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Mammalian maxilloturbinal evolution does
not reflect thermal biology

Quentin Martinez 1,2 , Jan Okrouhlík3, Radim Šumbera3, Mark Wright 1,4,
Ricardo Araújo 5, Stan Braude6, Thomas B. Hildebrandt7,8, Susanne Holtze 7,
Irina Ruf 9 & Pierre-Henri Fabre1,10,11

The evolution of endothermy in vertebrates is amajor research topic in recent
decades that has been tackled by a myriad of research disciplines including
paleontology, anatomy, physiology, evolutionary and developmental biology.
The ability of most mammals to maintain a relatively constant and high body
temperature is considered a key adaptation, enabling them to successfully
colonize new habitats and harsh environments. It has been proposed that in
mammals the anterior nasal cavity, which houses the maxilloturbinal, plays a
pivotal role in body temperature maintenance, via a bony system supporting
an epithelium involved in heat and moisture conservation. The presence and
the relative size of the maxilloturbinal has been proposed to reflect the
endothermic conditions and basal metabolic rate in extinct vertebrates. We
show that there is no evidence to relate the origin of endothermy and the
development of some turbinal bones by using a comprehensive dataset of
µCT-derived maxilloturbinals spanning most mammalian orders. Indeed, we
demonstrate that neither corrected basal metabolic rate nor body tempera-
ture significantly correlate with the relative surface area of themaxilloturbinal.
Instead, we identify important variations in the relative surface area, morpho-
anatomy, and complexity of the maxilloturbinal across the mammalian phy-
logeny and species ecology.

The ecological and evolutionary success of mammals was highly
affected by their ability to maintain a relatively environmentally-
independent and stable body temperature, which allows dispersal to a
wide range of habitats normally prohibited to ectotherms1,2. Some
anatomical structures have been proposed for diagnosing and dating
the origin of endothermy1,3–9. Among bony structures, respiratory
turbinals (e.g., the mammalian maxilloturbinal and nasoturbinal) are

interesting anatomical structures that may offer important insights to
the origins of endothermy within extant and extinct vertebrates3,4.
Indeed, respiratory turbinals are covered in highly vascularized epi-
thelium that amplify surface area and offer an effective mechanism to
avoid loss of internally-produced and costly heat3,10. During inhalation,
the air is usually warmed up at contact with the vascularised epithe-
lium of the respiratory turbinals and is simultaneously moistened by
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mucus glands. During subsequent exhalation, this air is cooled down
by the anterior portion of the respiratory turbinals which were pre-
viously cooled down by inspired air. This process condenses water
from the nasal cavity and therefore retains, on average, two-thirds of
the water of the exhaled air1,3,10–15. Among respiratory turbinals, the
maxilloturbinal is shared by all extant terrestrial mammals and it has
been argued that it plays a significant role in maintaining body
temperature3,4,6,16. Functionally, the relative size of the maxilloturbinal
is related to heat and moisture conservation capacities. A convergent
increase in the proportion of the maxilloturbinal has been associated
with gains in thermoregulatory capacity in amphibious and aquatic
mammals17,18.

The presence of the maxilloturbinal has been used to infer the
endothermic conditions and basal metabolic rates of extinct
tetrapods1,3,4,15,19, whereas its relative size has been argued and/or tes-
ted to correlate with body temperature and metabolic rates6,16. How-
ever, extant mammalian species differ in their thermal and metabolic
characteristics. Diminished temperature regulation, relatively low
body temperature and basal metabolic rates have been documented
among marsupials, monotremes, xenarthrans, subterranean rodents,
and afrotherians20–23, as well as somemammals that undergo different
formsof heterothermy (e.g., long-termhibernationor daily torpor24,25).
Such thermal and physiological exceptions have been hypothesized to
be linked to peculiar maxilloturbinals6. Using a comparative three-
dimensional (3D) µCT dataset of 424 skulls and unstained ethanol-
preserved heads for 310 species across all major mammalian orders,
we explored the anatomical diversity of the maxilloturbinal based on
relative surface area, morphology and complexity. We subsequently
extended the initial investigations of Owerkowicz et al.16 and tested the
hypothesis that maxilloturbinal size reflects species thermo-
physiology. We specifically test the relationship between the size-
corrected basal metabolic rate (cBMR) and the relative surface area of
themaxilloturbinal (Maxillo RSA) aswell as betweenbody temperature
(Tb) and Maxillo RSA.

Here, we show that neither corrected basal metabolic rate (cBMR)
nor body temperature (Tb) significantly correlate with the relative
surface area of the maxilloturbinal (Maxillo RSA). Instead, we identify
important variations in the relative surface area,morpho-anatomy, and
complexity of the maxilloturbinal across the mammalian phylogeny
and species ecology. Overall, we show that the maxilloturbinal plays a
moderate role inmammalian thermal biology and suggest to use other
bony proxies such as the semicircular canal morphofunction to infer
the endothermic conditions of extinct mammals.

