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Abstract
The random greedy algorithm for finding a maximal inde-

pendent set in a graph constructs a maximal independent

set by inspecting the graph’s vertices in a random order,

adding the current vertex to the independent set if it is not

adjacent to any previously added vertex. In this paper, we

present a general framework for computing the asymptotic

density of the random greedy independent set for sequences

of (possibly random) graphs by employing a notion of local

convergence. We use this framework to give straightfor-

ward proofs for results on previously studied families of

graphs, like paths and binomial random graphs, and to

study new ones, like random trees and sparse random pla-

nar graphs. We conclude by analysing the random greedy

algorithm more closely when the base graph is a tree.
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1 INTRODUCTION

An independent set in a graph is a set of vertices, no two of which are adjacent. The problem of

finding large independent sets is fundamental in computer science, with many real-world applications.

Computing the size of a maximum independent set (known as the independence number of a graph) is

known to be NP-hard on general graphs [47], and is even hard to approximate [30]. A natural way to try

to efficiently produce a large independent set in an input graph G is to output a maximal independent

set (MIS), namely, an independent set to which no other vertex can be added without destroying its

property of being independent. While in principle a poorly chosen MIS can be very small (like, say,
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the star centre in a star), one might hope that quite a few of the maximal independent sets will have a

size comparable in some quantitative sense to the independence number of G.

This paper
1

studies the random greedy algorithm for producing an MIS, which is defined as

follows. Given an input graph G, the algorithm first orders its vertices uniformly at random and then

constructs an independent set I = I(G) by considering each of the vertices one by one in order, adding

it to I if the resulting set does not span an edge. (Note that the set I is, in fact, the set of vertices coloured

in the first colour in a random greedy proper colouring of G.) A basic quantity to study, which turns

out to have numerous applications, is the proportion of the yielded independent set |I|∕|V(G)| (which

we call the greedy independence ratio). In particular, it is of interest to study the asymptotic behavior

of this quantity for natural (random) graph sequences.

Due to its simplicity, the random greedy algorithm has been studied extensively by various authors

in different fields, ranging from combinatorics [71], probability [64] and computer science [32] to

chemistry [34]. As early as 1931, this model was studied by chemists under the name random sequential
adsorption (RSA), focusing primarily on 𝑑-dimensional grids. The one-dimensional case (a path) was

solved by Flory [34] (see also [59]), who showed that the expected greedy independence ratio tends to

𝜁2 = (1 − e−2)∕2 as the path length tends to infinity.

A continuous analogue, in which “cars” of unit length “park” at random free locations on the

interval [0,X], was introduced (and solved) by Rényi [65], under the name car-parking process. The

limiting density, as X tends to infinity, is called Rényi’s parking constant, and 𝜁2 may be considered as

its discrete counterpart (see, e.g., [31]). Following this terminology, the final state of the car-parking

process is often called the jamming limit of the graph, and the density of this state is called the jamming
constant. For dimension 2, Palásti [60] conjectured, in the continuous case (where unit square “cars”

park in a larger square), that the limiting density is Rényi’s parking constant squared. This conjecture

may be carried over to the discrete case, but to the best of our knowledge, in both cases, it remains

open. For further details, see [31] (see also [28] for an extensive survey on RSA models, and [23] for

generalizations of the RSA model).

In combinatorics, the greedy algorithm for finding an MIS was analysed in order to give a lower

bound on the (usually asymptotic) typical independence number of (random) graphs.
2

The asymp-

totic greedy independence ratio of binomial random graphs was studied by McDiarmid [54] (but see

also [13, 40]; for large deviation estimates, see [8, 50]). The asymptotic greedy independence ratio

of random regular graphs was studied by Wormald [71], who used the so-called differential equation
method (see [72] for a comprehensive survey; see also [70] for a short proof of Wormald’s result). His

result was further extended in [52] to any sequence of regular graphs with growing girth (see also [43,

44] for similar extensions for more sophisticated algorithms
3
). The case of uniform random graphs

with given degree sequences was studied (independently) in [9] and [16].

Apart from being basic to combinatorial optimization, the random greedy algorithm for producing

an MIS is of pure theoretic interest: it is a simple and natural stochastic process which, in its most

general form, emulates many previously studied processes. One such model is the randomized greedy
matching (see [25]), which can be defined as the random greedy MIS on the corresponding line graph.

This model was studied by Dyer and Frieze [25] for general graphs and by Dyer, Frieze and Pittel [26]

1
This is an extended and revised version of a conference version presented at the 31st International Conference on Probabilistic,

Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA2020) [51].
2
For this purpose, more sophisticated local (and non-local) algorithms have been analyzed. Nevertheless, as we mention later,

the random greedy algorithm is, perhaps surprisingly, at least as good as any other local algorithm for various random graph

models. In fact, in many problems, the random greedy algorithm is essentially the best known efficient algorithm available.
3
For example, there is a series of works obtaining ever better lower bounds for the independence ratios in (random/high-girth)

3- and 4-regular graphs, using local algorithms; see, for example, [19, 20, 24, 43].
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988 KRIVELEVICH ET AL.

for sparse uniform random graphs. The distribution of I also appears naturally as a marginal of a

random greedy coloring of the graph.

In a more general setting, where the random greedy algorithm runs on a hypergraph, the model

recovers, in particular, the triangle-free process (or, more generally, the H-free process). In this process,

which was first introduced in [27], we begin with the empty graph, and at each step, add a random

edge as long as it does not create a copy of a triangle (or of H). To recover this process, we take the

hypergraph whose vertices are the edges of the complete graph and whose hyperedges are the triples

of edges that span a triangle (or k-sets of edges that form a copy of H, if H has k edges). Bohman’s

key result [11] is that for this hypergraph, |I| is with high probability (whp)
4 Θ

(
n3∕2

√
ln n

)
, where

n is the number of vertices. Bohman and Keevash [12] and Fiz Pontiveros, Griffiths and Morris [33]

later found the exact asymptotics. Similar results were obtained for the complete graph on four vertices

by Warnke [69] and for cycles independently by Picollelli [63] and by Warnke [68]. For a discussion

about the general setting, see [7]. An additional celebrated model that can be emulated by a random

greedy MIS on a (nonuniform) hypergraph is the minimum spanning tree (MST).

Consider the following alternative but equivalent definition of the model. Assign an independent

uniform label from [0, 1] to each vertex of the graph, and consider it as the arrival time of a particle

at that vertex. All vertices are initially vacant, and a vertex becomes occupied at the time denoted by

its label if and only if all of its neighbors are still vacant at that time. Clearly, we do not need to worry

that two particles will arrive at the same time. The set of occupied vertices at time 1 is exactly the

greedy MIS. We may think of the resulting MIS as a factor of iid (fiid),
5

meaning, informally, that there

exists a “local” rule, unaware of the “identity” of a given vertex, that determines whether that vertex

is occupied. It was conjectured (formally by Hatami, Lovász and Szegedy [41], but see discussion

in [37]) that, using a proper rule, fiid can produce an asymptotically maximum independent set in

random regular graphs of high degree. However, this was disproved by Gamarnik and Sudan [37]. In

fact, they showed that this kind of local algorithms has a uniformly limited power for a sufficiently

large degree, and later Rahman and Virág [64] showed that the density of fiid independent sets in

regular trees and Poisson Galton–Watson trees with a large average degree, is asymptotically at most

half -optimal, concluding (after projecting to random regular graphs or to binomial random graphs)

that local algorithms cannot achieve better. In particular, this implies that the random greedy algorithm

is, asymptotically, at least as good as any other local algorithm.

In general graph sequences, however, local algorithms may perform arbitrarily close to opti-

mal. A trivial example is the set of stars, where the greedy algorithm typically performs perfectly.

A less trivial example is that of uniform random trees. The expected independence ratio of a uni-

form random tree is the unique solution of the equation x = e−x
(see [55]), which is approximately

0.5671… , while the greedy algorithm yields an independent set of expected density 1∕2 as we will

see in Section 6.3.

Finally, we note that the following parallel/distributed algorithm gives a further way to look at the

maximal independent set generated by the greedy algorithm. After (randomly) ordering the vertices,

we add to I all the sinks, namely, the vertices which appear before their neighbors in the order, and

then remove them and their neighbors from the graph. We repeat these steps until the graph is empty.

Formulated this way, the algorithm is straightforward to implement and requires only local commu-

nication between the nodes. Also, conditioning on the initial random ordering, it is deterministic, a

property that appears to be important (see, e.g., [10]). A central question of interest is the number of

rounds it takes the algorithm to terminate. In [32] it was shown that it terminates in O(log n) steps whp

4
That is, with probability tending to 1 as n tends to infinity.

5
The letters iid abbreviate independent and identically distributed.
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KRIVELEVICH ET AL. 989

on any n-vertex graph, and that this is tight. Thus, even though these algorithms may be suboptimal,

they are strikingly simple and surprisingly efficient.

1.1 Our results

The goal of this paper is to present a unified, comprehensive, and easy-to-apply framework for

analysing the random greedy independence ratio. Indeed, several previous results (e.g., results

from [34, 52, 54, 58, 59, 71]), as well as new ones, can be derived as special cases of theorems that we

present below. The general approach is to study a suitable limiting object, typically a random rooted

infinite graph, which captures the local view of a typical vertex, and to calculate the probability that

its root appears in a random independent set in this graph, which is created according to some natu-

ral “local” rule, to be described later. We show that this probability approximates the expected greedy

independence ratio and give tools to calculate that probability precisely in many cases of interest. This

change of view from a sequence of graphs with varying underlying probability spaces to an infinite

object with a fixed underlying probability space is known in the literature as the objective method [4].

Let us formulate this more precisely. A random labeling of a (possibly infinite, possibly random)

graph G = (V ,E) is a process 𝜎 = (𝜎v)v∈V consisting of iid random variables 𝜎v, each distributed

uniformly in [0, 1]. If G is finite, we let I𝜎(G) denote the random greedy maximal independent set of

G obtained by the ordering induced by 𝜎 (note that it is measurable w.r.t. G and 𝜎). We also let 𝜄(G)
denote the density of I𝜎(G) and 𝜄(G) denote its expectation (taken over the distribution of G and over

the labelling 𝜎). The past of a vertex v, denoted v, is the (random) set of vertices in G reachable from

v by a monotone decreasing path (with respect to 𝜎). Suppose (U, 𝜌) is a random rooted locally finite

graph (i.e., (U, 𝜌) is a distribution supported on rooted locally finite graphs). We say that (U, 𝜌) has

nonexplosive growth if the past of 𝜌 in U, with respect to a random labeling 𝜎, is almost surely finite.

For such (U, 𝜌) we may define

𝜄(U, 𝜌) = P[𝜌 ∈ I𝜎(U[𝜌])].

