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A combinatorial property that characterizes Cohen-Macaulay 
binomial edge ideals has long been elusive. A recent conjecture 
ties the Cohen-Macaulayness of a binomial edge ideal JG to 
special disconnecting sets of vertices of its underlying graph 
G, called cut sets. More precisely, the conjecture states that 
JG is Cohen-Macaulay if and only if JG is unmixed and the 
collection of the cut sets of G is an accessible set system. In 
this paper we prove the conjecture theoretically for all graphs 
with up to 12 vertices and develop an algorithm that allows 
to computationally check the conjecture for all graphs with 
up to 15 vertices and all blocks with whiskers where the block 
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has at most 11 vertices. This significantly extends previous 
computational results.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Finding a combinatorial characterization of an algebraic property of a class of ideals 
in a polynomial ring is an interesting and challenging task. A prominent example is 
Fröberg’s theorem according to which the (monomial) edge ideal of a graph G has a 
linear resolution if and only if the complement of G is chordal [8].

In this paper we study a graph-theoretical characterization of Cohen-Macaulay bino-
mial edge ideals, a class of binomial ideals naturally defined starting from simple graphs. 
Fix a field K. Given a finite simple graph G with vertex set V (G) and edge set E(G), 
the binomial edge ideal of G is

JG = (xiyj − xjyi | {i, j} ∈ E(G)) ⊂ R = K[x1, . . . , xm, y1, . . . , ym],

where m = |V (G)|. Binomial edge ideals have been introduced independently in [9] and 
[15] and generalize the well-studied ideals of 2-minors of a generic 2 ×m matrix.

Crucial in the theory of binomial edge ideals is the notion of cut sets, special subsets of 
vertices that disconnect the graph. More precisely, given a subset S ⊂ V (G), we denote 
by G \S the subgraph induced by G on the vertices V (G) \S and by cG(S) the number 
of connected components of G \S. A subset S ⊂ V (G) is called a cut-point set, or simply 
cut set, of G if either S = ∅ or cG(S) > cG(S \ {i}) for every i ∈ S. We call cut vertex or 
cut-point a vertex v of G such that {v} is a cut set of G. We denote by C(G) the collection 
of cut sets of G. Cut sets are important because there is a one-to-one correspondence 
between the cut sets of G and the minimal primes of JG, see [9, Corollary 3.9].

The study of Cohen-Macaulay binomial edge ideals mainly focused on the search of 
classes of graphs [2,7,17,18] and of constructions preserving this property [10,16]. On 
the other hand, in [1] it is described a topological characterization in terms of reduced 
homology groups of a certain poset, but there are no general combinatorial characteriza-
tions so far. In [3] the first, second and fourth authors propose the following conjecture 
in terms of the structure of the cut sets of the associated graph.

Conjecture 1.1 ([3, Conjecture 1.1]). Let G be a graph. Then R/JG is Cohen-Macaulay 
if and only if G is accessible.

Following [3], recall that a graph G is called accessible if JG is unmixed and C(G) is 
an accessible set system (see [11, p. 360]), i.e., for every non-empty S ∈ C(G) there exists 
s ∈ S such that S\{s} ∈ C(G). This notion first emerged in [2], where Conjecture 1.1 was 
proved for bipartite graphs. Accessibility is a completely combinatorial notion since the 
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unmixedness of JG can also be expressed in terms of the cut sets of G, see [16, Lemma 
2.5]: JG is unmixed if and only if cG(S) = |S| + c for every S ∈ C(G), where c is the 
number of connected components of G.

Conjecture 1.1 holds for chordal, bipartite and traceable graphs, see [3, Theorems 
6.4 and 6.8, Corollary 6.9], as well as for other classes of graphs described in [12] and 
[19]. The proof of these results relies on a further condition, the strong unmixedness
of JG, introduced in [3], that only depends on G (and not on the field K). For every 
graph G, the following implications hold as a consequence of [3, Theorem 5.11] and [12, 
Theorem 2]:

JG strongly unmixed ⇒ R/JG Cohen-Macaulay ⇒ R/JG satisfies Serre’s condition (S2)

⇒ G accessible. (1)

In this article we provide both theoretical and computational evidence for Conjec-
ture 1.1, proving that it holds for new classes of graphs. To this aim, we develop a 
series of theoretical tools that allows us to limit the search space to a special family of 
graphs.

Recall that a block, or biconnected graph, is a graph that does not have cut vertices 
and adding a whisker to a vertex v of a graph means attaching a pendant edge {v, f}, 
where f is a new vertex. In particular, f is a free vertex, which means that it belongs to a 
unique maximal clique. The first important reduction to prove that G accessible implies 
JG strongly unmixed is to consider only block with whiskers, i.e., graphs constructed by 
adding a whisker to some vertices of a block. This follows from [12, Proposition 3] and 
[19, Theorem 1.2], see also [20, Corollary 3.13]. By focusing on blocks with whiskers we 
prove:

Theorem 1.2. Let G be one of the following:

(a) a block with n vertices and k ≥ n − 2 whiskers;
(b) a block with whiskers, where the vertices of the block are at most 11;
(c) a graph with up to 15 vertices.

Then the conditions in (1) are all equivalent. In particular, Conjecture 1.1 holds for all 
the graphs above and in these cases the Cohen-Macaulayness of R/JG does not depend 
on the field.

More precisely,

• we prove case (a) in Theorem 3.19 and case (c) for graphs up to 12 vertices only using 
theoretical results in Theorem 3.22. The latter recovers the computational results of 
[12], in which an exhaustive search on all connected graphs took about a month on 
a high-performance computing system;
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• we develop a procedure, Algorithm 4.2, to computationally treat cases (b) and (c), see 
Theorem 4.6. A complete implementation of Algorithm 4.2 using C, C++, Python, 
and the packages Nauty [14] and igraph [6] can be found in the website [5], where 
we also provide some examples of computation.

The key part in the proof of Theorem 1.2 consists in answering Question 2.3, which 
asks whether for a given graph G there exists a cut vertex for which JG\{v} is unmixed. 
In Theorem 3.3 we prove that a positive answer to this question for blocks with whiskers 
implies the equivalence of the conditions in (1) for all graphs. In particular, we find this 
cut vertex for the following classes of blocks with whiskers:

Theorem 1.3. Let B be a block with n vertices and B be the graph obtained by adding 
k > 0 whiskers to B. Assume that B is accessible and satisfies one of the following 
properties:

(1) B contains a free vertex (Proposition 3.6);
(2) B has a vertex of degree at most two (Proposition 3.9);
(3) B has k ≤ 3 whiskers (Proposition 3.12);
(4) there is a cut vertex v of B such that |NB(v)| ≥ �n+r

2 	 − 1, where r is the number 
of cut vertices adjacent to v plus one (Proposition 3.13);

(5) B has k = 4 whiskers and the induced subgraph on the cut vertices of B is a block 
(Proposition 3.16);

(6) B has k ≥ n − 2 whiskers (Proposition 3.18).

Then there exists a cut vertex of B for which JB\{v} is unmixed.

We remark here that, filtering the blocks with whiskers by using Theorem 1.3, now 
Algorithm 4.2 allows to test the equivalence of the conditions in (1) for all graphs up to 
12 vertices in a few seconds.

In Proposition 3.20 we also prove that, for blocks with k ≥ n − 1 whiskers all the 
conditions in (1) are equivalent to the unmixedness of JG, whereas this is not the case 
for k = n − 2, see Example 3.21.

Part of the results and computations contained in this paper were announced in the 
extended abstract [4].

