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Multistationarity is the property of a system to exhibit two distinct equilibria
(steady-states) under otherwise identical conditions, and it is a phenomenon of
recognized importance for biochemical systems. Multistationarity may appear
in the parameter space as a consequence of saddle-node bifurcations, which nec-
essarily require an algebraically simple eigenvalue zero of the Jacobian, at the
bifurcating equilibrium. Matrices with a simple eigenvalue zero are generic in
the set of singular matrices. Thus, one would expect that in applications singular
Jacobians are always with a simple eigenvalue zero. However, chemical reaction
networks typically consider a fixed network structure, while the freedom rests
with the various choices of kinetics. Here, we present an example of a chemical
reaction network, whose Jacobian is either nonsingular or has an algebraically
multiple eigenvalue zero. This in particular constitutes an obstruction to stan-
dard saddle-node bifurcations. The presented structural obstruction is based on
the network structure alone, and it is independent of the value of the positive
concentrations and the choice of kinetics.
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1 INTRODUCTION

A bifurcation is a sudden qualitative change in the system behavior under a small change in the parameter values. Bifur-
cation theory is hence a powerful tool to identify parameter areas where certain dynamical behaviors of interest occur.
We refer to the standard book by Guckenheimer and Holmes [1] for background on bifurcations. The simplest bifur-
cations occur according to one parameter, only. Standard and well-studied examples are saddle-node bifurcations that
detect multistationarity and Hopf bifurcations that detect oscillations. Their spectral condition is a simple eigenvalue zero
(saddle-node) and a pair of purely-imaginary complex-conjugated eigenvalues (Hopf). In a biochemical context, which is
the focus of the present paper, saddle-node bifurcations under the assumption of mass action kinetics have been discussed
by Conradi et al. [2] and Domijan and Kirkilionis [3]. Otero–Muras and coauthors used computational methods to detect
saddle-node bifurcations in biochemical systems, see for example [4] and the many references therein. For Hopf bifurca-
tion, see the pioneering work by Gatermann et al. [5], applying concepts from computer algebra to mass action systems,
and Fiedler [6], with more general kinetics and in global setting. By proving Hopf bifurcations in more circumstantial
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systems, Conradi et al. detected oscillations in a mixed-mechanism phosphorylation system [7], Boros and Hofbauer in
planar deficiency-one mass action systems [8], and Hell and Rendall in the MAP kinase cascade [9].

In the present paper, we investigate the necessary spectral condition for saddle-node bifurcations: a simple eigen-
value zero of the Jacobian, at the equilibrium. Saddle-node bifurcations are often invoked in the quest of finding bistable
systems: A typical bistable scheme considers two connecting saddle-node bifurcations that give rise to bistability and hys-
teresis phenomena [10]. More in general, a saddle-node bifurcation occurs, for example, when two equilibria, one stable
and one unstable, collide in a single saddle equilibrium and disappear. Hence, such bifurcations point at parameter regions
where multistationarity occurs. Multistationarity is the property of a chemical system to exhibit two or more distinct
equilibria, co-existing under otherwise identical conditions, and the phenomenon has been proposed as an explanation
for many epigenetic processes, including cell differentiation [11]. As a consequence of its importance, multistationarity
in chemical reaction networks has been extensively studied, via different methods. See among others the works by Ren-
dall and coauthors [12–14], Dickenstein et al. [15], Shiu and de Wolff [16], and Feliu et al. [17] in a mass action context
and Soulé [18], Craciun and Feinberg [19, 20], Mincheva and Roussel [21], Banaji and Craciun [22], Joshi and Shiu [23],
Banaji and Pantea [24], and Conradi et al. [25] in more generality.

Finding bifurcations of equilibria for a parametric vector field𝑓 (x, 𝜆)means solving a system of constraints. First, 𝑓 (x, 𝜆)
must satisfy the equilibrium constraints 𝑓 (x̄, �̄�) = 0, at a certain x̄ and �̄�. Second, bifurcation conditions on the Jacobian
𝜕x𝑓 (x̄, �̄�) must be satisfied. Bifurcation conditions typically comprise the necessary spectral condition on the eigenvalues
of the Jacobian and further sufficient nondegeneracy conditions involving higher order derivatives. Solving such a system
of constraints may be very demanding in parametric systems. The point of view of genericity theory advocates looking
only for the necessary spectral condition, as this is sufficient in “most” applications to conclude a bifurcation result.
This approach brings an obvious advantage in simplifying the mathematical analysis. In fact, bifurcation theory has been
historically developed in a general genericity framework [26]. A property of a set is generic if it holds on an open and
dense subset. In particular, a saddle-node bifurcation happens generically in one-parameter families of vector fields, at
an equilibrium with a singular Jacobian. Thus, in the words of Guckenheimer and Holmes [1, p. 149], one expects that
the zero eigenvalue bifurcations encountered in applications will be saddle-nodes. This expectation comes from the intrinsic
parameter uncertainties in experiments: Only generic features are detectable. Interestingly and quite ambiguously, [1]
continues as follows. If they are not, then there is probably something special about the formulation of the problem which
restricts the context so as to prevent the saddle-node from occurring.

