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1 Introduction
1.1 ATP, an overview

Automated theorem proving (ATP) has long been a significant field in computer
science, aiming to develop algorithms for finding formal proofs automatically.
With the advent of proof assistants in mathematical research and, more gen-
erally, formal methods, these systems will become increasingly relevant for
mathematicians, too.

Over the years, researchers have explored various approaches to tackle the
inherent challenges of ATP, resulting in two paradigms being heavily researched
currently: Satisfiability Modulo Theories (SMT) solving and Machine Learning
(ML).

Satisfiability modulo theories is a generalization of the boolean satisfiability
problem (SAT). In SMT solving, a given problem is first translated into a partic-
ular format which can subsequently be passed to a highly optimized algorithm.
These algorithms make use of decision procedures for specific theories and
data structures, such as linear arithmetic and lists. By combining the efficient
subroutines in a clever way SMT solvers have been able to solve increasingly
complex problems [Des+22].

On the other hand, the general trend towards machine learning can also be
observed to enter the field of automatic theorem proving. There are multiple
ways how ML can be employed in this context, for example, it can improve
premise selection [Mik+23], i.e. support other provers by supplying them lists
of helpful lemmas to use in proof finding. Another envisaged application of ML
is based on auto-formalization [Wu+22]. In that approach, neural networks are
used to learn the structure and semantics of conventional mathematical texts,
with the goal of translating them into formal logic. Thereby, one can make use
of the vast body of mathematical literature and the recent advances with large
language models. These examples are only given for illustration, there exist
many further ideas how machine learning can be employed in the context of
ATP.

1.2 A third perspective
However, despite the advancementsmade through SMT solving andML-assisted
ATP, there remains an untapped potential in incorporating a human perspective
into the theorem proving process. The goal of human-oriented ATP is to develop
algorithms whose proving behaviour is as similar as possible to the way that
human mathematicians find proofs. Since humans manage to solve challenging
mathematical problems one can hope for the success of algorithms centred
around leveraging insights from numerous observations on humans problem-
solving.

A key property of human-oriented ATP systems is that they should not
use brute-force search in an essential way and the constructed proofs should
correspond closely to a typical human-written proof. Next to this, an ideal
human-oriented ATP will not be domain specific but should in principle be able
to find proofs in any given area of mathematics.

However, outlining in precise terms what counts as a human-oriented prover
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strongly depends on what criteria one considers for a proof to be typically
human. Therefore, a concise definition is not attempted here and the reader
instead referred to Timothy Gowers’s research manifesto [Gow22]. When used
subsequently in this thesis, the term human-oriented ATP is meant in the sense
outlined in that document.

Naturally, human-knowledge-based approaches have already been explored
andnotable contributions to the field have beenmade, e.g. byAlanBundy [Bun83].
In recent years, however, the human perspective has received less attention in
ATP, as SMT solvers could be observed to generally perform better. These provers
have been integrated within proof assistants allowing their users to focus on
more high-level aspects of the formalization while the automatic tool can fill in
laborious details. Nevertheless, there remain a lot of problems which current
SMT solving cannot handle well and it is possible that overcoming these barriers
will ultimately require different approaches.

1.3 Researching human-oriented ATP
How is it possible to successfully research human-orientedATP and filter the best
ideas from themyriad of conceivable approaches? Certainly, rapidly prototyping
provers plays an important role in finding concepts that enable better automatic
proving. At the same time, matters like performance optimization only play a
secondary role; such can be done at a later stage when conceptual findings get
turned into algorithms meant for end-users in proof assistants.

Instead, it is much more relevant that there is an efficient interface to the
prover prototype. The possibility to promptly validate that a computer-generated
proof adheres to human line-of-thought is crucial: it can enable the integration
of results obtained through rapid prototyping into more theoretical discussions.

Taking all of these matters into consideration suggests using an off-the-shelf
proof assistant as a basis for researching human-oriented ATP. Thereby, infras-
tructural necessities ranging form parsers to the proper display of mathematical
notation are readily available, permitting the research to focus on the challenge
of finding human-style proofs.

A proof assistant which is particularly suitable for such purposes is Lean 4.
It is designed to provide excellent metaprogramming support with Lean be-
ing its own metaprogramming language. Next to this, the growing body of
mathematical concepts formalized in Mathlib 4 can serve as an extensive testing
field.

Of course, these considerations only hold within a certain scope and there
might well exist approaches to human-oriented ATP that are more efficiently
researched in a custom-built system. In the context of this thesis, however, the
capabilities of Lean will be more than sufficient and all implementations will be
done in that language.

1.4 Search and Syntactic Similarity
A central challenge that occurs in any kind of theorem proving is that of search:
given a proof goal and previous knowledge, e.g. in the form of a library, how
does one find the right definition, lemma or theorem that advances the proof?

The importance of this problem is illustrated by the vast amount of previous
research on the topic. For example, the Sledgehammer tool of the proof assistant
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Isabelle contains a mechanism to select promising candidates for proving among
a potentially huge list of lemmas. The original version of that algorithm is
symbolic [BDP22] whereas, later, machine learning approaches for premise
selection have been investigated [Küh+13]. Very recently, the neural transformer-
based Magnushammer [Mik+23] has been demonstrated to outperform the
traditional methods.

However, in the context of human-oriented theorem proving the use of
such search algorithms would mean to introduce black boxes. Therefore, it is
necessary to research human-oriented search, that is find algorithms that mimic
the way humans include their previous knowledge in proving. There are various
ways human mathematicians do this, for example, based on:

Syntactic Similarity: the proof goal is similar to a known result as a syntactic
expression.

Meta-level Considerations: there is salient information about how the proof
must proceed which can be used to isolate a particular known result. For
example, the proof goal could contain a constant on which there is very little
previous knowledge. In that case, search can be restricted to that particular
subset of previous knowledge.

Plan-guided Search: assume that the prover follows a planning-based ap-
proach, that is it first tries to sketch the searched for proof and then construct
it in concise terms. In this case, the information from the sketch can be used
when searching previous knowledge for constructing the concise formal
proof.

The list is, of course, not exhaustive and many further approaches to human-
inspired previous knowledge retrieval are conceivable.

In this thesis, the focus lies on the first aspect, that of syntactic similarity.
How can a notion of similarity between syntactic expressions be made precise?
The context of search demands a quantitative measure, a metric capable of
assigning a similarity value to any pair of syntactic expressions.

However, beyond this quantitative perspective, syntactic similarity encom-
passes additional dimensions. Human perception often involves assessing the
specific aspects in which two expressions are similar. Such qualitative insights
can be invaluable for guiding the subsequent reasoning steps of a prover. How
can one find a qualitative description of syntactic similarity?

1.5 The goal of this thesis
This work intends to provide first answers to these questions. Firstly, the goal is
to define a similarity metric and a corresponding notion of qualitative similarity
between terms. Secondly, an algorithm can be devised and implemented that
calculates these quantities explicitly. Lastly, the ultimate goal is to set up a testing
framework which permits a first, rough evaluation of the algorithm on simple
examples in the context of search.

Such a research program is ambitious because of its wide range of tasks
including both theoretical and implementational challenges. Each of the three
goals mentioned holds the potential to be extensively explored, forming the
foundation for an entire master’s thesis. However, the deliberate selection of the
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three-step plan aims to mitigate the risk of excessive theorizing. Rather than
following the traditional approach of developing theory first and implementing
it at the end, this program adopts a different strategy. Early on, it involves
conducting programming experiments, which, in turn, serve as valuable guides
for theory development.

As a result, the theoretical notions, algorithms, and programs developed in
this thesis may not be entirely comprehensive or universally applicable to all
cases. Instead, the primary objective is to establish a framework that facilitates
further research for refining both the theory and programs presented here.

