
Aus der Klinik für Neurologie 
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin 

 
 

 
DISSERTATION 

 
 

TOWARDS AUTOMATED  
DEEP BRAIN STIMULATION PROGRAMMING 

 
AUF DEM WEG ZUR AUTOMATISIERTEN  

PROGRAMMIERUNG DER TIEFEN HIRNSTIMULATION 
 
 

zur Erlangung des akademischen Grades  
Medical Doctor - Doctor of Philosophy (MD/PhD) 

 
 
 

vorgelegt der Medizinischen Fakultät  
Charité – Universitätsmedizin Berlin 

 
 
 

von  
 
 

Jan Roediger 
 
 
 
 
 

 

Datum der Promotion: 23.03.2024 
 



 



 i 

Table of contents 

List of figures .................................................................................................................. iv 

List of abbreviations ......................................................................................................... v 

Abstract ........................................................................................................................... 1 

1 Introduction ............................................................................................................... 5 

1.1  Subthalamic stimulation as a treatment for Parkinsons’s Disease ..................... 5 

1.2  DBS parameter optimization – current strategies and limitations ....................... 6 

1.3  Imaging-guided DBS programming .................................................................... 7 

1.4  Predictive models for DBS .................................................................................. 9 

1.4.1 “Bottom-up” models ......................................................................................... 9 

1.4.2 “Top-Down” models ....................................................................................... 10 

1.5  Model implementation and study aims ............................................................. 10 

2 Methods .................................................................................................................. 12 

2.1  Datasets ........................................................................................................... 12 

2.1.1 Training data (Dissertation study I) ................................................................ 12 

2.1.2 Retrospective test data (Dissertation study I) ................................................ 13 

2.1.3 Prospective test data (Dissertation study II) .................................................. 13 

2.2 Data analysis ....................................................................................................... 14 

2.2.1 Electrode reconstruction ................................................................................ 14 

2.2.2 Electric field simulation .................................................................................. 15 

2.2.3 Predictive model ............................................................................................ 16 

2.2.3.1 Vector field model ....................................................................................... 16 

2.2.3.2 Statistical validation .................................................................................... 19 

2.2.3.3 Anatomical validation .................................................................................. 19 

2.2.4 Nonlinear optimization ................................................................................... 19 

2.2.5 Improvement of speed and performance ....................................................... 21 

2.2.6 Graphical User Interface ................................................................................ 23 



 ii 

2.2.7 Retrospective application .............................................................................. 24 

2.2.8 Prospective validation (Dissertation study II) ................................................. 24 

2.2.8.1 Endpoints and statistical analysis ............................................................... 25 

3 Results ................................................................................................................... 26 

3.1 Quantitative retrospective validation (Dissertation Study I) .................................. 27 

3.2 Anatomical validation (Dissertation Study I) ......................................................... 27 

3.3 Retrospective StimFit test results (Dissertation Study I) ...................................... 28 

3.4 Prospective validation (Dissertation Study II) ....................................................... 28 

3.4.1 Primary endpoint ........................................................................................... 28 

3.4.2 Secondary endpoints ..................................................................................... 29 

4. Discussion .............................................................................................................. 30 

4.1  Summary of results ........................................................................................... 30 

4.2  Research in context .......................................................................................... 31 

4.2.1 Predictive modelling based on electric field properties .................................. 31 

4.2.2 Anatomical implications ................................................................................. 31 

4.2.3 Mathematical optimization procedures .......................................................... 33 

4.2.4 Software solutions and prospective applications of image-guided DBS 

programming .......................................................................................................... 34 

4.3  Limitations ........................................................................................................ 35 

4.3.1 StimFit algorithm (Dissertation study I) .......................................................... 35 

4.3.2 Clinical trial (Dissertation study II) ................................................................. 36 

4.4  Implications for practice and future research .................................................... 36 

4.4.1 Implications for postoperative treatment management and accessibility ....... 36 

4.4.2 Future perspective of multimodal data integration ......................................... 37 

4.4.3 The need for more rigorous prospective trials ............................................... 38 

5. Conclusions ............................................................................................................ 39 

Reference list ................................................................................................................. 40 



 iii 

Statutory Declaration ..................................................................................................... 50 

Declaration of your own contribution to the publications ................................................ 51 

Publication I: StimFit-A Data-Driven Algorithm for Automated Deep Brain Stimulation 

Programming ................................................................................................................. 52 

Publication II: Automated Deep Brain Stimulation programming based on electrode 

location – a randomized, crossover trial using a data-driven algorithm ......................... 64 

Curriculum Vitae ............................................................................................................ 79 

Acknowledgments ......................................................................................................... 80 

 



List of figures iv 

List of figures 

Figure 1: Deep Brain Stimulation 

Figure 2: Volume of tissue activated in respect to patients anatomy and electrode place-

ment 

Figure 3: Pre-processing pipeline 

Figure 4: Vector field model. 

Figure 5: Optimization procedure 

Figure 6: Graphical user interface of StimFit 

Figure 7: Cross-over design 

Figure 8: Quantitative retrospective validation 

Figure 9: Anatomical validation 

Figure 10: Motor improvement under StimFit and SoC stimulation 

Figure 11: Patient ratings of StimFit and SoC stimulation 

Figure 12: Symptom-specific sweet-spots and stimulation settings 

 



List of abbreviations v 

List of abbreviations 

ANTs   Advanced Normalization Tools 

AUC   Area Under the Curve 

CT   Computed Tomography 

DBS   Deep Brain Stimulation 

DiODe  Directional Orientation Detection 

E-field   Electric Field 

FEM   Finite Element Method 

GLM   Generalized Linear Mixed Model 

GPi   Globus pallidus internus 

GUI   Graphical User Interface 

MDS-UPDRS Movement Disorder Society-Sponsored Revision of the UPDRS 

MNI   Montreal Neurological Institute 

MRI Magnetic Resonance Imaging 

PaCER Precise and Convenient Electrode Reconstruction for DBS 

PD   Parkinson’s Disease 

ROC   Receiver Operating Characteristic 

SoC   Standard of Care 

STN   Subthalamic Nucleus 

UPDRS  Unified Parkinson’s Disease Rating Scale 

VAS   Visual Analogue Scale 

VTA   Volume of tissue activated 

VIM   Ventral intermediate part (of the thalamus) 

 

 



Abstract 1 

Abstract 

Background: Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is an ef-

fective treatment option for patients with Parkinson’s Disease (PD). To maximize treat-

ment benefit, stimulation parameters need to be adjusted individually. Currently, this is 

performed following a trial-and-error approach, which is time-consuming, costly, and chal-

lenging for both patients and medical personnel. The recent introduction of directional 

electrodes has aggravated those difficulties, highlighting the need for more elaborate pro-

cedures to tailor DBS parameter selection to the individual patient. Recent studies sug-

gested that the anatomical location of DBS electrodes could be used to predict beneficial 

stimulation parameters and guide DBS programming procedures. 

Methods: We developed StimFit, a software to automatically suggest optimal stimulation 

parameters in PD patients treated with STN-DBS based on reconstructed electrode loca-

tions. The software was trained on a dataset of 612 stimulation settings (applied in 31 

patients) to predict motor improvement and side-effect probabilities with respect to elec-

trode location and stimulation parameters. Model performance was retrospectively vali-

dated within the training cohort and tested on an independent dataset of 19 PD patients. 

The predictive models were then embedded in a non-linear optimization algorithm to find 

parameter combinations which would maximize predicted therapeutic benefit. A graphical 

user interface was designed to allow for a streamlined use of StimFit and the software 

was made publicly available. Next, StimFit was prospectively applied in 35 PD patients in 

a double-blind, cross-over trial to assess whether motor benefit of StimFit stimulation pa-

rameters would be non-inferior to patients’ standard of care treatment (SoC). Motor per-

formance was evaluated according to the MDS-UPDRS-III under StimFit and SoC stimu-

lation, randomizing the sequence of both conditions in a 1:1 ratio.  

Results: Motor outcome predictions of the data-driven model integrated in StimFit corre-

lated well with observed outcome within the training cohort (R = 0.57, p < 0.001) as well 

as in the retrospective test cohort (R = 0.53, p < 0.001). In our prospective clinical trial 

StimFit and SoC stimulation resulted in clinically significant average motor improvement 

of 43 and 48 %, respectively. Mean absolute difference of motor outcome between both 

conditions was -1.6 ± 7.1 (95% CI: [-4.0, 0.9]) establishing non-inferiority of StimFit at the 

pre-defined margin of -5 points (p = 0.004). 
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Conclusion: Beneficial stimulation parameters can be automatically derived from elec-

trode location using data-driven approaches. Our results hold promise for more efficient 

and streamlined DBS programming procedures, but additional prospective studies are 

required to assess the effects of image-based DBS programming on non-motor domains 

and long-term quality of life. 
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Zusammenfassung 

Hintergrund: Die Tiefe Hirnstimulation (THS) des Nucleus subthalamicus (STN) ist eine 

effektive Therapieoption zur Behandlung des idiopathischen Parkinson-Syndroms (IPS). 

Hierbei müssen die Stimulationsparameter individuell angepasst werden, was derzeit 

durch zeit- und ressourcenintensives Austesten erfolgt. Jüngste Studienergebnisse legen 

nahe, dass Informationen über die anatomische Lage der THS-Elektroden dafür genutzt 

werden könnten, vorteilhafte Stimulationseinstellungen zu identifizieren und somit die 

THS-Programmierung zu erleichtern. 

