
Aus dem Institut 
 

Berlin Institute of Health 
Center for Regenerative Therapies 

 
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin 

 
 

 
DISSERTATION 

 
 

Herstellung von CRISPR-Cas9-editierten Tacrolimus-resistenten  
SARS-CoV-2-spezifischen T-Zellen für die adoptive Zelltherapie  

in Transplantationspatienten 
 
 

Generation of CRISPR-Cas9-edited Tacrolimus-resistant  
SARS-CoV-2-specific T-cells for adoptive cell therapy  

in transplant patients 
 
 

zur Erlangung des akademischen Grades  
Doctor of Philosophy (PhD) 

 
 
 
 

vorgelegt der Medizinischen Fakultät  
Charité – Universitätsmedizin Berlin 

 
 
 

von  
 
 

Lena Peter 
 
 
 

 
 
Datum der Promotion: 23. März 2024 
 



 i 

Table of Contents 

List of Tables .................................................................................................................. iv 

List of Figures .................................................................................................................. v 

List of Abbreviations ....................................................................................................... vi 

Zusammenfassung .......................................................................................................... 8 

Abstract ......................................................................................................................... 10 

Schematic overview of PhD Thesis ............................................................................... 11 

1 Introduction ............................................................................................................. 12 

1.1 Transplantation immunology ........................................................................... 12 

1.2 T-cell immunity towards SARS-CoV-2 ............................................................. 12 

1.3 SARS-CoV-2 in immunosuppressed patients .................................................. 13 

1.4 Adoptive cell therapy in transplant patients and its progress for the treatment of 

COVID-19 .................................................................................................................. 15 

1.5 Study design ................................................................................................... 15 

2 Methodology ........................................................................................................... 17 

2.1 Patient cohort .................................................................................................. 17 

2.2 Isolation of Peripheral blood mononuclear cells .............................................. 17 

2.3 Antigen-specific stimulation of PBMCs ex vivo ................................................ 18 

2.4 FACS staining and data acquisition................................................................. 18 

2.5 Generation of SARS-CoV-2 specific T-cell products ....................................... 18 

2.6 Knockout of FKBP12 to achieve Tacrolimus-resistance in SARS-CoV-2 specific 

T-cell products ........................................................................................................... 19 

2.7 Generation of autologous lymphoblastoid cell lines ........................................ 19 

2.8 SARS-CoV-2-specific re-stimulation of SARS-CoV-2-specific T-cell products 20 

2.9 VITAL Assay ................................................................................................... 20 

2.10 Cryopreservation of SARS-CoV-2-specific T-cells and LCLs .......................... 21 

2.11 Proteome analysis of SARS-CoV-2 specific TCPs .......................................... 21 



 ii 

2.12 Single cell CITE-Seq and TCR sequencing of SARS-CoV-2 specific TCPs .... 21 

2.13 Statistical analysis ........................................................................................... 22 

3. Results ................................................................................................................... 23 

3.1 Detection and Isolation of SARS-CoV-2-reactive T-cells upon antigen-specific 

stimulation .................................................................................................................. 23 

3.2 Activation of SARS-CoV-2-specific TCPs upon stimulation with SARS-CoV-2-

derived antigens ......................................................................................................... 24 

3.3 Differentiated effector memory phenotype in SARS-CoV-2-specific TCPs ...... 24 

3.4 Superior effector cytokine production of Tac-resistant SARS-CoV-2-specific 

TCPs under Tac treatment compared to unmodified control TCPs ............................ 25 

3.5 Beneficial killing capacity of antigen-expressing target cells by SARS-CoV-2-

specific Tac-resistant TCPs in presence of Tacrolimus ............................................. 26 

3.6 SARS-CoV-2-specific TCPs are reactive to SARS-CoV-2 variants and indicate 

limited cross-reactivity to common endemic HCoV .................................................... 26 

3.7 Validation of FKBP12 KO on transcriptome and protein level using single-cell 

CITE-sequencing and proteome analysis .................................................................. 27 

4. Discussion .............................................................................................................. 32 

4.1 Summary and interpretation of study results ................................................... 32 

4.2 Study results and the current state of research ............................................... 34 

4.3 Strengths and weaknesses of the study .......................................................... 35 

4.4 Implication for clinical application and future studies ....................................... 36 

5. Conclusion .............................................................................................................. 38 

References .................................................................................................................... 39 

Affidavit I Eidesstattliche Versicherung .......................................................................... 59 

Detailed Statement of Contribution ................................................................................ 60 

Extract of Journal Summary List .................................................................................... 62 

Selected Publication: Tacrolimus-resistant SARS-CoV-2-specific T-cell products to 

prevent and treat severe COVID-19 in immunosuppressed patients ............................. 64 

Curriculum Vitae ............................................................................................................ 86 



 iii 

Publication list ................................................................................................................ 88 

Acknowledgment ........................................................................................................... 89 

 

 



List of Tables iv 

List of Tables 

Table 1: Main results of ex vivo characterization of the immune response towards SARS-

CoV-2 in SARS-CoV-2 naïve and convalescent donors. ............................................... 23 

Table 2: Main results of expansion frequency and KO efficiency in unmodified and Tac-

resistant SARS-CoV-2-specific TCPs. ........................................................................... 24 

Table 3: Main results of the comparative characterization of unmodified and Tac-resistant 

SARS-CoV-2-specific TCPs. ......................................................................................... 29 



List of Figures v 

List of Figures 

Figure 1: Schematic overview of the experimental procedure and analysis of this PhD 

project (created with BioRender.com) ........................................................................... 11 

 

 



List of Abbreviations vi 

List of Abbreviations 

ACT adoptive T-cell therapy 

AP3a accessory protein 3a 

BeCAT Berlin Center for Advanced Therapies 

CD cluster of differentiation 

CFSE carboxyfluorescein succinimidyl ester 

CITE-seq cellular indexing of transcriptomes and epitopes sequencing 

CMV cytomegalovirus 

CNI calcineurin inhibitor 

COVID-19 coronavirus disease 2019 

CRISPR clustered regularly interspaced short palindromic repeats 

CsA cyclosporin A 

DMSO dimethyl sulfoxide 

DN cell double negative cell 

DNA deoxyribonucleic acid 

DP cell double positive cell 

EBV Epstein-Barr virus 

FCS fetal calf serum 

FKBP12 FK506 binding protein 12 

GFP green fluorescent protein 

GMP good-manufacturing practice 

HCoV human coronavirus 

HLA human leukocyte antigen 

HSCT hematopoietic stem cell transplantation 

IFN-γ interferon gamma 

IL interleukin 

IS immunosuppressant 

KO knockout 

LCLs lymphoblastoid cell lines 

MPA mycophenolic acid 

mRNA messenger ribonucleic acid 

NCAP nucleocapsid protein 



List of Abbreviations vii 

NFAT nuclear factor of activated T-cells 

NK cell natural killer cell 

NS non-structural protein 

ORF open reading frame 

PBMCs peripheral blood mononuclear cells 

PBS phosphate buffered saline 

pGFP plasmid encoding green fluorescent protein 

Pred prednisolone 

pSpike plasmid encoding SARS-CoV-2 wild-type spike protein 

rh recombinant human  

RNA  ribonucleic acid 

RNP ribonucleoprotein 

RPMI Roswell Park Memorial Institute 

RT room temperature 

S.p. Streptococcus pyogenes 

SARS-CoV-2  severe acute respiratory syndrome coronavirus-2 

scRNA-seq single-cell ribonucleic acid sequencing 

SD standard deviation 

SEB Staphylococcal enterotoxin B 

sgRNA single-guide ribonucleic acid 

SOT solid organ transplantation 

Tac tacrolimus 

TCM central memory T-cell 

TCPs T-cell products 

TCR T-cell receptor 

TCR-seq T-cell receptor sequencing 

TEM effector memory T-cell 

TEMRA terminally differentiated CD45RA-expressing T-cell 

TNAIVE naïve T-cell 

TNF-α tumor-necrosis factor alpha 

VEMP envelope small membrane protein 

VME1 membrane protein 

Y14 uncharacterized protein 14 



Introduction 8 

Zusammenfassung 

Die Empfänger von soliden Organtransplantaten benötigen eine dauerhafte Immunsupp-

ression, um die Abstoßung des Transplantats zu verhindern. Dies beeinträchtigt ihre Im-

munantwort gegen Infektionen und Impfstoffe, so dass Transplantatempfänger einem er-

höhten Risiko ausgesetzt sind, virale Komplikationen zu entwickeln. Transplantatempfän-

ger leiden bei einer Infektion mit dem severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2) häufiger unter einem schweren Verlauf der Coronavirus Erkrankung 

2019 (COVID-19) als die gesunde Bevölkerung. Obwohl die SARS-CoV-2-Impfung den 

Schweregrad der Erkrankung verringern kann, zeigen Transplantatempfänger teil-

weise keine, nur eine schwache oder kurzlebige Impfantwort. Daher wird der SARS-

CoV-2-spezifische adoptive T-Zell-Transfer als Therapie oder zur Vorbeugung von 

schweren COVID-19 Verläufen in Transplantatempfängern in Betracht gezogen. 

