Appendix D

Notation

$\triangleleft \quad$ Domain restriction (Z Notation). If R is a relation and S a set, then $S \triangleleft R$ is the set of all tuples (x, y) that belong to R whereas x must belong to S.
$\triangleleft \quad$ Domain anti-restriction (Z Notation). If R is a relation and S a set, then $S \notin R$ is the set of all tuples (x, y) that belong to R whereas x must not belong to S.
(dom R) Domain of a relation or function (Z Notation).
$\mathbb{F} S \quad$ Set of finite subsets of set S (Z Notation).
\rightarrow Finite Partial function.
$t \downarrow \quad$ Defined (relations). $R\left(\pi_{1}, \pi_{2}\right) \downarrow$ is true iff $\left(\pi_{1}, \pi_{2}\right) \in R$.
$d \downarrow \quad$ Defined (functions). $F\left(\pi_{1}\right) \downarrow$ is true iff $\pi_{1} \in(\operatorname{dom} F)$.
$t \uparrow \quad$ Undefined (relations). $R\left(\pi_{1}, \pi_{2}\right) \uparrow$ is true iff $\left(\pi_{1}, \pi_{2}\right) \notin R$.
$d \uparrow \quad$ Undefined (functions). $F\left(\pi_{1}\right) \uparrow$ is true iff $\pi_{1} \notin(\operatorname{dom} F)$.