We say that a graph sequence Gn converges locally to (U, 𝜌), and denote it by Gn
loc

−−→ (U, 𝜌), if for every

r ≥ 0, the ball of radius r around a uniformly chosen point from Gn converges in distribution to the ball

of radius r around 𝜌 in U. To make this notion precise, we need to endow the space of rooted locally

finite connected graphs with a topology. This will be done rigorously in Section 2. The following key

tool motivates the definitions above.

Proposition 1.1. If Gn
loc

−−→ (U, 𝜌) and (U, 𝜌) has nonexplosive growth then 𝜄(Gn) →

𝜄(U, 𝜌).

It is easy to see that 𝜄(U, 𝜌) is at least E[(𝑑(𝜌) + 1)−1]; however, the expected value of 𝑑(𝜌)may be

infinite, even if (U, 𝜌) is a local limit of a sequence of finite graphs.

Proposition 1.1, as a more or less straightforward application of the objective method, can be con-

sidered folklore. However, at present there does not appear to be an explicit statement of the above

form in the literature. For completeness, we provide a short proof in Section 2.

With some mild growth assumptions on the graph sequence, we also obtain asymptotic concentra-

tion of the greedy independence ratio around its mean. For a graph G letG(r) be the random variable

counting the number of paths of length at most r from a uniformly chosen random vertex of G. For

two real numbers x, y denote by x ∧ y their minimum. For a graph sequence Gn, let

𝜇
∗(r) = lim

M→∞
lim sup

n→∞
E[Gn(r) ∧M].
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990 KRIVELEVICH ET AL.

We say that Gn has subfactorial path growth (sfpg) if 𝜇
∗(r) ≪r r! (by g1(r) ≪r g2(r) we mean that

limr→∞ g1(r)∕g2(r) = 0). Note that every graph sequence with uniformly bounded degrees has sfpg, but

there are graph sequences with unbounded degrees, and even with unbounded average degree, which

still have sfpg. For most cases, and for all of the applications presented in this paper, requiring that

the somewhat simpler expression limsupn→∞E[Gn(r)] is subfactorial would have sufficed; however,

requiring that the “truncated” mean 𝜇
∗(r) is subfactorial is less strict, and is more natural for the

following reason: if the graph sequence converges locally, then 𝜇
∗(r) is the expected number of paths

of length at most r in the limit. In addition, while a sequence of graphs with sfpg does not necessarily

have a local limit, it does have a locally convergent subsequence, and any limit of such a sequence will

have nonexplosive growth (see proof of Theorem 1.2).

For two functions f1(n), f2(n) write f1(n) ∼ f2(n) if f1(n) = (1 + o(1))f2(n). We are now ready to

state our concentration result.

Theorem 1.2. If Gn has sfpg and Gn
loc

−−→ (U, 𝜌) then 𝜄(Gn) ∼ 𝜄(U, 𝜌) with high probabil-
ity.

Theorem 1.2 can (and will) be used as a tool to estimate 𝜄(Gn) for various graph sequences, as we

will see in Section 6.

We remark that Gamarnik and Goldberg [36] have already established concentration of 𝜄(Gn)
around its mean, assuming that the degrees of Gn are uniformly bounded. Here we relax that assumption

by not even requiring a bounded average degree. For a more detailed comparison, see Section 1.1.4.

1.1.1 Locally tree-like graph sequences

We call a (random) graph sequence locally tree-like when the limiting object is supported on rooted

trees. Our next result is a general differential-equations based tool for analysing the asymptotics of

the greedy independence ratio of locally tree-like (random) sfpg graph sequences, with the restriction

that their limit may be emulated by a simple branching process with at most countably many types.

Roughly speaking, a multitype branching process is a rooted tree, in which each node is assigned

a type, and the number and types of each node’s “children” follow a law that depends solely on the

node’s type and is independent for distinct nodes. Such a branching process is called simple if each

such law is a product measure. We give formal definitions in Section 4. The following theorem reduces

the problem of calculating 𝜄(U, 𝜌) in these cases to the problem of solving a (possibly infinite) system

of ODEs. Here, given a (countable) set of types T , for every two types k, j ∈ T we denote by 𝜇
k→j

the

distribution of the number of nodes of type j for a parent of type k.

Theorem 1.3. Let (U, 𝜌) be a simple multitype branching process with finite or countable
type set T , root distribution �̇� and offspring distributions 𝜇k→j

. For every x ∈ [0, 1] and
k, j ∈ T let 𝜇k→j

x = Bin(𝜇k→j
, x) denote the distribution of the number of children of type j

of a node of type k with random label at most x. Then,

𝜄(U, 𝜌) =
∑

k∈T
yk(1)�̇�(k), (1)

where {yk}k∈T is a solution to the following system of ODEs:

y′k(x) =
∑

𝓁∈NT

∏

j∈T
𝜇

k→j
x (𝓁j)

(

1 −
yj(x)

x

)𝓁j

, yk(0) = 0. (*)
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KRIVELEVICH ET AL. 991

We call (*) the fundamental system of ODEs of the branching process (U, 𝜌). While this system

of ODEs may seem complicated, in many important cases it reduces to a fairly simple system, as we

will demonstrate in Section 6. In particular, the proof of Theorem 1.3 implies that a solution to (*)

exists, and in the presented applications, it will be unique. In the cases where (U, 𝜌) is either a single

type branching process or a random tree with iid degrees, we provide an easy probability generating

function tool that may be used to “skip” solving (*). This is described in Section 5. We mention that

a somewhat related, but apparently less applicable statement, providing differential equations for the

occupancy probability of a given vertex in bounded degree graphs, appears in [62].

Observe that the proof of Theorem 1.3 actually yields a stronger result. Replacing yk(1) with yk(x)
in the RHS of (1), the obtained quantity is the probability that the root is occupied “at time x”, namely,

when vertices whose label is above x are ignored.

1.1.2 Applications

To demonstrate the power and applicability of our method, we compute (in Section 6) the greedy inde-

pendence ratio for several commonly studied (random) locally tree-like graph sequences. We do so

by first reducing the problem to finding the probability that the root of the local limit of the graph

sequence ends in the random greedy independent set (using Theorem 1.2) and then solving its funda-

mental system of ODEs, as described in Theorem 1.3. In a few cases, where the local limit is either

a single-type branching process or a random tree with iid degrees, we are assisted by a probabil-

ity generating functions based “trick” that allows us to “skip” solving the differential equations (see

Section 5).

In particular, we calculate the asymptotics of the greedy independence ratio for paths and cycles,

recovering classical results of Flory [34] and Page [59]; for binomial random graphs, reproving a result

of McDiarmid [54] for p = Θ(1∕n); for uniform spanning trees and random functional digraphs (new

results); for sparse random planar graphs (a new result); and for random regular graphs (and regular

graphs with high girth), recovering results of Wormald [71] (and Lauer and Wormald [52]).

Hypergraphs

As mentioned in the introduction, one may run the random greedy algorithm for producing a maximal

independent set on a hypergraph. Here, an independent set is a set of vertices that does not span a

hyperedge. The formal definitions for local convergence (see Section 2) and sfpg easily generalize to

the hypergraph setting, thus Proposition 1.1 and Theorem 1.2 are also valid in this setting. In fact, it is

not hard to generalize the notion of simple multitype branching processes to represent local limits of

locally tree-like hypergraphs. Hence (an analogue of) Theorem 1.3 can also be applied in this setting. In

Section 7, we discuss how to calculate the asymptotic size of the random greedy maximal independent

set on locally tree-like hypergraphs. We demonstrate the application of our tools by reproving results

from a recent
6

paper by Nie and Verstraëte [58].

1.1.3 Trees

We conclude our work by analyzing the random greedy MIS in trees. A plausible guess is that among

all trees with a given number of vertices, the path, as an “opposite” (in some sense) to the star, would

minimize the expected size of the obtained greedy MIS. Our following theorem makes this intuitive

statement formal.

6
The work [58] appeared online after a conference version of this paper [51] was posted.
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992 KRIVELEVICH ET AL.

Theorem 1.4. Let n ≥ 1, let T be a tree on n vertices and let Pn be the path on n vertices.
Then 𝜄(Pn) ≤ 𝜄(T).

This theorem gives us an exact (non-asymptotic) explicit lower bound for the expected greedy

independence ratio of trees (an asymptotic upper bound of 1 is trivial, as can be seen by considering

the sequence of stars). The methods used to prove it are very different from those used in the rest of this

paper and are more combinatorial. In particular, we use a transformation on trees, initially introduced

by Csikvári in [18], which gives rise to a graded poset of all trees of a given order, in which the path

is the unique minimum (say). While we cannot show that this transformation can only increase the

expected greedy independence ratio, we show it can only increase some other quantitative property of

trees, which allows us to argue that paths indeed achieve the minimum expected greedy independence

ratio.

1.1.4 Comparison with previous work

The main goal of this paper is to present a unified, comprehensive, easy-to-apply framework for ana-

lyzing the performance of local algorithms on (random) (hyper)graphs. We focus on the simplest sort

of such an algorithm: the random greedy MIS. Our framework has two key components. The first

component (Theorem 1.2) is essentially an application of the objective method [4], which concerns

any locally convergent graph sequence. The second component (Theorem 1.3), applicable only for

locally tree-like graph sequences, is machinery for computing 𝜄(U, 𝜌) (and thus the limit of 𝜄(Gn) for

many graph classes through Theorem 1.2) by way of a system of differential equations, which in turn

can be solved easily in quite a few cases using probability generating functions (Section 5). We wish

to emphasise that while the objective method is a known tool that has been applied in the study of

several parameters of (random) graph sequences (see, e.g., [2, 5, 67]), and although random greedy

algorithms for producing an MIS have been thoroughly studied in the past (see, e.g., [7, 9, 16, 23, 32,

34, 54, 59, 71]), no explicit and applicable connection has been made between the tool and the process.

Thus, while Proposition 1.1 may be considered folklore, and while Theorem 1.2 (or, more precisely,

Claim 3.5, which encapsulates the main content of Theorem 1.2) was proved, in less generality, by

Gamarnik and Goldberg [36], in the present paper, we relate the concepts of random greedy algo-

rithms, local convergence and branching processes to provide an integrated and applicable framework.

This new framework allows us to easily prove well-established results as well as new ones.

