters align well with the experimentally deter-
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mined values. These comparisons serve as a critical validation step, assessing
the accuracy and reliability of quantum chemistry methods. In addition,
the comparison necessitates meticulous consideration of the assumptions
made during the fitting process when deriving hyperfine constants from
experimental measurements.
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7.1 Background and method
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7.1.1 Introduction

One way to obtain molecules in the ultracold regime is via direct cooling
techniques, where molecules are produced in a source and then extracted
into a molecular beam, which is subsequently slowed and captured in a trap
[220, 221, 222, 223, 30]. As a first step toward ultracold molecules, it is
necessary to bring molecules in the cold regime (T∼ 1K). One possibility is
cryogenic buffer gas cooling, exploiting the heat dissipation via collisions
between the molecules and a cold reservoir, often a buffer gas such as
helium gas. Cryogenic buffer gas cooling has become common in this field
due to its ability to efficiently cool the rotational and vibrational degrees of
freedom in molecules [224].

Metal-fluorine diatomic molecules, among the species amenable to cryo-
genic buffer gas cooling, have been extensively employed in precision spec-
troscopy and laser cooling applications [220, 221, 222, 223]. For instance,
AlF has been recently theoretically and experimentally found to be feasible
for laser-cooling because of its highly-diagonal Franck-Condon factor in
its A1Π,v = 0← X1Σ+,v′ = 0 transition [29, 30]. Similarly, CaF, with its
ground state of 2Σ+, has been identified for years as a promising candidate
for direct laser cooling [221].

This Chapter focuses on the production of molecules in buffer gas sources.
In many of these sources, molecules are created through a chemical reac-
tion involving laser-ablated atoms with an initial temperature of several
thousand Kelvin and a fluorine-donor reactant gas. This process spans a
wide range of energy scales, involves complex reaction kinetics, and is not
well understood. Recently, there have been successful simulations of molec-
ular beams emerging from buffer gas sources based on general physical
properties [225, 226, 227]. However, the primary focus of these numerical
simulations is to investigate how the density and velocity of the buffer gas,
along with the design of the buffer gas cell, influence the cooling process
and dynamic characteristics of the molecular beam. Indeed, the impact of
the reactive gas has not been explored yet, neither experimentally nor theo-
retically. Additionally, properties of the molecular beam, such as its overall
yield, short- and long-term stability, and phase-space distribution, play a
crucial role in determining which downstream experiments are feasible.
Consequently, a thorough understanding of the chemistry in buffer gas cells
is essential to design molecular beams that are both brighter and colder,
thereby facilitating the implementation of subsequent cooling techniques.
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Our study investigates explicitly the formation efficiency of AlF and CaF
molecules after laser-ablating Al or Ca atoms in two fluorine-donor gases:
NF3 and SF6. The primary objective is to gain a deeper understanding
of the reaction dynamics and analyze how the specific fluorine donor gas
influences the properties of the molecular beam. Through molecular dy-
namics simulations, we demonstrate that the number and kinetic energy
of the product molecules depends not only on the intensity of the ablating
laser, which sets the reaction temperature but also on the nature of the
fluorine donor gas. Here, we investigate NF3 and SF6. These results lay the
foundation for a more detailed comprehension of the properties of buffer
gas molecular beams, enabling improved design and optimization in the
future. 1 .

7.1.2 Computational details and methodology

First, we must select an appropriate ensemble for simulating the Al/Ca+NF3/
SF6 reactions in the buffer gas cell. AlF and CaF molecules form when highly
energetic ablated metal atoms collide with lower-energy fluorine-containing
molecules. A grand canonical ensemble should be used during the simu-
lation to describe this non-equilibrium system adequately. However, this
approach is computationally expensive.

Nonetheless, we can make a reasonable approximation by considering
that the temperature of the ablated atoms is much higher than the buffer gas
temperature, making the atom temperature a suitable proxy for the reaction
temperature. This approximation is valid since the reaction takes less time
(∼ 1 ps) compared to the collision time between He atoms and F-containing
molecules, estimated to be around ∼ 500 ns, assuming a He-molecule elastic
cross-section of approximately ∼ 10−14 cm−2 and a He density of 1021 m−3.
Consequently, we can treat the process as energy-conserved and simulate
the reactions using the microcanonical ensemble.

In a reaction chamber with constant temperature, the thermodynamic
states of the molecules follow a Maxwell-Boltzmann distribution. Therefore,
in our molecular dynamics (MD) simulations, we initiate Nt trajectories,
with their initial states determined by the appropriate Maxwell-Boltzmann
distribution. The interaction potential has been calculated ab initio using

1 This chapter is written based on reference [228]: Xiangyue Liu, Weiqi Wang, Sidney
C. Wright, Maximilian Doppelbauer, Gerard Meijer, Stefan Truppe, and Jesús Pérez-
Ríos. The chemistry of AlF and CaF production in buffer gas sources. The Journal of
Chemical Physics, 157(7):074305, 08 2022.https://doi.org/10.1063/5.0098378
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the hybrid BHLYP functional [229, 230], previously shown to reproduce the
experimental rate constants for the Al + SF6 reaction [231]. Additionally,
we include the D3 dispersion correction [232] to account for long-range
interactions. All calculations are performed using the def2-TZVP basis
set [142, 143, 144], as implemented in the Gaussian 16 package [145].

7.1.3 Initial conditions

As depicted in Fig. 52, the metal atoms’ initial positions for the MD simu-
lations are randomly chosen from a sphere with a radius of 7 Å, centered
at either atom N or S of the target molecules NF3 or SF6. Here, we use the
molecules’ symmetry to restrict the range of angular degrees of freedom.
The speed of the metal atoms satisfies a Maxwell-Boltzmann distribution
at corresponding temperatures, and its direction is randomly sampled fol-
lowing the polar and azimuthal angles in spherical coordinates to ensure a
collision with the target molecule as sketched by the pink surface in Fig.52,
which represents the surface that connects all the fluoride atoms in the
molecules (NF3 or SF6).

7.1.4 Reaction probability

We compare AlF/CaF production reactions based on the reaction probability.
The reaction probability is defined as the probability that the reactants
result in a specific product state. In particular, we examine the probability
of obtaining the desired product AlF/CaF, as well as the probabilities of
forming by-products AlFn/CaFn (n = 2, 3). The reaction productivity can be
expressed as

Pr =
Nr

Nt
, (26)

where Nr denotes the number of trajectories leading to a given reaction
product. In particular, we run Nt = 1000 trajectories for each temperature
and colliding species, tracking the metal atom until it reaches a final state
beyond a distance of 7 Å from the N or S atom.
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v

v

Figure 52: Initial positions of Al/Ca atoms in the AIMD simulations, ran-
domly sampled from a symmetry-reduced sphere of radius 7 Å,
centered at the S or N atoms. The velocity vector direction is
randomly sampled to ensure an atom-molecule collision as the
pink surface sketches it. Figure reproduced from ref. [228].
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7.2 Results and discussions
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7.2.1 Reaction probability
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Figure 53: Reaction probability of (a) AlF/CaF and (b) AlFn/CaFn by-
products for hot collisions of Al/Ca with SF6 and NF3 gases
as a function of the temperature. Figure reproduced from ref.
[228].

The efficiency of AlF and CaF molecule formation in Al/Ca + SF6/NF3
collisions is presented in Fig. 53, displaying the reaction probabilities for
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different products as a function of temperature. Across all temperatures,
AlF production is consistently more efficient than CaF, regardless of the
type of reactant gas used in the reaction. This observation aligns with
experimental findings where the brightness of CaF and AlF beams emerging
from a buffer gas cell was compared[224, 223, 233]. Indeed, at higher
temperatures, the reaction probability for AlF and CaF production becomes
more pronounced, as expected for reactions with a barrier. On the contrary,
regarding by-products, CaF2 is produced more efficiently than AlF2 and
AlF3 in both gases, as demonstrated in panel (b) of Fig. 53.

Across the entire temperature range studied, the reaction probability
for AlF and CaF formation via NF3 remains higher than that via SF6, as
indicated in panel (b) of Fig. 53. Notably, this difference can be as large as
an order of magnitude for specific temperatures. Therefore, Al/Ca + NF3 →
NF2 + AlF/CaF reactions exhibit a lower reaction barrier compared to Al/Ca
+ SF6 → SF5 + AlF/CaF and Al/Ca reactions. Experimental determination
of the activation energy for Al + SF6 and Al + NF3 reactions yields values
of 9.5 kcal/mol (4781 K) and 5.99 kcal/mol (2990 K), respectively [231].
Consequently, using NF3 in the buffer gas cell is expected to produce a
brighter beam than using SF6. Additionally, employing NF3 reduces the
number of by-products and potential contamination in the buffer gas cell.

The higher reaction probability of producing AlF or CaF molecules when
using NF3 can be attributed to the difference in the bond energy of F-atoms
in NF3 and SF6. Specifically, the bond energy of F-atoms in NF3 is 2.9
eV [234], which is 1.1 eV lower than the bond energy of F-atoms in SF6 (4.0
eV) [235]. As a result, removing a fluorine atom from NF3 is easier than
from SF6, leading to a higher reaction probability at a given temperature.
Additionally, the bond energy of AlF (6.9 eV) is 1.4 eV larger than that of
CaF (5.5 eV), leading to a higher probability of forming AlF molecules than
CaF. This simple picture is further supported in Section 7.2.2, which delves
into the role of stereochemistry.

The temperature dependence is analyzed in more detail in panels (a-b)
and (d-e) of Fig. 54. These panels display the reaction probability as a
function of collision energy and the initial angle of the metal atom, as
introduced in Fig. 52. For the SF6 reactions, the production of either AlF or
by-products generally occurs at relatively high collision energies (≳ 0.8 eV
∼ 9300 K). In contrast, AlF is produced at much lower collision energies of
≳ 0.4 eV ∼ 4600 K when NF3 is used. The formation of reaction by-products
is only observed at very high energies ≳ 1.6 eV (∼ 18600 K) in both SF6
and NF3. This suggests that such reactions require the activation of F atoms
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promoted by the collision with an Al atom. However, the production of
by-products necessitates the activation of more F atoms, indicating a more
complex reaction mechanism.

In the case of reactions involving Ca atoms, the production of CaF or
CaF2 occurs at similar collision energies (≳ 0.8 eV) when reacting with SF6.
Interestingly, the reaction preferentially produces CaF2 rather than CaF.
Conversely, in the reaction of Ca + NF3, CaF is produced at higher collision
energies ≳ 1.2 eV (∼ 13900 K), while the production of CaF2 occurs over a
broader range of collision energies. These observations indicate that Al and
Ca undergo distinctly different reaction mechanisms when reacting with
SF6 and NF3.