Results
Maxilloturbinal surface area
There is a positive allometric correlation between maxilloturbinal
surface area and skull length (Figs. 1, 2A, s = 2.60, R2 = 0.87,
p = 2.20 10−16). However, some species deviate from the
general trend (Figs. 1, 2A). The relative surface area of the max-
illoturbinal (Maxillo RSA) is also related to species ecology and
phylogenetic relationships (Figs. 1, 2A, Supplementary Table 1,
Supplementary Data 1: folder 1). Maxillo RSA has a strong and
significant phylogenetic signal (K = 0.04, p = 1.00 10−4; lambda =
0.98, p = 1.48 10−48). The mammalian species with the highest
values of Maxillo RSA (Castor, Chironectes, Galemys, Ornithor-
hynchus, and Zalophus) are generally amphibious (Figs. 1, 2A,
Supplementary Data 1: folder 1). They respectively have 448, 275,
329, 306, and 611% of the predicted Maxillo RSA (Supplementary
Data 1: folder 1). However, the terrestrial artiodactyl Rangifer
tarandus has the second highest predicted Maxillo RSA (463%,
Figs. 1, 2A, Supplementary Data 1: folder 1). Some carnivores have
among the highest values of predicted Maxillo RSA (Felis and
Ursus) with 350 and 430% respectively (Figs. 1, 2A, Supplementary
Data 1: folder 1), and yet Hyaena and Proteles have lower than

expected Maxillo RSA, with 58 and 30% of the predicted values,
respectively (Figs. 1, 2A, Supplementary Data 1: folder 1). In
addition, some genera such as Hystrix, Manis, Pteronotus, and
Setifer have among the highest values of predicted Maxillo RSA
(286, 357, 377, and 312%, respectively, Figs. 1, 2A, Supplementary
Data 1: folder 1) without any noticeable explanatory factors.
Heterocephalus glaber was found to have the lowest value of
predicted Maxillo RSA (6%, mean of 17 individuals, Figs. 1, 2A,
Supplementary Data 1: folder 1). Other species with low thermo-
regulatory capacities such as Bradypus and Tachyglossus have
310% and 55% of the predicted Maxillo RSA, respectively (Figs. 1,
2A, Supplementary Data 1: folder 1). Elephants (Elephas and Lox-
odonta) have the lowest predicted Maxillo RSA after H. glaber
(both 7%, Figs. 1, 2A, Supplementary Data 1: folder 1). However,
the maxilloturbinal of adult elephants is merged with other nasal
structures and is difficult to delineate (Supplementary Fig. 4). In
addition, elephants have a highly modified respiratory system
including the trunk which complicates comparison. However,
other species with a trunk such as Elephantulus rozeti, present
expected Maxillo RSA (78%, Figs. 1, 2A, Supplementary Data 1:
folder 1). Worm-eating rodents such as Paucidentomys vermidax
and Rhynchomys soricoides have some of the lowest predicted
Maxillo RSA among mammals as well (16 and 22%, Figs. 1, 2A,
Supplementary Data 1: folder 1). Other species with highly elon-
gated rostrum such as Myrmecophaga, and Tachyglossus also
presented low values of predicted Maxillo RSA (28% and 55%,
Figs. 1, 2A, Supplementary Data 1: folder 1).

Overall, there is no significant correlation between the corrected
basal metabolic rate (cBMR) and Maxillo RSA (Fig. 2B, s = −1.40 10−2,
R2 = −1.10 10−2, p = 0.83) and species with similar cBMR may have dif-
ferent Maxillo RSA. Conversely, species with comparable values of
Maxillo RSA may have a different cBMR. Concerning the ecology, the
differences observed in the maxilloturbinal surface area (p =0.05),
Maxillo RSA (p = 3.40 10−4),MaxilloRSAbasedon bodymass (p =0.05),
skull length (p = 0.02), Tb (p = 0.03), and cBMR (p =0.01), are sig-
nificantly or marginally significantly explained by the ecology (Sup-
plementary Table 1). However, none of the interactions between the
variables as well as with the ecology are significant (Supplementary
Table 1).

There is also no significant correlation between body tempera-
tures (Tb) andMaxillo RSA (Fig. 2C, s = 1.10 10−1, R2 = −9.87 10−3,p = 0.71)
and specieswith similarTbmayhavedifferentMaxilloRSA. Conversely,
specieswith comparable values ofMaxillo RSAmayhave a different Tb.

Despite the use of three different datasets, the ventilation rate did
not significantly correlate with Maxillo RSA (Supplementary Fig. 5).
However, since the statistical power of these linear regressions are low
(based on 3 to 6 species, Supplementary Fig. 5), such results may need
to be interpreted further in light of additional data that overlaps with
our sampled species.

