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Abstract

This thesis is concerned with the study of some tessellations (or subdivisions) of the plane
or of the space and their relation to some optimization problems. Several of the results have
a combinatorial flavor, whereas others are strongly connected to the geometry underlying the
corresponding problems. The work combines theoretical statements with applied implications
and related algorithms, making use of linear algebra, convex geometry, graph theory and many
other tools from discrete and computational geometry.

Regular subdivisions are tessellations resulting from the projection of the lower faces of a
polyhedron. In the first part of this thesis, we generalize regular subdivisions introducing the
class of recursively-reqular subdivisions. Informally speaking, a recursively-regular subdivision
is a subdivision that can be obtained by splitting some faces of a regular subdivision by other
regular subdivisions (and continue recursively). We also define the finest regular coarsening
and the regularity tree of a subdivision. We derive several properties of these two objects,
which reflect certain structure in the class of non-regular subdivisions. In particular, the finest
regular coarsening of a subdivision is the regular subdivision that is (in a sense) most similar
to it. We show that the class of recursively-regular subdivisions is a proper superclass of the
regular subdivisions and a proper subclass of the visibility-acyclic subdivisions (in the sense
of an acyclicity theorem by Edelsbrunner). We also show that there exist point sets whose
recursively-regular triangulations are not connected by geometric bistellar flips.

We then derive several algorithms related to the studied objects, and point out applications
of the main results. In particular, we present relations to tensegrity theory, data visualization,
and graph embedding problems. Special attention is paid to the problem of covering the space
by placing given floodlights at given points, for which we extend results known since 1981 and
discuss two variants of the original problem.

The second part is concerned with the study of optimal partial matchings for pairs of point
sets under translations. First, we regard the least-squares cost function. The best approach
to this problem so far is to construct (and explore) a particular tessellation of the space of
translations. In every tile of the tessellation there is one matching that is optimal for any
position of the point sets corresponding to a translation in that tile. We give the first non-trivial
bound on the complexity of this tessellation in dimensions two and higher, and study several
structural properties that lead to algorithms whose running time is polynomial in the size of the
larger set.

We address then the analogous problem under the bottleneck cost function. This cost func-
tion assigns to every matching the largest distance defined by a matched pair of points. An
associated tessellation is shown to have polynomial complexity. This result, together with graph-
theoretical tools, allows us to obtain efficient algorithms for the computation of the corresponding
minimum under translations that are sensitive to the size of the smaller of the two sets. The
lexicographic variant of the bottleneck cost is analyzed as well.

Finally, we explore natural directions for the generalization of the problems of matching
under translations to which many of our results extend.



Zusammenfassung

In dieser Arbeit betrachten wir Parkettierungen (man sagt auch Unterteilungen) der Ebene
und des Raumes sowie ihren Zusammenhang mit verschiedenen Optimierungsproblemen. Einige
der Resultate sind kombinatorischer Natur, andere wiederum nutzen stark geometrische Eigen-
schaften der Probleme. Diese Dissertation kombiniert theoretische Ergebnisse mit konkreten
Anwendungen und dazugehorigen Algorithmen mithilfe von Methoden der linearen Algebra,
konvexen Geometrie, Graphentheorie und vielen weiteren Hilfsmitteln aus der diskreten und
algorithmischen Geometrie.

Reguldare Unterteilungen sind Parkettierungen, die durch die Projektion der Seiten eines
Polyeders entstehen. Im ersten Teil verallgemeinern wir regulare Unterteilungen zu rekursiv-
requldren Unterteilungen: eine rekursiv-reguldare Unterteilung ist eine Unterteilung, die durch
rekursives Aufsplitten von Flachen einer reguldren Unterteilung in weitere reguldre Unterteilun-
gen konstruiert werden kann. Darauf aufbauend fithren wir die feinste reguldre Vereinfachung
und den Regularitdtsbaum einer Unterteilung ein. Wir leiten verschiedene Eigenschaften dieser
Objekte her, die die zugrunde liegende Struktur der Klasse der nicht-reguldren Unterteilungen
widerspiegeln. Insbesondere ist die feinste regulire Unterteilung einer Unterteilung die in gewis-
sem Sinne “dhnlichste” regulare Unterteilung. Wir zeigen, dass die Klasse der rekursiv-regularen
Unterteilungen die Klasse der regularen Unterteilungen echt enthilt und andererseits eine echte
Teilklasse der azyklischen Sichtbarkeitsunterteilungen (im Sinne des Acyclicity Theorem von
Edelsbrunner) ist. Wir beweisen aufilerdem die Existenz von Punktmengen, deren rekursiv-
reguldren Triangulierungen nicht durch geometrisch bistellare Flips ineinander iiberfithrt werden
konnen.

In Zusammenhang mit den theoretischen Ergebnissen entwickeln wir mehrere Algorith-
men und stellen verschiedene Anwendungsmoglichkeiten der Hauptergebnisse vor. Insbesondere
zeigen wir Verbindungen der betrachteten Objekte zu der Tensigritatstheorie, der Datenvisual-
isierung und Grapheinbettungsproblemen auf. Im Vordergrund steht dabei das Problem, einen
d-dimensionalen Raum mit Flutlichtern auszuleuchten, die nur an bestimmten Punkten posi-
tioniert werden konnen. Wir verallgemeinern verschiedene, bereits seit 1981 bekannte Resultate
und gehen im Detail auf zwei verschiedene Varianten des urspriinglichen Problems ein.

Der zweite Teil der Dissertation beschéftigt sich mit optimalen partiellen Matchings von zwei
gegebenen Punktmengen, wobei Parallelverschiebungen der ersten Punktmenge erlaubt sind. Zu
Beginn betrachten wir das Problem mit der least-squares-Kostenfunktion. Der beste bekannte
Ansatz fiir dieses Problem ist die Konstruktion einer geeigneten Parkettierung des Raumes der
Parallelverschiebungen. In jeder Zelle der Parkettierung gibt es ein Matching, das fiir alle Posi-
tionen der Punktmengen, die durch die Parallelverschiebungen der Zelle bestimmt sind, optimal
ist. Wir beweisen die erste nichttriviale Komplexitatsschranke fiir solche Parkettierungen in zwei
und mehr Dimensionen und betrachten verschiedene strukturelle Eigenschaften, die benutzt wer-
den koénnen um Algorithmen zu entwickeln, deren Laufzeit polynomial in der Kardinalitdt der
grofferen Punktmenge ist.

Darauf aufbauend betrachten wir das analoge Problem mit der bottleneck Kostenfunktion.
Diese weist jedem Matching die grofite Distanz der gematchten Punktpaare zu. Wir zeigen, dass
eine zugehorige Parkettierung polynomielle Komplexitdt hat. Kombiniert mit verschiedenen
Resultaten aus der Graphentheorie kann so ein effizienter Algorithmus hergeleitet werden, der,
falls Parallelverschiebungen erlaubt sind, ein Matching mit minimalen Kosten berechnet und
dessen Laufzeit sensitiv gegeniiber der Grofle der kleineren Punktmenge ist. Zuletzt wird auch
die lexikographische Variante dieses Problems analysiert.

Abschlielend werden natiirliche Verallgemeinerungen von partiellen Matchings mit Paral-
lelverschiebungen vorgestellt, fiir die viele unserer Ergebnisse weiterhin giiltig sind.
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Introduction

1.1 Motivation

Tessellations are important in many areas of discrete and computational geometry. Some of
them, like Voronoi diagrams, appear also in many other fields. A reason for this fact could be
that subdivisions of the space are a constant in nature; from honeycombs to mud cracks, ranging
over the formation of crystals and the growth patterns of cells.

It may be said that constructing tessellations in the plane or higher dimensions is as fun-
damental as sorting points in the real line since the first operation generalizes, in a sense, the
latter one. Spatial partitions have obvious applications in point location, motion planning, VLSI
design or data visualization. More surprisingly perhaps, they are also useful in other areas such
as geometric optimization, tensegrity theory or shape matching, as we will see. Tessellations
are often the key to convert a question that does not have an obvious discrete formulation into
a finite problem. They can covert geometric problems into combinatorial ones or reduce the
number of candidate solutions significantly. Early examples of these facts are the algorithm
to compute the minimum enclosing circle via the furthest-point Voronoi diagram [99], and the
construction of the Euclidean minimum spanning tree from the Delaunay triangulation [87].
Spatial tessellations appear in clustering problems as well, such as the k-centroid [25] and the
k-center [31] problems. A specially relevant instance for this work is the relation between power
diagrams and the constrained least-squares assignment problem, studied in [13].

This thesis addresses the relation between tessellations and a variety of problems. The
initial motivation for this study are two questions whose partial answers take advantage of
certain properties of particular tessellations. The first one is whether given a set of floodlights
represented by a polyhedral fan and a set of points, there exists a one-to-one assignment of
floodlights to points such that the floodlights cover the space when placed with the apex at
the corresponding point. The second one is whether the partial matching between two point
sets that minimizes the least-squares cost when one of the sets can be freely translated can
be found in polynomial time. Although both problems arise naturally and are easy to state,
they might not have received the attention they deserve. The first one was solved in 1981
for instances in the plane and for regular fans in higher dimensions [61, 92]. There has been
however no progress ever since. Despite being a fundamental question in point matching, the
second problem has been efficiently solved only for equally-sized point sets [110] or in one-
dimensional scenarios [93]. In contrast, for the bottleneck variant of this question, polynomial
algorithms were discovered some time ago [9, 52]. Nevertheless, the solutions found so far were
not sensitive to the size of the smaller set. The purpose of this thesis is to study these problems
and the tessellations underlying them, in order to counter the aforementioned weaknesses and
unknowns of the available solutions.
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1.2 Our contribution

The first part of this thesis is concerned with recursively-regular subdivisions and some related
problems. A subdivision of a point set is a polyhedral complex whose vertices belong to the
point set, and it is regular if it is the projection of the lower faces of a polyhedron. A subdivision
is recursively regular if it is regular or it can be coarsened to a regular subdivision that splits it
into recursively-regular parts. In other words, recursively-regular subdivisions are the ones that
can be obtained by recursively subdividing a point set in a regular manner. We show that, unlike
the regular subdivisions, the recursively-regular subdivisions of a point set are not necessarily
connected by bistellar flips. We introduce two constructions closely related to recursively-regular
subdivisions: the finest regular coarsening and the regularity tree of a polyhedral subdivision.
We provide algorithms for the construction of these objects, which have applications in different
areas that we explore. As the main application, we address the problem of finding a one-to-one
assignment of a set of floodlights to a set of points such that the floodlights cover the space
when translated to the assigned points. The given floodlights are assumed to be the cells of a
complete polyhedral fan. We say that the fan is universal if the floodlights can cover the space
regardless of the given point set. We prove that recursively-regular fans are indeed universal,
and that having a cycle in visibility is sufficient yet not necessary for a fan to be non-universal. It
remains open though to give a characterization of universal fans. We also examine the problem
of deciding, given a polyhedral fan in the plane with assigned positions for the apices of its cells,
whether the translated cells cover the plane.

The second part is mainly concerned with the study of optimal matchings under translations.
Given two point sets A, B C R? with k = |B| < |A| = n, we study the minimization diagram of
the functions f,(t) = Y ,cp b+t — o (b)|?, for all injections o : B < A. We call this polyhedral
complex the least-squares partial-matching Voronoi diagram. This polyhedral complex is only
known to have polynomial complexity when the position parameter ¢ ranges along a line [93].
We provide structural properties and bounds on the complexity of this complex, which lead to
algorithms for its construction and exploration. In particular, for constant k the bounds read
O(n??) for dimension d > 2 and O(n?) in the plane, improving the best previous bound of
O(nF?) for d > 2. However, the bounds are exponential in k. We study also the bottleneck
partial-matching Voronoi diagram, defined analogously for f,(t) = maxep ||b +t — o(b)||?. In
this case, the diagram is polynomial in both n and k, allowing us to derive efficient, k-sensitive
algorithms. We provide procedures for the construction of the diagrams and the computation of
the translations attaining the minimum of the lower envelope of the costs of the matchings. In
addition, we explore generalizations of these Voronoi diagrams to other transformation spaces
and cost functions.

The first part of this thesis is joint work with Rote, available in [75]. The second part
contains results from a note with Keszegh and Henze [70], an article with Ben-Avraham, Henze,
Raz, Sharir, Keszegh and Tubis [19, 20], and a recent work with Henze [68, 69].



Preliminaries

The specific background and literature related to the problems considered is presented at the
beginning of the corresponding parts. We introduce here though general definitions and facts
that will be used throughout the thesis.

2.1 Notation and conventions

For the clarity of presentation, we will use henceforth the notation [n] to refer to the set of
natural numbers {1,...,n}. The d-dimensional Euclidean space will be denoted by R% and | - ||
will denote the Euclidean norm. We will use R4 for a finite set A to denote R4l with an
orthonormal basis labeled by the elements of A. The symbol R* will denote the positive real
numbers, while RZ? will denote the non-negative ones. The bars | - | will generally denote
cardinality except when applied to a polyhedral complex, where they will denote the union of
all its faces.

The term poset is used to denote a partially ordered set (with respect to a certain relation).
The power set of a set A will be denoted by 24. We adopt the usual convention that the result
of applying a function f to a set S of elements in its domain is the set f(S) = {f(s) : s € S}. In
particular, for a set B C R? and a point ¢ € R?, the expression B+t denotes {b-+t : b € B}, and
B —t is defined similarly. The space of real m x n matrices is denoted by R™*", For a graph
G = (V, E) on the vertex set V and set of edges F, an edge {v,u} € E will be abbreviated uv.

2.2 Tessellations, polyhedral complexes and subdivisions

This thesis studies subdivisions and tessellations and how they can be used to derive properties of
certain objects. In Mathematics and Computer Science, there is no agreement on the definition
of tessellation and the term “subdivision” is used in various contexts with different meanings,
as well as “diagram”, “decomposition” or “partition”. In some areas, the term “tessellation” is
reserved for a tiling of some space by a finite number of prescribed prototiles. In this thesis, we
use the following definition.

Definition 2.1. A tessellation of a set S C R? is a finite family of d-dimensional polyhedra,
(called cells) whose union equals S and whose interiors are pairwise disjoint.

Most of our results can be stated using the previous definition of tessellation. However, we
restrict our study most of the time (for the ease of presentation) to objects with more structure:
polyhedral complexes. We introduce now basic definitions concerning these (and related) objects,
referring the reader to the books [3, 45, 47, 109] for more details.

We use the term polytope for a bounded polyhedron, and polyhedral cone refers to the (pos-
sibly translated) intersection of finitely many closed linear halfspaces. A polyhedral cone is
pointed if it does not contain any line.
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Definition 2.2. A polyhedral complex is a finite set S of polyhedra such that
(1) if @ € S and F is a face of @, then F € S, and
(2) forall Q,R € S, QN R is a face of both @ and R.

A polyhedral fan is a polyhedral complex whose elements are cones. A fan is pointed if all of its
cones are pointed. A fan is complete if the union of all its cones is the whole ambient space.

The polyhedra in a polyhedral complex will be called faces. The dimension of a polyhedral
complex is the dimension of its top-dimensional faces. A polyhedral complex is pure if all its
maximal faces have the same dimension. A cell is a top-dimensional face of a pure polyhedral
complex. A facet or wall is a face of co-dimension one in a pure complex. As usual, edges and
vertices are one and zero-dimensional faces in the complex, respectively. The (unbounded) one-
dimensional faces of a polyhedral fan will be called rays as well. The (combinatorial) complezity
of a polyhedral complex is its number of faces. A pure polyhedral complex embedded in R? is
full-dimensional if it has dimension d.

Definition 2.3. A d-dimensional polyhedral complex is regular if its faces are the projection of
the lower faces of a (d + 1)-dimensional polyhedron.

In the first part of the thesis, we will mainly deal with subdivisions of point sets. We will not
need the “bullet proof” definition from [45]. Instead, we will use the following relaxed version.

Definition 2.4. Let A be a finite set of points. A polyhedral subdivision (or subdivision, for
short) of A is a polyhedral complex whose vertices are a subset of A and the union of whose
cells is the convex hull of A. A polyhedral subdivision (or subdivision, for short) of a finite set V'
of vectors is a polyhedral fan whose rays have as directions a subset of V' and whose union is the
positive span of V. A triangulation is a subdivision of a point set consisting only of simplices.

We use the standard notion of a (geometric bistellar) flip between triangulations, see [45,
Section 2.4] and [98]. The set of subdivisions of a point (or vector) set form a poset with the
following relation.

Definition 2.5. Given two complexes S and &', we say that S’ refines S if every face of &’ is
contained in a face of S. We say that S’ is a refinement of S and S is a coarsening of S'.

Our notion of a subdivision and the refinement relation are simpler than the more subtle
definitions in [45, Section 2.3] or in [98]. The differences are not relevant to our results.

Most of the first part of the thesis is concerned with the following generalization of regular
subdivisions, for which we give here a tentative, informal definition.

Definition 2.6. A polyhedral complex § is recursively reqular if it is regular, or it has a regular
coarsening S’ such that for each cell C' € &', the restriction of S to C' is recursively regular.

In the second part of the thesis we extensively use the following polyhedral complexes.

Definition 2.7. Given a finite set H of hyperplanes in R?, the arrangement of H is the poly-
hedral complex whose cells are the closure of the connected components of the set

R\ ( U h> :
heH
The duality transformation relating a set of points with a set of hyperplanes via polar

reciprocity with respect to the unit paraboloid identifies the convex hull of a point set with the
lower envelope of the set of dual hyperplanes.
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Definition 2.8. Given a set F' of continuous functions having domain R¢, the lower envelope
of F is the pointwise minimum of the functions in F', that is, the function
Ep(z) = min f(z), for all 2 € RY.
r(z) = min /()

The minimization diagram of F is the partition of R? into maximal connected relatively-open
sets in each of which the value given by Er is attained by a fixed set of functions in F'.

Often, notation is abused identifying the lower envelope and the minimization diagram of
a set of non-vertical hyperplanes with the lower envelope and the minimization diagram of the
functions having them as graphs.

Definition 2.9. Given a set H of non-vertical hyperplanes in R? and k € [|[H|] U {0}, a point
z € R? is at level k with respect to H if it lies above or on exactly k hyperplanes in H. The
k-level of the arrangement A of H is the union of the facets of A whose interior points have
level k. The (<k)-level of A is the polyhedral complex consisting of the faces of A that lie on
or below the k-level.

Voronoi diagrams and their variants are central objects in computational geometry. Details
on many Voronoi-type diagrams can be found in a recent book by Aurenhammer, Klein and
Lee [14]. In this thesis, we will use mainly classical Voronoi diagrams and power diagrams in the
Fuclidean space. We will also take advantage of the prolific literature on higher-order Voronoi
diagrams and its relation to levels in arrangements of hyperplanes.

Definition 2.10. Given a finite point set P C R?, its Voronoi diagram is the polyhedral complex
having cells
Vo={z €R%: ||lz —p|| < |lv —q| for all ¢ € P}, for all p € P.

The order-k Voronoi diagram for k € [|P|] is the polyhedral complex having cells
Vo={zxeR: |z —p||<|z—q| forallpe Sandall ge P\ S} forall S C P with |S| = k.
We will implicitly use later the following observation that can be found, for instance, in [47].

Proposition 2.11. Given a finite set of points P C R%, consider the linear functions
hy(x) = |Ip|* = 2 (@, p), for allp € P.

For a fized k € [|P|], the k-level of the arrangement of hyperplanes associated to these functions
projects onto the order-k Voronoi diagram of P.

2.3 Power diagrams and constrained least-squares assignments

One of the common factors of the main problems considered in this work are least-squares
assignments and their relation to power diagrams observed in [13]. We present this connection
here in order to let the reader taste the flavor of this thesis, which mixes combinatorial and
optimization formulations with more geometric and algorithmic accents.

Definition 2.12. The power diagram of a finite set of points Q C R? (called sites) with assigned
weights w : Q — R is the polyhedral complex whose cells are

Ry={z € RY: 2 — g2 — w(d)? < o — ¢/|2 — w(g)? for all ¢ € Q}, for q € Q.

For every q € @, the locus R, is a polyhedron called the region of q.
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Note that, for every ¢ € @, the value ||z —¢||> —w(d)? is the power of the point = with respect
to a circle centered at ¢ and having radius w(q). This is the reason why the power diagram is
often defined for a set of circles instead of weighted points. For more details on this type of
diagrams, see the survey in [12].

Given a finite point set S and a set Q) of weighted points, we say that an assignment o : S — @
is induced by the power diagram of Q if c=1(q) C Ry, for all ¢ € Q. These assignments are related
to the constrained least-squares assignments, defined as follows.

Definition 2.13. Given a finite set of points @, a function ¢ : Q — N, and a set S of quQ c(q)
points, a constrained least-squares assignment for () and S with capacities ¢ is an assignment
minimizing > o [|b — 7(b)||* among all 7 : S — Q satisfying |77!(q)| = c(q) for all ¢ € Q.

The following proposition compiles parts of the work in [13] that are relevant to our study.

Theorem 2.14 (Aurenhammer, Hoffmann and Aronov [13]). Let Q) be a finite set of points with
weights w: Q — RT and let S be a point set.

(i) Any assignment o : S — Q induced by the power diagram of Q is a constrained least-squares
assignment for Q and S with capacities c(q) = |o~1(q)|, for all ¢ € Q.

(ii) Conversely, if m is a constrained least-squares assignment for Q) and S with capacities c,
then there exist weights w such that w is induced by the power diagram of () weighted by
w.

The analogous result can be stated replacing S by a continuous measure. In particular, the
measure could be uniform in a polytope and the capacities would then be a partition of its
volume. As a consequence, the following theorem can be easily derived.

Theorem 2.15 (Aurenhammer, Hoffmann and Aronov [13]). Let Q be a finite set of points.

(i) For any finite set S of points and function ¢ : Q@ — N such that ) .o c(q) = [S|, there
exist weights w : Q — RY such that the power diagram of Q weighted by w induces an
assignment o : S — Q with |01 (q)| = ¢(q), for all ¢ € Q.

(i) For any polytope P and function ¢ : Q@ — R such that 37 . c(q) = Vol(P), there ewist

weights w : Q — RT such that the power diagram of Q weighted by w induces an assignment
o: P — Q with Vol(c=(q)) = ¢(q), for all ¢ € Q.

This result is considered a Minkowsky-type theorem due to its relation to Minkowsky’s
problem for polytopes. This asks whether, given a list of unit vectors ui,...,u; € R% and a
set of associated values aq,...,a; € R, there exist a polytope having facets fi,..., fi such
that w; is normal to f; and f; has volume «;, for all i € [k]. The answer is affirmative provided
that aquq + - - - + agur = 0 and that the vectors uq,...,u, are spanning. Moreover, if there is
a polytope satisfying the conditions, it is unique up to translation. Several proofs of this nice
result can be found, for instance, in [78] and references therein.

If Kk = |Q| < |S|] = n, a partition as indicated in Theorem 2.15-(i) can be computed in
O(k*nlogn) time by an algorithm given in [6]. For the special case |S| = |Q| = n and ¢(q) = 1
for all ¢ € @, the problem can be formulated as a linear sum assignment problem (described
in Section 8.4) and can be solved using the Hungarian method in O(n?) time.
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and related problems






Introduction to Part 1

In this chapter, we first motivate the study of regular (and recursively-regular) subdivisions and,
afterwards, we review some facts that will be used or referred to later.

3.1 Motivation

Regular polyhedral complexes appear in a wide variety of situations. The minimization diagram
of a set of linear functions, whose regularity follows almost directly from the definition, is a
common instance. Power diagrams are regular complexes as well. It is not hard to see that
an arrangement of hyperplanes is a regular subdivision as well; it is the projection of the lower
envelope of the dual of a zonotope [47]. Yet another remarkable example is the Delaunay trian-
gulation of a point set. A surprising connection is the Maxwell-Cremona correspondence [82],
which relates the regularity of a planar graph to its rigidity as a framework.

Regular subdivisions are quite well-understood even in higher dimensions. Although, as
shown by Santos [98], not all the triangulations of a point set in dimension five and higher are
connected via flips, regular triangulations are, as reviewed in the following section. Another
remarkable result, which holds in any dimension, is that regular subdivisions contain no cycles
in the visibility relations in the sense of [48] (see Section 3.3).

On the other hand, not so much is known about non-regular subdivisions. Several gener-
alizations of regularity have been studied in order to better understand them. For instance,
the subdivisions induced by the projection of a polytope onto another polytope, introduced by
Billera, Filliman and Sturmfels [23], have been extensively studied together with their variants.

Since we will need later several basic results on regular subdivisions, we summarize next the
relevant facts and notation. See the book by De Loera, Rambau and Santos [45] for a detailed
discussion on this topic.

3.2 Regular subdivisions and the secondary polytope

We present here an alternative definition of regular subdivision of a point set, which will simplify
the notation and the proofs in this part of the thesis. In this section, for a point a € R% and a
scalar A € R we denote by (i) € R?*! the tuple (thought as a point) resulting from adding the
coordinate A to a.

Definition 3.1. Let A C R? be a finite set of points. A subdivision S of A is regular if there
exists a height function w : A — R such that each face of S is the projection of a face in the

lower convex hull of
a
AY = : A
{<w<a>> “e }
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The function w will be identified with the vector w € R4. The notation A“ will be used as
a function of a point set A and a height function or vector w. Given a cell C' € cells(S), we will

also use the notation
Aw|cz{< “ > :aeAﬁC}.
w(a)

The following proposition gives local conditions for testing the regularity of a subdivision.

Proposition 3.2. (Folding form [45]) Let A C R? be a finite set of points. A polyhedral
subdivision S of A is regqular if there exists a height function w : A — R such that:

(1) for every cell C € cells(S), the points of A“|c lie in a hyperplane (coplanarity condition),
and

(2) for every wall W = C N D, where C,D € cells(S), the point (w?a)) lies strictly above the
hyperplane containing A“|p, for alla € AN (C\ D) (local folding condition).

We next analyze the conditions in Proposition 3.2 and show how they translate into linear
equations and inequalities. We refer to [45] for more details.

Note that the coplanarity condition for a cell can be translated into a set of linear homoge-
neous equations in the heights of its vertices. Indeed, it is enough to choose an affine basis for
each cell and require that each set resulting from extending this basis with a vertex in the cell
is affinely dependent. Hence, all the coplanarity conditions together restrict the set of possible
height functions w to a linear subspace of R™.

Consider now the local folding condition for a wall W = C' N D with C, D € cells(S). Let
B ={b1,...,bg+1} be a set of spanning vertices of D, and let a € AN (C'\ D). The local folding
condition for W can be expressed as

1 . 1 ... 1 1
’ b b by ... bgy1 a |>0. (3:1)
Lo P b)) o wlbarr) w(a)

By developing the last row of the second determinant, it becomes clear that this condition is
a linear homogeneous strict inequality in the heights of the lifted points. Therefore, the local
folding conditions for all the walls of a subdivision S define together a relatively open cone in
the subspace determined by the coplanarity conditions.

Definition 3.3. The regularity system of a subdivision is the collection of equations and in-
equalities resulting from its coplanarity and local folding conditions. The weak regularity system
of a subdivision is the system resulting of replacing the strict inequality in (3.1) with a weak
inequality. The secondary cone is the set of solutions of the weak regularity system.

Note that the regularity system can be defined for coarsenings of polyhedral complexes, even
if they are not polyhedral complexes (that is, if the “faces” fail to be convex or the tessellation is
not face-to-face). Most of the definitions and statements presented here can be easily generalized
to the case where the initial object A is a set of vectors instead of points. In such a case, the
cells of the complex are cones forming a polyhedral fan whose 1-faces are rays with directions
taken from A.

The local folding (and coplanarity) conditions lose then the row of ones of both determinants
appearing in (3.1) and also one column each, since affine bases are replaced with linear bases. We
will use the term subdivision in an ambiguous manner to stress this fact and focus on point-set
subdivisions in the proofs. Details on this more general framework can be found in [45].
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Regular subdivisions were first studied by Gelfand, Kapranov and Zelevinsky [63], who in-
troduced the secondary fan and the secondary polytope. These two objects encode the com-
binatorics of the refinement poset of the regular subdivisions of a point set. We next give the
necessary definitions to state their main results.

Definition 3.4. The GKZ-vector a(T) of a triangulation 7 of a finite point set A is the vector
o(T) € R4 whose a-th component is

> Vol(0).

Cecells(T)
C>a

The convex hull $(A4) € R4 of all vectors a(7") over all triangulations 7 of A is an (n —d — 1)-
dimensional polytope called the secondary polytope of A.

Theorem 3.5 (Gelfand, Kapranov and Zelevinsky [63]). The secondary cones of the regular
triangulations of a d-dimensional point set A define a (n—d—1)-dimensional complete polyhedral
fan (called the secondary fan of A). The secondary fan of A is the normal fan of 3(A).

As a consequence, the vertices of X(A) correspond to regular triangulations of A and the
edges of X(A) correspond to flips between regular triangulations. This proves, in particular,
that the regular triangulations of A are connected in the graph of flips.

3.3 Edelsbrunner’s acyclicity theorem

We state in this section a theorem by Edelsbrunner on regular subdivisions. The theorem asserts
that a regular subdivision must be acyclic according to the in-front relation, which we define
next.

Definition 3.6. Let x be a point in R? and S,7 € R? be two disjoint convex sets. We say
that S is in front of T with respect to x if there is an open halfline ¢ starting at = so that
So=4NS#g, Ty=€NT # @ and every point of Sy lies between x and any point of Tj.

This relation is called the in-front relation (from x), which is well-defined and antisymmetric
because of the convexity of S and T'. The relation can be defined for a direction as well, when
x is considered to lie at infinity. It can be extended to all the faces of a polyhedral complex. To
do that, the relation between faces is inherited from the relation between their relative interiors,
which are pairwise-disjoint. The definition is similarly extended to polyhedral fans.

Definition 3.7. A polyhedral complex is said to be cyclic in a direction v (or from a point x)
if the in-front relation induced by v (or z) on its open cells contains a cycle. The complex is
called acyclic if it is not cyclic from any point or direction.

A cyclic polyhedral complex is shown in Figure 3.1, together with a point x from which it is
cyclic. The arrows represent the half-lines certifying that ' is in-front of Cy, Cs is in-front of
(3 and (5 is in-front of C1, if the relation is taken with respect to x.

We are finally ready to reproduce the theorem from Edelsbrunner.

Theorem 3.8 (Acyclicity Theorem [48]). Regular polyhedral complezes are acyclic.

In fact, Edelsbrunner proved something stronger: that the in-front relation is acyclic for all
relatively-open faces of a regular polyhedral complex.
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Figure 3.1: A cyclic polyhedral subdivision.

3.4 The Maxwell-Cremona correspondence

We provide in this section an introduction to tensegrity theory in the plane. Tensegrity theory
studies the rigidity properties of frameworks made of bars, cables and struts from a formal
point of view. The Maxwell-Cremona correspondence maps every equilibrium stress of a planar
framework to a 3-dimensional polyhedral surface. We next develop the necessary concepts to
formalize this correspondence.

An abstract framework G = (V; B,C, S) is a graph on the vertex set V' = {vy,...,v,} whose
edge set F is partitioned into sets B, C' and S. The edges in B are called bars, the ones in C
are called cables and the ones in S are called struts. They represent links supporting any stress,
non-negative stresses and non-positive stresses, respectively. A (tensegrity) framework (in R?)
is an abstract framework together with an embedding of the vertices p : V' — R? where we put
p(vi) = p;, for i € [n]. The framework will be denoted by G(p) and p will be thought of as a
point (p1,...,pn) € R?". We can consider the configuration space of G(p) to be

X(p)={(z1,...,2pn) € R?" . |zs — x| = [|pi — pjll, for all vv; € B;
|zi — 2|l < |lpi — pjll, for all viv; € C;
|zi — 2|l > |lpi — pjll, for all viv; € S}. (3.2)

That is, X (p) is the set of embeddings of G preserving the length of the bars, making the lengths
of the cables no longer and the lengths of the struts no shorter than their lengths induced by p.

Definition 3.9. A tensegrity framework G(p) is rigid in RY if there exists an open neighborhood
U C R?" of p such that X (p) NU = M(p) N U, where

M(p) = {(x1,...,2n) € R : ||2; — zj|| = ||pi — p;]|, for all i, 5 € [n]}
is the manifold of rigid motions associated to p.

In other words, a framework is rigid if its only motions respecting the constraints (3.2) are
the motions that rigidly move the whole framework. The study of the quadratic constraints in
the definition of X (p) can be complicated. Because of this, the notion of infinitesimal rigidity
was introduced, which captures the rigidity constraints up to the first order. Consider the system
of linear equations and inequalities obtained by differentiating the constraints in (3.2). If the
solutions of the system correspond only to differentials of motions in the Euclidean group, the
framework is infinitesimally rigid. It is known that infinitesimal rigidity implies rigidity and
that the converse is in general not true.
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Definition 3.10. Given a framework G(p), we say that w : E — R is a proper (equilibrium)
stress for G(p) if the following conditions hold:

(1) w(vvj) =0if vv; ¢ E.
(2) w(vivj) > 0if vv; € C.
(3) w(vivj) <0if vy € S.