7.2.2 Stereochemistry

The orientation of the reactants affects the efficiency of a given chemical
reaction. These effects are due to subtleties in the underlying energy
landscape of every molecular interaction, such as geometry effects or local
equilibrium states. Here, by looking into the reaction probability as a
function of the atom’s angle of incidence, we can evaluate selectivity effects
based on the orientation of the interacting partners, as presented in panels
(a), (b), (d), and (e) of Fig. 54. Concretely, it informs us about the anisotropy
of the interaction and the geometry effects on the interaction energy.

First, one notices that the production of AlF/CaF via NF3 occurs over a
wider range of angles than in the case of SF6, indicating a more isotropic
interaction. Similarly, when comparing the production of CaF and AlF in SF6,
we notice that CaF is formed only at incident angles close to 30◦, whereas
AlF is formed over a range of angles between 10◦ and 45◦. The same effect,
although not as pronounced, is observed in the case of NF3. AlF is produced
at angles between 0 and 90◦, and CaF for angles between 20◦ and 90◦.
Therefore, AlF formation is less selective than CaF, which may impact the
reaction probability.

7.2.3 Velocity distribution of the products

When AlF and CaF are produced through the reaction of either reactant
gas, a substantial amount of energy, which can be several thousand kelvins,
is released. This energy release is quite significant, as it is comparable
to or even exceeds the collision energy involved in the reaction process.
This energy can be carried away through the translational motion of the
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resulting products, or dissipated through the internal energy of the pro-
duced molecules. This internal energy includes electronic, vibrational, and
rotational energies of the AlF and CaF molecules.

Panels (c) and (f) of Fig. 54 depict the velocity distribution of AlF and CaF.
Notably, it is observed that independent of the colliding atom, SF6 produces
a narrower velocity distribution compared to NF3. This phenomenon may
arises from the higher bond energy of F-atoms in SF6, which is 1.1eV
greater than in NF3, resulting in lower exothermicity. Furthermore, the
presence of NF3 as a reactant leads to a higher number of molecules with
lower velocities. This behavior seems to be correlated with the reaction’s
stereochemistry: lower incident angles in Al/Ca + NF3 reactions increase
the reaction probability significantly, while Al/Ca + SF6 reactions exhibit
the highest reaction probability at larger incident angles. The lower incident
angle facilitates a more efficient energy transfer between the metal atom
and the F atom, as opposed to larger incident angles, where different F
atoms and internal excitation of the F-containing molecule play a role in the
dynamics. Therefore, employing NF3 is preferable when aiming to obtain
colder beams from a buffer gas cell. Finally, it is worth noting that the
temperature has only a subtle influence on the most probable velocity (or
distribution mode). This is expected, as the temperature exerts minimal
impact on the reaction channels.

7.2.4 By-products

In this section, we delve into the investigation of by-products generated dur-
ing the Al + SF6/NF3 and Ca + SF6/NF3 reactions. Specifically, the former
reaction may produce AlF2 and AlF3 molecules as by-products, while the
latter leads to CaF2. The summarized results are presented in Fig. 55, which
reveals distinct behaviors in the reaction probabilities for the formation of
by-products between AlF and CaF.

When reactions involve SF6, a higher reaction probability is observed
for the formation of by-products compared to those involving NF3. This
difference can be attributed to the fact that SF6 provides more available F
atoms compared to NF3, leading to increased opportunities for by-product
formation.

Moreover, it is observed that reactions involving Ca exhibit a higher prob-
ability of generating by-products compared to reactions involving Al. This
can be attributed to the fact that CaF2 takes precedence as the predominant
product in reactions involving Ca, with CaF being produced as a dissociation
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product of CaF2. For a more comprehensive understanding and detailed
information, please refer to Section III.E of [6].
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Figure 54: (a) Reaction probability to produce AlF by using SF6. (b) Reaction probability of AlF using NF3.
(c) Velocity distribution of AlF, normalized to the corresponding reaction probabilities at different
temperatures. (d) Reaction probability of CaF using SF6.(e) Reaction probability of CaF using NF3.
(f) Velocity distribution of CaF, normalized to the corresponding reaction probabilities at different
temperatures. Figure reproduced from ref. [228].
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NF3 + Ca. Figure reproduced from ref. [228].
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7.3 Conclusion and outlook
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In this work, we have shown that the probability of forming AlF and CaF
via ablation of metal atoms in an F-containing reactant gas is higher when
using NF3 as a reactant gas than in the case of SF6. Indeed, this effect seems
to relate to the reaction’s exothermicity: the more significant the difference
between the binding energy of the product (AlF/CaF) and the bond energy
of fluorine into the reactant molecule, the larger the reaction probability
is. In particular, the exothermicity for AlF from NF3, AlF from SF6, CaF
from NF3 and CaF from SF6 is given by 4.0 eV, 2.9 eV, 2.6 eV and 1.5 eV,
respectively, in line with the observed probabilities shown in panel (a) of
Fig. 66. These are further depicted in Fig. 56, in which the exothermic
energy corresponds to the length of the arrows. Therefore, it is easier for
a hot metal atom to take a fluorine atom from an NF3 than from an SF6

molecule. Moreover, Fig. 56 shows a detailed list of XF molecules, taken
from Ref. [20] that can be formed via exothermic processes utilizing NF3

and SF6 gases. As a result, and concerning the lower binding energy of the
N-F bond in NF3, many XF molecules could be formed in a buffer gas source.
In other words, NF3, as the fluorine-donor gas, will help to explore more
fluorine-containing diatomic molecules. Given this, XeF2 is anticipated to
be a good candidate as an F-atom donor based on its very low bond energy
in comparison with AlF and CaF molecules.

We have shown that different fluorine-donor molecules in a buffer gas cell
environment have an important impact on the target molecules’ production
efficiency and velocity distribution. In particular, we have demonstrated that
the Ca/Al + NF3 reaction is a more efficient route towards the production of
CaF and AlF molecules than the Ca/Al + SF6 one. Indeed, the difference in
reaction probability can be as large as one order of magnitude. In addition,
we have identified the main reaction mechanisms for those reactions using
a tree-shaped reaction model. Our results indicate that the buffer gas
cell’s amount of by-products and possible contamination depends on the
fluorine-donor molecule. The velocity distribution of the products depends
drastically on the reactants. For instance, we notice that Ca/Al + NF3 leads
to a broader velocity distribution than Ca/Al + SF6. The higher reaction
efficiency with NF3 means that a significantly lower flow rate of reactant
gas can be used. This reduces contamination and the build-up of ice in
the cell, thereby securing a more efficient thermalization of the molecules
with the cryogenic helium. In addition, the lower velocity of the reactants
reduced the number of collisions required to cool the molecules. A lower
helium flow reduces the overall gas load in the system and allows for a
faster extraction from the cell, which is highly advantageous for experiments
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Figure 56: The dissociation energy of diatomic monofluoride molecules XF,
for different atoms X, taken from Ref. [53]. The two red lines
denote the limits for the bond energy of S-F in SF6 whereas the
black lines denote the same magnitude for NF3. The arrows
indicate the exothermic energy of the reactions to form CaF and
AlF. Figure reproduced from ref. [228].

that are sensitive to collisions with helium or benefit from short molecular
pulses.

Finally, we can conclude that, in general, it would be better to use NF3 as
a fluorine-donor molecule than SF6 for forming metal-fluorine molecules.
It is worth emphasizing that a better understanding of the chemistry in a
buffer gas helps design better buffer gas cells, thereby achieving brighter
and colder molecular beams, which are required to exploit the full potential
of ultracold molecules.
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8.1 Background
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8.1.1 Motivation

The ab initio dynamics simulations of a system usually require information
about the system’s energy at certain atomic arrangements, which is the po-
tential energy surface (PES) of the system. The concept of PES is critical for
understanding atomic and molecular systems’ spectroscopic and scattering
properties. As a result, the development of accurate PESs is one of the most
active research areas in chemical physics. For instance, in cold and ultracold
molecule physics, it is necessary to develop efficient and general fitting
techniques to calculate PESs for tetra-atomic systems relevant to calculating
sticky collision lifetimes. Specifically, ultracold molecule-molecule collisions
may lead to the formation of long-lived complexes, as observed in bi-alkali
molecules [236, 237, 238, 239, 240, 241], resulting in a significant unex-
pected molecular loss [236, 242] and compromising the utility of ultracold
molecules in many applications. So far, most theoretical efforts have been
dedicated to bi-alkali systems. However, other molecules like CaF [243]
or AlF [126] are getting more attention these days. Indeed, in the case of
AlF-AlF, there is no available PES despite being one of the most prospective
candidates for direct laser cooling. 1

8.1.2 Potential energy surface construction via
machine-learning methods

While the ab initio computation of energies for PES is of great importance,
it is usually computationally demanding. An emerging alternative, which
has gained popularity in recent years, involves applying machine learning
techniques to mathematically model the relationship between the system’s
structure and its energy. Precisely, the energy of the system is computed
using electronic structure methods for a defined collection of configurations
utilized to train and validate a specific machine learning algorithm. Then,
the trained model is harnessed to forecast the energy of novel configurations.
Therefore, this approach avoids dealing with the Schrödinger equation and
leverages the existence of reference data. It capitalizes on the notion that,
in principle, when coupled with advanced machine learning methodolo-

1 This chapter is written based on reference [244]: Xiangyue Liu, Weiqi Wang, and
Jesús Pérez-Ríos. Molecular dynamics-driven global potential energy surfaces:
Application to the AlF dimer. The Journal of Chemical Physics, 159(14):144103, 10
2023. https://doi.org/10.1063/5.0169080
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gies featuring appropriate forms and parameters, virtually any real-valued
function can be accurately fitted [92].

Various machine-learning methods have been developed to construct
PESs, finding widespread applications in the fields of chemistry, physics,
and materials science [245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267]. In the
case of small systems comprising fewer than a few dozen atoms, machine-
learning methods have been applied to fit high-level electronic structure
reference data. Representative work includes the permutationally invari-
ant polynomials (PIP) [253, 254, 255, 256], which aims to replicate the
system’s permutational symmetry. This approach has subsequently been ex-
panded to fundamental invariants, where the dimension of representations
is further reduced by excluding redundancies and incorporating only the
irreducible secondary and primary invariants, enabling the investigation of
larger systems [268]. For large systems, localized structural representations
[258, 259, 260, 261, 262] have been developed. These representations cap-
ture local atomic environments while preserving symmetry invariance, ren-
dering them suitable for investigating extensive systems. For comprehensive
reviews on this topic, please refer to [269, 270, 271, 272, 270, 271, 273].