2. Strongly unmixed binomial edge ideals

Let G be a finite simple graph, i.e., a graph without loops and multiple edges, with 
vertex set V (G) and edge set E(G). Given v ∈ V (G), we denote by Gv the graph with 
vertex set V (Gv) = V (G) and edge set E(Gv) = E(G) ∪ {{w1, w2} | {v, w1}, {v, w2} ∈
E(G)}. We recall the following definition from [3, Definition 5.6]:
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Definition 2.1. A binomial edge ideal JG is called strongly unmixed if the connected 
components of G are complete graphs or if JG is unmixed and there exists a cut vertex 
v of G such that JG\{v}, JGv

, and JGv\{v} are strongly unmixed.

We notice here that in the above definition it is enough to require that only one 
between JGv

and JGv\{v} is strongly unmixed.

Proposition 2.2. Let JG be unmixed. The following conditions are equivalent:

(1) JG is strongly unmixed;
(2) There exists a cut vertex v of G such that JG\{v} and JGv

are strongly unmixed;
(3) There exists a cut vertex v of G such that JG\{v} and JGv\{v} are strongly unmixed.

Proof. Clearly (1) implies (2) and (3). Since JG and JG\{v} are unmixed, [19, Lemma 
3.16] says that if (2) holds, then JGv\{v} is strongly unmixed. Assume now that (3) holds. 
Since JG is unmixed, also JGv

is unmixed by [3, Lemma 4.5]. Moreover, v is a free vertex 
of Gv and then [12, Lemma 11] implies that JGv

is strongly unmixed. �
Note that, as for accessibility, the strong unmixedness of JG is also a purely combina-

torial property, i.e., it depends only on G and not on the field K. By [3, Theorem 5.11]
and [12, Theorem 2] for any graph G we have:

JG strongly unmixed ⇒ R/JG Cohen-Macaulay ⇒ R/JG satisfies Serre’s condition (S2)

⇒ G accessible. (1)

It is not known whether any of these implications can be reversed. In order to show that 
G accessible implies JG strongly unmixed, i.e., the above conditions are all equivalent, 
as a consequence of [3, Proposition 5.13 and Corollary 5.16] it is enough to answer in 
the affirmative the following question:

Question 2.3 ([3, Question 5.17]). If G is a connected non-complete accessible graph, 
does there exist a cut vertex v of G such that JG\{v} is unmixed?

If H is an induced subgraph of G, we denote by NH(v) = {w ∈ V (H) | {v, w} ∈ E(G)}
the set of neighbors of v in H and define NH [v] = NH(v) ∪ {v}. In order to study 
Question 2.3 we frequently use the following criterion:

Proposition 2.4 ([3, Proposition 5.2]). Let v be a cut vertex of a connected graph G and 
assume that JG is unmixed. Let H1 and H2 denote the connected components of G \{v}. 
The following statements are equivalent:

(1) JG\{v} is unmixed;
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Fig. 1. A graph G with JG\{1} unmixed.

(2) if S is a cut set of G \ {v}, then NH1(v) � S and NH2(v) � S.

Note that, in an accessible graph G it is not necessarily true that JG\{v} is unmixed 
for every cut vertex v of G.

Example 2.5. Let G be the accessible graph in Fig. 1, whose cut vertices are 1, 4, 8. In this 
case, JG\{1} is unmixed, whereas JG\{4} and JG\{8} are not unmixed by Proposition 2.4. 
In fact,

• for the cut vertex 4, if H1 = G \ {4, 12}, then NH1(4) ⊂ S1 = {1, 3, 5, 8}, where S1

is a cut set of G \ {4};
• for the cut vertex 8, if H1 = G \ {8, 13}, then NH1(8) ⊂ S2 = {1, 4, 7, 9}, where S2

is a cut set of G \ {8}.

3. Blocks with whiskers

In this section we show that to answer Question 2.3 we can restrict to consider blocks 
with whiskers. Moreover, given a block with whiskers G, we find several sufficient condi-
tions on the structure of G for the existence of a cut vertex v such that JG\{v} is unmixed. 
Combining these results, we prove that G accessible implies JG strongly unmixed, and 
hence Conjecture 1.1 holds true, for new classes of graphs and for all graphs with up to 
12 vertices.

Recall that, for a connected graph G, JG is unmixed if and only if cG(S) = |S| +1 for 
every S ∈ C(G), see [16, Lemma 2.5]. For unmixed binomial edge ideals we characterize 
the cut sets of G as the subsets S of V (G) satisfying a simple bound on the number of 
components of G \ S. This result will be useful throughout the paper.
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Lemma 3.1. Let G be a connected graph with JG unmixed and S be a subset of V (G). 
The following are equivalent:

(1) S is a cut set of G;
(2) cG(S) = |S| + 1;
(3) cG(S) ≥ |S| + 1.

Proof. Let m = |V (G)|. The implications (1) ⇒ (2) ⇒ (3) are clear. Recall that, for every 
S ⊆ V (G), there is a prime ideal PS(G) containing JG with ht(PS(G)) = m −cG(S) +|S|, 
see [9, Lemma 3.1]. We refer the reader to [9, Section 3] for more details. Thus, condition 
(3) implies that

ht(PS(G)) = m− cG(S) + |S| ≤ m− 1 = m− cG(∅) + |∅| = ht(P∅(G)) = ht(JG).

Since PS(G) contains JG, it follows that ht(PS(G)) = ht(JG). Therefore PS(G) is a 
minimal prime of JG and [9, Corollary 3.9] implies that S is a cut set of G. �
Remark 3.2. Let G be a connected graph with JG unmixed. If S is a cut set of G and 
v ∈ V (G) \S, Lemma 3.1 implies that S ∪{v} is a cut set if and only if v is a cut vertex 
of G \ S.

3.1. Reduction to block with whiskers

Recall that a block is a graph with no cut vertices. A block of a graph G is a maximal 
induced subgraph of G that is a block. Any graph can be decomposed into blocks, where 
each two blocks share at most one cut vertex.

Let G be a connected graph and B a block of G. Denote by W = {v1, . . . , vr} the set 
of cut vertices of G that are vertices of B. Then

G = B ∪
(

r⋃
i=1

Gi

)
, (2)

where V (Gi) ∩ V (B) = {vi} for i = 1, . . . , r, and the connected components of G \W
are G1 \ {v1}, . . . , Gr \ {vr} and B \W if it is non-empty.

If B is a block and W = {v1, . . . , vr} ⊆ V (B), we denote by BW the graph obtained 
by adding a whisker to each vertex in W . More precisely:

(1) V (BW ) = V (B) ∪ {f1, . . . , fr}, where f1, . . . , fr are new vertices;
(2) E(BW ) = E(B) ∪ {{vi, fi} : i = 1, . . . , r}, where {vi, fi} is the whisker attached to 

vi.

We call BW a block with whiskers. Whenever we do not need to specify the set W , we 
simply write B.
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The next result implies that if Question 2.3 has a positive answer for all blocks with 
whiskers, then Conjecture 1.1 holds for all graphs.

Theorem 3.3. Suppose that for every accessible block with whiskers G there is a cut vertex 
v of G such that JG\{v} is unmixed. Then the binomial edge ideal of every accessible graph 
is strongly unmixed.

Proof. Assume that there exist accessible graphs whose binomial edge ideal is not 
strongly unmixed and among them choose a graph H with the minimum number of 
vertices. Clearly, H is connected and not complete.

We claim that there are no cut vertices of H such that JH\{v} is unmixed. In fact if 
there is a cut vertex v such that JH\{v} is unmixed, [3, Corollary 5.16] ensures that both 
H \ {v} and Hv \ {v} are accessible. Since they have fewer vertices than H, it follows 
that JH\{v} and JHv\{v} are strongly unmixed. By Proposition 2.2, this implies that JH
is strongly unmixed, a contradiction.