There is no consistent pattern between Maxillo RSA and the dif-
ferent forms of heterothermy, such as long-term hibernation, aesti-
vation and short-term daily torpor. Indeed, Spermophilus citellus
hibernates for 4 to 7 months26 and has lower predicted Maxillo RSA
than Sciurus vulgaris (70 vs. 106%, Figs. 1, 2A, Supplementary Data 1:
folder 1) which hibernates only rarely or not at all27,28. Ursus arctos is
known to hibernate between 5 to 6 months per year29 and has lower
predictedMaxillo RSA than its aquatic relative, Zalophus (430 vs. 611%,
Figs. 1, 2A, Supplementary Data 1: folder 1). However, in this species,
hibernation has little effect on the body temperature in comparison to
other hibernating mammals29. U. arctos has higher predicted Maxillo
RSA than the two sampled species of foxes (Vulpes vulpes and V.
lagopus) that do not hibernate (430 vs. 166 and 184%30 Figs. 1, 2A,
Supplementary Data 1: folder 1). Cheirogaleus medius can aestivate for
the longest period of time (up to 70 days31) and has the samepredicted
Maxillo RSA as its close relative Eulemur collaris that is not known to
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aestivate (158%, Figs. 1, 2A, SupplementaryData 1: folder 1). Finally,Glis
glis is capable of daily torpor during diet restriction and low ambient
temperature, as well as hibernation and aestivation25. All sampled
Gliridae are known to either hibernate, aestivate or are capable of daily
torpor31. As a comparison with more phylogenetically distant species,
G. glis has lower predicted Maxillo RSA than S. vulgaris (79 vs. 106%,
Figs. 1, 2A, Supplementary Data 1: folder 1). Maxillo RSA is not sig-
nificantly explained by the heterothermy in both cases by considering
two or four categories (p =0.06 and p =0.27 respectively, seeMethods
section).

Maxilloturbinal morphology
No common morphological pattern was found among species that
present particular cBMR, Tb or that undergo different forms of

heterothermy (Figs. 1, 2, 3). As an example, Pteronotus and Tympa-
noctomys have a comparable cBMR but significantly differ by the
anterior extension of their maxilloturbinal (Fig. 1 n 15, 33, 2B).

Among mammals, the maxilloturbinal is generally positioned
ventrally in the anterior nasal cavity, however in some species where
the maxilloturbinal is highly developed, it also occupies the dorsal
portion. This is the case in Castor and Zalophuswhose maxilloturbinal
extends to the nasal roof (Fig. 1 n 7, 18). Despite its large size, the
maxilloturbinal does not extend as far dorsally in Pteronotus, Manis,
and Rangifer (Fig. 1 n 15, 20, 16). The anteroposterior position of the
maxilloturbinal also varies considerably (Fig. 1, Supplementary Fig. 1).
The maxilloturbinal reaches the nasal aperture anteriorly in several
species, such as in Acerodon, Castor, Didelphis, Pedetes, Procavia,
Rangifer, and Tympanoctomys (Fig. 1 n 14, 7, 29, 6, 28, 16, 33,
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Fig. 1 | Variations of the relative surface area and shape of the maxilloturbinal
betweenmammalian species. Barplots represent the relative surface area of the
maxilloturbinal in 310 species. Blue and red circles respectively represent the
minimum and the maximum values from the naked mole-rat (Heterocephalus

glaber) and the California sea lion (Zalophus californianus). 3D representations of
the skull and the maxilloturbinal in several species. Barplots: cream = terrestrial,
red = arboreal, blue = amphibious, black = subterranean, and green = flying
species. Not to scale.
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Supplementary Fig. 1). Between the anterior part of themaxilloturbinal
and the nasal aperture there is a gap in Elephas, Equus, Fukomys, Het-
erocephalus, Manis, Notoryctes, Orycteropus, Pteronotus, and Tarsius
(Fig. 1 n 27, 17, 35, 1, 20, 30, 26, 15, 11, Supplementary Fig, 1). This gap is
particularly developed in monotremes (Ornithorhynchus and Tachy-
glossus, Fig. 1 n 31, 32, Supplementary Fig. 1). It is occupied by the outer
nasal cartilage and the cartilaginous margino- and atrioturbinals that
are not identifiable with classical µCT32,33. The margino- and atrio-
turbinals are in most cases only slightly covered by blood vessels and
mucus glands, thus, their role in heat and moisture conservation is
limited33. The maxilloturbinal morphology typically varies with skull
shape. For instance, some species with an elongated rostrum present
an elongated maxilloturbinal as in Dasypus, Myrmecophaga, Rhynch-
omys, and Tenrec (Fig. 1 n 24, 23, 3, 25). The maxilloturbinal of some
species forms a recess, which is highly developed in lineages, such as
Hystrix, Manis, Orycteropus, and Rangifer (Fig. 1 n 20, 26, 16, Supple-
mentary Fig. 2). The maximum height of the maxilloturbinal may be

higher than the nasal aperture in Castor, Bradypus, Manis, Ornithor-
hynchus and Zalophus (Fig. 1 n 7, 22, 20, 31, 18). In most species, this is
the opposite pattern with a maximum difference in Cynocephalus,
Elephas, Heterocephalus, and Pedetes (Fig. 1 n 12, 27, 1, 6).