The structure of this text is as follows: Section 2 introduces syntactic similarity
as a theoretical concept, aligning with the first step of the research plan. In
the subsequent Section 3, an algorithm for computing syntactic similarity is
proposed, and its implementation is detailed in Section 4, thereby achieving
the second goal. Section 5 further explores the algorithm by defining a simple
similarity-based search tactic, allowing evaluation on first examples. This fulfils
the three-step research program, which concludes with a summary in Section 6.
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2 A theoretical perspective on
syntactic similarity

Before starting to think about how terms are similar it is important to have a
definition of what a term is. For developing the theory of syntactic similarity we
will start by investigating special cases and not yet make the definition precise.

Such an approach could be considered as non-standard since usually ATP
systems get developed for a specific logic that is fixed early on. The rationale of
the more human-oriented perspective chosen here is that mathematics can be
done successfully without explicitly choosing a formal background. Therefore,
it is to be hoped that the notion of syntactic similarity developed here can be
realized in several logics.

Still, we can put up some general guide-rails as to what a term is: It is clear
that the terms we want to compare will contain constants, free variables and
function application. Next to this, more complicated terms can contain lambda
abstraction and corresponding bound variables. Additionally, we think of all
of the constituents to be typed as types usually play an important role in the
thought processes of mathematicians and are equally essential in most proof
assistants popular today.

2.1 Tree edit distance
Since syntactic expressions naturally have the shape of a tree, a good starting
point for thinking about how terms are similar is to think about how trees can
be compared. In fact, there is a lot of pre-existing research on so-called tree edit
distances [PA] which will be described in the following.

Tree edit distance is a concept that describes how similar two given trees are.
More concisely, it is defined as the minimum number of edit actions that are
needed to convert the first tree into the second one. The most common actions
considered are:

I. Relabelling: Change the label of a node.

II. Insertion: Insert a node between a node in the tree and a subsequent
sequence of its children.

III. Deletion: Remove a node n and make its children the direct children of
the parent node of n. The order of the children must stay the same.

It is possible to consider a unit cost for all of these actions, more generally, one
considers an arbitrary function that assigns a cost value to any edit action. This
might not just depend on the type relabelling/insertion/deletion of the action
but also on the node that the action gets applied to.

Next to being defined in a very intuitive way, tree edit distance has the
advantage that it can be very efficiently calculated making use of dynamic
programming techniques. The current state-of-the art is an algorithm called
APTED [PA15; PA16] which can efficiently calculate edit distances for various
tree shapes.
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2.2 Tree edit distance for syntax trees
Given this background, it is natural to ask if tree edit distance could yield a
way to measure the similarity of syntax trees. Of course, one could simply run
APTED on two given such trees and it would return a value that measures
similarity in some way. However, the meaningfulness of such a result heavily
depends on the chosen cost function. For example, relabelling of nodes allows
forA∪B to be transformed toA+B in one single actionwhereasmathematicians
would consider the two quite different, the first being a set and the second of a
type that allows for addition.

In fact, types not being preserved is the central issue when tree editing syntax
trees. When removing the leaf a in the tree from Figure 1 the result is no longer
a valid syntax tree.1 Therefore, neither tree edit action in its original format is

+

a b

Figure 1: Syntax tree for a+ b

suited for working with syntax trees in a type-preserving way.
One could overcome this by setting the cost of actions which disregard the

well-typedeness to infinity. This would mean that, for instance, relabelling ∪
to + has cost infinity whereas relabelling ∪ to ∩ gets assigned some finite cost.
However, the set of actions obtained in such a way would be very limited and
not always sufficient to represent structure that humans recognize as similar. As
an example for this issue, consider the trees in Figure 2.

+

a f

b

(a) Syntax tree for a+ f(b)

+

a g

b c

(b) Syntax tree for a+ g(b, c)

Figure 2: Two syntax trees to be compared

Anatural language characterization of the common structure could be “aplus
an expression that depends on b“ or, perhaps, “a plus the value of a function that
takes b as an input”. Such a notion of similarity cannot be described accurately
with the actions we have seen so far. In fact, it seems that the concept of tree that
we have used up to now does not allow to represent similarity as concisely as
these two phrases do.

1Here we do not allow currying, but even if we did the problem persists: Assume the tree in
Figure 1 to be the subtree of a larger syntax tree. Removing a changes its type and thus renders the
larger syntax tree invalid.
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2.3 Hole expressions
A possible solution to this problem is to allow for holes in expressions. For
example, the common characterization of the terms a+ b and a+ c would then
be “a plus hole” (Figure 3). Holes can be instantiated and if one does so with
the correct value one either receives the first or second original tree.

+

a b

(a) a+ b

+

a c

(b) a+ c

+

a �

(c) “a plus hole”

Figure 3: Syntax trees with holes

In order to allow for the representation of common structure below the
level of the tree where a hole needs to be inserted, one can further introduce
annotations for holes. That is, also a hole node can have child nodes c1, . . . , cn
which means that when the hole node gets instantiated the instantiation should
include c1, . . . , cn as terms. Coming back to the example given in Figure 2,
this means that the nodes f (or g) get replaced by a hole, but the common
dependence on b is indicated through the annotation (Figure 4).

+

a �

b

Figure 4: A syntax tree with an annotated hole

Unlike with ordinary nodes we consider the child nodes of a hole node to
be unordered. We will also refer to hole nodes as metanodes because of their
similarity to how so-called meta-variables get used in proof assistants.

2.4 Tree editing with holes
With this new notion of tree at hand, we can proceed and define the actions that
we want to use in hole-tree editing.

Definition 2.1 Hole-Tree edit actions.
We consider the following three edit actions on a tree T :

I. Metanode-Conversion: The action convertn(T ) consists of converting
the ordinary node n (which can also be a leaf) into a metanode. Its
children become annotations to the metanode.

II. Metanode-Insertion: Given a node n, the action insertAboven(T ) con-
sists of inserting a metanode between n and its direct parent node. If
n is the root of the tree the metanode becomes the new root and n its
only child node.
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III. Annotation-Deletion: If n is the direct child of a metanode then the
action deleten(T ) deletes the subtree starting at n from T .

Let us reconsider the trees from Figure 2. We observe that the actions suffice
to arrive at a good characterization of the similar structure; it corresponds to
the natural-language description “a plus an expression that depends on b“. The
editing process is detailed in Figure 5, the number above the arrow indicates
which edit action was used.

+

a f

b

I−→

+

a �

b

III←−

+

a �

b c

I←−

+

a g

b c

Figure 5: Edit actions applied to the trees from Figure 2. The original trees on
the very left and the very right are transformed towards the centre.

Calculating some more simple examples, one can find that these actions
usually allow us to arrive at a tree that one would intuitively consider to appro-
priately describe the similar structure of the trees. This suggests that the three
actions defined above suffice for defining a first notion of syntactic similarity.

Note that here we limit ourselves to similarity that can be described in a
one-to-one way. When considering Figure 6 we can see that the substructure
a+ b of the left tree appears twice in the right tree.

It is not possible to represent such a relationship with the hole trees we have
defined so far. A possible solution would be to add multiplicity information to
(meta)nodes indicating how often that node needs to appear in the left or right
tree.

f

+

a b

(a) f(a+ b)

+

+

a b

+

a b

(b) (a+ b) + (a+ b)

Figure 6: One-to-one similarity

Alternatively, one could preprocess or compress syntax trees in a way that
reduces multiple occurrence of substructures. For example, the right tree in
Figure 6 could be preprocessed to addToItself(a+ b)which then allows unam-
biguous one-to-one similarity. For this reason, we will not consider multiplicity
annotations for now and start defining syntactic similarity in a one-to-one sense.
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2.5 Defining syntactic distance
Given the notion of hole-tree and edit action we can proceed to make precise
what syntactic similarity should mean. We start with an auxiliary definition that
extends the notion of cost from single actions to sequences of actions:

Definition 2.2 Editing sequences and their cost.
Let T0 be a hole-tree and c a function that associates a positive cost to the edit
actions from Definition 2.1. Consider a sequence of actions a = (a1, . . . , ak)
such that ai can be applied to Ti−1 where Ti := ai(Ti−1) for i = 1, . . . , k. We
call such a sequence a valid editing sequence and say that it transforms T0
into Tk. Its cost is defined to be

c(a) :=

k∑
i=1

c(ai).