By [3, Proposition 6.1], we have that there is a block B of H such that for every 
cut vertex v of H contained in V (B) there exists a cut set Sv of H \ {v} containing 
NB(v).

By [12, Proposition 3], the graph B is accessible. By assumption there exists a cut 
vertex v of B such that JB\{v} is unmixed. Clearly, the cut vertices of B are exactly 
the cut vertices of H contained in V (B). Hence, we already know that there exists a 
cut set Sv of H \ {v} containing NB(v). Let Tv = Sv ∩ V (B). Since JB\{v} is unmixed, 
Tv cannot be a cut set of B \ {v}, see Proposition 2.4. Therefore, there exists w ∈ Tv

such that cB\{v}(Tv) ≤ cB\{v}(Tv \ {w}). Notice that w is a cut vertex of B because 
otherwise Sv is a cut set of H \ {v}. Hence, by definition of B, w is adjacent to a leaf 
in B and then cB\{v}(Tv) ≤ cB\{v}(Tv \ {w}) implies that NB(w) \ {v} is contained 
in Tv. Let H1 and H2 be the connected components of H \ {w}, where H2 contains 
B \ {w}. Consider U1 = Sv ∩ H[V (H1) ∪ {w}], where H[V (H1) ∪ {w}] denotes the 
subgraph induced by H on the vertices V (H1) ∪ {w}. Since Sv is a cut set of H \
{v} and NB(w) \ {v} ⊆ Tv, it is easy to see that U1 is a cut set of H \ {v} and of 
H.

We also know that there exists a cut set Sw of H \ {w} containing NB(w). It is 
straightforward to check that U2 = Sw ∩ V (H2) is still a cut set of H \ {w} con-
taining NB(w); in particular, U2 is also a cut set of H. Finally, consider U1 ∪ U2. By 
construction of U1 and U2, it follows that U1 ∪ U2 is a cut set of H. However, since 
U1 ⊆ V (H1) ∪ {w} and U2 ⊆ V (H2) are cut sets of H, w ∈ U1, and NB(w) ⊆ U2, we 
have that

|U1∪U2| = cH(U1∪U2)−1 = (cH(U1)−1)+(cH(U2)−1)−1 = |U1|+|U2|−1 = |U1∪U2|−1,

where the first and third equalities follow by the unmixedness of JH (and the second 
equality holds because U1 leaves one component in H2 and U2 leaves one component in 
H[V (H1) ∪ {w}]). This yields a contradiction. �
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The idea of focusing on blocks with whiskers to study Conjecture 1.1 was also used 
in [19, Theorem 1.2] and [20, Corollary 3.13]. The latter result and [12, Proposition 3]
imply that it is enough to prove Conjecture 1.1 for blocks with whiskers.

Remark 3.4. The proof of Theorem 3.3 also allows to show that if every accessible block 
with whiskers G with at most m vertices has a cut vertex v such that JG\{v} is unmixed, 
then every accessible graph with at most m vertices has a strongly unmixed binomial 
edge ideal. In fact, if H and B are as in the proof above, we have |V (B)| ≤ |V (H)| ≤ m.

3.2. Accessible blocks with whiskers

In the rest of the paper we use the following notation:

Notation 3.5. We denote by B a block B with a whisker attached to each of the vertices 
v1, . . . , vk ∈ V (B) and call B a block with k whiskers. We denote by fi the leaf adjacent 
to vi for every i = 1 . . . , k. We also assume that B has n vertices, hence B has n + k

vertices.

In this subsection we may always assume that k ≥ 3. In fact, if k = 1, 2, the induced 
subgraph on the cut vertices is complete and by [3, Proposition 6.6] there exists a cut 
vertex v of B such that JB\{v} is unmixed.

In what follows we find several conditions on B that guarantee the existence of a cut 
vertex v for which JB\{v} is unmixed, which we later use to prove the equivalence of the 
conditions in (1) when k ≥ n − 2 and for every graph with at most 12 vertices. These 
results will also play an important role in the next section.

Proposition 3.6. Let B be accessible. If B has a free vertex w, then there exists a cut 
vertex v of B such that JB\{v} is unmixed.

Proof. By [3, Theorem 4.12] w is adjacent to some cut vertex v of B (since k ≥ 3). 
Suppose that JB\{v} is not unmixed. Since JB is unmixed, by Proposition 2.4 there 
exists a cut set S of B \ {v} containing NB(v).

If w is not a cut vertex of B, then it is free also in B \ {v}. Since w ∈ S and cut sets 
only contain non-free vertices by [16, Proposition 2.1], we have that S /∈ C(B \ {v}), a 
contradiction.

If w is a cut vertex of B, since it is free in B, then {w} ∪NB(w) is a clique. It follows 
that NB(w) \ {v} ⊆ NB(v) ⊆ S. Thus, cB\{v}(S) = cB\{v}(S \ {w}) and this yields a 
contradiction because S is a cut set of B \ {v}. �
Lemma 3.7. Assume that JB is unmixed and let v be a cut vertex of B. If NB(v) contains 
only cut vertices of B, then JB\{v} is unmixed.
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Proof. By assumption, NB(v) is a cut set of B because every vertex in NB(v) is adjacent 
to v and to a leaf. Since JB is unmixed, the connected components of B \ NB(v) are 
|NB(v)| isolated vertices and the whisker containing v. This implies that NB [v] = V (B). 
Note that NB(v) /∈ C(B \ {v}), and every vertex of (B \ {v}) \ NB(v) = B \ V (B) is 
isolated. Thus there is no cut set of B \ {v} containing NB(v), and by Proposition 2.4 it 
follows that JB\{v} is unmixed. �

Given a graph G and S ⊂ V (G), when we say that a vertex v ∈ S reconnects some 
connected components G1, . . . , Gr of G \ S, we mean that in G \ (S \ {v}), G1, . . . , Gr

are in the same component containing v.

Lemma 3.8. Let B be accessible and assume that there is a cut vertex v of B such that 
|NB(v)| = 2. Then there exists a cut vertex v′ of B for which JB\{v′} is unmixed.

Proof. Let NB(v) = {v1, w}, where by [3, Theorem 4.12] and Lemma 3.7 we may assume 
that v1 is a cut vertex (since k ≥ 3), while w is not. Assume that neither JB\{v} nor 
JB\{v1} are unmixed. Hence, [3, Lemma 6.2 (1)] says that NB(v) � NB [v1] and then 
w /∈ NB(v1).

Consider N = NB(v) ∪ NB(v1) = NB [v1] ∪ {w} and N ′ = {u ∈ N | NB(u) �
N} \ {v, v1}. By construction N ′ is a cut set of B and we call G1, . . . , G|N ′|+1 the 
connected components of B \N ′, where v ∈ G1. Clearly N ′ ⊆ (NB(v1) \ {v}) ∪ {w}. We 
show the reverse inclusion.

By Proposition 2.4, NB(v1) is contained in a cut set of B\{v1} and, in particular, every 
vertex in NB(v1) is adjacent to at least two vertices of B\NB [v1]. Since N\NB [v1] = {w}, 
it follows that every vertex u ∈ NB(v1) \{v} is in N ′. We claim that also w ∈ N ′. Indeed, 
if w /∈ N ′, then G1 \ {v} has at least three connected components: the one containing 
w, the one containing v1, and an isolated vertex. Therefore, cB(N ′ ∪ {v}) ≥ |N ′| + 3 >
|N ′ ∪{v}| + 1, which contradicts Lemma 3.1. Hence, N ′ = (NB(v1) \ {v}) ∪{w} ∈ C(B).