Maxilloturbinal complexity
Maxilloturbinal complexity describes infolds and small lamellae that
compose the turbinals (see Methods section). Maxilloturbinal com-
plexity does not correlate with cBMR, Tb or different forms of het-
erothermy (Fig. 4, Supplementary Fig. 6). For example, Vulpes and
Ornithorhynchus have a different cBMR and Tb but present a similar
pattern of complexity with a maxilloturbinal composed of several
lamellae (Fig. 2B, C, 4). Conversely,Heterocephalus andMyrmecophaga
have a comparable cBMR and Tb, but a very different pattern of turb-
inal complexity (Fig. 2B, C, 4).

However, we identified that maxilloturbinal complexity varies
widely among mammals and might have convergently evolved
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Fig. 2 | Maxilloturbinals may not always reflect thermal and metabolic condi-
tions. A Log–log regression (continuous line) and PGLS (dashed line) of max-
illoturbinal surface area on skull. B Linear regression between corrected basal
metabolic rates (cBMR) and the relative surface area of themaxilloturbinal (Maxillo
RSA) and (C) between body temperatures (Tb) and Maxillo RSA. The p values cor-
respond to the correlation based on the stats r package. Barplots: cream =

terrestrial, red = arboreal, blue = amphibious, black = subterranean, and green =
flying species. Creative commons silhouettes were downloaded from http://
phylopic.org. According to the phylopic guidelines we credited T. Michael Keesey
for the unmodified silhouette of Elephas maximus and we provided the link to the
licence: https://creativecommons.org/licenses/by/3.0/.
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according to ecological lifestyle and/or phylogenetic relation-
ships (Fig. 4). As an example, Oryctolagus, Castor, Sciurus, Zalo-
phus, Vulpes, Didelphis, and Ornithorhynchus developed
numerous lamellae and infolds resulting in a highly dendritic
pattern in cross-section (Figs. 3, 4). Other species present two
symmetrical and scrolled branches with a variable number of
windings that originated from a single main branch (e.g., double
scroll pattern, Fig. 4). This is the case in Eulemur, Rangifer, Manis,
Talpa, Myrmecophaga, Dasypus, and Orycteropus (Fig. 4). Other
species present a simple but relatively developed lamella such as
Homo, Cynocephalus, and Elephas (Fig. 4). Lastly, when present,
the maxilloturbinal of H. glaber is a vestigial lamina that is ante-
riorly attached to the medial side of the incisor alveolus (ia,
Figs. 3, 4). Posteriorly, this lamina extends ventrally and merges
with the canal housing the nasolacrimal duct (nld, Fig. 3).

Discussion
Origins of endothermy and synapsid turbinals
We have demonstrated that neither the corrected basalmetabolic rate
(cBMR) nor body temperature (Tb) significantly correlates with the
relative surface area of the maxilloturbinal (Maxillo RSA, Fig. 2B, C,
Supplementary Fig. 3A, B). These results challenge the hypothesis
positing that respiratory turbinals reflect the thermal and metabolic
physiology in tetrapods and especially in mammals1,3,4,6,16. Indeed, an
increase in metabolic rate and aerobic activity has been linked to the
origin of endothermy, implying higher ventilation rate as well as water
and heat loss (reviewed in6). Maxilloturbinals prevent water and heat

loss and thus have been hypothesized to be potential osteological
evidence for the origin of endothermy among tetrapods6,16. Given that
Tb is a valid proxy for endothermy (e.g.9, and see Methods section),
maxilloturbinal relative surface area could potentially be correlated
to Tb.

It was also hypothesized that respiratory turbinals may have ori-
ginally been selected for heat dissipation and brain cooling then later
exapted for heat and moisture conservation16. In addition, and
depending on activity levels and ambient temperature, the respiratory
turbinals of non-mammalian cynodonts may have had a dual function
in heat conservation as well as in heat dissipation6. Some fossil evi-
dence came from the late Permian therocephalian Glanosuchus (~261
Mya) bearing bony scars on the lateralwall of the nasal cavity thatwere
interpreted as indicating the attachment area for respiratory
turbinals3,4. Hillenius3,4 infers that Glanosuchus may be the earliest
known tetrapod being endothermic and, therefore, possessing sig-
nificant internal thermoregulatory capacities, however, ther-
ocephalians have been demonstrated to be ectothermic9. Similar bony
scars were also found in the cynodont Massetognathus6, a more
derived stem-mammal, that despite having relatively high thermo-
motility indices when compared to other cynodonts, is ectothermic9.
Analogously, the dicynodont Lystrosaurus was inferred to have
potential cartilaginous maxillo- or naso-turbinals that were proposed
to be evidence of endothermy in the species19, but anomodonts also
have semicircular canal biomechanics conforming to an ectothermic
status9. These results point to two possible outcomes: either the scars
in the nasal cavity were not for anchoring the turbinals, or if therewere

Heterocephalus glaber 1 2 Tachyglossus aculeatus Bradypus tridactylus
1 2

Sciurus vulgaris
1 2

1 2

1 2
Ursus arctos

1 2
Cheirogaleus medius

nld

ia

Fig. 3 |Detailedviewof themaxilloturbinal in selectedmammalianspecieswith
peculiar thermal and metabolic conditions or that undergo different forms of
heterothermy. 3D representations and coronal cross sections of the

maxilloturbinal. Not to scale. The maxilloturbinal drawings in the coronal views do
not represent the actual segmentation thickness and only illustrate the
maxilloturbinal.
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turbinals in these taxa they did not have a thermoregulatory function
originally.