(4) Every v; € V is in equilibrium. That is, > w(vvj)(p; — pi) = 0.
vjEV

We say that w is strictly proper if the stresses on all cables and struts are non-zero.

Intuitively, w is a proper equilibrium stress for G(p) if the forces exerted by the edges
(represented by w) on the vertices add up to zero, taking into account that cables can support
only non-negative stresses and struts can support only non-positive ones. Clearly, the stress
assigning zero to all the edges is proper. This stress is called the trivial stress.

Figure 3.2: A polyhedral surface projecting onto a framework (left), a valley (center) and a
mountain (right).

We state now a the Maxwell-Cremona correspondence. We refer to Figure 3.2 for a visual
aid, and to [41] for more details.

Theorem 3.11 (Maxwell-Cremona correspondence). Let G be an abstract framework and G(p)
be a planar straight-line realization of G. There is a bijection between proper stresses for G(p)
and polyhedral terrains (with one arbitrarily chosen but fized face at height zero) projecting
on G(p), where positive stress values correspond to valleys, negative stress values correspond to
mountains and zero stress values correspond to flat edges in the lifting.

Definition 3.12. A spider web is a framework (in R?) whose graph is connected, consisting
only of cables, and with the vertices in the convex hull pinned down (that is, in equilibrium by
definition).

The two following results relate equilibrium stresses of a framework with its rigidity and
infinitesimal rigidity.

Lemma 3.13 (Connelly [40]). If a spider web has a strictly proper stress, then it is rigid.

Lemma 3.14 (Roth and Whiteley [95]). If a tensegrity framework is infinitesimally rigid, then
it has a strictly proper stress.
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3.5 Outline

The refinement of a regular subdivision is not necessarily regular. We will prove that, even if
the restriction of the refinement to each of the cells of the original subdivision is regular, the
resulting subdivision may be non-regular. However, the result of iterating regular refinement
operations is a recursively reqular subdivision. These subdivisions are the object of study of a big
portion of Chapter 4. They arise from the observation that some theorems and algorithms exploit
regularity in a way that can be transformed into a recursive scheme. We show that recursively-
regular subdivisions generalize regular subdivisions while remaining acyclic in Edelsbrunner’s
sense. However, we prove the existence of recursively-regular triangulations belonging to different
connected components of the flip graph of a point set, which suggests that the class is, in some
sense, meaningfully larger than the class of regular subdivisions. We also show that one level of
recursion (in the definition of recursive regularity) is not enough to capture all recursively-regular
subdivisions.

Next, we address the problem of finding a simple characterization for recursively-regular
subdivisions. We give an algorithm that decides whether a polyhedral subdivision is recursively-
regular by computing a sequence of finest reqular coarsenings. We believe this notion is of
independent interest, since it maps every subdivision to the regular subdivision which is, in a
specific sense, the most similar one.

Chapter 5 studies two illumination problems, providing new results in dimensions three and
higher thanks to the theory developed in the preceding chapters.

In Chapter 6, we present other applications of the derived results.



The finest regular coarsening
and the regularity tree

In this chapter, we study the finest regular coarsening of a subdivision, which we will use
afterwards to define the regularity tree. Finally, we will introduce the class of recursively-regular
subdivisions and analyze some of its properties.

Roughly speaking, the finest regular coarsening of a subdivision is the finest among all the
coarsenings of the subdivision that are regular. One should note that it is not obvious whether
this object is well-defined. We show first that this is indeed the case. We do it observing that
merging two cells of a subdivision corresponds to converting a local folding condition into a
coplanarity condition and, furthermore, this transformation can be done by simply replacing
the strict inequality by an equation with the same coefficients. In other words, we are looking
for the smallest set of inequalities we need to “relax” in order to make a given system compatible.

The first section of this chapter is concerned with a (we assume) well-known fact of linear
algebra, for which we could not find a reference. We include it for completeness and because
it definitely provides an insight into the problem. Later, in Proposition 4.18, we will give
an algorithm to compute the finest regular coarsening (or a point in the relative interior of a
polyhedral cone given by its hyperplane description), whose correctness will be implied be the
following discussion.

4.1 A detour through linear algebra

We start by introducing some notation regarding systems of equations and inequalities.

Definition 4.1. Let M € R™*" be a matrix with row vectors s1,...,s, € R™ The system
of M, denoted by S(M), is the system
Mz >0
sy Y (4.1)
z € R™

Given E C [m], we use SZ(M, E) to denote the system
(sij,x) >0, forallie E
SZ(M,E): (sj,z) >0, forall j € [m]\ E
x € R™
Given E C [m], the system of M relazed by E, denoted by S(M, E), is the system
(si,z) =0,foralli € E
S(M,E):{ (sj,x)>0,foralje[m]\E
z € R".
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Literally, the adjective “relaxed” would better fit S=(M, E) but the following proposition
shows that the two systems are equivalent in the cases we are interested in. The purpose of this
section is to show that, given a matrix M € R™*" there is a unique set E C [m] of minimum
cardinality such that SZ(M, E) has a solution, and that this set can be easily found. If S(M)
is already compatible, it is clear that F = @ is the unique such set. Otherwise, we show that
the problem can be transformed into an equivalent one.

Proposition 4.2. Let M € R™ " be such that S(M) is incompatible, and let E C [m] be a set
of minimum cardinality such that SZ(M, E) is compatible. Then, SZ(M,E) and S(M, E) have
the same set of solutions.

Proof. Tt is clear that the set of solutions of S=(M, E) contains the set of solutions of S(M, E).
Assume g is a solution of S (M, E) and is not a solution of S(M, E). This means that at least
one of the inequalities indexed by FE is strictly satisfied by zg. If Ey # @ is the set of such
inequalities, then zg is a solution of S(M, E'\ Ey). Since Ey C E, this contradicts the assumed
minimality of E. O

The previous observations motivate the following definition.

Definition 4.3. Given M € R™*", the minimum relazation set of the system S(M ), denoted
by E(M), is the intersection of all the sets E C [m] such that S(M, E) is compatible. The
minimum relazation of the system S(M) is the system S(M, E(M))

We will prove that the system of M relaxed by E(M) is compatible. Hence, it will be clear
that it is the (unique) set of minimum cardinality that needs to be relaxed in S(M) in order to
make the system compatible.

For our purposes it is easier to argue in terms of the dual problem. The two following lemmas
will be later used to prove the theorem of this section.

Definition 4.4. Given M € R™*" the dual system of S(M), denoted by S*(M), is the system
MTy=0
S*M):q y>0,y#0
y € R™.
A system and its dual are related by the following special case of the Farkas Lemma.

Lemma 4.5 (Gordan’s Theorem). Given M € R™*", the system S(M) is compatible if and
only if the dual system S*(M) is incompatible.

This result can be read in the following way: there is no solution for the original system
if and only if there exists a non-zero non-negative linear combination 39 of some inequalities
leading to the contradiction “0 > 0”. Such a combination yq is called a contradiction cycle and
can be interpreted as a solution to the dual system.

It is convenient to prove first the following lemma, which translates Gordan’s Theorem to
the case where also linear homogeneous equations are included in the system. Before stating it,
we need one more definition.

Definition 4.6. Given M € R™*" and E C [m], the dual system of S(M,E), denoted by
S*(M, E), is the system

MTy=0

y=(y,-,ym) ER™

y; >0, for all i € [m] \ E, and

there exists j € [m]\ E such that y; > 0.

S*(M,E) :
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This definition coincides with Definition 4.4 for £ = @. We prove the previous lemma by
reducing it to Gordan’s Theorem. It is also possible to prove it by linear programming duality.

Lemma 4.7 (Extension of Gordan’s theorem). Given M € R™*" and E C [m], the system
S(M, E) is compatible if and only if the dual system S*(M, E) is incompatible.

Proof. If E = &, the statement of the theorem is Gordan’s theorem. Hence, assume without
loss of generality that F = [j] for some j € [m]|. We will reduce this case to Gordan’s theorem.
Assume further that the span L of the first j row vectors is k-dimensional and that the first k
rows span L. Let M’ be the matrix resulting of excluding from M the rows indexed by [j] \ [K].
The set of solutions of S(M’, [k]) is exactly the same as the set of solutions of S(M, [j]). On the
other hand, we show next that the system S*(M, [j]) has a solution if and only if the system
S*(M', [k]) has. Although the dimension of the domain of the linear map associated to (M’)" is
smaller than the one of M T, a solution to S*(M’, [k]) can be extended to a solution of S*(M, [4])
by setting the remaining coordinates to zero. That is, the dimension of the kernels of the linear
maps associated to both matrices are the same.

Let now yp be a solution to S*(M, [j]). We can obtain another solution having the coordinates
indexed by [j] \ [k] equal to zero, by expressing the columns of M indexed by [j] \ [k] as linear
combinations of the columns indexed by [k], and modifying the coefficients in [k] accordingly.
In this way, ignoring the coordinates indexed by [j] \ [k], we obtain a solution to S*(M’, [k]).

Henceforth, we will assume then that E = [k] and that the first k& rows of M are linearly
independent. The set of equations in S(M, [k]) restricts then the variables to an (n — k)-
dimensional linear subspace of R™, for 0 < k < n. We can then find an invertible n x n
matrix 7" such that the space defined by the equations of S(MT, [k]) is the one having the first
k coordinates equal to zero. Since T' is invertible, S(M, [k]) has a solution if and only if the
system S(MT, [k]) has.

On the other hand, S*(M, [k]) and S*(MT, [k]) have the same set of solutions because T is
invertible and, thus, M "y = 0 if and only if 7T M Ty = 0 for all y € R™.

Assume now that
_ Mdkxk Opx(n—k)
MT = ( R N ,

with R € R¥*k N e R¥*("=%) and k' = m — k. The systems S(MT, [k]) and

Ny >0
S(N):{ ok
yeR

have both a solution or none of them have. This is because a solution to the first must have the
first k£ coordinates equal to zero and, thus, the last n — k coordinates must be a solution of the
second. Conversely, a solution to the second system can be extended to a solution of the first
by just adding k zero coordinates.

Similarly, the system S*(MT, [k]) and the system

NTy=0
S*(N):{ yeRF
y>0,y#0

have both a solution or none of them has. Indeed, the restriction of a solution of S*(MT, [k])
to the last k' coordinates must be a solution of S*(N). For the other direction, let

_pT
Zo=< Ry())’
Yo
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where yp is a solution of S*(V). Since

ek RT ) ( —R Ty ) ( —R"yo+ R yo )
MT)" 2y = x = =0,
(MT) 20 ( Om—iyxk N Y0 0+ NTyo

the vector z is a solution of S*(MT), [k]). We finish the proof by applying Gordan’s theorem to
S(N) and S*(N). O

Theorem 4.8. Let M € R™*" be a matriz. The system S(M, E(M)) is compatible.

Proof. 1If S(M) is compatible, then E(M) = &, since S(M, &) = S(M) is compatible. Assume,
then, that S(M) is not compatible. Lemma 4.5 provides a solution yg of the dual system S*(M).
Let Ey # @ be the set of positive coordinates of yg. We will show that Ey C E for any E C [m]
with S(M, E) compatible. Indeed, if we assume the contrary, then yg is also a solution of
S*(M, E), and we can derive that S(M, E) is not compatible, forcing the contradiction. As
any set E making S(M, E) compatible must contain Fy, we focus now on the system S(M, Ep),
which has strictly fewer inequalities than S. If it is compatible, then obviously E(M) = Ey.
Otherwise, we keep transforming inequalities into equations iterating the previous arguments
(using Lemma 4.7) until a compatible system is found. The process finishes because S(M, [m])
is compatible. Since all the elements we introduce in our relaxation set must be necessarily in
any set making the system compatible, it is clear that the set obtained at the end is E(M). O

We can interpret the previous lemma in terms of contradictions as well. Assume that S(M)
is not compatible and, therefore, there exists a solution yo of its dual S*(M). The vector yg
represents a positive linear combination of the inequalities in S(M) leading to the contradiction
“0 > 07. If all the inequalities involved in the contradiction (that is, corresponding to positive
coordinates of yg) are converted into equations, the same combination will lead to the valid
equation “0 = 0”. In other words, yg will no longer be a solution of the dual system. However, the
equations we created in the relaxation process may be now used to derive other contradictions.
Indeed, they confer more freedom to the dual system, since the corresponding dual variables
are now allowed to take negative values. The corresponding intuition is that the relation “>” is
maintained if one adds two strict inequalities. The relation is however not necessary preserved
if one inequality is subtracted from another. Nevertheless, equations can be either added to or
subtracted from a strict inequality and the a strict inequality can still be derived. Note also
that if we do not relax all the inequalities involved, the contradiction cannot be avoided: the
linear combination of equations will give an equation, to which we can add a strict inequality
to derive “0 > 0” again. In other words, if the system contains a contradiction, all the involved
inequalities must be relaxed in order to obtain a compatible system.

An intuitive explanation of why the minimum relaxation is unique can be easily obtained if
one looks at the complementary problem. That is, given a system of weak homogeneous linear
inequalities, decide which is the maximum number of constraints that can be satisfied strictly.
The set of solutions of the system is a closed polyhedral cone K. If x( is a point in the relative
interior of K, then the desired maximal set of constraints consists exactly of those constraints
that are strictly satisfied by zg. That is, finding this minimum relaxation is equivalent to finding
a point in the relative interior of a (possibly not full-dimensional) polyhedral cone given by a
set of weak (possibly redundant) inequalities.

The results of this section can be generalized to systems of non-homogeneous inequalities.
The main difference would be that S(M,[m]) is not necessarily compatible in this case and,
therefore, there may be no relaxation at all. Nevertheless, whenever there exists a compatible
relaxed system, the minimum relaxation is well-defined and can be computed in the same way
as in the homogeneous case.
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4.2 The finest regular coarsening of a subdivision

The algebra in the previous section will make it very easy to show that there exists a (well-
defined) finest regular coarsening of a polyhedral subdivision. We next introduce some additional
terminology concerning coarsenings.

Definition 4.9. Given a polyhedral subdivision S, and a coarsening S’ of S, the coarsening
function (from S to &') is the function & : cells(S) — cells(S’) such that C C x(C), for all
C € cells(S). Given two coarsenings S; and Sy of S, we say that S is finer than S if Sp is a
coarsening of 1. A coarsening is proper if it has strictly fewer cells than the original subdivision.
The trivial coarsening is the one merging all the cells into a single one.

Using the definitions in [45], the refinement relation induces a partial order on the set sub-
divisions. Furthermore, the restriction of this partial order to regular subdivisions is a lattice.
This lattice is isomorphic to the face lattice of the secondary polytope of the point set. How-
ever, as far as we know, not much work has been done concerning coarsenings of non-regular
subdivisions. The finest regular coarsening goes in that direction, and permits to map every
non-regular subdivision to a regular one which is, in a specific sense, the most similar to it.

Definition 4.10. The finest reqular coarsening of a subdivision S of a point set A is the
subdivision obtained by the projection of the lower hull of A“?, where wqg is a solution of the
minimum relaxation of the regularity system of S.

The next theorem justifies the name in the previous definition.

Theorem 4.11. Let S be a polyhedral subdivision, and So be the finest reqular coarsening of S.
Then, Sg is a regular coarsening of S and all the reqular coarsenings of S are coarsenings of Sp.

Proof. Observe first that the relaxation of a constraint corresponding to a local folding condition
in the regularity system of S converts this condition into a coplanarity condition (up to a non-
zero scalar factor) for the two cells incident to the wall. Thus, the new system is equivalent
to the regularity system of the polyhedral complex resulting from merging the two cells of S
involved in the constraint. That is, coarsenings of S have regularity systems that are relaxations
of the regularity system of §. In addition, a coarsening is regular if and only if its regularity
system has a solution. Hence, Sy is a coarsening, is regular and it is the regular coarsening that
merges the minimum number of cells, that is, the finest one. ]

It will come in handy later to say that a subdivision is completely non-reqular if its finest
regular coarsening is its trivial coarsening. This implies, in particular, that every wall of the
subdivision can appear in a contradiction cycle of its regularity system.

Relation to the secondary polytope. Note that, once we are convinced that the finest
regular coarsening is well-defined for any subdivision of a finite point set A, it is easy to derive
an alternative definition in terms of the secondary polytope X (A) of a point set A. Considering
the definitions of subdivision and refinement used in [45], the faces of 3(A) correspond to regular
subdivisions of A and their inclusion relations correspond to coarsening relations. The vertices of
Y (A) are the GKZ-vectors of all regular triangulations of A. Non-regular triangulations however
have GKZ-vectors that are not vertices of 3(A). Moreover, for non-regular triangulations the
function mapping a triangulation to its GKZ-vector may not even be injective [45]. In any case,
the normal cone a(7) of a triangulation 7 in ¥(A) is isomorphic to the secondary cone of T [63].
It is then not surprising that the finest regular coarsening of a triangulation 7 corresponds to
the subdivision associated to the smallest face in X(A) containing (7). As stated in [45], the
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secondary cone can be similarly defined for general subdivisions (not only for triangulations).
This cone will be contained in the linear subspace L of the height-functions space defined by
the coplanarity conditions. Of course, the cone will be also contained in the affine hull H of the
secondary fan, which is (n —d — 1)-dimensional. If the dimension of LN H is k <n—d — 1, the
subdivision is regular if its secondary cone is k-dimensional as well. Then, any height function
in the relative interior of the secondary cone will certainly produce the subdivision. If the
subdivision § is not regular, this cone will not be full-dimensional with respect L N H.

4.3 The regularity tree and recursively-regular subdivisions

In this section we introduce the class of recursively-regular subdivisions of a point set. Roughly
speaking, recursively-regular subdivisions are subdivisions that can be decomposed, via a regular
coarsening, into recursively-regular pieces. First, we define a partial order on the power set of
cells of a given subdivision, which will be called the regularity tree. This tree decomposes
the subdivision in terms of its (recursive) finest regular coarsenings. This object reflects some
structure in the set of non-regular subdivisions of a given point set and hints an algorithmic
procedure to decide whether a subdivision is recursively regular. We derive later some properties
of the recursively-regular subdivisions and leave to Chapter 6 the motivation for the study of
these objects.

Definition 4.12. A polyhedral subdivision § is recursively reqular if either
(a) S is regular, or
(b) There exists a proper non-trivial coarsening 8’ of § with coarsening function x such that

(1) &’ is a regular subdivision, and

(2) for each cell C € &', k~1(C) is recursively regular.

Note that the previous definition can be extended to polyhedral fans. We will use the
notation R(A) to refer to the set of recursively-regular subdivisions of a point configuration A.
The class of all recursively-regular subdivisions of any point set will be denoted by K. We will
show that fR is larger than the class of regular subdivisions and that the regularity tree can even
have arbitrary depth.

To proceed, we need to introduce some notation and technical definitions. Recall that
according to our conventions in Section 2.1, given a subset C of cells(S), we denote by |C|
the ground set Ucee C covered by these cells. Similarly, if S is a subdivision, |S| will denote the
union of the cells of S.

Definition 4.13. A subdivision tree of a subdivision S of a point set A is a rooted tree whose
vertices are subsets of cells(S), whose root is cells(S), and such that if the children of C are
Ci,...,Cy, then |Cy],...,|Ci| are the cells of a polyhedral subdivision of AN |C|. A subdivision
tree is called regular if the subdivisions of A N |C| used to split the nodes of the tree are all
regular.

Note that a subdivision is recursively-regular if and only if it has a regular subdivision tree.
However, a subdivision can have many subdivision trees, and even many regular subdivision
trees. We next define a canonical one, which will be later used to decide if a subdivision is
recursively regular.

Definition 4.14. The reqularity tree of the subdivision S is the subdivision tree created by the
following recursion.
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(a) If a subdivision § is regular or its finest regular coarsening is trivial, its regularity tree is
the tree whose single node is |S]|.

(b) The regularity tree of a non-regular subdivision S with a non-trivial finest regular coarsening
So is obtained by appending to its trivial coarsening the regularity tree of x~1(C), for each
cell C € 8.

Figure 4.1 exhibits an example of a regularity tree. The figure shows a triangulation in R
which needs two levels of recursion to fit the definition of recursively-regular subdivision. The
coordinates of this example and a proof that the finest regular coarsening of the depicted sub-
division is the subdivision defined by the second level of the tree are provided in Appendix A.
Note that the example consists of a “pinwheel” triangulation (refining the “mother of all ex-
amples” in [45]) inserted into a triangle of a bigger copy of the pinwheel triangulation. The
insertion procedure can be repeated recursively to obtain a triangulation whose regularity tree
has a number of levels linear in the number of vertices.

Note that the leaves of the regularity tree of S are a partition of cells(S). We say that a leaf
C 1s regular, respectively completely non-regular, if the subdivision induced by S on C is regular,
respectively completely non-regular. By our definition, there are two possibilities for the leaves
of the the regularity tree: they are either regular or completely non-regular.

AN

Figure 4.1: A recursively-regular subdivision and a sketch of its regularity tree.

The basic result of this section is the following theorem, which relates the regularity tree
and the recursive regularity of a subdivision.

Theorem 4.15. A polyhedral subdivision S is recursively reqular if and only if the leaves of its
reqularity tree are regular.

Proof. If all leaves are regular, the regularity tree itself certifies the recursive regularity of S,
proving the if direction.

For the only if, it will be proved that the leaves of the regularity tree of any subdivision in
R are regular. We do this by induction on the number of cells of the subdivision. The base case
is when the subdivision consists of a single cell C'. In this case, the only leaf of its regularity
tree is C, which is regular.

For the inductive step, let S be in R, and assume that the regularity tree of any recursively-
regular subdivision with fewer cells than S has regular leaves. Let S be a regular coarsening
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with coarsening function & splitting S into smaller recursively-regular subdivisions. Indeed, by
definition, there is a regular subdivision tree of § representing a set of coarsenings certifying
that it is recursively regular. We want to show that the regularity tree is a valid certificate
as well. The second part of Theorem 4.11 asserts that S is a coarsening of the finest regular
coarsening Sy of S. This implies that each cell C' € Sy is contained in some cell C’ € S, such that
S restricted to C’ is recursively regular. Note that refinement relations and regularity behave
well with respect to restrictions to polyhedra. That is, the subdivision obtained by intersecting
all the faces of a regular subdivision with a polyhedron is regular as well, and the intersection of
a coarsening with a polyhedron is a coarsening of the original subdivision, intersected with the
polyhedron. Hence, recursive regularity behaves well with respect to restriction to polyhedra
and it follows that S restricted to C' C C” is recursively regular. By induction hypothesis, the
leaves of the regularity tree of S restricted to C' are regular, for every C' € cells(Sp). Since
the leaves of the regularity tree of S are the leaves of the regularity trees of its children, this
completes the proof. O

We present now some properties of the recursively-regular subdivisions. Recall that a subdi-
vision S C R? said to be acyclic if there exists no point ¢ € R? such that the visibility relation
defined on the faces of S (detailed in Section 3.3) from ¢ contains a cycle.

(a) Non-regular triangulation (b) Finest regular coarsening

Figure 4.2: Two-dimensional recursively-regular and non-regular triangulation.

Proposition 4.16. Let A be a finite point set. FEvery reqular subdivision of A is recursively-
reqular. Fvery recursively reqular subdivision of A is acyclic. The converse of the previous
statements is in general not true.

Proof. Note first that regular subdivisions are in R(A) by directly applying the definition. We
will prove that any S in 98 must be acyclic by induction on its number of cells. For the base
case, we use that a single-cell subdivision is always acyclic. If S has more than one cell, we
distinguish two cases. If S itself is regular, then Theorem 3.8 shows that it must be acyclic.
Otherwise, there exists a regular coarsening S’ of S with coarsening functions . Assume for
the sake of contradiction that S contains a cycle and consider the image by x of the involved
faces. If this image contains more than one cell, the cycle induces another one in 8’ leading to a
contradiction with its assumed regularity. So the cycle must be contained in x~!(C) for a single
cell C € S’ But k~1(C) is a recursively-regular subdivision having strictly fewer cells than S
and, hence, acyclic by the induction hypothesis.

Figure 4.2(a) shows a non-regular triangulation that belongs to JR. A certificate for its non-
regularity is included in Appendix B, while that it belongs to fR is straightforward after observing
that the coarsening in Figure 4.2(b) is regular. For the properness of the second inclusion, we
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Figure 4.3: An acyclic triangulation that is not recursively regular.

refer to the example shown in Figure 4.3, which shows an acyclic subdivision that does not
belong to fR. Its acyclicity and that it does not belong to SR will be certified in Appendix C. [

The next proposition illustrates that SR includes some “pathological” triangulations. More
precisely, we will show that there are triangulations in 2R that are not connected in the graph
of flips of its vertex set. To prove this, we will simply show that the non-regular triangulations
used by Santos in [98] are indeed in .

Proposition 4.17. There erists a point set A C R® whose recursively-reqular triangulations are
not connected by flips.

Proof. Santos constructs in [98] a set of triangulations T of a five-dimensional point set A that
are pairwise disconnected in its graph of flips. We show that all the triangulations in ¥ are
recursively regular. The convex hull of A is a prism over a polytope @ called the 24-cell.
The polytope @ is four-dimensional and has 24 facets, which are regular octahedra. All the
triangulations in T are refinements of the prism P (in the sense of [45, Definition 4.2.10]) over
a subdivision B of AN Q. The subdivision B is a central subdivision of @, it is thus regular
(see [45, Section 9.5]) and consists of 24 pyramids over octahedra. Therefore, the prism P is
regular as well (because the prism over a regular subdivision is regular [45, Lemma 7.2.4 |).
Fach cell of B is triangulated in a specific way for every triangulation in €. However, since
a triangulation of a pyramid is regular if and only if the triangulation induced on its base is
regular (see [45, Observation 4.2.3]), and the bases of the pyramids are regular octahedra (which
are known to have only regular triangulations), the restriction any triangulation in T to any cell
of B is regular. Hence, the restriction of any triangulation in ¥ to every cell of P is regular as
well, since a triangulation of a prism over a simplex is regular ([45, Section 6.2]). Thus, every
triangulation in ¥ is recursively regular. Indeed, each triangulation in ¥ is a refinement of a
regular subdivision P, and its restriction to any cell of P is regular. O

In fact, the previous proposition shows that there is a point set A with at least 12 triangu-
lations in R(A) that are pairwise disconnected and disconnected from any regular triangulation
in the graph of flips of A, as observed in [98].

In the following section, we construct algorithms which are of interest to apply the theoretical
results described so far.

4.4 Algorithms

We study how the problem of finding the minimum relaxation of a system, which is equiva-
lent to finding a point in the relative interior of polyhedral cone given by a set of inequalities.



32

This problem has been rediscovered several times and an approach to it can be found for in-
stance in [15]. We give an algorithm starts from a compatible dual system and moves towards
compatible primal using the machinery introduced in Section 4.1.

Proposition 4.18 (folklore). Let M € R™*". The minimum relazation set E(M) of system
S(M) (consisting of m linear inequalities on n variables) can be computed solving at most m
linear programs in m variables and n constraints.

Proof. In the proof of Theorem 4.8 we show that if a coordinate can take a positive value in a
solution of S*(M), then E(M) must include the corresponding index. It is also argued that the
minimal relaxation of the system can be obtained by incrementally applying this criterion. We
will convert here this incremental procedure into an algorithm that uses linear programming.
We start setting £ = @ and we insert into the set E the indices that must belong to E(M). The
compatibility of S(M, E) is related to its dual system S*(M, E) in the sense of Definition 4.6.
To check whether S*(M, E) has a solution, we solve the linear program

MaTimize Z Ui

subject to the linear constraints given by the system S*(M, E) plus the condition Zie[m} Y < 1,
which ensures that the maximum is bounded. For the ease of argumentation, we add a linear
inequality in order to make the dual feasible region bounded. If the optimum value is zero, then
none of the variables in [m]\ E can attain a positive value under the constraints of S*(M, E), and
thus it is incompatible. Consequently, the system S(M, E) is compatible and E is the minimal
relaxation (because we have only added an index to E if we know that the index must be in any
relaxation set making the system compatible). The converse is also true: if the function takes
a positive value, a non-empty set of variables Ey C [m] \ E take positive values. Therefore, as
argued in the proof of Theorem 4.8, we know that Ey C E(M). Hence, we add the indices of E
to F and iterate the process. At each iteration, we discover at least one new index that belongs
to E(M) and, thus, at most m iterations are needed. O

Observe that a primal variant of the algorithm can be easily devised adding slack variables.
That is, the strict inequality (s;, ) > 0 of S(M) is transformed into an equation (s;,z) —\; =0
and a weak inequality A; > 0, for all ¢ € [m]. Then, we add all the slack variables \; in the
objective function. Easy arguments (dual to the ones we used in Theorem 4.8) would ensure
that if a slack variable cannot be positive for an intermediate problem, then it can never be,
and thus we can set it to zero and maximize the remaining ones similarly.

With help of the previous theorem, it becomes easy to prove that the finest regular coarsening
of a subdivision can be efficiently computed. The best known bound for linear programming is
polynomial only if the total number of bits L needed to encode the coefficients is counted as
input size (as in the Turing machine model). Alternatively, we can say that a linear program can
be solved in time polynomial in the number of variables and L. We choose this second option
to formalize the following bound.

Corollary 4.19. Let S be subdivision of a point set A in any fixed dimension and let L be the
total number of bits necessary to encode the coordinates of A. The finest reqular coarsening of
S can be computed in time polynomial in |A| and L.

Proof. Tt follows from the definition of the finest regular coarsening that it can be determined
by finding a point wp in the relative interior of the secondary cone of S, computing the point
set A“° and its convex hull to finally project its lower faces. However, it is easier to iteratively
construct it following the algorithm in Proposition 4.18 to find the minimum relaxation set of
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its regularity system. Whenever a constraint is relaxed (a dual variable is unrestricted), we
merge the cells sharing the corresponding wall. We perform the merge operation symbolically
by giving a common label to the merged cells. When the iteration ends, we construct the cells
of the finest regular coarsening by computing the convex hull of the vertices of the cells with
the same label. Since we assume that the dimension is constant and the vertices of the finest
regular coarsening are a subset of A, the construction of the cells can be done in polynomial
time.

Note that the coefficients of the linear program come from d-dimensional determinants on the
coordinates of points in A. Therefore, the number of bits needed to encode them is polynomial
in L. In each iteration, a linear program with a number of constraints proportional to |A| and
as many variables as walls in S is solved. Therefore, the whole algorithm takes polynomial time
in |A] and L. O

Some improvements can probably be done when computing the finest regular coarsening
by taking into account the special structure of the regularity system of §. In particular, the
matrix M associated to the system is sparse and its structure is related to the combinatorics of
the subdivision. Each row, corresponding to a wall, has at most d 4+ 2 non-zero coefficients. In
addition, d of the involved vertices can be taken to be an affine basis for the corresponding wall.
Then, the corresponding d coefficients are positive while the other two are negative. If § is a
triangulation, this means that each vertex that is involved in a folding condition appearing in a
contradiction cycle must be involved in another condition of the contradiction cycle. Moreover,
if a vertex belongs to the wall corresponding to a condition in a contradiction cycle, it must
appear in another condition of the cycle associated to a wall that does not contain it (because
the contributions to a vertex in a dual solution must add up to zero). If S is not a triangulation,
a similar combinatorial property still holds.

The statement in the previous corollary is not trivial because there exist subdivisions, even in
the plane, with a linear number of simultaneous flips [62]. That is, a linear number of pairs of cells
that can be independently merged or not. Consequently, these subdivisions have an exponential
number of minimal coarsenings that one might need to test for regularity. The scenario seems
even worse when it comes to recursive regularity. Fortunately, as a consequence of Theorem 4.15,
this can indeed be decided in polynomial time using the procedure in Corollary 4.19.

Proposition 4.20. Let S be subdivision of a point set A in fized dimension and let L be the
total number of bits necessary to encode the coordinates of A. Whether S is recursively regular
can be decided in time polynomial in |A| and L.

Proof. Theorem 4.15 ensures that we only need to compute the regularity tree of S to decide
whether S belongs to R or not. This is done by computing the finest regular coarsening of
subdivisions of some subsets of A. Each time we go down a level in the tree, there is one wall in
the finest regular coarsening that was not in any previous finest regular coarsenings. Therefore,
if we charge the computation of the finest regular coarsening to this wall, we can conclude that
the number of computations is bounded by the number of walls in S, which is polynomial if d
is considered to be a constant. O






Illumination by floodlights
in high dimensions

In the last decades, a wide collection of problems have been studied concerning illumination or
guarding of geometric objects. The first Art Gallery problem posed by Klee asked simply how
many guards are necessary to guard a polygon. Since then, considerable research has addressed
several variants of this problem, such as finding watchman routes or illuminating sets of objects.
A remarkable group of problems arises when the light sources (or the surveillance devices) do
not behave in the same way in all directions. In the major part of the literature, these problems
are studied only in the plane. A compilation of results on this type of problem can be found
in [105]. The problem we are interested in assumes that a light source can illuminate only a
convex unbounded polyhedral cone. We are given the polyhedral cones available and a set of
points representing the allowed positions for their apices. We can then choose the assignment of
the floodlights to the points in order to cover some target set. In this chapter, the assignment
will be required to be one-to-one and the floodlights will not be permitted to rotate.