Since v ∈ G1, the vertices of G1 are v, v1 and the two leaves adjacent to them. Both 
G1 \ {v} and G1 \ {v1} have two connected components, hence Remark 3.2 implies that 
both N ′∪{v} and N ′∪{v1} are cut sets of B. Moreover, the accessibility of B implies that 
there exists u ∈ N ′ such that N ′ \ {u} is a cut set of B. It follows from the unmixedness 
of JB that u is adjacent to exactly two connected components of B \N ′.

If u ∈ NB(v1) \ {v}, then u does not reconnect any component of B \ (N ′ ∪ {v1}), 
and this contradicts the fact that N ′∪{v1} ∈ C(B). The same argument works if u = w, 
replacing v1 with v. �

The next result allows us to assume that every vertex of B has at least degree three 
in B. This fact will be of great importance in the algorithm that we will develop in the 
next section.

Proposition 3.9. Let B be accessible. If there is a vertex of B that is adjacent to at most 
two vertices of B, then there exists a cut vertex v of B such that JB\{v} is unmixed.
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Proof. We may assume that |V (B)| > 2 and there are no vertices of degree one in a 
block with at least three vertices. Assume that w ∈ V (B) has degree two in B. If w
is a cut vertex of B, the claim follows from Lemma 3.8. Suppose w is not a cut vertex 
of B; then w is adjacent to a cut vertex v of B by [3, Theorem 4.12]. If JB\{v} is not 
unmixed, i.e., NB(v) is contained in a cut set S of B \ {v} by Proposition 2.4, we get a 
contradiction because w ∈ S and it is adjacent to exactly one vertex of B \ {v} and S
would not be a cut set. �

We now prove two lemmas that will be very useful in the rest of the section.

Lemma 3.10. Let JB be unmixed and v be a cut vertex of B. Suppose that JB\{v} is not 
unmixed, i.e., there exists S ∈ C(B \ {v}) such that NB(v) ⊆ S. If S \ {s} ∈ C(B) for 
some s ∈ V (B), then s /∈ NB(v). In particular, if B is accessible, then NB(v) � S.

Proof. Assume that s ∈ NB(v). Since S is a cut set of B \ {v}, s reconnects at least 
two connected components of B \ {v}. Moreover, s is also adjacent to v and then in 
B \ S it reconnects at least three connected components; this is a contradiction because 
|S| = cB(S \ {s}) ≤ cB(S) − 2 = |S| + 1 − 2 = |S| − 1.

In particular, if B is accessible, then there exists s ∈ S such that S \ {s} is a cut set 
of B and s ∈ S \NB(v). �

In the next lemma we use an argument similar to the proof of [3, Proposition 6.6].

Lemma 3.11. Let B be accessible and suppose that there exists w ∈ V (B) \ {v1, . . . , vk}
that is adjacent to vj for exactly one j ∈ {1, . . . , k}. Assume also that this vj is not a 
cut vertex of the graph induced by B on {v1, . . . , vk}. Then JB\{vj} is unmixed.

Proof. Without loss of generality, we may assume j = 1. Let N = NB(v2) ∪· · ·∪NB(vk), 
which is not empty because k ≥ 3. Note that w ∈ V (B) \ N and N ∪ NB(v1) = V (B)
because every vertex of B is adjacent to a cut vertex by [3, Theorem 4.12]. Consider 
N ′ = {u ∈ N | NB(u) � N} ⊆ N \ {v2, . . . , vk}; it is easy to check that N ′ is a cut set 
of B.

Assume that JB\{v1} is not unmixed, i.e., by Proposition 2.4, there exists S ∈ C(B \
{v1}) such that NB(v1) ⊆ S. Clearly, S is also a cut set of B and by [3, Corollary 4.15]
we can order the elements of S = {z1, . . . , zt} in such a way that {z1, . . . , zi} ∈ C(B)
for every i = 1, . . . , t. Let NB(v1) \ N = {zi1 , . . . , zis} with i1 < · · · < is; notice that 
NB(v1) \ N 
= ∅, because w ∈ NB(v1) \ N . Since S ∈ C(B \ {v1}), zis is adjacent to at 
least two vertices as, as+1 ∈ V (B) \ (S ∪ {v1}) ⊆ V (B) \ NB [v1] ⊆ N \ {v1}, and both 
as and as+1 are in N ′ \ {v1} because zis /∈ N .

Consider now S′ = {z1, . . . , zis−1} ∈ C(B). A connected component C of B\S′ contains 
zis , hence NB(zis) \ S′ ⊆ C; in particular v1, as, as+1 ∈ C. Therefore, zis−1 is adjacent 
to at least one vertex as−1 ∈ V (B) \ (NB [v1] ∪ {as, as+1}) ⊆ N \ {v1, as, as+1}. Again, 
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as−1 ∈ N ′ \ {v1, as, as+1} because zis−1 /∈ N . Repeating the same argument, we find 
{a1, . . . , as+1} ⊆ N ′ \ {v1}, where the ai’s are pairwise distinct.

Moreover, v1 ∈ N ′ because it is adjacent to some vi and to w /∈ N by assumption. 
Recall also that v2, . . . , vk ∈ N \N ′. Hence, |N ′| ≥ s + 2 and the connected components 
of B \N ′ are the following:

• the component containing N \ N ′, which is connected because by assumption the 
graph induced by B on {v2, . . . , vk} is connected since v1 is not a cut vertex of the 
graph induced by B on {v1, . . . , vk};

• the isolated vertex that is adjacent to v1 in B;
• the connected components of NB(v1) \N , which are at most s since NB(v1) \N has 

cardinality s.

Since N ′ is a cut set of B and JB is unmixed, we get cB(N ′) ≤ 1 +1 +s ≤ |N ′| = cB(N ′) −1, 
which yields a contradiction. �

Most of the cases in the next proof follow from [3, Proposition 6.6]. The only missing 
case has been independently obtained by Saha and Sengupta in [19, Proposition 5.3]; we 
include here a simpler and shorter proof.

Proposition 3.12. Assume that B is accessible and k ≤ 3. Then there exists a cut vertex 
v of B such that JB\{v} is unmixed.

Proof. We recall that the subgraph H induced by B on the cut vertices of B is connected 
by [3, Proposition 4.10]. By [3, Proposition 6.6], it follows that the claim holds if H is 
complete. Therefore, we only need to consider the case in which V (H) = {v1, v2, v3} and, 
without loss of generality, E(H) = {{v1, v2}, {v2, v3}}.

If JB\{v2} is unmixed, we have nothing to prove; if this is not the case, by Propo-
sition 2.4 there exists S ∈ C(B \ {v2}) such that NB(v2) ⊆ S. If r = |NB(v2)|, then 
|S| ≥ r + 1 by Lemma 3.10. Recall that f1, f2, f3 are the leaves attached to v1, v2, v3
respectively. The connected components of B \ S are the isolated vertices f1 and f3, the 
edge {v2, f2} and other |S| − 2 connected components whose vertices are included in 
V (B) \ (S∪{v2}). This implies that |V (B) \ (S∪{v2})| ≥ |S| −2 and, since NB(v2) � S, 
there are at least |S| −1 vertices in V (B) \NB[v2]. By Lemma 3.11, we may assume that 
V (B) \NB [v2] ⊆ NB(v1) ∩NB(v2). In particular, since also v2 ∈ NB(v1), we have that 
|NB(v1)| ≥ |S| ≥ r + 1.

Assume that NB(v1) is contained in a cut set of B \{v1}; in particular, by [3, Remark 
5.4] NB(v1) is a cut set of B. The connected components of B \ NB(v1) are the edge 
{v1, f1}, the isolated vertex f2 and other |NB(v1)| − 1 ≥ r connected components whose 
vertices (except f3 which is adjacent to v3) are included in V (B) \NB [v1]; thus |V (B) \
NB [v1]| ≥ r. However, V (B) \NB [v1] ⊆ NB(v2) \ {v1} and hence r ≤ |V (B) \NB [v1]| ≤
|NB(v2) \ {v1}| ≤ r − 1 yields a contradiction. �
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Before treating blocks with four whiskers we prove the following result that is inter-
esting by itself.