Chemical reaction networks theory considers systems of ordinary differential equations (ODEs) that are built on two
elements: a network structure and parametric reaction rates (kinetics). The network structure is typically considered as
given, and it fixes which reactions take place, that is, which reactants react to which products. The parametric nonlinear-
ities model the mathematical laws of the reactions, and they can be chosen with quite a freedom. Standard parametric
families of nonlinearities are often considered as reaction rates. For instance, mass action kinetics [27], Michaelis-Menten
kinetics [28], and Hill's kinetics [29] are important classes of nonlinearities in this context. These relevant kinetics can
be grouped and generalized in Definition 1, which assumes that the reaction rate r𝑗 of a reaction 𝑗 is a positive mono-
tone function of the concentrations of its reactants. The motivating observation for the present paper is that the network
structure is fixed, while the nonlinearities are relatively free. Hence, the genericity viewpoint might apply due to the free-
dom of the reaction rates or might not apply due to the fixed structure of the network. Specifically, this paper investigates
whether the network structure, alone, might be “something special about the formulation of the problem” preventing a
saddle-node bifurcation to occur.

We present an example that answers two questions, both affirmatively. The first, quite general and qualitative, is

Q1: Can the network structure alone prevent generic properties?

Here, “generic” indicates properties that are generic in more general families of vector fields and consequently might be
expected to be generic also in the network setting. In detail, we answer the following question:

Q2: Can the network structure alone prevent the simplicity of the eigenvalue zero?

We present an example of a network for which the associated ODEs system admits a singular Jacobian, but never a
Jacobian with a simple eigenvalue zero, for any choice of the reaction rates and any choice of positive concentrations.
This in particular forbids the application of standard saddle-node bifurcation theorems.

The paper is structured as follows. Section 2 introduces the setting of chemical reaction networks theory. In Section 3, we
preliminary provide linear algebra conditions for the simplicity of the eigenvalue zero of general matrices. In Section 4, we
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present our main example of a chemical reaction network, whose associated Jacobian is either nonsingular or possesses
an algebraically multiple eigenvalue zero. Sections 2–4 are in principle self-contained. For a more in-detail explanation
of the intuition behind our example, however, Section 5 introduces the network tools used to design such an example:
Child Selections and Partial Child Selections. Section 6 revisits our main example, explaining it in such network terms.
Section 7 concludes with the discussion.

2 CHEMICAL REACTION NETWORKS

We briefly present here the setting of chemical reaction networks. A chemical reaction network 𝜞 is a pair of sets {M,E}:
M is the set of species or chemicals or metabolites, and E is the set of reactions. Both sets are finite with cardinalities|M| = M and |E| = E. Letters m,n ∈ M and 𝑗 ∈ E refer to species and reactions, respectively.

A reaction 𝑗 is an ordered association between two nonnegative linear combinations of species:

𝑗 ∶ s𝑗1m1 + ... + s𝑗MmM →
𝑗

s̃𝑗1m1 + ... + s̃𝑗MmM . (1)

The nonnegative coefficients s𝑗 and s̃𝑗 are called stoichiometric coefficients. Chemical networks deal with integer sto-
ichiometric coefficients and typically 0, 1, or 2. However, we can freely consider real s𝑗m, s̃𝑗m ∈ R≥0, as we have no
mathematical reason for any restriction. Species appearing at the left (resp. right) hand side of (1) with nonzero coefficient
are called reactants (resp. products) of reaction 𝑗. Many chemical systems are open systems: They exchange chemicals
with the outside environment. Inflow reactions are then reactions with no reactants (s𝑗 = 0), and outflow reactions are
reactions with no products (s̃𝑗 = 0).