The first problem we look at in this section is the space illumination problem in three or higher
dimensions. Informally speaking, the problem asks if given a set of floodlights and a set of points
there is a placement of the floodlights on the points such that the whole space is illuminated.
Afterwards, we study the generalization to higher dimensions of the stage illumination problem,
introduced by Bose, Guibas, Lubiw, Overmars, Souvaine and Urrutia [26].

5.1 Illuminating space

The results presented here use recursively-regular polyhedral fans. These objects are analogous
to recursively-regular subdivisions of a point set with vectors instead of points as base elements.
Definitions and basic properties concerning polyhedral fans, also called subdivisions of vector
configurations, can be found in [45]. We next introduce some new definitions specific to this
problem. For basic definitions, see Section 2.2. The ground set of a polyhedral fan F, denoted
by |F|, is the union of all its cells. We say that a d-dimensional polyhedral fan is complete if its
ground set is the whole space and that it is conic if the ground set is a pointed d-dimensional
cone. Similarly, we will talk about the complete case and the conic case to refer to instances
of the problem where the given fan is complete or conic, respectively. A facet of a fan will be
called interior if it is not contained in the boundary of the ground set of the fan. A cone K is
said to contain a direction (or vector) v if it contains the ray p, starting at the apex of K and
having direction (or direction vector) v. We will say that the direction is interior to a cone if
py intersects the boundary of K only in its apex.
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(a) A polyhedral fan (b) A set of points

(¢) A covering assignment (d) Assignment for points on a line

Figure 5.1: Covering the plane by floodlights.

Definition 5.1. Let P be a polyhedron

pP=1;,

el
where II; are the hyperplanes supporting the facets of P, for i € I. The reverse polyhedron of P,
denoted by P~, is defined as
Pm =1, .

i€l
The reverse fan of a polyhedral fan F is the fan obtained by reversing all its faces. The reverse
cone of a conic fan is the reversed set of its ground set.

Note that if P is a cone with apex at the origin, then P~ = —P.

Definition 5.2. Given a d-dimensional complete polyhedral fan F with n cells and a set of n
points P C R?, we say that an assignment o : cells(F) — P is covering if it is one-to-one and

U (©@+a@)>17.
Cecells(F)

Note that the floodlights are only translated to the corresponding points and not rotated,
as in other variants of the problem. Figure 5.1 contains illustrations of a two-dimensional
polyhedral fan, a set of points, the translated cells associated to a covering assignment for the
shown point set and for a set of points on a line.

We are now ready to state formally the space illumination problem. Given a d-dimensional
polyhedral fan and a set of points in R? we would like to know whether there is a covering as-
signment for that fan and the point set in the sense of Definition 5.2. Galperin and Galperin [61]
proved that a covering assignment can be found if the fan is complete and regular, regardless of
the given point set and in any dimension. In particular, the there is a covering assignment for
a fan in the plane and any point set of the right cardinality.
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Theorem 5.3 (Galperin, Galperin [61]; Rote [92]). Let F C R? be a full-dimensional regular
polyhedral fan consisting of n cells and P C R% be a set of n points. There is a covering
assignment for F and P.

This last statement was rediscovered with a small variation in the formulation of the problem
n [26], where an O(nlogn) algorithm for finding a covering assignment is given as well. The
conic case in the plane has also been considered with the extra assumption that the points are
contained in the reverse cone of the fan. In this case, a covering assignment can be always
found as well. However, if the points are not required to lie in the reverse cone, deciding
the existence of a covering assignment becomes NP-hard even in the plane, since the problem
is equivalent to the wedge illumination problem studied in [32]. It is worth mentioning the
problem of illumination disks with a minimum number of points in the plane, studied by Fejes
Téth [56]. The notion of illumination in that work is not the usual one and the lights can be
placed anywhere. Surprisingly enough, he used the properties of power diagrams to prove an
upper bound on the number of needed points, the same diagrams used by Rote [92] to provide
an alternative proof of Theorem 5.3.

We generalize first the conic case to higher dimensions and prove that it is sufficient for the
fan to be recursively-regular to ensure the existence of a covering assignment for any point set
in the reverse cone of the fan. Afterwards, we use this result to prove that Theorem 5.3 can
be extended to recursively-regular fans in the complete case as well. Both generalizations are
synthesized in the following statement (note that (R?)~ = R? and there is thus no restriction
for P in the complete case).

Theorem 5.4. Let F C R? be a full-dimensional recursively-reqular polyhedral fan consisting
of n cells and P C |F|~ be a set of n points. There is a covering assignment for F and P.

We prove first two simple technical lemmas. Recall that the restriction of a fan to a poly-
hedral cone K (having the same apex) is the fan obtained by intersecting every face of F with
K.

Lemma 5.5. A conic full-dimensional fan F C R? with |F| = K is regular if and only if F is
the restriction to K of a complete regular fan.

Proof. For the only if direction, assume that F is regular and, hence, there is a cone K C Rit!
whose lower convex hull projects on F. This cone can be written as

K=o |nl o,

ielt €l

where II" refers to the closed halfspace above the hyperplane II and II™ refers to the closed
halfspace below II; and IT is the set of indices such that K C HJr and I~ is the set of indices
such that K C II;. By convention, K will be considered to lie below the vertical hyperplanes
and thus the mdlces of these hyperplanes are considered as part of I~. Note that (;c;+ HZ

a cone whose faces project onto a complete fan G, since the vertical direction is interior to it.
Moreover, its restriction to |F| is F.

To prove the if direction, assume that L C R4 is a cone whose lower hull projects onto a
complete fan G C R? and let K = Nicr H;r C R? be a polyhedral cone. For every i € I, let ﬁl
be the vertical hyperplane in R4 containing II;. Clearly the set LN (Mier ﬁj) is a cone whose
lower hull projects onto the restriction of G to K. O
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The following technical lemma will be useful to extend Theorem 5.3 to the conic case and to
recursively-regular fans. Given a complete fan G and a pointed cone K, the lemma relates the
existence of a covering assignment for G to a covering property of the restriction F of G to K.
More precisely, we show that the cells of F can cover a polyhedron @ resulting from shifting the
hyperplanes defining K provided that the given point set lies in Q~ and that there is a covering
assignment for this point set and G.

Lemma 5.6. Let Q = ﬂieI(Hj +t;) be a full-dimensional polyhedron, where t; € R? for all
iel. Let G C RY be a full-dimensional complete fan consisting of n cells, whose restriction F
to K = (\ier Hj consists of n cells as well. If there is a covering assignment for G and a set
P C Q™ of n points, then the cells of F translated by the corresponding assignment cover Q).

Proof. Let 0 : cells(F) — cells(G) be the map such that C' = 0(C) N K for all C € cells(F), and
let o : cells(G) — P be a covering assignment. We want to show that

U (@+o@)oQ.
Cecells(F)
By hypothesis,
U @) +0@)=R">Q.
Cecells(F)

We are done if we can prove that (C' +p) N Q D (0(C)+p)NQ for all p € @ and for
all C' € cells(F). Note that Q C Hj +p for any p € @~ and for all ¢ € I, by definition of reverse
polyhedron. Since

C=6(C)NK =6(C)n (ﬂn;) ,
i€l
it follows that

(C+p)n@= [(B(C)+p)N <ﬂ(Hi+ +p)) NE>OC)+p)NnEQ.
el
Therefore, the cells of F translated according to o o 8 cover Q. O

The following proposition is now easy to prove.

Proposition 5.7. Let F C R? be a full-dimensional conic regular fan with |F| = K consisting
of n cells and P C K~ be a set of n points. There is a covering assignment for F and P.

Proof. Lemma 5.5 provides us with a fan G whose restriction to K coincides with F and has the
same number of cells. Theorem 5.3 applies to G and P. It only remains to invoke Lemma 5.6
to show that any covering assignment for G and P can trivially be translated into a covering
assignment for F and P. O

We can now prove Theorem 5.4, which generalizes the result (and the proof) in [92].

Proof of Theorem 5.4. The proof proceeds recursively splitting the set of cells of F, the space
in |F| and the points of P into smaller problems. Before detailing the recursion, we introduce
some notation and include a proof of a lemma by Rote.
Let Fp be the finest regular coarsening of F, and « : cells(F) — cells(Fp) be the associated
coarsening function. Let
K= () 1

Cecells(Fo)
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Cc* \

Figure 5.2: A fan F (left). An instance of ¢*(F,w) and ¢.(F,w) (center). A cell C\ contained
in the reverse cone of C*.

be a (d+1)-dimensional cone projecting onto Fy, where the hyperplane Il supports the facet of
K that projects onto C, for all C' € cells(Fp). Given a function w : cells(Fy) — R, let the power
diagram ¢*(Fp,w) be the (projection of the) upper envelope of the hyperplane arrangement
obtained by vertically shifting the hyperplane IIx by w(C), for all C' € cells(Fy). Similarly, let
v«(Fp,w) denote the lower envelope of these hyperplanes. Both power diagrams have as many
cells as Fp and all of them are unbounded. In addition, the cells in these diagrams can be paired
in a natural way with the hyperplane they come from. For simplicity of notation, let C* denote
the cell of ¢*(Fp,w) corresponding to C, and by C, the corresponding cell of ¢, (Fy,w). These
pairs of cells satisfy the following property, which is illustrated in Figure 5.2.

Lemma 5.8 (Rote [92]). Every cell Cy € ¢.(F,w) is contained in the reverse polyhedron of
C* € p(F,w).

Proof. Choose an arbitrary cell Cy of p.(F,w). Let D, be an adjacent cell and W, = C, N D,
be their common wall. Consider also the wall W* = C* N D*. Note that both W, and W* are
supported by the hyperplane h, which is the projection of (Il¢ +w(C)) N (IIp + w(D)). Clearly
IIe 4+ w(C) is above IIp +wp in one side of h while I1p +w(D) is above Il + w(C) in the other
side and, hence, C, is contained in one side of h while D, is contained in the other. Putting
together the analogous observations for all other cells adjacent to C,, we derive the desired
statement for this (arbitrarily chosen) cell C. O

We continue the proof of Theorem 5.4. The main idea is to apply Theorem 2.15-(i) and
find w such that ¢, (Fy,w) leaves in C, exactly |x~(C)| points of P, for every cell C € cells(Fy).
Then, we will cover each cell C* of ¢*(Fp,w) with the floodlights of F contained in C' and the
points of P in C,. If Fo = kx~1(C) N F is regular, we proceed as in the proof of Proposition 5.7,
using Lemma 5.6 to construct an assignment that covers C* with the points in P N C, and the
floodlights of F N C. If Fo = k~1(C) N F is not regular but recursively-regular, we repeat the
process recursively. That is, we split the points of P N C* with a power diagram associated to
the finest regular coarsening Gy of F¢. For each cell D of Gy, we get points in C, N D,, which
is contained in the reverse polyhedron of C* N D*. Hence, the recursion proceeds until the base
case, where we can cover the target polyhedron with a regular fan from points in its reverse
polyhedron using Lemma 5.6. ]

The following definition will come in handy later.

Definition 5.9. Let F C R? be a full-dimensional polyhedral fan with n cells. F is universally
covering if for any point set P C R? of n points there exists a covering assignment for F and P.
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After showing that all recursively regular fans are universally covering, one could imagine
that all fans are so. We prove that this is not the case in dimension three and higher by showing
that if a fan is cyclic in the sense described in Section 3.3, there is a point set for which there
is no covering assignment. This statement will easily follow from Theorem 5.14. Before proving
this theorem, we need to introduce a definition and state a technical lemma.

Definition 5.10. Let F C R? be a full-dimensional polyhedral fan, let W € F be a facet incident
with C, D € cells(F), and let v be a vector normal to W pointing from C to D. We say that an
assignment o : cells(F) — RY satisfies the overlapping condition for W if {(¢(C) — o(D)),v) > 0.

Note that the previous condition is satisfied for a facet and an assignment if and only if
the copies of the two cells sharing the facet translated to the assigned points have non-empty
intersection. We provide now a proof for the following well-known facts.

Lemma 5.11. Let K € R? be a full-dimensional polyhedral cone.
(i) Any line with direction interior to K has unbounded intersection with K.

(i) Any line with direction not contained in K has bounded intersection with K.
Proof.

(i) Let £ = {p + Xv : A € R} be a line passing through p € R? and with direction v € R?
interior to K = {q + > ;c;v; : a; > 0 for all i € I}, where v; for i € I are the extreme
rays of K. Since v is interior to K, we can express v = ), v;v; with 4; > 0 for all i € 1.
The set of vectors {v; : i € I} spans R? because its positive span K is not contained in
any proper affine subspace. Thus, we can express p —q = Y _..; d;v;, where §; € R for all
1 € I. Note now that

P =g+ (=) + A vivi =g+ Y (6 + Mi)vi,
i€l i€l

which lies in K for all A > max;cy %_i.

(ii) We triangulate K into a finite number of simplicial cones and show that the intersection

of £ with each cone is bounded. For a fixed simplicial cone K’ with extreme rays vy, ..., vq,
the direction v of the line can be expressed in a unique way as v = Zz‘e[d} v;v; with v; € R
for all ¢ € [d].

We will prove the contrapositive. Assume that there exists A\g € R such that p+ \v € K’,
for all A > A\g. Since

pHMW=p+AD yvi=q+ > (M —&)vi,
i€(d] i€(d]

we have that Ay; — d; > 0 for all i € [d] and for all A > A\g. Thus, 7; > 0 for all i € [d],

which implies that the direction of v is contained in K’. O
The next lemma follows easily.

Lemma 5.12. Let F C R? be a full-dimensional polyhedral fan. A covering assignment for F
must satisfy the overlapping condition for every interior facet of the fan.
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Proof. If the condition is not satisfied for the facet H = C'N D, we consider a ray in a direction
interior to H (for instance, the barycenter of its rays) and placed at the point (o(C) + o(D))/2.
In view of Lemma 5.11-(ii), no cell of F, except for C' and D, can cover an unbounded part of
this ray. In addition, none of these two cells intersect it. Therefore, since the ray is unbounded
and we have finitely many cones, the ray cannot be completely covered. If the fan is complete,
the proof is finished. Otherwise, we should note that the ray will eventually enter | F|, since the
direction of the ray is interior to an interior facet of F and, hence, interior to |F|. O

The previous condition is not sufficient in general, not even in the plane. An exception is
the case where all the points lie on a line, which is studied in the following lemma. Figure 5.1(d)
shows a sketch of a covering assignment for the case under consideration.

Lemma 5.13. Let o : cells(F) — P be an assignment for a full-dimensional polyhedral fan
F C RY and a point set P C (N |F|~, where £ is a line. If o satisfies the overlapping condition,
then it is a covering assignment.

Proof. We prove first the complete case. Fix an orientation for ¢ and let v be a direction vector
for it. In addition, we can assume without loss of generality that ¢ goes through the apex of F.
Consider any oriented line ¢ with direction v. At infinity, ¢’ is covered by some (untranslated)
cell C of F. Hence, when C' is translated to its assigned point of P, it still covers ¢’ at infinity
because the translation is only in the direction v. Let g € ¢ be the point where ¢ leaves C. If
q is in the relative interior of (the translation of) a facet W = C' N D, where C, D € cells(F),
the overlapping condition for W (and the special position of P) ensures that ¢ enters D before
leaving C'. Iterating this argument, we eventually reach a cell containing the direction —v that
covers the unbounded remainder of ¢/. Thus, any line ¢ with direction v and that intersects
only d- and (d — 1)-dimensional faces of the translated cells is completely covered. The union U
of the remaining lines with direction v (that is, the lines intersecting some (d — 2)-dimensional
face of some translated cell) is a nowhere-dense set and thus is covered as well. Indeed, for every
line / € U we can find a line not in &/ with direction v (and, hence, covered) arbitrarily close
to . Since the cells are closed sets, the limit of a sequence of covered lines must be covered as
well, and thus ¢/ is covered. Since any line with direction v is covered, R? is completely covered.

Assume now that F is a conic fan with K = |F|. Consider a line ¢ with direction v that
enters K through a facet. Let C' € cells(F) be the cell containing this facet. Since P C {N K™,
the line ¢’ should enter the cell C' translated to the corresponding point before entering K. The
arguments for the complete case carry over until the line crosses (the translation of) a facet W
of a cell D such that W C 0K. Then, again the fact that P C £N K~ implies that the ¢ had left
K before. Therefore, if ¢’ is a line with direction v that avoids (d — 2)-dimensional faces of the
translated cells (and of K), then ¢ N K is covered. A limit argument as in the complete case
ensures that then all the lines with direction v has the portion intersecting K covered, and thus
K is covered. O

We are now in a position to construct examples consisting of a fan and a point set for which
there is no covering assignment.

Theorem 5.14. Given a full-dimensional polyhedral fan F C R% with n cells and set of n points
P C {N|F|~, where £ is a line, there is a covering assignment for F and P if and only if F is
acyclic in the direction of L.

Proof. Provided that F is acyclic in the direction v of £, we can construct a directed acyclic
graph having the cells of F as vertices and an edge from D to C if the vector v normal to
W = C N D pointing from C to D satisfies (u,v) > 0. If the order as the points o(C) appear
on ¢ (for all C € cells(F)) respects the partial order represented by such a directed graph, then
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(—2,2) (2,2) @)
(-1,1) (1,1)
(-1,-1) (1,-1)
(—4,-2) (5/2.-2)

Figure 5.3: Acyclic, not recursively-regular subdivision (left) and the corresponding fan (right).

the overlapping condition holds for ¢. Lemma 5.13 ensures that this condition is sufficient for
the assignment to be covering.

We prove the other direction by contrapositive. If there is a visibility cycle 7 = (Cy ... Cy)
in the direction v (that is, C; is in front of Cj;1, for all i € [k — 1], and C} is in front of C),

there is a cycle in the order the points o(C4),...,0(C) should appear in the line, preventing
the overlapping condition to be satisfied for all the facets of the fan. This has been proven to
be necessary for the assignment to be covering. O

If a covering assignment exists for a given point set in a line and a given fan, it can be
computed in O(n?) time by performing a topological sort on the graph described in the proof of
Theorem 5.14. Since the number of facets is bounded by n?, the algorithm runs in the claimed
time. Afterwards, it only remains to sort the points, which can be done in O(nlogn) time.
Moreover, the topological sort algorithm would detect if the graph has a cycle and, therefore,
there is no covering assignment.

After understanding the previous theorem, one might be tempted to conjecture that being
acyclic is equivalent to being universally covering. We exhibit next an example to show that
this is not the case.

Proposition 5.15. There exists full-dimensional polyhedral fan F C R? consisting of n cells,
and a set of n points P C |F|~ for which there is no assignment satisfying the overlapping
conditions. The fan has no cycle in any direction.

Proof. We will provide a three-dimensional fan F with five cells and a point set P C R? for
which there is no covering assignment. More precisely, it can be shown that for each of the 5!
possible assignments, one of the eight overlapping conditions is violated. To construct F, take the
subdivision sketched in Figure 5.3 (left) and embed it in the plane {(x,y,2) € R3: z = —1/8]}.
Take then the cones from the origin to each of the cells of this subdivision forming the fan
displayed in Figure 5.3 (right).

Let P be the point set consisting of the points

p1 = (29,95,89), py =(55,19,92), ps = (54, 10, 82)
ps = (78,2,68), ps = (15,40, 92).

There is no assignment for this point set fulfilling all the overlapping conditions, as proved
in Appendix D. The last statement together with Lemma 5.13 allow us to derive that there is
no covering assignment for the given fan and the given point set. That there is no direction in
which F is cyclic is also proven in Appendix D. ]
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The point set P in the previous proof was found with the help of a computer. We generated
many pseudo-random samples of five points in R? trying different precisions for the coordinate
generator and several parameters for the distribution.

This last example motivates the conjecture that a fan is covering if and only if it is recursively
regular. Note that a fan that is not recursively-regular must have a completely non-regular
convex region, and this fact could perhaps be used to construct a point set for which no covering
assignment exists.

5.2 Testing assignments in the plane

In this section, we address the problem of, given a polyhedral fan in the plane, a set of points
and an assignment, decide whether the assignment is covering. As seen in the previous section,
the overlapping conditions are necessary for an assignment to be covering. In the plane, the
overlapping conditions already imply that the uncovered region is bounded. We develop below
some other properties of the uncovered region that lead to an efficient algorithm to compute it.

O'(CQ) + /\2
Cs

a(Ch) + M o(D)+ (AD)~ \ p(D)7)

CT(CQ) -+ )\1

U(CQ) + /\0

0'(01) + )\0
(a) Hlustration for Lemma 5.16 (b) Mlustration for Lemma 5.18

Figure 5.4: Drawings for the proofs in Section 5.2.

Lemma 5.16. Let F C R? be a full-dimensional complete fan with n cells, and let P C R? be a
set of n points. If an assignment o : cells(F) — P satisfies the overlapping condition for every
facet, then the set o(C) + C~ is covered, for all C' € cells(F).

Proof. Assume for the sake of contradiction that there is a cell Cy € cells(F) and a point
po € 0(Cp) + Cy that is not covered. See Figure 5.4(a) for a drawing. Since the uncovered
region is an open set, we can further assume that o(Cp) — pg and py — o(Cp) are not directions
of any ray of F. Consider the ray p with apex at pp and direction o(Cpy) — po. Without loss of
generality, we take the origin to be pg and p to be vertical and pointing “downwards”. Consider
now the set of cells C = {C1,...,C,} C cells(F) completely contained in the right halfplane.
Assume that the indices of the cells in C correspond to their counterclockwise order from p, and
let Ao, ..., A\m be the (closed) rays bounding the cells of C, counterclockwise ordered as well.
We will now prove by induction in & that the line supporting o(Cjy) + A intersects p, for all
k € [m]. For k = 0, the ray o(Cp) + A\g intersects p by construction. Assume that the statement
is true for k, that is, the line ¢ supporting o(C}) 4+ Ag intersects p. Then, the point o(Cjy1) lies
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below /, since the corresponding overlapping condition for A, is satisfied. In addition, since the
line supporting o(Cky1) + Ag+1 is non-vertical, it either intersects p or it intersects the interior
of —p. In the second case, the set 0(Ci41) + Ciy1 covers pp, leading to a contradiction. Hence,
the inductive step is proven.

We can perform the symmetric argument for the set C’ of cells completely contained in the
left halfplane. Then, the overlapping conditions for cell C' containing the direction of —p imply
that pg € o(C) + C, which contradicts the assumption that pg is uncovered. ]

Definition 5.17. Let F C R? be a full-dimensional complete fan with n cells, and let P C R?
be a set of n points. For a cell C € cells(F), let A(C) denote its clockwise-minimum ray and
p(C) denote its clockwise-maximum ray. We denote by A(C)~ the open halfspace bounded by
the line supporting A(C) and disjoint from C, and by A(C)* the set R? \ A\(C)~. We denote
by p(C)~ the open halfspace bounded by the line supporting p(C) and disjoint from C, and by
p(C)T the set R?\ p(C)~.

Lemma 5.18. Let F C R? be a full-dimensional complete fan with n cells, and let P C R? be a
set of n points. If an assignment o : cells(F) — P satisfies the overlapping condition for every
facet, then the region that is not covered by o is either

(N (e(C)+p(C)7) or N (e +Ar0)7).

Cecells(F) Cecells(F)

Proof. Let B and D be two cells of F sharing the ray § = A(B) = p(D). The overlapping
condition for f is satisfied if and only if o(D) + p(D)~ C o(B) + A(B)". See the drawing
in Figure 5.4(b). Lemma 5.16 states that the uncovered region is contained in

M @@+ ((p(C)"\AMC)) UAC) "\ p(C)7))) -

Cecells(F)

Assume that there is an uncovered point x € o(B) + (A(B)~ \ p(B)~) and note that

(@(D) + (p(D)"\AD)7)) N (e(B) + (AM(B)”\ p(B)7)) = 2,

since o(D) + p(D)~ C o(B) + A(B)*, which has empty intersection with o(B) + A(B)~. Thus,
we have that x € (D) + (A(D)™ \ p(D)7) and, iterating the argument, it follows that

ze [\ (o(C)+AC)7).

Cecells(F)

Symmetrically, if there is an uncovered point = € o(B) + (p(B)~ \ A(B)™), then x belongs
to o(C) + p(C)~ for all C € cells(F).

We prove now that indeed at least one of the two intersections must be empty. Let us assume
that H = (Neoeeusr) (0(C) + p(C)7) is non-empty. Since H is bounded (because o satisfies all
the overlapping conditions), we have that H = Neeceusir) (0(C) + p(C)T) = @. In addition, we
have that

(| (e(C)+XC))CcH.
Cecells(F)

Indeed, o(B)+A(B)~ C o(D)+p(D)™ for all B € cells(F), where D is the cell counterclockwise
next to B, since the overlapping conditions give o(D)+p(D)~ C o(B)+A(B)*. The symmetrical
argument finishes the proof of the claim. O
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As a consequence of Lemma 5.18, the region that is not covered by an assignment is either
unbounded (if some overlapping condition is violated) or a convex polygon. An algorithmically
interesting implication is stated below.

Theorem 5.19. Let F C R? be a full-dimensional complete fan with n cells, and let P C R? be
a set of n points. If the adjacency information is in the input, it can be checked in O(n) time
whether an assignment o : cells(F) — P is covering.

Proof. We know that the overlapping conditions are necessary for an assignment to be covering,
as stated in Section 5.1. These conditions can be checked in O(n) time. If the assignment
satisfies them, then we check whether Hy = (\oe es(c) ((0(C) 4+ p(C)7)) is empty using linear
programming. Indeed, since the slopes of the lines bounding the halfplanes we want to intersect
are sorted (because the fan is given as input), we can decide if H; is empty just by computing
the lower and the upper envelope of the lover and upper halfplanes and testing whether they
intersect by a sweeping-line algorithm. We analogously check if Ha = (e ceyis(c) ((0(C)+A(C) 7))
is empty. Lemma 5.18 assures that the assignment is covering if and only if both H; and Hy
are empty. O

5.3 Illuminating a stage

The problem of illuminating a pointed cone using floodlights is closely related to the problem
of illuminating a stage. Informally, the problem in the plane asks whether given n angles and n
points, floodlights having the required angles can be placed on the points in a way that a given
segment (the stage) is completely illuminated.

This problem was introduced in [26], where a partial answer for the problem in the plane is
given. In that work, a floodlight can be freely rotated before its placement is determined. It is
claimed [26] that if the sum of the angles is at least the angle of the smallest cone defined by
two lines through the endpoints of the stage and containing all the points, then the stage can
be illuminated. This result triggered a variant of the problem called optimal illumination of the
stage. In this problem, one tries to illuminate a stage placing floodlights at prescribed points
such that the sum of the angles used is minimized. This problem was solved in [43], where an
O(nlogn) algorithm is provided. However, it is also shown that, in the optimal solution, at
least one of the points receives more than one floodlight and the points which do not belong to
the convex hull of the point set do not receive any. If we require each point to hold exactly one
floodlight, the problem can be solved in O(nlogn) time as well, as shown in [46]. In contrast, if
the floodlights are already assigned to points and they are only allowed to rotate, the decision
problem of whether the stage can be illuminated is NP-complete [73].

We consider here a version of the stage illumination problem in higher dimensions. We
require the assignment to be one-to-one and we do not allow the floodlights to rotate.

Definition 5.20. Let F C R? be a full-dimensional polyhedral fan consisting of n cells, P C R¢
be a set of n points and II be a hyperplane. The (d — 1)-dimensional polyhedron @ = |F| N1l
is called the stage. An assignment o : cells(F) — P covers Q with F from P if it is one-to-one
and

U @+e@)>a

Cecells(F)

The following proposition summarizes the relation bounding the stage illumination and the
pointed cone illumination problems.

Proposition 5.21. Let F C R? be full-dimensional a polyhedral fan with n cells.
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(i) If F is recursively-reqular, then, for any hyperplane I and any point set P C |F|~ of n
points, there exists an assignment that covers @ = |F| NII with F from P.

(ii) If F is cyclic in some direction, then, for every hyperplane I1 with normal vector interior
to | F|, there exists a set of n points P C |F|~ such that there is no assignment covering
Q = |F|NII with F from P.

Proof.

(i) As a direct consequence of Theorem 5.4, there is a covering assignment for |F| and P. In
particular, this assignment covers @ with F from P.

(ii) Assume, without loss of generality, that the apex of F is the origin of R?. Let v be a
direction in which F is cyclic, and let £ be a line having direction v. Consider a set P of
n points in . As observed in the proof of Theorem 5.14, any assignment must violate the
overlapping condition for at least one interior facet of F. However, if the points on the
line are not carefully chosen, the stage @) could still be covered by some assignment. Even
more, for every assignment o there is an uncovered ray r, = {z, + v, : A € RT} with
r, € R% and v, € R? interior to |F|. By Lemma 5.11-(i), the intersection r, N |F| is an
unbounded ray 7y = {y, + A\vy : A € RT} with y, € R%. Given a € RT, let h, : R? — R?
be the uniform scaling of the coordinates of R? (with center at the origin) by a factor of
a, and let a, be the smallest v such that hy(y,) lies above II (that is, in the halfspace
bounded by II and containing the origin). Note that h, fixes both |F| and |F|~, and that
if ho(ys) is above II then hg(ys) is too, for all positive § < a. Let & be the minimum
o, among all the assignments o : cells(F) — P, and let P = hg(P). The assignment
& : cells(F) — P induced by o : cells(F) — P fails to cover Q N hs(7,), which finishes the
proof. O

The converse of Proposition 5.21-(i) is, in general, not true. That is, an assignment can
cover a stage @, yet fail to cover the whole cone induced by ). This fact makes the proof of the
following statement more involved.

Proposition 5.22. There exists an acyclic non-recursively-reqular fan F C R3, a plane 11 and
a set of n points P C |F|~ such that there is no assignment covering Q = |FNII| with F from P.

Proof. Consider the example exhibited in the proof of Proposition 5.15. The fan F is the one
sketched in the right part of Figure 5.3. Assume, without loss of generality, that the apex of
F apex is the origin and it is contained in the lower halfspace of R?. From the arguments in
the proof of Proposition 5.15, every assignment for F and P violates the overlapping condition
for at least one facet. Thus, every assignment o fails to cover a ray r, = {zy + v, : A € RT}
with 7, € R and v, € R? interior to |F| and, by Lemma 5.11-(i), 7, N | F| is an unbounded ray
To = {Yo + My : A € R} with y, € R3. Let II be an horizontal plane intersecting 7, for all the
assignments o, which can be found because all the v, have negative vertical coordinate. Then,
Q = |FN1II| # @ cannot be covered with F from P. O



Other applications
and related problems

In this chapter we describe applications of the theoretical results introduced before.

6.1 Redundancy in spider webs

In this section, we present a problem related to the finest regular coarsening of subdivisions in R?.
The results in this section belong to the field of tensegrity theory. The necessary background
for this topic is summarized in Section 3.4.

Let G be an abstract spider web on the vertex set V, and let p : V — R? be an embedding
corresponding to a non-crossing straight-line realization of G. Assume that the vertices lying
on the convex hull of p(V') are fixed (they are, therefore, in equilibrium by definition). Note
that the straight-line realization of G(p) can be thought of as a polyhedral subdivision of the
convex hull of p(V) in the plane. Throughout this section, this subdivision will be denoted
by S = S(G(p)) and called the subdivision associated to the spider web.

The Maxwell-Cremona correspondence states that G(p) has a strictly-proper stress if and
only if S is regular. From this fact and Lemma 3.14, it is easy to derive the following proposition.

Proposition 6.1. Let S be the subdivision associated to a planar spider web G(p).

(i) Only the cables of G corresponding to edges of the finest reqular coarsening of S support a
positive stress in any equilibrium stress of G(p).

(ii) If S is recursively regular, then G(p) is rigid.
Proof.

(i) Since we showed that the edges omitted in the finest regular coarsening are lifted into a
plane by any convex lifting (Theorem 4.11), the Maxwell-Cremona correspondence indi-
cates that the corresponding cables will receive no stress in any proper equilibrium.

(ii) The finest regular coarsening of the subdivision corresponds to a set of cables such that
there is an equilibrium stress assigning positive values to all of them. Therefore, the spider
web defined by this set of cables is rigid by Lemma 3.13. For each of the subsubdivisions de-
fined by the finest regular coarsening, we can assume that the vertices in the corresponding
convex hull are now fixed and apply the previous argument recursively. O

Figure 6.1 illustrates the previous result. The spider web represented in it is constructed
from a triangulation appearing in [4]. The edges omitted in the picture to the right, which do
not belong to the finest regular coarsening of the associated subdivision, support no stress in
any equilibrium. Therefore, they can be considered redundant.
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Figure 6.1: A spider web (left) and the result of removing redundant cables (right).

Note that even thought recursively-regular subdivisions are associated to rigid spider webs,
these might be far from infinitesimally rigid. For instance, if a regular subdivision is refined by
adding an edge whose endpoints are interior to previous edges, the result is recursively regular
but obviously not infinitesimally rigid. We next translate a well-known fact of infinitesimal
rigidity to the language of finest regular coarsenings.