Die adoptive antivirale T-Zell-Therapie ist eine attraktive Behandlungsstrategie von Vi-

rusinfektionen bei immungeschwächten oder immunsupprimierten Patienten, allerdings 

beeinträchtigt die Immunsuppression auch deren Wirksamkeit. In der vorliegenden Arbeit 

wurde die Herstellung von SARS-CoV-2-spezifischen T-Zellprodukten etabliert, die ge-

gen das Immunsuppressivum Tacrolimus (Tac) resistent sind. Diese könnten als neuar-

tiger fortschrittlicher therapeutischer Behandlungsansatz gegen SARS-CoV-2 nach einer 

Transplantation eingesetzt werden. Darüber hinaus könnte die Kombination aus Tac und 

Tac-resistenten SARS-CoV-2-spezifischen T-Zellprodukten eine innovative Behand-

lungsstrategie für schwere COVID-19 Verläufe bei nicht transplantierten Patienten dar-

stellen, da nicht nur eine überschüssige Immunantwort, die als „Bystander“-T-Zell-Akti-

vierung in der COVID-19-assoziierten Immunpathologie auftreten kann, verhindert, son-

dern auch eine effiziente Viruseliminierung ermöglicht werden könnte. Tac-resistente 

SARS-CoV-2-spezifische T-Zellprodukte wurden durch virusfreie CRISPR-Cas9-basierte 

Gen-Editierung von acht ungeimpften SARS-CoV-2-Rekonvaleszenten hergestellt. 

Die Funktionalität der Tac-resistenten T-Zellprodukte in Anwesenheit von Tac wurde ver-

gleichend mit nicht-editierten T-Zell-Produkten als Gesamtprodukt auf Proteomebene 

und auf Einzelzellebene charakterisiert, wobei Methoden wie die Durchflusszytometrie, 

die zelluläre Indexierung von Transkriptomen und Epitopen (CITE-seq) und die T-Zell-

Rezeptor Sequenzierung (TCR-seq) verwendet wurden. Die vielversprechenden Stu-

dienergebnisse deuten darauf hin, dass eine Kombination von Tac und dem adoptiven 
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Transfer von Tac-resistenten SARS-CoV-2-spezifischen T-Zellprodukten schwere CO-

VID-19-Erkrankungen bei immunsupprimierten Transplantationspatienten, sowie Immun-

pathologien außerhalb des Transplantationsfeldes bei gleichzeitiger Viruseliminierung, 

verhindern könnte. 
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Abstract 

Solid organ transplant recipients require permanent immunosuppression to prevent graft 

rejection. This impairs their immune response to infections and vaccines, putting trans-

plant recipients at increased risk of developing viral complications. Transplant recipients 

are more likely to suffer from severe coronavirus disease 2019 (COVID-19) when infected 

with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) than the healthy 

population. Although SARS-CoV-2 vaccination can reduce disease severity, transplant 

recipients partially show no, weak, or short-lived vaccine response. Therefore, SARS-

CoV-2-specific adoptive T-cell transfer is considered as a therapeutic or preventive strat-

egy for severe COVID-19 courses in transplant recipients. Adoptive antiviral T-cell ther-

apy is an appealing treatment strategy for viral infections in immunocompromised or im-

munosuppressed patients; however, immunosuppression also impairs its efficacy. The 

present work established the production of SARS-CoV-2-specific T-cell products (TCPs) 

being resistant to the immunosuppressive drug tacrolimus (Tac). These could be used as 

a novel advanced therapeutic treatment approach against SARS-CoV-2 after transplan-

tation. In addition, the combination of Tac and Tac-resistant SARS-CoV-2-specific TCPs 

could provide an innovative treatment approach for severe COVID-19 courses in non-

transplant patients by not only preventing excessive immune responses that may occur 

as "bystander" T cell activation in COVID-19-associated immunopathology, but also by 

enabling efficient viral elimination. Tac-resistant SARS-CoV-2-specific TCPs were gener-

ated by virus-free CRISPR-Cas9-based gene editing of eight unvaccinated SARS-CoV-2 

convalescents. The functionality of Tac-resistant TCPs in the presence of Tac was com-

paratively characterized with non-edited TCPs as a complete product at the proteome 

and single cell level using methods such as flow cytometry, cellular indexing of transcrip-

tomes and epitopes (CITE-seq), and T cell receptor sequencing (TCR-seq). Promising 

study results suggest that a combination of Tac and adoptive transfer of Tac-resistant 

SARS-CoV-2-specific TCPs could prevent severe COVID-19 in immunosuppressed 

transplant patients, as well as immunopathology outside of the transplant field with con-

comitant viral elimination. 



Introduction 11 

Schematic overview of PhD Thesis 

 

Figure 1: Schematic overview of the experimental procedure and analysis of this PhD project 
(figure was created by myself, based on the publication [1] using BioRender.com) 
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1 Introduction 

1.1 Transplantation immunology  

The recipient’s immune system can recognize and attack the transplanted donor tissue 

resulting into allograft rejection. End-stage organ failure is one if the main risks in solid 

organ transplantation (SOT) recipients [2]. To minimize the risk of transplant rejection, it 

is important to consider donor-recipient human leukocyte antigens (HLA)-matching [3] but 

also pre-screening for infectious diseases to prevent viral re-activation or transmission 

[4]. Chronic immunosuppression in transplant recipients is a common strategy to improve 

allograft function by suppressing unwanted immune responses against the transplanted 

tissue. Classical triple immunosuppression, comprising a combination of calcineurin in-

hibitors (CNI), corticosteroids, and mycophenolic acid (MPA), are widely used in SOT 

recipients [5]. CNI, such as Tac or cyclosporine A (CsA), interfere with the calcineurin 

pathway by binding to the respective intracellular immunophilin preventing the 

dephosphorylation of nuclear factor of activated T-cells (NFAT) and thus, T-cell receptor 

mediated T-cell activation [5]. Corticosteroids, such as prednisone, suppress pro-inflam-

matory cytokines and thereby, reduce activity of both T-cells and B cells, which can result 

in lymphocyte apoptosis [5]. MPA inhibits the proliferation of T-cells by suppressing purine 

synthesis [5]. However, systemic immunosuppression does not only target alloreactive 

immune cells but the entire adaptive immune system, which makes SOT and hematopoi-

etic stem cell transplantation (HSCT) recipients susceptible to chronic (e.g. cytomegalo-

virus (CMV), Epstein-Barr virus (EBV) or BK virus) but also acute viral infections [6–11]. 

Therapeutic strategies to cope with viral complications in the transplant setting include 

the reduction of immunosuppression, administering antiviral medication to target the viral 

replication machinery or restoring the adaptive immunity by adoptively transferring virus-

specific T-cells. 

1.2 T-cell immunity towards SARS-CoV-2 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and 

is responsible for the ongoing global COVID-19 pandemic [12,13]. The disease severity 

can range from asymptomatic/mild to severe respiratory failure. Robust T-cell mediated 

immunity has proven to be crucial in containing SARS-CoV-2 infection and correlates with 
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disease severity [14–16]. However, severe COVID-19 is characterized by an overshoot-

ing cell-mediated immune response (cytokine storm) towards SARS-CoV-2 causing hy-

perinflammation and severe tissue damage [17–19]. COVID-19-associated hyperinflam-

mation correlates with a dysregulated adaptive immunity resulting in insufficient viral elim-

ination [17,20–22]. Activation of bystander CD8+ T-cells through the pro-inflammatory mi-

lieu may considerably contribute to such overshooting immune responses [23]. This phe-

nomenon is linked to an experienced immune system with a high degree of late-differen-

tiated memory T-cells found predominantly in the elderly population [24]. Immunosup-

pression using dexamethasone has become the standard treatment for patients suffering 

from severe COVID-19 [25,26]. Although dexamethasone has shown to improve the clin-

ical outcome of patients receiving respiratory support [25,27,28], it prolongs viral shed-

ding by suppressing the functionality of the patient’s adaptive immune system [29–31]. 

Strategies to regenerate SARS-CoV-2-specific immune responses are necessary to con-

tain viral control in the setting of severe COVID-19. The development of highly efficient 

SARS-CoV-2 vaccines in late 2020, has shown to reduce the risk for a severe COVID-19 

course by inducing robust humoral and cellular immunity in healthy individuals [32–34]. 

However, the continuing emergence of SARS-CoV-2 variants can impair vaccine induced 

B cell and T-cell responses and may increase the probability of a re-infection in conva-

lescent individuals, which raises concerns about SARS-CoV-2-driven immunological es-

cape [35–37]. Infecting individuals with several SARS-CoV-2 variants has shown that 

>90% of generated CD4+ and CD8+ T-cells have conserved T-cell epitopes, respectively, 

that are less dominated by spike protein. Therefore, mutations in the spike protein domain 

may barely affect T-cell-driven immunity towards SARS-CoV-2 variants, including Delta 

and Omicron [38]. 

