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3. The Methods
3.1. Geostatistics

Geostatistical methods (e.g., Matheron, 
1962; 1970; Journel, 1977; Deutsch and Journel, 
1992) are applied to analyze the distribution of 
a variable in space (2D), or in space and time 
(3D). Variography is one of them, examining the 
correlation of variable values across space, i.e., the 
spatial change of the variable value in the resulting 
variogram. These variograms are approximated 
by mathematical models that form the base for 
interpolation techniques (e.g., kriging). This allows 
fi lling unknown spaces with probable values, but 
is only valid, if the analysed variable is continuous 
over space and several other conditions are 
met (e.g., Matheron, 1962; 1970; Journel, 1977; 
Deutsch and Journel, 1992). 
 This study analyses the distribution of strain 
in the Central Andes. The original deformation 
data (database compiled from literature, Appendix 
A) includes geographical coordinates of the 
study areas as well as the beginning and end 
of deformation in the respective areas. Only 
those references were included that precisely 
documented the geographical location of the study 
area and the samples used for dating, as well as 
the dating method. In the original format, the data 
plot as polygons of various sizes and shapes. 
 I initially reorganized the data into a grid of 
points covering the entire area. To each of these 
points information is assigned on beginning and 
end of deformation for the given geographical 
position, so that the duration of deformation at each 
point can be calculated. Additionally, I included 
shortening estimates derived from balanced cross 
sections (compilation from Oncken et al., 2006), 
to gain shortening rates for every data point with 
a spatial resolution of 40 km, and a temporal 
scale of 1 Ma steps. These lower cut-off values 
represent the upper boundary of the error of the 
data, meaning that the data are not solid below 
these values. 

For both the deformation activity and 
shortening rates the variables are continuously 
distributed in space, as they will only have positive 
values or be zero. However, I could not use our 
variogram models for interpolation as we do not 
precisely know which of the natural boundaries 
(e.g., faults) have to be accounted for dividing the 
entire area into subareas. For the same reason, 
we did not use 3D models: it is hard to distinguish 

the limits of the correlation between points that are 
at a distance, spatially and temporally. Therefore, 
we only employ spatial 2D analysis for each time 
window of 1 Ma. 

Variogram analysis requires that variables 
are given with geographical coordinates (x/y) and 
individual values. The variation in variable values 
from one point to another separated by a distance 
h (lag spacing) is calculated according to this 
formula (Fig. 3.1):

This is done for every distance h and in all 
possible directions (Fig. 3.2). 

All distances h are plotted on the x-axis 
against the variation (y-axis). 

The omnivariogram includes all directions 
at once, whereas directional variograms can be 
calculated for a given direction, which is necessary 
when the data show anisotropies, i.e., pronounced 
differences in some directions. Directions are given 
in degrees: East is 0, North is 90, West is 180 etc., 
counting counterclockwise. Such anisotropies can 
be easily detected on variogram surfaces, which 
display the variation over the entire area at once. 

Several features exist that characterize 
the spatial distribution (Fig. 3.3): 1) the sill is the 
nominal value of variation beyond which the curve 
of the variogram reaches a plateau and becomes 
stable; 2) the range is the nominal value for the 
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Fig. 3.1: Formula for semi-variogram

Fig. 3.2: Graphical representation of the distance h between 
points. “h” is calculated for all possible directions.
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3.2. Analogue modelling technique, advantages
       and limits

In analogue experiments every parameter 
can be studied separately and in combination, and 
can directly be related to its effect on the resulting 
pattern of strain accumulation. All experiments 
were monitored with a special camera system 
using the “particle imaging velocimetry” technique 
(PIV), which allows high resolution of the complete 
particle displacement fi elds of strain in time and 
space. Thus, the effect of every parameter can be 
studied in detail on e.g., the orogen scale and the 
next smaller regional scale.