Corollary 6.2. The subdivision associated to a infinitesimally rigid spider web is its own finest
regqular coarsening (hence, it is regular).

Proof. As Lemma 3.14 states, if a framework is infinitesimally rigid, it has a strictly-proper
stress. The edges omitted in the finest regular coarsening of the associated subdivision can-
not participate in such stress. Therefore, none of the edges are omitted in the finest regular
coarsening of the subdivision. O

6.2 Voronoi Tree-maps

Mainly because of the big amount of data generated and used by people and companies nowadays,
Data Visualization has become a wide field in Computer Science. In this area of research, tree-
maps were studied for first time, to best of our knowledge, by Johnson and Shneiderman [76].
These objects are planar tessellations representing a hierarchical structure and whose cells have
prescribed areas. Hence, the result stated in Theorem 2.15-(ii) offers a nice starting point for
the creation of a tree-map. This connection has been exploited to construct so-called Voronosi
tree-maps [16, 84]. These tree-maps are created by partitioning an initial convex polygon by
overlaying on it a power diagram, after adjusting the weights such that each region has the area
prescribed for it. Figure 6.2 shows a tree-map made by computing the Voronoi diagram of the
blue points, refining the resulting cells by the diagrams of the red, purple and yellow points, and
finally splitting one of the cells corresponding to a purple point by the Voronoi diagram of the
green points. Then, the lower levels of the hierarchy are constructed in a similar way.

The Voronoi tree-map approach does not take into account any relation between different
levels of the hierarchy. Every node in the hierarchy is partitioned using an independent (and,
to some extent, arbitrary) power diagram. We will next analyze this kind of constructions in
terms of recursive regularity. This will allow us to transform an initial subdivision to meet the
prescribed volume requirements, while preserving some features of the tessellation.
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Figure 6.2: A Voronoi tree-map.

For completeness, we reproduce below a simple proof of a well-known fact [85, 50, 79, 12],
which reveals the relation between power diagrams and regular polyhedral complexes.

Lemma 6.3 (folklore). The set of reqular polyhedral complexes S with |S| = R? is the set of
power diagrams in RY.

Proof. Let qi,...,q: € R? be sites with associated weights wy,...,w; € RT. Note that, for all
J € [k], we have that

2 I w? if and only it 2(z,q;) — aill +w? < 2 {w.q;) — sl + w2

_wiQSH:L'_Qj J

|z — ai
Thus, the power diagram of the given weighted sites is the vertical projection of the lower
envelope of a set of hyperplanes and, hence, it is a regular polyhedral complex.
To see the converse, one only needs to take the polyhedron which projects onto the given
regular subdivision, and regard the hyperplanes supporting its (say k) facets as functions

fil) = qi-w+b; = (o — > = z]* = lla:1*)/2 + bi, for i € [k].

Note that, without loss of generality, we can assume b; > 0 for all i € [k] by adding a constant
to all the functions without changing the subdivision they induce. The maximization diagram
of the functions — f;(x) for 7 € [k] is the same as the minimization diagram of

filw) = & — al|* — 2bi — las||?, for i € [K],

which can be thought of as the power of x with respect the circle centered at ¢; with radius
2b; + ||gi||?, for all i € [k]. O

As a consequence of the previous lemma, we can assign to any regular subdivision S a
(possibly non-uniquely determined) set of weighted sites, denoted by sites(S), whose power
diagram is §. Then, we can apply Theorem 2.15-(ii) to re-weight the sites in a way that the
prescribed area requirements are fulfilled. The adjacency relations between cells are in general
not preserved. However, the obtained tessellation resembles the original one in some specific
sense. For instance, the facets appearing in the tessellation have directions corresponding to
bisectors of sites(S). We formalize some of other properties next.

Proposition 6.4. Given a full-dimensional recursively reqular subdivision S in R%, a polyhe-

dron P C R? and a function v : cells(S) — Rt such that Y. v(C) = Vol(P), there is a
Cecells(S)

tessellation Q of P satisfying the following properties.
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Figure 6.3: A representation of a regular subdivision tree (left), a polygon (center) and a parti-
tion of this polygon by the subdivision tree.

(1) The cells of Q are polyhedra, and they are in correspondence with the cells of S.
(2) The region corresponding to a cell C'" has volume v(C).

(3) If a pair of cells share a wall in S and in Q, the (affine hulls of ) the walls are parallel.

Proof. We can use the recursively-regular structure of S in combination with Lemma 6.3 to
recursively apply the partition result of the Theorem 2.15-(ii) using a hierarchy of power diagrams
encoded in the regularity tree of S. To meet the volume requirements, we first partition P using
a power diagram of the finest regular coarsening of § in a way that each region has volume
equal to the sum of the volumes that have been prescribed for the regions it contains. We
repeat this procedure recursively. Statements (1) and (2) follow by construction. Let C' and D
be cells sharing the wall W in § and W/ in Q. If C' and D are both in the same (regular) leaf
C of the regularity tree, the associated cells in Q are created by shifting the hyperplanes of the
polyhedron projecting on the (regular) subdivision of AN|C| induced by S. Hence, the wall W’ is
the projection of the intersection of the shifted hyperplanes, which is parallel to the intersection
of the original ones. If C' and D are not in the same leaf, let C’ be the lowest common ancestor
of the leaves containing C' and D. The ground set of this node is split by a regular subdivision
S’ and leaving C' and D in different children. Then, W must be a wall of S’. The final cells of
Q associated to C' and D will be contained in the polytopes resulting from the partition via S’
of the cell corresponding to C'. These polytopes share a wall parallel to W (and only this one).
Thus, any point common to the cells in @ corresponding to C' and D must be contained in that
wall. This fact completes the proof of (3). O

Note that the coarsening structure used in the previous proposition can be altered, as far as
the used coarsenings are regular. That is, if we have a regular subdivision tree having as leaves
the cells of the subdivision, we can use the associated hierarchy of coarsenings to partition the
given polytope. We would also like to remark that the discrete counterpart of the previous result
(analogous to Theorem 2.15-(i)) applies as well. Note also that for d = 2, if the graph induced
by S has n vertices and m edges, then Q has at most 3(m — n) edges and, thus, the complexity
of Q is not significantly larger than the complexity of S.

Figure 6.3 shows an example a tessellation as the ones described in Proposition 6.4, where
the dotted edges correspond to the second level of the hierarchy.
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Figure 6.4: A directional graph (left), a drawing (center), and an embedding (right).

6.3 Embeddings of directional graphs

As shown in Chapter 5, for the existence of a covering assignment it is necessary that there is an
assignment satisfying the overlapping condition for every interior facet of the fan. Moreover, the
examples we have found so far of polyhedral fans and point sets for which there is no covering
assignment fail to fulfill the second condition. Hence, it could be that this condition is also
sufficient. In any case, we think that it is of independent interest to study this condition alone,
which is connected to a problem on graph embedding.

Note first that the overlapping condition for a facet can be expressed as a requirement on
the order in which the two involved points are swept by a hyperplane parallel to the facet. That
is, we want to know which of two points “appears first” in a specific direction. The problem we
study here asks whether, given set of relations of this type (stated on labels) and a point set,
we can find a one-to-one labeling of the point set such that every relation is satisfied. We next
describe the problem formally.

Definition 6.5. A directional graph is a tuple 8 = (V,h), where Visasetand h: V x V — R?
is a function such that h(v,u) = —h(u,v), for all v,u € V. The elements of V are called vertices.

We say that u,v € V' are connected by an edge if h(v,u) # 0. The dimension of 8 is d.

We may regard this structure as a directed graph with a non-zero direction associated to
every edge. Such a graph will be called the underlying graph of the directional graph. Note that
the condition in the definition already implies that h(v,v) =0, for all v € V.

Definition 6.6. An embedding of a d-dimensional directional graph 8 = (V,h) on a point set
P C R% is a one-to-one assignment ¢ : V' — P such that

(h(v,u),o(v) —o(u)) >0, for all v,u € V.

If such an embedding exists, we say that 8 is embeddable in P. A drawing of a directional graph
(= (V,h) is a bijection 7 : V — S C R% such that for all u,v € V with h(u,v) # 0 we have
that m(v) — w(u) = Ay - h(v,u) for some Ay, > 0. The projection of a d-dimensional directional
graph into a k-dimensional linear subspace L C R? is the k-dimensional directional graph
obtained by projecting the vector h(u,v) € R? onto L = R¥, for all v,u € V.

A directional graph is illustrated in Figure 6.4, together with a drawing and an embedding.
The arrows near the edges indicate the directions associated with them. Observe that the
embedding condition for an edge restricts its direction to a halfspace, while the drawing condition
fixes its direction completely. Note also that the lengths of the vectors assigned by h are
irrelevant for the existence of an embedding or a drawing of a directional graph. Therefore, we
will consider two directional graphs (V,h) and (V,h') equivalent if h(u,v) is a positive scalar
multiple of h/(u,v) for all u,v € V.
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Figure 6.5: Projected prism and valid embeddings into two different point sets.

Definition 6.7. A d-dimensional directional graph 8 = (V, h) is universally embeddable if it is
embeddable on any point set P C R? with |P| = |V| . Tt is drawable if it has a drawing.

Polytopes and polyhedral fans are related to certain directional graphs in a natural way.

Definition 6.8. The directional graph of a polytope is the set of its vertices, together with the
function h(u,v) = v — u if u and v are endpoints of an edge of the polytope, and h(u,v) = 0
otherwise. The normal graph of a polyhedral fan is set of its cells with the function h(C, D)
being a vector normal to the facet common to C' and D and pointing “from C' to D ” if they
share a facet, and h(u,v) = 0 otherwise.

Figure 6.5 shows a projection of the graph of a 3-prism into the plane and embeddings of it
into two different point sets. Note that the directional graph of a polytope and the graph of its
normal fan are embedding-equivalent. This is a consequence of the duality between a polytope
at its normal fan.

The following proposition shows that there is a surprisingly large family of universally em-
beddable directional graphs.

Proposition 6.9. If a directional graph is drawable, then it is universally embeddable. In
particular, a directional graph = (V,h) with underlying graph being a tree is universally
embeddable regardless of h. The directional graph of a polytope is universally embeddable.

Proof. Given a drawable directional graph G = (V,h) and an arbitrary point set P with |P| =
|V|, consider a drawing m of G. Let p be the least-squares optimal matching between (V)
and P. We will show that u o 7w is an embedding of 8 Assume that it is not the case. Then,
there must be a pair u,v € V such that (h(v,u), u(7(v)) — p(w(u))) < 0. Since 7w(u) — w(v) =
Auv - h(v,u), for some A, € RT, we have that (m(u) — m(v), u(m(v)) — p(mw(u))) < 0, which
contradicts the optimality of p because swapping the images of m(u) and 7(v) would improve
the matching. Directional graphs having a tree as underlying graph are trivially drawable and
directional graphs of polytopes have the 1-skeleton of the polytope as a drawing. O

It is not hard to see that if there is a sequence of vertices vy, ..., v, v11 = v1 in V and a
vector 0 € R? such that (h(v;,v;11),6) > 0, for all i € [I], then the graph is not drawable. Such a
cycle is called a (0-)forcing cycle. However, the converse is not true in general: for instance, the
normal graph of the subdivision in Figure 5.3 has no forcing cycle but it is also non-drawable.

The following proposition summarizes some relations of recursive regularity to drawability
and embeddability of directional graphs.

Proposition 6.10.
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(i) The projection of a universally embeddable directional graph is universally embeddable.

(ii) Normal graphs of recursively-regular fans are universally embeddable.

(i1i) Universally embeddable graphs are not necessarily drawable.

(iv) Graphs with forcing cycles are not universally embeddable.

(v) There are graphs with no forcing cycles that are not universally-embeddable.

Proof.

(i)

Let 5 = (V,h) be a d-dimensional universally-embeddable directional graph, and let L
be a k-dimensional linear subspace of R% with a basis {l1,...,l}. Let G = (V, h) be the
projection of 8 onto L, which is identified with R* through the bijection

i:RF 5 L cR?

(1‘1, . ,.’Ek) — Z CEjlj.
JE[K]

Consider any set of |V| points P C R¥, and the associated point set P =i(P) C R% If o :

V — P is an embedding of G on P, then & = i ! o¢ is an embedding of G in P, where i~!

denotes the inverse of i on L. Indeed, (h(v,u),o(v) — o(u)) = (h(v,u),5(v) — &(u)) for all
u,v € V, because o(u)—o(v) € L and thus only the projection of h(u,v) onto L contributes
to the scalar product.

Let F C R? be a full-dimensional polyhedral fan consisting of n cells. Theorem 5.4 ensures
that there is a covering assignment for F and any set P of n points. This assignment
must satisfy the overlapping condition for each facet of the fan, which is equivalent to the
embedding condition for the corresponding edge.

The normal graph of a fan is drawable if and only if the fan is regular (see, for instance,
[11]). Thus, the normal graph of a recursively-regular non-regular fan is not drawable and
it is, however, universally embeddable, as shown in (ii).

Consider a d-forcing cycle vy,...,v;, 141 = v1. Take a set of different points in a line
having direction vector § and label them increasingly with respect to their scalar products
with §. For any embedding o, o(v;11) must have a label larger than o(v;), for all i € [I],
which is obviously impossible.

The normal graph of the fan obtained by taking cones from the subdivision in Figure 4.3
has no forcing cycle, since it is acyclic (in the visibility sense). However, we have given a
set of points for which all the assignments violate an overlapping condition. Hence, there
is no embedding of its normal graph into this point set. O






Concluding remarks
and open problems

We have shown that the finest regular coarsening of a subdivision, which can be seen as the
regular subdivision that is closest to it, can be used to define a structure called the regularity tree.
The leaves of this tree define a partition of the subdivision in sub-subdivisions that are either
regular or completely non-regular. The regularity tree reflects thus some of the structure of non-
regular subdivisions and measures, in some sense, the degree of regularity. As a consequence,
the class of recursively-regular subdivisions arises in a natural way. We have shown that this
class goes beyond regular subdivisions while excluding cyclic ones. Because of this, it maintains
several good properties of regular subdivisions, although it does not avoid all the pathologies
of non-regular ones. We have reported on some of such features and have also related the new
concepts to previously known results.

In addition, we have studied a collection of related applications. These results belong to a
wide range of different areas, some of them more theoretical than others. We expect to find
even more applications of the developed theory, since any theorem or algorithm based on the
regularity of a subdivision and admitting a recursive scheme can probably be extended to apply
for the larger set of recursively-regular subdivisions.

We studied the problem of illuminating the space by floodlights. It was known that regular
fans are universal and our aim was to study the problem for the other fans. We have proved that
not only regular fans are universal and that not only cyclic ones are non-universal. It makes
then sense to ask what is the complexity class of the general problem of deciding whether the
space can be covered by a given fan from a given point set (in dimensions bigger than two). It
remains open as well to precise the limits of universality, that is, to characterize the polyhedral
fans that can cover the space from any point set. A reasonable candidate is recursive-regularity.
Indeed, the fact that a non-recursively-regular subdivision has a convex sub-subdivision which
is completely non-regular could be the first step towards a proof for this fact. For the problem
in the plane, we prove that the region that an assignment leaves uncovered is either unbounded
or a convex polygon. This property is then used to give a linear algorithm to decide if a given
assignment for a given fan is covering. Our results on covering the space by floodlights have
implications for a three-dimensional version of the stage illumination problem, on which we
report. The problem of embedding directional graphs is in a similar situation. A natural and
easy to state question is whether deciding if a directional graph can be embedded in a given
point set is NP-hard.

Concerning algorithmic issues, we proved that the finest regular coarsening and the regularity
tree of a subdivision can be computed in polynomial time. We have used these facts to prove
that recursive regularity of a subdivision can be decided in polynomial time as well, which is
relevant for the algorithmic version of the aforementioned problems.

As pointed out in Chapter 2, recursive regularity can be defined for tessellations as in Defi-
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nition 2.1. Almost all the presented results carry over this more general class of objects, albeit
some of the arguments might need special care. On the other hand, finding examples in the
class of tessellations (as recursively-regular but non-regular objects, or non-recursively regular
objects) is easier, which is another reason to have restricted the study polyhedral complexes.



Voronoi diagrams
for partial matching






Introduction to Part 11

The process of point set registration, known as point matching as well, basically seeks a trans-
formation that aligns two point sets. This problem is among the most fundamental challenges in
computer vision and pattern recognition. It is widely used in areas such as medical imaging [65],
molecular biology [107], object recognition [18], or object tracking [108]. An important variant
of the problem searches for an occurrence of a “small” pattern in a “big” point set. This will be
the focus of this part, providing approaches that are sensitive to the size of such pattern.

We present first some initial considerations on point matching and review the most relevant
literature. Afterwards, we will introduce some notation and facts concerning matchings in
graphs. Section 8.3 and Section 8.4 study two variants of the assignment problem for bipartite
graphs that will be translated into a geometric setting in the main chapters of this part.

8.1 Point matching

Point-matching approaches are closely related to distances for point sets. In this context, the
word distance should not be taken in the mathematical sense because the considered functions
usually fail to satisfy the triangle inequality. This is the reason why they are often called
similarity measures instead. Formally, a similarity measure or a distance for point sets is simply
a function mapping pairs of point sets to (usually) the non-negative real numbers. In fact, this
kind of functions are often called dissimilarity measures, since the larger the value they take,
the more different the point sets are supposed to be. Some of these distances are only defined
when the two sets are equally sized, while others make sense for arbitrary sets as well.

An extensively used distance is the directed Hausdorff distance, which matches each point of
a set to its nearest neighbor in the other set, taking afterwards the maximum of the (Euclidean)
distances between matched points. Observe that only one pair of points is actually relevant for
the distance value: the distance between the point sets would not change if one removes all of
the other points. This effect is partially avoided if one imposes that the points are matched in
an injective way. The resulting distance is called the (Euclidean) bottleneck distance.

For several distances a “dynamic” version has been defined, meaning that one of the sets
is allowed to be transformed according to some restricted set of transformations. The value of
the dynamic distance is then the minimum of the distances attained between the fixed set and
each of the instances of the transformed set. This approach is specially useful to decide to what
extent a pattern set occurs in a larger set, modulo some kind of equivalence relation (induced
by the set of transformations).

Different types of point-matching algorithmic questions are found in the literature. The
exact decision problem aims to decide whether the distance between two point sets is zero. The
e-decision problem asks whether the distance between two sets is smaller than a fixed ¢, and the
optimization problem is equivalent to computing the actual value of the distance. Depending on
the field, some authors are interested only in the properties of the distance, while others require
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it to be efficiently computable. A big part of the literature deals with points in the plane, while
a different sector prefers the distance to be meaningful and efficiently computable also in higher
dimensions.

In this thesis, we study mainly three types of point-set distances under translations. All of
them are evaluated on matchings; that is, injections from the smaller of the two sets into the
larger one. The pairs induced by the matching are called its edges, and the length of an edge
is the distance between the points defining it. Then, the cost of a matching is the maximum
length of the edges it uses (bottleneck distance), the decreasingly-ordered vector of lengths of its
edges (lexicographic-bottleneck distance) or the sum of the squares of the lengths (least-squares
distance). The value of the distance is then the minimum cost attained by a matching if the
small point set can be freely translated.

The bottleneck distance was introduced for equally-sized point sets in the plane by Alt,
Mehlhorn, Wagener and Welzl [9]. They gave an O(n®logn) algorithm for the optimization
problem under translations and an O(n®) one for the e-decision problem under isometries, among
many other variants. For translations, the bound was improved to O(n®logn) for the e-decision
and O(n® log? n) for the optimization problem by Efrat, Itai and Katz [52]. Rezende and Lee [91]
studied later the exact decision problem under congruences in higher dimensions. The problem
in the plane under translations was revisited more recently by Bishnu, Bhattacharya, Das and
Nandy [24]. A family of different static distances defined not only on matchings was studied
by Eiter and Mannila [53]. For a survey on these and other related distances, see the work of
Alt and Guibas [8]. The lexicographic bottleneck distance was studied for instance by Burkard
and Rendl [28] and revisited by Aneja and Sokkalingam [103] in terms of weighted bipartite
graphs. See the work of Croce, Paschos and Tsoukias [42] for another approach, and the general
discussion on lexicographic orders by Fishburn [57].

Least-squares matchings have been proven to be relevant for many applications such as
pattern recognition, registration and clustering (see, for instance, [97, 67, 5]). In addition, they
are related to power diagrams [13]. An early study of these matchings by Silberberg and Zikan
appeared in [110]. An approximation algorithm for the problem under rigid motions in the plane
was given by Agarwal and Phillips [86]. As shown by Rote [93], the least-squares matchings
under translations induce a subdivision of the positions of the translated point set according to
its optimal matching. Rote showed that this subdivision is a polyhedral complex and that a line
can intersect only polynomially many cells.

Another interesting distance with applications in image retrieval is the Earth Mover’s Dis-
tance, defined for distributions or weighted points [96]. A FPTAS for its computation under
rigid motions in the plane was provided by Cabello, Giannopoulos, Knauer and Rote in [30]. A
variant of the distance was studied in [39]. The minimum Euclidean bipartite matching in the
plane was studied by Vaidya [106] and improved by Agarwal, Efrat and Sharir as an application
in [2]. An interesting example of a negative result is that deciding whether a point set is con-
gruent with a subset of another point set is probably not fixed parameter tractable taking the
dimension as a parameter, as shown by Cabello, Giannopoulos and Knauer [29].

A common strategy to find a local minimum of a distance under translations is the Iterative
Closest Point (or ICP, for short) algorithm, introduced by Besl and McKay [22] and analyzed
by Efrat, Ezra and Sharir [55]. Some variants of the algorithm and their efficiency in practice
are reviewed in [97, 64]. The algorithm takes an optimal matching for an initial position and
translates the point set to a minimum of the cost function of this matching. Then, the optimal
matching for this new position is computed. This process is iterated and, under reasonable
assumptions, it stops at a local minimum of the distance function. See [19] for a recent alternative
approach to find a local minimum of the least-squares distance function under translations.
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8.2 Definitions and notation for matching in graphs

In the following sections, we study two problems on graph matching that will be used later in
a more geometric setting. We will deal throughout this part with two finite point sets A and
B in R? and we will be interested in the (Euclidean) distances between points from one set
and points from the other. Therefore, we will be thinking implicitly of a complete bipartite
graph. The vertices of the graph will be the points of A and B, and the edges will be the pairs
(a,b) € A x B, which will be denoted by ab for short. The edges of this graph will be weighted
by the Euclidean distance between the corresponding points. This value will be called weight or
length of the edge. Furthermore, the weight of the edges will be often considered as a function
of a parameter t € R%, which encodes the position of B. Because of this close relation between
point matching and matchings in weighted graphs, we introduce here some basic definitions and
facts about them.

Definition 8.1. Let G = (A, B; E) be a bipartite graph with edge set E C A x B. A matching
in G is a set ¢ C F such that every vertex in A U B is incident to at most one edge of o.
A maximum matching is a matching of maximum cardinality. A vertex belonging to an edge of
o is called a matched vertex. If a vertex is not matched, it is called exposed or free. The set of
matched vertices is called the matched set of o.

In the following chapters, we will often assume that matchings are maximum. In such case,
we will also identify a matching with the injection from B to A that it induces.

Definition 8.2. Given two sets of edges o, 7 C E, their symmetric difference is the set
c®dT=(\T)U(t\o)=(cUTt)\ (cNT).
The connected components of (the graph induced by) o @ 7 will be called its components.

Note that, if o and 7 are maximum matchings, the components of o & 7 are paths or cycles,
since every vertex has degree at most two in o U 7.

Definition 8.3. Let 0 C E be a matching. An alternating path for o is a path in G (without
repeated vertices) whose even edges are in o and whose odd ones are in E'\ 0. An alternating
cycle for o is a cycle in G (without repeated vertices) whose even edges are in ¢ and whose
odd ones are in E'\ 0. An augmenting path for o is an alternating path starting and ending at
exposed vertices.

Note that, if v is an augmenting path for o, the matching 7 = o @ v has one more matched
vertex than . Observe also that given two matchings o, 7 the components of c @7 are alternating
for 0 and for 7. If v is a component of o @ 7, then o @ v is a matching as well. We call the
transition from o to o @~ the flip of o along v. We also say that if we flip v in o we get o @ 7.

Definition 8.4. A cost function is a map f : 2 x R® — R, where s € N. The cost of a set of
edges E' is the function f(E’,-) : R® — R that maps a parameter ¢t € R® to f(E’,t). The cost of
an alternating path or alternating cycle v with respect to a matching o is the difference between
the cost of v N o and the cost of v\ 0. Given two matchings o, 7, the cost of a component ~ of
o @ 7 will be the absolute value of the difference between the cost of YN and the cost of yN 7.

The cost functions in this thesis will typically be the sum of the (squared) weights of the
edges in the set or the maximum weight over the edges in the set.
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8.3 Bottleneck assignments problems

Let A and B be two sets with £ = |B| < |A| = n, and G = (A, B; E) be a bipartite graph
with edge set £ C A x B. Let w : E — R2? be a function giving weights to the edges. The
bottleneck cost of a matching 7 in G = (A, B; E) with respect to w is the maximum w-value
attained by its edges. The problem of finding a maximum matching of minimum bottleneck cost
(referred henceforth to as a bottleneck matching) for the complete and balanced case (kK = n
and F = A x B) has been widely studied in the last decades under the name of the bottleneck
assignment problem. The most prominent approaches for this problem are the threshold methods
and the augmenting path methods. Details and related issues can be found in the book dedicated
to assignment problems from Burkard, Dell’Amico and Martello [27]. The threshold algorithms
conduct a binary search on the possible values for the longest edge of a bottleneck matching.
At each stage, the edges that are longer than the threshold are ignored, and a maximum match-
ing computation in the modified graph is performed. One of the best-known algorithms to
find a maximum matching in a bipartite graph is due to Hopcroft and Karp [71]. It runs in
O(|E|y/v(Q)) time, where v(G) is the size of the maximum matchings in G. The algorithm from
Alt, Blum, Mehlhorn and Paul [7] finds a maximum matching more efficiently if the graph is
“dense”. This fact was exploited by Punnen and Nair [89] to develop an alternative algorithm for
the bottleneck assignment problem. The pure threshold method is preferable for dense graphs,
the method from Gabow and Tarjan [59] is better for sparse graphs and the approach of Punnen
and Nair covers the range in between.

A variant of the bottleneck assignment problem is the lexicographic bottleneck assignment
problem, introduced in [28] and revisited in [103]. For this problem, the cost of a matching
0 : B — A is the result of sorting decreasingly the values w(bo (b)) for all b € B. Then, a lexico-
graphic bottleneck matching is an matching minimizing the cost, when the corresponding vectors
are compared lexicographically. Note that a lexicographic bottleneck matching is necessarily a
bottleneck matching.

In the unbalanced case, as long as the graph is complete, the maximum matchings have
size k. In addition, we can take advantage of a property similar to the one in Hall’s marriage
theorem. To state it, we introduce the following definitions and notation.

Definition 8.5. Let G = (A, B; F) be a bipartite graph with k = |B| < |A|, and w : E — R=0
be a function giving weights to the edges. Given b € B, a set My, is a b-minimal set if | M| = k
and no edge ab € E \ M, has strictly smaller weight than any edge in M;,. The candidate set
of b is the set E} with |E,| > k and such that every edge ab € E \ Ej has strictly larger weight
than every edge in Ej.

Lemma 8.6. Let G = (A, B; E) be a bipartite graph with k = |B| < |A|, and w : E — R=Y be a
function giving weights to the edges.

(i) If a set M C E contains a b-minimal set for each b € B, then M contains a lexicographic
bottleneck matching.

(i) Every lexicographic bottleneck matching is contained in the union of candidate sets Z =
Upe B Ep.

Proof.

(i) Let o C E be a lexicographic bottleneck matching. If ;1 C M, nothing is left to be proven.
Otherwise, let ab € E be an edge in p\ M, and let M, C M be a b-minimal set. Since
matches only k points of A and ab € M D M,, there must be an edge a’b € M, \ p. The
matching (u \ {ab}) U {a'b} is lexicographically at least as good as p and it uses one more
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edge of M. Repeating the process we end up with a lexicographic matching contained
in M.

(ii) Assume that p is a lexicographic matching and it contains an edge ab € E \ Z. Let a’b be
an edge in Ep \ 4 # &. The matching (u\ {ab}) U {a'b} is lexicographically better than u,
which contradicts its optimality. O

As a consequence of Lemma 8.6, we can select a set of k2 edges which is guaranteed to
contain a lexicographic bottleneck matching. This pruning of the graph can be done in O(kn)
time using selection algorithms. Although we do not know whether the graph will be dense or
sparse after pruning the non-relevant edges and isolated vertices, we have that both |B| + |A|
and |E| are O(k?). Thus, the best worst-case running time for our scenario is provided by the
algorithm of Gabow and Tarjan, which runs in O(k%\/klogk) time, according to the analysis
in [27]. The approach in [103], based on solving a sequence of linear sum assignment problems
(to be described in the next section) and bottleneck assignment problems, boils down to an
algorithm for the computation of a lexicographic bottleneck assighment running in O(k*) after
the pruning.

We state now two lemmas that are well-known in the matching literature and are used by
the aforementioned algorithms. We will require them later.

Lemma 8.7 (Berge’s Lemma [21]). A matching o is a maximum matching in a graph G if and
only if there is no augmenting path for o in G.

Definition 8.8. Let G = (A, B; E) be a bipartite graph and w : E — RZ° be a function giving
weights to the edges. Given r € [|E|], let

E(r) ={e € E: w(e) is among the r smallest values of w(E)}.
We denote by G(r) the graph G = (4, B; E(r)).
We state the following easy lemma without proof for future reference.

Lemma 8.9. Let G = (A, B; E) be a bipartite graph whose mazximum matchings have cardinal-
ity |B| and w : E — R2% be a function giving weights to the edges.

(i) If G(r) has a matching of size |B|, then G(j) has a matching of size |B| for all j € [s],j > r.

(i) A matching in G(r*) of size |B| is a bottleneck matching if and only if G(r* — 1) has no
matching of size |B].

8.4 The linear sum assignment problem

Let G be a complete bipartite graph with vertex set partitioned into components A and B with
k = |B| < |A| = n, and edge set E C A x B. Given a weight function for the edges w : F — R*,
the linear sum assignment problem seeks a maximum matching having minimum cost, where
the cost is the sum of the weights of the edges in the matching. Details concerning this problem
and many related ones can be found in the book [27].

The linear sum assignment problem can be formulated as the following min-cost network
flow problem:
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min Z w(ab)zyyp

abeE
subject to: Z:cab =1 Va € A
beB
d wa <1 VbEB
a€A
zap € {0,1} Vab € E (8.1)
Tap =0 Vab € F,

where z,, = 1 means that a and b are matched together, for ab € E. Since the coefficient matrix
is totally unimodular and the costs are integers, an optimal integral solution is guaranteed to
exist. Therefore, we can consider the relaxed linear program, in which we do not (explicitly)
require the primal variables x to be integral. That is, we can substitute the conditions in (8.1)
by xq > 0, for all ab € E.

A seminal paper by Kuhn [81] introduced an approach to this problem that would later orig-
inate the so-called primal-dual algorithms. This algorithm (or family of algorithms) is known
as the Hungarian method. It starts with a feasible dual solution (u,v) € R¥ x R” and a partial
primal solution 2 € R™ (in which not all the vertices in B are matched) satisfying the com-
plementary slackness conditions. At each iteration, dual feasibility is preserved and the primal
solution approaches primal feasibility by trying to increase the cardinality of the corresponding
matching using only edges with zero reduced cost. If the augmentation is not possible, the dual
variables are updated ensuring that more edges attain reduced cost zero.

The original implementation of the algorithm works for balanced graphs (that is, with & = n)
and runs in O(n?) time. Edmonds and Karp [51] and Tomizawa [104] observed that one can
apply Dijkstra’s algorithm to find the shortest paths that will be used to augment the matching,
leading to an O(n?) algorithm. In a recent technical report by Ramshaw and Tarjan [90], an
adaptation of the Hungarian Method to unbalanced bipartite graphs is proposed and analyzed.
They use a modification of Dijkstra’s algorithm, as described in [58], to find the augmenting
paths. The analysis of the careful implementation of the Hungarian method they propose yields
a running time of O(|E|k + k?log k), under the hypothesis in our setting. Henceforth, we will
refer to the previous specific algorithm as the Hungarian method.

8.5 Outline

In this part, we focus on distances under translations and based on injections from the smaller
set into the larger one. We consider, in addition to the optimization problem, a tessellation
of the space of transformations that is useful for other types of questions. This tessellation,
which we call the partial-matching Voronoi diagram, was defined by Rote [93] for the least-
squares distance. Roughly speaking, it is the tessellation of the space of translations that groups
together the points whose associated positions of the point sets have the same optimal least-
squares matchings.