Methoden: Wir entwickelten eine Software (StimFit), durch welche optimale Stimulati-

onseinstellungen für Patient*innen mit STN-THS auf Basis ihrer individuellen Elektroden-

lagen vorgeschlagen werden können. Hierbei wurde ein Trainingsdatensatz von 612 Sti-

mulationseinstellungen (31 Patient*innen) genutzt, um THS-Effekte in Abhängigkeit von 

Elektrodenlage und Stimulationsparametern zu prädizieren. Vorhersagegenauigkeiten 

wurden retrospektiv innerhalb des Trainingsdatensatzes, sowie in einer unabhängigen 

Testkohorte von 19 Patient*innen quantifiziert. Die validierten Vorhersagemodelle wur-

den dann in einen Optimierungsalgorithmus integriert, um Stimulationseinstellungen mit 

maximalem (prädizierten) therapeutischen Benefit zu ermitteln. Der Algorithmus wurde in 

eine grafische Benutzeroberfläche eingebettet und öffentlich zugänglich gemacht. In ei-

ner doppelblinden cross-over Studie wurde StimFit dann prospektiv an 35 Patient*innen 

mit STN-THS angewandt. Hierbei wurden sowohl die von StimFit vorgeschlagenen, als 

auch die durch traditionelle Optimierungsverfahren ermittelten („Standard of Care“, SoC) 

Stimulationseinstellungen in randomisierter Reihenfolge eingestellt. Die therapeutischen 

Effekte der StimFit-Einstellungen wurden mittels des MDS-UPDRS-III quantifiziert und 

diesbezüglich auf Nicht-Unterlegenheit gegenüber dem SoC untersucht. 

Ergebnisse: Die durch StimFit prädizierten motorischen Effekte korrelierten mit den em-

pirischen Effekten innerhalb der Trainingskohorte (R = 0,57; p < 0,001) sowie in der ret-

rospektiven Testkohorte (R = 0,53; p < 0,001). In der prospektiven Studie verbesserten 

sich die motorischen Symptome sowohl unter StimFit- als auch unter SoC-Stimulation 

(43 und 48 %). Der Summenscore des MDS-UPDRS-III unterschied sich statistisch nicht 

signifikant um -1,6 ± 7,1 (95% CI: [-4,0; 0,9]) zwischen beiden Stimulationskonditionen. 

Die Nicht-Unterlegenheit von StimFit konnte bei einer vordefinierten Grenze von -5 Punk-

ten gezeigt werden (p = 0,004). 
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Schlussfolgerungen: Effektive Stimulationseinstellungen können anhand der Elektro-

denpositionen durch automatisierte datengetriebene Algorithmen abgeleitet werden und 

somit die Optimierung der THS-Parameter erleichtern. Weitere prospektive Studien sind 

notwendig, um Langzeiteffekte und den Einfluss datengetriebener THS-Programmie-

rungsmethoden auf nicht-motorische Domänen und die Lebensqualität der Patient*innen 

zu ermitteln. 
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1 Introduction 

1.1  Subthalamic stimulation as a treatment for Parkinsons’s Disease 

A series of non-human primate and clinical studies in the late 1980s and early 90s, have 

led to the ground-breaking discovery, that high frequency electrical stimulation of specific 

subcortical structures can alleviate symptoms of movement disorders, especially those of 

Parkinson’s Disease (PD). Namely, the ventral intermediate (VIM) part of the thalamus, 

the internal part of the globus pallidus (GPi) and – most importantly – the subthalamic 

nucleus (STN) were identified as targets for therapeutic neuromodulation to improve the 

cardinal features of PD – tremor, bradykinesia and rigidity.1-5 The striking effects of sub-

thalamic stimulation resulted in the approval of STN-DBS surgery as a treatment option 

for PD through the Food and Drug Administration and Conformité Européenne in 2001 – 

only six years after it was first bilaterally applied in three patients.6 In the following decade 

five large randomized controlled studies were conducted (total n = 1,139), consolidating 

the initial findings by 

showing that on average 

patients’ motor symptoms 

improved by 35% (accord-

ing to part III of the Unified 

Parkinson’s Disease rat-

ing scale, UPDRS-III), do-

paminergic medication 

could be reduced by 37%, 

and – ultimately – disease 

related quality of life was 

improved by 21%.7 Since 

then, advancements of 

surgical techniques and 

neuroimaging, along with 

hardware developments 

have steadily increased 

the risk-benefit ratio of the 

Figure 1: Deep Brain Stimulation. A) The DBS electrode targeted at the 

subthalamic nucleus is connected to a subcutaneously implanted pulse gen-

erator. B and C) Anatomical location of a STN-DBS electrode. D) 3D repre-

sentation of an octopolar directional electrode with two segmented levels. 

Panels A to C adapted from Okun et al. 2012 
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therapy, allowing to successively widen its indication and establishing DBS as a funda-

mental treatment for PD.8, 9 One of the most recent technical innovations was the intro-

duction of directional DBS electrodes (Figure 1D).10 Here, electric current can be applied 

across up to eight contacts independently. The tripartite segmentation of two contact lev-

els allows to flexibly shape the electric field and can thereby help to precisely engage 

target structures, while avoiding stimulation of neighboring regions, which could poten-

tially induce side-effects. This has shown to reflect in a widened therapeutic window com-

pared to omnidirectional stimulation.11, 12 In silico simulations have further suggested, that 

more complex DBS electrodes could in theory provide additional benefit by allowing to 

selectivity focus stimulation effects on specific target fibers.13 

 

1.2  DBS parameter optimization – current strategies and limitations 

However, in clinical practice, programming of DBS devices is performed manually by clin-

ical trial-and-error. In other words, stimulation parameters are iteratively adapted by med-

ical personnel based on therapeutic outcome or the occurrence of stimulation-induced 

side-effects. Despite the availability of multiple guidelines to streamline and facilitate pa-

rameter selection of clinical optimization procedures, following factors impose major lim-

itations to this approach.14, 15 First, therapeutic effects show a differential delay to stimu-

lation onset.16 More precisely, tremor improvement in most patients is almost immediately 

visible after stimulation is turned on, whereas 90% of the maximum effects on rigidity and 

bradykinesia are reached after 15 to 30 minutes of stimulation and axial effects are show-

ing an even slower response. Vice versa, wash-out of stimulation effects is observed on 

even larger timescales but with similar succession of different motor symptoms. This 

leads to a complex interplay of carry-over effects when testing multiple settings, making 

it extremely challenging to reliably judge the outcome of varying stimulation parameters 

within a single programming session. Hence, parameter optimization should ideally be 

conducted over the course of several days to evaluate the clinical effects of parameter 

adjustments after sufficient wash-in periods. However, comparability between stimulation 
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settings can then be impeded by symptom fluc-

tuations and medication adjustments, which 

need to be applied in parallel to optimize treat-

ment benefit. To achieve a steadier baseline of 

motor symptoms, Off-medication testing, espe-

cially within the scope of an initial “monopolar 

review” is regularly performed (see panel 

“Monopolar Review”). This, on the other hand, 

can be experienced as very strenuous for pa-

tients and outcome evaluations are therefore – 

in addition to abovementioned carry-over ef-

fects – often blurred by patient fatigue. Taken together, only a few settings can be reliably 

probed by clinical testing, contrasting the overwhelming number of more than 1010 possi-

ble stimulation settings in currently available octopolar electrodes. Hence, technical pos-

sibilities of modern DBS systems cannot be exhausted in clinical practice. Moreover, this 

imposes a serious constraint on potential technical innovations, since current clinical pro-

gramming strategies would not allow to take advantage of the theoretical benefits of more 

complex systems. Lastly, clinical optimization strategies are highly time-consuming and 

require well-trained medical personnel as well as specialized centers, imposing a large 

economic burden and limiting the number of patients which can receive high-quality post-

operative care following DBS surgery. 

 

1.3  Imaging-guided DBS programming 

Algorithms which integrate biomarkers predictive of stimulation outcome could provide a 

possible solution to the current limitations of DBS programming.17-21 A clear link between 

electrode location, stimulation parameters and clinical outcome has been established 

within recent years across various DBS targets and diseases.22-28 More specifically, nu-

merous studies have shown that, based on electrode reconstructions and stimulation pa-

rameters, clinical outcome could be predicted in out-of-sample data, suggesting that elec-

trode location could be used as a predictive feature to derive optimal stimulation param-

eters in individual patients. Importantly, in most of these studies DBS-electrodes were 

Monopolar Review 

Modern DBS devices allow to distribute 

electric current independently across up to 

eight contacts at the tip of the electrode. A 

“monopolar review” is performed to identify 

beneficial contacts by individually selecting 

each contact as a cathode and iteratively 

evaluating DBS effects with increasing stim-

ulation amplitudes while other parameters 

like pulse-width and frequency are kept con-

stant. This way a therapeutic window can be 

identified for each contact. It is defined as 

the range between the minimum stimulation 

amplitude necessary to elicit therapeutic ef-

fects and the amplitude at which stimula-

tion-induced side-effects are observed. 
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reconstructed based on routinely acquired perioperative neuroimaging data (pre-opera-

tive magnetic resonance imaging (MRI) and postoperative computed tomography 

(CT)).29, 30 From a practical perspective this makes a potential implementation of imaging-

guided DBS programming in clinical routine especially feasible, since no additional data 

acquisition or hardware would be required. Previous approaches to integrate neuroimag-

ing data in DBS programming procedures relied on visualizing the anatomical regions 

directly affected by stimulation.21, 31-33 In detail, after reconstructing DBS electrodes and 

specifying stimulation parameters, a volume of tissue activated (VTA) is being estimated 

in relation to the patients’ brain anatomy (Figure 2).34-38 This way, DBS settings can be 

probed in silico, aiming at maximally engaging target regions, while avoiding stimulation 

of anatomical structures that could potentially induce side-effects. While this strategy can 

provide a first impression of potentially beneficial stimulation settings, optimizing DBS 

treatment this way remains challenging for following reasons. First, DBS parameters need 

to be manually adjusted within the software. Considering the overwhelming amount of 

possible stimulation settings, manually identifying optimal parameter combinations this 

way remains time-consuming. Sec-

ond, current software solutions do 

not provide a clear definition of target 

regions or regions of avoidance. 