The M × E stoichiometric matrix S = [Sm𝑗] is the matrix of all ordered stoichiometric coefficients:

Sm𝑗 ∶= s̃𝑗m − s𝑗m, (2)

where s̃𝑗m is the stoichiometric coefficient of m as product of 𝑗 and s𝑗m is the stoichiometric coefficient of m as reactant of
𝑗. With this construction, a fixed order is assigned to each reaction. In particular, we model a reversible reaction:

𝑗 ∶ A + B ↔
𝑗

2C (3)

simply as two irreversible reactions:

𝑗1 ∶ A + B →
𝑗1

2C and 𝑗2 ∶ 2C →
𝑗2

A + B. (4)

We use the notation S𝑗 to refer to the column of the stoichiometric matrix S associated to the reaction 𝑗. For example, in
a network of four species {A,B,C,D}, reaction 𝑗1 in (4) is represented as the 𝑗th

1 column of the stoichiometric matrix S as

Note that stoichiometric columns associated with outflow (resp. inflow) reactions always have only negative (resp.
positive) entries.

Let x ≥ 0 be the M-vector of species concentrations. Under the assumption that the reactor is well mixed, spatially
homogeneous and isothermal, the dynamics x(t) of the concentrations satisfy the following system of ODEs:

.x = g(x) ∶= Sr(x), (6)
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where S is the M × E stoichiometric matrix (2) and r(x) is the E-vector of the reaction functions (kinetics). Without any
reactant, we consider the reaction function of inflow reactions 𝑗𝑓 constant:

r𝑗𝑓 (x) ≡ F𝑗𝑓
. (7)

For any other reaction 𝑗, we do not impose any specific form of such functions, requiring only that r𝑗 is monotone
chemical, as defined in the following definition.

Definition 1 (monotone chemical function). A function r𝑗 is monotone chemical if

(i) r𝑗 depends only on the concentrations of the reactants to reaction 𝑗:

𝜕r𝑗(x)
𝜕xm

≢ 0 if and only if m is a reactant of 𝑗.

(ii) r𝑗 is nonnegative:
r(x) ≥ 0 for every x ≥ 0,

with r𝑗(x) = 0 if and only if xm = 0 for some m reactant of 𝑗.
(iii) 𝜕r𝑗 (x)

𝜕xm
> 0 at any x > 0, for m reactant of 𝑗.

Definition 1 is standard in many mathematical contributions on chemical networks. Mass action [27],
Michaelis–Menten [28], and Hill's kinetics [29] are important reaction schemes with a wide range of mathematical and
biological applications, and they all follow Definition 1. We use the notation

0 < r𝑗m ∶= 𝜕

𝜕xm
r𝑗(x), at x > 0,

to refer to the strictly positive partial derivatives. Then, the E × M reactivity matrix R = [R𝑗m] is defined as

R𝑗m ∶= 𝜕

𝜕xm
r𝑗(x) =

{
r𝑗m if m is a reactant of 𝑗

0 otherwise . (8)

Finally, we define the Jacobian G of the system (6), at any positive value x > 0,

G ∶= 𝜕xg(x) = SR,

where S is the stoichiometric matrix and R is the reactivity matrix defined above.

3 ALGEBRAIC MULTIPLICITY OF THE EIGENVALUE ZERO

We study the adjugate matrix of the Jacobian matrix G to address the geometric and algebraic multiplicity of the eigenvalue
zero of G. We gather some linear algebra facts [30]. For any M × M matrix B, the adjugate matrix Adj(B) is the transpose
of its cofactor matrix. Adj(B) satisfies

BAdj(B) = Adj(B)B = det B IdM , (9)

where IdM is the M-dimensional identity matrix. In particular, we have the following straightforward characterizations:

(1) Adj(B) is invertible if and only if B is invertible;
(2) Rank(B) = M − 1 if and only if Rank(Adj(B)) = 1;
(3) Rank(B) ≤ M − 2 if and only if Adj(B) = 0.

Thus, B has a geometrically simple eigenvalue zero if and only if

{
det B = 0;
Adj (B) ≠ 0. (10)
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Let 𝜇1, … , 𝜇M be the eigenvalues of B counted with the respective algebraic multiplicity. Assume B is nonsingular.
Then

tr Adj(B) = det B tr B−1

=
∏

m
𝜇m

∑
m

1
𝜇m

=
M∑

i=1

∏
m≠i

𝜇m.

(11)

Clearly, (11) extends to singular matrices B, by continuity. In this latter case, we conclude that the algebraic multiplicity
of the eigenvalue zero is exactly one if and only if

tr Adj (B) ≠ 0.

In conclusion, we have proved the following proposition.

Proposition 3.1. The Jacobian G possesses an algebraically simple eigenvalue zero if and only if

{
det G = 0;
tr Adj(G) ≠ 0. (12)

As a corollary of interest, we have the following.