The construction of machine-learning PESs generally involves the follow-
ing stages [272]:

• Preparing the reference data: The initial phase entails sampling the
configurational space of interest utilizing specific sampling methods
depending on the applications.

• Model establishment: In this step, the system’s structures are firstly
translated into inputs suitable for machine-learning regressors. Then,
the models can be constructed with certain regressors using the
reference datasets.

• Testing: The models are subjected to validation within validation sets
and the optimal models are subsequently applied to various test set
scenarios.

8.1.3 Structural representations

Machine-learning PESs map system geometries to their corresponding en-
ergy values, relying on structural information presented to the regression
method in certain forms. A crucial aspect of a machine-learning potential is
the preservation of energy invariance with respect to translation, rotation,
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and permutation [262]. However, these invariances are challenging to
reproduce solely through the regression method, necessitating their accu-
rate description in the input data for regression. Consequently, utilizing
machine-learning regressors directly on Cartesian coordinates is not optimal
due to the lack of translational and rotational invariance. This naturally
leads to considering internal coordinates, such as interatomic distances,
bending angles, and dihedral angles, as they remain unaffected by global
rotation and translation. Nonetheless, permutational invariance must be
reproduced in the structural representation.

For large systems such as extended systems, the success of machine
learning methods is greatly indebted to the innovative strategy devised by
Behler and Parrinello [258]. Their approach involves utilizing a structural
representation named “symmetry functions” to summarize only the local
environment of each atom within a cutoff sphere instead of considering
the entire environment. This approach effectively addresses challenges
posed in extended systems, where the replication of lattice cells can lead
to innumerable dimensions. Meanwhile, this approach offers the flexibility
of altering the number of atoms in the system from reference data to
application, presenting a notable advantage.

In recent years, various forms of representation have been proposed. The
atomic environment can be expanded by a series of basis sets of different
forms to restore rotational and permutational invariance. For example,
in the Smooth Overlap of Atomic Positions (SOAP) [260], the spherical
harmonics basis is employed to characterize atomic environments. In a
different vein, invariance can be explicitly incorporated into a hierarchy of
k-body geometry functions for atom pairs, angles, and similar structural
aspects, as seen in many representations, such as the many-body tensor
representation [262]. A comprehensive assessment of the functional forms
and the performance of several representations can be found in [274].

The situation is different for systems comprising only a small number of
atoms. The overall dimensions of the system are sufficiently low to employ
a structural representation encompassing all the atoms within the system.
This offers the advantage of capturing structural information without any
loss of information due to the truncation of long-range interactions, as
is the case when using a local representation. In this work, we adopt a
simple representation based on the geometry functions derived from internal
coordinates.
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8.1.4 Regression methods in machine-learning potentials

The structural representations can be seamlessly integrated with various
regression methodologies to establish connections between structural in-
formation and energy. For instance, in the early applications of PIP, it was
directly combined with linear least squares regression [253]. Subsequently,
PIP was incorporated as input into neural networks [256, 257], leading to
improved prediction capabilities. Notably, neural networks have emerged as
potent tools for constructing PESs for both small molecules and materials,
after the pioneering work of Behler and Parrinello [252, 258, 259, 268].
Gaussian Process Regression (GPR) has also found extensive applications
across various systems [250, 251, 252, 255, 275, 260, 261]. In this study,
GPR has been utilized to construct the PES of AlF-AlF. This approach offers
the advantage of not only predicting energies but also providing associated
uncertainties.
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8.2 Method and computational details
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8.2.1 Structural representation of AlF-AlF complex

When considering a system consisting of two diatomic molecules, it is
a natural choice to use Jacobi coordinates to describe its geometry. As
illustrated in Fig. 57, Jacobi coordinates consist of two interatomic distances
rAl-F, two azimuthal angles θ1 and θ2, one torsion angle φ , and the inter-
molecular distance R associated to the vector joining the center of mass of
the two molecules.

However, Jacobi coordinates are not ideal for the structural representa-
tion to be fed to the machine-learning regressors. As introduced in 8.1.3, a
representation should adhere to the symmetries that preserve or alter the
energy. In this context, Jacobi coordinates maintain translational and rota-
tional symmetry but do not maintain the system’s permutational invariance.

For the AlF-AlF complex, the configuration can be described by

f (x) = Ŝ{G(x, i)}, (27)

wherein x represents any geometry variable, and i labels atoms within the
molecular system. Here, to account for Coulomb and long-range interac-
tions, we incorporate two-body interactions characterized by the inverse
interatomic distances r̄i j−1 between atoms i and j, as well as the Morse-like
exponential terms e−r̄i j. In order to distinguish the chemical differences
between different pairs of atoms, the interatomic distance r̄i j has been
normalized by the equilibrium interatomic distance r∗i j, resulting in the
expression r̄i j = ri j/r∗i j. The permutational invariance can simply be restored
with a symmetrization operator Ŝ that sorts the two-body terms of the same
atom pairs, i.e., the pair-wise distances are grouped by the chemical species.

Since the system consists of only four atoms and is non-periodic, reducing
the dimensionality of the structural representation is unnecessary. Further-
more, we have assessed the effectiveness of higher-order representations,
such as incorporating three-body polar angles and four-body dihedral angles.
However, in the case of the AlF-AlF system, we observed that the improve-
ment achieved through these additional representations is negligible.

8.2.2 The regressor

In this work, we utilize the GPR[92] as the regressor, to fit the relationship
between the structural representation and the energy of the AlF-AlF complex.

We have tested different combinations of the kernels by analyzing the
mean absolute error (MAE) and median absolute error of the test-set predic-
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Figure 57: Jacobi coordinates for the AlF dimer. Figure reproduced from ref.
[244].

tions. As a result, the Matérn kernel with ν = 5/2 yields the most accurate
results. A dot-product kernel can slightly improve the fitting. Furthermore,
a white noise kernel has been applied to indicate the noise level of the
training set, which is typically very small for quantum chemistry predictions.
In our particular case, we have set the white noise level to be no smaller
than 10−7.

8.2.3 The datasets

To generate the reference ab initio datasets, eight ab initio MD trajectories
have been run within the canonical ensemble at 200 and 800 K using dif-
ferent initial configurations. At 200 K, the AlF-AlF system adopts stable
configurations characterized by a dimer complex structure with short inter-
atomic distances. However, at higher temperatures, such as 800 K, the MD
simulation allows for sampling configurations with higher energies. This
includes configurations like dissociated states where the molecules/atoms
are no longer in close proximity to each other. The sampling of these unsta-
ble or metastable structures is vital for constructing the training set, as they
capture the long-range interactions present in the system. Including these
configurations in the training set helps to accurately capture the system’s
behavior in the long-range regions. Consequently, we have sampled 18,732
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configurations relevant to short- and long-range interactions, with the inter-
molecular distance R ranging from approximately 1.5 to 17.5 Å. The test set,
on the other hand, comes from a different MD trajectory with 3633 steps,
simulated at 800 K, to sufficiently encompass important configurations.

To test the performance of the machine-learning PES with different sizes,
we have generated training sets from 2,000, 5,000, and 10,000 configura-
tions randomly selected from the 18732 MD sampled configurations. We
have also created two additional training sets by selecting 2,271 and 5,026
“landmarks”. These landmarks correspond to configurations with the highest
high-dimensional distances from the rest of the data points in the represen-
tation space. Ideally, they should be representative of the configurational
space explored by MD simulations and, therefore, more efficient than the
randomly sampled configurations to be used as the training set.

In earlier studies involving tetra-atomic systems such as NaK-NaK and
CaF-CaF complexes, the training set was generated using a Latin hypercube
sampling, which employed randomly selected equidistant grid points within
the range of Jacobi and spherical coordinates [276, 243]. In our work,
to assess the suitability of grid-based training sets for MD simulations,
we have also generated an additional training set through the random
hypercube sampling of the Jacobi coordinates of the dimer, as depicted
in Fig. 57. Specifically, we have varied the Al-F bond length rAl−F and
the intermolecular distance R over a range from 2.5 to 25 and 1.5 to 75 Å,
respectively. Additionally, the angular degrees of freedom θ1, θ2, and φ have
been varied over a range of 0 to π.

8.2.4 Ab initio calculations

The ab initio energies have been calculated with the coupled-cluster theory
with single, double, and perturbative triples [CCSD(T)] implemented in
the Molpro package [187, 188]. The forces have been calculated with
the second-order Møller– Plesset perturbation theory (MP2) level. The
calculations were performed with the aug-cc-pVQZ basis set [6, 173, 5].

8.2.5 Active learning

The accuracy of a fitted PES is contingent upon several factors, includ-
ing not only the chosen representation, regression methods, but also the
composition of the training set. Although training sets can be generated
through hypercube sampling [276, 243], there is a distinct advantage when
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the training and test sets sample similar regions within the configurational
space. This congruence facilitates a seamless generalization of the trained
model to specific applications.

However, certain scenarios, particularly when investigating dynamic
properties at finite temperatures, necessitate the use of ab initio molecular
dynamics (AIMD) simulations with thermostats. In such cases, the sim-
ulations can venture beyond the interpolation ranges, exploring regions
not adequately represented by the training set. To address this challenge,
active learning strategies have been harnessed to assimilate these “outliers”
of the fitted PES [272, 277, 264, 265, 266, 267, 263, 275]. A noteworthy
illustration of this concept is the real-time incorporation of additional ab
initio training points during machine-learning-accelerated AIMD simulations
[278, 279, 263, 267, 280].

On the other hand, certain regions of the PES pose greater challenges than
others for the machine learning model. To reduce prediction uncertainty
and enhance accuracy, the usual approach involves incorporating additional
training data specifically in the challenging regions, so that the geometry-
energy relationship can be constrained by the newly included data. To
minimize additional computational expenses, one can benefit from an active
learning scheme during MD simulations. Specifically, one only calculates
the ab initio energies for configurations that cannot be accurately described
by the PES model.

Various methodologies exist for implementing an active learning scheme
in molecular dynamics simulations [272]. Among these, the most direct ap-
proach involves actively incorporating new ab initio points into the training
set and subsequently retraining the model. This process is iterated until the
model fulfills a specified convergence criterion. At that juncture, the model
can be deemed to have attained a satisfactory level of accuracy, rendering it
suitable for application to test sets or other tasks. Convergence criteria can
take the form of metrics such as the average error (MAE, RMSE) on the test
set or the maximum variance of predictions, which gauges the predictive
uncertainty associated with the test set. However, in the context of this
study, we adopt an alternative approach. In our case, the repulsive wall
represents the most difficult region to handle. In the meantime, certain
regions of the high-dimensional PES in the training sets may be sparsely
sampled, leading to lower accuracy in those areas.