More specifically, the dorsolateral 

STN has been identified as the opti-

mal target for suppression of akine-

sia and rigidity in PD patients but the 

exact volume that needs to be cov-

ered by the VTA is not clearly de-

fined.24, 39, 40 The same problem ex-

ists for stimulation-induced side-ef-

fects. Stimulation of the posterior re-

gion of the internal capsule – for ex-

ample – is linked to tonic motor con-

tractions but a clear specification of 

this region or the amount of overlap 

that could be tolerated before elicit-

ing clinically relevant side-effects is 

Figure 2: Volume of tissue activated in respect to patients’ 

anatomy and electrode placement. Sensorimotor (blue), as-

sociative (green), and limbic (yellow) regions of the subthalamic 

nucleus (Acolla et al <REF>) shown in respect to the patients 

DBS electrode. Using a simplified “bottom up” model of neuronal 

activation the region affected by a certain stimulation setting 

(contact 7, 3mA, 60µs, 130Hz) is shown in red. Anatomy-guided 

DBS programming aims at identifying settings which maximally 

engage target regions, while minimizing stimulation of regions 

which could induce side-effects (e.g. corticospinal tract shown 

in white). 
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not provided.41 Last – and most importantly, not only the target regions and regions of 

avoidance remain ill-defined, but also the VTA itself represents a vague metric to estimate 

the regions affected by DBS as described in the following section. 

 

1.4  Predictive models for DBS 

1.4.1 “Bottom-up” models 

The VTA is a biophysical model of neuronal activation. While nowadays heuristic approx-

imations are widely used in the field of DBS research, it was originally based on simula-

tions of axon-cable models, which use differential equations to approximate the electrical 

characteristics of neurons (obtained from cellular experiments) to predict their response 

to the electric field generated by a DBS impulse.42-44 The model is used to binarize brain 

tissue as being “activated” if action potentials are elicited in silico within this region. The 

simplicity of visualizing “active” vs “inactive” tissue this way seems practical, not only for 

clinical, but also for scientific use. Multiple studies have applied heuristic approximations 

of these models to map stimulation outcome to anatomical brain regions (probabilistic 

mapping), in order to identify local stimulation “sweet-spots“ or connected brain regions, 

which are linked to optimal therapeutic outcome.22-24, 26, 45 This has shed light onto the 

anatomical structures involved in therapeutic neuromodulation across various diseases 

and opened up new avenues for novel stimulation targets.46-48 However, visual stimula-

tion feedback provided by current (commercial or non-commercial) programming soft-

ware should be interpreted with caution to avoid misinterpretation – and ultimately – 

suboptimal patient treatment for following reasons: First, the underlying biophysical mod-

els are susceptible to parameter modifications like ion-channel properties, fiber orienta-

tion and axon diameters, most of which are unknown in the individual target region.49-51 

Second, biophysical “bottom-up” models do not only lack (or neglect) important 

knowledge about the functioning of the human brain, but whether or not behavioral effects 

can be predicted this way remains controversial in principle. The reductionist belief that – 

given enough knowledge and information about the causal relationships and the state of 

a human brain, behavior could be explained based on the laws of physics – is omnipres-

ent and appealing among neuroscientists but highly debated in other fields of science and 

philosophy.52 The idea that higher-order observations exclusively obey lower-order laws, 

has always been challenged and is especially questionable in complex and nonlinear 
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systems like the human brain, where phenomena at different hierarchical levels recipro-

cally act upon each other, generating a behavior of the system which would not be ex-

plainable by the properties of its components alone (i.e. emergence).53, 54 Despite the 

valuable contribution of computational neurosciences to understand and capture essen-

tial laws of the nervous system at different levels of organization (e.g. single-neuron, syn-

apses, sensory/motor subdomains, cognition and behavior), cross-sectional models (from 

single-cells to human behavior) have yet to be established. In conclusion, biophysical 

models can – if applied carefully – be a powerful tool to gain insights into the mechanism 

of action and anatomical target structures in therapeutic neuromodulation, but may not 

represent the most reasonable approach if the objective is to accurately predict clinical 

outcome to optimize treatment benefit. 

 

1.4.2 “Top-Down” models 

On the other end of the spectrum, there are purely data-driven models, which link input-

output relations without necessarily reflecting biophysical mechanisms. Today’s choices 

of these supervised learning algorithms are manifold ranging from classical regression 

models to support vector machines and artificial neural networks. In the field of DBS these 

applications have been suggested to quantify symptom severity, guide DBS-implantation 

or to predict surgical complications.55-57 Further, many studies have successfully applied 

data-driven models for real-time adaptation of DBS to electrophysiological or kinematic 

features.58-61 Most models in DBS neuroimaging however, strongly rely on “bottom-up” 

VTA estimations and out-of-sample predictions have shown to be susceptible to varying 

statistical implementations.62 This may be the reason why – despite the urgent need for 

streamlined DBS programming – these models have not yet been leveraged to predict 

optimal stimulation parameters in individual patients or validated prospectively in random-

ized controlled trials. 

 

1.5  Model implementation and study aims 

Aiming at overcoming these limitations, we developed a novel data-driven approach, to 

predict therapeutic and adverse stimulation effects based on electrode location and stim-
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ulation parameters.63 Using a hybrid approach between bottom-up modeling of the phys-

ical effects induced by DBS (E-field modeling) and top-down supervised learning (voxel-

based ensemble model, described in detail in section 2.2.3), the model was trained to 

predict improvement of akinetic-rigid symptoms and tremor as well as probabilities of 

stimulation-induced side-effects. In the scope of the first dissertation study the model was 

cross validated within the training cohort as well as retrospectively applied on an inde-

pendent test cohort. An additional validation was performed by comparing the optimal 

stimulation location (“sweet-spots”) according to our model to previously published litera-

ture results. These retrospective anatomical and statistical validations were performed to 

ensure that the model allowed to reliably predict DBS outcome in out-of-sample data. 

However, the overall aim of this study was to develop an algorithm which could suggest 

optimal stimulation parameters in novel patients. In the next step, the trained model was 

therefore embedded in a mathematical optimization procedure, to iteratively adjust stim-

ulation parameters in silico in order to converge to a setting which would maximize pre-

dicted treatment benefit. In other words, the optimizer could – based on out-of-sample 

electrode locations – suggest stimulation settings with maximum predicted motor benefit, 

while minimizing the risk of stimulation-induced side-effects. Within the retrospective test 

dataset, the settings suggested by the algorithm were compared to clinically derived stim-

ulation settings to assess whether clinical settings, which were similar to algorithmic sug-

gestions, were associated with better stimulation outcome. Finally, the algorithm (StimFit) 

was integrated in a graphical user interface for a clear and streamlined use. The code 

was made openly available at https://github.com/JRoediger/StimFit. In the second disser-

tation study stimulation parameters suggested by StimFit were then prospectively applied 

in 35 PD patients and clinical outcome was compared to patients’ standard of care treat-

ment (SoC) in a randomized double-blind cross-over design.64 
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2 Methods 

2.1  Datasets 

85 PD patients who underwent bilateral subthalamic DBS at Charité – Universi-

tätsmedizin or University Hospital Cologne were included for training and cross-validation 

(n = 31)11, 24, retrospective (n = 19)20 as well as prospective (n = 35)64 evaluation of the 

algorithm. At both centers a thorough multidisciplinary evaluation process preceded ste-

reotactic surgery to ensure optimal patient selection. Additionally, intraoperative microe-

lectrode recordings as well as macrostimulations were regularly performed to optimize 

lead-placement. Multiple high-quality MRI-sequences (T1, T2) were obtained preopera-

tively for stereotactic planning and to exclude neurological comorbidities. Postoperatively 

thin-layer CT scans were acquired to rule out major surgical complications like bleeding 

or lead displacement. These perioperative imaging data were used to reconstruct elec-

trode locations in relation to patients’ individual anatomy using Lead-DBS as described 

in section 2.2.1 Electrode reconstruction.29, 30 

A total of 828 stimulation settings applied on 154 electrodes were included in the analyses 

along with their corresponding behavioral effects. All assessments were conducted after 

patients underwent withdrawal of dopaminergic medication for >12 hours. Subjects in-

cluded in these studies gave written informed consent and all studies were approved by 

the local ethics committee to be in accordance with the declaration of Helsinki. 

 

2.1.1 Training data (Dissertation study I) 

Data of two previously published cohorts were used for training and cross-validation of 

the algorithm.11, 24 Briefly, the first cohort was acquired for a study conducted at the Uni-

versity Hospital of Cologne to investigate the optimal stimulation location in PD patients. 

Using two independent test cohorts this study was the first to predict clinical improvement 

of parkinsonian motor symptoms based on local DBS effects, hence paving the way for 

the projects conducted within the scope of this dissertation. The second cohort was pro-

spectively collected within the scope of a study carried out by Dembek & Reker et al. to 

compare the effects of directional and circular stimulation, thus contributing to converging 

evidence showing a therapeutic advantage of directional DBS.  
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Across both studies 31 PD patients underwent standardized monopolar review examina-

tions according to the following protocol: Electrodes were examined by applying current 

on each contact with increasing amplitudes up to five milliampere or until limiting side-

effects occurred. The order of stimulation contacts was randomized, and frequency and 

width of stimulation pulses were set to 130 Hz and 60 µs. At each one milliampere incre-

ment, parkinsonian motor symptoms of the contralateral upper extremities were assessed 

according to items 20 to 23 and 25 (akinesia, rigidity, and tremor) of the Unified Parkin-

son's Disease Rating Scale (UPDRS) part III. Motor improvements were calculated as 

relative change compared to OFF-stimulation impairment. Additionally, the occurrence of 

non-transient side-effects was documented at each step. This way a total of 612 stimula-

tion settings on 46 electrodes (25 Medtronic 3389, 20 Boston Scientific VerciseTM direc-

tional, one Boston Scientific linear 8-contact) were evaluated. 