The cameras are to be calibrated before 
each experimental run. This is particularly 
important when two cameras are in stereoscopic 
view for 3D resolution. The calibration yields a 
mapping function accounting for any distortion, 
and was applied to the recorded sequential pairs of 
stereoscopic images. For 3D experiments, digital 
elevation models were additionally calculated 
for every stereo image pair by cross-correlation, 
which were further used for the calculation of the 
vector fi elds. 

A special algorithm employing Fast Fourier 
Transformation was executed with the commercial 
software DaVis by LaVision. Thus, the complete 
particle displacement fi eld with all components 
of the strain gradient tensor is resolved with an 
accuracy of 0.33 mm (viscous-brittle experiments) 
and 0.38 mm (granular experiments) for every 
pixel. The pixel error is one order of magnitude 
lower than its resolution, which is below the 
scale of a single grain of sand (~400µm). For 
the granular series, images were sampled every 
second, rendering 24 images per centimeter of 
convergence at a motor speed of 2.5 cm/min. For 
the brittle-viscous experiments, image pairs were 
taken every fi ve minutes, i.e., every 0.6 mm of 
shortening at a motor speed of 7 mm/h. 

The pixel resolution is limited by the size of 
the recorded area. A bigger experimental surface 
requires the cameras to be at a larger distance, 
thus reducing the resolution. This constraint 
precludes the high resolution of structures below 
the fault-scale (e.g., stick-slip behaviour of single 
grains of sand), when the orogen-scale is to be 
recorded at the same time. Therefore it can be said 
that the changes in the velocity fi elds suggesting 
deformational stages (cf. Chapter 8) are real 
and not due to the stick-slip behaviour of grains. 
However, materials need to have a high elastic 

distance “h” beyond which the variation does not 
increase any further, i.e., when the curve reaches 
the sill; 3) the hole effect occurs when the variation 
decreases for higher “h” to increase again, i.e., the 
curve drops down and goes up again, indicating 
a recurrent pattern or a periodicity; 4) the nugget 
value is present when the curve has an initial 
variation, i.e., originates at a value >0 of the y-axis, 

which is due to a random component within the 
data (e.g., due to a measurement error). None of 
our fi tted variogram models required a nugget. 

3.1.1. Other approaches
 The better quantifi cation of deformation 
on a scale spatially smaller than the entire region 
requires the knowledge of fault displacements. 
The displacement can be derived from the length 
of a fault according to a power law that relates 
displacement and length (e.g., Watterson, 1986; 
Walsh and Watterson, 1988; Cowie and Scholz, 
1992; Davy et al., 1992; Dawers et al., 1993; Scholz 
et al., 1993; Wojtal, 1994).
 However, the exact power law exponent of 
d-l ratios is still under debate, as it might vary e.g., 
for extensional and compressional structures, for 
single faults and those that are interconnected 
(e.g., Dawers and Anders, 1995; Cartwright et al., 
1995; Wojtal, 1996; Cladouhos and Marrett, 1996), 
for faults in homogeneous or inhomogeneous 
material (Fossen and Hesthammer, 1997; Gross et 
al., 1997) etc (cf. Bonnet et al., 2001 for a thorough 
review). The resulting uncertainty in displacement 
estimates leaves a range of values that is too big 
to be used. This uncertainty is even higher when 
the available digitized geological maps are not 
very accurate. 

  

Fig. 3.3: Sample variogram with sill, range, and hole effect
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model set-up is not the same: experiments by 
Cruden et al. (2006) allow lateral extrusion, which 
was not possible in our vise set-up. Similarly, the 
pattern shape of experiments by Cagnard et al. 
(2006) resembles the plateau-initiation settings 
(Fig. 7.5, 7.8, cf. Chapter 7 for details), even though 
strain localization is initiated in the center of their 
set-up by a velocity discontinuity. 
 The preparation of the viscous-
brittle experiments set-up requires a special 
technique. When the the viscosity contrast of the 
lithosphere (upper crust, lower crust, and mantle 
lithosphere) and the asthenospheric mantle is 
low, the asthenosphere affects deformation of the 
lithosphere. To minimize this effect, the viscosity 
of the asthenosphere was chosen to be very low. 
Low-viscosity silicone is an expensive option; 
water is a good alternative, as long as all layers 
above have densities below 1. 