For most cases, we will assign a constant cost of 1 for metanode-conversion
or insertion, while the cost of annotation-deletion will correspond to the number
of nodes within the subtree that is being deleted. It is important to note that the
cost is influenced not only by the type of action but also by the location where it
is applied within the tree. For example, one could define a cost function which
has cost 2 when the action convert is applied at the root and unit cost otherwise.
Definition 2.2 is designed to accommodate arbitrary cost functions, enabling
adjustments to the similarity measure by tweaking the cost in later stages.

Moreover, note that the chosen actions are directional, that is, they transform
trees which are more specific into less specific ones. It thus makes sense to say
that a common description of two trees T, S should be a treeG that is approached
by the actions from both sides. Formally, we define

Definition 2.3 Syntactic generalizer.
Let the hole-trees T, S be given. Assume that there are valid editing se-
quences a, b that transform T, S into the tree G, respectively. Then we call G
a syntactic generalizer of T, S. We define the cost of G to be c(a) + c(b).

This name is justified since hole-trees can be viewed as generalizing a given
syntactic expression. For any hole-tree T , one can consider the set of trees I(T )
that can be obtained by instantiating the holes of T .

Recall that the edit actions from Definition 2.1 are information-decreasing:
adding metanodes removes information and so does the deletion of metanode
annotations. Hence, if T = a(S) then the set I(T ) of trees characterized by T is
larger than I(S). In other terms, T is a more general description than S.

Using the notion of syntactic generalizer we can define a notion of syntactic
distance:

Definition 2.4 Syntactic distance.
Let again two hole-trees T, S be given. We define their syntactic distance to
be theminimal natural number d such that there exists a syntactic generalizer
of cost d. We also write d(T, S) for this value d and define G(T, S) to be the
set of generalizers of T, S that have cost d.
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While the distance value is unique by definition, it is not the case that for
any two given hole-trees a unique generalizer exists. An example for this can be
found in Figure 7, there are two generalizers conceivable depending on whether
the similarity in the first or second argument of f is described. It is for this

+

f

x y

f

z w

(a) f(x, y) + f(z, w)

f

x w

(b) f(x,w)

Figure 7: Trees that do not have a unique generalizer

reason that the definition refers to a set G(T, S) of generalizers.
Note that a pair (G, d)where G is a generalizer of minimal cost d can be seen

to give both a similarity metric between terms and an appertaining common
description. It therefore accomplishes the first goal from the three-step program
given in the introduction, to make a precise definition of syntactic similarity
consisting of both a quantitative and qualitative component. In the following,
we will hence refer to such tuples (G, d) as syntactic similarity.

2.6 A comparison with rippling
The foundational ideas for this notion of similarity are not new, for instance,
holes in terms have been employed in theorem proving for a long time. To
demonstrate the novelty of the definition of syntactic similarity given here we
make a brief comparison with some of the notions in Alan Bundy’s rippling
framework [Bun+93]. Here we only give a superficial introduction to rippling,
the reader is referred to Bundy’s article for its motivation and more in-depth
explanations.

The goal of rippling is to automate inductive proofs making use of their
specific structure. To that end, hypothesis and conclusion of the inductive step
are compared to observe their commonality (called “skeleton”) and differences
(“wave-front”).

To illustrate this, we consider the inductive proof showing that addition of
natural numbers is associative. In this proof [Bun+93, p. 189], one assumes that

x+ (y + z) = (x+ y) + z (1)

and has to conclude

s(x) + (y + z) = (s(x) + y) + z (2)

where s is the successor function.
The rippling framework calls expressions which appear in the conclusion

but not in the hypothesis a wave-front; in this example the wave-front is s(· · · ).
The subterm xwhich occurs in both hypothesis and conclusion is not considered
to be part of the wave-front. In other terms, the wave-front is only the part of a
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syntactic expression; in the spirit of the notation above it can be expressed as
s(�).

This illustrates that rippling and syntactic similarity as described here share
a fundamental idea, to consider parts of syntax trees. In Bundy’s description of
rippling this is done implicitly whereas in this text hole-trees are used to make
subtree relationships explicit.

Bundy also considers the common structure between inductive hypothesis
and conclusion which he calls skeleton. In the above example, it is a+ (b+ c) =
(a + b) + c where one has a = x, b = y, c = z for the inductive hypothesis and
a = s(x), b = y, c = z for the conclusion. This notion appears to be very similar
to that of a generalizer. However, skeletons only capture the identical structure
occurring at and directly below the root node. For example, the terms f(a+ b)
and g(a+ b) do not have a skeleton because their root node is different. Yet, the
non-trivial generalizer �(a+ b) can describe their syntactic similarity.

In the context of inductive proofs, this limitation of skeletons is not a problem.
Usually, inductive rules are such that the syntax trees of inductive hypothesis
and conclusion share a root node. However, the example demonstrates that
syntactic similarity as presented here is strictly more general for the purpose
of describing similarity. In some situations, it can capture commonalities in
an accurate way which rippling cannot, the latter having been designed for
a different goal. Nevertheless, it is interesting to note that both approaches
share fundamental ideas and future research should continue to examine such
connections.
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3 Calculating syntactic distance
and generalizers

Now that we have a concept of syntactic distance and generalizer fixed, it be-
comes necessary to find a way that allows us to (efficiently) compute these
notions. We start by deriving a naive recursive definition from which more
efficient ways to calculate syntactic similarity can be developed subsequently.
Before delving into the derivation itself, we establish notation and make general
observations on hole-tree editing.

Definition 3.1 Notation for hole-trees.
If v is a node of the tree T we write v ∈ T . We denote by p(v) its parent node
and by r(T ) the root node of the tree T .

Furthermore, we denote an unannotated metanode by �. If it has anno-
tations a1, . . . , an we write this as �(a1, . . . , an).

3.1 Properties of hole-tree editing
3.1.1 Maps induced by editing actions
Let us now start to make observations on hole-tree editing. Note that if the
action a is applied to the tree T this induces a map from the nodes of T to the
nodes of a(T ). More concretely, if a = insertAboven then all nodes of T appear
in a(T ) and the induced map simply sends every node from T to its counterpart
in a(T ). Similarly, if a = convertn all nodesm ∈ T ,m 6= n are mapped to their
counterparts in a(T ) and n is mapped to the metanode which convertn converts
it to. For a = deleten we establish the convention that all nodes from the subtree
getting deleted are mapped to the parent p(n). Thereby, we obtain a well-defined
map of nodes T to the nodes of a(T ) for any type of action.

Remark that this induced map is surjective onto the nodes of a(T ) unless a
is of type insertAboven. In that case the map is still almost surjective, the only
node not being mapped to being the inserted metanode.

We can extend the notion of induced map to editing sequences:

Definition 3.2 Map induced by an editing sequence.
Let T0 be a tree and a1, . . . , ak be a valid editing sequence when starting
with T0. We set Ti := ai(Ti−1) for i = 1, . . . , k and define αi to be the map
induced by ai : Ti−1 → Ti. We can then set ϕ : T0 → Tk

ϕ := αk ◦ · · · ◦ α1

to obtain a map from the nodes of T0 to those of Tk. We call ϕ the map
induced by the editing sequence.

Informally, this corresponds to following a noden along in the editing process
to see where it ends up in the tree Tk. It can still appear as an ordinary node
in the final tree Tk or it can be converted into a metanode by some action ai.
It is also possible that a parent of n is transformed into a metanode and that
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afterwards n, now an annotation, gets deleted.
We continue to make the following observation on induced maps:

Lemma 3.3 The root of a minimal-cost generalizer is mapped to.
Let G ∈ G(T, S) be a minimal-cost generalizer of the trees T, S. There
exist editing sequences a1, . . . , ak (resp. b1, . . . , bl) which transform T (resp.
S) into G. Let ϕa, ϕb be their induced maps. Then ϕa(r(T )) = r(G) or
ϕb(r(S)) = r(G).