Is there a correlation between metabolism, body temperature
and maxilloturbinal surface area?
Although itwas previously reported that there is a correlation between
field metabolic rates and corrected respiratory turbinal surface area,
we show this is probably a result of methodological issues16. Because it
is known that BMR is significantly correlated with fieldmetabolic rates
(FMR34), such discrepancy between our and Owerkowicz et al.16 results
is likely explained by the small sample size of their study based on ten
species only. A further potential explanation is that they used histo-
logical sections instead of 3D X-ray micro-computed tomography
(µCT) data to quantify turbinal bone surface area. µCT provides a
complete three-dimensional view of these complex structures, thus it

is more accurate. Finally, in their study, they also included the naso-
turbinal while we focus on the maxilloturbinal. Indeed, among mam-
malian orders the epithelial cover of the nasoturbinal is quite variable
and for some, it includes a portion covered with olfactory epithelium
that might be involved in olfaction33,35–39.

Hillenius-Ruben’s hypothesis posits that the presence of the
maxilloturbinal is indicative of endothermy3,4. Along these lines, for
example,H. glaberhas a vestigialmaxilloturbinal reflecting the thermal
and metabolic conditions of the species (Figs. 1, 3, 4). This species has
the lowest value of predicted Maxillo RSA (6%, mean of 17 individuals,
Figs. 1, 2A, Supplementary Data 1: folder 1). Coincidently, the naked
mole-rat is a poorly thermoregulating endotherm with low BMR and
has been described by some authors as the only known obligatory
poikilotherm mammal (e.g.9,22,40–43, but see44). However, some species
among marsupials, monotremes, xenarthrans, and subterranean
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rodents also have low body temperature and/or low BMR and are poor
temperature regulators20–23,45. Unlike H. glaber, these species retain a
well-developed maxilloturbinal. Bradypus has among the highest
values of the predicted Maxillo RSA in our sample (310%, Figs. 1, 2A,
Supplementary Data 1: folder 1), whereas Tachyglossus has inter-
mediate values (55%, Figs. 1, 2A, Supplementary Data 1: folder 1),
despite having some of the lowest Tb and BMR among mammals20. In
addition, sloths have low BMR and also face significant body tem-
perature variations46. Mammals that undergo large body temperature
variations severely decrease theirmetabolic rates, in relation to torpor
are referred to as heterothermic24,25. As a result, their turbinals could
act tominimize heat/moisture loss. However, our results point out that
irrespective of different forms of heterothermy, there is no relation to
the Maxillo RSA. Given our results, we may infer that the Maxillo RSA
and themaxilloturbinal complexitymay be influenced by other factors
unrelated to metabolism, body temperature, or heterothermy.

Alternatively, there may be a potential trade-off between max-
illoturbinal and nasoturbinal or even with other structures such as the
trachea16. However, based on the dataset from Martinez et al.18 we
demonstrated in 132 species that there is no trade-off between the size-
corrected surface area of the maxillo- and the nasoturbinal (Fig. Sup-
plementary Fig. 7). In addition, due to the known variation of the
nasoturbinal epithelial cover amongmammals33,35,37–39 and the scarcity
of the data on trachea, it will be extremely challenging to undertake at
the scale of mammals. Also, there is an important caveat because such
work would be based on soft tissues that will not be comparable to
extinct species except by ancestral state reconstructions. Other bony
structures seem to hold promise, such as the bony labyrinth and the
morphofunction of its canals, which has recently been proven to be a
precise indicator of endothermy”9.