Proposition 3.13. Assume that B is accessible and let H be the graph induced by B on 
{v1, . . . , vk}. Assume that there are no cut vertices w of B such that JB\{w} is unmixed. 
If v is a cut vertex of B and r = |NH [v]|, then |NB(v)| ≤ �n+r

2 	 − 2. In particular, 
|NB(v)| ≤ �n+k

2 	 − 2.

Proof. By Proposition 2.4, there exists S ∈ C(B \ {v}) containing NB(v). Assume that 
|NB(v)| ≥ �n+r

2 	 − 1. Since S is also a cut set of B and JB is unmixed, cB(S) = |S| + 1. 
Let v1, . . . , vk−r be the cut vertices of B different from v that are not adjacent to v. 
Assume that v1, . . . , vi ∈ S and vi+1, . . . , vk−r /∈ S with 0 ≤ i ≤ k − r.

Suppose first that S = NB(v) ∪{v1, . . . , vi}. By [3, Remark 5.4], NB(v) is a cut set of 
B. Since also S ∈ C(B), cB(NB(v)) = cB(S) − i; more precisely, this means that every vj
reconnects the leaf fj to only another component. This easily implies that also NB(v) is 
a cut set of B \ {v}, but this contradicts Lemma 3.10.

Therefore, we may assume that |S| ≥ |NB(v)| + i + 1. Note that in B \ S we have 
that fj is in the same connected component of vj , for i + 1 ≤ j ≤ k − r and f is in 
the same connected component of v, where f is the leaf attached to v. Then, we have 
|S| + cB(S) + (k − r − i) + 1 ≤ n + k. Thus,

n + k ≥ |S| + cB(S) + k − r − i + 1 = 2|S| + k − r − i + 2 ≥

≥ 2(|NB(v)| + i + 1) + k − r − i + 2 ≥

≥ 2
(⌊

n + r

2

⌋
− 1

)
+ k − r + i + 4 ≥ (n + r − 1) − 2 + k − r + i + 4 ≥

≥ n + k + 1,

which is a contradiction. �
Remark 3.14. Let B be accessible and suppose that for every cut vertex v of B the ideal 
JB\{v} is not unmixed. By Proposition 3.9, for every vertex v of B we have |NB(v)| ≥ 3, 
and thus |E(B)| ≥ 3n

2 . On the other hand, Proposition 3.13 implies that for all the cut 
vertices v of B we have |NB(v)| ≤ �n+k

2 	 − 2. Let us consider the non-cut vertices of B
that are not leaves.

Notice that at most one of these vertices can have degree n − 1 = |V (B)| − 1. In 
fact, if w1, w2 are two such vertices and they both have degree n − 1, then NB(w1) =
V (B) \ {w1} and NB(w2) = V (B) \ {w2}. By Proposition 2.4 and Lemma 3.10, there 
exists S ∈ C(B \ {v}) such that NB(v) � S. In particular, S is a cut set of B and 
w1, w2 ∈ S. Since B is accessible, there exists a cut set T � S such that w1 /∈ T and 
w2 ∈ T . However, w2 does not reconnect anything in B \ T because NB [w1] = V (B), 
against T being a cut set of B. It follows that
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∑
w∈V (B)

w non-cut vertex of B

|NB(w)| ≤ (n− 1) + (n− 2)(n− k − 1).

Putting everything together, we conclude that, if B is accessible and for every cut 
vertex v of B the ideal JB\{v} is not unmixed, then:

3n
2 ≤ |E(B)| ≤ 1

2

(
k

(⌊
n + k

2

⌋
− 2

)
+ (n− 1) + (n− 2)(n− k − 1)

)
= (n− 1)2

2 − k

2

(
n−

⌊
n + k

2

⌋)
. (3)

Since n −
⌊
n+k

2
⌋
≥ 0, the upper bound is non-trivial, i.e., the right-hand side of (3) is 

strictly less than 
(
n
2
)
.

Lemma 3.15. Let B be accessible and H be the graph induced by B on its cut vertices. 
Assume that H is a block such that |E(H)| ≥ 1

2
∑k

i=1�n+ri
2 	 −n +1, where ri := |NH [vi]|. 

Then there exists a cut vertex v of B such that JB\{v} is unmixed.

Proof. Suppose that there are no cut vertices of B such that JB\{v} is unmixed. Since 
H is a block, by Lemma 3.11 we may assume that for every vertex w in V (B) \ V (H)
there exist indices i 
= j such that {w, vi}, {w, vj} ∈ E(B). Thus there exist at least 
2|V (B) \ V (H)| = 2(n − k) edges of B with exactly one endpoint in V (H).

By Proposition 3.13, we have that |NB(vi)| ≤ �n+ri
2 	 − 2 for every i. Therefore, by 

our assumption, the number of edges of B having exactly one endpoint in V (H) is at 
most

k∑
i=1

⌊
n + ri

2

⌋
− 2k − 2|E(H)| ≤

k∑
i=1

⌊
n + ri

2

⌋
− 2k −

k∑
i=1

⌊
n + ri

2

⌋
+ 2n− 2

= 2(n− k) − 2.

This yields a contradiction since 2(n − k) > 2(n − k) − 2. �
The technical inequality in Lemma 3.15 is always satisfied when k = 4, as we show 

next.

Proposition 3.16. Let B be accessible with k = 4 whiskers. If the graph H induced by B
on its cut vertices is a block, then there exists a cut vertex v of B such that JB\{v} is 
unmixed.

Proof. Let h = max{ri : 1 ≤ i ≤ 4}, where ri is defined as in Lemma 3.15. It is 
enough to show that |E(H)| ≥ h + 1 for every block H on 4 vertices. Indeed, h + 1 =
1 ∑4

i=1
n+h − n + 1 ≥ 1 ∑4

i=1�n+ri 	 − n + 1 and Lemma 3.15 would imply the claim. 
2 2 2 2
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If H is the cycle with four vertices C4, then |E(H)| = 4 and h = 3, whereas if H is not 
C4, |E(H)| ≥ 5 and h = 4. In both cases we conclude that |E(H)| ≥ h + 1. �
3.3. New classes of graphs satisfying the conjecture

Our next goal is to prove that the four conditions in (1) are equivalent when k ≥ n −2.

Remark 3.17. If JB is unmixed and k = n, we claim that B is complete. Therefore, in 
this case JB is strongly unmixed by applying [13, Lemma 12] k times and, in particular, 
there exists a cut vertex v of B such that JB\{v} is unmixed.

To show the claim, suppose that B is not complete. Notice that k = n means that 
every vertex in B is a cut vertex of B, so we may assume that {v1, v2} /∈ E(B). Moreover, 
NB(v1) is a cut set of B because every vertex in NB(v1) reconnects the leaf adjacent to 
it to v1. However, cB(NB(v1)) ≥ |NB(v1)| + 2 counting |NB(v1)| leaves, the component 
containing v1 and the component containing v2. This contradicts the unmixedness of 
JB .

Proposition 3.18. If k ≥ n − 2 and B is accessible, then there exists a cut vertex v of B
such that JB\{v} is unmixed.

Proof. The case k = n follows from Remark 3.17. Assume first that k = n − 1. This 
means that in B there is exactly one vertex w that is not a cut vertex of B. Let v ∈ B be 
a cut vertex of B and assume that there exists a cut set S of B \{v} containing NB(v). If 
w /∈ NB(v), we conclude by Lemma 3.7. Then we can assume that w ∈ NB(v) ⊆ S and 
every vertex in S \ {w} is a cut vertex. Hence, [3, Proposition 4.18] implies that S \ {w}
is a cut set of B and this contradicts Lemma 3.10.