We extend the results by Rote in Chapter 11, deriving a non-trivial bound on the com-
plexity of the least-squares partial-matching Voronoi diagram in any dimension. We study
also structural properties of this complex that allow us to design algorithms for its exploration
and construction. In Chapter 10, we analyze the analogous tessellation for the bottleneck and
lexicographic-bottleneck distances as well, for which polynomial bounds and construction algo-
rithms are derived. Moreover, the provided bounds and running times are sensitive to the size of
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the smaller set, being some of them optimal if this is constant. We generalize the framework to
other transformation spaces and cost functions in Chapter 12, leaving to Chapter 13 the study
of several related problems that can be solved taking advantage of the results developed in the
preceding chapters.

In order to derive one of the main results of this part, we examine in Chapter 9 a combi-
natorial problem concerning efficient matchings. We believe that the properties of this purely
combinatorial problem are of independent interest.






Pareto-efficient matchings for
the House Allocation Problem

In this chapter, we present a collection of combinatorial results that will be used later on to
derive bounds on the complexity of several partial-matching Voronoi diagrams.

The combinatorial problem we are considering has the flavor of the Stable Marriage Problem,
which was introduced by Gale and Shapley [60]. It is usually stated as trying to marry the same
number of men and women knowing the preferences of every person in a way that no non-married
pair would bilaterally want to have an affair. In the classical paper [60] it is shown that such
a stable marriage exists for any given set of rankings. In fact, there are in general many stable
marriages for a single instance of the problem. Knuth [80] and also Irving and Leather [72] gave
some bounds on this number.

Numerous variants of the problem have been studied afterwards (see [74] for a survey).
Remarkable examples are stable marriages with incomplete rankings or with ties, the stable
roommates problem or the hospital/residents problem [66]. We are interested in a variant that
was first introduced by Shapley and Scarf [100] called the House Allocation Problem. This
problem receives as input a set of n agents and a set of n houses, together with a ranking of
the houses according to each agent. The output should be a one-to-one assignment of houses to
agents such that no subset of agents would like to permute their houses. Such an assignment
is called a stable allocation or a Pareto-efficient allocation. The literature around this problem
focuses on algorithmic questions, whereas we are interested in bounding the number of stable
allocations. Moreover, we need to extend the formulation of the problem in order to deal with
instances with fewer agents than houses. We formalize the problem next.

Although the problem can be formulated as a graph matching problem, we will use here
the language of permutations and linear orders on the set [n], since it simplifies significantly
the notation. Let P = (dy,...,dk) be a list of permutations of [n]. This object will be called
a (k,n)-preference (or preference, for short). It may be regarded as k linear orderings on [n],
saying for every i € [k] that j <; [ if and only if d; *(j) < d;*(I). The set [k] can be thought
of as a set of agents, each of them having a ranking on a set of houses [n]. The permutation d;
lists the n houses according to the preference of agent i € [k], where a house j appears before a
house [ (or, equivalently, j <; ) if the agent i prefers j over [. The target is to assign a house
to each person in a “good” way. Note, though, that there is no “best” assignment in general.
Throughout this section P will be considered fixed and we will represent an assignment as an
injection p : [k] < [n], which will be called a matching as well. Its image p([k]) will be called
the matched set of p.

Definition 9.1. A matching p is said to be better than another matching v (with respect to
a preference P) if p # v and p(i) <; v(i) for all ¢ € [k]. A matching p is Pareto efficient (or
efficient, for short) if there is no better matching. We say that an element of [n] is reachable if
it is contained in the matched set of some efficient matching.
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We summarize now some of the properties of efficient matchings and reachable elements.
Proposition 9.2. Let u # v be two efficient matchings for a preference P = (dy,...,dg).
(i) There exist i,j € [k] such that p(i) <; v(i) and v(j) <; p(j).
(ii) If j € [n] is such that j <; u(i) for some i € [k], then j € u([k]).
(iii) If j € [n] is not among the k smallest values of <; for some i € [k|, then j is not reachable.
(iv) There is no sequence i1, ..., im = i satisfying p(ii—1) <i, p(iy) for all l € [m].
Proof.

(i) Assume that for all I € [k] it is u(l) <; v(1). Then, p is better than v and, therefore, v is
not efficient. To avoid the contradiction, it has to exist ¢ € [k] such that v (i) <; u(i). A
symmetric argument shows that there is a j € [k] such that p(j) <; v(j).

(ii) Let j € [n] be such that j <; pu(i) for some i € [k] and assume j ¢ p([k]). The matching
obtained by modifying u such that (i) = j is better than p, which is a contradiction.

(iii) Assume p(i) = j and that there are different elements ji,...,jr <; j. According to (ii),
it has to be u([k]) D {j1,.--,Jk,J}. Hence, |u([k])| > k, contradicting the fact that u is a
matching.

(iv) Assume that such a sequence exists. Consider the modification ' of p obtained by assigning
W' (i) = p(i—q) for all I € [m], and p/(j) = p(j) for all 5 € [k] \ [m]. Since u is a matching,
we have that u(i;) # p(iy) for all [,I’ € [m]. Consequently, u/ is matching as well. In
addition, y/ is better than p, contradicting the hypothesis that u is efficient. O

A sequence like the one in (iv) is also known as a top trading cycle.

Definition 9.3. Let p be a permutation of [k]. The p-greedy matching p for P is the unique
injection that satisfies u(i) <, I for all I € [n] \ {u(j) : j € [k],j < i}, for all i € [k]. A
matching is called greedy if it is p-greedy for some permutation p.

Intuitively, a greedy matching is obtained by choosing the best free house for the current
agent, according to some ordering of the agents. In the game theory literature (see, for instance,
[1]), this assignment mechanism is called a serial dictatorship. Pareto-efficient matchings are
called Pareto-optima or matchings in the core of the House Allocation Problem as well. The
following characterization of efficient matchings appears in [1] only for the case k = n. We give
a more focused and shorter proof of this result that, in addition, covers the general case k < n.

Theorem 9.4. For a given preference P, a matching is efficient if and only if it is greedy.

Proof. For the if direction, let u be a p-greedy matching and let us assume for contradiction
that there is a better matching v. Since v is better than pu, there exists ¢ € [k] such that
v(p(5)) = n(p(4)) for all j < i and v(p(i)) <, w(p(i)). This already contradicts the fact that
w is p-greedy. Hence, p is efficient.

For the only if direction, assume that p is an efficient matching. Then, there must be some
index i € [k| such that p(i) = d;(1). Assuming the contrary means, by Proposition 9.2-(iii),
that for all i € [k] there exists an ¢' € [k] \ {¢} such that u(i") = d;(1). In particular, there is a
cycle iy, ...,1 = ig such that p(ig—1) = d;, (1), for all k € [I]. This contradicts the statement in
Proposition 9.2-(iv) and, thus, the efficiency of u. We now construct the permutation p as follows.
Let p(1) = 41, where pu(i1) = d;; (1). Consider then the matching uy : [k] \ {i1} — [n] \ {u(i1)}
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dy : 1
d2 .
1
P
d2j71 : 2‘7 -1
d2j . 2‘7
Pjiq:
J+l d2j+1 . 1
dojy
P2

) ’ J
d2j+1_1 . 2] — 1
d2j+1 : 27

Figure 9.1: Recursive construction with Q(klog k) reachable elements.

induced by p. It is an efficient matching, as a better matching would yield a better matching for
u as well. Hence, we can find an element io € [k] \ {i1} such that it is matched to the smallest
element in [n] \ {x(i1)} according to d;,. We set then p(2) = i2. The repetition of this process
determines a permutation p such that p is p-greedy. O

Corollary 9.5. The number of efficient matchings with respect to a given preference P is at
most k! and, in general, this bound cannot be improved.

Proof. By Theorem 9.4, efficient matchings are greedy matchings. There exists only one greedy
matching for every permutation of [k]. For the lower bound construction, observe that if all the
permutations d; are equal for all ¢ € [k], then every p induces a different greedy matching. [

We investigate now on the number of different matched sets of efficient matchings with
respect to a fixed preference. To this end, we introduce the following notation.

Definition 9.6. Let P be a preference. The set of reachable elements for P is denoted by

RP)= |J  wkD.
ilk] > [n)
w efficient for P

The set of images of efficient matchings for P is denoted by
I(P) ={p(k]) | p: [k] = [n] efficient for P} .

We examine first the set of reachable elements R(P). It follows from Proposition 9.2-(iii)
that |R(P)| < k? for any preference P. The following construction gives a lower bound.

Proposition 9.7. For every k = 2! with | € N, there exists a (k,n)-preference P for some
n < k% such that
IR(P)| > 271 (1 + 2) = Q(klog k).

Proof. We will construct in every step j = 0,...,[ a preference P; consisting of 2J permutations
and having 2/ ~1(j+2) reachable elements. The recursive construction is illustrated in Figure 9.1.
For j = 0, we consider the trivial preference Py having |R(Py)| = 1. Assuming that we already
constructed P; and that it reaches 2771(j 4+ 2) elements, we construct Pjs1 as follows. We
put di(1) = dy;;(1) = i for all i € [27]. The remaining positions of di,...,dy; are chosen
according to the construction for P; but using elements not in [27]. The remaining positions of
doiiq,...,dgi+1 are set similarly using yet another set of elements disjoint from [27] and from
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the ones used in the first copy of P;. In this way, any element reached by a permutation p of
[27] in the second copy of P; (named 73J2 in the figure) can be reached in P;;1 by a permutation
starting with the elements of [27] and then continuing as p would do it. Any element reached
in the first copy of P; (named 73} in the figure) can be reached in a similar way. Therefore, the
number of elements that can be reached by efficient matchings with respect to P;y1 is at least
2 4+ 2|R(P;)| =27 +2-2071(j +2) = 2/(j + 3). O

After presenting the results of this chapter in [70], the above combinatorial problem was
studied more thoroughly in [10], where it was shown that the previous lower bound construction
is asymptotically tight.

Lemma 9.8 (Asinowski, Keszegh and Miltzow [10]). For any (k,n)-preference P,
|R(P)| < k(ln(k) + 1).
We now investigate the asymptotic behavior of I(P).

Proposition 9.9. For every (k,n)-preference P, |I(P)| = O((elnk + €)*/v/E). There exists a
(k,n)-preference P such that |I(P)] = Q(2F/VE).

Proof. We have that

|R(P)| k(In(k) + 1) EF(n(k) + ¥ (k(Ink+1))*  (e(lnk+ 1))k
o) < (MP1) < (P ) S EO ] GO D) (i D)
(9.1)

where we used Lemma 9.8 in the second step and Stirling’s approximation formula in the fourth
one. For the lower bound construction, we will consider only even values of k£ to avoid floor and
ceiling functions. Let P be such that for every <; the k/2 smallest elements are the same (that
is, di(m) = dj(m)) for all 4,5 € [k] and m € [k/2], and the next elements are pairwise different
(that is, d;(k/2 + 1) # d;j(k/2 + 1)) for all i # j. See Figure 9.2 for an illustration. Now, when
we greedily choose the smallest elements according to the order of some permutation p, in the
first k/2 steps we choose one of the smallest k/2 elements and after exactly k/2 steps all of
these have been chosen. Then, in the last k/2 steps we choose by construction the (k/2 + 1)-st
smallest element with respect to the corresponding <;. Thus, every subset of size k/2 is chosen
in the second half of some ordering p, and hence we have ( k%) different sets in I(P). It is known

that this (central) binomial coefficient is asymptotically ©(2*/vk). O

Note that, using Stirling’s approximation in the three factorials of the binomial coefficient
in Equation (9.1), we would could reduce the base of the exponential part. For clarity, we prefer
to use the simpler and slightly weaker bound we have derived.

Finally, we prove the following technical lemma, which will be used later.

Lemma 9.10. Let P be a (k,n)-preference and j € [k]U{0} satisfying the following conditions.
(1) The first j permutations of P start with (1,2,...,7).

(2) The (j + 1)-st permutation of P starts with j + 1.

(3) The k — j — 1 last permutations of P start with (j + 2,...,k).

Every efficient matching for P has matched set {1,...,k}.
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di: 1 2 k2 k/2+1
dy: 1 2 k/2 k/2+42
dp: 1 2 ... k/2 k/2+k

Figure 9.2: Construction with 2%/2 reachable sets.

Proof. Observe first that if we have m permutations that coincide in the first m elements, then
all these elements must be included in the matched set of any efficient matching. Indeed, since
any efficient matching is a greedy matching, it is clear that the first element of each permutation
will be included in the matched set. Since the m permutations coincide in the first element,
at least m — 1 of the corresponding elements will not be matched to it. As a consequence of
efficiency, it follows that if m > 2, the second element of the permutations will be included
as well. And again, at least m — 2 of the corresponding elements will not be matched to it
and they will have to go further. Repeating the last arguments, the claim follows. Applying
the previous claim to the groups of permutations indicated in the statement, we have that
{1,2,...,5,7+ 1,7+ 2,...,k} must be included in the matched set of any efficient matching.
Since this is a set of k elements, this is the unique possible matched set. ]






Bottleneck partial-matching
Voronoi diagrams

We study in this chapter the bottleneck partial-matching Voronoi diagram and its lexicographic
version. We assume throughout the chapter that we are given two point sets A, B C R%, and
that B is allowed to be translated. We will use the term edge as a shorthand for a pair of
points (a,b) € A x B and its length will mean the Euclidean distance between them. Our aim is
to subdivide the space of translations in a way that we can retrieve, for every translation, one
matching whose longest edge is as short as possible, for the corresponding position of B. Using
this structure, we will obtain algorithms to find the position of B that best resembles a subset
of A in the bottleneck sense, and for other related problems. Recall that an edge (a,b) € A x B
is denoted by ab for short. We will refer to the weight or the length of an edge as a (sometimes
implicit) function of t € R?, the parameter that represents the position B + t of the point set.
We also identify a matching with the associated injection of B into A. In the figures, we use
white disks to represent the points of B and black ones to represent the points of A.

10.1 Bottleneck matchings under translations

The problem of finding a bottleneck matching for two point sets A, B € R? can be thought of
as a bottleneck assignment problem in a bipartite graph on A and B, where the weight of an
edge from a € A to b € B is the Euclidean distance between the corresponding points. When we
consider the variant under translation, the cost of a matching varies according to a parameter
representing the position of one of the point sets. The following definition introduces the main
objects of study of this chapter.

Definition 10.1. A bottleneck matching for point sets A, B C R? with |B| < |A| is a matching
that minimizes

flo) = max |b — o (b)||, among all the matchings o : B — A.
€

The bottleneck cost of a matching o : B < A is the function

fo(t) = max |b+t — o(b)||?, where t € R%,
e

The bottleneck value is the function

E(t) = min f,(t), where t € RY.

o:B—A

Note that being bottleneck is defined in terms of the Euclidean distance while the functions
used depend on the square of this value. This squaring is harmless and will come in handy later.
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(a) Two point sets. (b) The minimization diagram of £. (c) A coarsening of a bottleneck diagram
of A and B.

Figure 10.1: The minimization diagram of £ and a coarsening of a bottleneck diagram for a pair
of point sets.

Figure 10.2: Three positions of a pair of point sets and a bottleneck matching for each of them
showing that the minimization diagram of the corresponding £ function has a non-convex region.

Figures 10.1(a) and 10.1(b) show a pair of point sets and the partition of the plane induced
by the quadratic pieces of the function £. In every polygon the function is quadratic and the
regions are colored according to which (unique, in this example) edge attains the bottleneck
value. Note that some regions are not convex and some are even disconnected. More precisely,
the red and the blue regions consist of two connected components. Figure 10.2 displays a concise
proof for the existence of non-convex regions. The pictured disks certify that the drawn edges
are the ones attaining the bottleneck value for the three represented positions of the small point
set. The three positions correspond to aligned parameters.

Figure 10.2 serves as an example where different positions with the same longest edge (that
is, corresponding to faces of the minimization diagram of £ in which the quadratic function is the
same) have disjoint sets of bottleneck matchings. This is because the leftmost and the rightmost
matchings are the only bottleneck matchings for the corresponding positions, which can be
deduced from the position of the points with respect to the drawn circles. Conversely, it can be
the case that the same matching is the unique bottleneck matching in two open sets contained in
different regions of the minimization diagram of £. An instance of this last situation is illustrated
in Figure 10.3. Although the pictured matching is the unique bottleneck matching for the three
pictured positions of B, the left and the right translations (and neighborhoods around them)
belong to two different cells of the minimization diagram of the associated function £.
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Figure 10.3: A matching that is a bottleneck matching for three positions of B.

ao

Figure 10.4: A pair of point sets with many bottleneck matchings.

For some applications, it is enough to find a minimum of the function £. For a fixed parameter
top € R%, a bottleneck matching for B+t and A and, hence, the value of £(ty), can be computed
applying the algorithms described in Section 8.3. A global minimum of £ can be found for point
sets of size n in O(n°logn) time applying the algorithm in [52]. However, we are here interested
in finding, for every fixed position of the point set B, a matching minimizing the bottleneck
cost. To this end, we would like to define a Voronoi-type diagram that allows us to retrieve such
a matching for each of its regions. Although the minimization diagram of £ would be a natural
candidate to approach this problem, the previous observations imply that it is in general neither
a coarsening nor a refinement of such a diagram.

We observe that, even for a fixed position of the point sets, there are in general many
bottleneck matchings. Figure 10.4 shows an example that can be easily generalized to show
that a set of k points and a set of n > k points can have (n — 1)!/(n — k)! different bottleneck
matchings. Indeed, the point by must be matched to the point ag since any other choice would
result into a larger bottleneck cost. On the other hand, the remaining points of B can be
matched arbitrarily to the remaining points of A.

The bottleneck matchings for the point sets in Figure 10.4 have all the same longest edge.
In addition, they remain bottleneck matchings if the point set B is translated anywhere in a
neighborhood. However, this is not a necessary condition. That is, there may be different edges
that are the longest edge of bottleneck matchings anywhere in a neighborhood of a position, as
illustrated in Figure 10.5. The matching to the left of the figure contains two edges attaining
the bottleneck value. The edge-disjoint bottleneck matchings in the center and to the right have
different edges attaining the bottleneck value.

One attempt to break ties between bottleneck matchings for a given position and be more
sensitive to the geometry of the point sets is to consider a lexicographic version. That is, among
the matchings whose longest edge is as short as possible, take the one whose second longest edge
is as short as possible, and so on.

Definition 10.2. The lexzicographic order on R is the total order induced by the relation
(x1,...,2k) < (y1,...,yr) if and only if there exists an m € [k] such that z; = y; for all i < m,
and y, < Ym. We write x Ly if x <y or z = y.
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Figure 10.5: Bottleneck matchings with different longest edges.

Definition 10.3. Let A, B C R? be two finite point sets with k& = |B| < |A|. The lez-bottleneck
cost of a matching o : B < A is the function g, : R? — R¥ where the i-th coordinate of g, (t)
corresponds to the length of the i-th longest edge of o for B+t and A. A lex-bottleneck matching
for A and B is an matching 7 such that ¢,(0) < ¢g,(0) for every other matching o.

Note that a lex-bottleneck matching is a bottleneck matching as well. Although this defi-
nition certainly breaks some ties, we will show in the next section that it does not guarantee
uniqueness.

10.2 Definitions and basic properties

As seen in the previous section, we face some difficulties to define a Voronoi-type structure for
bottleneck matching. One of them is the existence of open sets of translations for which neither
the bottleneck matching nor the longest edge are uniquely determined. The problem of the non-
uniqueness of the longest edge can be solved by requiring the point set to be in an ad hoc general
position. The non-uniqueness of the matching may be attacked by considering the lexicographic
version of the cost. Nevertheless, it is of interest to study the original version as well in order
to solve problems like the ones in Chapter 13 or to explore the minimization diagram of £.

As expected, the Voronoi-type diagrams we are going to study can be required to be made of
polyhedral pieces. However, in addition to the non-uniqueness issues, we will also show that the
region in which a matching is optimal may be non-convex. Furthermore, for the lexicographic
variant, these regions may be neither open nor closed sets. We add then some arbitrariness, for
the sake of simplicity, requiring the partition to be given in form of polyhedral complex. This
facilitate traversing the partition or optimizing in a region, operations that are often required in
related problems. In addition, this demand makes our upper bounds on the complexity of the
partitions stronger, whereas it does not weaken the proposed lower bounds and embraces our
pathological examples.

Definition 10.4. Let A, B C R? be two finite point sets with k = |B| < |A| = n. A bottleneck
partial-matching Voronoi diagram (or bottleneck diagram, for short) for A and B is a polyhedral
complex T covering R? and such that for every cell C' of T there is at least one matching
o+ B — A such that fr.(t) < f,(t) for all ¢ € C and all matchings o : B — A. A bottleneck
labeling of this diagram is a function mapping each cell to one such matching.

A coarsening of a bottleneck diagram of the point set in Figure 10.1(a) is displayed in
Figure 10.1(c), where cells with the same label have the same color. Note that for B = {b} the
Voronoi diagram of A — b is a bottleneck diagram. Observe also that any polyhedral coarsening
refining a bottleneck diagram is a bottleneck diagram, but we cannot choose a tessellation
canonically as the coarsest of the bottleneck diagrams because it would be not well-defined.

We define analogously the diagram for the lexicographic version of the bottleneck cost.
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Figure 10.6: A pair of point sets and a lex-bottleneck labeling of the neighborhood of the
represented position.

Definition 10.5. Let A, B C RY be two finite point sets with & = |B| < |A| = n. A lea-
bottleneck partial-matching Voronoi diagram (or lex-bottleneck diagram, for short) for A and B
is a polyhedral complex 7 covering R? and such that for every face ¢ of T there is at least one
matching 7. : B < A such that gr_(t) < g,(t) for all ¢ interior to ¢ and all matchings o : B — A.
A lex-bottleneck labeling of this diagram is a function mapping each face to one such matching.

Note that a bottleneck matching in a lower-dimensional face of a bottleneck diagram is given
by the labeling of a cell containing it (that is, the label for a cell is valid everywhere in the cell).
This is not the case for a lex-bottleneck diagram, which is the reason why a label for each face
is required. Figure 10.6 shows an example. To the left of the figure, the point sets A and B are
displayed, for which the blue and the red matchings are both lex-bottleneck matchings. To the
right, a small neighborhood in a lex-bottleneck diagram around the point ¢t € R? corresponding
to the depicted position of the point sets is represented. If the point set B (the white dots)
moves infinitesimally to the right, only the blue matching is a lex-bottleneck matching, whereas
if it moves infinitesimally to the left, only the red matching is. This forces the cyan and orange
regions to be labeled with the blue and red matchings, respectively. However, if B is vertically
translated an infinitesimal amount, the longest blue edge and the longest red edge have the same
length. In addition, the second longest red edge is longer than the second longest blue edge if
the perturbation is upwards, while it is shorter if the perturbation is downwards, forcing the
blue and red regions to be labeled accordingly. For the depicted position (corresponding to the
purple point), both matchings are equally good, since the respective shortest edges are equally
long. Nonetheless, perturbing infinitesimally the point of A matched by these edges, we can
make the lex-bottleneck matching in the purple position to be unique: the red or the blue one.

Since any lex-bottleneck diagram is a bottleneck diagram, we will prove some properties
for the first, more restrictive type. However, we will give later algorithms that compute more
efficiently a bottleneck labeling than a lex-bottleneck one. For several applications, like the ones
included in Chapter 13, the first type of labeling is enough.

Definition 10.6. Given z,y, z,v € R%, let
h(z,y,z,v) = {tERd 2ty —x—v+2)=|v—z|? - ||y—:1cH2}

Given two finite point set A, B C R, let H(A, B) be the arrangement of the hyperplanes
h(a,b,a’,b'), called bisectors, for all pairs a,a’ € A and b,b" € B such that b —a # o' — V.

Proposition 10.7. For any pair of finite point sets A, B C R?, the arrangement H(A, B) is a
lex-bottleneck diagram.
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Figure 10.7: Two lex-bottleneck matchings, represented for three positions of B.

Proof. Note that the squared length of an edge matching b to a = o(b) is given by
1o+t —al® = [t + |6 — al® +2(t,b — a).

For a pair of edges ab,a’b’ € A x B, the locus of points t € R? for which ||b +t — a|? =
|+t —d||? is exactly h(a,b,a’,b'). If b—a # b — d’, this set is a hyperplane. Otherwise, the
right hand side vanishes as well, and the set is R?. Let ¢ be a face in H(A, B), and let 7 be a
lex-bottleneck matching for a point ¢y in the relative interior of ¢. Since being a lex-bottleneck
matching depends only on the relative length of the edges of the complete bipartite graph, m
must be a lex-bottleneck matching as long as no edge becomes strictly shorter than another edge
that was strictly longer for ¢y3. For continuity reasons, this cannot happen in the relative interior
of ¢. Since an arrangement of hyperplanes is a polyhedral complex, H(A, B) is a lex-bottleneck
diagram for A and B. O

Observe that there may be open sets for which two different matchings are lex-bottleneck
matchings, as shown in Figure 10.7. This is because every edge from the red matching can
be paired with an edge of the blue matching having the same length for any position of the
matching. As long as the blue match and the red match of every point in B are its two closest
points (as in the three positions represented in the figure), both are lex-bottleneck matchings.
Nonetheless, we show below that the matched set of such matchings must be the same.

Proposition 10.8. Let A, B C R? be two finite point sets with |B| < |A|. If two matchings
are lex-bottleneck matchings in an open set U C RY, then they have the same matched set and
they have the same lex-bottleneck cost for any t € R%. In particular, in the interior of a cell of
H(A, B) there is a unique subset A’ C A that is the matched set of all lex-bottleneck matchings.

Proof. As argued in the proof of Proposition 10.7, the set of lex-bottleneck matchings is the
same for all the translations interior to a cell of H(A, B). Let C be a cell of H(A, B), to be a
point interior to C, and 7w and ¢ be two different lex-bottleneck matchings for B + t3 and A.
Consider the symmetric difference of m and o; that is, the set of edges that belong to 7 or to
o but not to both. This graph is a collection of (even length) vertex-disjoint paths and cycles
alternating edges from 7 with edges from o. In addition, since we assume that both matchings
are lex-bottleneck matchings, we have that there is a one-to-one correspondence between edges
of every path or cycle belonging to m and the edges from the same path or cycle belonging to o,
such that the corresponding edges have the same length. Otherwise, one of the two matchings
would not be a lex-bottleneck matching. As it can be derived from the proof of Proposition 10.7,
the edges ab and a’b’ have the same length over an open set if and only if b —a = b’ — a’. Thus,
there is no path in the symmetric difference, because following the edges in a path we would
arrive to the starting vertex, since every edge is “canceled” by the corresponding edge of the
other matching. In view of the fact that its symmetric difference is made exclusively of cycles,
the sets matched by 7 and ¢ must coincide. O
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10.3 The complexity of the diagrams

The construction in the proof of Proposition 10.7 leads immediately to a first bound on the
complexity of a lex-bottleneck diagram.

Corollary 10.9. For any pair of point sets A, B C R% with |B| = k and |A| = n, there is a
lex-bottleneck diagram of combinatorial complexity O(n?k%?).

Proof. Proposition 10.7 states that H(A, B) is a lex-bottleneck diagram for A and B. It is well-
known (see, for instance, [47]) that the complexity of an arrangement consisting of m hyperplanes
in R? is O(m?). The arrangement H(A, B) consists of (}) (g) = O(n2k?) hyperplanes in R, [

We will show that there are some hyperplanes of H (A, B) that we can safely ignore. Before,
we introduce some technical notation resulting of translating the graph-theoretic notions in Def-
inition 8.5 into the geometric setting. Recall that we implicitly refer to a weighted bipartite
graph on A and B where the weights of the edges are the Euclidean distances between points
of A and the corresponding points of B + ¢, for the position parameter ¢t € R

Definition 10.10. Let A, B C R be two finite point sets with & = |B| < |A|. Given t € R?
and b € B, we define the candidate function of b (denoted by Ej(t)) as the candidate set of b in
graph associated to t. We let Z(t) denote the union of Ey(t) for all b € B.

The following lemma will allow us to improve our complexity bound in low dimensions.

Lemma 10.11 (Sharir [102]). Let P C R? be a set of m points, and let s € [m]. There are O(ms)
bisectors that support all order-j Voronoi edges of P for all j < s.

Proof. Consider the set of bisectors defined by pairs of points in P. For each such bisector, we
define its conflict set as a set Q C P of minimum cardinality such that there is an edge in the
Voronoi diagram of P \ @ supported by the bisector. The weight of a bisector is the size of
its conflict set. Let N.s(m) denote the maximum number of bisectors of weight smaller than s
defined by m points in the plane and by Ny(m) the maximum number of bisectors with empty
conflict set (that is, the bisectors supporting Voronoi edges of P). The technique of Clarkson and
Shor (see [38, 101]) gives N.s(m) = O(s?>Ny(m/s)). Note that a bisector supports an order-j
edge for j < s if and only if its weight is smaller than s. Hence, the number we want to bound
is indeed N.4(m). Since the Voronoi diagram of a point set R C R? of size m/s has O(m/s)
edges, at most that many bisectors can support an edge of weight zero of R. Thus, the desired
bound N.s(m) = O(sm) follows. O

We establish first a simple property of the arrangement introduced in Proposition 2.11.

Lemma 10.12. Let S C R? be a finite point set and consider the set Z of planes

zp = {(@,y, IpI* = 2((z,9),p)) : (z,y) € R*} CR?, forallpeS.

Every three planes in Z intersect in at most one point. Equivalently, the locus of points equidis-
tant from three different points of S is either a point or empty.

Proof. For every point ¢ € R?, the order of the planes zp over q is the same as the distances
from ¢ to the corresponding p € S. The locus of points equidistant from three points in the
plane is the center of the circle through them (or the empty set if they are aligned). Hence,
three planes can coincide over at most one point. O
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Theorem 10.13. For any pair of point sets A, B C R? with |B| = k and |A| = n, there is a
lex-bottleneck diagram of complexity O(n?kS). If A,B C R, there is lex-bottleneck diagram of
complezity O(nk?).

Proof. Observe that Ey(t1) = Ey(t2) for every pair of points ¢;, t2 interior to a cell C of H(A, B),
for all b € B. Given a cell C of H(A, B), let Ey(C) and Z(C') denote respectively Ey(t) and
Z(t) for any (and every) point ¢ interior to C'. By Lemma 8.6-(ii), any lex-bottleneck matching
for a point interior to C' is contained in Z(C). Let now ¢y be a point in a lower-dimensional
face L of H(A, B), and let C' D L be a cell. For continuity reasons, the set E,(C) C Ep(to) is
a b-minimal set at to as well. Therefore, by Lemma 8.6-(i), there is a lex-bottleneck matching
for ¢y contained in Z(C).

Consider then a labeling A of H(A, B) that uses in every face of a cell C' a matching contained
in Z(C). We say that a facet W of H(A, B) between two cells C; and C, uses a bisector
h = h(a,b,a’,b") if h D W and ab,d't/ € Z(C;) U Z(C,). If no facet uses a bisector h, then h can
be omitted from H(A, B). The resulting hyperplane arrangement is again a polyhedral complex
and each new face resulting of merging a set of old faces can be labeled according to whichever
of them, since h does not intersect any face whose label in A uses the edges ab or a'b’. We show
now that many bisectors are not used by any facet, distinguishing the two following cases.

Let h(a,b,a’,b) be a bisector used by a facet W = C; N C,, and consider the point set
S(b) = A —0b. The facet W must be contained in an order-j Voronoi edge of S(b) for some
j < k. Indeed, in view of Lemma 10.12, infinitesimally to the right or to the left of W both
a —band @ — b are among the k + 1 closest points. In addition, for a point ¢y in the relative
interior of W, the points a — b and a’ — b are the only two points of S(b) that lie at distance
|b+to —al| = ||b+to — d’||. Hence, there is a circle centered at ¢y and through a — b and o’ — b
that contains 7 — 1 < k — 1 points, which is a characterization for points in the relative interior
of edges of the order-j Voronoi diagram.

Let h(a,b,a’,b") with b # b’ be a bisector used by a facet W = C;NC,., and consider the point
set S(b,0') = (A —0b)U (A —b). Note that the number of points in S(b,d") is not necessarily 2n:
a point a; — b = as — b’ can belong to both A — b and A — b’. However, this is the case if and
only if the edges ai1b and agb’ are equally long everywhere. In particular, the points a — b and
a’ — b are distinct since, otherwise, they would not induce any bisector. Furthermore, simple
algebraic manipulations show that t € R? is closer to a; — b than to as — b if and only if b+ ¢
is closer to aj than o’ +t is to as, for any choice of a;,as € A. Since the bisector is used by W,
the point ¢ — b is among the k closest points of A — b infinitesimally to at least one of the sides
of W. Lemma 10.12 ensures that along the interior of W only the points a — b and o’ — V' are
at distance ||b+ tg — a|| = ||V + top — d'|| among the points in S(b,b), which implies that in fact
a — b is among the k closest points of A — b infinitesimally to both sides of W. Similarly, the
point a’ — b belongs to the k closest points of A — ' for points infinitesimally apart from W.
Hence, for any point tg in the relative interior of W, there is a disk centered at tg and passing
through a —b and o’ — b’ that contains j —1 < 2k — 2 points of S(b, V). Equivalently, the bisector
h(a,b,a’,b") supports an order-j Voronoi edge of S(b,b") for some j < 2k — 1.