 

2.1.2 Retrospective test data (Dissertation study I) 

Test data were previously collected from 19 patients who enrolled in a study investigating 

the feasibility of algorithm-guided programming based on kinematic feedback.20 In this 

study Wenzel et al. used an algorithm, which – based on kinematic data of wearable 

finger sensors – suggested different stimulation parameters throughout the programming 

session until convergence to a final solution. These settings were then evaluated accord-

ing to the UPDRS-III in a double-blind cross-over design in comparison to patients’ stand-

ard settings derived from clinical programming. To assign stimulation effects to each elec-

trode (32 Boston Scientific VerciseTM directional, 6 Boston Scientific linear 8-contact), 

UPDRS-III items of the contralateral side of the body were summed (hemi-body score) 

and improvements relative to Off-stimulation baseline were calculated. 

 

2.1.3 Prospective test data (Dissertation study II) 

A prospective randomized double-blind cross-over trial was carried out to evaluate stim-

ulation effects of StimFit settings in comparison to standard of care (SoC) treatment.64 35 

PD patients bilaterally implanted with directional octopolar leads (64 Boston Scientific 

VerciseTM directional, 6 Medtronic SenSightTM) were recruited. Inclusion criteria were the 

diagnosis of PD treated with STN-DBS using directional octopolar electrodes. Patients 

underwent DBS surgery between three months and three years before recruitment and 
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DBS parameter optimization was carried out according to the standard clinical practice at 

Charité Universitätsmedizin. This included monopolar review examinations (see panel 

“Monopolar Review”), titration of stimulation parameters and adaptation of dopaminer-

gic medication during several in- and outpatient visits at specialized facilities. StimFit stim-

ulation parameters were obtained according to the pipeline described in section 2.2.7. 

Resulting SoC settings had to have remained unchanged for a minimum of four weeks 

before study participation. Exclusion criteria were cognitive impairment, neuropsychiatric 

symptoms, severe cerebral atrophy, the inability to undergo overnight withdrawal of do-

paminergic medication or surgical complications like bleedings, infections of the DBS sys-

tem or re-implantation of DBS electrodes. Patients were asked to withdraw dopaminergic 

medication overnight and remained in Off-medication condition during the whole study 

examination. The study was approved by the local ethics committee (EA2/117/19) and 

registered at the German Register for Clinical Trials (https://www.drks.de, Study-ID: 

DRKS00023115).  

 

2.2 Data analysis 

2.2.1 Electrode reconstruction 

DBS electrodes were reconstructed using the default pipeline integrated in the Lead-DBS 

software (Figure 3).29, 30 In detail, rigid (within-patient) registration of preoperative MRI 

sequences was performed using SPM12.65 Similarly, postoperative CT images were co-

registered using Advanced Normalization Tools (ANTs).66 Afterwards, to allow for anal-

yses across patients, images were warped to Montreal Neurological imaging (MNI-152) 

template space.67 This spatial normalization was performed using the non-linear Syn reg-

istration approach as implemented in ANTs. Additionally, a final linear registration called 

“Brain shift correction” was applied to account for potential misalignments between pre- 

and postoperative images caused by air entering the skull during DBS surgery introducing 

a displacement in the target region.68 All registration steps were visually inspected and 

re-run, if necessary, but no manual corrections (e.g. using fiducial registration in 3D Slicer 

or the “warp-drive” tool developed by Oxenford et al69) were performed, to avoid introduc-

ing inhomogeneous distortions which might negatively affect the prediction model de-

scribed in section 2.2.3 Predictive model. Finally, electrode positions and their rotations 

were reconstructed according to the electrode artefact visible in the postoperative CT 
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scans. This was done using the PACER and DiODe algorithms and was manually cor-

rected after visual inspection if necessary.70, 71 

 

2.2.2 Electric field simulation 

Modeling the electric field (E-field) in the target region is an essential step in many studies 

investigating the biophysical interrelations of DBS. The modeling pipeline implemented in 

Lead-DBS was adapted to estimate the electric field generated by specific stimulation 

settings in a time-efficient manner (Figure 3). This pipeline uses the finite element method 

(FEM) to estimate the E-field in the target region for a given combination of stimulation 

parameters. In detail, the pipeline starts by constructing a three dimensional mesh, com-

posed of tetrahedral elements which were generated using “TetGen”.72 Conductivity val-

ues are then assigned to each of these elements (contact material = 108 S/m, insulating 

material = 10−16 S/m, neural tissue = 0.2 S/m). Next, the SimBio/Fieldtrip pipeline was 

used to estimate voltage gradients at each compartment. The amplitude applied to the 

active contact was introduced as a cathodal boundary condition and the outer surface of 

the modeled area served as an anode (since only monopolar stimulation settings were 

used throughout this study). Finally, voltage gradients were re-sampled in MNI space to 

a standard 100 x 100 x 100 grid with a 0.4 mm iso-spacing, centered at the dorsolateral 

STN.  

Estimating the E-field of one stimulation setting this way took approximately two minutes 

on a local workstation. To speed up computational time the additive properties of the E-

field were taken advantage of.73 Specifically, once electrode localizations were com-

pleted, FEM simulations were conducted for each contact with a fixed amplitude of five 

milliampere. Resulting E-fields were saved in the patient folder and used as templates to 

Figure 3: Pre-processing pipeline. After co-registration of perioperative neuroimaging data and normalization to MNI-

space, electrode artefacts were used to localize DBS electrodes in respect to the patients’ neuroanatomy. A volume 

conductor model was generated allowing to estimate E-field gradients in respect to specific stimulation parameters. 

Figure adapted from Roediger et al. 2022 
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compute E-fields of other stimulation configurations (including multi-contact stimulation) 

without the need of computationally expensive FEM simulations. In detail, scalar multipli-

cation and superposition was applied to E-field templates to obtain E-field simulations of 

novel stimulation settings. Formally, E-fields Enew generated by a stimulation amplitude a 

distributed with a relative proportion w across contacts n were computed as: 

 

𝐸𝑛𝑒𝑤 =∑𝑇𝑛 ∗ 𝑤𝑛 ∗
𝑎

𝑎𝑛0

𝑁

𝑛

 

 

Where N is the total number of contacts, Tn is the pre-computed E-field template and an0 

is the stimulation amplitude used for generating the template Tn, which was set to 5 mA. 

This way computational time to simulate an E-field could be reduced by a factor of 

~10,000 to approximately 15 ms. To validate this approach, spatial correlations between 

Enew and corresponding FEM-based simulations were calculated for a randomly selected 

sample of patients and stimulation settings and revealed almost identical solutions (R > 

0.99, p<0.001). 

 

2.2.3 Predictive model 

2.2.3.1 Vector field model 

E-field simulations were used as a model input to predict behavioral effects. Therefore, 

E-field vectors were sampled at 125,000 voxels of an isometric size of 0.8 mm in the 

target. An ensemble modeling approach was applied where each voxel could “vote” on 

the final prediction. Individual voxel predictions were based on the magnitude and direc-

tionality of the E-field vector at this location. In order to represent directionality, each voxel 

was radially divided into 26 sectors of similar size and shape (see Figure 4 for a 2-di-

mensional illustration). Within each voxel an E-field vector would – depending on its di-

rectionality – fall inside one of these sectors. A sector represents the smallest unit of the 

ensemble and contains the statistical model which links the magnitude of the E-field vec-

tor to the behavioral outcome. If – across all training data – an association between the 

voltage gradient and behavioral effects was only present if the gradient was oriented 

along a specific direction, the model of the sector representing this direction could predict 
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stimulation outcome, while the models of other sectors within this voxel would perform 

poorly. In other words, the predicted outcome of a voxel would differ depending on the 

directionality of the E-field vector at that location. Linear mixed models (LMEs) were used 

to model the relationship between vector magnitude and stimulation outcome within a 

sector. To estimate the probabilities of side-effect occurrence a logit link function was 

implemented to model the relationship between vector magnitudes and side-effects as a 

binary response variable (logistic regression). Further, the model needed to be able to 

account for the nested structure of the data (multiple measures per electrode). “Electrode 

ID” was therefore introduced as a “random effect” (random slope and random intercept) 

in our model. Up to this point the section described how within each of the 125,000 voxels 

stimulation outcome was modeled in respect to the magnitude and directionality of the E-

field vectors at each of these locations. In the next step these models needed to be com-

bined to a final ensemble model. Importantly, some voxels might quite accurately predict 

stimulation outcome while others perform badly and introduce noise to the ensemble vote. 

The “certainty” of an outcome prediction can be expressed as a probability density func-

tion and a probabilistic ensemble prediction was obtained by averaging across the prob-

ability density functions of all voxel predictions.  