Finally, assume that k = n − 2, i.e., in B there are exactly two vertices w1, w2 that 
are not cut vertices of B. Suppose that JB\{vi} is not unmixed, for every 1 ≤ i ≤ k. As 
above, we may assume that every cut vertex of B is adjacent to at least one between w1
and w2, and we claim that every vi is adjacent to exactly one of them. Fix i ∈ {1, . . . , k}. 
By Proposition 2.4 there exists Si ∈ C(B) containing NB(vi) and we may assume that 
vi is adjacent to w1. By [3, Proposition 4.18] either Si \ {w1} or Si \ {w2} is a cut set of 
B. Since w1 ∈ NB(vi), Lemma 3.10 implies that w2 ∈ Si \NB(vi), in particular vi is not 
adjacent to w2.

Let v1, . . . , va and va+1, . . . , vk be the cut vertices adjacent to w1 and w2 respectively. 
Since S1 and S1 \ {w2} are cut sets of B, by [3, Lemma 4.14] w2 is adjacent to at least 
two cut vertices, say vk−1 and vk, not contained in S1 and such that {vk−1, vk} /∈ E(B). 
Consider the set T = {v2, . . . , vk−1, w2} and recall that, for every i, fi is the leaf adjacent 
to vi. The connected components of B \ T are a path on {f1, v1, w1}, the edge {vk, fk}, 
and the isolated vertices f2, . . . , fk−1. Therefore, T is a cut set of B by Lemma 3.1. On 
the other hand, since vk−1 is not adjacent to v1, w1 and vk, it follows that cB(T ) =
cB(T \ {vk−1}), which yields a contradiction. �
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f = 10

(a) The graph B

7

1 2

3 4

8 9
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f = 10

(b) The graph Bv \ {v}

Fig. 2. A block with n = 6 vertices and with k = n − 2 = 4 whiskers.

In the case k ≥ n − 2 we also prove that accessibility, strong unmixedness, and hence 
Cohen-Macaulayness, are equivalent.

Theorem 3.19. If k ≥ n −2 and B is accessible, then JB is strongly unmixed. In particular, 
Conjecture 1.1 holds for B.

Proof. We proceed by induction on k. If k = 1, then n ≤ 3 and B is either a path of 
length at most two or a triangle; in both cases JB is strongly unmixed. Assume k > 1. 
By Proposition 3.18, there exists a cut vertex, say v, such that JB\{v} is unmixed, and 
by [3, Corollary 5.16] the graphs B \ {v} and Bv \ {v} are accessible (see Fig. 2 for an 
example of a block with n = 6 vertices and k = n − 2 = 4 whiskers, where v is vertex 
6; in Fig. 2a the edges containing v are dashed, in Fig. 2b the new edges connecting 
neighbors of v are dashed).

The graph B \{v} consists of an isolated vertex and another connected component A. 
Assume first that A is a block with k whiskers. Therefore, |V (A)| ≥ 2k vertices, but on 
the other hand |V (A)| = n + k − 2 ≤ 2k, which implies |V (A)| = 2k. By Remark 3.17, 
JA is strongly unmixed and then JB\{v} is strongly unmixed. If A is not a block with k
whiskers, it is easy to see that every block C of B\{v} has at most k−1 cut vertices. Since 
C is accessible by [12, Proposition 3], by induction JC is strongly unmixed. Moreover, 
by [19, Theorem 3.17] it follows that JB\{v} is strongly unmixed. Therefore, in light of 
Proposition 2.2, we only need to prove that JBv\{v} is strongly unmixed.

Let G =Bv \ {v} and H = G \ {f}, where f is the leaf adjacent to v. We claim that 
H is accessible. We first note that there are no cut sets of H containing NG(f) = NB(v). 
Indeed, if there is such a cut set S, then S would be a cut set of B \ {v} containing 
NB(v) and this is not possible because JB\{v} is unmixed. It is clear that a cut set T of 
H is also a cut set of G, because f is a free vertex of G and H = G \ {f}. Moreover, 
cH(T ) = cG(T ) = |T | +1 because T does not contain NG(f). Finally, since G is accessible, 
there exists t ∈ T such that T \ {t} is a cut set of G and it easily follows that T \ {t} is 
also a cut set of H; hence, H is accessible.
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Fig. 3. A non-accessible graph G such that JG is unmixed.

As in the case of B \ {v}, the induction hypothesis together with [12, Proposition 3]
and [19, Theorem 3.17] imply that JG is strongly unmixed. �

However, if k ≥ n − 1, the strong unmixedness of JB is equivalent to its unmixedness.

Proposition 3.20. Let k ≥ n − 1. If JB is unmixed, then it is strongly unmixed. In 
particular, R/JB is Cohen-Macaulay if and only if JB is unmixed.

Proof. The case k = n follows from Remark 3.17, then assume k = n − 1. By Theo-
rem 3.19 it is enough to prove that B is accessible. Let w be the unique non cut vertex 
of B contained in B, and let S be a non-empty cut set of B. If w /∈ S, S consists only of 
cut vertices and hence S \ {vi} is a cut set of B for every vi ∈ S by [3, Lemma 4.1].

Now suppose that w ∈ S. Any cut vertex vj of S reconnects the leaf fj to some other 
vertex in B and this is still the case in B \ (S \ {w}). This shows that S \ {w} is a cut 
set of B. Thus, B is accessible. �
Example 3.21. Notice that Proposition 3.20 does not hold if k = n − 2. For instance, 
let G be the graph in Fig. 3, which has 7 vertices in the block and 5 whiskers. One can 
check that JG is unmixed and not accessible: in fact, S = {3, 4, 6, 7} ∈ C(G) but none of 
its subsets of cardinality three is a cut set.

We are ready to prove that Conjecture 1.1 holds for every graph with at most 12 ver-
tices. This was verified computationally in [12] by an exhaustive search on all connected 
graphs that took about a month on a high-performance computing system.

Theorem 3.22. If G is an accessible graph with at most 12 vertices, then JG is strongly 
unmixed. In particular, Conjecture 1.1 holds true for G.



206 D. Bolognini et al. / Journal of Algebra 638 (2024) 189–213
v1

v2

v3

v4

f1

f2

f3

f4

w1

w2

w3 w4

(a) w4 is adjacent to w2
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(b) w4 is adjacent to w1

Fig. 4. A block with whiskers B with 12 vertices.

Proof. By Remark 3.4 it is enough to prove that in every block with whiskers B with at 
most 12 vertices there is a cut vertex v such that JB\{v} is unmixed, i.e., NB(v) is not 
contained in any cut set of B\{v}. Assume that this is not the case. By Proposition 3.12, 
B has at least 4 whiskers. Moreover, Proposition 3.18 implies that B has exactly 4
whiskers and at least 11 vertices.

By Proposition 3.16 we know that the graph H induced on the cut vertices v1, v2, v3, v4

is not a block. Then H has a leaf, say v1, and we may assume NH(v1) = {v2}. Note that 
|NB(v1)| > 2 by Proposition 3.9; moreover, if B has 11 vertices, Proposition 3.13 ensures 
that |NB(v1)| ≤ 2, giving a contradiction.