Applying Lemma 10.11 to S(b) for all b € B and to S(b, V') for every pair b,b’ € B, it follows
that the number of bisectors that are used by some edge is O(k? - nk). The complexity of the
diagram resulting from removing all unused bisectors from (A, B) is thus O(n2kS).

The case of the line is proven analogously, since the statement and the proof of Lemma 10.11
and the previous arguments carry over easily to the one-dimensional case. ]

We provide now a lower bound on the complexity of any lex-bottleneck diagram.
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Figure 10.8: Construction of the lower bound example.

Proposition 10.14. For any k,n € N with n > k > d, there exist point sets A, B C R¢
with |B| = k and |A| = n such that any lex-bottleneck diagram for A and B has complexity
Q(kY(n — k)9).

Proof. We describe first a construction similar to the one used for the lower bound in [93]. Let A
be the set of points on the line with coordinates

I-=D(m-1),Il-1)(m—-1)+1,....1(m—1)
and B be the set of points with coordinates
Oa(m_1)72(m_1)77(l_1)(m_1)7

as depicted in Figure 10.8(a). Note that, for every point in B, the [ closest points of A are
the [ leftmost points. When we start translating B to the right, the rightmost point enters the
Voronoi region of the (I + 1)-st point of A. Continuing with the motion, this point traverses the
Voronoi region of all the remaining points of A and after that, it has always the same [ closest
points. A bit later, the second rightmost point of B performs a similar chain of changes, and
so do the remaining points in a sequential order. When a point of B is traversing the point
set A, the remaining ones have fixed [ closest neighbors. In addition, the preferences (in the
sense of Chapter 9) induced at every sufficiently general position (that is, such that ||b+ ¢ — al|
are distinct for all b € B and a € A) are of the type studied in Lemma 9.10. Hence, since any
lex-bottleneck matching for a sufficiently general translation is efficient, the number of image
sets of any lex-bottleneck diagram for A and B must be {(m — [), which proves the statement
for d =1.

For d > 2, we assume that d divides k and n (otherwise, we remove at most 2d points to
ensure it, without altering the asymptotic bound) and carefully place one copy of the previous
example in the direction of every coordinate axis. Specifically, we set

Aj ={(x1,...,2q) ERY 1 2; =0, for all j € [d] \ {i},zi =Im — 1 —m+t,t € [m]},



82

B ={(x1,...,2q) € R?: zj=—2l(m—1), for all j € [d]\ {i},z; = (t —1)(m —1),t € [l]},

for each ¢ € [d]. Let A= A1 U...UAgand B = B; U...U By. We will show that the points
in B; will be matched to A; in I(m — [) ways as in the one dimensional case independently
for every i € [d]. To this end, we must show that when B; is shifted by I(m — 1) in order
to generate all the matchings of the one-dimensional case, the other B; with j # i are still
matched to A; in all lex-bottleneck matchings. For this, it is enough to show that for every
translation ¢ € [0,1(m — 1)]¢ all the points in A; are closer to B; than to any point in A\ A;
for all i € [d]. First note that to compare such distances, it is enough to look at the projection
to the z;z;-plane, since all the other coordinates coincide for points in B; and B;. Then, the
situation can be analyzed in the plane, as sketched in Figure 10.8(b). The initial position of B;
has been chosen such that, when translated in the direction of the x;-axis for j # ¢ a distance
[(m — 1), the distance to the farthest point in A; is smaller than to the closest point of A;. This
is because I[(m—1)+(I—1)(m—1) > \/I2(m — 1)2 + 2(m — 1)2, since 21— 1 > /21 if | > 1. This

shows that there are at least [%(m — )¢ = kd(s;lk)d different lex-bottleneck matchings between
Aand B+t for t € [0,1(m — 1)]¢. The example can be easily perturbed such that AU B is in
general position. O

10.4 Construction of bottleneck diagrams

In this section, we discuss some algorithmic techniques in order to construct a labeled bottleneck
or a lex-bottleneck diagram for a pair of point sets in the plane. To this end, we introduce the
following notation.

Definition 10.15. Given two finite point set A, B C R? (or A, B C R), we denote henceforth
by L(A, B) the arrangement constructed as in the proof of Theorem 10.13. Given a cell C' of
L(A, B) we denote by Z(C') the set Z(t) for any (and every) point ¢ interior to C.

Lemma 10.16. The lez-bottleneck diagram L(A, B) for a pair of point sets A, B C R? with
k= |B| < |A| = n can be constructed in O(n?k%) time.

Proof. An arrangement of m lines in the plane can be computed in O(m?) time using an optimal
algorithm, such as the incremental algorithm [36] or a topological sweep [49]. However, the proof
of Theorem 10.13 is not constructive and, hence, it is not obvious how to select the bisectors that
are used by some edge (in the sense of Theorem 10.13) among the O(n2k?) candidates. Fortu-
nately, there exists an algorithm by Chan [34] that constructs the facial structure of the (<s)-level
of an arrangement of m planes in O(mlogm + ms?) expected time. In addition, this algorithm
can be derandomized, leading to a deterministic version running in O(ms?(logm/logs)°M)
time. We can then construct the O(k?) necessary structures in O(k*n(logn/logk)°™M) and tra-
verse each of them discovering the “used” bisectors to finally construct their arrangement. [

A similar procedure works for the one-dimensional case.

Lemma 10.17. The lex-bottleneck diagram L(A, B) for a pair of point sets A,B C R with
k= |B| <|A| =n can be constructed in O(k*n(logn + klogk)) time.

Proof. Similarly to the proof of Lemma 10.16, we will select the vertices that belong to shal-
low levels in the Voronoi arrangements associated to S(b) and S(b,V’), as defined in the proof
of Theorem 10.13.

The work in [54] provides us with an algorithm to construct the (<s)-level of an arrangement
of m lines in time O(mlogm + ms). We compute the appropriate levels for each point set and
construct an abscissa-sorted list of the projections of its vertices in O(nk log k) time by traversing



83

the edges of every level and using a priority queue to merge their vertices. Afterwards, we can
merge the O(k?) lists of O(nk) points in O(nk3logk) time using again a priority queue. O

We now show how to find a bottleneck labeling of L(A, B). Before detailing the algorithm,
we need a technical lemma that examines how small changes in a graph affect its bottleneck
matchings. We say henceforth that a matching in a bipartite graph is a complete matching if it
matches all the points in the smaller set of vertices.

Lemma 10.18. Let G = (A, B; E;w) be a bipartite graph with w : E — [|E|] giving weights to
its edges. Let p be a bottleneck matching for G, and let b € E be the longest edge of p in G. For
a fivred j € [|E| — 1], let G = (A, B; E;w') where w' coincides with w except that w'(e) = j if
w(e)=j+1and w'(e)=j+1ifw(e) =4, for alle € E.

(i) If w(b) &€ {j,j + 1}, then p is a bottleneck matching for G'.

(i1) If w(b) € {j,j + 1} and G'(j) does not have a complete matching, then p is a bottleneck
matching for G'.

(iii) If w(b) € {j,7 + 1} and G'(j) has a complete matching v, then v is a bottleneck matching
for G'.

Proof. Note first that G(i) = G'(i) for all « # j and recall the characterization of bottleneck
assignments in Lemma 8.9-(ii).

(i) Let w(b) =1 & {j,j + 1}. Since u is a bottleneck matching for G, the graph G(I) has a
complete matching and G(m) has not, for any m < [. Hence, the graph G'(l) = G(I) has a
complete matching and G'(I—1) = G(I — 1) has not. In addition, u C G'(l), which ensures
that u is indeed a bottleneck matching for G'.

(ii) Since we assumed that G'(j) has no complete matching, any complete matching in G'(j+1)
is a bottleneck matching for G’. The matching p is contained in G’ (j+1) = G(j+1) because
we assumed w(b) € {j,j + 1}.

(iii) It is clear that G’(i) = G(i) for all i < j and, hence, it does not have a complete matching.
Since v C G'(j), it is a bottleneck matching for G'. O

As seen in Section 10.1, several edges can have the same length wherever the point set B is
translated. However, this happens if and only if all such edges are between points b € B and
a € A with the same vector b—a. To handle also point sets in this special position, we introduce
the following equivalence relation.

Definition 10.19. Given finite point sets A and B, two edges ab,a’l/ € A x B are in the same

class if b—a =10 —d'.

Note that every edge in a class must match a distinct element of B and, hence, the size
of every class is at most k. Besides providing some insight into the dynamic behavior of the
bottleneck matchings, the previous lemma helps to prove the main result of this section.

Theorem 10.20. Let A, B C R? be sets of k and n points. A labeled bottleneck diagram of A
and B can be computed in O(n?k®) time, and a lex-bottleneck diagram in O(n?k%) time.

Proof. We will construct the diagrams by labeling the cells (and the faces) of £(A, B) with a
bottleneck (or lex-bottleneck) matching. A naive algorithm to do this would compute such a
matching from scratch in every cell. However, we can easily maintain a bottleneck matching
during the traversal, improving the time complexity of the algorithm. Unfortunately, this is not
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the case for the lex-bottleneck diagram, for which the best algorithm we known consists in a
traversal of £(A, B) recomputing (most of) the matching in a number of cells that we are not
able to bound apart from the total.

We detail first the algorithm to construct a bottleneck labeling. We first group the edges
into classes (that is, groups of edges that have the same length for any fixed translation) as
defined above. To do that, we can sort lexicographically in the coordinates the two-dimensional
vectors b —a for all b € B and a € A in O(nklogn) time.

Then, we construct £(A, B) as described in Lemma 10.16, but making sure that we remember
for every selected line which are the edges involved. Note however that a line might be selected
several times (even from a single one of the arrangements associated S(b) or S(b,b’)). In such
a case, we construct a list containing for each line all pairs of edges that induce it. As a
consequence of Lemma 10.12, every pair of edges that induces a fixed bisector of S(b) is counted
by Lemma 10.11. That is, if h(aq,b,a2,b) = h(as, b, aq,b), then the first pair is counted as an
order-j; edge and the second pair as an order-js edge of S(b) with ja # j1. More precisely, since
we could infinitesimally perturb the points in S(b) such that h(a1, b, as,b) # h(as, b, aq,b) for any
choice of different points a1, as, ag, a4 € A without altering the level of the edges inducing them
and the bound derived in Lemma 10.11 would be valid, the bound counts already all the pairs
inducing the same bisector. Every point in S(b,b), for b,b" € B with b # ¥/, can correspond to
two edges that are equally long everywhere. Hence, for each “double” point inducing a bisector,
we add the corresponding additional pair of edges to the list of the bisector. Therefore, the total
number of elements in the lists associated to bisectors is only a constant factor bigger than the
bound on the total number of bisectors we derived. Moreover, we can construct the lists without
requiring additional time by adapting the algorithm described in Lemma 10.16.

Assume now that we have already constructed £(A, B) and the list of pairs of edges associated
to each of its bisectors. We choose arbitrarily a cell C' of L(A, B), and pick a point ¢y interior
to C (for instance, the centroid of its vertices). We sort the values ||b + tg — a|| choosing one
representative edge ab € A x B from every class. We initialize also a graph G with the k? edges of
Z(C), since we know by Lemma 8.6-(ii) that it contains one (and every) bottleneck label for C.
Moreover, we construct the weight function w : Z(C) — [k?] for G representing the order of the
lengths of the edges of Z(C) in the relative interior of C'. We then find a bottleneck matching
in G weighted by w in O(k?\/klogk) time using the Gabow-Tarjan algorithm introduced in
Section 8.3.

We will traverse L(A, B) visiting neighboring cells and maintaining the graph G having as
edges Z(D) for the current cell D and the weight function w : Z(D) — [k?] encoding the relative
lengths of these edges. Let h be the bisector we want to cross. We first look for all the pairs
of the type (ab,a’d) in its list. If exactly one of the edges, say a’b, is not in the graph G, we
should include it and remove ab (because it will not be in the candidate set anymore). The
weight of the new edge must the same as the old one (as a consequence of Lemma 10.12). In
addition, if the removed edge ab had weight j and belongs to the current bottleneck matching p
whose longest edge b has weight w(b), a new matching having longest edge of weight w(b) can
be found in G after including a’b with weight j. In other words, a pair involving edges incident
to the same b € B may change the candidate set replacing an edge by another edge with the
same weight, but the weight of the longest edge of the bottleneck matchings remains invariant.
Moreover, to find the new bottleneck matching, it is enough to augment p \ {ab} in the graph
G(w(b)). Such an augmenting path is guaranteed to exist by Lemma 8.7 because G(w(b)) has
a complete matching. If none of the edges are in G, we do nothing. If both edges are in
G, Lemma 10.12 ensures that the edges have consecutive weights and they are swapped after
crossing the bisector. Consider now all the pairs in the list of & of the type (ab,a’d’) with b # b'.
If at least one of the edges is not in GG, we do nothing. Otherwise, the weights must be swapped
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as in the previous case. Hence, the update of w can be implemented as a sequence of operations
as the one described in Lemma 10.18 and the bottleneck matching can be updated accordingly.
After each swap, we might need to test if G’(j) (in the notation of Lemma 10.18) has a complete
matching. If m edges had weight j in G, the matching v = p N G’(j) can have up to m exposed
vertices. We search in O(k?) time for an augmenting path for v in G’(j). If there is one, we
augment the matching with it and search again. By Lemma 8.7, if there is no augmenting path,
the matching is maximum. Therefore, we can either decide that G'(j) does not have a complete
matching or find one performing (or trying to perform) at most as many augmentations as pairs
in the list of h. After handling all the class swaps, the resulting graph contains the candidate set
of edges Z(D) for the new cell D and w expresses the relative order of their lengths. Thus, the
bottleneck matching we obtained for the last weighted graph is guaranteed to be a bottleneck
matching for any point interior to D.

The number of graph and matching updates performed during the traversal is bounded by
the number of edges that £(A, B) would have if we replace each bisector associated to s pairs
of edges by s infinitesimally-separated new lines parallel to it. As argued before, the number of
new lines would be still O(nk?) and, thus, the complexity of this virtual arrangement is O(n?k°).
We then bound the running time required by the traversal combining this bound with the O(k?)
update time.

To construct a lex-bottleneck labeling, we maintain the weighted graph as in the bottleneck
case. We apply in every face of L£(A, B), after updating the function w to indicate the ties
that are active in the current face, the algorithm described in [103], which finds a lex-bottleneck
matching in O(k*) time. O

Theorem 10.21. Let A, B C R be point sets with k = |B| < |A| = n. A labeled bottleneck
diagram of A and B can be computed in O(nk*(logn + k%)) time. A labeled lex-bottleneck
diagram can be computed in O(nk?(logn + k°)) time.

Proof. We construct the polyhedral complex £(A, B) in O(k*n(logn+klogk)) time as described
in the proof of Lemma 10.17, while keeping track of the pairs of edges that are swapped in every
bisector, as in the proof of Theorem 10.20.

We then traverse the arrangement updating the bottleneck or lex-bottleneck matching as in
the planar case. The number of cells is O(nk?), as shown in Theorem 10.13, which combined
with the updating times studied in the proof of Theorem 10.20 gives the claimed bounds. [

Note that the dependency in n of the bounds of Theorem 10.21 is optimal, since the bottle-
neck diagram for k = 1 is the classic Voronoi diagram, which is known to have time complexity
Q(nlogn) because it is powerful enough to sort a set of numbers.

In higher dimensions, we do not have good bound for the (<s)-level of an arrangement.
However, the previous proof obviously carries over using H (A, B) instead of £(A, B), leading to
the following result.

Theorem 10.22. Let A, B C R? be sets of k and n points. A labeled bottleneck diagram of A
and B can be computed in O(n2dk2d+2) time. A labeled lex-bottleneck diagram can be computed
in O(n?2H4) time.






The least-squares partial-matching
Voronoi diagram

In this chapter, we address the problem of partial matching under translations as in Chapter 10,
taking now as the cost function the sum of the squared Euclidean distances between matched
pairs. In the literature, this measure is called the least-squares distance, the root-mean-squares
(RMS) distance or the quadratic mean.

11.1 Least-squares matching under translations

We assume that we are given two point sets A, B C R? with |B| < |A| and we will use the
same notation and conventions as in the previous chapter. In the figures, we use white disks to
represent B and black disks to represent A.

Definition 11.1. A least-squares matching for point sets A, B C R? with k = |B| < |A| = n is
a matching that minimizes

g(o) = Z b — o (b)||?>, among all the matchings o : B < A.
beB

The least-squares cost of a matching o : B < A is the function

9o(t) =Y _ |Ib+t—o(b)|?, where t € R%.
beB

The linear part of the least-squares cost of a matching o : B < A is the function

Le(t) =) _[b—a®)]*+2 <t, > (- o(b))> , where t € R%

beB beB

The least-squares value is the function

G(t) = min g,(t), where t € R%.
o:B—A
For a fixed position t € R? of B, a least-squares matching for A and B + t is a solution of
the linear sum assignment problem described in Section 8.4. Specifically, it is a solution of this
problem for the complete bipartite graph on A and B taking as weight for the edge ab € A x B
the value ||b-+t—a|?. Therefore, it can be computed in O(nk?). The problem of minimizing this
distance under translations (that is, of finding a global minimum of G(t)) is however not well-
solved. The Iterative Closest Points [22] algorithm, used for the Hausdorff analogous setup, can
be adapted to find a local minimum of G(¢). Nevertheless, the running time of this algorithm is
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Figure 11.1: Two matchings with the same cost everywhere.

not known to be polynomial. Using some of the structural properties derived in the next section,
an efficient algorithm for finding a local minimum of G(¢) is given in [19].

Note that G(t) is a piecewise quadratic function and it induces a partition of R? according to
which matchings attain the minimum. However, we face again problems of non-uniqueness, as
shown in Figure 11.1. This figure exhibits two matchings that have the same least-squares cost
wherever the point set B is translated. This happens because there is a translation for which
the points of B lie in bisectors of the points of A and the subsets of A matched by the red and
the blue matchings have the same centroid, and hence both costs have the same linear part.
The reason why these two conditions are sufficient for the values of the matchings to coincide
for every translations becomes clear after reproducing the following observation.

Lemma 11.2 (Rote [93]). Let A, B C R? be two finite point sets with |B| < |A|. For any pair
of matchings 0,7 : B < A and any t € RY,

9o (t) < g-(t) if and only if Ls(t) < L-(t).
As a consequence, the minimization diagram of G(t) is a reqular polyhedral complex covering R,

Proof. For a fixed translation ¢ € R? and matching T,
9r(t) = L(t) = |B| - [|t]*.

Thus,
ga(t) - g‘r(t) = La(t) - LT(t)‘ O

Observe that, for any matching 7, Lr(t) = ¢r + (t,v5), where ¢z = S ||b—m(b)||* and
vy = > (b—m(b)). The vector v, depends only on the the centroid of the matched set. Therefore,
if two matchings have matched sets with the same centroid, and they have the same cost for
some translation ¢y € RY, the matchings have the same cost for all ¢ € R%. Hence, the two
matchings in Figure 11.1 have the same cost everywhere. Note however that these two matching
are optimal only along a line segment. The matchings displayed in Figure 10.7 are both, in
addition to lex-bottleneck, least-squares matchings over an open set of translations. Observe
that these matchings use the same subset of points in A. It will become clear later that this is
in fact a necessary condition for two matchings to be optimal in the same open set.

The following lemma states another nice property specific to this cost function, which ap-
peared in [110] and was used in [93]. We provide here a self-contained proof for the sake of
completeness.

Lemma 11.3 (Zikan and Silberberg [110]). Let A, B C RY be two finite point sets with |A| = |B].
A matching is a least-squares matching for A and B if and only if it is least-squares for B +t
and A for all t € RY.
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o

Figure 11.2: Two point sets and its least-squares diagram.

Proof. As already observed, the gradient of L, depends only on the matched set. Thus, a
matching 7 will be least-squares if and only if it minimizes ¢, = >, 5 [|b — 7(b)||* and, in such
a case, it will be least-squares for any t € R%. ]

In contrast with the bottleneck diagram, and as a consequence of the previous lemmas, we
know that the locus of points where two matchings have the same least-squares cost is either a
hyperplane or the whole space. This allows us to define a canonical Voronoi diagram. However,
the labeling of the diagram is in general not unique, as argued above.

Definition 11.4. The least-squares partial-matching Voronoi diagram (or least-squares diagram,
for short) of two point sets A, B C R? is the coarsest polyhedral complex V covering R? such
that for every cell C € cells(V) there is at least one matching that minimizes g, (¢) for all ¢t € C
among all matchings o. A labeling of this diagram is a function mapping each cell to one such
matching. Hereafter, we denote this complex by V(A, B). Equivalently, we can define V(A, B)
as the polyhedral complex induced by

Ve = {t € R : 7 is a least-squares matching for B + ¢ and A}.

An example of least-squares diagram is illustrated in Figure 11.2.

11.2 The complexity of the diagram

It was claimed by Rote [93] that a global minimum of G(t) can be found in time proportional,
up to a polynomial factor, to the complexity of V(A, B). The best known upper bound for
this complexity, however, was the trivial O(n*). The great open question is then whether the
number of regions of V(A, B) is polynomial in k and n. This was answered only for dimension
one in [93] via the following (more general) result.

Theorem 11.5 (Rote [93]). Let A, B C R? be two sets with k = |B| < |A| = n. A line can
intersect the interior of at most k(n — k) + 1 different regions of V(A, B).

In the remainder of this section, we focus on establishing a global bound on the complexity
of V(A, B). We begin by deriving the following technical auxiliary results.

Definition 11.6. Let A, B C R? be two finite point sets. Given ¢t € R%, we define G;(4, B) to
be the weighted complete bipartite graph on the vertex set A U B and edges ab € A x B with
weights w(ab) = ||b+t — al|*.

Lemma 11.7. Let A, B C R be two finite point sets. For any t € R?, there is a least-squares
matching for B+t and A that is an efficient matching for G¢(A, B).
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Proof. Let 7 be a least-squares matching for B+t and A. If 7 is not efficient for G;(A, B), there
is a better matching in the sense of Definition 9.1. That is, there exists a matching o # m such
that for all b € B either o(b) = m(b) or o(b) goes before m(b) in the permutation associated to b.
Then, we have that ||b+t — o(b)|> < ||b+t — 7(b)||? for all b € B and, hence, g,(t) < g (t). If
o is not efficient, we iterate the argument. Since the relation “being better than” has no cycles,
we eventually reach an efficient matching that is least-squares as well. O

We are now ready to present a non-trivial bound on the number of cells of the diagram.

Theorem 11.8. Let A, B C R be two sets with k = |B| < |A| = n. The number of cells of the
least-squares diagram V(A, B) is O(n2dkd7%(elnk +e)k).

Proof. For a fixed b € B, consider the overlay of the order-j Voronoi diagrams of A — b for
all j € [k]. That is, the polyhedral complex H; of R? such that in every cell C, the k closest
neighbors (and their order) is the same for all the points ¢ interior to C. Now consider the
polyhedral complex H(A, B) consisting of the overlay of H; for all b € B. The complexity of
H(A, B) must be smaller than the one of the hyperplane arrangement of

h(b,a,a’) = {t € R? o+t —al =|b+t—dl},

for all b € B and a,a’ € A, which is O(n??k?).

Note now that the k shortest edges incident to every b € B are the same and in the same order,
for all G¢(A, B) with t interior to a cell C' of H(A, B). Thus, in view of Proposition 9.2-(iii), all
these graphs have the same set of efficient matchings. As a consequence of Lemma 11.7, the O(k!)
efficient matchings of G¢(A, B) are then enough to label the portion of V(A, B) intersected by C.
However, the observation in Lemma 11.3 together with Lemma 11.2, imply that it is enough to
consider one matching for every possible matched set. Thus, by Lemma 9.8, a cell of H(A, B)
intersects O((elnk + e)*/Vk) cells of V(A, B), which yields the claimed bound. O

This theorem will lead, together with a structural property studied in the next section, to a
bound on the complexity of the least-squares diagram in any fixed dimension, stated in Corol-
lary 11.13. In the plane, we can obtain a better bound directly.

Theorem 11.9. Let A, B C R? be two sets with k = |B| < |A] = n. The combinatorial
complexity of the least-squares diagram V(A, B) is O(n?k>5(elnk + e)¥).

Proof. In the plane, there is a sharper bound on the complexity of H; for a fixed b € B, as
defined in the previous proof. As a direct consequence of Lemma 10.11, we know that H; is a
coarsening of the arrangement of O(nk) lines. Thus, H(A, B) is a coarsening of the arrangement
of O(nk?) lines and, hence, its complexity is O(n?k?). Following the observations in the previous
proof, we only need to multiply this quantity by O((elnk + €)*/v/k) to derive a bound on the
number of cells of V(A, B). Since the number of cells of a polyhedral complex in the plane is
asymptotically equal to the complexity of the complex, the claimed bound follows. O

A natural question at this point is if this approach of decoupling the combinatorial part and
the geometric part can be used to further improve the bounds we obtained. Proposition 9.9
proves that it will not be possible to obtain a polynomial bound even if we manage to count
better the number of different images of efficient matchings.

Adapting the proof of Lemma 11.7, one can see that if there are no ties in the values ||b+t—al|
for b € B and a € A, then any least-squares matching is efficient. Since the ties occur only for
a nowhere-dense set of translations, the counterexample in the proof of Proposition 10.14 (and
the proof itself) are enough to yield the following lower bound.

Proposition 11.10. For any k,n € N with n > k > d, there exist point sets A, B C R? with
|B| = k and |A| = n such that its least-squares diagram V(A, B) has Q(k%(n — k)9) cells.
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11.3 Structural properties of the diagram

We derive here several additional properties of V(A, B), which show that the diagram has locally
polynomial complexity. These properties will help to design algorithms for the construction of
V(A, B) in Section 11.4, and have been used to find a local minimum of G(t) in [19].

Proposition 11.11. Let A, B C R? be two finite point sets. Every facet of the least-squares
diagram V(A, B) has a normal vector of the form a — a’ for suitable a,a’ € A.

Proof. Let F be a facet of V(A, B) common to the regions associated with the matchings =
and o, respectively. By definition, g, () = g,(t) < g-(t) for any t € F' and for every matching 7.
If Lr(t) =cqx+ (t,vr) and Ly(t) = ¢y + (t,vs), Lemma 11.2 implies that

F C h(m,0) = {t € R?: (t,v; — V) = €y — Cr }.

As shown in Section 8.2, the set of edges m@o is the vertex-disjoint union of cycles and alternating
paths, each starting at a matched vertex of w in A that is not matched by ¢ and ending at a
matched vertex of o in A not matched by 7. Let A be the set of these cycles and paths. Since
the components are vertex-disjoint, they can be “flipped” independently while preserving the
validity of the matching; that is, we can choose within any v € A either all the edges belonging
to 7 or all the edges belonging to ¢ and the resulting collection of edges still represents an
injection from B into A. Observe now that

h(m,o) = 756]1%2:<7sz:vay>:—z:aY ,

vEA vEA

where v, is the sum of the terms in v; — v, that involve only the a € A contained in v and c,
is analogously defined for ¢; — ¢,. That is,

vy =Y (x(b) = o(b) and e, = > _ (b= 7(®)|> = |b— o (D)]?), for all y € A,

bey bey

Note also that v, = 0 for every cycle v € A and, therefore, there is at least one path p € A.
In addition, (t,v,) = —c, for all vy € A and all t € h(w,0). Otherwise, a flip in a path or cycle
violating the equation would contradict the optimality of m or ¢ along h(w, o). Therefore, all
the vectors v, must be linearly dependent. In particular, the direction of v; — v, is the same as
the one of v,. If p starts at «’ € A and ends at a € A then v, = a’ — @ is normal to F. O

As a consequence, the following statement holds.

Corollary 11.12. Let A,B C R? be two sets with k = |B| < |A| = n. Bwvery cell of the
least-squares diagram V(A, B) has at most k(n — k) facets.

Proof. As seen in the proof of Proposition 11.11, every facet must have a normal vector of the
form a’ — a where a belongs to the matching corresponding to the cell and a’ does not. We have
k options for the first point and n — k for the second one. O

The previous corollary easily implies the following complexity bound.

Corollary 11.13. Let A, B C R be two sets with k = |B| < |A| = n. The combinatorial
complezity of the least-squares diagram V(A, B) is O(n?¥HL4/2 pd+1d/2]=1/2(c1n | 4 e)F).
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Proof. Theorem 11.8 provides a bound on the number of cells of the diagram. Using the Upper-
bound Theorem [83] in combination with Proposition 11.11, each of these cells has combinatorial
complexity O((nk)L%/2]). O

When we restrict the study to the plane, we get easily more bounds.

Lemma 11.14. Let A, B C R? be point sets with k = |B| < |A| = n.

(i) The least-squares diagram V(A, B) contains at most 4k(n — k) unbounded regions.

(ii) Every vertex in V(A, B) has degree at most 2k(n — k).

(i1i) Any convex path can intersect at most k(n — k) +n(n — 1) regions of V(A, B).

Proof.

(i)

(i)

(iii)

Let us take a bounding box that encloses all the vertices of the diagram. By Theorem 11.5,
every edge of the bounding box crosses at most k(n—k)+1 regions of V(A, B). The edges of
the box traverse only unbounded regions, and cross every unbounded region exactly once,
except for the coincidences of the last region traversed by an edge and the first region
traversed by the next edge.

Let v be a vertex of V(A, B). Draw two generic parallel lines close enough to each other
to enclose v and no other vertex of V(A, B). Each edge adjacent to v is crossed by one of
the two lines, and by Theorem 11.5 each of these lines crosses at most k(n — k) edges.

We use the following property that was observed in Rote’s proof of Theorem 11.5. Suppose
that we translate B along a line with direction v. Rank the points of A according to v; that
is, put a < @’ if and only if (a,v) < (a’,v) (for simplicity, assume that v is generic so there
are no ties). Let ®(7) denote the sum of the ranks according to < of the k points of A that
participate in the least-squares matching w. As Rote showed, whenever the line enters a
new cell of V(A, B) the value of ® increases. Let v be a convex path which, without loss
of generality, can be assumed to be polygonal. As we traverse an edge of v, the value of ®
increases every time we enter a new cell of V(A, B). When we turn counterclockwise at a
vertex of «, the ranking of < on A may change, but this change consists of a sequence of
swaps of consecutive elements in the present ranking. For each such swap, the value of ¢
for the matching at the vertex can decrease by at most one. Since  is convex, each pair
of points of A can be swapped at most twice and, thus, the total decrease in ® is at most
2(3) =n(n —1). Hence, the accumulated increase in ®, and thus also the total number of
regions of V(A, B) crossed by -, is at most

(n+(n—1)+...+(n—k+1)>—(1+2—|—...+k:)+n(n—1):k:(n—k:)—i-n(n—l). 0

11.4 Construction of the least-squares diagram

We first study the intersection of a least-squares diagram with a line in the space of translations.
The proof of the following theorem is analogous to the one of Lemma 10.17. We recall first a
piece of notation used in the proof of Theorem 11.8.

Definition 11.15. Given a pair of finite point sets A, B C R?, we define (A, B) as the overlay
of the order-j Voronoi diagrams of A — b for all j € [k] and all b € B.
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Lemma 11.16. Given a pair of point sets A, B C R? with k = |B| < |A| =n and a line { C R,
the restriction of H(A, B) to ¢ can be constructed in O(nk(logn + klogk)) time.

Proof. We identify ¢ with the parametrization £ : R — R%, £()\) = to+ v, for suitable ¢, v € R%.
Consider the functions defined on ¢ as

zap(AN) = |[b+to+ v —al|* = |[to+Mv||? = ||b—al|>+2 (to,b — a)+2) (v,b — a), for all ab € Ax B.

We regard the graphs of these linear functions as lines in the plane. Then, by simple algebraic
manipulations it becomes clear that, for h(b,a,a’) as defined in the proof of Theorem 11.8,

h(b7a>a/) neé= {E()‘) : Zab()‘) = Za/b()‘)}'

For a fixed point b € B, consider the vertices up to level k of the arrangement of lines induced
by zg for all @ € A. Projecting such vertices onto ¢ for every choice of b € B we obtain the
desired arrangement. The work in [54] provides us with an algorithm to construct the (<s)-level
of an arrangements of m lines in time O(mlogm +ms). The resulting k sets of O(nk) points in
¢ can be merged then in O(nk?log k) time using a priority queue. O

Using ideas by Rote [94], we get the following lemma and the subsequent theorem.

Lemma 11.17. Given a pair of point sets A, B C R% with k = |B| < |A| = n and points
to,v € R?, a least-squares matching for B +ty+ \v and A for X € RT arbitrarily large (and for
B +to+ev and A for e € RY arbitrarily small) can be computed in O(nk?) time.