However, it is not easy to place the viscous 
layers in the tank without spilling water on top, 
in which case the layers would immediately 
sink down. Freezing the water together with the 
plexiglass tank is not an option as the screws in 
the plexiglass tank are not made for temperatures 
of –60°C (the temperature of the freezer was 
not to decrease). Instead, the layers were frozen 
themselves. 

Therefore, all layers are allowed to fl oat into 
contact as one big block comprising all viscous 
parts of the experiment and are frozen thereafter. 
Such a frozen block can easily be put on the water 
in the tank. Water, accidentally spilled on the 
viscous block, will freeze instantaneously without 
imprinting on the viscous layers. When the viscous 
block has reached ambient room temperature and 
is fully settled, the brittle upper crust with a mixture 
of sand and ceramic beads (Z-lights) is sieved on 
top. 

The calibration of the PIV cameras has 
to be carried out before the model is fully set up. 
This means that none of the camera appliance 
(including the carrying poll and the camera cables) 
must be touched at any instant after the calibration 
has been fi nished. Otherwise the calibration has 
to be redone.
 In total, ten vise experiments were 
carried out, all but one documented in Chapter 
7 (cf. Appendix B). For the granular series, more 
experiments were performed than are described 
in Chapter 6. They are documented in Appendix 
B. 

component and to be velocity-strengthening for 
real analogue earthquakes to occur (Rosenau et 
al., 2006); also, the normal load has to be higher. 
Further, the temporal resolution (in the viscous-
brittle experiments) has to be much higher to 
record this instantaneous motion, which occurs 
within seconds. 
 All granular materials used in our 
experiments were tested in a ring shear device. 
Shear stresses were measured for known applied 
normal loads. Regression analysis then was 
used to determine the coeffi cients of friction 
and cohesion (according to the Coulomb failure 
criterion: τ = c + µ σ) for peak, static-stable, and 
dynamic-stable frictions (e.g., Lohrmann et al., 
2003; Hampel et al., 2004), which correspond to 
the frictional strength until failure, the strength 
of fault reactivation, and the strength of actively 
deforming material (Byerlee, 1978). The rheological 
properties of the viscous mixtures were measured 
with a TA Instruments AR1000 rheometer under 
applied shear rates on the order of 10-5 s-1. 
 The viscosities had power law relations 
with exponents close to 1, classifying them as 
quasi-Newtonian materials. They are not sensitive 
to changes in convergence rate, i.e., motor 
speed. Only non-Newtonian materials show time-
dependence, so we created different time scales 
artifi cially by leaving out some of the recorded 
time steps. 
 All experiments are dynamically scaled. 
The scaling procedures are described in detail in 
Chapter 6 (granular series) and Chapter 7 (viscous-
brittle series). This allows the comparison of strain 
evolution in the models to that in the natural 
example. As we are interested in the general nature 
of deformation processes, the exact geometric and 
kinematic similarity and the precise deformation 
activity over time of single faults is not aimed for. 

On these lines, the reproducibility of 
experiments does not require a precise one-to-
one, i.e., the same structures do not need to have 
exactly the same position with identical geometries 
and the same timing of strain localization and 
duration of deformation activity. Instead, the strain 
pattern, the general strain evolution and resulting 
deformational system had to be reproducible, 
including the same aspect ratios. 

The cross-shaped pattern (Fig. 7.5, 7.8, 
cf. Chapter 7 for details) in some of my vise 
experiments is the same as in some experiments 
from Cruden et al. (2006), even though the initial 