That is, the root node of G gets mapped to by at least one of the root
nodes of T, S.

Proof. Remember that we observed induced maps to be surjective apart from
metanode insertion. Therefore, the only possibility for r(G) not to be in the
image of either ϕa or ϕb would be for it to be an inserted metanode in both
editing sequences. Moreover, this insertion must have happened above the root
node of the tree being edited since otherwise r(G)would not be the root of G.

But clearly, this contradicts G being a minimal-cost generalizer. Both editing
sequences contain an action that inserts a metanode above the root. One can
delete these actions to obtain editing sequences of strictly lower cost.

It will often also be helpful to make a case distinction depending on where
two nodes n ∈ T andm ∈ S end up in a generalizer of T, S. We say that n,m
match if they are mapped to the same node g ∈ G by the induced maps. We say
that nmatches belowm if n is mapped to a node that is a (not necessarily direct)
child of the node that m gets mapped to. Note that this notion of matching
depends on the chosen generalizer G.

3.1.2 Permuting editing actions
We make one last observation before starting the derivation of the syntactic
similarity calculation: note that sometimes the order of actions can be permuted.

Assume that there exists a sequence of edit actions transforming T0 into Tk
such that n ∈ T0 gets converted into ametanode by one of the actions. Then there
exists a modification of that editing sequence which starts with convertn. Note
that the edit actions are not permutable in general; it is not possible to execute
the action deleten before the parent of n has been converted into a metanode.

The correct notion of permutability is that the actions insertAboven and
convertn can be brought to the beginning. If they occur as aj in a sequence
a = (a1, . . . , ak), then the sequence a′ := (aj , a1, . . . , aj−1, aj+1 . . . , ak) is still a
valid editing sequence and has the same cost as a.

3.2 Derivation of the Algorithm
With these observations at hand we can start to derive a recursive algorithm
that calculates syntactic generalizer and distance. More concisely, we want the
algorithm to calculate the (unique) minimal-cost edit distance between two
given trees and one of the possibly multiple generalizers. As mentioned before,
the set of minimal-cost generalizers for two given trees is not always unique,
however, a simple modification to the algorithm presented here allows us to
calculate the full set of generalizers.
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3.2.1 Base cases
Let us first consider the base cases, i.e. we are given two single-node trees T, S
the syntactic similarity of which we need to calculate. This means that if T is an
ordinary node then it has no children, and if it is a metanode then it does not
have any annotations. There are thus three cases to consider:

I. Both T and S consist of ordinary (leaf) nodes n,m. If the values ln and lm
of their labels coincide the generalizer will simply be the tree consisting
of a single leaf labelled ln and the syntactic distance is 0 since no action
needs to be executed. Otherwise, the generalizer can only be obtained by
transforming both leaf nodes into a metanode. Therefore the generalizer
will be�, ametanodewithout annotations, and its costwill be c(convertn)+
c(convertm).

II. Both T and S consist of metanodes. Since they do not have any annotations
they are in fact equal, therefore the distance is 0 and the generalizer is an
unannotated metanode �.

III. Without loss of generality, T consists of an ordinary node n and S of a
metanodem. In order to obtain the generalizer we apply the metanode-
conversion action once to T which yields � as a generalizer and syntactic
distance c(convertn).

3.2.2 Recursive step
We can now think about how calculating syntactic similarity for more compli-
cated nodes can be broken up into several smaller calculations. We will again
need to consider three cases for the given trees T, S depending on their root
node: Either both are ordinary nodes, both are meta-nodes or one is an ordinary
node and the other one is a metanode.

In the following, it will be helpful to think about which edit actions are
essential, i.e. actions which must be executed in order to arrive at a cost-minimal
generalizer of T, S. If such an action is a metanode insertion or conversion, by
the remark on permutability of actions, it can be executed immediately and the
calculation can continue recursively on the trees thus obtained.

Let us start with the case distinction:

I. The given trees T, S have root nodes n,mwith labels ln, lm and child subtrees
n1, . . . , nk and m1, . . . ,ml, respectively. We perform a case distinction on
where n,m can get mapped to in a generalizer G. Because of Lemma 3.3 we
know that at least one of n,mmust be mapped to the root node of G. Let us
thus consider the cases that either both n,m get mapped to the root node or
only one of them.

1. Both n and m get mapped to the root node r(G). We do yet another
case distinction on the type of node of r(G).
a) Assume that r(G) is an ordinary node. This is only possible if the

labels ln and lm coincide as well as the number of their children. In
that case, the children of r(G) are the corresponding generalizers
of the children of n,m. That is, we calculate the generalizer gi of
ni,mi to obtain the ith child of r(G).
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The generalizer of T, S can then be given to be a node with label ln
and children g1, . . . , gk. Moreover, the syntactic distance of T, S is
the sum of the cost of g1, . . . , gk.

b) Assume that r(G) is a metanode. This means that both n,m become
converted to metanodes at some point in the tree editing process.
By the remark on the permutability of the metanode-conversion
action, we can assume that the conversion takes place as the first
action.
Accordingly, we define T ′ = convertn(T ) and S′ = convertm(S)
and (recursively) calculate a syntactic generalizer and distance
(G′, d′).
Then, G′ must also be generalizer of T, S and its cost is

d′ + c(convertn) + c(convertm)

to account for the two additional metanode conversion actions.
2. Only one of the nodes n,m gets mapped to the root node r(G) of the

generalizer. Without loss of generality, let us assume that n gets mapped
to r(G) and thatm gets mapped to a node below the root r(G). This is
only possible if n becomes converted into a metanode and at least one
metanode gets inserted abovem. Similarly to the previous case, we can
think of these actions as being executed immediately which yields the
situation depicted in Figure 8.

n

n1 . . . nk
1−→

�

n1 . . . nk

−→
· · · ←−

�

m

m1 . . . ml

2←−
m

m1 . . . ml

Figure 8: The situation in case I.2

Note that the child subtree of r(G) must therefore be the generalizer of
m and one of the n1, . . . , nk. Hence, we calculate which of the n1, . . . , nk
has the least syntactic distance tom.2 Assume that ni is such and that
its generalizer withm is g and has cost cg .
From this, a generalizer and the syntactic distance of S, T can be given
explicitly: the generalizer is simply�(g). The syntactic distance ofT, S is
the cost of g plus the cost of deleting annotationsn1, . . . ni−1, ni+1, . . . , nk
and the cost of the actions being executed in Figure 8:

cg +

k∑
j=0
j 6=i

c(deletenj ) + c(convertn) + c(insertAbovem).

II. The given trees T, S have root nodes n,m which are metanodes. We let
n1, . . . , nk andm1, . . . ,ml be their annotations. One can do a case distinction
on whether n,m match in a generalizer G or not, i.e. whether they get
mapped to the same node by the map induced by the editing sequence.

2If there are multiple vk with minimal syntactic distance to m then there exist multiple gen-
eralizers. In this case we can make an arbitrary choice since we set out to calculate one arbitrary
generalizer.
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1. The nodes n andmmatch. That is, they get mapped to the same node
in G and by Lemma 3.3 it must be the root r(G). Since n,m are both
metanodes it follows that r(G) is a metanode.
In order to give the generalizer explicitly, we need to find the similarity
between the (unordered) annotations of n and those ofm.
We are therefore looking for an injective assignment

σ : {1, . . . , k} → {1, . . . , l, ?}

of the m1, . . . ,ml to the n1, . . . , nk such that the sum of the syntactic
distances between ni,mσ(i) is minimal. Here, σ(i) = ? means that ni
does not get assigned to any of the m1, . . . ,ml. More precisely, we
minimize the cost function

k∑
i=1

σ(i) 6=?

d(ni,mσ(i)) +

k∑
i=1

σ(i)=?

c(deleteni
) +

l∑
i=1

i/∈Im(σ)

c(deletemi
)

taking into account the cost for deleting annotations that do not get
assigned.
Determining such a σ of minimal cost is also known as the problem of
finding a minimal-cost matching for which an efficient solution exists,
known as the Hungarian Method [Kuh55]. This requires that the syn-
tactic distances of all the pairs ni,mj are knownwhich can be calculated
recursively.3 Then, one obtains a minimal-cost assignment σ using the
Hungarian Algorithm.
Finally, a generalizer of T, S is explicitly given by�(g1, . . . , gk)where gi
is a generalizer of ni,mσ(i) and σ(i) 6= ?. The syntactic distance between
T, S is the cost of σ.