Proof. Note that, as explained in Section 8.4, the Hungarian method can be implemented as
an iteration of Dijkstra searches for shortest paths. In such searches, the only operations that
depend on the weights of the edges are additions and comparisons. The lengths of the edges are
quadratic polynomials in A (respectively, €). When two expressions depending on A (or ) are
to be added, we do it as polynomials, without evaluating the variables. The comparisons are
evaluated in the limit A\ — 400 (respectively, € — 0). To do it for A\, we compare the quadratic
part and, in case of a tie, we compare the linear coefficients in A. If a tie occurs again, we break
it with the independent coefficient. In the € case, we compare first the part independent of ¢
and, in case of a tie, we compare the linear coefficients in €. Only in case of a tie, we compare
then the quadratic terms. The only ties remaining are between quantities that are equal all
along the line and, hence, they lead to matchings with the same cost. O

Theorem 11.18. Given a pair of point sets A,B C R? with k = |B| < |A| = n and a line
¢ C R%, the restriction of the least-squares diagram V(A, B) to £ and a labeling for the cells
that £ intersects can be constructed in O(nk(logn + k3)) time.

Proof. We first construct the arrangement U equivalent to the restriction of H(A, B) to ¢ as
described in Lemma 11.16, and store the list of the k nearest neighbors for each b € B in every
cell. Recall that V(A, B) is the minimization diagram of the linear functions L, for all matchings
m : B — A. Hence, the intersection of V(A, B) with ¢ is equivalent to the projection of the
lower envelope of an arrangement of lines Z. We identify ¢ with the parametrization ¢ : R — R,
((X) = to + Av, for suitable t5, v € RY. We compute a least-squares matching for A — 400 and
for A = —o0, as indicated in Lemma 11.17. Let 7" and 7~ be the obtained matchings, which
we identify with the corresponding lines T and ¢~ in Z. If 7+ = 7, the arrangement is trivial.
Otherwise, consider the point t* € / resulting from projecting £+ N ¢~. We can locate t* in
U in O(logn) time and recover the k? relevant edges for this translation. Then, applying the
Hungarian method again in O(k?) time (as detailed in Section 8.4), we either find a new line that
belongs to the lower envelope of Z (the one corresponding to the least-squares matching at ¢*)
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or we conclude that the arrangement has only the two discovered cells. In the second case, we
stop. In the first case, we update the lower envelope consisting of /T and ¢~ with the new line
we discovered and detect two new tentative vertices of the arrangement. We iterate this process
evaluating vertices until no new line is discovered. It is clear that the resulting arrangement is
V(A, B) N {. Every time we execute the Hungarian method is to certify that a vertex belongs
to the arrangement or to discover a new cell. Hence, not more than O(nk) executions will be
performed. Moreover, the maintenance of the lower envelope is equivalent to the incremental
construction of the convex hull of a set of O(nk) points, that can be done in a total running
time of O(nklogn) using the approach in [88]. The total running time of the algorithm is thus
O(nk(logn + klogk) + nk(logn + k3)). O

As a trivial implication we obtain the following bound.

Corollary 11.19. Given a pair of point sets A, B C R with k = |B| < |A| = n, the least-squares
diagram V(A, B) with a labeling can be constructed in O(nk(logn + k3)) time.

Exploiting the structural properties derived in the previous section, we can design an algo-
rithm able to construct the least-squares diagram in any dimension.

Theorem 11.20. Given a pair of point sets A, B C R? with k = |B| < |A| = n, the least-squares
diagram V(A, B) with a labeling can be constructed in O(nk* + nklogn + (nk)9/2)) time for
each cell of V(A, B).

Proof. We construct the complex by exploring the space from an arbitrary starting cell. We
start by choosing a point ¢y € R% which we first assume to be interior to a cell of V(A, B),
and learn the boundary of the cell that contains it. To do that, we compute the least-squares
matching 7o for tg in O(nk?) time as usual. As a consequence of Proposition 11.11, we know that
every possible facet of the cell containing tg is supported by the hyperplane where an alternating
path v starting at some matched point a € A and ending at an unmatched point a’ € A has
zero cost. That is, the sum of the weights of the edges in m Ny and the sum of the weights of
the edges in (v \ 7) are the same. Every possible such path ~ generates a hyperplane h., which
is the projection of Ly N Lzg,, where we identify the linear function L, for a matching o with
its graph. All the graphs Lre, with ~ starting at a and ending at o’ for a fixed pair a,a’ € A,
which can be identified with hyperplanes in R4*1, are parallel. Thus, from the hyperplanes h,
the one closest to tg is the locus of points ¢y(a, a’) for which my and the least-squares matching
m(a,a’) for B and (mo(B)U{a’}) \ {a} have the same cost. Hence, 7 is optimal in the cell of ¢y
in the arrangement of all hyperplanes ¢y(a, a’) for all a € 7o(B),a’ € A\ m(B). This cell is then
the intersection of O(nk) halfspaces (or the convex hull of O(nk) points, in the dual), which can
be computed in O(nklogn + (nk)l9/2)) using the algorithm of Chazelle [35]. To compute the
least-squares matchings in order to learn every ¢y(a,a’) we use the Hungarian method, which
requires O(k?) time in this (balanced) case.

We then learn the least-squares matching corresponding to the cells adjacent to the cell of ¢g.
If the hyperplane ¢y(a,a’) supports a facet and it is not repeated (that is, if £y (a,a’) # o(a”, ")
for any other pair a”,a” € A), the other cell of V(A, B) sharing the facet supported by ¢y(a,a’)
corresponds to the already computed matching 7(a,a’). However, if more than one fy(a,a’)
coincide, there might be an exponential number of candidates to least-squares matchings on the
other side. In such a case, we apply a perturbation technique. More precisely, if v is a vector
perpendicular to £y(a,a’) and ¢ is a point interior to the computed facet (which can be taken
to be the centroid of its vertices), we execute the Hungarian method for ¢ = ¢ + ev, with ¢
an arbitrarily small positive real number, as indicated in Lemma 11.17. Once we know the
least-squares matchings in the neighboring cells, we can continue constructing the arrangement
repeating the previous procedure.
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If the point ¢ty we picked as initial point was not interior to a cell of V(A, B), we might
have found a least-squares matching that is least-squares only in a lower-dimensional face F' of
V(A, B). If this is the case, we notice it after computing the polytope where the matching is
still optimal. Then, we take a point in the relative interior of F' and move an ¢ amount in a
direction not contained in the affine hull of the face. We compute a least-squares matching for
this symbolic point and repeat the process of learning the polytope for which this matching is
optimal. The obtained polytope should be of strictly higher dimension than the previous one.
Repeating this process at most d times, we end up learning a cell and the algorithm as described
above can be then applied. O

Combining the previous bound with Theorem 11.8, we get the following statement.

Corollary 11.21. Given a pair of point sets A, B C R? with k = |B| < |A| = n, the least-squares
diagram V(A, B) with a labeling can be constructed in time

OM* k12 (eInk + ) (k3 + logn + (nk)L9/2171Y).
For d =2, it can be constructed in O(n3k™(elnk + e)*). For d =3, in O(n"k53(elnk + e)*).

Proof. The bound for general dimension is obtained by multiplying the bound on the complex-
ity of V(A, B) derived in the previous section with the time required per cell studied in Theo-
rem 11.20. In dimensions two and three, there exist output-sensitive algorithms for computing
the convex hull of m points in O(mlog h) time, where h is the number of vertices of the computed
polytope (see [33, 77, 37]). If we use one of these algorithms, denoting by h(C') the number of
vertices of a cell C, the time required to perform all the convex-hull computations is

> k(n — k)log h(C) < k(n — k) log PRI (R

Céecells(V(A,B)) Cecells(V(A,B))

where we use that the logarithm is a concave function. Since the number of vertex-cell incidences
is at most the square of the complexity of the complex, the total time to compute the required
convex hulls is O(knlog(T(V(A, B))), where T'(V(A, B)) is the complexity of V(A, B). Thus, we
can express the total time required to construct the diagram as

O(T(V(A, B))(nk* + (nk)!2)) + knlog(T(V(A, B))).

Using the general complexity bound for the three-dimensional case and the improved complexity
bound of Theorem 11.9 for the plane, we derive the stated bounds. ]






(Generalizations

In this chapter, we explore how far can the results from this part be extended. Recalling how
the bound on the number of cells of the least-squares diagram was derived, two independent
steps can be distinguished. First, we decomposed the space of translations into equivalent cells
and obtained a bound for its number. Then, we observed that any least-squares matching must
be efficient and used the bound for the number of efficient matchings of a (k,n)-preference.
That is, we decoupled a geometric part of the analysis from a combinatorial part. For lex-
bottleneck or bottleneck diagrams the situation was similar albeit simpler. We develop now a
more general framework that will allow us to extend the bounds to a wider set of cost functions
and transformation spaces. Nonetheless, it is beyond the aim of this chapter to give an exhaustive
list of general results. Instead, we give only some illustrative examples. In particular, we do not
combine the different directions of generalization we explore, for the ease of presentation. The
following definition sets the notion of preference for the geometric setup, analogous to the one
in Chapter 9.

Definition 12.1. Let 4, B C R be two finite point sets. The A-preference of B is the set
of permutations of the points in A according to the distances ||b — al|, for each b € B. The
permutation of the pairs ab € A x B according to the values ||b — a|| will be called the total
preference of A and B.

12.1 Other transformation spaces

A first direction in which the previous results can be extended is allowing B to be transformed by
a more general set of functions, instead of only by translations. The main target of this section
is to give tools for the study of how the preference and the total preference change depending on
the transformation applied to B. Hereafter, I' will denote a real manifold whose points are the
allowed transformations. For a transformation v € I', we denote by v(B) the result of applying
the transformation v to each of the points in B. We now extend some objects examined in
previous chapters to this setting.

Definition 12.2. Let A, B C R? be two finite point sets, and let I' be a real manifold whose
points are transformations v : R — R A bottleneck diagram of A and B under T' is a
partition V of I' such that in every set S € V there is at least one matching that is a bottleneck
matching for v(B) and A for all ¥ € S. A bottleneck labeling of V is a function mapping every
set of V to one such matching. Lex-bottleneck diagrams under I' and least-squares diagrams
under I' are defined analogously for the corresponding cost functions.

The following definition is motivated by the observations introducing this chapter.
Definition 12.3. Let A, B C R? be two finite point sets. The bisector of a,a’ € A is the set

B(a,d') = {x € RY |z — aH2 = ||z — a'HQ}.
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Given b,b' € B, the (b,V')-pullback of the bisector B(a,a’) to the transformation space T is
B(b,b5a,a") = {y €T : [|4(b) — al|* = [~ (t') = d/*}.

We denote by P(T', A, B) the arrangement in ' induced by the pullbacks B(b, b;a,a’), for
a,a’ € A and b € B. We denote by T (T, A, B) the arrangement in I induced by B(b,b’;a,ad’),
for a,a’ € A and b,b’ € B. We abbreviate P(I', A, B) by P and T (T, A, B) by T whenever the
transformation space I and the involved point sets are clear from the context. By construction,
two transformations vq,7ve € I' lying in the same cell of P map the point set B in a way that
the A-preference of v1(B) and 72(B) is the same. Similarly, points lying in the same region of 7
correspond to transformations inducing the same total preference.

Next, we study several specific transformation spaces and the associated P-type arrange-
ments. Let Aff(d) be the linear space of affinities from R? to R?. Let U-Scal(d) be the set of
uniform scalings, Scal(d) be the set of scalings (with scale factor independent for each coordinate
axis), and Hom(d) be the set of homotheties (compositions of a scaling with a translation); all of
them linear subspaces of Aff(d). Consider also the following parametrization of each space where
the parameters are real vectors indicated in brackets and we represent the functions writing its
image for a generic point x € RY.

[
[

f[)\l,...,)\d}(a:) = (All‘l,...,)\dxd) AL, A E R}
[

We next study the arrangements P for the transformation spaces defined above. Note that
we identify Aff(d) with the space of its parameters R4*? x RY = R4+ and its subspaces are
identified accordingly.

Proposition 12.4. Let A, B C R? be two point sets with k = |B| < |A| = n.
(i) The arrangement P(Aff(d), A, B) is a polyhedral complex of complezity O((n?k)¥d+1).

(i) The arrangements P(U-Scal(d), A, B), P(Scal(d), A, B) and P(Hom(d), A, B) are polyhe-
dral complezes of compleities O(nk), O(n?k?) and O((n’k)4*1), respectively.

Proof.
(i) The (b, b)-pullback of the bisector B(a,a’) to I is

B(b,b;a,a’) = {(M,t) € RMHD 2 (Mb+t,d —a) = ||| — |||’}

Since (Mb + t,a’ — a) is linear in the entries of M and ¢, the pullback is identified with a
hyperplane in R4+ Tt is well-known that the complexity of an s-dimensional arrange-

ment of h hyperplanes is O(h®) (see, for instance, [47]). Since the number of pullbacks to
consider is k(5) = O(n?k), the bound follows.

(ii) The transformation spaces U-Scal(d), Scal(d) and Hom(d) are linear subspaces of Aff(d)
of dimension 1, d and d+ 1, respectively. Thus, the arguments from (i) lead to the claimed
complexities. ]

The following lemma shows that, as for translations, there is a canonical diagram for least-
squares matchings under affinities.
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Lemma 12.5. For any pair of finite point sets A, B C R?, there is a (regular) polyhedral complex
that is the coarsest least-squares diagram of A and B under Aff(d).

Proof. For a given matching 7, consider the set
Ve = {(M,t) € R . 7 is a least-squares matching for f[M,¢](B) and A}.

We will show that V; is a polyhedron. If there is no (My,ty) € R4+ for which 7 is least-
squares for f[My,to](B) and A or it is for all (M,t) € RU41) the set V; is empty or the whole
space. Otherwise, let (My,to) be such a pair and let (M,t;) € RU4D) be such that m; # 7 is
least-squares for f[Mi,1](B) and A. The least-squares cost of a matching o for a generic pair
(M, t) € RHUHD jg

Go (M, t) : RUHD 5 R

(M, t) = > [[Mb+t— o).
beB

Developing the squared Euclidean norms, we have that

Go(M,t) =Y |[Mb+t]* —2) " (Mb+t,0(b)) +>_[o(b)]*.

beB beB beB

Hence, §.(M,t) — gr,(M,t) is a linear function in the entries of (M,t¢). As in the case of
translations, the minimization diagram of the functions g, is the same as the one of their linear
part. Such minimization diagram is a polyhedral complex and, in addition, is the obviously the
coarsest tessellation that is a least-squares diagram for A and B. O

The following theorem shows that the previous property is inherited by the linear subspaces

of AfE(d).

Theorem 12.6. Let A, B C R be two point sets with k = |B| < |A| = n. There are polyhedral
complexes that are least-squares diagram for A and B under Aff(d), U-Scal(d), Scal(d) and
Hom(d) with O((n?k)XDED, O(n?k(elnk + €)% /VE), On?kk!) and O((n2k)* k) cells,

respectively.

Proof. Consider the polyhedral complex V induced by the cells V; as defined in the proof of
Lemma 12.5. A cell of P(Aff(d), A, B) can intersect the interior of at most k! cells of V. As a
matter of fact, all the transformations in a cell of P(Aff(d), A, B) induce the same A-preference
and, thus, the efficient matchings for this preference are enough to label the portion of the
diagram intersected by the cell. For the remaining transformation spaces, consider the result of
intersecting the linear subspace of R44+1) they are parametrized by with V. These polyhedral
complexes are least-squares diagrams for the corresponding transformation spaces. In addition,
the restrictions of P(Aff(d), A, B) to these subspaces are arrangements of hyperplanes in them.
Every cell of these arrangements can intersect the interior of at most k! cells of V. For the case
of uniform scaling, a better bound can be easily derived if we observe that it is enough to use one
label for every matched set, as in the case of translations. This is because, for equally sized sets,
the property of being least-squares matchings is invariant under (uniform) scalings [13, 110].
Combining Proposition 12.4 with the previous observations, the claimed bounds follow. ]

The situation is more complicated for the non-linear submanifolds of Aff(d), such as isome-
tries and rigid motions, denoted by Iso(d) and Rig(d) and parametrized as indicated below.
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Iso(d) = {f[M,t](x) = Mz +t:t e R? ,M e R4 M~ = MT}
Rig(d) = {f[M,t](z) = Mz +t:t € R* \M € R M~ = MT, det(M) =1}

Although the least-squares diagrams under these transformations are not necessarily poly-
hedral, a bound on the number of their “faces” can be derived using machinery from algebraic
geometry. To this end, we adapt some definitions appearing, for instance, in [17].

Definition 12.7. Let Q = {qi(x),...,qm(x)} be a set of polynomials. A sign condition is a
vector ¥ € {4, —,0}". For a variety Z and a sign condition ¥, the set

$3 = {z € 2 : (sign(q1 (), . ., sign(gm () = T}

is called the realization space of ¥ over Z and its non-empty (in Z) semialgebraic connected
components are called the faces of ¥. The union of faces of of all sign conditions (with non-
empty realization space over Z) is called the algebraic arrangement of Q over Z. The number
of faces in the arrangement is called its combinatorial complexity.

Theorem 12.8 (Basu, Pollak and Roy [17]). Let Z C RY be an s-dimensional real variety
that is the zero-set of a polynomial of degree D in V wvariables. Consider m subvarieties of Z
each defined by a polynomial of degree at most D (in the same variables). The combinatorial
complexity of the algebraic arrangement of these m subvarieties over Z is (’Z)O(D)V.

We are now ready to prove the following statement.

Proposition 12.9. Let A, B C R? be two point sets with k = |B| < |A| = n. The algebraic ar-
rangements P(Iso(d), A, B) and P(Rig(d), A, B) have combinatorial complezxity O((ny/k)X4+1),
for any fized dimension d.

Proof. 1t is well-known that the set of orthogonal d x d matrices is a (d(d—1)/2)-dimensional real
algebraic subvariety (defined by quadratic polynomials) of the space of matrices. This variety
has two connected components corresponding to the matrices M satisfying det(M) = 1 and the
ones satisfying det(M) = —1. Taking into account the translation part, it follows that Iso(d)
is a real algebraic variety of dimension d(d + 1)/2. In addition, as observed in [17, Remark 1],
this variety may be defined by a single polynomial of degree 4 in d(d + 1) variables. As we
have already seen in the proof of Proposition 12.4, the bisectors B(b, b; a,a’) are hyperplanes in
RU4H1D) and, hence, Theorem 12.8 applies with Z = Iso(d), s = d(d+1)/2, D =4, V = d(d + 1)
and m = k(). Thus, the complexity of the arrangements P(Iso(d), 4, B) and P(Rig(d), A, B)
is

<d(d(_g;)]f)/2>o(1)d(d+l) -0 ((n\/E)d(d-H)) _ =

As a consequence, we have the following bounds.

Theorem 12.10. Let A, B C RY be two point sets with k = |B| < |A| = n. There are least-
squares diagrams for A and B under Iso(d) and Rig(d) that can be labeled by O((ny/k)Xd+DE!)
matchings, for any fixed dimension d.

With help of Theorem 12.8, we can study the complexity of the 7T-type arrangements for
the transformation spaces defined above and thereby derive bounds for the complexity of the
corresponding lex-bottleneck diagrams.
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Theorem 12.11. Let A,B C RY be two point sets with k = |B| < |A| = n. There are
lex-bottleneck diagrams for A and B under Aff(d), U-Scal(d), Scal(d), Hom(d), Iso(d) and

Rig(d) that are algebraic arrangements of combinatorial complexity O((n?k?)Xd+D)  O(n?k?),
O((n?k*)?) and O((n2k2)™1)), O((nk)H D) and O((nk) @), respectively.

Proof. The pullbacks B(b, b'; a, a’) to the space Aff(d) are not necessarily hyperplanes unless b = /.
However, they are polynomials of degree two in the entries of M and ¢. Indeed:

B(b,b;a,a’) = {(M,t) € RUTD || MY||2 — || Mb|)2 +2{Mb+t,d —a) + |d'||*> — ||a||* = 0}.

Hence, Theorem 12.8 applies with m = (g) (g) and D = 2 for linear subspaces and with D = 4

for isometries and rigid motions. The claimed bounds follow. O

12.2 Other cost functions

A second direction in which some of the results from the previous chapters can be generalized
is by changing the cost of the matchings. As far as the cost function is the sum of monotone
functions in the Euclidean distances, we can restrict the search for optimal matchings to efficient
ones. For instance, if one considers the minimum Euclidean bipartite matching (that is, the
matching minimizing the sum of the Euclidean distances between matched points), the bound
on the number of necessary labels of Theorem 11.8 still holds true, although the diagram is not
necessarily polyhedral. We make this claim precise in the following statement, after giving a
more general definition of Voronoi diagram.

Definition 12.12. Let A, B C R? be a pair of finite point sets with |B| < |A| and let C be a cost
function assigning to every matching o : B < A the cost C(0) = g, : R — R. A matching 7 is
C-optimal for t € R if it minimizes C(o)(t) among all matchings . A C-Voronoi diagram for A
and B is a partition V of R? such that for every set S € V there is a matching that minimizes
C(o)(t) for all t € S and among all matchings o. A function assigning to each set of V such a
matching (called a label for the set) is called a labeling. The size of a labeling is the cardinality
of its image set.

Examples of Euclidean, logarithmic and exponential matching Voronoi diagrams or, more
precisely, C-Voronoi diagrams with

=> o+t—o(b = In(|b+t—o(®)|+1) and C(o) = > _exp([|b+t—o(b)]|/2),

beB beB beB

are shown in Figure 12.1(a), Figure 12.1(b) and Figure 12.1(c), respectively. Each color rep-
resents a label (that is, a matching that is C-optimal in all the regions colored with the corre-
sponding color).

Proposition 12.13. Let A, B C R? be a pair of point sets with k = |B| < |A| = n, and let C be
a cost function of the form

Clo)=gy:t+— Zfb(Hb—i— t —ao(b)]]), with fp : R — R monotone for all b € B.
beB

There is a C-Voronoi diagram for A and B with a labeling of size O (nzdkdk!).

Note that we allow the functions f; to be monotonically decreasing in the formulation of the
previous proposition, embracing then scenarios in which we want some points in B to be far
away from its matched point in A.
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Proof. Let P(I', A, B) be the arrangement of pullbacks to the space of translations I' = R,
which has complexity O(n??k?) as argued in the previous chapter. Observe that for a cell C
of P(I', A, B), the A-preference is fixed. Let V be a C-Voronoi diagram for A and B. Consider
the restriction of V to a fixed cell of C € cells(P(T', A, B)) and let m be a label for a cell in
this restricted diagram. Let Pc be the (k,n)-preference, as defined in Chapter 9, resulting of
reversing in the A-preference of C' the permutations of every b € B such that f; is decreasing.
If 7 is not an efficient matching for the Pc, then a better matching can be used as a label. Such
a matching will have cost not larger than 7 in the whole cell, because f; is monotone for all
b € B. Thus, iterating this relabeling process, we can find a set of labels that are efficient for the
A-preference in C, which are bounded in number by k!, as a consequence of Theorem 9.4. [

A natural option to construct a cost function C is to give a weight to every point in A, which
will be added to the squared Euclidean lengths of the edges using it. As far as these weights
are constant (in fact, linear is enough), the diagram remains polyhedral and all the presented
results hold for least-squares, bottleneck and lex-bottleneck matchings. Even the invariance
with respect to translation for equally sized sets stated in Lemma 11.3 generalizes to this case.

Proposition 12.14. Let A, B C R? be a pair of point sets with k = |B| < |A| = n, and let C be
a cost function of the form

Clo)=go:t+— Z (Ib+t—o®)|* +w(o(b))), withw(a) €R for all a € A.
beB

There is a C-Voronoi diagram that is a polyhedral complex of combinatorial complexity
O(n2d+Ld/2j kd+Ld/2J_1/2(elnl<: + e)k).
Proof. Consider, as in Lemma 12.5, the set
Vi = {(M,t) € R¥Y . 7 is C-optimal for f[M,t](B) and A}.

Note that g(t) < g,(t) = if and only if

> (lo+t=x®)P +wx®) <> (Ib+t—o®) +wle(®),

beB beB

which holds in the halfspace given by the inequality

2 <t, S rr(b>>> + 30— 7 )P+ w(x (v) <

beB beB beB
<2 <t, So- a<b>>> 3 Ib= @) + S w(e ).
beB beB beB

Thus, V; is a polyhedron. In addition, in view of the previous expression, matchings having
the same image set have costs differing by a constant and, hence, there is one of them which is
better (or not worse) than the others for all the values of ¢ € R?. The proof of Proposition 11.11
carries over as well. Therefore, the arguments from Corollary 11.13 apply in this situation and
yield the stated bounds. O

Observe that the analogous to Theorem 11.5 holds in this scenario as well. One could also
change the underlying metric taking, for instance, the L; or Lo, metrics to measure the length
of the edges. Then, the number of optimal matchings in a cell of the arrangement of bisectors
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(a) Euclidean diagram (b) Logarithmic diagram (c¢) Exponential diagram

Figure 12.1: C-Voronoi diagrams for the point sets in Figure 10.1(a)

would be still bounded by the number of efficient matchings of a (k,n)-preference. However,
the bound for the number of such regions should be adapted and additional “degeneracies” (as
bisectors having non-empty interior) should be handled.

The bottleneck and lex-bottleneck diagrams admit similar generalizations. We state next an
example whose proof can be deduced mutatis mutandis from the proof of Proposition 12.14.

Proposition 12.15. Let A, B C R be a pair of point sets with k = |B| < |A| = n, and let C be
a cost function of the form

Co) = go ¢ max {[lb+t = o(6)| + w(or(b)}

with w(a) € R for all a € A. There is a C-Voronoi diagram that is a polyhedral complex of
combinatorial complexity O(n?1k*?).

12.3 Matchings on multisets

We explore in this section yet another direction of generalization where we allow repetitions in
the input point sets. That is, considering the point sets as multisets of points. This could be
interesting if one wants to approximate certain clusters of points by a single one. In addition,
it can be interpreted as a special case of the Earth Mover’s distance where the weights of the
points are positive integers.

Proposition 12.16. Let A, B C R? be multisets consisting respectively of I and m (distinct)
points. Let ki,..., ky, be the multiplicities of the points in B and let k = Y kj. There is a
least-squares diagram of A and B that is a polyhedral complex of combinatorial complexity

O (1218721372 i L ek + ) VR, R (Rt )} )

Proof. Note first that the complexity of the diagram of A-preferences depends now only on the
number of distinct points. For a fixed A-preference, we count the number of efficient matchings,
regarding the repeated points of A and B as distinct points (breaking the ties between points
of A in an arbitrary but consistent way). This can only lead to overcounting the number of
efficient matchings that we need to label the regions having this preference. On one hand, we
have that for a fixed image set, there is only one efficient matching, since the cost of a matching
is still a linear function whose gradient depends only on the matched set. On the other hand,
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we know that the number of efficient matchings is bounded by the number of greedy matchings,
as seen in Theorem 9.4. Every greedy matching though, can be obtained at least in ki!--- k,,!
ways, by permuting the positions of the instances of every distinct point. The Upper-bound
Theorem [83] finishes the proof as in Corollary 11.13, since the number of facets of each cell is
bounded, using the arguments in Proposition 11.11, by Im. O

This generalization allows us to point out a nice limit property of the least-squares diagram.
Consider the extreme case in which the points of A are all distinct and B consists of k instances
of the same point. The order-k Voronoi diagram of A is then a least-squares diagram for the
multisets A and B. The previous theorem gives a bound of O(n?**+14/2]) for the least-squares
diagram, which is loose because the complexity of the order-k Voronoi diagram of n points is

0 (k((dﬂ)/ﬂnL(dH)/?J) :

as follows from [38]. Thus, although least-squares diagrams for multisets comprise all higher-
order Voronoi diagrams, they are in general more complex, as Proposition 11.10 implies.



Related problems

In this chapter, we explore some of the applications of the Voronoi diagrams studied in this
part. For simplicity of presentation, we restrict the study to the plane and mainly to bottleneck
diagrams. Similar results can be derived for the least-squares or lex-bottleneck cost functions,
adapting the running times. An obvious application is to report a set of matchings containing at
least one optimal matching for every translation (that is, a set that can be used as a labeling).
A partial-matching Voronoi diagram can also serve as data structure for interactively showing
the best matching for each position of a cursor or, similarly, as a preprocessing for a later
sequence of position queries of a pattern.

13.1 Optimal matching under translations

Let A, B C R? be two point sets with k = |B| < |A| = n. We are interested here in finding a
matching ¢ such that
fo(t*) = min &(t), where t* € R?,
teR?

using the notation from Definition 10.1. Such a matching will be called an optimal matching
under translations and such a translation is indeed a minimum of the cost function £. It is often
interesting to know a translation for which this minimum is attained. The algorithm we present
can return this information as well. Note that if we have the polyhedral complex £(A, B) and
one bottleneck labeling for it, we only need to traverse the diagram and find the optimal value
of the function indicated by the labeling in every convex polygon separately.

Theorem 13.1. Let A, B C R? be sets of k and n points. An optimal bottleneck matching for
A and B under translations can be found in O(n?k®) time.

Proof. We first construct £(A, B) and a labeling for it as described in the proof of Theorem 10.20.
We traverse then the arrangement optimizing for ¢ the value f(t) = ||b +t — al|? in every
(convex) cell, and keeping the minimum throughout the diagram, where ab is the longest edge
of the bottleneck matching given by the label of the cell. Let C' be one cell in £(A, B) and let
to = a — b be the global minimum of the function f(t). If tx € C, obviously f(tp) = 0 is the
minimum of f in C (in fact, a global minimum as well). Otherwise, the minimum is attained
at the point of C' closest to ty. Such a point must be either a vertex of C or the orthogonal
projection of ¢y in an edge of C' (that is, the projection on the line supporting e if the projection
lies in e and the empty set otherwise). In addition, if ¢y is the minimum of f(¢) and ¢; is the
minimum of the corresponding function for a neighboring cell D sharing the edge e with C,
then the projection of tg in e coincides with the projection of ¢; in e. We can thus calculate
the minimum examining once every vertex of the diagram and at most one candidate point for
every edge. Thus, the total time needed to perform the mentioned optimization in every cell is
proportional to the complexity of the diagram. ]
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The problem addressed in this section was introduced in [9] for the balanced case, where an
algorithm running in O(n®logn) is given. We can however adapt their algorithm and analyze
its complexity in the unbalanced case as well. Their approach consists of two steps. First,
they define €(by, a1, be, as, bs, as) for every pair of triples aj,a1,a3 € A, by,be,b3 € B to be the
minimum ¢ € R such that there is a translation placing b; into an e-neighborhood of a; for all
i € [3]. They claim that the bottleneck distance under translations must be one of such O(nS)
values, and they compute every value in constant time. In the unbalance case, the number of
values and the time for its computation is then O(n3k3). They sort these values into an array &
and perform then a binary search, testing for every e € & whether there is a bottleneck matching
under translations having cost . In order to do that, they assume that ||b+t—al|* = 2 for a fixed
pair ab € A x B, which restricts the set of candidate translations to a circle. They parametrize
the circle by polar coordinates and compute the set of angles a(a’,b") for which b lies in an
e-neighborhood of d/, for all 't/ € A x B. The computation of such intervals is not trivial and
requires some careful observations (which carry over to the unbalanced case). They compute
the arrangement in this circle induce by the circular intervals a (sorting their endpoints). In
every interval, they construct the bipartite graph whose edges are shorter than £ and look for
a maximum matching in it. This is done computing the graph for an arbitrary initial point
and traversing the arrangement computed on the circle, adding or deleting at each interval the
corresponding edge (or edges). If edges are only added, nothing is left to be done. If some edges
are delete leaving some points of B unmatched, one (or several) augmenting-path computations
must be performed in order to decide whether there is a complete matching in the next interval.
The construction of each one of the arrangements in the O(nk) circles for a fixed value € € € can
be done in O(nklogn). The traversal requires O(nk) to construct the initial graph, O(nk + k%)
to prune non-relevant edges and obtain a maximum matching for the initial graph using the
Hopcroft-Karp algorithm, and O(nk) time per cell to compute the augmenting path to update
the maximum matching. The updates of the graph require constant time for each edge. Thus,
the total time required for each ¢ € € is O(nk - (nklogn + nk + k> + nk - nk)) = O(n3k?).
Since sorting the values in € is done in O(n3k®logn) time, the whole algorithm runs in time
O(nk3logn). Hence, it outperforms our algorithm only if k = Q((nlogn)/?).

The algorithm for the balanced case described above was later improved in [52] to O(n° log? n)
time. This improvement requires the use of a non-trivial data structure and parametric search
combined with sorting networks. The data structure is used to create an oracle that, given
€ € &, answers whether the bottleneck distance of A and B under translations is at most €. The
equivalent oracle in [9] runs in O(n%) and, according to the analysis above, can be adapted to
run in O(n?k3) in the unbalanced case. In [52], the oracle runs in O(n®logn) thanks to the gain
in the computation of augmenting paths, which is done in O(nlogn) time. In the unbalanced
case, the augmenting path can be found in O(klogn) time, as can be derived adapting their
analysis. Therefore, the oracle runs in O(n?k3 logn) time. However, the time to sort the O(n3k?)
values into & dominates the running time preventing the new algorithm to improve the simplest
algorithm in [9]. This problem is solved by using Cole’s parametric search technique to avoid the
construction of €, and reducing the number of oracle calls to O(logn). The final running time
is hence O(n2k?log? n), which beats the algorithm proposed in Theorem 13.1 if k = Q(log?/® n).