Corollary 3.2. Consider the system (6) and its Jacobian G. Assume that, for any choice of (r, x) such that det G = 0, we
have that trAdj(G) = 0. Then either

(i) G is nonsingular or
(ii) G has an eigenvalue zero of algebraic multiplicity strictly bigger than one.

Proof of Corollary 3.2. If det G ≠ 0, then G is nonsingular. Else, if det G = 0, we have by assumption that trAdj(G) = 0.
By Proposition 3.1, we have that the eigenvalue zero is not algebraically simple.

The next section presents an example where the assumptions of Corollary 3.2 hold.

4 MAIN EXAMPLE

We present a network whose associated system of ODEs may admit a singular Jacobian at some positive value of the
concentrations x > 0, but never a Jacobian with a simple eigenvalue zero, for any choice of monotone chemical functions
endowing the network. In particular, the algebraic multiplicity of the eigenvalue zero is never one. The network possesses
four species and six reactions, given as follows.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A + B −→
1

2A

2A −→
2

2B

B −→
3

B + C

C −→
4

A + C

B + C + D −→
5

−→
FD

D

(13)

Reaction 5 is an outflow from B,C,D, while FD is an inflow to D. The system of ODEs reads
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We have added labels to rows and columns of the stoichiometric matrix S for simplicity of reading. In the expanded
form, the system reads ⎧⎪⎨⎪⎩

.xA = r1(xA, xB) − 2r2(xA) + r4(xC)

.xB = −r1(xA, xB) + 2r2(xA) − r5(xB, xC, xD)

.xC = r3(xB) − r5(xB, xC, xD)

.xD = −r5(xB, xC, xD) + FD

(15)

We carry out the analysis in a purely algebraic manner: we investigate the structural relation between det G and trAdj(G),
independently of the chosen value of x > 0. In particular, we do not even a priori require that x is an equilibrium. However,
note that the network does admit an equilibrium: the vector

r0 ∶= (r1, r2, r3, r4, r5,FD)T = (r, r, r, r, r, r)T ,

r ∈ R>0, is a positive right kernel vector of the stoichiometric matrix; that is, it solves

Sr0 = 0.

This means in particular that there exists a choice of the reaction rates r̄ and of the value x̄ > 0 such that

Sr̄(x̄) = 0.

The Jacobian matrix G of the system reads

G =
⎛⎜⎜⎜⎝

r1A − 2r2A r1B r4C 0
−r1A + 2r2A −r1B − r5B −r5C −r5D

0 r3B − r5B −r5C −r5D

0 −r5B −r5C −r5D

⎞⎟⎟⎟⎠
(16)

We verify whether G admits a simple eigenvalue zero. According to Section 3, we check whether there is a positive
solution to the system: {

det G = 0
tr Adj(G) ≠ 0 , (17)

where Adj(G) is the adjugate matrix of G. We compute the determinant of G obtaining

det G = (r1A − 2r2A)r3Br4Cr5D. (18)

We recall again that at nonboundary values x > 0, all partial derivatives r𝑗m are strictly positive. Hence, G is singular at
any x > 0 if and only if

𝜆 ∶= r1A − 2r2A = 0.

We compute the adjugate of G:

Adj(G) =
⎛⎜⎜⎜⎝

0 −r3Br4Cr5D −r1Br4Cr5D (r1B + r3B)r4Cr5D

0 0 𝜆 r4Cr5D −𝜆 r4Cr5D

𝜆 r3Br5D 𝜆 r3Br5D 0 −𝜆 r3Br5D

−𝜆 r3Br5C −𝜆 r3Br5C −𝜆 r5Br4C 𝜆(r5Br4C + r3Br5C − r3Br4C)

⎞⎟⎟⎟⎠
. (19)
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Clearly, the trace of Adj(G) reads
trAdj(G) = 𝜆(r5Br4C + r3Br5C − r3Br4C), (20)

and trAdj(G) = 0 whenever 𝜆 = 0. Thus, system (17) is never satisfied: The algebraic multiplicity of the eigenvalue zero
is strictly bigger than one, for any choice of r and x > 0 for which G is singular. In particular, note that for a singular G,
the adjugate matrix reads

Adj(G) |det G=0 =
⎛⎜⎜⎜⎝

0 −r3Br4Cr5D −r1Br4Cr5D (r1B + r3B)r4Cr5D

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
. (21)

Hence, Adj(G) |det G=0 ≠ 0, and the Jacobian G has a geometrically simple but algebraically multiple eigenvalue zero.
The precise algebraic multiplicity cannot be asserted from the adjugate matrix alone. An explicit symbolic computation
of the eigenvalues shows that the Jacobian G, when singular, always possesses an algebraically double eigenvalue zero.