Let us dwell upon the comparison between Theorem 1.2 and the aforementioned result of Gamarnik

and Goldberg. As far as we know, Gamarnik and Goldberg were the first to prove bounds on the vari-

ance of the density of the random greedy MIS, hinting that the random greedy algorithm for producing

an MIS is very robust. Their setting assumes that the graph sequence has a uniformly bounded degree,

and the bound they obtain on the variance is superexponential in the degree. While we do not attempt

to provide explicit bounds on the variance, we show that it is decaying (tending to zero) regardless

of the maximum degree. In fact, our much weaker assumption of subfactorial path growth allows the

graph sequence to have a diverging average degree. In addition, while Gamarnik and Goldberg apply

the objective method, they do it somewhat implicitly and restrict the application to random/high-girth

regular graphs. We put this on a more formal footing and in the largest possible generality through the

notion of local convergence.

Analysis of the random greedy MIS on infinite rooted graphs also appears in the literature, often

using different terminology (such as blocking RSA; see, e.g., [29, 62]). Penrose and Sudbury [62] give

forward equations which resemble Theorem 1.3. Their equations, unlike ours, are not limited to trees;

on the other hand, they are stated and proved for deterministic bounded degree graphs, and, in any

case, they appear to be impractical for graphs with cycles. They later apply the forward equations for

 10982418, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21200 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KRIVELEVICH ET AL. 993

𝑑-regular trees (Bethe lattices), reproving known results (see, e.g., [29]). We obtain these results as

a special case of Theorem 1.3, and project them to random/high-girth regular graphs. For analysis of

the random greedy MIS on random trees, we refer the reader to the works of Dehling, Fleurke and

Kulske [22] (a result we reprove and slightly generalize in Section 5), and of Sudbury [66].

Our final result, Theorem 1.4, concerns an exact (non-asymptotic) analysis of the density of the

random greedy MIS on trees. There are many known nontrivial graph parameters that the path min-

imizes among all trees on the same number of vertices. For example, Jamison [45] showed that the

expected size of a random subtree of a tree attains its minimum on the path. Csikvári [18] and later

Bollobás and Tyomkyn [14] proved that the path minimizes the number of walks of a given length

(and thus also its spectral radius). For their results, they study a certain transformation on the set of

all trees of a given size, called the KC-transformation (see Section 8.1), and show that it gives rise to

a graded poset in which the path is the unique minimum, and the star is the unique maximum. Their

results are obtained then by showing that the parameter in question is monotone with respect to that

poset. In our work, we exploit the same transformation.

1.2 Organization of the paper

We start with formal definitions and proofs of the main results. We introduce the metric that is used to

define the notion of local convergence in Section 2, where we also prove Proposition 1.1. In Section 3,

we prove Theorem 1.2 by essentially proving a decay of correlation between vertices in terms of

their distance and showing that typical pairs of vertices are distant. In fact, the results of Section 3

imply that even without local convergence, under mild growth assumptions, the variance of the greedy

independence ratio is decaying.

In Section 4, we focus our attention on locally tree-like graph sequences, define (simple, multitype)

branching processes, and prove Theorem 1.3. We enhance this in Section 5 by introducing a probability

generating functions based “trick”, which allows, in some cases, a significant simplification.

We continue by presenting an extensive list of important applications in Section 6, where we prove

some new results and reprove some known ones, using the machinery of Theorems 1.2 and 1.3. In a few

cases, we are assisted by the claims from Section 5. In Section 7, we demonstrate how the presented

tools work, almost as-is, for locally tree-like hypergraphs (reproving results from [58]).

In Section 8, we focus further on trees, where we prove Theorem 1.4. To this end, we pinpoint

several interesting properties of the expected greedy independence ratio of the path.

2 LOCAL CONVERGENCE

In order to study asymptotics, it is often useful to construct a suitable limiting object first. Local limits

were introduced by Benjamini and Schramm [6] and studied further by Aldous and Steele [4] (A very

similar approach has already been introduced by Aldous in [1]). Local limits, when they exist, encap-

sulate the asymptotic data of local behavior of the convergent graph sequence, and in particular, that

of the performance of the greedy algorithm.

We start with basic definitions, which we define for graphs but that can be extended to hypergraphs

in an obvious way. Consider the space • of rooted locally finite connected graphs viewed up to root

preserving graph isomorphisms. We provide • with the metric 𝑑loc((G1, 𝜌1), (G2, 𝜌2)) = 2
−R

, where

R is the largest integer for which BG
1
(𝜌1,R) ≃ BG

2
(𝜌2,R). Here we understand BG(𝜌,R) as the rooted

subgraph of (G, 𝜌) spanned by the vertices of distance at most R from 𝜌, and ≃ as rooted-isomorphic.

It is an easy fact that (•, 𝑑loc) is a separable complete metric space, hence it is a Polish space (see [6]).
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994 KRIVELEVICH ET AL.

(•, 𝑑loc), while being bounded, is not compact (the sequence of rooted stars Sn does not have a

convergent subsequence).

Recall that a sequence of random elements {Xn}∞n=1
converges in distribution to a random element

X, if for every bounded continuous function f we have that E[f (Xn)] → E[f (X)]. Let Gn be a sequence

of (random) finite graphs. We say that Gn converges locally to a (random) element (U, 𝜌) of • if for

every r ≥ 0, the sequence BGn(𝜌n, r) converges in distribution to BU(𝜌, r), where 𝜌n is a uniformly

chosen vertex of Gn. Since the inherited topology on all rooted balls in • with radius r is discrete, this

implies convergence in total variation distance.

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1. Fix 𝜀 > 0. Let 𝜎 be a random labeling of (a random sample of)

U, and let 𝓁𝜎 be the length of the longest decreasing sequence (w.r.t. 𝜎) starting from 𝜌.

Since (U, 𝜌) has nonexplosive growth, there exists r𝜀 for which P[𝓁𝜎 ≥ r𝜀] < 𝜀. For n ≥ 1,

let 𝜌n be a uniformly chosen random vertex of Gn, and let 𝜋 be a uniform random permu-

tation of its vertices. For r ≥ 0, denote Gr
n = BGn(𝜌n, r) and Ur = BU(𝜌, r). We couple

(Gn, 𝜌n, 𝜋) with (Ur
, 𝜎) as follows. Since Gr

n converges in distribution (and hence in total

variation distance) to Ur
, there exists nr such that for all n ≥ nr we have a coupling between

(Gn, 𝜌n) and Ur
for which P[Gr

n ≄ Ur] ≤ 𝜀. Assuming Gr
n ≃ Ur

, let 𝜑 ∶ Gr
n → Ur

be an

isomorphism, let 𝜋
r

be the permutation on the vertices of Gr
n which agrees with the order-

ing of the labels on the vertices of the isomorphic image (i.e., 𝜋
r
u < 𝜋

r
v ⟺ 𝜎𝜑(u) < 𝜎𝜑(v)).

Observe that 𝜋
r

has a uniform law. Now, since 𝜋 induces a uniform random permutation

of Gr
n (by restriction), we may couple 𝜋 with 𝜋

r
such that 𝜋

r
is a restriction of 𝜋. Note

that under this coupling, if it succeeds, 𝜌n ∈ I(Gr
n)⟺ 𝜌 ∈ I𝜎(Ur) (here we understand

I(Gr
n)) as induced by 𝜋

r
). However, on the event “𝓁𝜎 ≤ r”, 𝜌n ∈ I(Gr

n)⟺ 𝜌n ∈ I(Gn)
(here we understand I(Gn)) as induced by 𝜋) and 𝜌 ∈ I𝜎(Ur) ⟺ 𝜌 ∈ I𝜎(U[𝜌]).
Observing that 𝜄(Gn) = P[𝜌n ∈ I(Gn)] we obtain that for r ≥ r𝜀 and n ≥ nr,

|𝜄(Gn) − 𝜄(U, 𝜌)| < 2𝜀. ▪

3 CONCENTRATION VIA EXPLORATION–DECISION ALGORITHMS

With some mild growth assumptions on the graph sequence, without assuming local convergence,

we obtain asymptotic concentration of the greedy independence ratio around its mean. Under these

assumptions we show that the dependence between the inclusion of distinct nodes in the maximal inde-

pendent set decays as a function of their distance, a phenomenon which is sometimes called correlation
decay or long-range independence. To prove that the model exhibits this phenomenon, we show that

with high probability there are no “long” monotone paths emerging from a typical vertex, which is the

content of the next claim. We then observe that two independent random vertices are typically distant,

and use a general lemma about exploration algorithms to prove decay of correlation. We remark that

similar locality arguments appear in [57].

Claim 3.1. Suppose that Gn has sfpg. Let 𝜋 be a uniform random permutation of the ver-

tices of Gn, and let u be a uniformly chosen vertex from Gn. Then, for every 𝜀 > 0, there

exists r > 0 such that for every large enough n, the probability that there exists a monotone

decreasing path of length r (w.r.t. 𝜋), emerging from u, is at most 𝜀.

Proof. Let 𝜀 ≥ 0. Since 𝜇
∗(r) ≪r r! for every large enough r we have 𝜇

∗(r) ≤ 𝜀r!. We

coupleGn(r) and u such that the former counts the number of paths of length at most r
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KRIVELEVICH ET AL. 995

emerging from the latter. Denote by Ar
n the event that there exists a monotone decreasing

path in Gn (w.r.t. 𝜋) emerging from u of length r. Evidently, the probability that a given

path of length r is monotone decreasing w.r.t. 𝜋 is 1∕r!. Since 𝜇
∗(r) is finite, there exists

M ≥ 0 such that P[Gn(r) > M] < 𝜀 for every large enough n. In addition, for large

enough n we have E[Gn (r) ∧M] ≤ 2𝜇
∗(r). Hence, for large enough n,

P[Ar
n] ≤

M∑

m=0

P[Ar
n|Gn(r) = m] ⋅ P[Gn (r) = m] + P[Gn(r) > M]

≤
1

r!
⋅ E[Gn(r) ∧M] + 𝜀 ≤ 3𝜀.

▪

Claim 3.2. Suppose that Gn has sfpg. Let u, v be two independently and uniformly cho-

sen vertices from Gn. Then, for every 𝜀, r ≥ 0 we have that for every large enough n,

P[distGn(u, v) ≤ r] ≤ 𝜀.

Proof. Let 𝜀, r ≥ 0. We couple Gn (r) and u such that the former counts the num-

ber of paths of length at most r emerging from the latter. Note that under this coupling,

|BGn(u, r)| ≤ Gn(r). Since 𝜇
∗(r) is finite, there exists M ≥ 0 such that P[Gn (r) > M] <

𝜀 for every large enough n. Hence, for large enough n,

P[distGn(u, v) ≤ r] = P[v ∈ BGn(u, r)]

≤ P[v ∈ BGn(u, r)|Gn(r) ≤ M] + P[Gn(r) > M] ≤ M
n
+ 𝜀 ≤ 2𝜀.