1.3 SARS-CoV-2 in immunosuppressed patients 

Patients receiving constant immunosuppression to prevent allograft rejection are at ele-

vated risk to develop severe COVID-19 with prolonged hospitalization and increased mor-

tality compared to the general population [39–42]. A large US study on SARS-CoV-2+ 

SOT recipients has shown that about 43% of SOT recipients were hospitalized with ele-

vated risk to develop acute kidney injury, graft failure as well as organ rejection and car-

diologic problems [43]. Moreover, patients that recently underwent SOT have shown to 

be at higher risk for SARS-CoV-2 infection than those whose transplantation dates back 
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longer, suggesting that the amount of immunosuppressive drugs influences mortality in 

SARS-CoV-2 infected SOT recipients [44]. Changes in the immunosuppression regimen 

of SOT recipients (e.g. reducing the dose or temporarily withholding immunosuppres-

sants) have not shown to correlate with COVID-19 severity or mortality [45]. Some reports 

suggest that SOT recipients suffering from COVID-19 benefit from reduction or with-

drawal of MPA while maintaining Tac treatment [46]. Tac has shown to have beneficial 

antiviral properties in vitro by suppressing pro-inflammatory cytokine production and rep-

lication of human coronavirus (HCoV) (e.g. SARS-CoV-1, HCoV-NL63, and HCoV-229E) 

[47,48]. Further strategies to improve COVID-19 outcome in transplant recipients include 

antiviral medication as well as treatment with convalescent plasma [49,50] or monoclonal 

antibodies [51,52], to boost the immune response towards SARS-CoV-2. Both, convales-

cent plasma, and monoclonal antibodies have shown to improve COVID-19 outcome in 

the general population [53,54], however, the therapeutic effect can be lower in SOT re-

cipients as it strongly correlates with the immunosuppressive regimen [49–52]. Studies 

on SARS-CoV-2 mRNA vaccines in SOT recipients have generally proven their safety 

and effectiveness, although their efficacy depends on the degree of immunosuppression 

[55–57]. SOT recipients have shown to mount reduced SARS-CoV-2 vaccine responses 

compared to the general population [56,58–60], in a few cases the effectiveness improved 

following the third or fourth vaccine dose [55,61,62]. Moreover, there is evidence for pre-

dominant impairment of the vaccine induced humoral response in transplant recipients 

while T-cell responses were largely comparable to those observed in healthy individuals 

[63]. However, limited responses to vaccination in SOT recipients may not protect from 

SARS-CoV-2 infection, especially when considering emerging SARS-CoV-2 strains, leav-

ing them at elevated risk to develop severe COVID-19. Indeed, several studies have 

shown that vaccinated SOT patients are still susceptible to SARS-CoV-2 infection and 

often require hospitalization [60,64,65]. Another study in a large UK cohort of SOT recip-

ients has reported that COVID-19 mRNA vaccination reduced the risk of death by 20%, 

implying that SOT recipients have a certain degree of protection, although the effect is 

still lower than in the general population [57]. These observations underline the necessity 

for alternative treatments to protect transplant recipients from severe COVID-19. 
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1.4 Adoptive cell therapy in transplant patients and its progress for the treatment 

of COVID-19 

Transfer for antiviral T-cells to treat viral complications in HSCT and SOT recipients has 

proven to be safe and feasible [66–68], with very low incidence of adverse events [69]. 

Antiviral TCPs are generated by isolating and expanding peripheral blood mononuclear 

cells (PBMCs) in presence of virus-specific antigens in vitro following transfusion into the 

recipient. Allogenic ACT to control viral complications post transplantation is frequently 

applied in the HSCT setting while autologous antiviral ACT is more common among SOT 

recipients. Hence, for autologous ACT, the starting material has to be enriched from im-

munosuppressed SOT patients, which has shown to be feasible [70,71]. In SOT recipi-

ents, antiviral ACT resulted in successful treatment of EBV- [72,73] as well as CMV-de-

rived diseases [70,74–76]. Constant immunosuppression is required to prevent allograft 

rejection after transplantation but may impair long-term survival and engraftment of adop-

tively transferred T-cells. To overcome this obstacle, several approaches to generate an-

tiviral immunosuppressant-resistant T-cells for ACT in transplant recipients have been 

described that showed antiviral efficacy in the immunosuppressive environment [77–80]. 

 

With emerging evidence that a robust T-cell response is essential for viral elimination and 

long-term protection against SARS-CoV-2 [14–16], adoptive transfer of SARS-CoV-2-

specific T-cells has been proposed to treat or prevent COVID-19 in immunocompromised 

or immunosuppressed patients as well as for the treatment of acute COVID-19 [1,81–86]. 

In addition, there is data that ACT can promote antibody responses [87]. Therefore, 

SARS-CoV-2-specific ACT may not only support viral clearance but also the establish-

ment of cellular and humoral immunity, of which especially those individuals could benefit 

from that fail to build up a protective immunity post SARS-CoV-2 infection or vaccination.  

Considering the constant immunosuppression in transplant patients, generation of immu-

nosuppressant-resistant SARS-CoV-2-specific TCPs are a promising approach to pro-

vide not only robust viral elimination but also suppressing COVID-19-associated over-

shooting immune responses in immunosuppressed patients [1,83]. 

1.5 Study design 

The present study hypothesizes that SARS-CoV-2-specific TCPs can be rendered re-

sistant to the IS Tac, to retain their functionality and phenotype in the presence of clinical 
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doses of Tac. We decided to use the IS Tac as it is frequently administered to transplant 

recipients to prevent allograft rejection and it may further have beneficial antiviral proper-

ties [47,48].  The study aimed at generating Tac-resistant SARS-CoV-2-specific T-cells 

from SARS-CoV-2+ convalescent donors using a good-manufacturing practice (GMP)-

compliant manufacturing process [79]. Therefore, we isolated and expanded SARS-CoV-

2-reactive T-cells and performed a vector-free Ribonucleoprotein (RNP)-based CRISPR-

Cas9-mediated knockout (KO) of the FK506 binding protein 12 (FKBP12) in SARS-CoV-

2-specific T-cells.  

 

Due to the lack of a protective SARS-CoV-2-vaccine in early 2020, we planned to exam-

ine SARS-CoV-2 convalescent donors for their T-cell reactivity towards SARS-CoV-2-

derived structural (NCAP (nucleocapsid), Spike S1, Spike S2, VEMP (envelope small 

membrane protein), VME1 (membrane protein)) and accessory (AP3a (accessory protein 

3a), NS6 (non-structural protein 6), NS7a (non-structural protein 7a), NS7b (non-struc-

tural protein 7b), NS8 (non-structural protein 8), ORF9b (open reading frame 9b), ORF10 

(open reading frame 10), Y14 (uncharacterized protein 14)) antigens. In the expected 

instance, that we find SARS-CoV-2-reactive T-cells, we envisioned to expand the cells 

SARS-CoV-2-specifically and to render them resistant to Tac using CRISPR-Cas9-based 

gene-editing. At the end of expansion, we strived to comparatively characterize unmodi-

fied control and Tac-resistant SARS-CoV-2-specific TCPs with methods such as flow cy-

tometry, CITE-seq and TCR-seq as well as proteome analysis. 

We hypothesized to demonstrate that Tac-resistant SARS-CoV-2-specific TCPs possess 

superior effector cytokine production in presence of clinical doses of Tac compared to 

unmodified control SARS-CoV-2-specific TCPs. The triple IS (Tac/Prednisolone 

(Pred)/MPA) as well as CsA may be tested to reduce / abolish effector cytokine production 

in gene-edited cell products, to provide a potential safety switch in vivo post infusion, 

respectively. The generated Tac-resistant SARS-CoV-2-specific TCP should demon-

strate essential antiviral effector functions in the presence of Tac while maintaining the 

phenotype of unmodified TCPs.
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2 Methodology 

In the following, the detailed procedure of the methods used for the present study are 

explained. The methods refer to the attached publication [1] (Peter et al. 2022 – Tacroli-

mus resistant SARS-CoV-2-specific T-cell products to prevent and treat severe COVID-

19 in immunosuppressed patients) 

2.1  Patient cohort 

The study was conducted in early 2020 when no protective SARS-CoV-2 vaccines were 

available. Peripheral blood was either collected from convalescent SARS-CoV-2 sero-

positive individuals with a history of asymptomatic/mild COVID-19 (20 donors) or SARS-

CoV-2 seronegative healthy donors (19 donors). The procedure to determine the SARS-

CoV-2 serology in all blood donors as well as a table comprising COVID-19 symptom 

severity and potential long-term effects in SARS-CoV-2 convalescent donors can be 

found within the publication [1]. The study was approved by the Ethics Committee of 

Charité - Universitätsmedizin Berlin and all subjects had given their written informed con-

sent according to the ‘Declaration of Helsinki'. 