Fig. 58 depicts the active learning scheme implemented in this work. In
the first step, an initial training set has been used to construct an initial
PES model, which is then employed in the MD simulation. Then, during
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each MD step, the PES model predicts the energy of the current AlF-AlF
configuration.2 To decide if the energy of the current configuration re-
quires ab initio calculation, we rely on a specific criterion. Typically, in
GPR, inaccurate predictions are accompanied by relatively large prediction
uncertainties, reflecting its lack of confidence in those specific regions of the
PES. Hence, the prediction uncertainty can serve as a reliable criterion to
determine whether a specific configuration can be accurately predicted. If
the uncertainty exceeds a given threshold, the ab initio energy is calculated
and added to the training set, thereby improving the overall PES model,
which will be used for the next MD step. This iterative process continues
until the MD sampling reaches convergence.

Initial ab inito calculation

Trained PES model

MD step

Y

N

Uncertainty < threshold?Label with ab 
inito calculation

Add to the 
training set

Figure 58: Schematic diagram of the active learning approach in this work.
Starting from an initial trained model, the MD simulation is
performed with the force calculated by the finite difference of
energies predicted by the model. If the energy prediction uncer-
tainty of the new MD step is larger than the threshold, then the
configuration will be calculated with ab initio method and added
to the training set. Figure reproduced from ref. [244].

2 The energies used for finite difference calculation of the force, are also predicted by
the PES model.
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8.3 Results and discussions
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8.3.1 Accuracy of the initial PES models

Before utilizing the active learning approach, we want to evaluate the accu-
racy of our approach in reproducing the CCSD(T)/aug-cc-pVQZ energies.
This assessment will guide us in selecting an appropriate initial training
set. Specifically, we are interested in the performance of the models as a
function of the training set size, generated with the strategies described in
Sec. 8.2.3.
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Figure 59: The GPR-predicted energy versus the CCSD(T)/aug-cc-pVQZ
energy. Figure reproduced from ref. [244].

The comparison of model performance is presented in Fig. 59, tested
on the test set obtained from an MD trajectory consisting of 3633 steps.
As expected, when the training sets are composed of randomly selected
configurations from the MD trajectories, increasing the size of the training
set enhances the model’s performance. By increasing the training set size
from 2000 to 5000 configurations, the error is reduced by approximately
25%, resulting in mean and median absolute errors of 0.78 meV/atom
and 0.018 meV/atom, respectively. This demonstrates the high accuracy
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achieved by the models with more training data. When using 10,000
training configurations, the mean and median absolute errors no longer
exhibit further improvement. However, predictions on the outliers with the
highest energies get closer to the reference energy, indicating the model’s
ability to better capture extreme cases.
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Figure 60: MAE in different regions of intermolecular distance R, tested on
the test set with 3633 MD steps. The MAE from the model with
5000 training data is labeled in green. Figure reproduced from
ref. [244].

Despite the impressive overall accuracy of the models, they exhibit lower
accuracy for configurations resulting in high interaction energies. These
configurations correspond to the repulsive region at short intermolecular
distances R. In this region, the model encounters challenges in accurately
predicting the interactions due to the extreme nature of the repulsive forces
and the small number of configurations within the training data in these
specific high-energy regions. To gain further insights into the accuracy of
our model with respect to R, we calculated the mean absolute error for
different R regions, and the results are displayed in Fig.60. This Figure
reveals that the region R ∈ [0,2.5] Å exhibits the highest mean absolute
error across all models. On the contrary, for R > 7.5 Å, the errors are below
0.1 meV/atom for all models. These effects are better shown in the more
comprehensive analysis presented in Table 10, which reports the mean
and median absolute errors, respectively, both of which imply a scarcity of
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Table 10: The mean absolute error and median absolute error for the test
set with 3633 MD steps, presented in meV/atom, with the errors
reported for the entire test set, as well as for configurations within
different intermolecular ranges of R (in Å).

Mean absolute error (meV/atom)
Range (Å) all [0,2.5] [2.5,5] [5,7.5] [7.5,10] [10,12.5] [12.5,15] [15,17.5]
Model 2000 1.18 15.1 2.9 0.41 0.088 0.013 0.0088 0.022
Model 5000 0.78 6.80 2.67 0.36 0.070 0.014 0.0077 0.0080
Model 10000 0.85 6.50 3.06 0.49 0.071 0.014 0.0077 0.0071
Landmark 2271 0.81 4.70 3.16 0.52 0.074 0.032 0.023 0.027
Landmark 5026 0.85 5.99 3.18 0.51 0.065 0.016 0.012 0.012
Hypercube 5000 15.81 180.61 41.10 9.70 0.865 0.300 0.058 0.110

Median absolute error (meV/atom)
Range (Å) all [0,2.5] [2.5,5] [5,7.5] [7.5,10] [10,12.5] [12.5,15] [15,17.5]
Model 2000 0.024 4.49 1.51 0.25 0.048 0.009 0.0068 0.0069
Model 5000 0.018 3.05 1.37 0.19 0.031 0.010 0.0055 0.0047
Model 10000 0.019 2.74 1.65 0.19 0.071 0.010 0.0052 0.0039
Landmark 2271 0.044 2.24 1.57 0.27 0.047 0.021 0.019 0.021
Landmark 5026 0.024 2.14 1.63 0.22 0.034 0.010 0.0093 0.0089
Hypercube 5000 0.13 27.69 8.64 1.20 0.184 0.062 0.030 0.040

configurations within the R ∈ [0,2.5] Å range. This scarcity of data points
in the R ∈ [0,2.5] Å region leads to higher errors. This observation leads us
to adopt an active learning approach since it requires additional ab initio
training data in these regions.

As summarized in Table 10, we noted a substantial disparity in per-
formance between the model trained on 5000 hypercubic points and the
models generated from MD data. The errors observed in the former case are
more than tenfold higher than those observed in the latter. This contrast can
be attributed to the inherent nature of molecular dynamics, which samples
the configurational space in a manner significantly distinct from a random
distribution.
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Figure 61: The relationship between the absolute error and the uncertainty
of GPR prediction. Figure reproduced from ref. [244].

In addition, as introduced in Sec. 8.2.3, two training sets have been con-
structed with 2,271 and 5,026 landmarks. We aim to use minimum training
data in this approach, assuming that the landmarks are representative of
the sampled configurational space. Indeed, we observe that the training
sets with 2,271 and 5,026 landmarks achieve comparable overall accuracy
to the models constructed from the training set with 10,000 randomly se-
lected configurations. However, in the long-range tail of the PES, models
with landmarks show larger errors than the ones trained with randomly
selected configurations. This effect could be related to the possibility that
configurations in the long-range of the PES exhibit greater similarity in the
representation space, resulting in a smaller percentage of configurations
being selected from the long-range compared to the short-range. Conse-
quently, the models might not allocate sufficient weight to the long-range
data during training. In fact, in machine-learning applications in other
fields, such as image processing, it has been noted that incorporating similar
training data with slight variations can enhance model accuracy and reduce
overfitting [281]. Furthermore, considering that MD simulations extensively
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sample configurations associated with repulsive short-range interactions
at high temperatures, it raises doubts about the suitability of landmark
models for simulation purposes. Hence, it is more precise to utilize the most
pertinent configurations visited by the MD simulations as training points.
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Figure 62: Number of new ab initio points additionally required in active-
learning during the MD simulation, tested on the MD trajectory
with 3633 steps. The uncertainty > 0.01 eV has been used as the
criterion for additional ab initio calculations. Figure reproduced
from ref. [244].

So far, we have compared the accuracy of different models using randomly
selected training data and landmarks. However, we still need to determine
the optimal model for the initial PES model for active learning. Our interest
lies in the accuracy of various models and their efficiency, which can be
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quantified by the number of additional ab initio calculations required during
MD simulations. To address this, we have implemented our active learning
approach with different initial training sets and exposed the models to the
MD trajectory with 3,633 MD steps. The results are shown in Fig. 62, with
the uncertainty threshold set to be 0.01 eV.

The models trained on configurations randomly selected from eight MD
trajectories necessitate approximately 10% of the configurations to be calcu-
lated via ab initio calculations. As anticipated, models with more extensive
training data require fewer additional ab initio calculations. We observed
a convergence pattern of new ab initio points concerning the number of
MD steps. This suggests that in longer simulations, it is likely that fewer
than 10% of the configurations will be required to be calculated ab initio.
Similarly, training sets with landmark configurations exhibit comparable
efficiency. However, they require slightly more ab initio calculations. In
contrast, the initial model trained on hypercubic grids demands the ab initio
evaluation of almost 65% of the configurations, indicating the poor effi-
ciency of Latin hypercube sampled training sets particularly in the context
of MD simulations. Indeed, the dissimilarity in the distribution of sampled
configurations in the configurational space between MD simulations and hy-
percubic sampling may account for this variation. Consequently, employing
Latin hypercube sampling would lead to prolonged computational times,
while adopting the PES models from MD training sets would yield a more
efficient approach.

8.3.2 Implementation in Realistic MD Simulations

The previous tests were conducted on a test set consisting of 3,633 configu-
rations from a short MD trajectory. In practical applications, MD simulations
can take much longer to sufficiently sample the configurational space and
achieve equilibrium and achieve equilibrium. For example, a typical MD
simulation for estimating the AlF-AlF complex lifetime should be at least 10
times longer than its lifetime, which can be several nanoseconds. To further
evaluate the feasibility of our approach in realistic simulations, we have
performed a simulation using the replica-exchange molecular dynamics
(REMD) method [282, 283]. REMD is an enhanced sampling technique
that efficiently facilitates the attainment of dissociation equilibrium at low
temperatures, effectively reducing the simulation time required. In this
study, we have simultaneously simulated 10 trajectories at temperatures
ranging from 200 K to 1000 K. Each of the ten replicas has been run for a
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total of 5.4 ns, resulting in a comprehensive simulation time. For the REMD
simulation, we have employed the active learning approach described above,
using an initial PES model trained with 22,365 configurations obtained from
all nine MD trajectories.

2 5 8 11 14 17
Intermolecular distance R (Å)

Figure 63: Distribution of intermolecular distance R of the configurations
requiring additional ab initio calculations in the MD simulation
of AlF-AlF complex. Figure reproduced from ref. [244].

During the REMD simulation, only a small subset of 2,038 configurations
(approx. 0.008%) have been selected out of 26,891,350 REMD steps for
further CCSD(T) calculations. These selections were based on a prediction
uncertainty criterion of 0.05 eV. The chosen configurations are mainly
concentrated in the regions with intermolecular distances (R) below 5 Å,
as shown in Fig. 63. As a result, we have a PES model training on 24,403
configurations.