▪

Let G = (V ,E) be a graph. An exploration–decision rule for G is a (deterministic) function ,

whose input is a pair (S, g), where S is a non-empty sequence of distinct vertices of V , and g ∶ S →
[0, 1], and whose output is either a vertex v ∈ V⧵S or a “decision” T or F. An exploration–decision
algorithm for G, with rule , is a (deterministic) algorithm A, whose input is an initial vertex v ∈ V
and a function f ∶ V → [0, 1], which outputs T or F, and operates as follows. Set u1 = v. Suppose A

has already set u1, … , ui. Let x = ((u1, … , ui), f ↾{u
1
,… ,ui}). If x ∈ V , set ui+1 = x and continue.

Otherwise stop and return x. We call the set u1, … , ui at this stage the range of the algorithm’s run. We

denote the output of the algorithm by A(v, f ) and its range by rng
A
(v, f ). The radius of the algorithm’s

run, denoted radA(v, f ), is the maximum distance between v and an element of its range.

Lemma 3.3. Let 𝜀 > 0. Let G = (V ,E) be a graph, let 𝜎 be a random labelling of
its vertices, let A be an exploration–decision algorithm for G and let r ≥ 1. Let u, v
be sampled independently (and independently of 𝜎) from some distribution over V . Sup-
pose that w.p. at least 1 − 𝜀 both distG(u, v) ≥ 3r, and radA(u, 𝜎), radA(v, 𝜎) ≤ r. Then
|cov[A(u, 𝜎),A(v, 𝜎)]| = O(𝜀).

Proof. Let  be the rule of the algorithm A. The r-truncated version of , denoted


r
, is defined as follows. To determine 

r((u1, … , ui), g), r
checks the value x =

((u1, … , ui), g). If x ∈ {T,F} or distG(u1, x) ≤ r,  returns x. Otherwise, it returns

F. The r-truncated version of the algorithm A, denoted A
r
, is the exploration–decision

algorithm with rule 
r
. Note that for every v and f , radA

r (v, f ) ≤ r.

For a vertex w ∈ {u, v}, let Xw be the event “A(w, 𝜎) = T”, let Yw be the event

“A
r(w, 𝜎) = T”, and let rw = radA(w, 𝜎). Note that P[Xw ∧ rw ≤ r] = P[Yw ∧ rw ≤ r] =
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996 KRIVELEVICH ET AL.

P[Yw], thus P[Xw] = P[Yw] + O(𝜀). Since for x, y satisfying distG(x, y) ≥ 3r we have that

Yx,Yy are independent, it follows that P[Yu ∧ Yv] = P[Yu]P[Yv] + O(𝜀).

P[Xu ∧ Xv] = P[Xu ∧ Xv ∧ (max{ru, rv} ≤ r)] + P[Xu ∧ Xv ∧ (max{ru, rv} > r)]
= P[Yu ∧ Yv ∧ (max{ru, rv} ≤ r)] + O(𝜀)
= P[Yu ∧ Yv] + O(𝜀) = P[Yu]P[Yv] + O(𝜀) = P[Xu]P[Xv] + O(𝜀).

▪

We now apply the lemma in our setting.

Claim 3.4. Suppose that Gn has sfpg. Let u, v be two independently and uniformly chosen

vertices from Gn. Denote by Ru,Rv the events that u ∈ I(Gn), v ∈ I(Gn), respectively.

Then |cov[Ru,Rv]| = o(1).

Proof. Let 𝜀 > 0. We describe an exploration–decision algorithm A by defining its rule.

Given a vertex sequence S = (u1, … , ui) and labels g ∶ S → [0, 1], the rule checks for

monotone decreasing sequences emerging from u1, in S, with respect to g. Denote by  the

set of ends of these sequences. If there are vertices in V⧵S with neighbors in  , return an

arbitrary vertex among these. Otherwise, perform the Greedy MIS algorithm on the past

of u1 inside S, and return T if u1 ends up in the MIS, or F otherwise. We observe that if 𝜎 is

a random labelling of Gn then for w ∈ {u, v} the event A(w, 𝜎) = T is in fact the event Rw.

We also note that if the longest monotone decreasing sequence, w.r.t. 𝜎, emerging from w
is of length r − 1, then radA(w, 𝜎) ≤ r.

By Claim 3.1 there exists r > 0 such that for every large enough n the probability that

there exists a monotone decreasing path of length r − 1 from either u or v is at most 𝜀. By

Claim 3.2, for large enough n, the probability that the distance between u and v is at most

3r is at most 𝜀. Therefore, by Lemma 3.3, |cov[A(u, 𝜎),A(v, 𝜎)]| = o(1). ▪

Claim 3.5. Suppose that Gn has sfpg. Then Var[𝜄(Gn)] = o(1).

Proof. For a vertex w, denote by Rw the event that w ∈ I(Gn). Let u, v be two independently

and uniformly chosen vertices from Gn. Since the random variables E[Ru|u] and E[Rv|v]
are independent (since they are measurable with respect to u and v, respectively, which are

independent), by Claim 3.4, and by the law of total covariance,

Var[𝜄(Gn)] =
1

n2

∑

x,y∈V(Gn)
cov[Rx,Ry] = E[cov[Ru,Rv|u, v]]

= cov[Ru,Rv] − cov[E[Ru|u, v],E[Rv|u, v]]
= cov[Ru,Rv] − cov[E[Ru|u],E[Rv|v]] = cov[Ru,Rv] = o(1).

▪

Proof of Theorem 1.2. Let 𝜀 > 0. First, we note that since Gn has sfpg, (U, 𝜌) has non-

explosive growth. Indeed, the number of paths of length r in U emerging from 𝜌 is

subfactorial in r, hence the probability of having a monotone path of length r emerging

from the root decays to 0 as r grows. Thus, by Proposition 1.1, there exists n0 such that for

every n ≥ n0, |𝜄(Gn) − 𝜄(U, 𝜌)| ≤ 𝜀. Thus, by Chebyshev’s inequality and Claim 3.5,

P[|𝜄(Gn) − 𝜄(U, 𝜌)| > 2𝜀] ≤ P[|𝜄(Gn) − 𝜄(Gn)| > 𝜀] ≤ 𝜀−2
Var[𝜄(Gn)] = o(1).

▪
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KRIVELEVICH ET AL. 997

4 BRANCHING PROCESSES AND DIFFERENTIAL EQUATIONS

As promised, we give a formal definition of multitype branching processes. Let T be a finite or count-

able set, which we call the type set. Let �̇� be a distribution on T , which we call the root distribution,

and for each k ∈ T , let (𝜇k→j)j∈T be an offspring distribution, which is a distribution on vectors with

nonnegative integer coordinates. Let 𝜏 ∼ �̇�, and for every finite sequence of natural numbers v let

(𝜉k→j
v )j∈T ∼ (𝜇k→j)j∈T be a random vector, where these random vectors are independent for different

indices v and are independent of 𝜏. A multitype branching process (Zt)t∈N with type set T , root distri-

bution �̇� and offspring distributions (𝜇k→j)j∈T is a Markov process on labeled trees, in which each vertex

is assigned a type in T , which may be described as follows. At time t = 0, the tree Z0 consists of a single

vertex of type 𝜏, labeled by the empty sequence. At time t+ 1, the tree Zt+1 is obtained from Zt as fol-

lows. For each k ∈ T and v of length t and type k in Zt, we add the vertices v⌢i for all 0 ≤ i <
∑

j∈T 𝜉
k→j
v ,

having exactly 𝜉
k→j
v of them being assigned type j, uniformly at random, and connecting them with

edges to v.
7

If in addition (𝜇k→j)j∈T is a product measure, namely, if 𝜉
k→j
v ∼ 𝜇k→j

are sampled indepen-

dently for distinct j ∈ T , the process is called simple. We often think of a multitype branching process

as the possibly infinite (random) rooted graph Z∞ =
⋃

t≥0
Zt, rooted at the single vertex of Z0.

Proof of Theorem 1.3. Let 𝜎 be a random labeling of U. To ease notation, set 𝜄 = 𝜄(U, 𝜌)
and I = I(U[𝜌]), and recall that 𝜄 = P[𝜌 ∈ I]. Let 𝜏 ∼ �̇� be the type of the root. For

k ∈ T and x ∈ [0, 1], define 𝜄
(k) = P[𝜌 ∈ I|𝜏 = k] and 𝜄

(k)
x = P[𝜌 ∈ I|𝜎𝜌 = x, 𝜏 = k]. Note

that this is well defined, even if the event that 𝜎𝜌 = x has probability 0. Let further

𝜄
(k)
<x =

∫

x

0

𝜄
(k)
z 𝑑z,

so 𝜄
(k) = 𝜄(k)

<1
, hence

𝜄 =
∑

k∈T
𝜄
(k)
<1
⋅ P[𝜏 = k].

It, therefore, suffices to show that the family yk(x) ∶= 𝜄(k)<x satisfies (*) (obviously, it satis-

fies the boundary conditions). The critical observation is that conditioning on the label of

the root, distinct children in its past are roots to independent randomly labelled subtrees.

In particular, conditioning on 𝜎𝜌 and on the event that v1, … , va are the children of 𝜌 in

its past, the events “vi ∈ I” for i = 1, … , a are mutually independent. Since 𝜌 ∈ I if and

only if vi ∉ I for every i = 1, … , a,

y′k(x) = (𝜄
(k)
<x)′ = 𝜄

(k)
x =

∑

𝓁∈NT

∏

j∈T
𝜇

k→j
x (𝓁j)

(
1 − P[𝜌 ∈ I|𝜎𝜌 < x, 𝜏 = j]

)𝓁j

=
∑

𝓁∈NT

∏

j∈T
𝜇

k→j
x (𝓁j)

(

1 −
yj(x)

x

)𝓁j

. ▪

5 PROBABILITY GENERATING FUNCTIONS

In this section, we demonstrate how generating functions may aid solving the fundamental system

of ODEs (*) (and thus finding 𝜄) for certain simple branching processes. In the following sections,

7
By v⌢i we mean the sequence obtained from v by appending the element i.
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998 KRIVELEVICH ET AL.

we will use the notation yk(x) as in (*), and omit the subscript k when the branching process has a

single type.

Single type branching processes

For a probability distribution p = (p𝑑)∞𝑑=0
, let Tp be the p-ary tree, namely, it is a (single type) branching

process, for which the offspring distribution is p. The fundamental ODE in this case is

y′(x) =
∞∑

𝑑=0

p𝑑
𝑑∑

𝓁=0

(
𝑑

𝓁

)

(1 − x)𝑑−𝓁x𝓁
(

1 − y(x)
x

)𝓁

=
∞∑

𝑑=0

p𝑑(1 − y(x))𝑑. (2)

This differential equation may not be solvable, but in many important cases it is, and we will use it.