2.2  Isolation of Peripheral blood mononuclear cells 

PBMCs were isolated from peripheral blood by Biocoll (Biochrom) density gradient cen-

trifugation. Therefore, either heparinized or citrate blood was diluted 1:2 with PBS (Gibco) 

and transferred onto a layer of Biocoll solution following centrifugation at 800x g for 20 

min at room temperature (RT) without deceleration. Hereby, cell populations in peripheral 

blood are separated in layers according to their varying densities. The PBMC layer was 

carefully collected and washed twice with PBS at 400x g for 10 min at 4°C. After determi-

nation of cell count using Neubauer chamber and trypan blue (Sigma-Aldrich), cells were 

diluted with RPMI medium (PAN-Biotech) supplemented with 10% fetal calf serum (FCS, 

PAA) and 100 U/mL penicillin and 100 μg/mL streptomycin (both Biochrom) and incu-

bated at 37 °C and 5% CO2 until further analysis. 
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2.3  Antigen-specific stimulation of PBMCs ex vivo 

PBMCs were stimulated with overlapping peptide pools of individual antigens of SARS-

CoV-2 (JPT Peptide Technologies, i.e. NCAP, Spike S1, Spike S2, VEMP, VME1, AP3a, 

NS6, NS7a, NS7b, NS8, ORF9b, ORF10, Y14; 1 μg/ml each). A purified anti-CD28 anti-

body (clone CD28.2, Biolegend) was added to ensure proper T-cell activation. An unstim-

ulated sample supplemented with DMSO served as negative control and Staphylococcal 

enterotoxin B (SEB) (Sigma-Aldrich) and CMV peptide pool (pp65 and IE-1; 0.5 μg/ml 

each – JPT Peptide Technologies) stimulated samples served as positive controls, re-

spectively. PBMCs were incubated at 37 °C and 5% CO2 for 2h until 2 µg/ml brefeldin A 

(Sigma-Aldrich) was added to allow detection of intracellular cytokine production by in-

hibiting the vesicle transport from the golgi apparatus. PBMCs were incubated for another 

14h at 37 °C and 5% CO2 following antibody staining for flow analysis.  

2.4  FACS staining and data acquisition  

For extracellular staining, cells were incubated with respective antibodies (human anti-

CCR7 (G043H7) and -CD45RA (HI100); both Biolegend) and LIVE/DEAD Fixable Blue 

Dead Cell Stain (L/D; Invitrogen) to exclude dead cells at 37 °C and 5% CO2 for 30 

minutes and subsequently washed with PBS at 400x g for 10 minutes. Afterwards, cells 

were fixed and premetallized for 30 min at 4 °C using the FoxP3/Transcription Factor 

Staining Buffer Set (eBioscience) and washed with PBS at 400x g for 10 minutes. For 

intracellular staining, human anti-CD3 (OKT3), -CD4 (SK3), -CD8 (RPA-T8), -IFN-γ 

(4S.B3), -TNF-α (MAb11), -IL-2 (MQ1-17H12), -CD137 (4B4-1) and -CD154 (24-31) an-

tibodies (all Biolegend) were used. Cells were stained intracellularly for 20 min at 4°C and 

subsequently washed with PBS at 400x g for 10 minutes. Flow cytometry data was ac-

quired at the CytoFLEX flow cytometer (Beckman Coulter), and the data analyzed using 

FlowJo-10 software (Tree Star). 

2.5  Generation of SARS-CoV-2 specific T-cell products 

To enrich and expand SARS-CoV-2-specific T-cells, PBMCs were isolated from periph-

eral blood of convalescent donors and stimulated with SARS-CoV-2 peptide pools (JPT 

Peptide Technologies; 1 mg/mL each) for 6h following IFN-γ Secretion Assay - Cell En-



Methodology 19 

richment and Detection Kit, which was carried out according to the manufacturer’s in-

structions (Miltenyi Biotec). This method detects and enriches IFN-γ-secreting T-cells with 

a high sensitivity. The isolated IFN γ-secreting T-cells were the starting material for gen-

erating SARS-CoV-2-specific TCPs and were co-cultured with 1*107 irradiated PBMCs 

(feeder cells) in RPMI medium (PAN-Biotech) supplemented with 10% FCS (PAA), 100 

U/mL penicillin and 100 μg/mL streptomycin as well as 10 ng/mL recombinant human IL-

7 (rhIL-7) and rhIL-15 (both CellGenix) in 24-well plates and incubated at 37 °C and 5% 

CO2. Upon reaching 100% confluency, cells were split 1:1. 

2.6  Knockout of FKBP12 to achieve Tacrolimus-resistance in SARS-CoV-2 specific 

T-cell products 

To render SARS-CoV-2-specific T-cells resistant to the IS Tac, a vector-free RNP-based 

CRISPR-Cas9-based KO of the adaptor protein FKBP12 was carried out. At day 7 of 

culture, SARS-CoV-2-specific T-cells were split 1:1 and one part was left unmodified while 

the other was used for a CRISPR-Cas9-based KO of FKBP12. Therefore, 2-10*106 T-

cells were washed twice with PBS at 400x g for 10 min. To generate RNP complexes for 

electroporation of T-cells, 30 µg of recombinant Alt-R® S.p. HiFi Cas9 Nuclease V3 (In-

tegrated DNA Technologies) was combined with 15 µg synthetically modified single-guide 

RNA (sgRNA) that targets 5’-GGGCGCACCTTCCCCAAGCG-3’ and carries 2O’-methyl-

3'phosphothioate modifications between the first and last 3 nucleotides (Synthego Cor-

poration). The RNPs were transferred to SARS-CoV-2-specific T-cells by electroporation 

using Amaxa P3 primary cell 4D-Nucleofector X Kit L (Lonza, according to the manufac-

turers protocol) and the Amaxa-Nucleofector-4D (Lonza, program CO-115). After electro-

poration, cells were quickly recovered with pre-warmed antibiotic-free RPMI medium sup-

plemented with 10% FCS, transferred into a 24-well plate and cultured in a humidified 

incubator at 37 °C and 5% CO2. After 24h, the cell medium was supplemented with 10 

ng/mL rhIL-7 and rhIL-15. Upon reaching 100% confluency, cells were split 1:1. 

The KO efficiency was determined at day 21 of culture using peak-shift analysis after 

Sanger sequencing. The detailed procedure is described within the publication [1]. 

2.7  Generation of autologous lymphoblastoid cell lines 

Immortalized lymphoblastoid cell lines (LCLs) were generated by transfecting 1*107 au-

tologous PBMCs with EBV in presence of 1 µg/ml CsA and 2.5 µg/ml CpG and cultured 
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in RPMI supplemented with 10% FCS, 100 U/mL penicillin and 100 μg/mL streptomycin 

for 21 days. Upon reaching 100% confluency, cells were either split 1:1 or transferred into 

a cell culture flask.  

2.8  SARS-CoV-2-specific re-stimulation of SARS-CoV-2-specific T-cell products 

SARS-CoV-2-specific re-stimulation of unmodified control and Tac-resistant SARS-CoV-

2-specific TCPs was carried out using SARS-CoV-2 peptide pool loaded LCLs as antigen-

presenting cells in co-culture with SARS-CoV-2-specific T-cells in presence or absence 

of IS at clinical doses (6 ng/mL Tac (Prograf, Astellas); 120 ng/mL CsA (Sandimmun, 

Novartis); triple IS = 6 ng/mL Tac + 0.57 mg/mL Pred (Urbason solubile, Sanofi) + 2.7 

mg/mL MPA (active substance of mycophenolate mofetil; Sigma-Aldrich)). Unloaded 

LCLs served as control to exclude unspecific T-cell activation or activation due to presen-

tation of EBV epitopes. Therefore, LCLs and SARS-CoV-2-specific T-cells were har-

vested separately and washed with PBS at 400x g for 10 min. Cell count was determined 

with a Neubauer chamber and trypan blue and cells were resuspended in respective vol-

ume of RPMI medium supplemented with 10% FCS and 100 U/mL penicillin and 100 

μg/mL streptomycin. Afterwards LCLs were loaded with SARS-CoV-2 peptide pools 

(NCAP, spike S1, spike S2, VEMP, VME1, AP3a, NS6, NS7a, NS7b, NS8, ORF9b, 

ORF10, Y14; JPT Peptide Technologies; 0.5 mg/mL) and co-cultured with SARS-CoV-2-

specific T-cells in a 1:10 ratio (LCLs:T-cell). Like for ex vivo stimulations, samples were 

incubated at 37 °C and 5% CO2 for 2h until 2 µg/ml brefeldin A was added to allow de-

tection of intracellular cytokine production. After a total of 16h stimulation, cells were 

stained and analyzed via flow cytometry as described earlier. 

2.9  VITAL Assay 

The procedure of the VITAL assay and the calculation of the SARS-CoV-2-specific killing 

capacity by SARS-CoV-2-specific TCPs is described in detail within the publication [1]. 

 

The capacity of unmodified control and Tac-resistant SARS-CoV-2-specific TCPs to lyse 

SARS-CoV-2-presenting target cells was determined by co-culturing SARS-CoV-2 pep-

tide pool-loaded autologous LCLs (targets) and allogenic unloaded LCLs (non-targets) in 

a ratio 1:1 (targets:non-targets) with the respective SARS-CoV-2-specific T-cells in a ratio 

1:1 or 1:10 (LCLs:T-cell). To discriminate targets and non-targets, autologous LCLs were 
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stained with CellTrace CFSE Cell Proliferation Kit, while allogenic ones were labelled with 

CellTrace Far Red Cell Proliferation Kit (both Life Technologies).  