Could there be a link between environmental conditions and
maxilloturbinal surface area?
It is plausible to hypothesize that maxilloturbinal morphology may be
related to environmental conditions to which the species is adapted.
The maxilloturbinal function could have a more prominent heat/
moisture exchange role in species that face harsh environmental
conditions, thus helping to limit spurious heat and moisture loss. For
example, the species with the second highest predicted Maxillo RSA
(463%) is Rangifer (Figs. 1, 2A, Supplementary Data 1: folder 1), which is
arctic species, known to have efficient heat andmoisture conservation
capacities47. However, in Carnivora, the density of the maxilloturbinal
within the nasal chamber does not seem associated with species living
in arid or cold habitats48. When species are obliged to face harsh
thermal or water-stress conditions and do not resort to torpor to avoid
them, theymay have to rely on a well-developed, proportionally large,
complex maxilloturbinal. Following this hypothesis, it has been found
that amphibious and aquatic mammals have among the highest values
of Maxillo RSA17,18. This pattern had been interpreted as an adaptation
to restrict heat loss due to the high thermal inertia of water17,18. Here,
we have shown that this pattern for increasing Maxillo RSA in amphi-
bious and aquatic species is convergent across mammals (Figs. 1, 2A,
Supplementary Data 1: folder 1). Moreover, the increase ofMaxillo RSA
in amphibious and aquatic species is also associatedwith an increase in
turbinal complexity (Fig. 4). For example, in monotremes, the max-
illoturbinal complexity between the amphibious Ornithorhynchus and
the terrestrial Tachyglossus strongly differs (Fig. 4). The platypus has a
very complex maxilloturbinal with several small lamellae originating
from the main three branches, being similar to some aquatic or
amphibious species as well as to some Carnivora (Fig. 4, e.g.,17,18). In
contrast, Tachyglossus has no additional lamellae to the main three
branches but a thick maxilloturbinal (Fig. 4).

Lastly, some studies suggested or described some potential
positive relation between the maxilloturbinal and temperature and/
or altitude (ref. 17,48–50 and supplementary results in18). However,

this pattern needs to be properly tested with a specific sampling that
captures ecological adaptations and the effects of phylogenetic
inertia.

Water conservation
Anothermajor role of themaxilloturbinal iswater conservation that on
average allows individuals to conserve two-thirds of the humidity of
the exhaled air1,3,10–15. Experimental studies have demonstrated the
importance of nasal breathing and respiratory turbinals in water con-
servation. Indeed, mammals with plugged nares that are forced to
breathe through the mouth, significantly increase evaporative water
loss (EWL3).Heterocephalus glaber appears to avoid breathing through
themouth when performing energy intensive digging because the lips
close behind the digging incisors (named inflexa pellita)43,51, and this
species has the lowest value of predicted Maxillo RSA (6%, Figs. 1, 2A,
Supplementary Data 1: folder 1) of the entire sample. In birds, when
respiratory turbinals are lost or reduced, their longer trachea can
compensate for heat and moisture conservation16. Apparently, this is
not the case with H. glaber that has the highest EWL recorded in
mammals (ref. 41 but see also52). As an example, in experimental con-
ditions, the nakedmole-rat has a water evaporation rate up to 10 times
higher than Gerbillus pusillus, a terrestrial rodent of comparable body
mass that co-occurs aboveground in the same habitat41,52. Since H.
glaber lives underground in relatively humid burrows (31.2% to
92.8%53), it may not need to conserve as much water as G. pusillus and,
therefore, to have large maxilloturbinals. Extensive literature exists
about water conservation in species that live in arid regions12–14,47,54,55.
As an example, the Kangaroo rats (Dipodomys spectabilis) that live in
hot and desert environments are known to have higher water con-
servation capacities than other rodents living in temperate habitats12.
However, these studies generally considered the nasal cavity as
a whole.

We showed that marine mammals have developed max-
illoturbinals to limit heat loss (see above). As an example, Mirounga
and Zalophus have extremely complex and well developed max-
illoturbinals (Figs. 1, 2A, Supplementary Data 1: folder 1 and
ref. 17,56). This may be also associated with efficient water con-
servation capacities resulting in an adaptation to a salty
environment57. However, data on EWLwith comparable experimental
design are lacking to properly test the relation between max-
illoturbinal and EWL at large.

A multifactorial physiological question
Wedemonstrated the absenceof relation between theMaxillo RSA and
some mammalian physiological traits, such as metabolism, body
temperature, and heterothermy. As this is the case with olfaction, and
therefore, olfactory turbinals58, the relation between thermal biology
andmaxilloturbinal is driven bymultifactorial processes. For example,
other factors may influence the absence of relation such as the body
surface evaporation59, the efficiency of oxygen extraction54, the effi-
ciency of renal mechanism forwater conservation60, aswell as the lung
structure57.

Further studies may address the role of the maxilloturbinal in
the light of: (1) their relation with the nasoturbinal as well as with
the overall nasal cavity (e.g., including unossified structures such
as the atrio- and marginoturbinals), as well as with (2) their epi-
thelium and the gap width14,61,62.