Hence, we assume that B has 12 vertices. Its vertices are the cut vertices v1, v2, v3, v4, 
their leaves f1, f2, f3, f4 and four more vertices w1, w2, w3, w4, which are not cut vertices 
of B. Proposition 3.9 ensures that |NB(vi)| ≥ 3 and |NB(wi)| ≥ 3, for every 1 ≤ i ≤ 4. 
By Proposition 3.13 we have that |NB(v1)| = 3, say NB(v1) = {v2, w1, w2}. By our 
assumption and Proposition 2.4, there exists S ∈ C(B \ {v1}) containing NB(v1). By [3, 
Proposition 4.18], it follows that S \ {wi} is a cut set of B for some i, and Lemma 3.10
implies that wi /∈ NB(v1). We may assume i = 3 and then {v2, w1, w2, w3} ⊆ S. Hence, 
cB(S) ≥ 5 and it is straightforward to see that this is possible only if S = {v2, w1, w2, w3}
and the vertices of the connected components of B\S are {f2}, {v1, f1}, {v3, f3}, {v4, f4}, 
and {w4}. In particular, v3 and v4 are not adjacent.

Since H is not a block, it can only be a path, a triangle with a whisker or a star, 
but in the first two cases v3 and v4 would be adjacent, hence H is a star with center in 
v2 and leaves v1, v3, v4, see Fig. 4 (where we only draw the edges that we know are in 
the graph; however there could be further edges). Moreover, w4 is not adjacent to v1, 
v3 and v4, thus it is adjacent to v2 by [3, Theorem 4.12] and to at least one between 
w1 and w2. By Lemma 3.7 and Proposition 3.13, it follows that |NB(v2)| = 4 and 
NB(v2) = {v1, v3, v4, w4}. By Lemma 3.11, {v3, v4} ⊆ NB(w3), w1 ∈ NB(v3) ∪ NB(v4)
and w2 ∈ NB(v3) ∪ NB(v4). This fact and Proposition 3.13 imply that |NB(v3)| =
|NB(v4)| = 3, then we may assume NB(v3) = {v2, w1, w3} and NB(v4) = {v2, w2, w3}. 
Notice that NB(v3) and NB(v4) are cut sets of B by [3, Remark 5.4].

If w4 is adjacent to w2, in B \ NB(v3) there are three connected components, 
{v1, v4, f1, f4, w2, w4}, {f2} and {v3, f3} (see Fig. 4a, where the vertices in NB(v3) are 



D. Bolognini et al. / Journal of Algebra 638 (2024) 189–213 207
drawn as empty circles and the edges containing them are dashed); analogously, if w4 is 
adjacent to w1, in B \NB(v4) the three connected components are {v1, v3, f1, f3, w1, w4}, 
{f2} and {v4, f4} (see Fig. 4b, where the vertices in NB(v4) are drawn as empty circles 
and the edges containing them are dashed). In both cases, we contradict the unmixedness 
of JB . �
4. The algorithm

In this section, in order to answer Question 2.3, we describe an algorithm that employs 
Theorem 1.3 to restrict the search space to certain blocks with whiskers. The key idea 
of the algorithm is to generate all blocks with n vertices and then add k whiskers to 
suitable subsets of the vertices of each block. In this way we extend the computations 
in [13] because we can examine graphs with n + k vertices generating only blocks with 
n vertices, limiting the rapid growth in the number of graphs. This allows us to verify 
Conjecture 1.1 for many new graphs.

We start with a lemma that describes basic properties of a block with whiskers.

Lemma 4.1. If JB is unmixed, then the following conditions are satisfied:

(a) for every S ⊆ {v1, . . . , vk}, B \ S is connected;
(b) for every S ∈ C(B) containing kS ≥ 0 cut vertices of B, cB(S) = |S| − kS + 1.

Moreover, if k < n, then

{S : S ⊆ {v1, . . . , vk}} ∪ {S : S ∈ C(B)} ⊆ C(B).

Proof. Suppose first k = n. If B is complete, there is nothing to prove. Otherwise, 
there exists a non-empty T ∈ C(B), which is clearly also a cut set of B. Then cB(T ) =
|T | + cB(T ) > |T | + 1, which contradicts the unmixedness of JB.

Thus, we may assume that k < n, i.e., in B \ {v1, . . . , vk} is not empty. If S ⊆
{v1, . . . , vk} with 1 ≤ |S| ≤ k, then cB(S) ≥ |S| +1. Hence, Lemma 3.1 implies S ∈ C(B)
and cB(S) = |S| + 1, which means that B \S is connected. Now let S ∈ C(B) containing 
kS ≥ 0 cut vertices of B. Then cB(S) = cB(S) − kS = |S| + 1 − kS , and S ∈ C(B) by 
Lemma 3.1. �

Next we describe our algorithm.

Algorithm 4.2. 
Input : n := number of vertices of the blocks.

k := number of whiskers to attach to each block, with 4 ≤ k ≤ n − 3.
Output : True if every accessible block B with n vertices and k whiskers has a cut vertex v such that 

JB\{v} is unmixed. False otherwise.
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1 B := ∅
2 B := list of non-isomorphic blocks with n vertices having neither free vertices nor vertices of 

degree 2
3 for B ∈ B do
4 C̃(B) := {(T, kT ) : T ∈ C(B), kT := |T | + 1 − cB(T )}
5 if 1 ≤ kT ≤ k for all (T, kT ) ∈ C̃(B) then
6 V := {v ∈ V (B) : |NB(v)| ≤ �n+k

2 � − 2}
7 for S subset of V with cardinality k do
8 if |NB(v)| ≤ �n+r

2 � − 2 for every cut vertex v of B where r := |NB [v] ∩ S| then
9 NB(S) := {u ∈ V (B) : {u, z} ∈ E(B) for some z ∈ S}

10 if |NB(S)| = n and B \ S is connected and (|S ∩ T | = kT for all (T, kT ) ∈ C̃(B))
then

11 H := B[S] induced subgraph by B on S
12 if (k = 4 and H is not a block) or (k 	= 4 and H is not complete) then
13 B := B ∪ {{vi, fi} : vi ∈ S, fi new vertex, i = 1, . . . , k}
14 if B is not isomorphic to any element in B then
15 B := B ∪ {B}
16 for B ∈ B do
17 if B is accessible then
18 if JB\{v} is not unmixed for all v cut vertex of B then
19 return False
20 return True

Proof. The aim of the above algorithm is to check whether for every accessible block 
with n vertices and k whiskers B, there exists a cut vertex v of B such that JB\{v} is 
unmixed. We describe the algorithm in more detail.

Input: We give two integers n, k as input, where n is the number of vertices of the blocks 
and k the number of whiskers we add to each block, for some 4 ≤ k ≤ n − 3. In 
fact, if k ≤ 3 or k ≥ n −2, then by Propositions 3.12 and 3.18, respectively, there 
exists a cut vertex of the block with whiskers B such that JB\{v} is unmixed.

Output: True if every accessible block B with n vertices and k whiskers has a cut vertex 
v such that JB\{v} is unmixed. False otherwise.

Line 1: We initialize B to be the empty list.
Line 2: We produce the list B of pairwise non-isomorphic blocks with n vertices that 

have neither free vertices nor vertices of degree 2. We can remove blocks with 
free vertices by Proposition 3.6 and blocks with vertices of degree 2 by Proposi-
tion 3.9. Moreover, by Remark 3.14 it is enough to consider blocks with number 
of edges satisfying the bounds (3). We implemented this filter as a routine in 
Nauty [14].

Lines 3-4: For each block B in B, we compute the set C̃(B) of pairs (T, kT ), where kT
is given by Lemma 4.1.

Line 5: We want to analyze all possible accessible blocks with whiskers constructed from 
the block B by adding k whiskers to it. Therefore, by Lemma 4.1, kT will be the 
number of cut vertices contained in T . Hence, we need to have kT ≤ k for every 
(T, kT ) ∈ C̃(B). Moreover, kT ≥ 1 by [3, Lemma 4.1].

Line 6: We define the set V of vertices v such that |NB(v)| ≤ �n+k
2 	 − 2 in order to use 

Proposition 3.13.
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Line 7: We execute a for-loop over all the subsets S of V with cardinality k: we will 
then add a whisker to each vertex of S.