2.10 Cryopreservation of SARS-CoV-2-specific T-cells and LCLs 

To cryopreserve SARS-CoV-2-specific TCPs or LCLs, 2-5*107 cells were harvested and 

washed twice with PBS at 400x g for 10 min. The cell pellet was resuspended in freezing 

medium (FCS supplemented with 10% DMSO), up to 2*107 cells were transferred into a 

cryopreservation tube and stored in a freezing container at -80 °C overnight until they 

were transferred into liquid nitrogen for long-term storage.  

2.11 Proteome analysis of SARS-CoV-2 specific TCPs 

For proteome analysis, cryopreserved SARS-CoV-2-specific TCPs and autologous LCLs 

of four donors were quickly thawed in a water bath at 37 °C and washed twice with pre-

warmed RPMI medium supplemented with 10% FCS and 100 U/mL penicillin and 100 

μg/mL streptomycin at 400x g for 10 min. The cell pellet was resuspended in respective 

amount of medium following cell counting using Neubauer chamber and trypan blue. 

SARS-CoV-2-specific T-cells were re-stimulated with SARS-CoV-2-loaded autologous 

LCLs, as described earlier, but in this case the stimulation was performed for a total of 6h 

in absence of brefeldin A. Subsequently, cells were washed with PBS at 400x g for 10 

min. To exclude LCLs from further analysis, T-cells were purified by FACSorting at the 

Sony sorter MA900. Purified T-cells were washed with PBS at 400x g for 10 min and cell 

pellets were frozen in liquid nitrogen and stored at -80 °C until further analysis via nano-

liquid chromatography-tandem mass spectrometry at the Imaging Mass Spectrometry 

Unit at the BIH Center for Regenerative Therapies. A detailed procedure of the analysis 

is described within the publication [1]. 

2.12 Single cell CITE-Seq and TCR sequencing of SARS-CoV-2 specific TCPs 

For single cell CITE-seq and TCR-seq, expanded unmodified control and Tac-resistant 

SARS-CoV-2-specific TCPs and autologous LCLs of four donors were harvested sepa-

rately and washed with PBS at 400x g for 10 min. The cell pellet was resuspended in 

respective amount of RPMI medium supplemented with 10% FCS and 100 U/mL penicillin 

and 100 μg/mL streptomycin following cell counting using Neubauer chamber and trypan 
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blue. The unmodified control and Tac-resistant SARS-CoV-2-specific TCPs were re-stim-

ulated with SARS-CoV-2-loaded autologous LCLs, as described earlier, but in this case 

the stimulation was performed for a total of 6h in absence of brefeldin A. Subsequently, 

cells were washed with PBS at 400x g for 10 min and prepared for single-cell RNA se-

quencing (scRNA-seq) which was carried out in collaboration with the German Rheuma-

tism Research Center in Berlin. The preparation procedure and analysis of sequencing 

data is described in detail within the publication [1]. 

2.13 Statistical analysis 

The detailed procedure for statistical testing is described within the publication [1].
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3. Results 

The following results of the PhD project are published in the attached publication [1] (Pe-

ter et al. 2022 – Tacrolimus resistant SARS-CoV-2-specific T-cell products to prevent and 

treat severe COVID-19 in immunosuppressed patients). 

3.1 Detection and Isolation of SARS-CoV-2-reactive T-cells upon antigen-specific 

stimulation   

Prior to the generation of SARS-CoV-2-specific TCPs, the SARS-CoV-2-directed immune 

response was determined in 20 healthy SARS-CoV-2 seropositive convalescent donors 

that recovered from mild or asymptomatic COVID-19 as well as 19 seronegative healthy 

SARS-CoV-2 naïve donors (see Table 1). Upon stimulation with distinct SARS-CoV-2-

derived antigens, the T-cell reactivity was determined via flow cytometry and revealed 

upregulation of activation markers (CD137) and effector cytokine production (IFN-γ 

and/or TNF-α) in all SARS-CoV-2 convalescent donors. The SARS-CoV-2-derived anti-

gens recognized by T-cells differed among CD4+ and CD8+ T-cell subsets. In seronega-

tive healthy control donors, a CD4+ T-cell response (mostly TNF-α) towards all viral anti-

gens was detected, while CD8+-derived T-cell responses were absent.  

 

Table 1: Main results of ex vivo characterization of the immune response towards SARS-CoV-2 
in SARS-CoV-2 naïve and convalescent donors. The color code implies whether the correspond-
ing patient cohort shows reactivity towards SARS-CoV-2 – green: positive; red: limited / negative 
(table was created by myself, based on the publication [1]). 

Parameter SARS-CoV-2 

naïve donors 

(n=19) 

SARS-CoV-2 

convalescent donors 

(n=20) 

SARS-CoV-2 Serology  

(Spike specific IgG &IgA) 

 

negative 

 

positive 

T-cell reactivity to SARS-CoV-2 

antigens 

CD4+: limited 

CD8+: limited 

CD4+: positive 

CD8+: limited  

 

To generate Tac-resistant SARS-CoV-2-specific TCPs, PBMCs from eight SARS-CoV-2 

convalescent donors were stimulated SARS-CoV-2-specifically and IFN-γ secreting cells 

were isolated with high purity using IFN-γ secretion assay. On day 7 of expansion, a non-
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viral, RNP-based CRISPR-Cas9-mediated KO of the adaptor protein FKBP12, which ren-

ders T-cells resistant to Tac, was performed. Unmodified T-cells were expanded in par-

allel serving as control for upcoming back-to-back characterizations with the Tac-resistant 

T-cells. Over 21 days of expansion, no substantial differences in expansion rates or cell 

yield comparing unmodified and Tac-resistant TCPs were observed (see Table 2). The 

FKBP12 KO efficiency in Tac-resistant SARS-CoV-2-specific TCPs on day 21 ranged 

from 63% – 89% (see Table 2). 

 

Table 2: Main results of expansion frequency and KO efficiency in unmodified and Tac-resistant 
SARS-CoV-2-specific TCPs. Mean ± SD is presented. The color code implies the potential impact 
on the potency of the TCPs – green: beneficial /positive; yellow: neutral; red: disadvantageous / 
negative (table was created by myself, based on the publication [1]). 

Parameter unmodified TCPs Tac-resistant TCPs 

Expansion rate (n=8) 3010 ± 1458 2981 ± 2317 

Cell yield (n=8) 2.7*108 ± 1.7*108 3.0*108 ± 2.7*108 

FKBP12 KO efficiency (n=8)  63 - 89% 

 

3.2 Activation of SARS-CoV-2-specific TCPs upon stimulation with SARS-CoV-2-

derived antigens  

To estimate the capacity of unmodified control and Tac-resistant SARS-CoV-2-specific 

TCPs to recognize SARS-CoV-2 derived antigens, TCPs were re-stimulated at day 21 

with distinct SARS-CoV-2-derived antigens, respectively. Both, unmodified control, and 

Tac-resistant SARS-CoV-2-specific TCPs were comparable in their T-cell activation pro-

file towards the distinct SARS-CoV-2-derived antigens. Similar as for ex vivo stimulations, 

expanded SARS-CoV-2-specific CD4+ and CD8+ T-cells recognized distinct viral anti-

gens. The magnitude by which CD4+ and CD8+ T-cell responded to SARS-CoV-2-derived 

antigens was comparable between unmodified control and Tac-resistant SARS-CoV-2-

specific TCPs. 

3.3 Differentiated effector memory phenotype in SARS-CoV-2-specific TCPs  

As the state of differentiation impacts T-cell functionality and longevity, the phenotype of 

unmodified control and Tac-resistant SARS-CoV-2-specific TCPs was estimated using 
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common markers for T-cell differentiation. Prior to enrichment, the CD4+ T-cell compart-

ment contained predominantly naïve (TNAIVE) and central memory (TCM) T-cells, while right 

after T-cell enrichment the CD4+ T-cell compartment was dominated by TCM and effector 

memory (TEM) T-cells. However, at day 21 of culture, the phenotype of CD4+ T-cells in 

both, unmodified and Tac-resistant SARS-CoV-2-specific TCPs shifted to a more differ-

entiated one with high proportions of TEM. In CD8+ T-cells prior to enrichment, a high 

frequency of TNAIVE, terminally differentiated RA-expressing (TEMRA) T-cells as well as TEM 

cells was present, while after enrichment the proportion of TEMRA cells increased in both, 

unmodified and Tac-resistant SARS-CoV-2-specific TCPs. After expansion, late differen-

tiated TEMRA, followed by TEM cells were predominantly detected in the CD8+ T-cell com-

partment of both TCPs. 

3.4 Superior effector cytokine production of Tac-resistant SARS-CoV-2-specific 

TCPs under Tac treatment compared to unmodified control TCPs 

To validate that Tac-resistance rescues T-cell effector function towards SARS-CoV-2 in 

presence of Tac, expanded unmodified control and Tac-resistant SARS-CoV-2-specific 

TCPs were re-stimulated at day 21 with a SARS-CoV-2 peptide pool in presence or ab-

sence of either IS. CD4+ and CD8+ T-cells among unmodified control and Tac-resistant 

SARS-CoV-2-specific TCPs demonstrated comparable frequencies of activated 

(CD137+) effector cytokine producing (IFN-γ, TNF-α and interleukin-2 (IL2)) in absence 

of IS. However, Tac treatment suppressed cytokine production in unmodified but not Tac-

resistant SARS-CoV-2-specific TCPs. Cytokine production can be abolished in both un-

modified control and Tac-resistant SARS-CoV-2-specific TCPs by exposing them to CsA. 