To assess the accuracy of the model, a comparison has been made between
the CCSD(T) reference energies and the model predictions along a one-
dimensional profile of the PES, as shown in Fig. 64. Even though the
uncertainty is more significant in the repulsive region than in the long-
range interactions, the model’s overall precision remains remarkably high.
This underscores the model’s reliability and ability to capture the system’s
behavior across the entire PES accurately.
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Figure 64: An one-dimensional profile of the PES, showing the ab initio
and predicted energies with the prediction uncertainty indicated
by shaded regions. The model is trained with a training set of
24,403 configurations. The total energy is referenced to the
energy of the dissociated AlF-AlF complex. Figure reproduced
from ref. [244].

8.3.3 Properties of the PES

Table 11 provides an overview of the general properties of the ab initio PES.
It is particularly noteworthy that the reactants must overcome 11.56 eV of
energy to undergo the transformation: AlF + AlF→ Al2 + F2. As a result,
this reaction is highly endothermic.
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Table 11: The CCSD(T)/aug-cc-pVQZ relative energies of various configu-
rations. The energies are referenced to the potential energy of
two AlF molecules with the intermolecular distance R = 20 Å.
In this case, the geometry of AlF molecule has been fixed to its
CCSD(T)-optimized geometry with d(AlF) = 1.669 Å.

Configuration Relative energy (eV)
AlF + AlF (d(AlF-AlF) = 20 Å) 0.0

AlF-AlF complex -0.696
Al2 + F2 (d(Al2-F2) = 20 Å) 11.561

Dissociated 4 atoms (d(Al-F) = 20 Å) 18.167

Figure 65: Configurations of AlF-AlF complex, optimized from the ML-fitted
PES (black), and compared with CCSD(T)/aug-cc-pVQZ opti-
mized geometry (red). The ML-predicted relative energy of the
complex is -0.695 eV, referenced to the potential energy of two
AlF molecules with the intermolecular distance R = 20 Å.

Based on the PES model, the stable configuration of the AlF-AlF complex
has been optimized using the Fast Inertial Relaxation Engine (FIRE) method
[284]. The resulting geometry exhibits a D2h symmetry, with all Al-F bond
lengths being almost identical, as shown in Fig. 65. This geometry closely
matches the CCSD(T)-optimized structure, with very small differences in
Al-F bond lengths less than 0.0004 Å, while the predicted energy is only
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0.0025 eV higher than the CCSD(T) result. As a result, the binding energy
of the AlF-AlF complex is 0.69 eV.

Notably, there is no barrier for the atom-exchange reaction Al(1)F(2) +
Al(3)F(4) = Al(1)F(4) + Al(3)F(2). Indeed, this reaction has been frequently
observed during the reported MD simulations of the AlF dimer.

An intriguing observation is that the D2h configuration stands as the
sole stable configuration in the PES, which is in contrast to the behavior
observed in CaF[243] or NaK [276]. Irrespective of the initial configurations
employed, the geometry optimization of AlF-AlF consistently converges to
the stable D2h configuration. In contrast, other configurations, such as
the local minimum configuration found for the CaF-CaF complex with Cs

symmetry, are unstable for the AlF-AlF complex.

8.3.4 Discussions

While there are ongoing discussions about how many training points are
needed to create a PES, this necessity varies greatly based on the system
being studied. When performing molecular dynamics simulations for the
AlF-AlF complex, we have found it crucial to introduce several thousand
training points to represent the behavior of the PES. This is especially im-
portant in the repulsive region. In this study, active learning throughout the
molecular dynamics simulations guarantees the integration of essential ab
initio points into the training set. As depicted in Fig. 63, the molecular dy-
namics simulation process (with 26,891,350 REMD steps) has involved the
inclusion of more than 3,000 additional ab initio points within the repulsive
region, even if the initial training set already contains more than 20,000
configurations. Nevertheless, it is worth noting that in some instances, like
NaK-NaK, a smaller number of ab initio training points can still lead to a
favorable fitting of the PES [276]. In fact, for the NaK+NaK system, a mere
2,000 hypercube training points prove adequate to yield errors spanning
from 4 to 140 cm−1 (equivalent to 0.1-4 meV/atom). In contrast, when
employing the same approach for the CaF+CaF system, the errors span a
broader range, reaching between 500 and 1,500 cm−1 [243].
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8.4 Conclusion and outlook
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In this research, we have relied on absolute average errors as a metric to
establish the accuracy of the PES. Nonetheless, arguments could suggest that
these errors hold significance primarily at extremely short distances, where
the potential exhibits strong repulsion. In other words, these errors reflect a
relatively minor deviation in the position of the repulsive potential. How-
ever, utilizing absolute errors is more appropriate than relying on relative
errors. Unlike quasi-classical trajectory simulations, molecular dynamics
simulations frequently explore the repulsive regions. Consequently, even a
small error in these regions can lead to a substantial discrepancy within the
sampled distribution.

In summary, in this study, we have developed an ML method for fitting
tetra-atomic PESs. The approach utilizes the most relevant configurations
from MD simulations at certain temperatures as the training set, which is
then used to train a GPR model for predicting the energy of new configura-
tions. This adaptable process allows the method to meet specific threshold
criteria and achieve the required accuracy for a given system. Consequently,
highly accurate tetra-atomic PESs can be constructed while calculating only
a small fraction (less than 0.1%) of the configurations ab initio, resulting
in precise outcomes with minimal computational effort. Combining this
approach with a representation that considers the system’s symmetry and
locality makes it feasible to extend the method to larger systems.

To demonstrate the viability of the method, it was applied to the AlF-AlF
system as a proof of concept. Surprisingly, a single minimum was found,
in contrast to previous findings in bi-alkali molecules or for the CaF dimer.
The computed binding energy for the four-body complex was determined
to be 0.69 eV. This result suggests that the AlF-AlF complex may exhibit a
significantly different lifetime compared to CaF or bi-alkali systems.

Further extensions of this work encompass several promising avenues:

• Expanding the approach to other tetra-atomic systems: The current
methodology can be applied to investigate and construct PESs for
various tetra-atomic systems, such as AlCl, CaCl, etc. This extension
would provide valuable insights into the behavior of different molec-
ular complexes and enable a comprehensive understanding of their
properties.

• Comparing the present approach with different structural represen-
tations and regressors: It would be valuable to compare the per-
formance of the proposed method with alternative structural rep-
resentations and regression techniques, including neural networks.
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Specifically, exploring the use of Deep Gaussian Processes, which are
deep neural networks based on Gaussian process regressions, could
yield valuable insights into the predictive capabilities of such models.

• Utilizing multi-output/multi-task Gaussian processes to predict both
energy and force: By employing multi-output/multi-task Gaussian
processes, it becomes possible to predict both the energy and force
simultaneously. This approach leverages the physical relationship
between energy and force, leading to a more constrained model that
offers higher accuracy and better adherence to physical behavior.

• Incorporating derivative observations for force prediction: Integrat-
ing derivative observations into the Gaussian process model for force
prediction can lead to enhanced accuracy and reduced prediction
uncertainty. This addition can improve the model’s ability to cap-
ture fine-grained details in the PES and provide more accurate force
predictions.

• Exploring the possibility of transfer-learning, i.e. to acquire CCSD(T)
energy information from Hartree-Fock or density functional theory
energies with cheaper basis sets.

By pursuing these extensions, the method’s capabilities can be further
refined and its applicability to a broader range of molecular systems with
various properties can be explored.
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In this thesis, we investigate the spectroscopic characteristics and chem-
ical behavior of diatomic molecules, showcasing their potential for appli-
cations in various fields such as quantum information sciences, precise
measurement of physics constants, and cold and ultracold chemistry.

This thesis consists of two main parts. The first part (Chapter 2 to Chap-
ter 6) focuses on diatomic molecule spectroscopic constants, introducing
the construction of databases of diatomic molecule spectroscopic constants
and electric dipole moments. Based on these databases, we have revealed
relationships between the spectroscopic constants and benchmarked the
accuracy of quantum chemistry methods. The second part (Chapter 7 and
Chapter 8) delves into the chemistry of diatomic fluorides, particularly AlF
and CaF, exploring their production efficiency and presenting a machine-
learning method for fitting the AlF-AlF system’s potential energy surface.
Specifically:

• Chapter 2 of the thesis implements the diatomic molecule spectro-
scopic database, which provides accessible spectroscopic constants
and Franck-Condon factors for polar diatomic molecules in both
ground and excited states. This dynamic database allows registered
users to contribute to the collection of spectroscopic data, leading to
its growth since its development in 2020.

• Chapter 3 demonstrates the relationships between key spectroscopic
constants of diatomic molecules, uncovered by machine-learning
models. These relationships appear to be largely independent of
the chemical bond nature. This study challenges the perception
of machine-learning methods as mere black-box fitting techniques.
It extracts valuable insights, demonstrating that accurate quantita-
tive predictions of spectroscopic constants can be made based on the
group and period of constituent atoms. Moreover, the research reveals
dependencies of spectroscopic constants on the number of valence
electrons and electron shells in the molecule’s atoms. This knowl-
edge opens avenues for predicting Franck-Condon factors crucial for
transitions influencing ultracold molecule cooling processes.

• Chapter 4 extends this work by constructing a dataset of contempo-
rary experimental electric dipole moments. The machine-learning
model effectively establishes a relationship between the ground state
dipole moments of diatomic molecules and their spectroscopic con-
stants. Based on these relationships, predictions of dipole moments
are achieved without the need for quantum chemistry calculations.
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This success is attributed to the incorporation of atomic features,
including electron affinity and ionic potential, in conjunction with
molecular spectroscopic constants, notably the equilibrium internu-
clear distance and harmonic vibrational frequency. Moreover, this
approach challenges the conventional notion that electronegativity
differences alone can describe dipole moments, emphasizing their
intricate correlation with chemical bonding. The valuable insights
gained from this research are made possible through the development
of a comprehensive and unbiased dataset, highlighting the signifi-
cance of robust data in advancing our understanding of diatomic
molecules.

• Based on the accurate experimental electric dipole moment dataset,
Chapter 5 conducts a rigorous assessment of advanced quantum
chemistry methods, with a particular focus on the accuracy of coupled-
cluster with single, double, and perturbative triple excitations [CCSD(T)].
This method has long served as a reference for the implementa-
tion of quantum chemistry methods. The study compares compu-
tational results, particularly those obtained using large augmented
correlation-consistent basis sets, and the segmented basis sets, fo-
cusing on diatomic molecules with diverse bonding characteristics
and elemental compositions. The findings demonstrate that single-
reference CCSD(T) calculations, coupled with specific basis sets, gen-
erally provide satisfactory descriptions of dipole moments, especially
for molecules composed solely of main-group elements. Addition-
ally, the study highlights the significance of considering deviations
in electron distribution, rather than bond lengths, in understanding
errors in dipole moment predictions. Furthermore, Chapter 6 in-
volves the calculation and comparison of hyperfine constants for the
a3Π state of aluminum monofluoride (AlF) with experimental values.
Our research highlights the importance of conducting a comprehen-
sive assessment that incorporates both experimental and theoretical
approaches.