Denote by gp(z) the probability generating function (pgf) of p, that is,

gp(z) =
∞∑

𝑑=0

p𝑑z𝑑. (3)

Let hp(x) be the solution to the equation

∫

1

hp(x)

𝑑z
gp(z)

= x. (4)

Claim 5.1. y(x) = 1 − hp(x).

Proof. Fix x ∈ [0, 1], let h = hp(x) and g(z) = gp(z). Define 𝜑 ∶ [0, 𝛽] → [h, 1], where

𝛽 = y−1(1 − h), as follows: 𝜑(u) = 1 − y(u). Note that by (2),

𝜑
′(u) = −y′(u) = −g(𝜑(u)).

Thus

x =
∫

1

h

𝑑z
g(z)

= −
∫

𝜑(𝛽)

𝜑(0)

𝑑z
g(z)

= −
∫

𝛽

0

𝜑
′(z)𝑑z

g(𝜑(z))
= 𝛽,

hence y(x) = 1 − h. ▪

In particular, it follows from Claim 5.1 that 𝜄(Tp) = 1 − hp(1).

Random trees with IID degrees

For a probability distribution p = (p𝑑)∞𝑑=1
, let Tp be the p-tree, namely, it is a random tree in which

the degrees of the vertices are independent random variables with distribution p. We may view it as a

two-type branching process, with type 0 for the root and 1 for the rest of the vertices. Let gp(z) be the

pgf of p (see (3), and note that p0 = 0). The fundamental system of ODEs in this case is

y′
0
(x) =

∞∑

𝑑=1

p𝑑
𝑑∑

𝓁=0

(
𝑑

𝓁

)

(1 − x)𝑑−𝓁x𝓁
(

1 − y1(x)
x

)𝓁

=
∞∑

𝑑=1

p𝑑(1 − y1(x))𝑑 = gp(1 − y1(x)), (5)
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KRIVELEVICH ET AL. 999

and by (2),

y′
1
(x) =

∞∑

𝑑=0

p𝑑+1(1 − y1(x))𝑑 =
1

1 − y1(x)

∞∑

𝑑=1

p𝑑(1 − y1(x))𝑑 =
gp(1 − y1(x))

1 − y1(x)
. (6)

Let 𝔥p(x) be the solution to the equation

∫

1

𝔥p(x)

z𝑑z
gp(z)

= x.

The next claim is [22, Theorem 1].
8

Claim 5.2. y0(x) = 1

2

(
1 − 𝔥2

p(x)
)
.

Proof. Fix x ∈ [0, 1], let 𝔥 = 𝔥p(x) and g(z) = gp(z). Define 𝜑 ∶ [0, 𝛽] → [𝔥, 1], where

𝛽 = y−1

1
(1 − 𝔥), as follows: 𝜑(u) = 1 − y1(u). Note that by (6),

𝜑
′(u) = −y′

1
(u) = −g(𝜑(u))

𝜑(u)
.

Thus

x =
∫

1

𝔥

z𝑑z
g(z)

= −
∫

𝜑(𝛽)

𝜑(0)

z𝑑z
g(z)

= −
∫

𝛽

0

𝜑
′(z)𝜑(z)𝑑z
g(𝜑(z))

= 𝛽,

hence y1(x) = 1 − 𝔥. From (5) to (6), it follows that y′
0
(x) = g(𝔥) = y′

1
(x) ⋅ 𝔥 = −𝔥𝔥′, and

since y0(0) = 0 it follows that y0(x) = 1

2

(
1 − 𝔥2

)
. ▪

In particular, it follows from Claim 5.2 that 𝜄(Tp) = 1

2

(
1 − 𝔥2

p(1)
)
.

6 APPLICATIONS

The goal of this section is to demonstrate the power of the introduced framework by calculating the

greedy independence ratio for several natural (random) graph sequences. We do so by finding their

local limit and solving its fundamental system of ODEs, as described in Theorem 1.3. In some cases, we

may use probability generating functions to ease calculations as described in Section 5. In the follow-

ing, we analyze the process in the setting of various commonly studied (random) graph sequences. To

highlight the method’s applicability, we focus on cases where computational difficulties are minimal.

Note that not all measures on rooted graphs arise as local limits of finite graphs. One necessary con-

dition for a measure to be such a limit is captured, informally, by the property that the root is “equally

likely to be any vertex”, even though the graph may be infinite. This notion can be made rigorous; see,

for example, [3] or [15], Chap. 3. Measures that have this property are called unimodular.
9

In our

analysis, we also consider non-unimodular random rooted graphs. The reason for this is twofold: (a)

we wish to demonstrate applications of Theorem 1.3 and the methods described in Section 5 in various

settings; and (b) we apply results in non-unimodular settings in our analysis of unimodular measures.

8
In [22] the authors required that the the degrees of the tree are all at least 2; we do not require this here.

9
The question of whether every unimodular measure is a local limit of finite graphs is open.
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1000 KRIVELEVICH ET AL.

As a final remark, we wish to stress that our list of applications is not intended to be exhaustive. In

particular, we do not consider random graphs with a given degree sequence, a case that was analyzed

in [9, 16].

6.1 Infinite-ray stars

For 𝑑 ≥ 1, let 𝑑 be the infinite-ray star with 𝑑 branches. Formally, the vertex set of 𝑑 is {(0, 0)} ∪
{(i, j) ∶ i ∈ [𝑑], j = 1, 2, …}, and (i, j) ∼ (i′, j′) if |j − j′| = 1 and either i = i′ or ii′ = 0. Note

that 1 = N and 2 = Z. This is a two-type branching process, with types 𝑑 for the root and 1

for a branch vertex. The fundamental system of ODEs in this case is y′
𝑑
(x) = (1 − y1(x))𝑑 , and for

𝑑 = 1 we obtain the equation y′
1
= 1 − y1 of which the solution is y1(x) = 1 − e−x

. For 𝑑 > 1

we obtain the equation y′
𝑑
= e−𝑑x

of which the solution is y𝑑(x) = 1

𝑑
(1 − e−𝑑x). Since 𝜏 = 𝑑 a.s.,

it follows that 𝜄(𝑑) = y𝑑(1) = 𝜁𝑑 ∶= 1

𝑑
(1 − e−𝑑). In particular, 𝜄(N) = 1 − e−1 ≈ 0.6321 … and

𝜄(Z) = 1

2
(1 − e−2) ≈ 0.43233 … .

As N is a single type branching process and Z is a random tree with iid degrees, we may use the

alternative approach for calculating 𝜄(N) and 𝜄(Z), as described in Section 5. Solving ∫
1

h
𝑑z
z
= 1 gives

h = e−1
, hence by Claim 5.1, 𝜄(N) = 1 − e−1

, and by Claim 5.2, 𝜄(Z) = 1

2

(
1 − e−2

)
.

Paths and cycles

The local limit of the sequences Pn of paths and Cn of cycles is Z (rooted arbitrarily). It follows from the

discussion above that 𝜄(Pn), 𝜄(Cn) ∼ 1

2
(1−e−2)whp. This asymptotic density was already calculated by

Flory [34] (who only considered the expected ratio) and independently by Page [59] and can be thought

of as the discrete variant of Rényi’s parking constant (see [31]). We remark that a somewhat similar

asymptotic analysis of the random greedy maximal independent set on the path using an analogous

process on Z appears in [38].

6.2 Poisson Galton–Watson Trees

A Poisson Galton–Watson tree 𝜆 is a single type branching process with offspring distribution Pois(𝜆)
for some parameter 𝜆 ∈ (0,∞). The fundamental ODE in this case is y′(x) = e−𝜆y(x)

(This can be

calculated directly using (2)). The solution for this differential equation is y(x) = ln(1 + 𝜆x)∕𝜆, hence

𝜄(𝜆) = y(1) = ln(1+ 𝜆)∕𝜆. The same result can be obtained using the probability generating function

of the Poisson distribution, as described in Section 5.

Binomial random graphs

Consider the binomial random graph G(n, 𝜆∕n), which is the graph on n vertices in which every pair

of nodes is connected by an edge independently with probability 𝜆∕n. It is easy to check that it con-

verges locally to 𝜆 (see, e.g., [21]), hence 𝜄(G(n, 𝜆∕n)) ∼ ln(1+ 𝜆)∕𝜆 whp, recovering a known result

(see [54]).

6.3 Size-biased Poisson Galton–Watson trees

For 0 < 𝜆 ≤ 1, a size-biased Poisson Galton–Watson tree ̂ 𝜆 can be defined (see [53]) as a two-type

simple branching process, with types s (spine vertices) and t (tree vertices), where a spine vertex has
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KRIVELEVICH ET AL. 1001

1 spine child plus Pois(𝜆) tree children, a tree vertex has Pois(𝜆) tree children, and the root is a spine

vertex (when 𝜆 = 1, this is sometimes called the skeleton tree). The fundamental system of ODEs in

this case is

y′s(x) = x
∞∑

𝑑=0

(𝜆x)𝑑
e𝜆x𝑑!

(

1 − ys(x)
x

)(

1 − yt(x)
x

)𝑑

+ (1 − x)
∞∑

𝑑=0

(𝜆x)𝑑
e𝜆x𝑑!

(

1 − yt(x)
x

)𝑑

= (1 − ys(x))
∞∑

𝑑=0

(𝜆x)𝑑
e𝜆x𝑑!

(

1 − yt(x)
x

)𝑑

= (1 − ys(x))e−𝜆y
t
(x)
,

and from Section 6.2 we obtain yt(x) = ln(1+𝜆x)∕𝜆. Hence y′s(x) = (1−ys(x))∕(1+𝜆x), and the solution

for that equation is ys(x) = 1− exp(−ln(1+𝜆x)∕𝜆). Thus 𝜄(̂ 𝜆) = ys(1) = 1−(1 + 𝜆)−1∕𝜆 = 1− e−𝜄(𝜆).
In particular, 𝜄(̂ 1) = 1∕2.

Uniform spanning trees

It is a classical (and beautiful) fact (see, e.g., [39, 49]) that if Tn is a uniformly chosen random tree

drawn from the set of nn−2
trees on (labeled) n vertices, then Tn converges locally to ̂ 1, hence 𝜄(Tn) ∼

1∕2 whp. To the best of our knowledge, this intriguing fact was not previously known. Recently,

after a conference version of this paper was published, Contat [17] proved a much stronger statement

concerning the cardinality of the random greedy independent set in uniform random trees, showing

that it has essentially the same law as its complement. In a newer version of her paper, she obtained

the exact distribution of the size of the random greedy independent set, showing that it has the same

distribution as the number of vertices at even height in a uniformly sampled rooted random tree. The

exact distribution was also obtained, independently, by Panholzer [61].