Upon triple immunosuppression with Tac/Pred/MPA, effector cytokine production in CD4+ 

and CD8+ T-cells of Tac-resistant SARS-CoV-2-specific TCPs was reduced but other than 

for unmodified control SARS-CoV-2-specific TCPs not fully abolished. Moreover, SARS-

CoV-2-specific polyfunctional T-cells capable of producing multiple effector cytokines at 

once were detected in unmodified control and Tac-resistant SARS-CoV-2-specific TCPs. 

Expression of the activation marker CD154 was also upregulated upon SARS-CoV-2-

specific stimulation of SARS-CoV-2-specific TCPs and its expression was not affected by 

Tac treatment in Tac-resistant TCPs. 
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3.5 Beneficial killing capacity of antigen-expressing target cells by SARS-CoV-2-

specific Tac-resistant TCPs in presence of Tacrolimus 

Next, the capacity of unmodified control and Tac-resistant SARS-CoV-2-specific TCPs to 

eliminate SARS-CoV-2-presenting target cells in presence and absence of Tac was eval-

uated. Using SARS-CoV-2 peptide pools for antigen-presentation by target cells, resulted 

in comparable cytotoxic killing capacity of unmodified control and Tac-resistant SARS-

CoV-2-specific TCPs. Other than for cytokine production, the cytotoxic killing capacity of 

both unmodified control and Tac-resistant SARS-CoV-2-specific TCPs was not affected 

by short-term Tac treatment. The nucleocapsid protein (NCAP) and accessory protein 3a 

(AP3a) were identified as driving antigens of T-cell-mediated cytotoxicity towards antigen-

presenting target cells in both unmodified control and Tac-resistant SARS-CoV-2-specific 

TCPs. Furthermore, CD8+ T-cells of unmodified control and Tac-resistant SARS-CoV-2-

specific TCPs were identified to predominantly execute the cytotoxic killing of SARS-CoV-

2 peptide-loaded target cells. 

To further estimate if unmodified control and Tac-resistant SARS-CoV-2-specific TCPs 

recognize and kill SARS-CoV-2 infected target cells, the killing assay was performed with 

target cells co-transfected with a plasmid encoding GFP (pGFP) and a plasmid encoding 

SARS-CoV-2 wild-type spike protein (pSpike). The unmodified control and Tac-resistant 

SARS-CoV-2-specific TCPs were able to eliminate GFP+/pSpike-transfected target cells. 

Other than for peptide-loaded target cells, exposure to Tac impaired the capacity to elim-

inate GFP+/pSpike-transfected target cells in unmodified TCPs which was partially res-

cued by FKBP12 KO. 

3.6 SARS-CoV-2-specific TCPs are reactive to SARS-CoV-2 variants and indicate 

limited cross-reactivity to common endemic HCoV 

With the continuing emergence of novel circulating SARS-CoV-2 variants it is of vital im-

portance that SARS-CoV-2-specific TCPs can recognize mutated SARS-CoV-2 antigens, 

including those derived from the Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and 

Omicron (B.1.1.529) strain. Cytokine production by activated CD4+ and CD8+ T-cells to-

wards spike S1 and S2 of SARS-CoV-2 variants was highly comparable to wild-type spike 

S1 and S2 in both, unmodified control and Tac-resistant SARS-CoV-2-specific TCPs.  

To further estimate potential cross-reactivity of SARS-CoV-2-specific TCPs towards spike 

S1 and S2 of common endemic HCoV, the cytokine profile of SARS-CoV-2-specific TCPs 
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was analyzed upon re-stimulation with spike S1 and S2 peptide pools derived from HCoV-

229E, HCoV-NL63, HCoVOC43, and HKU1. CD4+ and CD8+ T-cells of unmodified control 

and Tac-resistant SARS-CoV-2-specific TCPs demonstrated only little cross-reactivity to-

wards spike protein of common endemic HCoV. The frequency of activated effector cyto-

kine producers was significantly higher towards SARS-CoV-2-derived spike S1 and S2 

compared to spike S1 and S2 of common endemic HCoV among CD4+ and CD8+ T-cells 

of unmodified control and Tac-resistant SARS-CoV-2-specific TCPs. 

3.7 Validation of FKBP12 KO on transcriptome and protein level using single-cell 

CITE-sequencing and proteome analysis 

To identify potential effects of FKBP12 KO as well as CNI treatment on transcriptome and 

surface protein expression of expanded SARS-CoV-2-specific TCPs, unmodified control 

and Tac-resistant SARS-CoV-2-specific TCPs of four donors were re-stimulated SARS-

CoV-2-specifically in presence or absence of CNIs (Tac or CsA) to perform single-cell 

CITE-seq analysis. In total, 20 different cell clusters were identified, consisting of CD4+ 

T-cells, CD8+ T-cells, double-negative (DN) T-cells, double-positive (DP) T-cells, natural 

killer (NK) cells and LCLs. Upon SARS-CoV-2-specific activation, clusters belonging to 

the CD4+ and CD8+ T-cell compartment showed upregulated expression of mRNA asso-

ciated with effector function in both unmodified control and Tac-resistant SARS-CoV-2-

specific TCPs. Moreover, SARS-CoV-2 activated CD8+ T-cell clusters of unmodified con-

trol and Tac-resistant SARS-CoV-2-specific TCPs demonstrated upregulated expression 

of mRNAs associated with migration, survival and memory formation. Neither CNI treat-

ment nor FKBP12 KO had an impact on cluster distribution in unstimulated TCPs. How-

ever, when re-stimulating SARS-CoV-2-specific TCPs antigen-specifically, the CD4+ and 

CD8+ T-cell clusters associated with elevated effector function as well as those for CD8+ 

T-cells that indicate beneficial migration, survival and memory formation were increased. 

This effect was reversed to the cluster distribution observed in unstimulated state in pres-

ence of Tac for unmodified but not Tac-resistant TCPs as well as in presence of CsA for 

both unmodified and Tac-resistant TCPs. Moreover, downregulation of FKBP12 in Tac-

resistant SARS-CoV-2-specific TCPs was confirmed on the transcriptome level. Further 

gene expression analysis revealed that CD4+ and CD8+ T-cells of unmodified control and 

Tac-resistant SARS-CoV-2-specific TCPs shared the same top 25 differentially ex-

pressed genes in absence of CNIs and for Tac-resistant SARS-CoV-2-specific TCPs also 
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when exposed to Tac. Markers for T-cell exhaustion were lower expressed when Tac-

resistant SARS-CoV-2-specific TCPs were treated with Tac compared to absence of Tac 

treatment. Gene expression of common markers for antiviral T-cell function as well as 

markers indicating support of B cell development and maturation were upregulated in 

unmodified control and Tac-resistant SARS-CoV-2-specific TCPs in absence of CNI and 

under Tac exposure for Tac-resistant TCPs. 

Proteome analysis of SARS-CoV-2-specific TCPs did not only detect the KO of FKBP12 

in Tac-resistant TCPs but also confirmed the differential expression of some of the mRNA 

transcripts on the protein level. Upon SARS-CoV-2-specific activation, Tac-resistant 

SARS-CoV-2-specific TCPs showed increased levels of proteins associated with antiviral 

effector functions as well as lysosomal secretory capacity. Proteins involved in RNA pro-

cessing, cell metabolism, and shuttling were higher in unmodified control but not Tac-

resistant TCPs. As FKBP12 KO may influence T-cell clonality, the diversity of the TCR 

repertoire was determined by performing TCR sequencing on the single-cell level. The 

KO of FKBP12 in Tac-resistant TCPs did neither affect the TCR diversity nor induced 

excessive clonal expansion compared to unmodified control TCPs. Furthermore, the top 

5 represented TCR clones of CD4+ and CD8+ T-cells were shared among unmodified 

control and Tac-resistant SARS-CoV-2-specific TCPs of the same donor. 
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The main results of the present study, that comparatively analyzed unmodified control 

and Tac-resistant SARS-CoV-2-specifc TCPs are summarized in the following Table 3. 

 

Table 3: Main results of the comparative characterization of unmodified and Tac-resistant SARS-
CoV-2-specific TCPs. The color code implies the potential impact on the potency of the TCPs – 
green: beneficial /positive; yellow: neutral; red: disadvantageous / negative (table was created by 
myself, based on the publication [1]). 