Line 8: In light of Proposition 3.13 we check whether |NB(v)| ≤ �n+r
2 	 − 2 for every v

in S, where r := |NB [v] ∩ S|.
Lines 9-10: We compute NB(S) and check the following conditions:

i) |NB(S)| = n, i.e., NB(S) = V (B), otherwise there is some vertex of B that 
is not adjacent to any vertex in S. Hence, the block with whiskers BS is not 
accessible by [3, Theorem 4.12];

ii) B \ S has to be connected and |S ∩ T | = kT for all (T, kT ) ∈ C̃(B) by 
Lemma 4.1.

Lines 11-12: We define the induced subgraph H := B[S] by B on S. By Proposition 3.16
we can exclude the case k = 4 with H a block and by [3, Proposition 6.6] we 
can exclude the case k > 4 with H a complete graph.

Line 13: We define the graph B := BS obtained from B by adding a whisker to each 
vertex of the set S.

Lines 14-15: Finally, we add B to B if B is not isomorphic to any element of B.
Lines 16-20: For each block with whiskers B ∈B, if B is accessible, we consider the cut 

vertices of B. If JB\{v} is not unmixed for every v cut vertex of B, we return 
False. If we reach the end of the for loop, it means that for each B ∈B we found 
a cut vertex v of B such that JB\{v} is unmixed, and hence we return True. �

We implemented Algorithm 4.2 combining computations in Nauty [14], routines in 
C, C++ and Python, and incorporating the code developed in [12,13]. We also included 
some optional input arguments, which allow to select the number of edges of the blocks 
and subdivide each computation into smaller parts. The complete code for the imple-
mentation of Algorithm 4.2 can be found in [5].

Remark 4.3. For all blocks with whiskers B with n = |V (B)| ≤ 11, Algorithm 4.2 returns 
True, i.e., for each of those graphs it finds a cut vertex v such that JB\{v} is unmixed. 
In the computations, we only consider 4 ≤ k ≤ n − 3 because of Propositions 3.12 and 
3.18; in particular n ≥ 7.

In Table 1 we collect the number of graphs produced throughout Algorithm 4.2. In 
particular, the second column contains the number of blocks in B (see Line 2), followed 
by the number of blocks with whiskers B such that JB is unmixed and finally the number 
of accessible blocks with whiskers. Notice that none of the conditions in Theorem 1.3
applies to the graphs in Table 1 because they are all tested by Algorithm 4.2. Part of 
these computations, obtained with a simpler version of the algorithm, were announced 
in [4].

We also remark that the graphs in Table 1 are a small subset of all accessible graphs. 
For instance, in [12, Table 1] the authors found 24, 270 connected accessible graphs with 
up to 12 vertices, whereas we found only 5 accessible graphs with up to 15 vertices.
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Table 1
Filtered accessible blocks with whiskers.

Number of vertices 
of B ↓

Filtered 
blocks

Blocks with whiskers with 
JB unmixed

Accessible blocks with 
whiskers

(Number of 
whiskers) →

4 5 6 7 8 4 5 6 7 8

7 79 0 - - - - 0 - - - -
8 1,716 0 0 - - - 0 0 - - -
9 61,408 0 2 2 - - 0 2 1 - -
10 4,054,291 0 6 9 25 - 0 2 5 24 -
11 475,625,326 0 54 541 367 53 0 13 309 283 38

1 2 3

4567

8 9

10 11

1213

14

Fig. 5. An accessible block with whiskers from Table 1.

Notice that the blocks with whiskers with JB unmixed in Table 1 are exactly the 
graphs in B (see Line 15). It is important that the number of graphs in B is small 
because testing unmixedness is the bottleneck of our algorithm.

Example 4.4. The graph B in Fig. 5 is one of the smallest accessible blocks with whiskers 
from Table 1. This also means that the graph B does not satisfy any of the conditions 
in Theorem 1.3. However, in this case JB\{1} is unmixed.

Example 4.5. Looking at Table 1, one can see that Algorithm 4.2 did not find any block 
with 4 whiskers and n ≤ 11 in B (see Line 15). However, it found non-accessible blocks 
with 12 vertices and 4 whiskers whose binomial edge ideal is unmixed, for instance the 
graph in Fig. 6. We do not know if there are accessible blocks with 4 whiskers in B for 
n ≥ 12.

In [13] the authors verified that Conjecture 1.1 holds for all graphs with up to 12
vertices. Algorithm 4.2 allows us to go way beyond, checking the conjecture for all graphs 
with up to 15 vertices and for blocks with up to 11 vertices with whiskers (reaching some 
graphs with 11 + 8 = 19 vertices), as we prove next.

Theorem 4.6. Let G be one of the following:

(a) a graph with |V (G)| ≤ 15;
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1 2 3 4

5

6

7

8

910

11

12

13 14 15 16

Fig. 6. A block with four whiskers B with JB unmixed.

(b) G =B a block with whiskers, where n = |V (B)| ≤ 11.

Then the conditions below are equivalent:

(1) JG is strongly unmixed;
(2) R/JG is Cohen-Macaulay;
(3) R/JG satisfies Serre’s condition (S2);
(4) G is accessible.

Proof. We know that (1) ⇒ (2) ⇒ (3) ⇒ (4) for every graph G, hence we only need to 
show that (4) ⇒ (1).

(a) Let G be a graph with |V (G)| ≤ 15. By Remark 3.4, it is enough to show that 
every block with whiskers B with at most 15 vertices has a cut vertex v such that JB\{v}
is unmixed. If B has at most 3 whiskers, then the claim follows by Proposition 3.12. 
Otherwise, B is a block with at most 11 vertices and we conclude by Remark 4.3.

(b) Let G = B be a block with whiskers, where n = |V (B)| ≤ 11. We proceed by 
induction on |V (B)| ≥ 1. The case |V (B)| = 1 is trivial. By Remark 4.3, there exists a 
cut vertex, say v1, such that JB\{v1} is unmixed. Moreover, in light of Proposition 2.2, 
it is enough to show that JB\{v1} and JBv1\{v1} are strongly unmixed. Notice that the 

graphs B \ {v1} and Bv1 \ {v1} are accessible by [3, Corollary 5.16]. Furthermore, for 
each block C of B \ {v1}, JC is strongly unmixed by induction since |V (C)| < |V (B)|, 
and hence JB\{v1} is strongly unmixed by [19, Theorem 3.17].

Let now G1 =Bv1 \ {v1}, which is an accessible block C with k− 1 whiskers. We only 
need to show that JG1 is strongly unmixed. Notice that V (C) = (V (B) ∪ {f1}) \ {v1}, 
where f1 is the leaf adjacent to v1 in B. Therefore, |C| = |B| ≤ 11 and by assumption 
there exists a cut vertex, say v2 of G1 such that JG1\{v2} is unmixed. As above, JG1\{v2}
is strongly unmixed and G2 = (G1)v2 \ {v2} is an accessible block with k − 2 whiskers. 
Hence, it is enough to prove that JG2 is strongly unmixed. Repeating the same argument 
we obtain the graph Gk = (Gk−1)vk \{vk} and we only need to show that JGk

is strongly 



212 D. Bolognini et al. / Journal of Algebra 638 (2024) 189–213
unmixed. However, Gk−1 is an accessible block with one whisker, and then its unique 
cut vertex is adjacent to all the other vertices of Gk−1 by [3, Lemma 4.9]. Therefore, Gk

is a complete graph and JGk
is strongly unmixed. �

Data availability

A complete implementation of Algorithm 4.2 using C, C++, Python, and the packages 
Nauty [14] and igraph [6] can be found in the website [5], where we also provide some 
examples of computation.
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