Nachmias and Peres [56] showed (see also [42]) that if Gn is a sequence of finite, simple, connected

regular graphs with degree tending to infinity, and Tn is the uniform spanning tree of Gn, then Tn
converges locally to ̂ 1. It follows that 𝜄(Tn) ∼ 1∕2 whp in this case as well.

Random functional digraphs

It can be easily verified that the local limit of a random functional digraph G⃗1(n) (the digraph on n
vertices whose edges are (i, 𝜋(i)) for a uniform random permutation 𝜋), with orientations ignored, is

also ̂ 1, hence 𝜄(G⃗1) ∼ 1∕2 whp.

Sparse random planar graphs

Let (n, 𝜆) denote the uniform distribution over the set of (labeled) planar graphs on n vertices with

𝜆n∕2 edges. According to a recent result by Kang and Missethan [46], if 𝜆 ∈ (0, 1] then (n, 𝜆)
converges locally to 𝜆, hence 𝜄((n, 𝜆)) ∼ ln(1 + 𝜆)∕𝜆 whp; and if 𝜆 ∈ (1, 2] then (n, 𝜆) converges

locally to (𝜆−1)̂ 1+(2−𝜆)1, namely, to the random tree which is sampled from ̂ 1 with probability

𝜆−1 and from 1 with probability 2−𝜆. It follows that in this case, 𝜄((n, 𝜆)) ∼ (𝜆−1)∕2+(2−𝜆) ln 2

whp. Note that 𝜄((n, 𝜆)) is continuous for 𝜆 ∈ (0, 2].

6.4 𝑑-ary trees

For 𝑑 > 1, let T𝑑 be the 𝑑-ary tree. It may be viewed as a (single type) branching process. It thus

immediately follows from (2) that y′(x) = (1 − y(x))𝑑 . The solution for this differential equation is
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1002 KRIVELEVICH ET AL.

y(x) = 1 − ((𝑑 − 1)x + 1)−1∕(𝑑−1)
. It follows that 𝜄(T𝑑) = y(1) = 1 − 𝑑−1∕(𝑑−1)

. This fact also fol-

lows easily using the generating functions approach described in Section 5. A remarkable example

is 𝜄(T2) = 1∕2.

6.5 Regular trees

For 𝑑 ≥ 3, let T𝑑 be the 𝑑-regular tree. It may viewed as a two-type branching process with types

𝑑 for the root and 𝑑 − 1 for the rest of the vertices. The fundamental system of ODEs in this case is

y′
𝑑
(x) = (1 − y𝑑−1(x))𝑑 , and from Section 6.4 we obtain y𝑑−1(x) = 1− ((𝑑 − 2)x + 1)−1∕(𝑑−2)

. It follows

that y′
𝑑
(x) = ((𝑑 − 2)x + 1)−𝑑∕(𝑑−2)

, of which the solution is y𝑑(x) = (1 − ((𝑑 − 2)x + 1)−2∕(𝑑−2))∕2.

Therefore,

𝜄(T𝑑) = y𝑑(1) =
1

2

(
1 − (𝑑 − 1)−2∕(𝑑−2))

. (7)

We remark that a similar derivation of (7) was obtained, using a similar method, by Penrose and Sud-

bury [62], and was derived earlier by Fan and Percus [29]. In both works, however, the application for

random regular graphs (see below) is absent.

As with 𝑑-ary trees, here again the generating functions approach works easily: the solution to

∫
1

h(x)z
𝑑−1
𝑑z = x is h(x) = (1 − (2 − 𝑑)x)1∕(2−𝑑), and the result follows from Claim 5.2. Remarkable

examples include 𝜄(T3) = 3∕8 and 𝜄(T4) = 1∕3.

Random regular graphs

Since the random regular graph G(n, 𝑑) (a uniformly sampled graph from the set of all 𝑑-regular graphs

on n vertices, assuming 𝑑n is even) converges locally to T𝑑 (see, e.g., [73]), the above result for this

case is exactly [71, Theorem 4]. In fact, since any sequence of 𝑑-regular graphs with girth tending to

infinity converges locally to T𝑑 , we also recover [52, Theorem 2]. This latter result was proved later,

using different methods, by Gamarnik and Goldberg [36].

7 HYPERGRAPHS

Recently (after a conference version of this paper was posted), Nie and Verstraëte [58] analyzed the

random greedy algorithm for producing maximal independent sets in r-uniform 𝑑-regular high-girth

(linear) hypergraphs. In this section, we show how to deduce their main results in our framework,

assuming the girth tends to infinity.

It is not hard to check that the local limit of r-uniform 𝑑-regular hypergraphs with girth tending

to infinity is the rooted infinite r-uniform 𝑑-regular loose hypertree (see Figure 1), denoted here by

T
r
𝑑

(this is just the hypergraph-analogue to the graph case described in Section 6.5). This hypertree

may be viewed as a two-type branching process with types 𝑑 for the root and 𝑑 − 1 for the rest of the

vertices, where a type 𝑑 vertex has 𝑑 incident edges, on each there are r− 1 additional vertices of type

𝑑 − 1, and a type 𝑑 − 1 vertex has 𝑑 − 1 incident edges, on each there are r − 1 additional vertices of

type 𝑑 − 1. The fundamental system of ODEs in this case is thus

y′𝑑(x) = (1 − yr−1

𝑑−1
(x))𝑑, (8)

y′
𝑑−1
(x) = (1 − yr−1

𝑑−1
(x))𝑑−1

. (9)
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KRIVELEVICH ET AL. 1003

FIGURE 1 The ball of radius three around the root of the infinite 3-uniform 3-regular loose hypertree T3

3
.

The second equation is separable, thus

x =
∫
𝑑x =

∫

y′
𝑑−1
(x)

(
1 − yr−1

𝑑−1
(x)

)𝑑−1
𝑑x =

∫

𝑑y
(
1 − yr−1

)𝑑−1

=
∫

∞∑

n=0

(n + 𝑑 − 2

𝑑 − 2

)

yn(r−1)
𝑑y

=
∞∑

n=0

(n + 𝑑 − 2

𝑑 − 2

)

∫
yn(r−1)

𝑑y =
∞∑

n=0

(n + 𝑑 − 2

𝑑 − 2

) yn(r−1)+1

n(r − 1) + 1
+ c.

Considering the initial conditions, we obtain c = 0. Setting

H(y) =
∞∑

n=0

(n + 𝑑 − 2

𝑑 − 2

) yn(r−1)+1

n(r − 1) + 1
,

the solution to (9) is y𝑑−1(x) = H−1(x). As for (8), set u = H−1(t) and then (by (9)), 𝑑u =
(1 − ur−1)𝑑−1

𝑑t, hence

y𝑑(x) =
∫

x

0

(
1 − yr−1

𝑑−1
(t)
)𝑑
𝑑t =

∫

x

0

(
1 − (H−1(t))r−1

)𝑑
𝑑t

=
∫

H−1(x)

H−1(0)

(
1 − ur−1

)𝑑

(
1 − ur−1

)𝑑−1
𝑑u

=
∫

H−1(x)

0

(1 − ur−1)𝑑u = H−1(x) −
(
H−1(x)

)r

r
.

In particular, 𝜄(Tr
𝑑
) = y𝑑(1) = H−1(1) − (H−1(1))r∕r, and together with a hypergraph analogue of

Proposition 1.1 this recovers [58, Theorem 4], up to the error bounds. Using (a hypergraph analogue of)

Theorem 1.2 we also obtain a nonquantitative (namely, without an explicit bound on the deviation
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1004 KRIVELEVICH ET AL.

from the mean) version of [58, Theorem 5]. The advantage of the above method is, however, its greater

generality, as it allows for a wider range of assumptions on the underlying hypergraph.

8 LOWER BOUND IN TREES

Let us focus on trees. How large can the expected greedy independent ratio be? How small can it be?

The sequence of stars is a clear witness that the only possible asymptotic upper bound is the trivial

one, namely 1. In fact, the n-vertex star is the unique maximizer among n-vertex trees (see below).

Apparently, the lower bound is not trivial. An immediate corollary of Theorem 1.4 and Proposition 1.1

is that a tight asymptotic lower bound is 𝜄(Z) = (1 − e−2)∕2 (compare with [66]). The statement of

Theorem 1.4 is, however, much stronger: paths achieve the exact (non-asymptotic) lower bound for the

expected greedy independence ratio among the set of all trees of a given order. It is reasonable to expect

that the path is the unique minimizer; our proof of Theorem 1.4 does not imply that (see Section 9).

To prove Theorem 1.4, we will need to first gain deeper understanding of the behavior of the greedy

algorithm on the path. For a graph G denote by 𝔦(G) the cardinality of its greedy independent set, and

let 𝔦(G) = E[𝔦(G)]. Let 𝛼n = 𝔦(Pn). Suppose the vertices of Pn are 1, … , n, and let s be the vertex

which is first in the permutation of the vertices. Setting 𝛼−1 = 𝛼0 = 0, we obtain the recursion

𝛼n = E[E[𝔦(Pn)|s]] =
1

n

n∑

i=1

(1 + 𝛼i−2 + 𝛼n−i−1) = 1 + 2

n

n∑

i=1

𝛼i−2. (10)

The following explicit formula for 𝛼n (n ≥ 0) appears in [35]:

𝛼n =
n−1∑

i=0

(−2)i(n − i)
(i + 1)!

. (11)

The main properties of 𝛼n that we need in this section are given by the following two lemmas. We defer

their (somewhat technical) proofs to Section 8.2.

Lemma 8.1. The sequence 𝛼n is monotone increasing and subadditive.

A natural approach for trying to prove Lemma 8.1 is by using the intuitive assertion that 𝔦 is

monotone with respect to edge deletion. This is unfortunately false; indeed, let Sn denote the star

with n leaves. It is easy to verify that 𝔦(Sn) = 1

n+1
⋅ 1 + n

n+1
⋅ n = (n2 + 1)∕(n + 1). Let T be

obtained by taking two copies of Sn and joining their centres by an edge e. One can check that 𝔦(T) =
1

n+1
⋅(1+n)+ n

n+1
⋅(n+𝔦(Sn)) = (2n3+2n2+3n+1)∕(n + 1)2, while 𝔦(T−e) = 2𝔦(Sn) = 2(n2+1)∕(n+1),

which is strictly smaller for every n ≥ 2. We deal with the difficulty illustrated by this counterintuitive

example by using a more involved argument; see Section 8.2 below.

Our analysis also relies on the following technical fact. Define

𝜉n,𝓁 =
𝓁∑

j=1

𝛼n+j.