In summary, using the cohort described in section 2.1.1, we trained a model to predict 

therapeutic effects and side-effect probabilities of stimulation settings based on the prop-

erties of the E-field in the target region. This allowed us to estimate acute stimulation 

effects of varying electrode locations, geometries, and active contact configurations 

across different behavioral effects. 
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Figure 4: Vector field model. According to the pre-processing pipeline depicted in Figure 3, E-fields are being gen-

erated for each stimulation setting of the training cohort. E-field gradients are sampled at 125,000 anatomical locations 

and at each location a GLM is trained to predict stimulation outcome (motor and side-effects) based on vector magni-

tudes and directionalities. Differential effects of vector directionalities are captured by radially dividing each voxel in 

different segments, which is depicted as a 2D representation (polar plots). DBS outcome of novel stimulation settings 

can then be predicted at each voxel individually and stochastically integrated for final ensemble predictions. Figure 

from Roediger et al. 2021 
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2.2.3.2 Statistical validation 

Model performance within the training cohort was assessed applying four-fold cross-val-

idation. In detail training data was divided in four sets of approximately equal size and 

outcomes of each set were iteratively predicted after training the model on the remaining 

three sets. Motor outcome predictions were assessed by calculating Pearson’s correla-

tion coefficient between predicted and observed improvements across patients. Model 

performance regarding predictions of side-effect probabilities was quantified by calculat-

ing the area under the receiver operating characteristic curve (ROC-AUC). Additionally, 

model performance was evaluated on an independent test cohort (section 2.1.2), again 

using Pearson’s R between predicted and observed motor improvements. Noteworthy, in 

contrast to the training dataset evaluation, side-effect predictions could not be tested 

within this cohort, since none of the chronic stimulation settings applied here elicited side-

effects.  

 

2.2.3.3 Anatomical validation 

In order to identify the optimal stimulation target (sweet-spot), model predictions were 

evaluated at different arbitrary stimulation sites. Specifically, a two milliampere stimulation 

was simulated, applied on a circular contact at each of the aforementioned 125,000 loca-

tions in MNI space. Motor improvements and side-effect probabilities were predicted at 

each of these locations. This allowed to identify regions which would – according to the 

model – lead to optimal motor response as well as regions with an increased likelihood 

to elicit side-effects. Results were then visualized in MNI space and compared to previous 

literature findings. 

 

2.2.4 Nonlinear optimization 

Up to this point a method to predict therapeutic and adverse effects of STN-DBS based 

on electrode location was developed and validated, harnessing a voxel-wise ensemble 

model. The overall aim of this project, however, was to establish an algorithm which can 

identify optimal stimulation parameters based on electrode location. Importantly, modern 

DBS devices allow to distribute electric current independently across contacts allowing 

for > 1010 combinatorial possibilities on octopolar electrodes. Thus, a complete explora-

tion of all possible settings would be unattainable, despite applying various techniques to 
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improve computational time (section 2.2.2). Therefore, a nonlinear optimization algorithm 

was implemented to identify optimal stimulation settings in a reasonable amount of time. 

The vector-field model (Figure 4) described in section 2.2.3 represents the core function 

of the solver to compute predicted motor improvement and side-effect probabilities given 

a certain distribution of electric current across contacts (input vector). Iteratively, the 

solver adjusts the values of the input vector to maximize the objective function (motor 

improvement). Further, a maximum side-effect probability is defined by the user (nonlin-

ear constraint). According to the technical restrictions of the DBS device additional con-

straints can be applied to define minimum and maximum current per contact (lower and 

upper bounds) as well as the maximum total current (linear inequality constraint) across 

the input vector. Thus, taking into account the outcomes and constraint violations of pre-

vious iterations, adjustments to the input vector are being made until the solver converges 

to a final solution. Formally, according to MATLAB® syntax the solver fmincon was defined 

as: 

 

[𝐼𝑜𝑝𝑡, 𝑀𝑜𝑝𝑡] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑜𝑏𝑗, 𝐼0, 𝑙𝑐𝑜𝑛, 𝑣𝑙𝑐𝑜𝑛, ~, ~, 𝐼𝑏, 𝑢𝑏, 𝑓𝑛𝑙𝑐) 

 

Here, Iopt described the final solution of electric current applied on each contact to achieve 

the predicted motor improvement Mopt. fobj represents the objective function to calculate 

motor improvement. Nonlinear constraint violations (side-effect probabilities greater than 

the pre-defined threshold) are calculated by the function fnlc, linear inequality constraints 

are defined by lcon in respect to the input vector vlcon (e.g., maximum total current across 

all contacts) and lb and ub define the lower and upper bounds (maximum current per 

contact). Finally, I0 is the stimulation setting used as a starting point for the solver (details 

described in section 2.2.5). 

Importantly, as shown in figure 12, anatomical sweet-spots for tremor and akinetic-rigid 

symptoms were segregated in our model. This implies that stimulation settings which are 

optimal to suppress akinesia and rigidity differ from the settings which lead to a maximum 

suppression of tremor. Subsequently, optimal stimulation settings differ from patient to 

patient depending on the individual symptom profile. This aspect was implemented in the 

algorithm by allowing the user to define the degree to which tremor should be accounted 

for in respect to akinetic-rigid symptoms on a continuous spectrum from 0 % to 100 %. 

With each iteration the algorithm separately predicts akinetic-rigid improvement as well 
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as tremor before combining the results to a final motor improvement score according to 

the user-defined weight. Formally this can be expressed as:  

 

𝑓𝑜𝑏𝑗 = 𝑤 ∗ 𝑓𝑡𝑟𝑒𝑚 + (1 − 𝑤) ∗ 𝑓𝑎𝑘𝑖𝑛𝑟𝑖𝑔 

 

Where, ftrem and fakinrig describe the functions to calculate tremor and akinetic-rigid im-

provements which are then combined to the objective function fobj according to the user-

defined weight w (with 0 ≤ w ≤ 1). The impact of adjusting w on the suggested contact 

selection is visualized in figure 12. 

 

2.2.5 Improvement of speed and performance 

In summary, to obtain a suggested optimal stimulation setting, the solver iteratively 

changes the simulated stimulation settings until pre-defined stopping criteria, such as the 

changes of predicted outcome in previous iterations (function tolerance) or adjustments 

made to the input vector (step tolerance) are fulfilled. In each iteration outcome predic-

tions need to be computed applying the vector field model (section 2.2.3) based on E-

field simulations. This iterative process is computationally demanding, and several 

measures needed to be taken to avoid excessive computational time and ensure that the 

model converges to an optimal solution. 

First, complex ‘hilly’ objective functions impose the risk of the optimizer stopping at a local 

instead of the global minimum. A multi-start strategy was therefore implemented, initiating 

multiple runs of the solver with different starting points, hence increasing the chance to 

find the global optimum with each individual run. To minimize the additional computational 

costs caused by this measure, we implemented the option to carry out multiple runs in 

parallel. Next, selecting starting points close to the optimal solution further increases per-

formance and speed of the solver. This was done by simulating a “monopolar review” 

before running the optimizer. In detail, a grid-search was carried out, calculating motor 

improvements and side-effect probabilities of monopolar stimulation settings on each 

contact with increasing stimulation amplitudes. Optimal monopolar solutions were then 

identified for each contact and passed to the optimizer as starting points. This way a total 

of ~10,000 vector field calculations needed to be executed to obtain suggestions for op-

timal stimulation setting bilaterally. 
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However, bearing in mind 

that each vector field calcu-

lation required an E-field 

simulation as well as up to 

125,000 predictions on a 

voxel-segment level, effi-

ciency was especially im-

portant at this scale. This 

was addressed in two 

ways. First, as described in 

section 2.2.2, E-fields were 

obtained by exploiting their 

additive properties to avoid 

FEM-based simulations. 

This reduced the computa-

tional time for a single sim-

ulation from ~150 to ~0.015 

s. Second, instead of itera-

tively solving GLMs at each 

voxel, millions of GLM solu-

tions were pre-computed 

and stored in memory 

space. Thus, predictions 

could be obtained by iden-

tifying the best-matching 

pre-computed solutions 

leading to a reduction of 

computational time from 

~600 to 0.35 s. Taken to-

gether, the abovemen-

tioned measures allowed to 

obtain stimulation sugges-

tions bilaterally in ~50 min. 

Figure 5: Optimization procedure. To identify optimal multi-contact con-

figurations in a time-efficient manner a two-step optimization procedure was 

established. First, analogously to clinical “monopolar reviews” a grid-search 

was carried out, predicting motor improvements and side-effect probabilities 

of monopolar stimulation settings. Solutions in which predicted side-effect 

probabilities exceed the pre-defined threshold are discarded and shown in 

red. In the second step, optimal monopolar solutions are used as start points 

for a gradient descent algorithm to identify optimal multi-contact configura-

tions. Again, solutions which exceed the side-effect threshold are discarded 

(nonlinear constraint) and represented in red. Figure from Roediger et al. 

2021 
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All computational work was carried out with MATLAB 2020a (The MathWorks Inc., Natick, 

Massachusetts, United States) on a local workstation with an AMD Ryzen 7 3600Hz 8-

Core Processor and 64 GB RAM. 

 

2.2.6 Graphical User Interface 

Using MATLAB® AppDesigner the software was embedded in a Graphical User Interface 

(GUI) for a clear and streamlined use (Figure 6). The App allows to select single patient 

folders or batch process multiple patients at once. Maximum side-effect probabilities as 

well as the degree to which tremor should be accounted for can be adjusted from 0 to 

100 %. Additionally, optimizer settings can be adjusted in a separate popup window and 

saved allowing to evaluate the impact of different solver options, constraints, stopping 

criteria and parallelization on speed and outcome of the computations. Along the same 

lines, progress and results of optimizer iterations can be tracked and visualized live or 

post-hoc for a detailed analysis. The Software was named StimFit and is openly available 

under https://github.com/JRoediger/StimFit. 

Figure 6: Graphical user interface of StimFit. StimFit was embedded in a MATLAB-based graphical user interface. 