• Chapter 7 delves into the chemical reactions responsible for pro-
ducing AlF and CaF molecules. These species have gained signif-
icant interest in experiments involving laser cooling and trapping
of cold molecules. The study compares the effectiveness of various
fluorine-donor molecules in generating AlF and CaF through metal
atom ablation within a buffer gas cell. The results demonstrate that
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using NF3 as a reactant gas leads to a higher reaction probability
in forming AlF and CaF through metal atom ablation than using
SF6. This effect is attributed to the reaction’s exothermicity, which
is influenced by the difference between product binding energy and
reactant molecule bond energy. Additionally, the velocity distribu-
tion of products varies depending on the reactants: NF3 leads to
a broader distribution. Overall, the results advocate for the use of
NF3 over SF6 as a valuable fluorine-donor gas for exploring a wider
range of fluorine-containing diatomic molecules. The study highlights
the importance of understanding buffer gas chemistry for optimizing
molecular beam production.

• Chapter 8 introduces a machine learning (ML) method for fitting
tetra-atomic potential energy surfaces (PESs), specifically applied to
the AlF-AlF system. The approach employs relevant configurations ob-
tained from molecular dynamics simulations at specific temperatures
at the CCSD(T) level as the training set, which is then utilized to train
a machine learning model. This PES model accurately predicts the
energy of new configurations, enabling the construction of highly pre-
cise PESs. Aided by an active learning scheme, this method achieves
exceptional accuracy for the system while only requiring calculations
for a very small fraction (less than 0.1%) of the configurations from
scratch, thereby minimizing computational effort. Interestingly, the
PES reveals the presence of a single minimum, contrary to previous
findings in bi-alkali molecules or the CaF dimer. The computed bind-
ing energy for the four-body complex is 0.69 eV. This result suggests
that the AlF-AlF complex may have a substantially different lifetime
than systems involving CaF or bi-alkali molecules, indicating poten-
tially unique chemical behavior. By incorporating considerations for
the system’s symmetry and locality, this approach can potentially be
extended to larger systems.
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Appendix: Gaussian process regression
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In this Appendix, we briefly review the Gaussian process regression (GPR)
method, mainly following Ref. [92].

The core principle of GPR is its probabilistic nature. Rather than offering a
fixed functional form that precisely matches the data, GPR provides a range
of functions within a distribution that effectively fits the data, assuming that
the observation is generally not perfect in reality. The resultant fitted model
provides not only the prediction of target values but also measures of uncer-
tainty. Here, it is important to notice that, even when the data points are
“absolutely exact” in the absence of noise, still the probabilistic framework
provides a probability distribution, or confidence intervals associated with
the predictions. This concept is important because generally the underlying
true function is unknown, and we can only get models that fit the observed
data.

The probabilistic feature of GPR is achieved within the Bayesian frame-
work. Initially, a prior distribution of functions is postulated, incorporating
any prior knowledge or assumptions about the underlying function. After
observing the data, this prior belief is revised, leading to the derivation of a
posterior distribution that encapsulates the updated understanding of the
function.

Under the Bayesian linear regression framework, the relationship between
a set of inputs XXX ∈ RD and the noisy observation y ∈ R can be modeled with

y = f ((x)) = wwwT xxx+ ε , (28)

where ε ∼ N(0,σ), www ∼ N(0,Σ), both obey the Gaussian distribution.
After exposing this model to a known dataset D = (X ∈ RD,y ∈ R), it is
possible to predict the value of target ŷ with a new input x̂ according to
the “marginal likelihood” p(y|X), which is defined as “the integral of the
likelihood times the prior” [92]

p(ŷ|x̂xx,D) =
∫

p(ŷ|x̂xx,www)p(www|D)dwww (29)

It has been shown that the prediction of ŷ with a new input feature x̂xx also
follows a Gaussian distribution, that

ŷ∼ N(µ̂ , σ̂) (30)
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with the prediction mean µ̂ = σ−2x̂xxT (σ−2XXXXXXT +Σ−1)−1XXXy and the variance
σ̂ = σ2 + x̂xxT (σ−2XXXXXXT + Σ−1)−1x̂xx. They can be rewritten in a form that
contains only inner products between data points as

µ̂ = k(x̂xx,XXX)(k(XXX ,XXX)+σ
2III) (31)

and
σ̂ = σ

2 + k(x̂xx, x̂xx)− k(x̂xx,XXX)(σ2III + k(XXX ,XXX))−1k(XXX , x̂xx) (32)

This process is called “kernelization”. Indeed, in GPR and other kernel-
based approaches, the kernel function (or covariance function) k(xi,x j) is a
pivotal component. It actually measures the “similarity” in the input space
by definition. The significance of the similarity between inputs in kernel
methods lies in the expectation that as the inputs xi and x j draw closer,
the functions describing the input-output relationship, yi ∼ fi((x)i) and
y j ∼ f j((x) j), will exhibit greater similarity, and vice versa. The form of the
kernel function can be pre-defined when establishing the prior distribution.
Subsequently, during the optimization process of GPR models, the kernel’s
parameters can be adjusted to better align with the observed data. Typically,
there is a parameter named “characteristic length scale”, which controls
how rapidly the similarity between xxx− y relationship decays as the distance
between inputs becomes larger. When the length scale is too small, the
model can suffer from an overfitting problem.

Specifically, in Chapter 3, when learning the equilibrium interatomic
distance Re, the employed covariance function is the exponential kernel,
defined as

k(xxxi,xxx j|θ ) = σ
2
f exp

(
− r

l

)
, (33)

where σ f is the signal variance, l is the characteristic length scale, and r is
the Euclidean distance between xxxi and xxx j.

When learning the harmonic vibrational frequency ωe, we utilize the
Matérn class of covariance functions [92],

kMatern(r) =
21−ν

Γ(ν)

√
2r
l

ν

Kv

√
2r
l

, (34)

with ν = 5/2. Kv is modified Bessel function in D dimensions, r is the
Euclidean distance between x and x′, then the Matern 5/2 kernel function is
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kν=5/2(r) =

(
1+

√
5r
l

+
5r2

3l2

)
exp

(
−
√

5r
l

)
. (35)

In learning Re, we employ linear basis functions. However, when dealing
with ωe and log

(
De

R3
eZ1Z2

)
, the basis functions are set to be constant.

When dealing with dipole moment in Chapter 4, the kernel function with
the best performance is the rational quadratic kernel [97] defined by

k(xi,x j|θ ) = σ
2
f

(
1+

r2

2ασ2
l

)−a

, (36)

where σl is the length scale, and α is a scale-mixture parameter, r is the
Euclidean distance between xi and x j defined as

r =
√
(xi− x j)T (xi− x j). (37)
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Appendix to Chapter 4: The dataset for dipole
moments of diatomic molecules
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The dipole moment of the diatomics dataset is summarized in Table 12,
which consists of dipole moments d of 162 polar diatomic molecules, 156
of which have information about equilibrium bond length Re while 139
also have harmonic vibrational frequency ωe. The references to the dipole
moments are also listed in the table.

Table 12: The dipole moments, d, equilibrium bond length, Re, and har-
monic vibrational frequency, ωe, employed in this work. The
references to the dipole moments are also listed in the table. Re
and ωe are taken from Ref. [17], [285] or the same reference of
the dipole moment of the corresponding molecules, except when
indicated.

Molecule d (D) Re (Å) ωe (cm−1) Ref.
AgBr 5.62 2.393 247.7 [135]
AgCl 6.08 2.281 343.5 [135]
AgF 6.22 1.983 513.5 [286]
AgH 2.86 1.618 1759.9 [287]
AgI 4.55 2.545 206.5 [135]
AlF 1.515 1.654 802.3 [126]
AuF 4.32 1.918 539.4 1 [288]
AuO 2.94 1.849 624.59 2 [289]
AuS 2.22 2.156 410.19 3 [289]
BaF 3.17 2.163 468.9 [290]
BaO 7.955 1.94 669.8 [291]
BaS 10.86 2.507 379.4 [292]
BF 0.5 1.263 1402.1 [293]
BH 1.27 1.232 2366.9 [294]
BrCl 0.519 2.136 444.3 [135]
BrF 1.422 1.759 670.8 [135]
BrO 1.76 1.717 778.7 [295]
CaBr 4.36 2.594 285.3 4 [296]
CaCl 4.257 2.439 367.5 [296]
CaD 2.51 2.01 [297]
CaF 3.07 1.967 581.1 [298]

1 From Ref.[299]. 2 From Ref. [300]. 3 From Ref. [301]. 4 From Ref. [302].
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Table 12 Continued.
Molecule d (D) Re (Å) ωe (cm−1) Ref.
CaH 2.53 2.003 1298.3 [297]
CaI 4.5968 2.829 238.7 [303]
CF 0.65 1.272 1308.1 [304]
CH 1.46 1.12 2858.5 [135]
ClD 1.1033 1.275 2145.2 [305]
ClF 0.85 1.628 786.2 [306]
ClH 1.1085 1.275 2990.9 [305]
ClO 1.239 1.57 853.8 [307]
CN 1.45 1.172 2068.6 [308]
CO 0.112 1.128 2169.8 [309]
CoF 2.82 [310]
CoH 1.88 [310]
CoO 4.18 1.621 [311]
CrD 3.51 1.663 1182 [312]
CrN 2.31 1.5652 5 854.0 6 [313]
CrO 3.88 1.615 898.4 [314]
CS 1.958 1.535 1285.1 [315]
CsBr 10.82 3.072 149.7 [316]
CsCl 10.387 2.906 214.2 [317]
CSe 1.99 1.676 1035.4 [318]
CsF 7.8839 2.345 352.6 [317]
CsI 11.69 3.315 119.2 [316]
CuF 5.26 1.745 622.7 [319]
CuO 4.57 1.724 640.2 [320]
CuS 4.31 2.051 415 [321]
DBr 0.823 1.415 1884.8 [295]
DF 1.819 0.917 2998.2 [295]
FeC 2.36 1.61 [322]
FeH 2.63 [323]
FeO 4.7 1.6 970 [324]
GaBr 2.45 2.352 263 [146]
GaF 2.4 1.774 622.2 [295]
GeO 3.2824 1.625 985.5 [325]
GeS 2 2.012 575.8 [146]
GeSe 1.648 2.135 408.7 [326]
GeTe 1.06 2.34 323.9 [326]
HBr 0.8272 1.414 2649 [135]
HF 1.826526 0.917 4138.3 [327]
HfF 1.66 1.85 [328]
HfO 3.431 1.723 974.1 [329]
HI 0.448 1.609 2309 [135]