It is worth mentioning that a traversal like the one in Theorem 13.1 of the least-squares
diagram results into the best known algorithm to find the optimal least-squares matching under
translations, which is cubic in n for constant k.

Theorem 13.2. Let A, B C R? be sets of k and n points. An optimal least-squares matching
for A and B under translations can be found in O(n3k™>(elnk + e)¥) time.
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13.2 Computing the safest path

Here we approach the problem of finding a motion for B from an initial position to a final
position such that the maximum bottleneck value (as defined in Definition 10.1) attained during
the motion is minimized. We define the problem more formally below.

Definition 13.3. Let 4, B C R? be two finite point sets and £ be the associated bottleneck
value function. The bottleneck value of a closed curve «y : [0,1] — R? with respect to A and B is

F(y) = max £(1(s).
s€[0,1]

A curve 7 is a safest path from ty = v(0) to t; = (1) with respect to A and B if it minimizes

F(p) among all curves ¢ : [0,1] — R? with ¢(0) = t¢ and (1) = t;.

Such a path can be useful in motion planning if the points of A represent antennas and the
points of B represent receivers of a moving robot. A related problem is to decide whether a
robot, whose arms can reach any point at distance at most r from its basis, can climb a wall
with given anchor points from an initial to a target given position. The notion of safest path
could be of interest also for recovering the trajectory of an object. For instance, if we have got a
sensor network and the points of A correspond to the sensors that detected one of the emitters
of a moving object represented by B.

We next construct a graph that will contain all the necessary information to compute a safest
path from any initial position to any final position.

Definition 13.4. The bottleneck graph of two finite point sets A, B C R? is the graph £(A, B)*
dual to L(A, B) where an edge e* of the graph dual to an edge e of L(A, B) has weight rglein E(t).
e

The following technical lemma will be crucial in the proof of the main result of this section.

Lemma 13.5. Let A, B C R? be two finite point sets. Let to,t; € R% and § € R be given and let
Co and Cy be cells of L(A, B) such that tyg € Cy and ty € Cy. There is a curve with bottleneck
value at most § from tg to t; with respect to A and B if and only if E(ty),E(t1) < 0 and there is
a path from C§ to C7 in L(A, B)* whose longest edge has weight not larger than 6.

Proof. In every cell of L(A, B) there is a bottleneck matching whose cost coincides with £ in
the cell. By definition, £ is convex in every cell of £(A, B). Hence, if Cy = C; the straight
line segment joining to and t; has bottleneck value max{&(tp),E(t1)} and no path can attain
a smaller value. If Cy # C; and ~ is any path from ty to t;, we can replace each of the arcs
of v entering a cell C' of L(A, B) in a point ¢;, and leaving it in a point toy by the straight
line segment joining t;, with oy without increasing the bottleneck value of the path. Again,
we can only decrease the bottleneck value of the path if we substitute this line segment by the
one joining the points #i, and toy where the first is the point having minimum bottleneck value
from the edge of ¢;, and the second is the one attaining the minimum value in the edge of foyt.
The path in Cy can be perturbed to be the straight line segment from ¢y to the point attaining
the minimum of £ on whichever edge the path crosses first. Similarly, the path in C; can be
transformed into a line segment. Putting the previous observations together, it follows that at
least one safest path must be among the polygonal paths having vertices on the minimum value
attained at edges. The bottleneck value of such a path is the maximum between the maximum
weight of the edges forming the corresponding path in the bottleneck graph, the value of the
matching at ty and the value at ¢;. O

Theorem 13.6. Let A, B C R? be two finite point sets. Given tg,t; € R?, a safest path from t
to t1 with respect to A and B can be computed in O(n?kS(k? +logn)) time.
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Proof. We first compute L£(A, B) in the time indicated in Theorem 10.20. If o is a bottleneck
matching along an edge e, the weight of the edge e* of L(A, B)* is the minimum among the
value of o at the endpoints of e and at the projection of the minimum of f, in e (as defined in
the proof of Theorem 13.1). Since, in view of Theorem 10.13, the number of edges and vertices
of L(A, B)* is O(n?k%), this graph with the weights of its edges can be computed in O(n%k5)
time.

Since the weights of the edges are non-negative, the path with minimum bottleneck length in
the graph can be found in O(n?k%logn) using the implementation of Dijkstra’s algorithm using
heaps. By the previous lemma, we only need to take the associated polygonal path and it will
be guaranteed to be a safest path. Moreover, the value of the path can be easily computed. [J

The analogous question may be asked in terms of the least-squares cost function and can be
solved similarly, as in every cell of the least-squares diagram the objective function is quadratic
as well. The running time should be of course adapted accordingly.

13.3 Finding the polygon cover radius

In this section, we investigate a covering problem. Given a pair of finite point sets A, B C R2,
and a convex polygon @ C R?, we want to determine the minimum radius § € R such that for
any position of the point set B in @) there is a matching whose bottleneck value is at most §.
We can think of the points in A as antennas and the disks of radius § as the region on which
they provide signal. The point set B can be thought of as a robot that moves in ) and needs to
connect each of its points to a different antenna (for instance, to learn its position). The target
is to minimize the power consumed by the antennas while ensuring that the robot can move
in @ having a one-to-one connection for its receivers. Another scenario would be that the robot
has arms and the points in A represent anchor points (as in the previous application) and we
want the robot to be able to reach any position in Q.

Definition 13.7. The cover radius of a polygon with respect to two finite point sets A, B C R?
is the maximum bottleneck value among all ¢ € R? such that B+t C Q.

Theorem 13.8. The cover radius of a polygon QQ on m vertices with respect to A, B C R? with
k= |B| < |A| = n can be computed in O(n?k® + (n?k® + m)log(n +m)) time.

Proof. We start by computing £(A, B) and a bottleneck labeling as indicated in Theorem 10.20.
Note that the set of t € R? for which B+t C @ is a convex polygon @, which is the intersection
of k translated copies of (). This polygon is indeed given by the m linear inequalities obtained by
imposing that the extreme point of B in the direction orthogonal to an edge of () is in the right
side of the corresponding edge. This polytope can be computed easily in O(klogk + mlogm)
time and has at most m edges. Then, we compute the overlay of the boundary of @ and
L(A,B). Note that every edge of L(A, B) can intersect the boundary of Q in at most two
points. Thus, the number of vertices of the overlay is O(n?k® + m) and, hence, it can be
computed in O((n?k® + m)log(n + m)) time using the techniques appearing in [44]. The next
step involves traversing the overlay and taking the maximum attained by £ in every cell. Since
the function is convex, the maximum can be calculated as the maximum of the values attained
at the vertices of overlay. O



Summary and conclusion

We studied the combinatorial complexity of a collection of tessellations called partial-matching
Voronoi diagrams. We focused on the least-squares and the bottleneck versions of them, together
with the lexicographic bottleneck variant. We obtained algorithms for its construction that are
sensitive to the size of the smaller set (the pattern). In particular, these algorithms can be
used to find the best occurrence of a pattern in a cloud of points. In addition, we derived
structural properties and conditions under which they are canonical. We also provided a more
general framework to study different transformation spaces and cost functions. Finally, we have
explored several related problems that can be solved with the help of our main results.

Specifically, we provided an algorithm to construct the bottleneck partial-matching Voronoi
diagram of two point sets of sizes k and n in the d-dimensional Euclidean space in O(n??k24+2)
time, and the lexicographic variant in O(n??k2?*4). In the plane, the diagrams can be con-
structed in O(n?k8) and O(n?k'%) time, respectively. As a consequence, we can compute the
bottleneck distance under translations in the plane in O(n2k®) time. We prove that the algo-
rithm constructing the lex-bottleneck diagram is optimal for constant size patterns by deriving
a lower bound of (n2k?) on its complexity.

We proved a first non-trivial bound of O(n2d+1d/2]gd+1d/21=1/25(})k) on the complexity of
the least-squares partial-matching Voronoi diagram, where p(k) = elnk+e. An improved bound
of O(n2k3®p(k)¥) in the plane is shown to be optimal for constant k. We designed an algorithm
to find the least-squares optimal matching under translations in the plane spending O(nk*) time
per cell. When the pattern is translated only along a line we can compute the optimal matching
in O(nk(logn + k3)) constructing the intersection of the least-squares diagram with the line.
Still, it remains open to know if the complexity of the partial-matching Voronoi diagram (or of
the problem of finding the optimal value under translations) is polynomial in the pattern size.

Generalizing our methods, we proved that the least-squares diagram under affinities is poly-
hedral as well, and we bounded its complexity. We derived also bounds for non-polyhedral
diagrams, such as the Euclidean diagram under translations or the bottleneck diagram under
rigid motions.






A subdivision whose
regularity tree has two levels

We prove here that the subdivision S pictured in Figure 4.1 (left) is not regular and that its
finest regular coarsening is the subdivision Sy defined by the second level of the tree in Figure 4.1
(right). To this end, we provide a solution to the dual of its regularity system in the sense
of Lemma 4.5.

(0,16)

Figure A.1: A non-regular, recursively regular subdivision.

The rows of the matrix of the regularity system of S associated to the edges labeled with
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numbers in Figure A.1 are

56,20,0,4,32,0,0,0,0)
0,0,84,—72,0,—24,0,0,12)
12,0, —56, 34,0, 10,0,0,0)
4,10,-32,18,0,0,0,0,0)
8,-34,8,0,0,18,0,0,0)
32,10,4,0,18,0,0,0,0)
,56,16,0,8,32,0,0,0)
12,-16,8,0,—4,0,0,0)
20,0, 20, —10, 10,0, 0,0, 0)
s12 = (16,—12,0,-8,4,0,0,0,0)
s20 = (0,0,0,136,0,0,36, —84, —88)
0,0,0,0, 112,48, —48,112,0).

87 =

0
S10 = 0
S1

(—
(
= (
= (
(
= (-
s9 = (
(0,
= (-
(
(
s91 = (

The following positive coefficients for the dual variables (and zero for the omitted variables)
are a solution to the dual system

gy 80 7L 36 39
Y4 = Y5 = Y6 = Y10 = Y12 = 7y7—99,y8—99,3/11—5573/20—22’3/21—88,
since it is easy to check that
54+ 85+ ¢+ S10+ S —I—@s —I—Es —I—%s +is —1—2 0.
4 5 6 10 127 9957 T 9998 T 5551 20 88y21 =

As discussed in Theorem 4.8 and its algorithmic translation described in Proposition 4.18, to
show that the finest regular coarsening of S is Sy it is enough to show that the variables ys and yg
can attain positive values in the dual (if we allow the variables y4, ys, Y6, Y7, Y8, Y10, Y11, Y12, Y20, Y21
to take any real value). We certify that it is indeed the case by means of the solution having as
non-zero coefficients:

i 9 _3 _9
11,y11— 11’y20722’y21788'

Y2=ys =Yg =Y10=1,y12=—2,y5 = —

The sub-subdivision of S pictured (after an affine transformation) in the lower part of Fig-

ure A.1 is a variant of a typical non-regular subdivision called “the mother of all examples”in [45].

However, since the lines supporting the edges 2, 5 and 9 are concurrent, the sub-subdivision is

recursively regular (is the projection of a truncated pyramid). Similarly, it is clear that Sy is
regular as well.



A non-regular recursively-regular
subdivision

We prove here that the

subdivision S pictured in Figure 4.2(a) is not regular. To this end, we

provide a solution to the dual of its regularity system in the sense of Lemma 4.5. The vertices
of the subdivision lie symmetrically with respect to the coordinate axes.

(0,4)

(7,3)

ot
w
g
0.9)

10 9

Figure B.1: A non-regular, recursively regular subdivision.

The rows of the matrix of the regularity system of S associated to the edges labeled in Fig-

ure B.1 are

=(0,0,-4,0,4,—4,0,0,0,4,0,0,0,0,0)
=(0,0,0,4,—4,0,4,0,0,0,—4,0,0,0,0)
(—16,16,—16,16,0,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,—16,16, —16, 16,0, 0,0, 0,0, 0)
(—12,12,0,0,0,0,0,0,0,0,0,8,0,0, —8)
56—(0,—13900000,0,—4,0,0,0,0,8)
(
(
(
(

0,0,0,0,0,9,0,0,—13,—4,0,0,0,8,0)
0,0,0,0,0,0,0,—12,12,0,0,0,8, —8,0)
0,0,0,0,0,0,0,—9,13,0,0,4,0,—8,0)
13,0,0,-9,0,0,0,0,0,0,4,—8,0,0,0).

S7 =
S8 —
S9 —

S10 =

The following positive coefficients for the dual variables (and zero for the omitted variables)
are a solution to the dual system

n=y2=1Lys=ys =

1

1
3 Y5 = Y6 = YT =UYs = Yo = Y10 = 5>
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since it is easy to check that

1 1
81+82+§(83+84)—|—5(854—86—1—874-884-894-810) = 0.
The coarsening &’ of S in Figure B.2 is regular, because the depicted heights represent a
convex lifting. The subdivisions § is then recursively-regular because it can be obtained refining
with regular subdivisions the cells of S'.

2
21 21
13 1 1 13
0
13 1 1 13
21 21
2

Figure B.2: A regular coarsening of S.



A non-recursively-regular acyclic
triangulation

We prove here that the triangulation S pictured in Figure 4.2(a) is not recursively-regular. To
this end, we prove that its finest regular coarsening has only one cell providing a solution to the
dual of its regularity system in the sense of Lemma 4.5.

(74a 4) (474) 8 g
10
(2’ 2) 2
7 5
1 .
3 11
- 4
(—5,-3) : 13 2
(57 _4)

Figure C.1: A non-recursively-regular triangulation.

The rows of the matrix of the regularity system of S associated to the edges labeled in Fig-
ure C.1 are

s1 = (8,-32,8,0,16,0,0,0)

so = (8,0,—24,0,0,16,0,0)

s3 = (12,0,8,—36,0,0, 16, 0)
sq = (—28,0,4,8,0,0,0, 16)

s5 = (—16,16,—16,16,0,0,0,0)
se = (—48,0,0,20,4,0,0,24)
sy = (—16,20,0,0,—12,0,0,8)
ss = (16,—48,0,0,24,8,0,0)
sg = (0,-16,16,0,8,—8,0,0)
s10 = (0,18, —50,0,0,24,8,0)
s11 = (0,0,-22,18,0,12, —8,0)
s12 = (0,0,17,—57,0,0,28,12)

s13 = (17,0,0,—13,0,0,4, —8).

The following positive coefficients for the dual variables (and zero for the omitted variables)
are a solution to the dual system

1 1

2
p— = — = — p— p— p— 1 = —
Y1 =1Ys 4,y3 1271/7 Y9 = Y13 y Y11 3
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since it is easy to check that

1( + 85) + L gt 57+ 80+ s1 4 2 0
—(s1+s —S83+ 87+ 89+ s —s11 = 0.
g St 85 1953 T 87+ 89+ s13+ 351
Following the algorithm in the proof of Corollary 4.19, we allow the variables appearing in
the previous equation to take negative values and observe that

ol 25 11 10
—gsi T2 ES3+54_335+56—?57‘1'58‘*'594‘510_ 3su szt 813 =0.
Hence, the finest regular coarsening of S is the trivial one, having one single cell and thus S is

not recursively regular.

We prove now that S has no cycle in visibility. We show first that the coarsening &’ of S
depicted in Figure C.2 is acyclic. Assume = € R? to be a point interior to a cell C, of S’ from
which &' might be cyclic. Consider the fan F C R? obtained by taking the cone with the origin
for all the cells of &', when &’ is embedded in the horizontal plane of intercept —1/8 with the
vertical axis. The construction is similar to the fan studied in Appendix D. In particular, both
subdivisions have the same dual graph (illustrated in Figure D.2).

We will prove that the in-front relation from z in the plane for &’ is equivalent to the in-
front relation in the direction (—x,1/8) € R3 for F, which is shown to be acyclic in Appendix D.
Therefore, it will be proven that S’ is acyclic as well. Take a line £ in the plane through x and
consider points y, z € £ such that y is interior to Cy, and z is interior to C, with C,, C; € cells(S’)
sharing the wall W = C, N C; of §’. Assume further that y is before z in the visibility relation
from 2. Let II C R3 be a plane through the origin and containing W in the embedded copy of S’
(and, hence, supporting the wall of F associated to W). Then, the plane II separates Ay from
pz for any A\, u € R*. In particular, it separates A(u)y from pz if for every p € RT we take A(j)
such that x, AM(1)y and pz are coplanar. If v is a vector normal to IT and pointing “towards” z,
we have then that (v, A\(u)y — uz) > 0 for all p € RT. Since the scalar product is continuous,
we have that

lim (v, \()y — pz) = (v, ax) =0,
n—0
where o € RT is a constant. Since (v, z) # 0 because z is interior to C,;, we have that (v, z) > 0.

It only remains to observe that all the sub-subdivisions refining each of the cells of S’ into a
pair of cells of S are obviously acyclic. By a reasoning similar to the one in the proof of Propo-
sition 4.16, the combination of the previous observation with the fact that S’ is acyclic already
implies that S is acyclic.

Figure C.2: An acyclic coarsening of S.



A non-universal acyclic polyhedral fan

We present here the calculations for the proof of Proposition 5.15. Recall that the point set
from the counterexample is

(29, 95, 89)
(55,19, 92)
(54,10, 82)
(
(

78,2, 68)
15, 40, 92).

The fan involved is drawn in Figure D.1, where the facets and cells of the fan have been
labeled and it has been truncated. From the coordinates of the points in this figure and assuming
that we embed it into the plane {z = —1/8} and we cone the cells with the origin, normal vectors
to the facets of the fan can be computed:

v12 = (4,0, —-32)
v3 = (2,2,0)

vis = (1, -3, 16)
vaz = (0,4, 32)
voa = (4,0, 32)
Va5 = (0, —4, 32)
v3g = (2,-2,0)

=(—2,-3,8).

The first column of the table visits the 5! permutations representing all possible assignments
from cells to points. The notation used for the permutations is simply the concatenation of the
labels of the points assigned to C1,C5,Cs,Cy and C5 in this order. The second row indicates
one facet for which the corresponding assignment does not satisfy the overlapping condition.
The two following columns just extract the points involved in the violation. The last column
computes the “gap” between the two translated floodlights. The positivity of this last value
certifies that the overlapping condition is not fulfilled.



118

(5/2,-2)

—4,-2)
Figure D.1: The fan of the counterexample and a section of it.
o fi o(C) o(C) (o(C) —o(C)) - vy

54321  fio D5 D4 (pa — ps) - v12 = (63 —38,—24) - (4,0,—32) = 1020
54312 fi2 s pa (pa—ps)-viz = (63,-38,-24) - (4,0, -32) = 1020
54231 f12 D5 P4 (p4 — p5) s V12 = (63 38 —24) . (4,0, —32) = 1020
54213 f12 D5 P4 (p4 — p5) V12 = (63 —38 —24) . (4,0, —32) = 1020
54123 f12 Ps5 yo (p4 - p5) V12 = (63 38 —24) . (4,0, —32) = 1020
54132 f12 D5 P4 (p4 — p5) c V12 = (63 38 —24) . (4,0, —32) = 1020
53421 f12 D5 P3 (p3 - p5) c V12 = (39 30 —10) . (4,0, —32) = 476
53412 fi2  ps p3 (p3—ps) - vi2 = (39,-30,—10) - (4,0, —32) = 476
03241 f12 D5 pP3 (pg - p5) V12 = (39 30 —10) . (4, 0, —32) = 476
53214  fiz2  ps p3 (p3 —ps) - viz = (39,-30,-10) - (4,0, -32) = 476
53124 f12 Ps pP3 (pg - p5) V12 = (39 30 —10) . (4,0, —32) =476
53142 fi2  ps p3  (p3—ps)-viz = (39,—-30,-10) - (4 0 —32) = 476
52341 fiz  ps p2 (P2 —ps)-vi2 = (40,-21,0) - (4,0, —32) = 160
52314  fi2  ps p2 (p2—ps)-vi2 = (40 —21,0) - (4, 0 32) = 160
52431 fi2 s p2 (P2 —ps)-viz2 = (40,-21,0) - (4,0, —32) = 160
52413 fi2 ps p2 (p2 —ps) - vi2 = (40,—-21,0) - (4, 0 32) = 160
52143 f12 D5 P2 (pg - p5) V12 = (4 —21 O) . (4 0 —32) = 160
52134 f12 D5 P2 (pg - p5) V12 = (4 —21 O) . ( ) = 160
51324 fi2  ps p1 (p1—ps) - vi2 = (14,55,-3) - (4,0, —32) = 152
51342 fi2  ps 1 (p1—ps)-vi2 = (14,55,-3) - (4,0, —32) = 152
51234 fiz2  ps p1 (p1 — p5) - vi2 = (14,55, -3) - (4, 0 32) =152
51243 fi2 s p1 (p1—ps)-viz = (14,55, -3) - (4,0, —32) = 152
51423  fi2  ps p1 (p1—ps) - viz = (14,55, -3) - (4, 0 32) = 152
51432 fi2 s p1 (p1—ps)-viz = (14,55, -3) - (4,0, -32) = 152
45321 foaa  ps p2 (P2 —Dps) - v2a = (40,-21,0) - (4, 0 32) = 160
45312 fas  ps p2 (P2 —ps) - ves = (40,-21,0) - (0, —4,32) = 84
45231 f15 P4 P1 (p1 — p4) V15 = ( 49 93 21) ( 3, 16) =8
45213 fis ps (p3—pa)-vis = (—24,8,14) - (1,-3,16) = 176
45123 faz  ps p1 (p1—ps)-ves = (14,55,-3) - (0,4,32) = 124
45132 faz  ps p1 (p1—ps) - v23 = (14,55, -3) - (0,4,32) = 124
43521 f23 p3 P5 (p5 — pg) V23 — ( 39 30 10) (0,4, 32) =440
43512 fo3 D3 D5 (ps — p3) - va3 = (—39,30,10) - (0,4, 32) = 440
43251 fa3  p3 p2 (p2—p3)-v23 = (1,9,10) - (0,4, 32) = 356
43215 f23 D3 P2 (pQ - pg) V23 — (1, 9, 10) (0, 4, 32) = 356

Continued on next page
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o fij o(Gi) o(Cj) (o(Ci) —a(C))) - vy
43125 fas  p3 p1 (p1—p3) - v23 = (—25,85,7) - (0,4,32) = 564
43152 fag  p3 p1 (p1—p3)-v23 = (—25,85,7) - (0,4,32) = 564
42351 f15 P4 P1 (p1 — p4) * V15 = ( 49, 93, 21) . (1, —3, 16) =8
42315  fis P4 5 (ps — pa) - v15 = (—63,38,24) - (1,—-3,16) = 207
42531 f23 P2 Ps5 (p5 — pg) * V23 — ( 40, 21, 0) . (0,4, 32) =8&4
42513 fgg P2 D5 (p5 *pg) V23 = ( 40, 21, O) . (074, 32) = 84
42153 f23 P2 P1 (p1 — pg) V23 = ( 26, 76, —3) . (0,4, 32) = 208
42135 fa3  p2 p1 (p1—p2)-v23 = (—26,76,-3) - (0,4, 32) = 208
41325 faa 1 p2 (P2 —p1) - vaa = (26,-76,3) - (4,0,32) = 200
41352  fou  p1 s (ps — p1) - v2g = (—14,—55,3) - (4,0,32) = 40
41235 fas  pa ps  (ps —p1) v = (—14,-55,3) - (0, -4, 32) = 316
41253 f24 P1 Ps5 (p5 —pl) Voq4 = ( 14 55 3) (4, 0, 32) =40
41523 fou @ p2 (p2 —p1) - vaa = (26,-76,3) - (4,0,32) = 200
41532 fos  p1 pr (pa—p1) - vas = (26,—76,3) - (0, —4,32) = 400
34521 fiz  ps pa (pa—p3)-vi2 = (24,-8,-14) - (4,0, -32) = 544
34512 fi2 p3 pa (pa—p3)-viz = (24,-8,-14) - (4,0, -32) = 544
34251 fi2 ps ps (pa—p3)-viz = (24,-8,-14) - (4,0,-32) = 544
34215 fiz2 p3 pa (pa—p3) vz =(24,-8,-14) - (4,0, -32) = 544
34125 fi2 p3 ps (pa—p3) vz =(24,-8,-14) - (4,0,-32) = 544
34152 fiz2 p3 P (pa—p3)-viz=(24,-8,-14) - (4,0, -32) = 544
35421 for  ps p2 (P2 —ps) - vaa = (40,-21,0) - (4,0,32) = 160
35412 fas  ps p2 (P2 —ps) - v2s = (40,-21,0) - (0, -4, 32) = 84
35241 fis p3 p2 (p2—p3)-viz=(1,9,10)-(2,2,0) = 20
35214 fi3 p3 p2 (p2—p3)-vi3 = (1,9,10) - (2,2,0) = 20
35124 faz  ps pr (p1—ps) - vas = (14,55, -3) - (0,4,32) = 124
35142 faz  ps p1 (1 —ps) v = (14,55,-3)-(0,4,32) = 124
32541 f23 D2 Yo (p5 - pg) V23 = ( 40 21 0) (0,4, 32) =84
32514 f23 P2 D5 (p5 *pg) V23 = ( 40 21 O) (0,4, 32) =84
32451 fis  p3 pa (pa—p3) vz =(24,-8,-14)-(2,2,0) = 32
32415 fi5  p3 ps  (ps —p3) - vi5s = (—39,30,10) - (1,-3,16) = 31
32145 fo3  p2 P1 (p1 — p2) - v23 = (=26, 76, -3) - (0,4,32) = 208
32154 fo3  p2 p1 (p1—p2)-ve3 = (—26,76,-3) - (0,4,32) = 208
31524 fou 1 p2 (p2 —p1)-vaa = (26,-76,3) - (4,0,32) = 200
31542 fos  p1 ps (p2—p1)-vas = (26, —76,3) - (0,—4,32) = 400
31254 far ;i ps  (ps —p1) - v2a = (—14,-55,3) - (4,0,32) = 40
31245 fos ;i ps  (ps —p1)-ves = (—14,-55,3) - (0, —4,32) = 316
31425 fos 1 p2 (p2 —p1) - vaa = (26,-76,3) - (4,0,32) = 200
31452 for  p1 ps (p5—p1)-vas = (—14,-55,3) - (4,0,32) = 40
24351 fi2 p2 pa (pa—p2)-vi2 = (23,-17,-24) - (4,0, -32) = 860
24315 f12 P2 P4 (p4 — pg) V12 = (23, 17 24) (4, 0, —32) = 860
24531 fiz  p2 pa (pa—p2)-vi2 = (23,-17,-24) - (4,0, —32) = 860
24513 fi2 p2 ps (pa—p2)-vie = (23,-17,-24) - (4,0, -32) = 860
24153 fiz  p2 pa (pa—p2)-vi2 = (23,-17,-24) - (4,0, —32) = 860
24135 fi2 peo pa (pa—p2) vz = (23, — 17 —24) - (4,0,-32) = 860
23451 f12 D2 p3 (pg —pg) V12 = ( 1, —10) (4,0, —32) = 316
23415 f12 P2 p3 (pg —pg) V12 = ( 1, 9 —10) (4,0, —32) = 316
23541 f12 D2 pP3 (pg - pg) V12 = (— - —10) (4,0, —32) 316

Continued on next page
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o fij a(C) a(C))

(0(Ci) — a(Cj)) - vig
23514 f12 P2 P3 (pg —pg) * V12 = ( 1, 9, ) (4 0 32) = 316
23154 fiz  p2 ps  (p3—p2) vz =(—1,-9,-10) - (4,0, —32) = 316
23145 f12 P2 P3 (pg — p2) * V19 = ( 1, 9, —10) (4, 0, 32) = 316
25341 fsa  p3 pe (pa—p3) - vaa=(24,-8,-14) - (2, - ,0) = 64
25314 f45 P1 P4 (p4 _pl) V45 — (4 3 —21) ( 2, , =13
25431 f13 D2 P4 (p4 - pg) V13 = (23, 17 24) (2, 2, O) == 12
25413 f13 P2 P4 (p4 - pg) V13 — (23, 17 24) (2, 2, 0) =12
25143  fos  ps D1 (p1 — ps) - vo3 = (14,55,—-3) - (0,4,32) = 124
25134 f23 Ps P1 (p1 —p5) V23 = (14 55 3) ( 0,4 32) =124
21354 foyu  p1 D5 (ps — p1) - voq = (—14,—55,3) - (4,0,32) = 40
21345 fos  m ps  (ps —p1)-vas = (—14,-55,3) - (0,—4,32) = 316
21534 fau  ps ps  (p3—ps)-vsa = (39,-30,-10) - (2,-2,0) = 138
21543 fos  m ps  (p3—p1)-vas = (25,—85,-7) - (0,—4,32) = 116
21453 f24 P1 D5 (p5 - pl) V24 = ( 4 55 3) (4, 0, 32) =40
21435 fos m ps  (ps —p1) - vas = (—14,-55,3) - (0,—4,32) = 316
14325 fio  p1 i (pa—p1)-viz = (49, -93, —21) (4,0,—32) = 868
14352 f12 P1 P4 (p4 — pl) V12 = (49, 93 ) (4 0, *32) = 868
14235 fio  p1 ps (pa—p1)-vie = (49,-93,-21) - (4,0, —32) = 868
14253 fiz  m pe (pa—p1)-viz = (49,-93,-21) - (4,0, -32) = 868
14523  fio  p1 s (pa—p1)-vie = (49,-93,-21) - (4,0, —32) = 868
14532 fiz2  m pe (pa—p1)-viz = (49,-93,-21) - (4,0, -32) = 868
13425 fi2  p p3 (p3—p1)-viz = (25,-85,-7) - (4,0,-32) = 324
13452 f12 P1 P3 (pg — pl) s V12 = (25, 85, 7) (4 0 32) =324
13245 fiz  m ps  (p3—p1)-vi2 = (25,-85,-7) - (4,0,-32) = 324
13254 fiz  m p3 (p3—p1)-viz = (25,85, —7) - (4,0,-32) = 324
13524 fiz  pu ps  (p3—p1)-vi2 = (25,—85,-7) - (4,0,-32) = 324
13542 f12 P1 pP3 (p3 - pl) V12 = (25, —85 —7) (4, 0, 32) =324
12345 f12 D1 P2 (pQ - pl) V12 = (26, *76,3) . (4 0, 32) 8
12354 f12 P1 P2 (pg - pl) V12 = (26, —76,3) . (4, 0, 32 ) =38
12435 f12 D1 P2 (pQ - pl) * V12 = (26, —76,3) . (4, 0, 32) =38
12453 f12 P1 P2 (pz - pl) V12 = (26, —76,3) . (4, 0, —32) =
12543 fio  p1 2 (p2—p1)-viz = (26,-76,3) - (4,0,—-32) = 8
12534 f12 P1 P2 (pg — pl) V12 = (26, —76,3) . (4 0 32) 8
15324 faa  ps p2 (p2—ps) - v2a = (40,-21,0) - (4,0,32) = 160
15342 fos  ps p2 (P2 —ps) - ves = (40,-21,0) - (0, —4,32) = 84
15234 faa  p2 ps  (p3—p2)-vsa=(-1,-9,-10)-(2,-2,0) = 16
15243 fi5 ;0 ps  (p3—p1)-vis = (25,-85,—-7) - (1,-3,16) = 168
15423 foa  ps p2 (p2 —ps) - v2a = (40,-21,0) - (4,0,32) = 160
15432 f25 D5 D2 (pg - p5) V25 = (40, *21, 0) . (O, *4, 32) =84

We show now that the polyhedral fan does not contain a cycle in any direction. To this
end, we check all simple cycles in the dual graph, which has one vertex per cell and one edge
per facet. If the halfspaces defined by a cycle (with the corresponding orientation) have empty
intersection, then there is no cycle in visibility involving the facets in the cycle. The graph
associated to F is depicted in Figure D.2.

Note first that the halfspaces associated to cycles around a ray have empty intersection. This
excludes the cycles (C1, Co, C3),(Cy, Cs3,Cy), (C2,C4,C5) and (C1,Co, Cs).

We give next certificates for the remaining cycles. To show that the halfspaces have empty
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Cs

Cs

Figure D.2: Dual graph of F.

intersection we provide a solution to the dual problem (in the sense of Lemma 4.5).

1 1
(C1,C3,C4,Cs) : v13 4+ —v34 + V45 — zv15 =0

4 2
(Co,C5,C,C3) - %)25 - %1115 + %UB — i’vzg =0
(Ca,C1,C3,Cy) —%Um +v13 + U34 — %v% =0
(Ca,C3,Cy,Cs) - %023 + v34 + Va5 — Zv% =0
(Ca,Cy4,Cs5,Ch) - %1&4 +v45 — V15 + %'Uu =0
(Co,C1,C3,Cy,Cs) - _%1112 + v13 + V34 + V45 — Zv% =0
(C2,C5,Cy,C5,Ch) %vzz + v34 + a5 — V15 + %vu =0
(C2,C4,C5,C1,C3) %1)24 + g5 — v + évlg — ivgg =0

3 1 1 1 1
(C2,C5,C1,Cs,Cy) - 1V~ V15 + JU13 + qUs T v = 0
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