The next section introduces the network tools that have been used to design the presented example. Such network tools
allow addressing the problem of the multiplicity of the eigenvalues zero in more abstract setting.

5 CHILD SELECTIONS AND PARTIAL CHILD SELECTIONS

We introduce the main tools enabling us to discuss the problem in network language. This provides clarification on the
design of our main example of Section 4.

Definition 2 (Child Selections). A Child Selection is an injective map

J ∶ M → E,

which associates to every species m ∈ M a reaction 𝑗 ∈ E such that m is a reactant of reaction 𝑗.

Let SJ indicate the matrix whose mth column is the J(m)th column of S. In particular, the columns of SJ correspond
one-to-one, and following the order, to the reactions

J(m1), J(m2), … , J(mM−1), J(mM).

We associate to each Child Selection J the coefficient

𝛼J ∶= det SJ.

The Jacobian determinant of G can be expressed in terms of Child Selections:

Proposition 5.1. Let G be a network Jacobian matrix, in the above settings. Then:

det G =
∑

J
𝛼J

∏
m∈M

rJ(m)m, (22)

The sum runs on all Child Selections. For a proof, see [31]. We call the coefficient 𝛼J behavior coefficient. Depending on
the sign of 𝛼J, we classify a Child Selection as follows. We call a Child Selection J zero if 𝛼J = 0. On the contrary, we call
J a nonzero Child Selection if 𝛼J ≠ 0.

We turn now to a related concept: the Partial Child Selections, complimentarily useful to analyze Adj(G).

Definition 3. (Partial Child Selections). A Partial Child Selection J∨mi is an injective map

J∨mi ∶ M∖{mi} → E,

which associates to each species m ≠ mi a reaction 𝑗 such that m is a reactant of 𝑗.
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VASSENA

Without loss of generality, assume 1, ..., i, ...,M. In analogy to the submatrix SJ for a Child Selection J, the expression
SJ∨mi indicates the M × (M − 1) matrix with columns corresponding one-to-one, and following the order, to the reactions

J∨mi (m1), … , J∨mi(mi−1), J∨mi (mi+1), … , J∨mi (mM).

That is, the first column is the stoichiometric column S𝑗1 of the reaction 𝑗1 = J∨mi(m1). Analogously, the ith column is the
stoichiometric column S𝑗i of the reaction 𝑗i = J∨mi(mi+1), and so on. We associate to each Partial Child Selection J∨mi the
behavior coefficient:

𝛽J∨mi ∶= det SJ∨mi
∨mi

,

where the notation SJ∨mi
∨mi

indicates the (M−1)×(M−1) matrix obtained from SJ∨mi by removing the mth
i row. If the behavior

coefficient 𝛽J∨mi is zero (resp. nonzero), we call the Partial Child Selection J∨mi zero (resp. nonzero), accordingly.
The role of Partial Child Selections in the analysis of the present paper is clarified by the following proposition, whose

proof is based on Cauchy–Binet formula.

Proposition 5.2. Let G be the Jacobian matrix of the system (6) and let Adj(G)m
m indicate the mth diagonal entry of its

adjugate. Then the following expansion holds:

Adj(G)m
m =

∑
J∨m

𝛽J∨m

∏
n≠m

rJ∨m(n)n, (23)

where J∨m are Partial Child Selections. The sum in (23) runs on all Partial Child Selections J∨m. In particular, the trace
of the adjugate can be expanded as

trAdj(G) =
∑

m∈M

∑
J∨m

𝛽J∨m

∏
n≠m

rJ∨m(n)n. (24)

Proof of Proposition 5.2. The mth diagonal entry of the adjugate matrix of G is

Adj(G)m
m = det(G∨m

∨m), (25)

where G∨m
∨m indicates the cofactor of G obtained removing the mth row and the mth column. We recall that G = SR,

where S is the stoichiometric matrix (def.(2)) and R is the reactivity matrix (def. (8)). We analyze the expression
Adj(G)m

m using Cauchy–Binet formula.

Adj(G)m
m = det(G∨m

∨m)
= det(S∨mR∨m)

=
∑

∈M−1

det S
∨m det R∨m


.