2. The nodes n andm do not get mapped to the same node in G. One of
them must be mapped to the root node r(G). Without loss of generality,
assume that n is mapped to r(G) and m is mapped to a node below
r(G). Similarly to case I.2, we can recursively calculate the minimal-cost
generalizers g1, . . . , gk between m and the n1, . . . , nk. Let g be one of
g1, . . . , gk which has minimal syntactic distance.
Then, a generalizer of T, S is given by �(g). Its cost is the cost of g
plus the cost of deleting the remaining annotations of n and the cost of
insertAbovem.

III. The first tree T has the root node nwith label ln and children n1, . . . , nk. The
second tree S has the root node m which is a metanode with annotations
m1, . . . ,ml. The root node r(G) of any generalizer of T, S can only be a
metanode. We do a case distinction on where it can stem from; Lemma 3.3
ensures that these cases are exhaustive.

1. The nodes n and m both get mapped to the root r(G). This is only
possible if n is converted into a metanode. We can execute this action
and let the calculation continue recursively from there.

3Note that this creation of many recursive calls constitutes the computational bottleneck of the
algorithm. In Section 5, a solution for alleviating this issue will be given.
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2. Only the ordinary node n is mapped to the root r(G). This means thatm
matches in one of the children of n. Thus, we calculate the generalizers
betweenm and n1, . . . , nk and obtain the syntactic similarity between
T, S as in case I.2.

3. Only the metanodem is mapped to to the root r(G). In this case, nmust
match in one of the children ofm. The syntactic similarity is obtained
as in the case directly before this one.

These are all possible cases that can occur when calculating the syntactic sim-
ilarity between two given trees. However, when calculating the edit distance one
usually does not know yet where the given nodes will end up in the generalizer
as is needed to e.g. distinguish between case II.1 and case II.2.

In such cases, the calculation can branch and calculate the syntactic similarity
under either assumption. Finally, the minimal result obtained from the branches
is returned.
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4 Implementing the recursive
algorithm

Now that we have derived an algorithm for calculating syntactic distance we
can start implementing it in Lean. This and the following section assume the
reader to be acquainted with basic concepts in functional programming.

4.1 Trees with holes in Lean
First of all, we declare an inductive data type for trees with metanodes as follows:

1 inductive Tree (α : Type) :=

2 | node (label : α) (children : List (Tree α)) : Tree α
3 | metanode (annotations : List (Tree α)) : Tree α

This declaration is type-polymorphic which means that the labels of such a
tree can be of any type α. The definition states that a tree is either a node or a
metanode. In the first case, it consists of a label and a list of child subtrees. In
the second case of a metanode, it has a list of annotations which are also of type
tree. Note that there is no separate case for leaf nodes which are covered by the
list of children being empty.

Using pattern-matching one can then start to define simple functions on such
trees, for example, a function that calculates the number of nodes of a given tree.

1 def Tree.numberOfNodes : Tree α → Nat

2 | node _ [] => 1

3 | metanode [] => 1

4 | node v (x::xs) => x.numberOfNodes + (node v xs).numberOfNodes

5 | metanode (x::xs) => x.numberOfNodes + (metanode xs).numberOfNodes

The first line indicates that numberOfNodes takes a tree as an argument and
returns a natural number. The subsequent two lines cover the base case of when
the root node does not have any children or annotations. Since the function was
defined as Tree.numberOfNodes the recursive case in lines four and five can
make use of dotted identifier notationwhich allows us towrite x.numberOfNodes
instead of numberOfNodes x.4 The implementation also includes a function
calculating the number of nodes in a list of trees which can be defined in a
similar way.

In Section 2, we established the convention that syntactic similarity should
mean a pair of a minimal generalizer and its associated cost. Accordingly, a
named tuple can be defined in Lean:

4Note that this function can be implemented in a more efficient way with respect to the number
of recursive calls. The trivial implementation is given here for ease of explanation as will be the case
for the functions to follow.
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1 structure Similarity (α : Type u) where

2 generalizer : Tree α
3 distance : Nat

This simply means that Similarity has two fields, the first is the generalizer
which is a tree and the second one is the distance which is a natural number.
Before turning to the implementation of the algorithm derived in Section 3 we
define the following helper functions:

1 def distances (xs : List (Similarity α)) : List Nat :=

2 xs.map (fun x => x.distance)

3

4 def generalizers (xs : List (Similarity α)) : List (Tree α) :=

5 xs.map (fun x => x.generalizer)

6

7 def cumulativeDistance (xs : List (Similarity α)) : Nat :=

8 (distances xs).foldl (· + ·) 0

9

10 instance : HAdd (Similarity α) Nat (Similarity α) where

11 hAdd c a := {c with distance := c.distance + a}

12

13 def minimalDistanceSimilarityAndIdx :

14 List (Similarity α) → Similarity α × Nat

15 | [x] => (x, 0)

16 | x :: xs =>

17 if x.distance == 0 then -- skip tail calculation if x is optimal

18 (x, 0)

19 else

20 let (tail, idx) := minimalDistanceSimilarityAndIdx xs

21 if x.distance < tail.distance then

22 (x, 0)

23 else

24 (tail, idx + 1)

25 | [] => panic! "Cannot find the minimal distance syntactic

similarity in empty list"

26

27 def minimalDistanceSimilarity

28 (xs : List (Similarity α)) : Similarity α :=

29 (minimalDistanceSimilarityAndIdx xs).fst

The functions distances and generalizers allow us to quickly access the
list of syntactic distances (resp. generalizers) from a list of Similarity objects.
With this, one can easily define the sum of distances over such a list which is
done with cumulativeDistance in lines 7-8.

Subsequently, lines 10-11 define an instance of addition for Similarity and
a natural number. This is done to enable convenient syntax for adding a value
to the distance field of Similarity. For example, if s is of type Similarity one
can write s + 1 to obtain a Similarity with the same generalizer but distance
incremented by one.

Finally, lines 13-23 declare a function which given a list of similarity values
returns the first list element that has a minimal distance value. Moreover, it
returns the index of that entry in the list which will be useful in the definition of
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the syntactic similarity computation function. A version that only returns the
Similarity object and not the index is defined thereafter.

4.2 Computing syntactic similarity
We can now turn to implementing the recursive algorithm from Section 3. The
type signature of the computation function will be as follows:

1 partial def compute [BEq α] (tree1 : Tree α) (tree2 : Tree α) :

SyntacticSimilarity α

The partial keyword indicates to Lean that it should not try to prove the
termination of this function. This is because the termination proof is non-trivial
and would have to be supplied manually. Such a proof would be important
when trying to formalize properties of the function in Lean. However, since we
mainly intend to use it in meta-programming this is not relevant to us.

Moreover, the function takes a typeclass instance [BEq α] as an input. This
means that there needs to exist a notion of (boolean) equality on the type α. Of
course, there is a notion of equality between the symbols in syntactic trees and
therefore this requirement will not lead to issues when using the algorithm later.

