Charité - Universitätsmedizin Berlin Campus Benjamin Franklin

Aus der Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie Direktorin: Prof. Dr. med. Dipl.-Psych. I. Heuser

Quantitative Untersuchungen zu den Neurotrophinen Nerve Growth Factor und Neurotrophin-3 in einem transgenen Tiermodell der Alzheimer-Demenz

Inaugural-Dissertation
zur Erlangung der medizinischen Doktorwürde
der Charité - Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von Alexander Kühl aus Berlin Referent: Prof. Dr. R. Hellweg Korreferent: Prof. Dr. R. Nitsch

> Gedruckt mit Genehmigung der Charité - Universitätsmedizin Berlin Campus Benjamin Franklin

Promoviert am: 27.5.2005

1. Ei	inleitung	5
1.1	Epidemiologie der Alzheimer-Demenz	5
1.2	Neurochemische Veränderungen im Alzheimer-Gehirn	5
1.3	Histopathologische Veränderungen im Alzheimer-Gehirn	7
1.4	Transgene Tiermodelle der Alzheimer Demenz	8
1.5	Die Familie der Neurotrophine	11
1.6	NGF und NT-3 – Funktion und Rezeptoren	14
1.6	6.1 Rezeptoren von NGF und NT-3	14
1.0	6.2 Physiologische Chemie und Funktionen von NGF und NT-3	18
1.6	6.3 NGF, NT-3 und ihre Rezeptoren im Rahmen der Alzheimer Demenz	25
2. Zi	iele und Fragestellung der vorliegenden Untersuchung	30
2.1	Konzentrationen von NGF und NT-3 in den Gehirnen transgener Mäuse	30
2.2	Optimierung der Methode zur NT-3-Quantifizierung	31
3. M	laterial und Methoden	33
3.1	Versuchstiere	33
3.2	Homogenisation der Gewebeproben	35
3.3	Prinzip der ELISA-Methode	35
3.4	Geräte und Chemikalien	37
3.4	4.1 Geräte	37
3.4	4.2 Chemikalien	37
3.5	Durchführung des ELISA	38
3.5	5.1 NGF-Assay	40
3.5	5.2 NT-3-Assay	41
3.6	Statistische Auswertung	42
4. Er	rgebnisse	44
4.1	Optimierung der Methode zur NT-3-Quantifizierung	44
4.2	NGF-Gehalt einzelner Regionen des Nervensystems transgener APP23-Mäuse	44
4.3	NT-3-Gehalt einzelner Regionen des Nervensystems transgener APP23-Mäuse	60
5. Di	iskussion	73
5.1	Optimierung der Methode zur NT-3-Quantifizierung	73
5.2	Ergebnisse der NT-3-Quantifizierung	74
5.3	Ergebnisse der NGF-Quantifizierung	76

8.	Literatur		118
7.			94
6.			88
	5.3.7	Therapeutischer Einsatz der Neurotrophine im Rahmen der AD?	84
	5.3.6	Korrelation zwischen Plaqueentwicklung und NGF-Erhöhung?	83
	5.3.5	Erniedrigte NGF-Konzentrationen zu Beginn der AD?	83
	5.3.4	Negative Effekte der NGF-Erhöhung?	81
	5.3.3	NGF-Erhöhung als Rettungsversuch?	80
	5.3.2	NGF-Erhöhung durch Gliazellen?	79
	5.3.1	NGF-Erhöhung durch gestörten retrograden Transport?	77

Abkürzungen

Aβ Amyloid β-Peptid

AchE Acetylcholinesterase

AD Alzheimer-Demenz

Ak Antikörper

Apo Apolipoprotein

APP Amyloid Präkursor Protein

ALS Amyotrophische Lareralsklerose

BDNF brain-derived neurotrophic factor

BSA Rinderserumalbumin

Ch1-6 Alternative Bezeichnung der zentralen cholinergen Neuronengruppen nach

Mesulam und Mitarbeitern (1983)

ChAT Cholinacetyltransferase

DNA Desoxyribonucleinsäure

ELISA Enzyme-linked-immunosorbent-assay

GABA γ-Aminobuttersäure

HIV Human Immundeficiency Virus

icv intracerebroventrikulär

IgG Immunglobulin der Klasse G

LTP long-term-potentation

mAb monoklonaler Antikörper (Antibody)

mRNA messenger (Boten)-Ribonucleinsäure

NBM Nucleus Basalis Meynert

NGF nerve growth factor

NT Neurotrophin

p75 niedrigaffiner Neurotrophinrezeptor

pAB polyklonaler Antikörper (Antibody)

PNS peripheres Nervensystem

TNF Tumor-Nekrose-Faktor

Trk hochaffiner Tyrosinkinaserezeptor

ZNS zentrales Nervensystem