(26)

Note that det R∨m


≠ 0 if and only if there exists a Partial Child Selection J∨m, such that J∨m(M∖{m}) =  . Then,

∑
∈M−1

det S
∨m det R∨m


=

∑
=J∨m(M∖{m})

det S
∨m det R∨m



=
∑

=J∨m(M∖{m})
det S

∨m sgn(J∨m)
∏
n≠m

rJ∨m(n)n
(27)

Above, we have expanded det R∨m


via the Leibniz formula. The expression sgn(J∨m) indicates the signature (or
parity) of J∨m. Then,

sgn(J∨m) det S=J∨m(M∖{m}) = det SJ∨m

∨m = 𝛽J∨m , (28)

which leads to the desired equality:
Adj(G)m

m =
∑
J∨m

𝛽J∨m

∏
n≠m

rJ∨m(n)n. (29)

3000

 10991476, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9790 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [22/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VASSENA

Moreover,
trAdj(G) =

∑
m

Adj(G)m
m =

∑
m

∑
J∨m

𝛽J∨m

∏
n≠m

rJ∨m(n)n. (30)

6 MAIN EXAMPLE REVISITED

In this section, we explain the design of our main example of Section 4 in light of the tools introduced in Section 5. The
system (15) possesses only three Child Selections,

J1 ∶= J1(A,B,C,D) = (1, 3, 4, 5),
J2 ∶= J2(A,B,C,D) = (2, 3, 4, 5),
J3 ∶= J1(A,B,C,D) = (2, 1, 4, 5).

The first observation is that the two stoichiometric columns SJ1(A) and SJ2(A) are linearly dependent. In particular, SJ1(A) =
−2 SJ2(A). This implies that J3 is a zero Child Selection since

Moreover, the two nonzero Child Selections J1 and J2 differ only in the image of species A: J1(A) = 1, J2(A) = 2.
Consequently, by property of the determinant, 𝛼J1 = −2 𝛼J2 . In particular,

Via Proposition 5.1, the determinant of G reads

det G = (𝛼J1 r1A + 𝛼J2 r2A)r3Br4Cr5D

and thus, det G = 0 if and only if r1A = 2r2A.
As explained in Section 3, the multiplicity of the eigenvalue zero can be asserted by looking at the trace of the adjugate

matrix. We expand two diagonal entries, only, for sake of exemplification. Let us consider the diagonal entries Adj(G)A
A,

and Adj(G)D
D. By Proposition 5.2, we have

Adj(G)A
A =

∑
J∨A

𝛽J∨A

∏
m≠A

rJ∨A(m)m and Adj(G)D
D =

∑
J∨D

𝛽J∨D

∏
m≠D

rJ∨D(m)m.

There are two Partial Child Selections J∨A: { J∨A
1 ∶= J∨A

1 (B,C,D) = (3, 4, 5),
J∨A

2 ∶= J∨A
2 (B,C,D) = (1, 4, 5).

(31)

In particular, both J∨A
1 and J∨A

2 select reaction 4. Note that
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VASSENA

hence, both J∨A
1 and J∨A

2 are zero:

The example is designed so that a similar intuition implies that the diagonal entries Adj(G)B
B and Adj(G)C

C are zero, as
well: We omit the analogous computation. With regard of Adj(G)D

D, there are eight Partial Child Selections J∨D:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J∨D
1 ∶= J∨D

1 (A,B,C) = (2, 1, 4)
J∨D

2 ∶= J∨D
2 (A,B,C) = (2, 1, 5)

J∨D
3 ∶= J∨D

3 (A,B,C) = (1, 3, 4)
J∨D

4 ∶= J∨D
4 (A,B,C) = (2, 3, 4)

J∨D
5 ∶= J∨D

5 (A,B,C) = (1, 5, 4)
J∨D

6 ∶= J∨D
6 (A,B,C) = (2, 5, 4)

J∨D
7 ∶= J∨D

7 (A,B,C) = (1, 3, 5)
J∨D

8 ∶= J∨D
8 (A,B,C) = (2, 3, 5)

Analogously to the ‘full’ Child Selection J3, both J∨D
1 and J∨D

2 are zero, as they select both reactions 1 and 2 whose
stoichiometry is linearly dependent.

The other six Partial Child Selections can be grouped in three pairs:
(
J∨D

3 , J∨D
4
)
,
(
J∨D

5 , J∨D
6
)
, and

(
J∨D

7 , J∨D
8
)
. Each pair

consists of two Partial Child Selections that differ only in the image J∨D(A) of the species A: either the reaction 1 or 2.
Hence, the coefficients behavior within each pair have a ratio of −2. In conclusion, again, in total analogy to the full Child
Selections J1 and J2, we have

Adj(G)D
D =

∑
J∨D

∏
m≠D

rJ∨D(m)m

=
8∑

i=3
𝛽J∨D

i

∏
m≠D

rJ∨D
i (m)m

=
(
𝛽J∨D

3
r1A + 𝛽J∨D

4
r2A

)
r3Br4C +

(
𝛽J∨D

5
r1A + 𝛽J∨D

6
r2A

)
r5Br4C

+
(
𝛽J∨D

7
r1A + 𝛽J∨D

8
r2A

)
r3Br5C

= (−r1A + 2r2A)r3Br4C + (r1A − 2r2A)r5Br4C + (r1A − 2r2A)r3Br5C

= (r1A − 2r2A)(r5Br4C + r3Br5C − r3Br4C).