Left: After reconstruction of DBS electrodes the patient folder (or multiple patients) can be selected. Side-effects and 

weight of tremor can be adjusted. Right: Different optimizer settings can be selected. The figure shows the default 

settings used in dissertation study II. Figure from Roediger et al. 2022 
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2.2.7 Retrospective application 

StimFit was applied on all 19 test cohort patients. Maximum side-effect probabilities were 

set to 20 %. Tremor was excluded from the predictions (slider set to 0 %) forcing the 

model to find stimulation parameters which would maximize akinetic-rigid symptoms ex-

clusively. Electrodes were reconstructed using Lead-DBS and E-field templates were ob-

tained according to the procedure described in sections 2.2.1 and 2.2.2. A monopolar 

review was simulated to identify optimal starting points for the multi-start optimizer. Out-

come of monopolar stimulation from 0.2 mA to 5 mA was predicted at each contact and 

stimulation amplitudes with best motor improvements were identified considering the pre-

defined side-effect constraint. These solutions were then used as starting points for the 

multi-start optimizer. Optimizer settings are shown in Figure 6. 

 

2.2.8 Prospective validation (Dissertation study II) 

Up to this point we developed and trained a model (StimFit) capable of suggesting optimal 

stimulation parameters in PD patients treated with STN-DBS. While retrospective anal-

yses suggested that model predictions would correspond to good motor symptom control, 

prospective validation was required to draw confident conclusions about the therapeutic 

outcome of StimFit stimulation parameters. We therefore designed a double-blind 2 x 2 

cross-over non-inferiority trial in which standard of care (SoC) as well as StimFit stimula-

tion parameters were applied in a randomized order in 35 PD patients treated with STN-

DBS. The study protocol is described in detail in figure 7. In short, motor scores under 

StimFit, SoC and OFF stimulation conditions were evaluated according to the MDS-UP-

DRS-III after 45-minutes wash-in/wash-out periods. Additionally, patients were asked to 

Figure 7: Cross-over design. Patients were invited for study participation after overnight withdrawal of dopaminergic 

medication. Motor impairment was evaluated in Off-stimulation condition after a 45-minute wash-out period. Standard 

of Care (SoC) and StimFit stimulation settings were then applied in a double-blind randomized manner (1:1). Again, 

motor scores were evaluated after a wash-in period of 45 minutes. Finally, patients were asked to self-assess both 

stimulation conditions and to guess the order of the randomization sequence. Figure from Roediger et al. 2022 
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subjectively rate the overall effects of both stimulation conditions on a visual analogue 

scale (VAS) from 0 = “very unsatisfactory” to 100 = “very satisfactory” and to guess the 

correct order of both conditions. 

 

2.2.8.1 Endpoints and statistical analysis 

The primary aim of this study was to establish non-inferiority of StimFit stimulation in re-

spect to SoC treatment regarding overall motor symptom control (MDS-UPDRS-III). Ac-

cording to Schrag et al. a non-inferiority margin of five points was defined as clinically 

significant.74 A power analysis was conducted based on the cohort described in section 

2.1.2 using a one-sided t-test resulting in a required n of 35. 

Secondary analyses aimed at evaluating potential differences in stimulation response of 

specific motor symptoms. We therefore compared differences in MDS-UPDRS-III sub-

scores of akinetic-rigid, tremor and axial items. Further, patients’ VAS self-ratings and 

estimated battery drain (according to Zhang et al.75) under StimFit and SoC stimulation 

were analyzed using Wilcoxon signed rank tests. A two-sided binomial test was applied 

to assess whether patients could guess the correct sequence of both stimulation condi-

tions above chance level. Significance levels were set to an alpha of 0.05. No adjustments 

for multiple comparisons were made. 
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3 Results 

Within the scope of the two publications included in this dissertation we developed and 

validated a data-driven algorithm which could suggest optimal stimulation parameters in 

PD patients treated with STN-DBS based on reconstructed electrode locations. Following 

steps were conducted: First, a voxel-segment based ensemble model was developed and 

trained to predict stimulation outcome (motor improvement as well as side-effect proba-

bilities) based on simulations of the electric field generated by a stimulation setting in the 

vicinity of the electrode. Next, model predictions were retrospectively validated within the 

training cohort using cross-validation and tested on an independent dataset. Further, the 

model was anatomically validated, by comparing optimal stimulation locations (sweet-

spots) to literature findings. The predictive model was then embedded in a non-linear 

optimization algorithm 

to identify optimal stim-

ulation settings in out-

of-sample patients in a 

time-efficient manner 

(Figure 5). The algo-

rithm (StimFit) was im-

plemented in a GUI for 

a clear and streamlined 

use (Figure 6). Finally, 

a randomized cross-

over non-inferiority trial 

was conducted (Dis-

sertation study II) to 

prospectively assess 

the effects of DBS set-

tings suggested by 

StimFit in comparison 

with those obtained by 

standard clinical optimi-

zation strategies (SoC). 

Figure 8: Quantitative retrospective validation. The predictive model (vector 

field model) was retrospectively validated within the training cohort (cross-vali-

dation, panel A and B) and on an independent test dataset (C). Optimizer solu-

tions (StimFit settings) were compared to clinical settings using VTA dice coeffi-

cients. Results indicated that clinical settings which showed greater similarities 

to StimFit settings were associated with superior clinical outcome. Figure 

adapted from Roediger et al. 2021 
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3.1 Quantitative retrospective validation (Dissertation Study I) 

Predicted motor improvements were correlated to observed improvements within the 

training cohort (R = 0.57, p < 0.001, Figure 8A) as well as in the test cohort (R = 0.53, p 

< 0.001, Figure 8B). Predicted side-effect probabilities resulted in an AUC of 0.84 when 

compared to observed side-effects (Figure 8C).  

3.2 Anatomical validation (Dissertation Study I) 

To identify stimulation locations which would lead to optimal motor improvement as well 

as regions with increased probabilities of eliciting stimulation-induced side-effects 2 mA 

cathodal stimulations were simulated at 125,000 locations in MNI space and predicted 

outcome was 

mapped onto the 

BigBrain atlas (Fig-

ure 9).76 Maximum 

motor improvement 

(26 %) was esti-

mated at MNI coor-

dinate x = 13.5, y = 

-14.0, z = -3.6mm. 

Increased side-ef-

fect probabilities 

mapped to regions 

of the ventral STN, 

substantia nigra 

pars reticulata and 

internal capsule 

compared to lower 

side-effect probabil-

ities in the dorsal 

STN, zona incerta 

and ventral tha-

lamic regions. 

Figure 9: Anatomical validation. Outcome predictions of the vector field model were 

mapped in respect to the BigBrain atlas. In line with previous literature results, optimal 

stimulation sites were identified at the dorsolateral region of the STN and its surround-

ings (black circle). Stimulation sites which were located within the internal capsule and 

ventral STN were associated with increased side-effect probabilities (red shades). 

Figure from Roediger et al. 2021 

 



Methods 28 

3.3 Retrospective StimFit test results (Dissertation Study I) 

StimFit was retrospectively tested using electrode locations of 19 patients from the test 

cohort (section 2.1.2). The software converged to a final solution for both hemispheres in 

3005 s ± 269 s including simulations of monopolar reviews (392 s ± 24 s). Overlap be-

tween clinical stimulation settings and StimFit suggestions was estimated using Dice-

coefficients between resulting VTAs. Large dice coefficients indicate high agreement be-

tween both settings and were associated with better clinical improvement (R = 0.29, p = 

0.041, Figure 8D).  

3.4 Prospective validation (Dissertation Study II) 

35 PD patients implanted 

with directional DBS elec-

trodes at Charité - Universi-

tätsmedizin were recruited 

for study participation be-

tween Oct 2020 and Oct 

2021 (section 2.1.3). All 

study visits were conducted 

within one day according to 

the protocol and all patients 

were included in the pri-

mary endpoint analysis.  

3.4.1 Primary endpoint 

Off-stimulation baseline of 

MDS-UPDRS-III scores 

was 47.3 ± 17.1. Motor 

scores improved to 24.7 ± 

12.4 (48 %) under SoC and 

to 26.3 ± 12.4 (43 %) under 

StimFit stimulation (Figure 

10A), resulting in a statisti-

Figure 10: Motor improvement under StimFit and SoC stimulation. 

Panel A showing the motor scores under Off-, SoC and StimFit stimulation 

conditions. The primary endpoint (absolute difference between StimFit and 

SoC stimulation) is shown in green. Mean + 95% confidence intervals are 

shown in each violin plot. Panel B shows the mean and 95% confidence 

intervals of the total MDS-UPDRS-III scores along with the symptom-specific 

sub-scores. Non-inferiority is established since the margin is below the lower 

95% confidence interval. Figure from Roediger et al 2022 
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cally non-significant advantage of -1.6 ± 7.1 (95% CI: [-4.0, 0.9]) points of SoC stimulation 

(psup = 0.20, n = 35). A one-sided t-test was applied showing that this difference was 

significantly greater than the pre-defined non-inferiority margin of -5 points (pnoninf = 

0.004), thus establishing non-inferiority of StimFit stimulation compared to SoC. 

3.4.2 Secondary endpoints 

Symptom-specific MDS-UPDRS-III sub-scores (Figure 10B) showed no statistically sig-

nificant differences between both stimulation conditions for akinetic-rigid (-0.2 ± 4.4 (95% 

CI: [-1.7, 1.3], p = 0.98, n = 35)) and axial symptoms (-0.2 ± 2.0 (95% CI: [-0.9, 0.5], p = 

0.67, n = 34)). Tremor suppression was significantly better under SoC stimulation (-1.4 ± 

3.3, (95% CI: [-2.7, -0.1], p = 0.046, n= 28)).  

Patients’ self-assessments (VAS from 0 = “very unsatisfactory” to 100 = “very satisfac-

tory”) favored SoC (74 ± 19 points) compared to StimFit (55 ± 24 points) with a mean 

difference of 19 ± 28, 95% CI: [9, 29], p < 0·001, n = 34, Figure 11). 56% of all patients 

correctly identified the randomization sequence, which was not significantly above 

chance level (p = 0.50), thus underscoring that patients remained blinded throughout the 

assessments. 