We can now turn to the core part of the implementation of this function. The
following code makes use of auxiliary functions that have not been defined yet
but some of which will be explained later.
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1 match tree1, tree2 with

2 | node v [], node w [] => if v==w then

3 〈node v [], 0〉
4 else

5 〈metanode [], 2〉
6

7 | metanode xs, metanode []

8 | metanode [], metanode xs => let generalizer := metanode []

9 let distance := numberOfNodes xs

10 〈generalizer, distance〉
11

12 | node v xs, node w ys =>

13 if v == w && xs.length == ys.length then

14 similarityOfNodesWithIdenticalLabels v xs ys

15 else

16 similarityOfNodesWithDifferentLabels v xs w ys

17

18 | metanode xs, metanode ys =>

19 let case1 := metaNodesMatchAtRoot xs ys

20 let case2 := metaNodesDontMatch xs ys

21 minimalDistanceSimilarity [case1, case2]

22

23 | node v xs, metanode ys

24 | metanode ys, node v xs =>

25 let matchAtRoot := compute (metanode xs) (metanode ys) + 1

26 let onlyNodeMappedToRoot := matchBelowOneOf (metanode ys) xs + 1

27 let onlyMetanodeMappedToRoot := matchBelowOneOf (node v xs) ys

28 minimalDistanceSimilarity [matchAtRoot, onlyNodeMappedToRoot,

29 onlyMetanodeMappedToRoot]

The first line instructs Lean to pattern match on the two input trees tree1
and tree2. Lines 2-5 then implement the base case where the root nodes are
ordinary nodes without children. Recall that if the nodes share a label v then
the generalizer is simply a node labelled v and the distance is zero. In Lean,
this generalizer is expressed as node v [] and one can construct a term of type
Similarity from it by using the angular bracket notation seen in line 3.

The following lines 7-10 implement the base case for metanodes. Note that
even if only one of the metanodes is a leaf and the other has some annotations
there exists a simple formula to compute their similarity: the generalizer between
� and �(x1, . . . , xn)will always be a metanode �without annotations and its
distance is the cost of deleting all x1, . . . , xn. This property is used here to
implement both the base case of two unannotated metanodes and that where
only one metanode is unannotated. Effectively, this creates a shortcut in the
computation which reduces the number of recursive calls needed.

Next, we proceed to the implementations of the recursive case for two nodes
on lines 12-16, for two metanodes on lines 18-21 and for node and metanode
in lines 23 to 29. These make heavy use of (hierarchically layered) auxiliary
functions which, however, need to depend on the definition of compute itself.
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4.3 Structuring the computation through auxiliary functions
A solution to define such functions despite their dependency on compute is the
use of let-expressions. We will describe this for one of the many implemented
functions in more detail. When defining matchBelowOneOf in the code excerpt
below, the keyword let is used to state its definition within the body of compute
itself. This enables (recursively) calling the computation function.

1 partial def compute [BEq α] (tree1 : Tree α) (tree2 : Tree α) :

2 Similarity α :=

3

4 let matchBelowOneOf

5 (t : Tree α) (xs : List (Tree α)) : Similarity α :=

6 if xs == [] then

7 〈metanode [], t.numberOfNodes〉
8 else

9 let pairwiseSimilarity := xs.map (fun x => compute t x)

10 let (minimizer, minimizerIdx) :=

11 minimalDistanceSimilarityAndIdx pairwiseSimilarity

12 let generalizer := metanode [minimizer.generalizer]

13 let distance := minimizer.distance

14 + numberOfNodes (xs.eraseIdx minimizerIdx) + 1

15 〈generalizer, distance〉
16

17 . . .
18 -- further auxiliary definitions omitted here,

19 -- some also making use of matchBelowOneOf

20

21 match tree1, tree2 with

22 . . .

The function matchBelowOneOf is defined on line 4, its type signature is given
on the following line. The recursive call to compute can be found on line 9.

This function implements the calculation that needs to be done in case I.2
of the recursive algorithm. In that situation, the node m matches below the
node n. Therefore, the syntactic similarities between m and the children of n
need to be calculated. Then, an explicit value for generalizer and distance can be
determined. The function matchBelowOneOf performs this calculation having
received the inputm as t and the children of n as xs.

First, a case distinction is made on whether xs is the empty list (line 6). In
that case, a closed-form expression exists for the syntactic similarity which is
returned in line 7.

When xs is nonempty, i.e. n does in fact have children, the Similarity

between t and all of the entries of xs get calculated (line 9). The following
line 10 then determines the syntactic similarity which has the lowest distance
value, and its index in the list. This is used to give concrete values for syntactic
generalizer and distance as is done on lines 12-14. The expressions in the code
correspond precisely to the formulae derived in item I.2 oof Section 3.2. Finally, in
line 15 the thus calculated generalizer and distance are returned as a Similarity
object by means of the angular bracket notation.

Note that a very similar calculation needs to be done in many other cases that
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appear in the recursive algorithm, e.g. case II.2. This justifies the introduction
of such an auxiliary function hence preventing code duplication.

4.4 Concluding remarks on the implementation
Giving a detailed description of all further auxiliary functions that are used
in the computation would be very lengthy; the reader is invited to have a look
at the source code which can be found in ReferenceImplementation.lean in
the project repository. This implementation is in close correspondence with the
derivation of the algorithm in Section 3.2.

Suggestive names and the introduction of several layers of functions have
been used to achieve a high level of readability of the Lean code. Moreover, the
output of the computation function is unit tested on various examples in the
file ReferenceImplementation.lean that is located in the folder tests of the
project repository.

With this we conclude the derivation and implementation of an algorithm
that calculates syntactic similarity; that is, the second goal of the three-step
research program has been accomplished.
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5 A small case study on search
The computation function implemented in the previous section allows us to
calculate syntactic similarity for any two given hole trees. In order to use it in the
context of search it will be necessary to translate Lean terms into the previously
defined hole tree format. It will then be possible to use the notion of syntactic
similarity for search in Lean metaprogramming. Concretely, a tactic will be
implemented by combining syntactic similarity search and Lean’s Aesop proof
tactic [LF23]. This can then be used to test the notion of syntactic similarity on
simple examples; this corresponds to the third step of the three-step research
plan set out in the introduction.

5.1 Translating Lean terms to hole trees
Amathematical term in Lean is represented through the Lean.Expr datatype.
Functions are implemented through currying and repeated application is used
for their evaluation. On the other hand, in the syntactic similarity algorithm
we thought of functions in their uncurried form. Thus, it becomes necessary
to unfold iterated function applications in a Lean expression into a single node
when transforming the expression into a hole tree.

Moreover, the theory on syntactic similarity developed so far does not yet
cover variables or lambda abstractions. In this first implementation, we will
simply replace any variable with a unique symbol. While this certainly does not
reflect a good notion of syntactic similarity for terms that contain variables, it
is still a reasonable compromise allowing us to test the algorithm in its current
form.

Implementing this behaviour is somewhat cumbersome and technical which
is why we will focus on the following excerpt of the Lean code:

1 def unfoldArguments : Expr → Expr × List Expr

2 | Expr.app f x => let (function, arguments) := unfoldArguments f

3 (function, arguments ++ [x])

4 | e => (e, [])

5

6 partial def Lean.Expr.toHoleTree : Expr → MetaM (Tree Expr)

7 | Expr.app f x => do

8 let (function, arguments) := unfoldArguments (Expr.app f x)

9 let functionAsTree ← function.toHoleTree

10 let argumentsAsTrees ← arguments.mapM Expr.toHoleTree

11 pure <| Tree.node (marker "app") (functionAsTree ::

argumentsAsTrees)

12 | . . .

First, a function unfoldArguments is defined which takes a Lean expression
and uncurries it: if the expression is of the form (f x) y then the result will be
(f, [x, y]).

This is used in the definition of the translation function Lean.Expr.toHoleTree.
Given an application f x, this function first unfolds possible iterated applica-
tions to receive separate expressions for the function and the arguments it is
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applied to. Subsequently, the arguments and f are recursively turned into trees.
Finally, one can return a tree which has the label app and f and the arguments
as child nodes. This is important in case that f is not just a function symbol but
itself a complex expression.