Lemma 8.2. For every 𝓁, a, b ≥ 1 it holds that 𝜉a,𝓁 + 𝜉b,𝓁 ≤ 𝜉a+b,𝓁 + 𝜉0,𝓁 .

Before we present the main tools to be used in the proof of Theorem 1.4, let us show that the

n-vertex star is the unique maximizer of 𝔦. Indeed, the independence number 𝛼(T) of any n-vertex tree

T that is not a star is at most n − 2. Thus,
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KRIVELEVICH ET AL. 1005

FIGURE 2 A KC-transformation with respect to x, y.

𝔦(Sn−1) =
1

n
((n − 1)2 + 1) = n − 2 + 2

n
> n − 2 ≥ 𝛼(T) ≥ 𝔦(T).

8.1 KC-transformations

In this section, we introduce the main tool that will be used to prove Theorem 1.4. Let T be a tree and

let x, y be two distinct vertices of T . We say that the path between x and y is bare if for every vertex

v ≠ x, y on that path, 𝑑T (v) = 2. Suppose x, y are such that the unique path P in T between them is bare,

and let z be the neighbor of y in that path. For a vertex v, denote by N(v) the neighbors of v in T . The

KC-transformation KC(T , x, y) of T with respect to x, y is the tree obtained from T by deleting every

edge between y and N(y)⧵z and adding the edges between x and N(y)⧵z instead (see Figure 2). Note

that KC(T , x, y) ≃ KC(T , y, x), so if we only care about unlabeled trees, we may simply write KC(T ,P),
for a bare path P in T . The term “KC-transformation” was coined by Bollobás and Tyomkyn [14]

after Kelmans, who defined a similar operation on graphs [48], and Csikvári, who defined it in this

form [18] under the name generalized tree shift (GTS).

A nice property of KC-transformations, first observed by Csikvári [18], is that they induce a graded

poset on the set of unlabeled trees of a given order, which is graded by the number of leaves. In

particular, this means that in that poset, the path is the unique minimum (say) and the star is the unique

maximum. Note that if P contains a leaf then KC(T ,P) ≃ T , and otherwise KC(T ,P) has one more

leaf than T . In the latter case, we say that the transformation is proper.

Here is the plan for how to prove Theorem 1.4. For a tree T and a vertex v, denote by T⋆v the forest

obtained from T by shattering T at v, that is, by removing from T the set {v} ∪ N(v) (see Figure 3).

Denote by 𝜅v(T) the multiset of orders of trees in the forest T ⋆ v, and by 𝜅(T) the sum of 𝜅v(T) for

all vertices v in T . Note that for trees with up to three vertices, Theorem 1.4 is trivial; we proceed by

induction. By the induction hypothesis,

𝔦(T) = 1

n
∑

v∈V(T)

(

1 +
∑

S∈T⋆v
𝔦(S)

)

≥ 1 + 1

n
∑

v∈V(T)

∑

k∈𝜅v(T)
𝛼k = 1 + 1

n
∑

k∈𝜅(T)
𝛼k. (12)

Therefore, it makes sense to study the quantities 𝜈v(T) =
∑

k∈𝜅v(T)
𝛼k and 𝜈(T) =

∑
k∈𝜅(T) 𝛼k. In fact, it

would suffice to show that for any tree T on n vertices 𝜈(T) ≥ 𝜈(Pn), since by (10) and (12) we would

obtain

𝔦(T) ≥ 1 + 1

n
𝜈(T) ≥ 1 + 1

n
𝜈(Pn) = 𝔦(Pn).

We therefore reduced our problem to proving the following theorem about KC-transformations.
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1006 KRIVELEVICH ET AL.

FIGURE 3 A shattering at v.

Theorem 8.3. If T is a tree and P is a bare path in T then 𝜈(KC(T ,P)) ≥ 𝜈(T).

It would have been nice if for every v ∈ V(T) we would have had 𝜈v(KC(T ,P)) ≥ 𝜈v(T);
unfortunately, this is not true in general. However, the following statement would suffice.

Theorem 8.4. Let T be a tree and let x ≠ y be two vertices with the path between them
being bare. Denote T ′ = KC(T , x, y). Let A be the set of vertices v ≠ x in T for which
every path between v and y passes via x, and similarly, let B be the set of vertices v ≠ y
in T for which every path between v and x passes via y. Let P be the set of vertices on the
bare path between x and y, so A ∪ B ∪ P is a partition of V(T). Then

1. For v ∈ A ∪ B we have that 𝜈v(T ′) ≥ 𝜈v(T).
2.

∑
v∈P 𝜈v(T ′) ≥

∑
v∈P 𝜈v(T).

Proof.

1. It suffices to prove the claim for v ∈ A. First note that there exists a unique tree Sv
in T ⋆ v which is not fully contained in A, and the rest of the trees are retained in the

KC-transformation. The set of trees in T ′ ⋆ v which are not fully contained in A may

be different from Sv, but they are on the same vertex set, so the result follows from

subadditivity of 𝛼n (Lemma 8.1).

2. Write |A| = a, |B| = b and |P| = 𝓁 + 1. Let A1, … ,As be the trees of T ⋆ x which are

fully contained in A, and denote ai = |Ai|. Let B1, … ,Bt be the trees of T ⋆ y which

are fully contained in B, and denote bi = |Bi|. Let 𝛼A =
∑s

i=1
𝛼ai , 𝛼

+
A =

∑s
i=1
𝛼1+ai ,

𝛼B =
∑t

i=1
𝛼bi and 𝛼

+
B =

∑t
i=1
𝛼1+bi . Denote the vertices of P by x = u0, u1, … , u𝓁 .

The following table summarizes the values of 𝜈 in T ,T ′ along vertices of P, in the case

where 𝓁 ≥ 3 (similar tables can be made for the cases 𝓁 = 1, 2).

𝝂uj
(T) 𝝂uj

(T′)

j = 0 𝛼A + 𝛼b+𝓁−1 𝛼A + 𝛼B + 𝛼𝓁−1

j = 1 𝛼
+
A + 𝛼b+𝓁−2 𝛼

+
A + 𝛼

+
B + 𝛼𝓁−2

2 ≤ j ≤ 𝓁 − 2 𝛼a+j−1 + 𝛼b+𝓁−j−1 𝛼a+b+j−1 + 𝛼𝓁−j−1

j = 𝓁 − 1 𝛼a+𝓁−2 + 𝛼+B 𝛼a+b+𝓁−2

j = 𝓁 𝛼a+𝓁−1 + 𝛼B 𝛼a+b+𝓁−1
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KRIVELEVICH ET AL. 1007

It follows (for every 𝓁 ≥ 1) that

∑

v∈P
(𝜈v(T ′) − 𝜈v(T)) =

𝓁−1∑

j=1

(
𝛼a+b+j + 𝛼j − 𝛼a+j − 𝛼b+j

)

= 𝜉a+b,𝓁−1 + 𝜉0,𝓁−1 − 𝜉a,𝓁−1 − 𝜉b,𝓁−1,

which is, by Lemma 8.2, nonnegative.
▪

8.2 Properties of 𝛼n

We head on to prove Lemmas 8.1 and 8.2. To simplify presentation, we introduce the following

notation. For a sequence xn we write

Δ𝑑h xn =
𝑑∑

k=0

(−1)k
(
𝑑

k

)

xn+(𝑑−k)h

to denote its 𝑑’th order h-forward difference. When h = 1 we omit the subscript, and when 𝑑 = 1

we omit the superscript. The following identities will be useful. Using (11),

Δ𝛼n =
n∑

i=0

(−2)i(n + 1 − i)
(i + 1)!

−
n−1∑

i=0

(−2)i(n − i)
(i + 1)!

=
n∑

i=0

(−2)i
(i + 1)!

,

and

Δ2
𝛼n =

(−2)n+1

(n + 2)!
. (13)

Note also that since 𝛼0 = 0,

𝛼n =
n−1∑

i=0

Δ𝛼i, (14)

and since Δ𝛼0 = 1 = Δ2
𝛼−1,

Δ𝛼i =
i−1∑

j=−1

Δ2
𝛼j. (15)

We proceed by a (rather long) sequence of technical claims, which will be used in the proofs of Lemmas

8.1 and 8.2.

Lemma 8.5. Fix k ≥ 0. Let zn be a real nonnegative decreasing sequence. Then yk,n =
(−1)k

∑k+n
j=k (−1)jzj is nonnegative.

Proof. Note that for every 𝓁 ≥ 0 we have that

(−1)k+2𝓁zk+2𝓁 and (−1)k+2𝓁zk+2𝓁 + (−1)k+2𝓁+1zk+2𝓁+1

are both nonnegative if k is even, and both nonpositive otherwise. The claim easily follows.▪
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1008 KRIVELEVICH ET AL.

Lemma 8.6. Let zn be a real nonnegative decreasing sequence, which is convex for n ≥ 1.

Then, the sequence xn =
∑n−1

i=0

∑i
j=0
(−1)jzj is monotone increasing and subadditive.

Proof. For i, k ≥ 0, write yk,i = (−1)k
∑k+i

j=k(−1)jzj. By Lemma 8.5 yk,i ≥ 0, hence Δxn =
y0,n ≥ 0, and xn is monotone increasing. Fix m ≥ 1 and write bi = yi,m−1. We have that

an ∶= xm+n − xm − xn =
m+n−1∑

i=0

y0,i −
m−1∑

i=0

y0,i −
n−1∑

i=0

y0,i

=
n−1∑

i=0

(y0,m+i − y0,i) =
n−1∑

i=0

(−1)i+1yi+1,m−1 =
n∑

i=1

(−1)ibi.

Moreover,

Δbi = (−1)i+1

i+m∑

j=i+1

(−1)jzj − (−1)i
i+m−1∑

j=i
(−1)jzj

= (−1)i+1

i+m−1∑

j=i
(−1)j+1zj+1 + (−1)i+1

i+m−1∑

j=i
(−1)jzj

= (−1)i+1

i+m−1∑

j=i
(−1)j(−Δzj).

Now, −Δzj is nonnegative, and for j ≥ 1 it is also decreasing (since Δ2zj ≥ 0), thus for

i ≥ 1, by Lemma 8.5, Δbi ≤ 0. Therefore, bi is nonnegative and decreasing (for i ≥ 1),

hence by Lemma 8.5, an ≤ 0 for every n ≥ 0, and thus xn is subadditive. ▪

Define

𝛽n = (−1)nΔ2
𝛼n−1.

Claim 8.7. 𝛽n is nonnegative and decreasing, and convex for n ≥ 1.

Proof. From (13) we know that 𝛽n = 2
n∕(n + 1)! > 0. Moreover,

Δ𝛽n =
2

n+1

(n + 2)!
− 2

n

(n + 1)!
= 2

n

(n + 1)!