Stimulation-induced side-effects were observed during initial programming of StimFit set-

tings in six patients (two muscle contractions, two dysarthria, two vertigo). According to 

the protocol stimulation amplitudes were reduced in those cases until side-effects disap-

peared (mean reduction 0.41 ± 0.16 mA ranging from 0.3 to 0.7 mA). Three patients 

showed delayed onset dyskinesias 

after 45 minutes wash-in under Stim-

Fit, two of which were rated as se-

vere. Mild dyskinesias were also ob-

served under SoC stimulation in two 

cases. Energy consumption of SoC 

settings was estimated to be 57 ± 29 

µA in compared to 50 ± 21 µA for 

StimFit (p = 0.5, n = 32). Additional 

demographic and treatment related 

information of individual patients is 

provided in the original publication. 

Figure 11: Patient ratings of StimFit and SoC stimulation. 

Patients were asked to self-assess StimFit and SoC stimulation 

settings on a visual analogue scale from 0 to 100. Mean and 95 

% confidence intervals are shown in each plot. Figure from 

Roediger et al. 2022 
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4. Discussion 

4.1  Summary of results 

The work presented in the scope of this dissertation contains several methodological nov-

elties and provides strong evidence that data-driven models could assist DBS program-

ming based on routinely acquired neuroimaging data. In summary, we developed a pre-

dictive model, trained on a large high-quality dataset (n = 612) to derive stimulation out-

come of STN-DBS in PD patients (n = 31) on a symptom-specific level. Model predictions 

were based on electric field simulations, and crucially considered not only the magnitudes 

but also directionalities of voltage gradients in the vicinity of the electrode. A thorough 

retrospective validation was conducted in three steps. First, k-fold cross-validation was 

applied within the training cohort to obtain predictions of motor improvement and side-

effect probabilities. Predicted outcome was compared to empirically observed outcome 

showing strong correlations between predicted and observed motor response (R = 0.57) 

and classification performance for stimulation induced side-effects (AUC = 0.83). Second, 

the model was applied on out-of-sample data (n = 19) showing similar performance for 

motor outcome predictions (R = 0.53). Finally, we simulated DBS at 125,000 anatomical 

locations in MNI space, mapping predicted outcome to identify regions with optimal motor 

response or increased probabilities of stimulation-induced side-effects. The “sweet-spots” 

and regions of avoidance identified this way lined up well with literature results.24, 30, 39, 40 

In the next step the trained and validated model was used to identify optimal stimulation 

settings in out-of-sample patients based on electrode location. This was done by itera-

tively simulating varying stimulation settings, obtaining predicted motor improvements 

and side-effect probabilities in each iteration. In order to converge to an optimal solution 

in a time-efficient manner, a multi-start gradient descent optimization algorithm was ap-

plied. The algorithm (StimFit) could now automatically suggest optimal stimulation param-

eters within ~50 minutes of computation time after electrode reconstructions were pro-

vided. StimFit is the first software which can automatically suggest optimal multi-contact 

stimulation settings for DBS. It was embedded in a graphical user interface (Figure 6) 

and made publicly available under https://github.com/JRoediger/StimFit. The second dis-

sertation study aimed at prospectively comparing the imaging-derived settings suggested 

by StimFit to standard of care (SoC) treatment in a cross over, non-inferiority trial. This 

https://github.com/JRoediger/StimFit
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study represents the first randomized controlled trial assessing an automated DBS pro-

gramming algorithm. 35 PD patients were recruited for study participation according to a 

previously conducted sample size calculation and all patients were included in the final 

analysis. We found that both StimFit and SoC stimulation settings resulted in significant 

motor improvement compared to OFF-stimulation baseline (43 and 48%). Importantly, no 

statistically significant difference was found between both stimulation conditions and non-

inferiority of StimFit stimulation was established.  

 

4.2  Research in context 

4.2.1 Predictive modelling based on electric field properties 

Large, randomized trials have reported average effects of subthalamic stimulation on mo-

tor symptom control in PD patients ranging from 25 to 49 %.7 However, between individual 

patients DBS outcome is highly variable. Recent studies were able to explain between 14 

to 37 % of outcome variance by electrode placement and stimulation parameters.24, 26, 30, 

77, 78 The performance of these image-based predictive models is highly dependent on 

the underlying sample characteristics and processing pipelines.30, 62 Most studies have 

strongly relied on bottom-up VTA models, which are – from a theoretical standpoint – not 

ideal to maximize explained outcome variance, as argued in section 1.4.1. One study has 

applied an E-field based approach to predict STN-DBS outcome and indicated a slight 

advantage over approaches that build upon binary VTA models.30 The model which was 

developed and trained in the first dissertation study has – for the first time – integrated 

directionalities of E-field gradients in addition to vector magnitudes. This has resulted in 

an overall R2 of predicted motor improvement of 32 % within the training cohort and 28 

% in an independent test cohort, highlighting that alternatives to VTA-based approaches 

can perform well and should receive greater attention by the field. 

 

4.2.2 Anatomical implications 

Mapping predicted outcome of our trained model in MNI space showed that the optimal 

location for motor symptom control was situated at the dorsolateral border of the STN. 
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This part of the STN is con-

sidered the sensorimotor 

part (Figure 2), which re-

ceives cortical afferents pri-

marily from M1 and within 

this region electrophysiolog-

ical abnormalities are most 

frequently observed in PD 

patients.79 The anatomical 

findings consolidate previ-

ously identified “sweet-

spots” for STN-DBS.24, 28, 39, 

40, 46, 80 To identify symptom-

specific sweet-spots, the 

analysis was repeated after 

training the model on tremor 

or akinetic-rigid items of the 

UPDRS-III exclusively (Fig-

ure 12A and B). The opti-

mal location for suppression 

of akinesia/rigidity again re-

sided in the sensorimotor STN. The sweet-spot for tremor suppression, however, was 

located slightly more dorsal and posterior in the zona incerta close to the ventral interme-

diate nucleus of the thalamus. The peak coordinate is located near the dentato-rubro-

thalamic tract. Studies in essential tremor patients with thalamic DBS have shown that 

the proximity of active DBS contacts to this tract correlates with tremor control.22, 81-83 

Interestingly, this seems to be the case across various diseases, including multiple scle-

rosis, dystonic tremor as well as PD.24, 84, 85 The anatomical segregation of symptom-

specific sweet-spots in PD has important consequences for automated and image-guided 

DBS programming, since it impacts the optimal contact selection depending on the symp-

tom profile of the patient (Figure 12C and D).86 

 

Figure 12: Symptom-specific sweet-spots and stimulation settings. 

Panels A and B showing the sweet-spots for bradykinesia (purple) and 

tremor (green) covering the dorsolateral STN (orange) and inferior part of 

the ventral intermediate part of the thalamus (VIM shown in grey), respec-

tively. The dentato-rubro-thalamic tract, which is considered the target 

structure, for tremor suppression across diseases is shown in white. Pan-

els C and D show different solutions of StimFit in respect to the target 

symptom (bradykinesia in panel C and tremor in panel D). Figure from 

Roediger et al. 2021. 
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4.2.3 Mathematical optimization procedures 

To identify optimal DBS parameter combinations out of a vast number of combinatorial 

possibilities, non-linear programming has been applied in previous studies. Conolly et al. 

have proposed an algorithm which could optimize multiple objectives and suggested that 

this could be applied using cortical and motor evoked potentials to reduce the DBS pa-

rameter space.87 However, the clinical utility of these electrophysiological biomarkers re-

mains elusive. In a recent pilot study, a constrained optimization algorithm was applied in 

15 patients to optimize parameter selection for tremor control based on kinematic feed-

back.61 This has resulted in tremor suppression which was comparable to that achieved 

by clinical optimization. For other parkinsonian symptoms however, algorithm-guided op-

timization based on kinematic feedback has been less successful.20 Here, utilizing neu-

roimaging to identify beneficial DBS settings might be more promising. This has been 

attempted in several studies, in which biophysical models of axonal activation were ap-

plied in mathematical optimization procedures to identify parameter combinations which 

would maximally engage pre-defined target regions, while avoiding structures that could 

potentially induce side-effects.88-91 While these studies were carried out with great meth-

odological detail, they still face the conceptual barriers of mechanistic bottom-up models 

and therefore seem suboptimal for translational purposes. In the first dissertation study 

we have, for the first time, embedded a trained and validated data-driven model in a non-

linear optimization algorithm to identify optimal DBS parameter combinations in out-of-

sample patients. This was done in a two-stage optimization procedure, in which an opti-

mal monopolar solution was identified first (grid-search of 200 settings per electrode), 

before exploring more complex multi-cathode solutions (Figure 5). In a way, this resem-

bles clinical optimization strategies, in which a monopolar review is conducted first before 

multipolar settings are considered (panel “monopolar review”). Using optimal monopo-

lar solutions as starting points for the gradient descent optimization algorithm has multiple 

advantages. First, the starting points are closer to the optimal solution, hence reducing 

the number of iterations necessary for convergence making the search more time effi-

cient. Along the same lines, starting close to the global optimum reduces the risk of con-

vergence to a local minimum. This was additionally tackled by using multiple starting 

points (optimal monopolar solution for each contact). Last, the two-step procedure guar-

anteed that complex multi-cathode solutions were only suggested if their predicted out-

come exceeded that of monopolar settings. This optimization procedure could be adapted 
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for other applications as well, which for example use probabilistic maps or evoked poten-

tials to optimize DBS parameter selection.   