(32)

Hence, trAdj(G) = (r1A − 2r2A)(r5Br4C + r3Br5C − r3Br4C), and thereby trAdj(G) = 0 whenever 𝜆 = (r1A − 2r2A) = 0, which
characterizes det G = 0.

7 DISCUSSION

In this paper, we have presented an example of a chemical reaction network, for which the Jacobian of the associated
dynamical system can be singular but never possesses a simple eigenvalue zero, for any choice of reaction rates r and any
value of the concentrations x > 0. The construction relies on studying algebraically the structure of the zero eigenvalues
of the Jacobian G, using as a tool the adjugate matrix Adj(G).
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VASSENA

It is natural to ask whether it is possible to have smaller examples of such a phenomenon. First, species D and reactions
5 and FD do not play a role in the algebraic feature we have presented. In particular, the same computation holds for a
network Γ̃ given by

⎧⎪⎪⎨⎪⎪⎩

A + B −→
1

2A

2A −→
2

2B

B −→
3

B + C

C −→
4

A + C

(33)

where species D and reactions 5 and FD have been removed. This constitutes the core of the feature. However, the
associated ODEs system

⎧⎪⎨⎪⎩
.xA = r1(xA, xB) − 2r2(xA) + r4(xC)
.xB = −r1(xA, xB) + 2r2(xA)
.xC = r3(xB)

, (34)

never admits a positive equilibrium x > 0, for any choice of r. Given the intended application for equilibria bifurcation
analysis, we have opted for an example that admits a positive equilibrium, at least. Nevertheless, let us stress one last time
that the analysis is not linked with the precise value of the concentration x. It is opinion of the author that such a feature
cannot happen in networks with less than three species, even when x is not necessarily an equilibrium.

The example we have presented includes reactions 1, 3, and 4, which are explicitly autocatalytic. Here, explicitly auto-
catalytic simply means that species with nonzero stoichiometric coefficients appear at both sides of the reaction. It is
possible to remove explicit autocatalysis by considering intermediates, hence splitting reactions 1, 3, and 4 into

⎧⎪⎨⎪⎩
A + B −→

1a
2E and E −→

1b
A

B −→
3a

F + C and F −→
3b

B

C −→
4a

G + A and G −→
4b

C
. (35)

The computation follows analogously as the presented example. The removal of explicit autocatalysis by adding inter-
mediates has the consequence of considerably increasing the size of the system. In order to keep the example as small as
possible, we have chosen to present the autocatalytic representation.

The mathematical literature on chemical reaction networks is often concerned with mass action kinetics:

r𝑗(x) = k𝑗

∏
m∈M

xs𝑗m
m , (36)

where s𝑗m is the stoichiometric coefficient of m as a reactant of the reaction 𝑗. Such an assumption gives rise to polynomial
systems of differential equations with the interesting constraint that x is real positive. System (15), endowed with mass
action, reads ⎧⎪⎪⎨⎪⎪⎩

.xA = k1xAxB − 2k2x2
A + k4xC

.xB = −k1xAxB + 2k2x2
A − k5xBxCxD

.xC = k3xB − k5xBxCxD

.xD = −k5xBxCxD + FD

. (37)

Unfortunately, this polynomial system does not admit an equilibrium with singular Jacobian, for any choice of k =
(k1, k2, k3, k4, k5,FD)T and x > 0. In fact, the condition for a singular Jacobian is r1A = 2r2A, as computed in Section 4.
According to mass action, this condition reads

k1xB = 4k2xA. (38)
Solving (37) for equilibria gives the additional constraint:

2k2x2
A − k1xAxB = k5xBxCxD > 0. (39)
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VASSENA

But, inserting (38) into (39), we obtain

2k2x2
A − k1xAxB = 2k2x2

A − 4k2x2
A < 0; (40)

hence, there are no positive equilibria with a singular Jacobian. However, it is easily possible to modify the system in order
to maintain its validity as a mass action example. One possibility, with six species and nine reactions, is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A + C −→
1