Parameter unmodified TCPs Tac-resistant TCPs 

T cell differentiation phenotypes 

at day 0 (CD45-isoforms / 

CCR7) (n=8) 

CD4+:  early differenti-

ated (TCM & TEM) 

CD8+:  late differentiated 

(TEM & TEMRA) 

 

 

 

 

T cell differentiation phenotypes 

at day 21 (CD45-Isoforms / 

CCR7) (n=8) 

CD4+:  differentiated 

(TEM) 

CD8+:  late differentiated 

(TEM & TEMRA) 

CD4+:  differentiated 

(TEM) 

CD8+:  late differenti-

ated (TEM & TEMRA) 

Dominant recognition of viral an-

tigens at day 0 (structural (s)/ 

accessory (a)) (n=8) 

Different for CD4+ and 

CD8+ T-cells 

CD4+: NCAP (s), Spike 

S1 & S2 (s), VME1 (s) 

CD8+: NCAP (s) 

 

 

 

 

 

Dominant recognition of viral an-

tigens at day 21 (structural (s)/ 

accessory(a)) (n=8) 

Different for CD4+ and 

CD8+ T-cells 

CD4+: NCAP (s), Spike 

S1 & S2 (s), VME1 (s) 

CD8+: NCAP (s), AP3a 

(a) 

Different for CD4+ and 

CD8+ T-cells 

CD4+: NCAP (s), Spike 

S1 & S2 (s), VME1 (s) 

CD8+: NCAP (s), AP3a 

(a) 

Cytokine production compared 

to w/o IS (n=8) 

+ Tac treatment 

 

 

reduced 

 

 

no change 

Cytokine production compared 

to w/o IS (n=8) 

+ CsA treatment 

 

 

abolished 

 

 

abolished 
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Table 4: Main results of the comparative characterization of unmodified and Tac-resistant SARS-
CoV-2-specific TCPs. The color code implies the potential impact on the potency of the TCPs – 
green: beneficial /positive; yellow: neutral; red: disadvantageous / negative (table was created by 
myself, based on the publication [1]). 

Parameter unmodified TCPs Tac-resistant TCPs 

Cytokine production compared 

to w/o IS (n=8) 

+ triple IS treatment 

 

 

abolished 

 

 

reduced 

Cytotoxic killing capacity of 

SARS-CoV-2-specific TCPs (to-

wards SARS-CoV-2 peptide-

loaded target cells) (n=8) 

+ Tac treatment 

 

 

 

 

given cytotoxicity  

 

 

 

 

given cytotoxicity  

Cytotoxic killing capacity of sep-

arated CD4+/CD8+ SARS-CoV-

2-specific TCPs (towards 

SARS-CoV-2 peptide-loaded 

target cells) (n=4) 

CD4+: limited cytotoxi-

city 

CD8+: given cytotoxicity 

towards NCAP (s), 

AP3a (a) and SARS-

CoV-2 peptide pool (s & 

a) 

CD4+: limited cytotoxi-

city 

CD8+: given cytotoxicity 

towards NCAP (s), 

AP3a (a) and SARS-

CoV-2 peptide pool (s & 

a) 

Cytotoxic killing capacity of 

SARS-CoV-2-specific TCPs 

(towards pSpike-transfected tar-

get cells) (n=7) 

+ Tac treatment 

 

 

 

 

limited cytotoxicity 

 

 

 

 

given cytotoxicity 

TCP reactivity to spike protein of 

SARS-CoV-2 variants (Alpha 

(B.1.1.7), Beta (B.1.351), Delta 

(B.1.617.2), and Omicron 

(B.1.1.529) (n=4) 

no difference to  

wildtype spike  

(reactivity to Alpha 

(B.1.1.7), Beta 

(B.1.351), Delta 

(B.1.617.2), and Omi-

cron (B.1.1.529) 

no difference to  

wildtype spike  

(reactivity to Alpha 

(B.1.1.7), Beta 

(B.1.351), Delta 

(B.1.617.2), and Omi-

cron (B.1.1.529) 
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Table 5: Main results of the comparative characterization of unmodified and Tac-resistant SARS-
CoV-2-specific TCPs. The color code implies the potential impact on the potency of the TCPs – 
green: beneficial /positive; yellow: neutral; red: disadvantageous / negative (table created by my-
self, based on the publication [1]). 

Parameter unmodified TCPs Tac-resistant TCPs 

TCP reactivity to spike protein of 

common endemic HCoV 

(HCoV-229E, HCoV-NL63, 

HCoVOC43, and HKU1) (n=8) 

 

no reactivity towards ei-

ther of the HCoV-de-

rived spike proteins 

 

no reactivity towards ei-

ther of the HCoV-de-

rived spike proteins 

Transcriptome (single-cell CITE-

seq) (n=4) 

T-cell effector function,  

survival, migration 

T-cell effector function,  

survival, migration,  

underrepresented 

FKBP12 mRNA expres-

sion 

Proteome analysis (n=4) T-cell effector function, 

RNA processing, metab-

olism, shuttling 

T-cell effector function, 

lysosomal secretory ac-

tivity FKBP12 KO 

TCR diversity (single-cell TCR-

seq) (n=4) 

 

oligoclonality 

 

oligoclonality  
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4. Discussion 

4.1  Summary and interpretation of study results 

The data of this study has shown the feasibility of manufacturing SARS-CoV-2-specific 

TCPs rendered resistant to Tac, thereby, providing superior function towards SARS-CoV-

2 under Tac treatment compared to unmodified SARS-CoV-2-specific TCPs. SARS-CoV-

2 specific T-cell immune responses were detected in all tested SARS-CoV-2 convales-

cent individuals while T-cell cross-reactivity towards SARS-CoV-2-derived antigens was 

limited in SARS-CoV-2 naïve healthy donors. This observation was the driving motivation 

leading to the generation of a SARS-CoV-2-specific TCP.  

 

Upon SARS-CoV-2-specific stimulation, IFN-γ-secreting cells were successfully isolated 

to high purity and expanded for one week until performing non-viral CRISPR-Cas9-medi-

ated KO of FKBP12 to transfer Tac-resistance. Expansion rates and cell yields were 

highly comparable between Tac-resistant SARS-CoV-2-specific TCPs and unmodified 

control SARS-CoV-2-specific TCPs, indicating that FKBP12-editing did neither impair cell 

proliferation nor survival. The KO of FKBP12 was validated on the RNA, DNA and protein 

level to ensure the specificity of our gene-editing approach. In-depth characterization of 

SARS-CoV-2-specifc TCPs at day 21 of culture showed that FKBP12 editing did not affect 

phenotype or functionality of Tac-resistant SARS-CoV-2-specific TCPs compared to un-

modified control SARS-CoV-2-specific TCPs, which is a key requirement for ensuring the 

safety and efficacy of the Tac-resistant TCP.  

 

CD4+ and CD8+ T-cells of SARS-CoV-2-specific TCPs recognized distinct SARS-CoV-2-

dervied antigens on both day 0 and day 21 of culture, which is likely related to the distinct 

ways of surface and internal antigen processing and presentation to CD4+ and CD8+ T-

cells. The phenotype of SARS-CoV-2-enriched CD4+ T-cells shifted to a more differenti-

ated state after expansion, while CD8+ showed already after enrichment a more late-

differentiated phenotype that manifested throughout the culture. Highly differentiated T-

cells may be less potent for ACT as they are associated with limited persistence and 

longevity following ACT. However, late differentiated SARS-CoV-2-specific T-cells were 

also reported by other studies [88–90] and may be a characteristic of the immune re-
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sponse towards SARS-CoV-2. Moreover, considering SARS-CoV-2 as an acute viral in-

fection, by which ACT primarily aims at clearing the viral infection to protect the host from 

severe COVID-19, the T-cell differentiation state may be of minor concern. 

 

Exposing SARS-CoV-2-specific TCPs to clinical doses of Tac inhibited cytokine produc-

tion in unmodified TCPs, which was partially rescued by FKBP12 KO in Tac-resistant 

TCPs. When adding CsA to the culture, cytokine production was abolished in Tac-re-

sistant SARS-CoV-2-specific TCPs, which may serve as an inherent safety switch to 

counteract potential adverse events in vivo. In presence of triple IS, Tac-resistant but not 

unmodified control SARS-CoV-2-specific TCPs were able to produce effector cytokines, 

although to lower extend compared to Tac treatment only. Hence, the Tac-resistant 

SARS-CoV-2-specific TCP may even exert antiviral effects in individuals receiving triple 

IS, as commonly applied in transplant recipients. The cytotoxic killing capacity of SARS-

CoV-2-peptide loaded target cells by SARS-CoV-2-specific TCPs was not affected by Tac 

treatment, which is in line with previous observations within our laboratory [79]. In con-

trast, cytotoxic elimination of SARS-CoV-2 spike protein transfected target cells was in-

hibited in presence of Tac for unmodified control TCPs but remained stable for Tac-re-

sistant TCPs, indicating that Tac-resistant SARS-CoV-2-specific TCPs may be superior 

in clearing SARS-CoV-2-infected cells within the immunosuppressed host. The contra-

dictory effects of Tac on the killing capacity of T-cells may result from differences in anti-

gen-presentation between the two models. Transfection of target cells with spike protein 

likely results in the presentation of a reduced set of antigens to T-cells, which is capable 

to reach the TCR signaling threshold for full T-cell activation [91] much faster compared 

to the use of antigenic peptide pools.  