The attentive reader might notice that the signature of this function is not
Expr → Tree Expr as onemight expect but Expr → MetaM (Tree Expr). The
identifier MetaM refers to one of the several monads that Lean uses to structure
its various features. Concretely, this monad can give access to information about
Lean’s meta-variables which is helpful for creating the unique symbols that
variables get replaced with as described above.

5.2 Similarity-based Search
The problem of search is to select the fact most helpful for proving given a list
of definitions and theorems. Using syntactic similarity in this context hence
means to calculate the distance between a given proof goal and a list of library
statements. Therefore, it is useful to have a function that given a hole tree tree1
returns which hole tree from a list has the lowest syntactic distance to tree1:

1 def indexOfMinimalDistanceTree [BEq α]
2 (tree1 : Tree α) (ts : List (Tree α)) : Nat :=

3 let similarities := ts.map (fun tree2 => compute tree1 tree2)

4 let (_, idx) := minimalDistanceSimilarityAndIdx similarities

5 idx

Herewe againmake use of the function minimalDistanceSimilarityAndIdx
explained earlier. One can then define a function that calculates the best syntactic
match between a given Lean expression and a list of lemmas. The latter are
referred to via their Lean Name:

1 def bestSyntacticLibraryMatch

2 (e : Expr) (libraryLemmas : List Name) : MetaM Name := do

3 let goalAsHoleTree ← e.toHoleTree

4 let lemmasAsHoleTrees ← libraryLemmas.mapM

createHoleTreeFromLemmaName

5 let indexOfBestMatch := indexOfMinimalDistanceTree goalAsHoleTree

lemmasAsHoleTrees

6 let bestMatch := libraryLemmas[indexOfBestMatch]!

7 pure bestMatch

In lines 3-4 the given expression e and the library lemmas are converted into
hole trees. The function createHoleTreeFromLemmaName does what its name
says; first obtaining the lemma as a Lean expression and then converting it to
the hole tree format.

In Lean, it is possible for one symbol to have multiple meanings, e.g. A+B
can denote addition of natural numbers if A,B ∈ N but it can also mean
adding the number A to all elements of B if A ∈ N and B ⊆ N. The func-
tion createHoleTreeFromLemmaName also includes preprocessing of the given
expression to resolve such type class instances.

The hole tree and list of hole trees thus obtained can be passed to the function
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calculating the index of the best syntactic match. Line 6 retrieves the name of
the lemma that has the lowest syntactic distance to e.

With this, we have programmed a function that can immediately be used
in meta-programming. Any Lean tactic can now make use of the notion of best
syntactic match.

5.3 Aesop plus Search
We can now continue to write a tactic that tests our notion of syntactic similarity.
To do so, we use Lean’s Aesop tactic which performs a tree (proof) search based
on a set of predefined rules. Therefore, Aesop is inherently limited to proving
lemmas that are provable with the given rule set.

This restriction can be overcome by extending it to include syntactic similarity-
based search: the proof state is compared with lemmas in a library and the most
similar one gets added to Aesop’s rule set. A suitable tactic is defined in the
following code excerpt.

1 def libraryLemmaNames := [``Nat.mul_comm, ``Nat.mul_assoc,

``Nat.add_comm, ``Nat.add_assoc]

2

3 elab "aesop_with_search" : tactic =>

4 Lean.Elab.Tactic.withMainContext do

5 let goal ← Lean.Elab.Tactic.getMainGoal

6 let type ← goal.getType

7 let reduced ← withTransparency .instances $ reduceAll type

8

9 let result ← bestSyntacticLibraryMatch reduced libraryLemmaNames

10 let resultIdentifier : Ident := mkIdent result

11

12 Elab.Tactic.evalTactic (← `(tactic| aesop (add unsafe $

resultIdentifier:ident)))

First, a toy library consisting of four lemmas is declared; it includes commu-
tativity and associativity of addition and multiplication of natural numbers.

In line 3, a tactic elaboration function for aesop_with_search is introduced.
This tactic starts by retrieving the current proof goal (lines 5-6). Line 7 reduces
typeclasses in the expression, replacing overloaded symbols with unambiguous
representations.

This allows us to then correctly retrieve the name of the lemma that is the
best syntactic match (line 9). Consequently, Aesop is invoked on line 12 with
the lemma added to the Aesop rule set.

5.4 Testing on toy examples
This tactic can directly be tested on some simple examples. Note that Aesop
has in-built knowledge about natural numbers which it can use while proving.
However, this inbuilt knowledge alone is not sufficient to solve the following
examples directly; (pure) Aesop invoked on these does not succeed in finding a
proof.
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1 example : ∀a b : Nat, a + (b + 0) = b + a := by

2 aesop_with_search

3

4 example : ∀a b c : Nat, (a + b) + c = a + (b + c) + 0 := by

5 aesop_with_search

6

7 example : ∀a b : Nat, ((((a + b) ^ 2) ^ 2) ^ 2) = ((((b + a) ^ 2) ^

2) ^ 2) := by

8 aesop_with_search

Because of Lean’s excellent support for mathematical notation the mathemat-
ical content of these examples is self-explanatory. When running this code, Lean
does not show any warnings or errors which indicates that the tactic succeeds in
proving all examples. That is, Aesop extended with syntactic similarity search
manages to outperform pure Aesop; at least with respect to these examples.

For diagnostic purposes, one can modify the elaboration function to also
print the result of bestSyntacticLibraryMatch to Lean’s output pane. Then
it is possible to verify that the lemmas which are calculated to be the best syn-
tactic match are indeed the expected ones; in the first and third example this is
commutativity of natural numbers and it is associativity in the second one.

5.5 Towards a faster algorithm
The code presented so far in this section accomplishes the third goal set out in
the introduction: to connect the similarity calculation to a metaprogramming
framework such that testing can be performed. Still, the above examples are very
basic and more thorough testing is desirable for a better evaluation of syntactic
similarity.

Unfortunately, the implementation of syntactic similarity presented in Sec-
tion 4 is slow. For example, running it on the third example above takes several
minutes to terminate. Therefore, discussing performance of the algorithm and its
implementation become vital for the further development of syntactic similarity
based on hole-tree editing.

5.5.1 Theoretical considerations on the algorithm
On the theoretical side, it is conceivable that algorithms exist that show a better
asymptotic behaviour as trees get large. In fact, (conventional) tree editing being
fast through the use of dynamic programming techniques was one of the reasons
for its choice as an inspiration for hole-tree editing.

The recursive algorithm given here creates n2 recursive calls when compar-
ing two metanodes with n annotations. Comparing trees only consisting of
metanodes that all have n children thus means that the number of recursive calls
is n2 � dwhere d is the depth of the trees. Here, the notation�means repeated
exponentiation.

This asymptotic behaviour can certainly become problematic, even for small
values of d. However, this worst-case consideration does not take into account
that, typically, the trees occurring in hole-tree editing mostly consist of ordinary
nodes. A detailed assessment would have to take such factors into account.
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However, it is already known that tree editing for trees which have unordered
nodes cannot be done efficiently unless P = NP [ZJ94]. Since annotations of
metanodes are unordered, this also applies to hole-tree editing; it is hence not to
be expected that a polynomial-time algorithm for the calculation of hole-tree
edit distances exists.

Nevertheless, this asymptotic behaviour does not necessarily render hole-
tree editing useless as a basis for syntactic similarity. Since typical syntactic
expressions in human proofs do not exceed a certain length it is sufficient for
a similarity calculation algorithm to perform reasonably fast on terms of that
size. Improvements could potentially be made by enhancing the way syntactic
similarity gets calculatedwhen two (ordinary) nodeswith ordered are compared.
Still, because of the fundamental limitations to what a new algorithm could
achieve we will instead focus on improving implementational aspects.