(
2

n + 2
− 1

)

≤ 0,

and, for n ≥ 1,

Δ2
𝛽n =

2
n+2

(n + 3)!
− 2 ⋅ 2

n+1

(n + 2)!
+ 2

n

(n + 1)!

= 2
n

(n + 1)!

(
4

(n + 2)(n + 3)
− 4

n + 2
+ 1

)

≥ 0.

▪

We are now ready to prove Lemma 8.1.
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KRIVELEVICH ET AL. 1009

Proof of Lemma 8.1. From (14) to (15), it follows that

𝛼n =
n−1∑

i=0

Δ𝛼i =
n−1∑

i=0

i−1∑

j=−1

Δ2
𝛼j =

n−1∑

i=0

i∑

j=0

(−1)j𝛽j,

and the result follows from Lemma 8.6 and Claim 8.7. ▪

Define

𝛾n = (−1)n+1ΔΔ2𝛼n.

Claim 8.8. 𝛾n is nonnegative and decreasing, and convex for n ≥ 1.

Proof. Note that (using (13))

𝛾n = (−1)n+1(Δ2𝛼n+1 − Δ2𝛼n)
= (−1)n+1(𝛼n+3 − 𝛼n+1 − 𝛼n+2 + 𝛼n)
= (−1)n+1(Δ𝛼n+2 − Δ𝛼n)
= (−1)n+1((Δ𝛼n+2 − Δ𝛼n+1) + (Δ𝛼n+1 − Δ𝛼n))
= (−1)n+1

(
Δ2
𝛼n+1 + Δ2

𝛼n
)

= (−1)n+1

(
(−2)n+2

(n + 3)!
+ (−2)n+1

(n + 2)!

)

= 2
n+1

(n + 2)!

( −2

n + 3
+ 1

)

> 0.

Moreover,

Δ𝛾n = (−1)n+2(Δ2𝛼n+2 − Δ2𝛼n+1) − (−1)n+1(Δ2𝛼n+1 − Δ2𝛼n)
= (−1)n(Δ2𝛼n+2 − Δ2𝛼n)
= (−1)n(Δ𝛼n+3 + Δ𝛼n+2 − Δ𝛼n+1 − Δ𝛼n)
= (−1)n((Δ𝛼n+3 − Δ𝛼n+2) + 2(Δ𝛼n+2 − Δ𝛼n+1) + (Δ𝛼n+1 − Δ𝛼n))
= (−1)n

(
Δ2
𝛼n+2 + 2Δ2

𝛼n+1 + Δ2
𝛼n
)

= (−1)n
(
(−2)n+3

(n + 4)!
+ 2 ⋅

(−2)n+2

(n + 3)!
+ (−2)n+1

(n + 2)!

)

= 2
n+1

(n + 2)!

(

− 4

(n + 3)(n + 4)
+ 4

n + 3
− 1

)

≤ 0,

so 𝛾n is decreasing. Finally,

Δ2
𝛾n = 𝛾n+2 − 2𝛾n+1 + 𝛾n

= (−1)n+1(Δ2𝛼n+3 + Δ2𝛼n+2 − Δ2𝛼n+1 − Δ2𝛼n)
= (−1)n+1(𝛼n+5 + 𝛼n+4 − 2𝛼n+3 − 2𝛼n+2 + 𝛼n+1 + 𝛼n)
= (−1)n+1(Δ𝛼n+4 + 2Δ𝛼n+3 − 2Δ𝛼n+1 − Δ𝛼n)
= (−1)n+1((Δ𝛼n+4 − Δ𝛼n+3) + 3(Δ𝛼n+3 − Δ𝛼n+2)
+ 3(Δ𝛼n+2 − Δ𝛼n+1) + (Δ𝛼n+1 − Δ𝛼n))
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1010 KRIVELEVICH ET AL.

= (−1)n+1
(
Δ2
𝛼n+3 + 3Δ2

𝛼n+2 + 3Δ2
𝛼n+1 + Δ2

𝛼n
)

= (−1)n+1

(
(−2)n+4

(n + 5)!
+ 3 ⋅

(−2)n+3

(n + 4)!
+ 3 ⋅

(−2)n+2

(n + 3)!
+ (−2)n+1

(n + 2)!

)

= 2
n+1

(n + 2)!

(

− 8

(n + 5)(n + 4)(n + 3)
+ 12

(n + 4)(n + 3)
− 6

(n + 3)
+ 1

)

,

which is nonnegative for n ≥ 1. ▪

For a, b ≥ 1, define

𝜂
a,b
n = (−1)n+1ΔaΔb𝛼n.

Claim 8.9. For every a ≥ 1, 𝜂
a,2
n is nonnegative.

Proof. Note that

𝜂
a,2
n = (−1)n+1(Δ2𝛼a+n − Δ2𝛼n)

= (−1)n+1

a+n−1∑

j=n
ΔΔ2𝛼j = (−1)n

a+n−1∑

j=n
(−1)j𝛾j,

which is, by Lemma 8.5 and Claim 8.8, nonnegative. ▪

Claim 8.10. For every a ≥ 1, 𝜂
a,1
n is nonnegative and decreasing.

Proof. Note that

𝜂
a,1
n = (−1)n+1(Δ𝛼a+n − Δ𝛼n)

= (−1)n+1

a+n−1∑

j=n
Δ2
𝛼j = (−1)n

a+n−1∑

j=n
(−1)jΔ2

𝛽j+1,

which is, by Lemma 8.5 and Claim 8.7, nonnegative. Moreover,

Δ𝜂a,1
n = (−1)n(Δ𝛼a+n+1 − Δ𝛼n+1 + Δ𝛼a+n − Δ𝛼n)

= (−1)n(Δ2𝛼a+n − Δ2𝛼n) = (−1)nΔaΔ2𝛼n = −𝜂a,2
n ,

which is, by Claim 8.9, nonpositive, hence 𝜂
a,1
n is decreasing. ▪

Define

𝜓
b
n = (−1)n+1(ΔΔb𝛼n+1 + ΔΔb𝛼n).

Claim 8.11. For every b ≥ 1, 𝜓
b
n is nonnegative, and decreasing for n ≥ 1.

Proof. Note that

𝜓
b
n = (−1)n+1(Δb𝛼n+2 − Δb𝛼n) = (−1)n+1Δ2Δb𝛼n = (−1)n+1ΔbΔ2𝛼n = 𝜂b,2

n ,
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KRIVELEVICH ET AL. 1011

which is, by Claim 8.9, nonnegative. Moreover,

Δ𝜓b
n = 𝜂b,2

n+1
− 𝜂b,2

n

= (−1)n+1

b+n∑

j=n+1

(−1)j𝛾j − (−1)n
b+n−1∑

j=n
(−1)j𝛾j

= (−1)n+1

b+n−1∑

j=n

(
(−1)j+1

𝛾j+1 + (−1)j𝛾j
)

= (−1)n+1

b+n−1∑

j=n
(−1)j+1Δ𝛾j.

By Claim 8.8, the sequence −Δ𝛾n is nonnegative, and decreasing for n ≥ 1. Therefore, by

Lemma 8.5, Δ𝜓b
n is nonpositive, thus 𝜓

b
n is decreasing (for n ≥ 1). ▪

Claim 8.12. For every a, b ≥ 1, 𝜂
a,b
n is nonnegative, and decreasing for n ≥ 1.

Proof. Note that

𝜂
a,b
n = (−1)n+1(Δb𝛼a+n − Δb𝛼n)

= (−1)n+1

a+n−1∑

j=n
ΔbΔ𝛼j

= (−1)n
a+n−1∑

j=n
(−1)j𝜂b,1

j ,

which is, by Lemma 8.5 and Claim 8.10, nonnegative. Moreover,

Δ𝜂a,b
n = (−1)n+2(Δb𝛼a+n+1 − Δb𝛼n+1) − (−1)n+1(Δb𝛼a+n − Δb𝛼n)
= (−1)n(Δb𝛼a+n+1 − Δb𝛼n+1 + Δb𝛼a+n − Δb𝛼n)

= (−1)n
a+n−1∑

j=n

(
ΔΔb𝛼j+1 + ΔΔb𝛼j

)

= (−1)n+1

a+n−1∑

j=n
(−1)j𝜓b

n ,

which is, for n ≥ 1, by Lemma 8.5 and Claim 8.11, nonpositive, hence 𝜂
a,b
n is decreasing

(for n ≥ 1). ▪

We are now ready to prove Lemma 8.2.

Proof of Lemma 8.2. Note that

𝜉a+b,𝓁 + 𝜉0,𝓁 − 𝜉a,𝓁 − 𝜉b,𝓁 =
𝓁∑

j=1

(
𝛼a+b+j + 𝛼j − 𝛼a+j − 𝛼b+j

)
= −

𝓁∑

j=1

(−1)j𝜂a,b
j ,

which is, by Lemma 8.5 and Claim 8.12, nonnegative. ▪
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1012 KRIVELEVICH ET AL.

9 CONCLUDING REMARKS AND OPEN QUESTIONS

Non locally tree-like graph sequences

Our local limit approach does not assume that the converging sequence is locally tree-like. However,

the differential equation tool fails if short cycles appear in a typical local view. As it seems, to date,

there is no general tool to handle these cases, and indeed, even the asymptotic behavior of the random

greedy MIS algorithm on 𝑑-dimensional tori (for 𝑑 ≥ 2) remains unknown.

Better local rules

The random greedy algorithm presented here follows a straightforward local rule. More complicated

local rules may yield, in some cases, larger maximal independent sets; for example, the initial random

ordering may “favor” low degree vertices. It would be nice to adapt our framework, or at least some of

its components, to other settings. For adaptive “better” local algorithms, we refer the reader to [71, 74].

The second color

In this work, we have analyzed the output of the random greedy algorithm for producing a maximal

independent set. As already remarked, this is, in fact, the set of vertices in the first color class in

the random greedy coloring algorithm. It is relatively easy to see that, after slight modifications (in

particular, in Theorem 1.3), this approach allows us to calculate the asymptotic proportion of the size

of the set of vertices in the second color class (or in the k-th color class in general, for any fixed k) as

well. Non-asymptotic questions about the expected cardinality of the set of vertices in the second color

class might also be of interest. For example, is it true that the path has the smallest expected number

of vertices in the first two color classes among all trees of the same order? It is not hard to see that this

statement is not true for the first three color classes (as three colors suffice to color the path greedily).

Monotonicity with respect to KC-transformations

The expected greedy independence ratio in trees is likely to be monotone with respect to

KC-transformations and strictly monotone with respect to proper KC-transformations. If true, this

would imply that the greedy independence ratio in trees achieves its unique minimum on the path.
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