5 From Ref. [330]. 6 From Ref. [331].
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Table 12 Continued.
Molecule d (D) Re (Å) ωe (cm−1) Ref.
IBr 0.726 2.469 268.6 [135]
ICl 1.207 2.321 384.3 [332]
ID 0.316 1.609 1639.7 [309]
IF 1.948 1.91 610.2 [135]
InCl 3.79 2.401 317.4 [135]
InF 3.4 1.985 535.4 [333]
IO 2.45 1.868 681.5 [304]
IrC 1.6 1.683 1060.1 [334]
IrF 2.82 1.851 [335]
IrN 1.67 1.609 [334]
KBr 10.6281 2.821 213 [336]
KCl 10.2688 2.667 281 [317]
KF 8.59255 2.171 428 [336]
KI 10.82 3.048 186.5 [316]
LaO 3.207 1.826 812.8 [329]
LiBr 7.2262 2.17 563.2 [337]
LiCl 7.1289 2.021 643.3 [317]
LiF 6.32736 1.564 910.3 [317]
LiH 5.882 1.596 1405.7 [338]
LiI 7.4285 2.392 498.2 [339]
LiK 3.45 3.27 207 [135]
LiNa 0.47 2.81 256.8 [340]
LiO 6.84 1.695 851.5 [135]
LiRb 4 3.466 195.2 [135]
MgD 1.318 1.73 1077.9 [341]
MgO 6.2 1.749 785.1 [135]
MoC 6.07 [342]
MoN 3.38 1.63 [343]
NaBr 9.1183 2.502 302.1 [317]
NaCl 9.002 2.361 366 [317]
NaCs 4.7 3.851 98.9 [295]
NaF 8.1558 1.926 536 [344]
NaH 6.4 1.889 1176 [345]
NaI 9.2357 2.711 258 [317]
NaK 2.693 3.589 124.1 [135]
NaRb 3.1 3.644 106.9 [135]
NbN 3.26 1.663 [346]
NH 1.39 1.036 3282.3 [135]
NiH 2.4 1.476 1926.6 [347]
NO 0.157 1.151 1904.2 [348]
NS 1.86 1.494 1218.7 [304]
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Table 12 Continued.
Molecule d (D) Re (Å) ωe (cm−1) Ref.
OD 1.653 0.97 2720.2 [295]
OF 0.0043 1.354 1028.7 [135]
OH 1.6498 0.97 3737.8 [349]
PbO 4.64 1.922 721 [350]
PbS 3.59 2.287 429.4 [350]
PbSe 3.29 2.402 277.6 [326]
PbTe 2.73 2.595 212 [326]
PN 2.7514 1.491 1337.2 [351]
PO 1.88 1.476 1233.3 [352]
PtC 0.99 1.677 1051.1 [353]
PtF 3.42 1.868 [354]
PtN 1.977 1.682 [355]
PtO 2.77 1.727 851.1 [353]
PtS 1.78 2.042 [353]
RbBr 10.86 2.945 169.5 [316]
RbCl 10.51 2.787 228 [317]
RbF 8.5465 2.27 376 [317]
RbI 11.48 3.177 138.5 [316]
ReN 1.96 0.61 [356]
RhN 2.43 1.64 [357]
RhO 3.81 1.739 [358]
RuF 5.34 1.916 [359]
ScO 4.55 1.668 965 [360]
ScS 5.64 2.139 565.2 [361]
SD 0.7571 1.341 1885.5 [362]
SeD 0.48 1.47 1708 [295]
SeF 1.52 1.741 757 [304]
SeH 0.5 1.47 2400 [295]
SF 0.87 1.596 837.6 [304]
SH 0.758 1.341 2711.6 [363]
SiH 5.9 1.52 2041.8 [295]
SiO 3.0982 1.51 1241.6 [325]
SiS 1.73 1.73 749.6 [364]
SiSe 1.1 2.058 580 [146]
SnO 4.32 1.833 814.6 [146]
SnS 3.18 2.209 487.3 [146]
SnSe 2.82 2.326 331.2 [146]
SnTe 2.19 2.523 259 [146]
SO 1.55 1.481 1149.2 [365]
SrF 3.4676 2.075 502.4 [366]
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Table 12 Continued.
Molecule d (D) Re (Å) ωe (cm−1) Ref.
SrO 8.9 1.92 653.5 [295]
ThO 3.534 1.84 895.8 [367]
ThS 4.58 2.35 477 7 [368]
TiH 2.455 [369]
TiN 3.56 1.5828 10399 [370]
TiO 3.34 1.62 1009 [371]
TlBr 4.49 2.618 192.1 [295]
TlCl 4.5429 2.485 283.8 [146]
TlF 4.2282 2.084 477.3 [372]
TlI 4.61 2.814 143 [135]
VN 3.07 1.56610 103311 [313]
VO 3.355 1.59212 1011.3 [373]
VS 5.16 2.06 [374]
WC 3.9 [375]
WN 3.77 1.6713 [356]
YbF 3.91 2.016 501.9 [376]
YF 1.82 1.926 631.3 [377]
YO 4.524 1.79 861 [329]
ZrO 2.551 1.712 969.8 [329]

7 From Ref. [378]. 8 From Ref. [379]. 9 From Ref. [380]. 10 From Ref. [381].
11 From Ref. [382]. 12 From Ref. [383]. 13 From Ref. [384].
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Appendix to Chapter 5: Experimental versus
CCSD(T) calculated equilibrium bond length Re,
harmonic vibrational frequency ωe and electric
dipole moment µ
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The experimental and calculated equilibrium bond length Re and har-
monic vibrational frequency ωe, employing different basis sets, are listed in
Table 13 and Table 14, respectively.

Table 15 displays the experimental electric dipole moments employed
in this work, including the pertinent references. Similarly, it includes the
calculated dipole moments employing different basis sets.
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Table 13: The experimental and calculated equilibrium bond length Re (in
Å). The experimental values are taken from Refs. [17] and [285],
or the same reference of the experimental dipole moment of the
corresponding molecule.

Molecule State Re(Exp.) Re (aug-cc-
pwCVTZ)

Re (aug-cc-
pwCVQZ)

Re (def2-
QZVPP)

AgBr X 1Σ+ 2.393 2.394 2.387 2.397
AgF X 1Σ+ 1.983 1.982 1.979 1.982
AgI X 1Σ+ 2.545 2.542 2.536 2.541
AlF X 1Σ+ 1.654 1.660 1.656 1.660
BrO X 2Π3/2 1.717 1.728 1.726 1.714
CF X 2Π 1.272 1.277 1.273 1.272
CN X 2Σ+ 1.172 1.170 1.167 1.168
CO X 1Σ+ 1.128 1.132 1.129 1.129
CS X 1Σ+ 1.535 1.539 1.536 1.537
CSe X 1Σ+ 1.676 1.678 1.674 1.678
CuF X 1Σ+ 1.745 1.773 1.769 1.756
GaF X 1Σ+ 1.774 1.778 1.775 1.769
GeO X 1Σ+ 1.625 1.627 1.623 1.626
GeS X 1Σ+ 2.012 2.019 2.012 2.013
GeTe X 1Σ+ 2.340 2.343 2.335 2.332
HfO X 1Σ+ 1.723 1.719 1.715 1.735
IBr X 1Σ+ 2.469 2.478 2.464 2.463
InCl X 1Σ+ 2.401 2.413 2.404 2.392
InF X 1Σ+ 1.985 1.988 1.984 1.974
NO X 2Π1/2 1.151 1.152 1.149 1.148
PN X 1Σ+ 1.491 1.496 1.491 1.493
PO X 2Π 1.476 1.482 1.477 1.479
PbO X 1Σ+ 1.922 1.924 1.919 1.922
PbS X 1Σ+ 2.287 2.297 2.288 2.286
SO X 3Σ− 1.481 1.486 1.481 1.482
ScO X 2Σ+ 1.668 1.674 1.663 1.670
SiO X 1Σ+ 1.510 1.515 1.511 1.514
SiS X 1Σ+ 1.929 1.939 1.931 1.933
SnO X 1Σ+ 1.833 1.832 1.827 1.826
SnS X 1Σ+ 2.209 2.215 2.206 2.204
YF X 1Σ+ 1.926 1.935 1.930 1.936
ZrO X 1Σ+ 1.712 1.719 1.714 1.715
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Table 14: The experimental and calculated harmonic vibrational frequency
ωe (in cm−1). The experimental values are taken from Refs. [17]
and [285], or the same reference of the experimental dipole
moment of the corresponding molecule.

Molecule State ωe
(Exp.)

ωe (aug-cc-
pwCVTZ)

ωe (aug-cc-
pwCVQZ)

ωe
[CBS(aug-
cc-
pwCVT/QZ)]

ωe (def2-
QZVPP)

AgBr X 1Σ+ 247.7 246.4 248.6 250.2 246.9
AgF X 1Σ+ 513.5 512.0 515.7 518.1 515.0
AgI X 1Σ+ 206.5 208.9 209.7 210.2 210.1
AlF X 1Σ+ 802.3 793.9 801.5 804.9 804.1
BrO X 2Π3/2 778.7 767.5 762.8 631.2 743.0
CF X 2Π 1308.1 1304.5 1299.7 1269.4 1307.2
CN X 2Σ+ 2068.6 2160.4 2175.5 2181.2 2108.1
CO X 1Σ+ 2169.8 2153.4 2170.3 2177.5 2174.4
CS X 1Σ+ 1285.1 1279.1 1288.5 1293.7 1292.9
CSe X 1Σ+ 1035.4 1033.1 1041.4 1045.8 1052.4
CuF X 1Σ+ 622.7 595.3 599.7 603.3 605.6
GaF X 1Σ+ 622.2 615.4 621.0 623.7 634.7
GeO X 1Σ+ 985.5 979.8 989.0 994.9 997.7
GeS X 1Σ+ 575.8 571.1 577.1 581.3 584.2
GeTe X 1Σ+ 323.9 322.7 326.1 328.7 331.7
HfO X 1Σ+ 974.1 970.1 976.0 980.7 952.5
IBr X 1Σ+ 268.6 269.2 276.1 279.5 279.7
InCl X 1Σ+ 317.4 313.6 316.4 318.6 319.2
InF X 1Σ+ 535.4 530.1 534.5 536.3 549.9
NO X 2Π1/2 1904.2 1883.7 1912.5 1928.7 1927.6
PN X 1Σ+ 1337.2 1332.5 1345.6 1352.8 1346.4
PO X 2Π 1233.3 1232.0 1242.9 1250.8 1243.7
PbO X 1Σ+ 721.0 732.8 739.9 745.1 746.1
PbS X 1Σ+ 429.4 433.2 439.9 444.6 445.3
SO X 3Σ− 1149.2 1152.9 1161.3 1167.7 1162.7
ScO X 2Σ+ 965.0 968.6 979.6 936.3 932.9
SiO X 1Σ+ 1241.6 1231.6 1242.3 1248.6 1241.0
SiS X 1Σ+ 749.6 741.1 752.6 759.2 753.1
SnO X 1Σ+ 814.6 821.6 829.9 835.6 842.3
SnS X 1Σ+ 487.3 484.2 491.4 496.5 492.9
YF X 1Σ+ 631.3 628.9 634.4 637.7 629.2
ZrO X 1Σ+ 969.8 977.9 981.4 981.6 979.8
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Table 15: The experimental and calculated dipole moments in Debye.
Mol. State Exp. µe