In addition to their role in heat and moisture conservation,
respiratory turbinals play a role in other functions that may also have
driven their evolution. For example, respiratory turbinals redirect the
inspired airflow to specific areas63–65, and have a protective role against
toxic and abrasive elements during inspiration10,66,67. Finally, the
potential role of respiratory turbinals in brain cooling via the carotid
rete has also been discussed16,55,68–70 but received comparatively little
attention over the past few years.
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Methods
Data acquisition
424 individuals with undamaged maxilloturbinal belonging to 310
mammal species were selected from museums (Supplementary
Data 1: folder 1) and scanned using high-resolution X-ray micro-
computed tomography (µCT). The use of museum specimens was
carried out in accordance with the relevant permissions and ethical
approvals of the different museums. Of the 424 individuals, 32 were
downloaded from Morphosource71 and 6 from DigiMorph (Supple-
mentary Data 1: folder 1). The left maxilloturbinal was segmented
following Martinez et al.18,58,72 (Supplementary Fig. 8) with AvizoLite
2020.1 (VSG Inc.). When the left maxilloturbinal was damaged we
used the right maxilloturbinal. Using the brush tool, the bony part of
the maxilloturbinals were manually segmented (Supplementary
Figs. 8, 9, 10) in approximately one in five images. The segmentation
was then interpolated with Avizo then, all images were checked and
the errors were manually corrected. For the interpolation, the num-
ber of unsegmented images between the segmented images varies
according to the complexity of the maxilloturbinal as well as the
quality of the image that is not exclusively associated with the
resolution (e.g., noise, sharpness and contrasts). In our segmentation
we only considered the maxilloturbinal and did not segment other
turbinals that may be located in the same area (e.g., ethmoturbinal I,
nasoturbinal, semicircular lamina; Supplementary Fig. 9). In addition
to mammalian skulls, some unstained ethanol-preserved heads were
CT-scanned. With high quality CT data, there is no difficulty to only
segment the bony part of the maxilloturbinal from these ethanol-
preserved heads. However, in the case of old specimens (e.g., when
the epithelium dried) or with CT data of low quality, the delimitation
between the epithelium and the bony structure may be difficult and
generally result in overestimation (e.g., in the case of CT data of low
quality). For these reasons we generally excluded CT data of low
quality. In the very few cases where we were obligated to use such
data (e.g., rare species where very few data are available) particular
attention has been paid to only select the bony part (e.g., in Orni-
thorhynchus; Supplementary Fig. 10). In order to follow a highly
consistent segmentation and extract accurate quantitative data, all
individuals were similarly segmented. In some species the max-
illoturbinal is attached to the nasolacrimal canal (and therefore to the
lamina infraconchalis) and then posteriorly split off from it (Sup-
plementary Fig. 8). In this case and during the split off, we only
segmented themaxilloturbinal (Supplementary Fig. 8). The posterior
end of the maxilloturbinal may also be tricky to delimit in some
species since it is connected to an additional ridge that posteriorly
forms the lateral wall of the nasopharyngeal duct. We carefully
excluded this additional ridge from our segmentation (Supplemen-
tary Fig. 8). For CT data based on mammalian skulls, it may also be
difficult to check with confidence that the most anterior part of the
maxilloturbinal is not broken. For this, the skulls were carefully
selected before being CT-scanned as well as later in Avizo. In addi-
tion, all the segmentations were performed by the same operator
(Q.M.) who has experience with turbinal bones. In some cases, if
there is a doubt, the status of the maxilloturbinal was checked with
CT data based on ethanol-preserved head. Finally, in some species we
segmented several individuals (424 individuals from 310 species) to
limit potential artifacts.

Metabolic rate, body temperature and ventilation rate
Maxilloturbinal surface areas were standardized by skull length.
The named “relative surface area of maxilloturbinal” (Maxillo RSA)
is based on the log-log residuals of the phylogenetic generalized
least squares (PGLS) regression between maxilloturbinal surface
area and skull length (Figs. 1, 2A, Supplementary Data 1: folders 1,
2, 3). This was performed with the gls function from the R pack-
age nlme73 in R74. To avoid negative values, we added the lowest

residual value (2.77, Supplementary Data 1: folders 1, 2, 3) to all
residuals. We used the following equation to estimate how Max-
illo RSA deviates from the prediction (see also Supplementary
Data 1: folders 1, 2, 3): (e^[(residuals of the model)+(prediction of
the model)]*100)/e^(prediction of the Model). The model is the
PGLS regression between maxilloturbinal surface area and skull
length. The predicted values were obtained with the Predict
function from the R package car75 and were named “Predicted
Maxillo RSA”. Mammalian basal metabolic rates (BMR, in watt),
body temperatures (Tb), and body mass (bm) were extracted
from Clarke et al. 76. To limit the effect of size, we used the cor-
rected basal metabolic rate (cBMR), which corresponds to the
residuals of the log-log PGLS between BMR and bm. We per-
formed PGLS between cBMR and Maxillo RSA (Fig. 2B) and
between Tb and Maxillo RSA (Fig. 2C). Following Araújo et al.9 we
defined an endotherm as an animal producing heat throughout its
entire body via metabolism (not shivering and/or muscular ther-
mogenesis), maintaining nearly constant body temperature lar-
gely independently from external conditions, and excluding
phases of short-term torpor, aestivation, and hibernation. Fol-
lowing this definition, it was demonstrated that Tb is a valid proxy
for endothermy9.