 

4.2.4 Software solutions and prospective applications of image-guided DBS programming  

Although the idea to guide DBS programming through computational models and neu-

roimaging-derived metrics has already been proposed almost two decades ago, commer-

cial software solutions have only recently reached the market and prospective evaluations 

remain sparse.92 In their seminal publication Frankemolle et al. applied biophysical mod-

els to suggest stimulation settings which would minimize stimulation of nonmotor regions 

of the STN in silico.93 These settings were prospectively applied in ten patients which 

then underwent a working memory task. Task performance was superior compared to 

standard of care stimulation and they concluded that targeting the sensorimotor STN ex-

clusively with the help of image-based models could reduce cognitive decline associated 

with subthalamic DBS. The software used in this study was bought by Boston Scientific 

and turned into a commercially available product.94 The commercial release has 

prompted prospective studies which emphasized the advantage of software-assisted pro-

gramming in regard to programming time.32, 95-97 However, in order to achieve satisfactory 

therapeutic benefit DBS parameters needed to be re-adjusted based on behavioral feed-

back. One factor that might be at play resulting in suboptimal clinical effects of current 

anatomy-based optimizations strategies might be that they require manual selection of 

parameters in-silico based on VTA-overlap with vaguely defined target structures. Itera-

tive manual steps are not only time-consuming but leave room for different solutions 

based on the anatomical intuition and training of the programmer. StimFit represents the 

first fully automated algorithm to suggest optimal multi-cathode stimulation configurations 

on a data-driven basis. In our randomized prospective trial StimFit settings resulted in 

non-inferior motor improvement compared to patients’ standard of care treatment, with 

only minimal adjustments of stimulation amplitudes (amplitude reduction between 0.3 and 

0.7 mA) in six patients. This suggests that predictive models embedded in mathematical 

optimization procedures can identify beneficial DBS settings, which could drastically re-

duce programming time and resources.  
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4.3  Limitations 

4.3.1 StimFit algorithm (Dissertation study I) 

The design, training and retrospective validation of StimFit is subject to following limita-

tions. First, StimFit is a data-driven model and hence the quality of outcome predictions 

is highly dependent on the underlying training data. The training dataset consisted of 

monopolar review data, which was acquired under standardized conditions. Advantages 

of monopolar review data include an increased intra-individual outcome variation, but 

clinical outcome of DBS settings might partly be influenced by previous settings due to 

short wash-in periods. However, no systematic bias can be expected, since the sequence 

of contact evaluations was randomized in each electrode. 

Next, according to standard monopolar review procedures (panel “monopolar review”), 

training data was acquired under a fixed pulse-width of 60 µs and a frequency of 130 Hz. 

Subsequently, the effects of varying pulse-width or frequencies could not be predicted 

with our model. Along the same lines, the model is restricted to cathodal stimulation set-

tings and cannot derive bipolar configurations. 

Third, motor outcome predictions were tested on an independent dataset from a different 

center, indicating a good generalizability of the model. However, since this test dataset 

consisted of optimized chronic DBS settings, side-effect predictions could not be tested 

independently. In line with literature results, mapping of predicted side-effect probabilities 

showed increased risks for side-effects when stimulating in the substantia nigra and cap-

sula interna. However, the variance of side-effect probabilities within the target region 

was quite small, ranging only from 8 to 13 % at 2 mA stimulation amplitudes. This could 

indicate that predicted side-effect probabilities were primarily driven by stimulation ampli-

tudes opposed to anatomical variation, requiring further investigation and potential adap-

tation of the side-effect models integrated in StimFit. 

Finally, our prediction model relies on E-field simulations. A simple homogeneous and 

isotropic tissue conductivity model was chosen for these simulations to avoid tuning of 

free model parameters resulting from ambiguities in biophysical tissue properties de-

scribed in the literature.98 More complex volume conductor models, as well as adaptations 

of sampling regions and resolution could further improve model performance. 
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4.3.2 Clinical trial (Dissertation study II) 

Limitations regarding the design of our prospective evaluation of StimFit include the fol-

lowing. First, this was a single center study conducted at Charité - Universitätsmedizin 

Berlin. Neuroimaging sequences at our center were optimized to not only allow for precise 

surgical targeting, but also to increase precision of electrode reconstructions with our in-

house developed software Lead-DBS. While the software is widely used throughout the 

DBS community around the world, we do not know for certain whether different perioper-

ative imaging protocols would impact the precision of electrode reconstructions and sub-

sequently the performance of StimFit. Multi-center investigations are required to assess 

whether alternative imaging sequences, surgical techniques, or patient cohort character-

istics would impact model performance. 

Next, study visits were conducted within a single day. While this allowed for a head-to-

head comparison of motor performance in OFF-medication states, other endpoints which 

require longer observational periods could not be evaluated. Specifically, disease related 

quality of life in PD patients needs to be assessed in future studies, evaluating patients’ 

activities of daily living across multiple dimensions, e.g. through the Parkinson's Disease 

Questionnaire (PDQ-39). This would require a longitudinal study design, in which DBS 

settings are applied for at least four weeks.  

Finally, our study design does not allow to draw conclusions about potential advantages 

of StimFit-assisted programming with regard to programming time, long-term outcome 

and medication adjustment. For this a randomized controlled trial, in which patients were 

assigned to standard or StimFit assisted programming immediately after surgery would 

be ideal. We believe that the promising results of this proof-of-principle study along with 

the urgent need for better streamlined DBS programming, justify a thorough investigation 

within large longitudinal randomized controlled trials. 

 

4.4  Implications for practice and future research 

4.4.1 Implications for postoperative treatment management and accessibility 

According to estimations of the World Health Organization over 8.5 million individuals 

were living with PD in 2019.99 This number has doubled within the last 25 years and the 

disease burden will continue to rise over the next decades especially in countries with a 

low socio-demographic index.100 Subthalamic DBS is superior to best medical treatment 
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in advanced PD patients as well as in patients with early motor complications and could 

help to drastically decrease disease burden.8, 101, 102 Yet, annually only 12,000 DBS sur-

geries are performed worldwide.103 Reasons for underutilization include lack of appropri-

ate referrals and surgical infrastructure but also concerns about postoperative DBS pro-

gramming, which is perceived as complex and labor intensive.104, 105 Scientific and indus-

trial efforts should therefore focus on making DBS more cost-effective and to unburden 

the complexity of postoperative programming. Current software solutions for image-

guided programming may provide advantages in programming time but continue to re-

quire highly trained and experienced personnel. (Semi-)automated programming strate-

gies could help streamline postoperative management and potentially reduce the number 

of programming sessions and the expertise necessary to obtain optimal therapeutic ben-

efit. 

4.4.2 Future perspective of multimodal data integration 

Within recent years characteristics of local field potentials recorded through the DBS con-

tacts at the stimulation sites have extensively been studied. An excessive oscillatory syn-

chronization in the beta frequency band (13-30 Hz) has been observed in PD patients 

and linked to severity of motor symptoms.106 Interestingly, this pathological synchroniza-

tion can be disrupted through therapy (stimulation as well as medication) which correlates 

with improvements in motor symptoms.107, 108 Additionally, the successful use of beta 

power as a biomarker for adaptive DBS strongly suggests its potential use for guided 

programming.109, 110 While previously LFP-recordings were only possible through exter-

nalization of DBS electrodes in the immediate postoperative interval, novel neurostimu-

lators allow to record in chronically implanted patients with easy access to electrophysio-

logical recordings on the patient programmer tablet.111 First steps have been taken to 

integrate electrophysiological and imaging markers demonstrating that the combination 

of both modalities could outperform unimodal approaches.19 Additional integration of in-

traoperatively recorded electrophysiological signals or evoked potentials could further en-

hance model predictions.21, 112 Further, guided DBS parameter optimization based on kin-

ematic feedback has previously been proposed. Wearables can be used to identify brad-

ykinetic states as well as tremor severity suggesting that additional integration of kine-

matic data could further tailor DBS parameter selection, potentially fully automated in a 

closed-loop design.61, 113 Finally, integrating demographic and clinical data into predictive 

models has shown to increase predictive accuracies.26, 30 For subthalamic DBS in PD 
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patients, this is particularly relevant for the presence of tremor, which seems to be opti-

mally controlled in a region more posterior and dorsal to the sweet-spot for akinesia and 

rigidity and would therefore impact optimal contact selection (Figure 12A and B). StimFit 

already allows to adjust parameter optimization with respect to tremor severity (Figure 6) 

and integration of electrophysiological information is planned. However, whether this 

would indeed further improve outcome of automated or guided DBS programming needs 

to be addressed in future prospective trials. 

4.4.3 The need for more rigorous prospective trials 

In recent years, an overwhelming number of studies has mapped various DBS effects 

(motor symptoms, quality of life, cognitive and autonomic effects, mood, etc.) to local 

brain regions or networks across various neurological and psychiatric disorders.46 Despite 

the translational value of these findings to improve DBS therapy, prospective applications 

remain sparse. This is especially worrying since commercial software solutions for image-

guided programming are increasingly promoted for clinical use. High-quality clinical trials 

are required to guarantee optimal treatment benefit for the patients and could also con-

tribute back to fundamental research by identifying valid processing pipelines and mod-

els. The prospective study conducted within the scope of this dissertation (study II) rep-

resents the largest double-blind trial to assess DBS programming based on neuroimaging 

data. Despite the promising results, further large randomized controlled trials are required 

to consolidate the findings, address unanswered questions (e.g., impact on quality of life, 

overall programming time), identify optimal strategies to integrate image-based program-

ming in clinical routine and to improve current software solutions (e.g., multimodal data 

integration). 
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5. Conclusions  

Within the two studies presented in this dissertation we developed a novel algorithm to 

suggest beneficial DBS parameters in an automated fashion based on neuroimaging 

data. The algorithm was tested retrospectively and in a prospective clinical trial yielding 

promising results, indicating that image-based DBS programming could achieve motor 

symptom control comparable to standard clinical treatment. Integrating this approach into 

clinical routine could reduce programming time and resources, but additional longitudinal 

studies are required to draw final conclusions about the applicability and long-term out-

come of automated image-guided programming strategies.
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