(cc-
pwCV
TZ)

µ0
(cc-
pwCV
TZ)

µe
(cc-
pw
CV
QZ)

µ0
(cc-
pw
CVQZ)

µe
(aug-
cc-
pw
CVTZ)

µ0
(aug-
cc-
pw
CVTZ)

µe
(aug-
cc-
pw
CVQZ)

µ0
(aug-
cc-
pw
CVQZ)

µe
[CBS
(aug-
cc-pw
CVT/
QZ)]

µ0
[CBS
(aug-
cc-pw
CVT/
QZ)]

µe
(def2-
QZVPP)

µ0
(def2-
QZVPP)

AgBr X 1Σ+ 5.62(3)
[385]

5.574 5.594 5.473 5.493 5.509 5.530 5.548 5.569 5.631 5.652

AgF X 1Σ+ 6.22
(20)
[286]

5.767 5.803 5.877 5.916 5.935 5.977 5.922 5.964 5.927 5.969 5.898 5.940

AgI X 1Σ+ 4.55(5)
[203]

5.161 5.178 5.191 5.208 5.015 5.030 5.082 5.098 5.145 5.161 5.144 5.160

AlF X 1Σ+ 1.515
(4)
[30]

1.343 1.401 1.423 1.484 1.496 1.560 1.476 1.540 1.471 1.535 1.478 1.540

BrO X
2Π3/2

1.76(4)
[304]

1.690 1.673 1.710 1.693 1.747 1.734 1.729 1.737 1.717 1.728 1.727 1.709

CF X 2Π 0.65(5)
[304]

0.700 0.635 0.687 0.619 0.662 0.591 0.680 0.611 0.685 0.613 0.694 0.625

CN X 2Σ+ 1.45(8)
[308]

1.362 1.335 1.415 1.390 1.413 1.387 1.431 1.407 1.444 1.421 1.426 1.407

CO X 1Σ+ 0.112
(5)
[309]

0.143 0.121 0.127 0.104 0.114 0.090 0.119 0.094 0.129 0.104 0.123 0.144

CS X 1Σ+ 1.958
(5)
[315]

1.983 1.954 1.972 1.943 1.961 1.932 1.960 1.932
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Table 16: Table 15 continued: The experimental and calculated dipole moments in Debye.
Mol. State Exp. µe

(cc-
pwCV
TZ)

µ0
(cc-
pwCV
TZ)

µe
(cc-
pw
CV
QZ)

µ0
(cc-
pw
CVQZ)

µe
(aug-
cc-
pw
CVTZ)

µ0
(aug-
cc-
pw
CVTZ)

µe
(aug-
cc-
pw
CVQZ)

µ0
(aug-
cc-
pw
CVQZ)

µe
[CBS
(aug-
cc-pw
CVT/
QZ)]

µ0
[CBS
(aug-
cc-pw
CVT/
QZ)]

µe
(def2-
QZVPP)

µ0
(def2-
QZVPP)

CSe X 1Σ+ 1.99(4)
[318]

2.146 2.123 2.165 2.142 2.186 2.163 2.171 2.147 2.155 2.131 2.140 2.116

CuF X 1Σ+ 5.26(2)
[200]

5.144 5.180 5.256 5.294 5.561 5.603 5.524 5.566 5.513 5.555 5.446 5.488

GaF X 1Σ+ 2.45(5)
[333]

2.176 2.235 2.318 2.381 2.431 2.498 2.417 2.483 2.416 2.482 2.230 2.295

GeO X 1Σ+ 3.2824
(1)
[325]

3.012 3.028 3.202 3.220 3.295 3.315 3.303 3.323 3.314 3.334 3.198 3.217

GeS X 1Σ+ 2.00(6)
[350]

1.952 1.969 2.056 2.074 2.057 2.076 2.084 2.103 2.114 2.133 1.981 1.999

GeTe X 1Σ+ 1.06(7)
[326]

1.063 1.073 1.140 1.151 1.086 1.096 1.146 1.157 1.192 1.204 0.995 1.006

HfO X 1Σ+ 3.431
(5)
[329]

3.258 3.280 3.330 3.352 3.396 3.420 3.381 3.405 3.376 3.400 3.473 3.496

IBr X 1Σ+ 0.726
(3)
[135]

0.687 0.811 0.647 0.651 0.630 0.634 0.624 0.628 0.685 0.688

InCl X 1Σ+ 3.79
(19)
[135]

3.465 3.518 3.581 3.637 3.672 3.728 3.650 3.707 3.646 3.703 3.497 3.555
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Table 17: Table 15 continued: The experimental and calculated dipole moments in Debye.
Mol. State Exp. µe

(cc-
pwCV
TZ)

µ0
(cc-
pwCV
TZ)

µe
(cc-
pw
CV
QZ)

µ0
(cc-
pw
CVQZ)

µe
(aug-
cc-
pw
CVTZ)

µ0
(aug-
cc-
pw
CVTZ)

µe
(aug-
cc-
pw
CVQZ)

µ0
(aug-
cc-
pw
CVQZ)

µe
[CBS
(aug-
cc-pw
CVT/
QZ)]

µ0
[CBS
(aug-
cc-pw
CVT/
QZ)]

µe
(def2-
QZVPP)

µ0
(def2-
QZVPP)

InF X 1Σ+ 3.40(7)
[333]

3.066 3.124 3.227 3.288 3.378 3.445 3.358 3.425 3.358 3.424 3.219 3.285

NO X
2Π1/2

0.1595
(15)
[386]

0.126 0.115 0.135 0.121 0.144 0.132 0.149 0.134 0.156 0.139 0.143 0.128

PN X 1Σ+ 2.7514
(6)
[351]

2.634 2.626 2.722 2.715 2.758 2.751 2.771 2.764 2.780 2.773 2.757 2.750

PO X 2Π 1.88(7)
[352]

1.946 1.959 1.966 1.983 1.962 1.978 1.958 1.976 1.959 1.979 1.984 2.001

PbO X 1Σ+ 4.64
(30)
[350]

3.990 4.004 4.289 4.305 4.470 4.489 4.467 4.486 4.471 4.490 4.373 4.389

PbS X 1Σ+ 3.59
(10)
[350]

3.614 3.629 3.780 3.796 3.833 3.849 3.849 3.866 3.872 3.889 3.792 3.809

SO X 3Σ− 1.55(2)
[365]

1.566 1.566 1.564 1.568 1.574 1.581 1.559 1.566 1.552 1.559 1.578 1.584

ScO X 2Σ+ 4.55(8)
[387]

3.419 3.567 3.727 3.685 3.793 3.779 3.721 3.748 3.713 3.721 3.788 3.809
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Table 18: Table 15 continued: The experimental and calculated dipole moments in Debye.
Mol. State Exp. µe

(cc-
pwCV
TZ)

µ0
(cc-
pwCV
TZ)

µe
(cc-
pw
CV
QZ)

µ0
(cc-
pw
CVQZ)

µe
(aug-
cc-
pw
CVTZ)

µ0
(aug-
cc-
pw
CVTZ)

µe
(aug-
cc-
pw
CVQZ)

µ0
(aug-
cc-
pw
CVQZ)

µe
[CBS
(aug-
cc-pw
CVT/
QZ)]

µ0
[CBS
(aug-
cc-pw
CVT/
QZ)]

µe
(def2-
QZVPP)

µ0
(def2-
QZVPP)

SiO X 1Σ+ 3.0982
(10)
[325]

2.871 2.886 3.025 3.041 3.099 3.118 3.106 3.125 3.114 3.133 3.082 3.100

SiS X 1Σ+ 1.73(6)
[388]

1.608 1.626 1.681 1.701 1.683 1.703 1.699 1.720 1.723 1.744 1.695 1.716

SnO X 1Σ+ 4.32(10)
[350]

3.675 3.688 3.939 3.955 4.079 4.097 4.085 4.103 4.098 4.116 3.995 4.011

SnS X 1Σ+ 3.18(10)
[350]

2.974 2.990 3.125 3.142 3.153 3.170 3.180 3.197 3.210 3.227 3.125 3.143

YF X 1Σ+ 1.82(8)
[377]

1.711 1.749 1.800 1.840 1.848 1.890 1.848 1.890 1.853 1.895 1.830 1.871

ZrO X 1Σ+ 2.551(11)
[329]

2.370 2.395 2.445 2.471 2.521 2.549 2.502 2.530 2.500 2.530 2.478 2.505
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Appendix to Chapter 7: Chemistry of AlF and
CaF production in buffer gas sources
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The efficiency of the AlF, CaF and MgF molecule formation in Al/Ca/Mg
+ SF6/NF3 collisions are presented in Fig.66, shown as the reaction proba-
bilities for different products as a function of temperature. In particular, the
productivity of MgF is simulated at 5000 K and 15000 K. The productivity
of by-products is shown in Fig. 67.

2500 5000 7500 10000 12500 15000
Temperature (K)

0.0

0.1

0.2

0.3

0.4

r

AlF  from NF3

AlF  from SF6

CaF  from NF3

CaF  from SF6

MgF  from NF3

MgF  from SF6

Figure 66: Reaction probability of AlFn, CaFn and MgFn by-products for hot
collisions of Al/Ca/Mg with SF6 and NF3 gases as a function of
the temperature. Figure reproduced from ref. [228].
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MgF2 + MgF3 from NF3

MgF2 + MgF3 from SF6

Figure 67: Reaction probability of (a) AlF, CaF and MgF and (b) AlFn, CaFn
and MgFn by-products for hot collisions of Al/Ca/Mg with SF6
and NF3 gases as a function of the temperature. Figure repro-
duced from ref. [228].
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