An alternative measure to heat and water loss from the
respiratory tract may be the ventilation rate (ml.min-1) that corre-
sponds to: tidal volume (ml) x breathing rate (min-1). We performed
linear regression between the ventilation rate and Maxillo RSA
(Supplementary Data 1: folders 1, 8). Tidal volume and breathing rate
were extracted from Stahl77 and Frappell et al.78 and transformed to
obtain ventilation rate in ml.min-1. Because ventilation rate data
greatly differ between studies, we performed three different linear
regressions: (1) with all the data merged between Stahl77 and Frappell
et al.78, (2) only with the data from Stahl77, (3) only with the data
from Frappell et al.78. Mean was performed when a species was pre-
sent in the two studies. The normality of the data was tested on the
residuals of the linear model with the Shapiro-Wilk’s test and the
function shapiro.test from the stats r package74. The hetero-
scedasticity of the linear model was tested with the Breusch-Pagan
test and the function bptest from the lmtest r package79. When we
could assume the normality and the homogeneity of the data, the
potential correlation was tested with the function lm and summary
from the stats r package74. When the normality and/or the homo-
geneity was rejected, the potential correlation was tested with the
nonparametric Spearman’s rank correlation using the function
cor.test from the stats r package74 (Supplementary Fig. 5).

For Maxillo RSA, to avoid negative values, we added the lowest
residual value, 2.64 and 2.67 respectively (Supplementary Data 1:
folders 1, 2, 3). These two PGLS comprised 99 and 89 species respec-
tively. We also performed PGLS and linear regressions between cBMR
and the relative surfacearea of themaxilloturbinal basedonbodymass
(Supplementary Fig. 3A) as well as between Tb and the relative surface
area of the maxilloturbinal based on body mass (Supplementary Fig. 3
B). The phylogenetic signal of the Maxillo RSA was calculated with
Blomberg’s K80 and Pagel’s lambda81 with the phylosig function from
the R package phytools82 (Supplementary Data 1: folder 4). The phy-
logenetic figureswere generated by the R package phytools82. We used
a maximum clade credibility (MCC) phylogeny obtained from 10,000
trees sampled in the posterior distribution of83 and pruned to match
the species in our dataset. TheMCC consensus tree was inferred using
TreeAnnotator v.1.8.284 with a 25% burn-in. To limit the number of
ecological variables, amphibious and aquatic species were labeled
“amphibious” (Figs. 1, 2).

Ecology
Although our dataset was not designed to test ecological lifestyle (e.g.,
we did not sample all the independent lineages for a given ecology),we
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tested it to have a general idea on the potential relation between the
ecology and the Maxillo RSA. Five ecological categories were defined
as follows: terrestrial, arboreal, amphibious, subterranean and flying
(Fig. 1, Supplementary Data 1: folders 1, 2, 3, 5, 6, 7). The normality and
the homogeneity of the data were tested as described above.Whenwe
could assume the normality and the homogeneity of the data, we
performed an ANOVA on the PGLS model including the tested vari-
ables, as well as the ecology and their potential interactions. We also
performed ANOVA between a single variable and the ecological data.
This wasperformedwith the functionanova from the stats r package74.
When we could not assume the normality and/or the homogeneity of
the data, we performed the non-parametric Kruskal-Wallis test to test
the variables as well as the ecology and their potential interactions
(Supplementary Table 1). This was performed with the function krus-
kal.test from the stats r package74. We similarly tested the impact of
heterothermy on the Maxillo RSA with a first test including two cate-
gories (no heterothermy, heterothermy) and a test including four
categories (no heterothermy, hibernation, aestivation, other; Supple-
mentary Data 1: folders 1, 3). In order to test the significance of only
using the maxilloturbinal surface area, we performed PGLS and linear
regressions between maxilloturbinal and nasoturbinal surface area
with data extracted from Martinez et al.18 and based on 132 species
(Supplementary Fig. 7).

Maxilloturbinal complexity
We described the different patterns of turbinal complexity. To date,
the increasing turbinal complexity is described as the development of
infolding and small lamellae called epiturbinals and resulting from
repetitive appositional bone growth33,85. From a statistical perspective,
turbinal complexity is often described as the degree of details in a
predefined area72,86–88. Several studies based on fluid dynamic princi-
ples have improved our understanding of the functional role of turb-
inals demonstrating for example that the increase in turbinal
complexity increases the proportion of air in contactwithmucus gland
and epithelium63,64,86,89. Therefore, the increase in turbinal complexity
may facilitate heat and moisture conservation performances. In
rodents, it has beendemonstrated that there is a significant correlation
between respiratory turbinal complexity and surface area72. These
results support the functional significance ofmost turbinal studies that
only used the surface area proxy.

Data availability
All the raw data used to perform the analyses are available in the
Supplementary Data 1: folder 1. The list of the µCT data is available in
the Supplementary Data 1: folder 1. Data owned by the co-authors are
available on MorphoSource (https://www.morphosource.org/catalog/
media?locale=en&q=quentin+martinez&search_field=all_fields&sort=
system_create_dtsi+desc) and on request from the relevant holding
institution (see details in the Supplementary Data 1: folder 1:
All_Files.xlsx).

Code availability
All the codes, R script, CSV files and nexus phylogeny needed to per-
form analyses and figures presented in this study are available in the
Supplementary Data 1: folders 1 to 8.
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