2B

A −→
2

C

B −→
3

A

B + D −→
4

−→
FD

D

C −→
5

C + E

E −→
6

B + E

E + F −→
7

−→
FF

F

, (41)

with the associated mass action system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

.xA = −k1xAxC − k2xA + k3xB

.xB = 2k1xAxC − k3xB − k4xBxD + k6xE

.xC = −k1xAxC + k2xA

.xD = FD − k4xBxD

.xE = k5xC − k7xExF

.xF = FF − k7xExF

(42)

Again, we had to pay a price in terms of the dimensionality of the system. A straightforward computation shows

{
det G = (k1xC − k2)k3k4k5k6k7xBxE

tr Adj(G) = −(k1xC − k2)k3k5k6(k4xB + k7xE)
. (43)

In particular, det G = 0 implies trAdj(G) = 0; hence, system (17) is never satisfied: It is possible to have a singular
Jacobian but never with a simple eigenvalue zero, precisely as (15). Moreover, for

k = (k1, k2, k3, k4, k5, k6, k7,FD)T = (1, 1, 2, 1, 1, 1, 1, 1)T ,

the value
x = (xA, xB, xC, xD, xE, xF)T = (1, 1, 1, 1, 1, 1)T

is an equilibrium with a singular Jacobian. Since the core mathematical intuition is analogous, we have extendedly
presented in terms of Child Selections and Partial Child Selections the more concise version (15), only.

The linearization at any zero-eigenvalue point of the presented system (15) possesses a geometrically simple but alge-
braically double eigenvalue zero. This spectral condition is precisely the one of a Takens–Bogdanov bifurcation. Such a
type of bifurcation was studied independently by Floris Takens [32] and Rifkat Bogdanov [33]. In a neighborhood of the
bifurcation point, it is possible to identify a saddle-node bifurcation curve, a Hopf bifurcation curve, and a homoclinic
saddle connection curve. Hence, a Takens–Bogdanov bifurcation implies both multistationarity and oscillations due to
the presence of, both, saddle-node and Hopf bifurcations, respectively. In a biochemical context, Kreusser and Rendall
[34] have proved the existence of a periodic orbit in a system modeling the activation of the Lymphocyte-specific protein
tyrosine kinase, by identifying a Takens–Bogdanov bifurcation. However, a Takens–Bogdanov bifurcation happens gener-
ically in a system with two (!) parameters, at an equilibrium whose Jacobian satisfies such spectral condition. On the
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VASSENA

contrary, in our example, the spectral condition is achieved by solving only one equality: det G = 0. A proper unfold-
ing as Takens–Bogdanov is thus not possible. In this sense, our example can be considered a case of “not unfoldable
Takens–Bogdanov bifurcation.” The precise local dynamics of our example cannot be explained by standard bifurcation
theorems, and it requires further investigation.

In conclusion, properties that are generic in general vector fields need not be generic when restricted to systems with a
fixed network structure. A detailed investigation for further properties is needed. For instance, another theoretical possible
scheme for bistability is a pitchfork bifurcation. Pitchfork bifurcations relate to saddle-node in having the same spectral
condition, but the bifurcation happens from a reference equilibrium persisting at any value of the bifurcation parameter,
in contrast to the general saddle-node bifurcation. The equilibria diagram of a pitchfork bifurcation is topologically just
the superposition of the diagram of a saddle-node bifurcation to a constant equilibrium line, suggesting the shape of
a pitchfork. More in detail, at the bifurcation point, a stable equilibrium loses stability by generating two other stable
equilibria (bistability!). On one side of the bifurcation point, there is one stable equilibrium, and on the other side, there
are three equilibria: two stable equilibria with one unstable equilibrium within. A picture with reverse stability is of course
possible, in analogy. In contrast to saddle-node bifurcations, however, pitchfork bifurcations are nongeneric in the set of
vector fields with a singular Jacobian; hence—as already discussed—in applications, we expect bistability arising from
a pair of connected saddle-node bifurcations, rather than from one single pitchfork bifurcation. Investigating whether
certain networks have the property to exhibit generically pitchfork bifurcations rather than saddle-node bifurcations is
particularly interesting as it provides an alternative and unexpected scheme for bistability, where no hysteretic switch-like
behavior is present. More in general, this work calls for investigating further whether the network structure may or may
not interfere with the genericity of certain properties. Such a question can be addressed both in the case of a chosen
kinetics, or more in general as done in this paper. Answers are quite interesting both ways: A positive answer would
greatly simplify the bifurcation analysis, as it would grant for free such generic property, while a negative answer would
provide examples of networks that show surprising features.
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