 

Moreover, unmodified control and Tac-resistant SARS-CoV-2-specific TCPs were highly 

cross-reactive to spike protein derived from different SARS-CoV-2 strains supporting re-

ported observations that SARS-CoV-2-specific T-cells of convalescent or vaccinated in-

dividuals can also protect from emerging SARS-CoV-2 variants [92–94]. Although several 

studies reported cross-reactivity of SARS-CoV-2-specific T-cells from convalescent do-

nors towards spike S2 of common endemic HCoV [14,15,90,95], the cross-reactivity of 

SARS-CoV-2-specific TCPs to spike protein derived from common endemic HCoV was 

limited. This may likely be a result of SARS-CoV-2-specific T-cell clones having higher 
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TCR affinity to SARS-CoV-2 antigens and therefore overgrowing cross-reactive HCoV-

specific T-cell clones with lower TCR affinity over the period of 21 days [96]. 

 

Transcriptome analysis revealed beneficial characteristics of SARS-CoV-2-specific TCPs 

in terms of antiviral effector function, cell migration, cell survival as well as memory for-

mation and provided some hints for potential support of B cell-derived antibody formation. 

The transcriptome data once again highlights the auspicious potency of Tac-resistant 

SARS-CoV-2 specific TCPs to not only provide antiviral T-cell function but also the po-

tential to support formation of humoral immunity [87] in immunosuppressed patients. The 

diversity of the TCR repertoire of unmodified and Tac-resistant SARS-CoV-2-specific 

TCPs was highly comparable and gave no hints for excessive proliferation of single T-cell 

clones, indicating that neither FKBP12 KO nor potential off-target editing led to abnormal 

transformation of T-cell clones, which is in line with previous observations within our la-

boratory [79]. However, to exclude potential off-target editing in Tac-resistant CRISPR-

Cas9 gene-edited TCPs, further analysis is currently conducted to ensure safe clinical 

use.  

4.2  Study results and the current state of research 

Adoptive antiviral T-cell therapy has already been applied to treat various viral diseases, 

especially in the setting of transplantation [66–68]. Regarding SARS-CoV-2, several stud-

ies, have demonstrated the importance of robust T-cell immunity to fight SARS-CoV-2 

infection and prevent severe COVID-19 [14–16]. The feasibility to detect, isolate and ex-

pand SARS-CoV-2-specific T-cells upon antigen-specific stimulation of PBMCs of conva-

lescent donors was confirmed by several publications [1,81–86]. A phase 1 clinical trial 

(ClinicalTrials.gov Identifier: NCT04578210) confirmed the safety of adoptively trans-

ferred CD45RA- memory SARS-CoV-2-specific T-cells derived from a healthy convales-

cent donor to treat severe COVID-19 [97]. Further clinical trials estimating the safety and 

efficacy of SARS-CoV-2-specific ACT to treat COVID-19 in non-transplant (ClinicalTri-

als.gov Identifier: NCT04351659) and cancer patients (ClinicalTrials.gov Identifier: 

NCT04742595) are currently ongoing. A SOT recipient suffering from acute SARS-CoV-

2 infection was successfully treated with an allogenic SARS-CoV-2-specific TCP resulting 
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in an undetectable nasopharyngeal viral load within 11 days post-infusion [98].  Never-

theless, further studies need to be conducted to validate the safety and effectiveness of 

SARS-CoV-2-specific ACT in the transplant setting.  

 

Temporary corticosteroid treatment in the setting of severe COVID-19 as well as constant 

immunosuppression in the transplant setting, may limit the success of SARS-CoV-2-spe-

cific ACT, underlining the necessity to develop novel treatment approaches for these pa-

tient cohorts. A recent study reported the successful generation of glucocorticoid-resistant 

SARS-CoV-2-specific TCPs as a novel strategy to improve antiviral T-cell function in cor-

ticosteroid-treated COVID-19 patients [83]. However, this approach may not be applica-

ble for transplant patients as Tac treatment is essential to prevent allograft rejection after 

transplantation and thus impairs T-cell function. In addition, Tac is reported to exert po-

tential beneficial antiviral properties towards coronaviruses [47,48] and observations from 

more recent studies suggest that SOT recipients benefit from maintained Tac treatment 

during SARS-CoV-2 infection [46,99–101]. Hence, the Tac-resistant SARS-CoV-2 spe-

cific TCPs characterized in the present study may be superior to glucocorticoid-resistant 

SARS-CoV-2-specific TCPs in treating and preventing COVID-19 in immunosuppressed 

transplant recipients and potentially even in non-transplant patients. 

4.3  Strengths and weaknesses of the study 

A major strength of the present study is the focus on the treatment and prevention of 

COVID-19 using ACT in the transplant setting. Previous studies on SARS-CoV-2-specific 

ACT have primarily focused on the treatment of severe COVID-19 patients and suggested 

the treatment of transplant recipients. However, the treatment strategy of a combination 

of Tac and Tac-resistant SARS-CoV-2-specific TCPs could not only find application in 

immunosuppressed patients but could also be extended to the general treatment of se-

vere COVID-19 patients. Furthermore, the SARS-CoV-2-specific TCPs were character-

ized in depth using various methods at different cellular levels to provide an indication of 

their efficiency and safety. The inherent safety switch by which T-cell activity can be pre-

vented when administering CsA represents a major advantage as it can inhibit potential 

unwanted effects during in vivo application. The GMP-compliant protocol to generate Tac-

resistant SARS-CoV-2-specific TCPs can be readily transferred to the GMP facility in our 
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institute and would thus provide the manufacturing of clinical-grade Tac-resistant SARS-

CoV-2-specific TCPs. 

 

Nevertheless, this study has also some limitations, as it primarily showed that it is possible 

to produce functional Tac-resistant SARS-CoV-2-specific TCPs from healthy SARS-CoV-

2 convalescent donors, but this feasibility would still need to be validated in the direct 

transplantation setting. Unfortunately, at the time the study was conducted, there was no 

possibility to obtain blood samples from SARS-CoV-2 infected or recovered patients. 

However, together with the in-house GMP facility, the production of SARS-CoV-2-specif-

ical TCPs from immunosuppressed vaccinated donors could later be validated (un-

published data). Another limitation of this study is the timepoint of blood collection. The 

blood was collected from SARS-CoV-2 convalescent individuals approximately 5-6 

months after infection. In the clinical setting, the timing could vary depending on the ap-

proach (allogeneic or autologous) and thus can affect the yield of SARS-CoV-2-specific 

T-cells. Moreover, due to the lack of a stable in vivo animal model mimicking SARS-CoV-

2 infection at that time, the study does not include an in vivo model to validate the in vitro 

observations. 

 

In general, ACT has proven to be feasible in the setting of transplantation [66–68], with 

only minor signs of adverse events [69]. Several studies reported the feasibility of gener-

ating IS-resistant TCPs reactive towards various viral infection including SARS-CoV-2 

and propose their use in transplant recipients [77–80]. However, clinical trials assessing 

the safety and efficacy of IS-resistant TCPs are still needed. In addition, it is likely that 

the success of IS-resistant ACT varies among transplant recipients as it may depend on 

the time post transplantation, the immunosuppressive regimen, and the presence of 

comorbidities. Nevertheless, Tac treatment was suggested to improve COVID-19 out-

come in transplant recipients [46,99–101], which would support the feasibility of our study 

approach. 

4.4  Implication for clinical application and future studies 

The general translation of Tac-resistant SARS-CoV-2-specific TCPs into clinical applica-

tion is feasible when following a GMP-compatible protocol. The present study was carried 
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out in close collaboration with the in-house GMP facility (Berlin Center for Advanced Ther-

apies (BeCAT)) and once they receive the manufacturing authorization for Tac-resistant 

antiviral TCPs we aim at clinical translation. Currently, the team around BeCAT is prepar-

ing for a first in-human clinical trial using vaccinated donor-derived SARS-CoV-2-specific 

TCPs in the setting of HSCT to improve COVID-19 vaccination responses early post 

transplantation. We are confident that the application of SARS-CoV-2 specific TCPs 

poses little risk, as clinical safety of the application of conventional antiviral TCPs has 

already been shown within our institute [70]. Moreover, the general approach to manu-

facture Tac-resistant SARS-CoV-2-specific TCPs can be readily transferred to other vi-

ruses (e.g. Influenza) by adapting the antigenic peptide pool used to enrich virus-specific 

T-cells. In line with this, the spectrum of resistance to IS can also be extended, by replac-

ing the specific sgRNA for the CRISPR-Cas9-mediated KO. Furthermore, the method can 

be applied to other T-cell subtypes, such as regulatory T-cells. Indeed, these strategies 

are focus of ongoing collaborative work within our laboratory and the BeCAT. 
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5. Conclusion  

In summary, manufacturing Tac-resistant SARS-CoV-2-specific TCPs with superior ef-

fector function under Tac treatment is feasible and demonstrates a promising novel strat-

egy to prevent and treat severe COVID-19 in immunosuppressed transplant but also non-

transplant patients. Safety and efficacy of Tac-resistant TCPs in vivo must be validated 

by conducting a clinical trial. The preparation for this is an ongoing process in collabora-

tion with the in-house GMP facility, which will likely pave the way for a widespread ac-

ceptance of IS-resistant ACT and may facilitate clinical application of upcoming IS-re-

sistant ACT approaches.
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