5.5.2 Implementational aspects
A natural improvement that can be made to accelerate the computation function
is to introduce caching. The same recursive calls can be made several times
within one calculation and if results get cached this can bring first improve-
ments. Moreover, when comparing a given expression ewith a library of results
l1, l2, . . . , ln the cache from calculating d(e, l1) can be reused when calculating
d(e, l2). This will be particularly helpful if l1 and l2 contain similar subexpres-
sions which can be expected to occur frequently in a mathematical library.

Next to this, caching can enable the possibility to reorder the sequence of
recursive calls in the calculation. The implementation presented so far always
calculates all of d(e, l1), . . . , d(e, ln) and these calculations take particularly long
if the value of d(e, li) is high. However, as soon as d(e, l1) is known this gives
an upper bound for the distance of the best match and thus the calculation of
d(e, li) should stop if a value below d(e, l1) cannot be achieved. Next to this, a
clever reordering of the recursive calls can also reduce the number of compute
invocations in case II.1 of the calculation which is that with the worst blow-up
in recursive calls.

This motivates reimplementing the recursive algorithm in a way that uses
caching. This implementation can be found in the file SyntacticSimilarity.lean
of the project repository. A hash function for hole-trees is defined and conse-
quently the results of the syntactic similarity calculation can be saved using a
hash map. Moreover, a parameter maximumDistance is passed to the calculation
function which will abort any calls if the resulting syntactic distance has to
exceed maximumDistance.

These features are implemented in a Lean-idiomatic way through the creation
of a custom monad containing both read-only and modifiable state. The read-
only variables are used for setting parameters of the computation, for instance,
to pass maximumDistance to the computation. Moreover, the modifiable state is
used for caching.

Such a setup is especially useful for extending the algorithm in future. For
example, when introducing the treatment of variables in the similarity calcu-
lation it will be necessary to keep track of what values have been assigned to
a certain variable. Such information can be stored in easy-to-add fields of the
state monad, permitting a high degree of extensibility of the algorithm.

With these changes the previously defined aesop_with_search tactic can
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be observed to perform much faster. The calculation that took several minutes
before now takes place in less than a second. These changes build a basis
enabling further research on hole-tree based syntactic similarity in Lean; with
the algorithm now running at an acceptable speed the introduction of new
features like variables or binders can be investigated.

5.6 A first evaluation
We conclude this sectionwith a small evaluation that demonstrates the capability
of the chosen approach. However, it is important to note that this evaluation
only allows us to get a first impression and further empirical validation becomes
possible and necessary once additional features are introduced.

Moreover, this case study is limited by the capabilities of Aesop which enter
in two ways. Firstly, it is possible that the syntactic similarity algorithm finds a
useful lemma for proving the given goal but Aesop does not manage to complete
the proof evenwith this information. Secondly, there are a lot of simple problems
which Aesop can solve without additional support. It is possible that syntactic
similarity can be helpful in such situations but with the testing setup developed
here this cannot be evaluated.

The evaluation consists of 30 test statements which can be found in the file
tests/Search.lean. They include simple lemmas on natural numbers, integers,
real numbers, sets, functions and groups. The tactic combing Aesop and search
succeeds on 22 examples. In six cases, an appropriate lemma is found by the
search algorithm but Aesop does not succeed in applying it.

In the remaining two tests, the search algorithm does not return an appropri-
ate result. In Lean, universe-polymorphic constants in expressions are qualified
with a universe meta-variable if their universe level is unknown. Such internal
technical representation can obfuscate syntactic similarity unless unification
for meta-variables is part of the similarity algorithm. This is the case in the
two examples where the search algorithm failed to return an appropriate result.
Likely, an improved search algorithm including unification would succeed on
these examples.

To conclude, the small evaluation demonstrates the capability of the chosen
approach yet before it has been developed to its full potential. It is only to be
expected that an enhanced treatment of variables, binders and alike will improve
the results of this case study and bring solving more complicated problems in
reach. The search algorithm described in this thesis has been optimized to
be used in the development of human-oriented automatic provers. Therefore,
future research should not only test it as a component but also evaluate its use
when employed as part of a human-oriented prover.
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6 Conclusion
This thesis has aimed to explore notions of syntactic similarity in the context of
search and human-oriented automatic theorem proving. The primary objective
was to develop a quantitative metric for measuring the similarity between syntac-
tic expressions, along with a complementary qualitative description. Addition-
ally, an algorithm was devised to explicitly calculate these similarity measures.
An implementation in the Lean proof assistant was given which could further
be used for a first evaluation of the notion of similarity.

6.1 Development of a concept of syntactic similarity
The notion of syntactic similarity described in this text is especially useful be-
cause of its intuitive definition based on tree-edit distances. This allows other
researchers to use it in an appropriate way while not having to understand all
the complexity of its implementation. Moreover, the possibility of introducing
further edit actions and changing the cost function permits to modify the notion
of similarity in an intuitive way.

In its form described in this thesis, the concept of syntactic similarity does not
include the treatment of variables or binders. Future research should explore
how unification and syntax tree editing can be combined in order to enable
proper treatment of variables.

Potentially, one could even extend the notion of syntactic similarity consid-
ered here to reflect similarity modulo a theory. This could be achieved by adding
an action which enables rewriting equalities A = B from a background theory
during the tree editing process. Thereby, the distance between two terms that
can be transformed into each other in few (equational) reasoning steps can be
improved.

6.2 Derivation and implementation of a recursive algorithm
A recursive algorithm for calculating the above notion of syntactic similarity is
derived in this thesis. To that end, mathematical properties of the chosen tree
editing actions are investigated. This yields an algorithm that calculates both
a metric between syntactic expressions and a common description that can be
seen to give a qualitative description of syntactic similarity.

This algorithm is implemented using the proof assistant Lean. The imple-
mentation of the many necessary case distinctions is structured through several
layers of auxiliary functions. Moreover, it is validated through a set of unit tests.

Further research can benefit from the extensible setup chosen and could
potentially investigate what improvements to the algorithm can be made on
a theoretical level. However, such research needs to carefully estimate the
achievable benefits ahead of time to consider the fundamental limitations on
the optimal complexity of this algorithm.

6.3 Building a testing framework
Finally, a small testing framework is created that allows us to evaluate syntactic
similarity as a means of search in automated theorem proving. For this purpose,
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programming infrastructure is created that connects the previously defined
similarity calculation function with Lean’s metaprogramming framework.

Using the proof-search tactic Aesop, first tests can be performed which
demonstrate the potential of the derived notion of syntactic similarity. The
computational performance of the calculation which is initially unsatisfactory
is investigated both with respect to theoretical and implementational aspects.
Eventually, an improved implementation is found to perform better while also
being extensible and usable as a basis for further research.

This enables performing a small case-study based on 30 examples of which
the implemented tactic can solve 22 immediately. Most of the observed failures
are due to limitations of the testing setup used, concretely, the search algorithm
finds an appropriate lemma but Aesop cannot readily apply it. Further, it is to
be expected that the implementation of additional features as described above
will enable the algorithm to also succeed on the unsuccessful tests.

There are various ways to extend on implementational aspects of search.
Firstly, syntactic similarity search can be improved through the introduction of
a computationally lean preselection mechanism. This mechanism would filter
the most promising results from a potentially large library and then pass them
on to the more computationally intense syntactic similarity algorithm.

Alternatively, in the spirit of term-indexing [TB06] it is conceivable to store
syntactic similarity information about the library ahead of time. This would
entail saving expressions in a compressed format such that a faster retrieval
of similarity information can be performed. While storing terms in an index
is a classical technique doing so in a way that permits one to read of syntactic
similarity as defined here is not obvious.

Ultimately, the setup could be adapted such that syntactic similarity based
search is more interactively integrated into Aesop. For example, this could
include letting Aesop run the search several times and on different proof goals.

6.4 Outlook
Returning to the overarching goal of this thesis, the advancement of human-
oriented automatic theorem proving, it will be most interesting to see what role
syntactic similarity can play in human-oriented ATP. The author is excited to
find out how syntactic similarity can be integrated in the building of provers
that mimic humans.
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