
Appendix A

Integration with
Form-Oriented Analysis

In this appendix an example transformation of a system feature that is speci-
fied as a form-oriented analysis model into NSP technology is given. All model
elements of form-oriented analysis that are used in this appendix are defined
in the dissertation of Gerald Weber [178]. The system feature is modeled by
a form chart with respect to a layered data model , i.e. a data dictionary and
a semantic data model. A form chart can be transformed into server pages
technology in several different ways, i.e. yielding several different system de-
signs. There is one canonical transformation. This transformation maps each
server action and each client page to one server page. The message types of
server actions and client pages, which are specified in the data dictionary, be-
come the web signatures. The server page of a server action hosts business
logic implementation only and the server page of a client page has the only
purpose to present data and create new data input capabilities. A server page
of a server action prepares the data that has to be presented in the next step
and branches the control flow with respect to the enabling conditions of the
outgoing transitions. Forward engineering tools can be build that realize the
canonical transformation by generating a complete executable prototype system
for a given form chart and layered data model, whereas the prototype system
provides protected regions in all kinds of generated server pages as well-defined
hooks. The tool Gently [56][67] is such a forward engineering tool for generating
Java Server Pages based systems. Again the Gently approach is presented in
the dissertation of Gerald Weber [178].

The canonical transformation guarantees maximum reusability and low cou-
pling and allows for an immediate exploitation of further form-oriented dialogue
elements like e.g. dialogue constraints. However it yields not the most succinct
kind of design. Design-decisions may lead to other justifiable transformations,
for example to such transformations that foster high cohesion. Actually for
example in this appendix a very straightforward transformation to NSP tech-

95

96 APPENDIX A. INTEGRATION WITH FORM-ORIENTED ANALYSIS

nology has been chosen, that always implements a server action and an adjacent
client page as one server page.

The NSP concept of functional decomposition of server pages can be ex-
ploited to implement a server action’s branching to client pages. The NSP con-
cept of higher order server pages can be exploited to solve some typical design
problems that often arise in web application architecture but can be identified
early in form charts as has been explained in section 4.3 with listing 4.2 and
Figure 4.4. However the aim of this chapter is just to give some confidence
that the NSP technology is tightly integrated with the overall form-oriented
approach by providing a somewhat larger example from a real system that is
currently under development. The chosen transformation is already sufficient
for this purpose. It can be seen how web signatures of a system dialogue become
NSP web signatures.

The appendix proceeds as follows. First the vision of a software system is
given. Then a single desired feature in this system is described informally and
then specified using form-oriented analysis. In section A.2 the mapping of this
specification to NSP server pages is given.

A.1 Problem Description

A.1.1 Vision

It is the vision to develop a combined CSCW/project management tool for the
software engineering process EASE.

EASE (Education for Actual Software Engineering) [65] is a software engi-
neering process model for higher education. It is the first such process that is
designed from scratch, whereas it is oriented towards proven concepts from ma-
ture andragogical methodologies like Collaborative Learning [21], Action Learn-
ing [154], and Entrâınement Mental [30].

The project management tool PEASE (Platform for EASE) is currently
under development [93]. The project planning phase, comprising competitive
product analysis [177] as a basis for a positive stop-or-go decision, has already
been finished [92]. The PEASE platform is a web-enabled project management
tool that is oriented towards groupware [82]. There are already a couple of such
systems, the most prominent one is probably [136] which arose in the open source
community [152]. A detailed explanation of EASE is given in [65]. PEASE
supports all activities found in the EASE process architecture, especially the
micro process of EASE, which can be loosely compared to the iteration planning
of the Extreme Programming [11] software development approach. The EASE
micro process is a fast iterative alternation of meetings and plannings. In every
meeting tasks are found, sorted, discussed, and assigned to teams. Every week
new teams are formed; small changing groups foster the communication between
students. Thereby the project’s progress is tracked. In this appendix a single
feature of the future PEASE platform for managing tasks serves as example.
The task manager feature allows removing tasks and deleting or adding team

A.1. PROBLEM DESCRIPTION 97

members. It is most probably used after the assignment of tasks , in order to
adjust some recently entered data.

A.1.2 Task Manager Feature Description

The task manager feature allows removing tasks, deleting team members from
tasks, and adding new team members to tasks. At the entry page of the task
manager feature the user is shown a single select menu of all current tasks. She
can select a task and choose between two options, namely removing the task and
editing the task1. For this purpose two submit buttons are offered. Pressing a
submit button will be successful only if the user has selected at least one task.
If the user has chosen to remove a task from the task list first a message page is
presented to the user. The user is asked to acknowledge or otherwise to redeem
that she actually wants to remove the chosen task. Based on the user’s decision
the task is removed and the dialogue returns to the task manager entry page.

If the user chooses to edit a task from the entry page’s task list a page is
shown that contains a link and a form. With the link it is possible to return
to the entry page without changing anything. The form contains two multiple
select menus. In the first menu the team members of the selected task are listed.
Selected team members will be removed from the task on submit. In the second
menu all project members that are not assigned to the task are listed. Selected
project members will be added to the task as new team members on submit.
On submit the necessary update operations are executed. Then a message page
is presented. It contains the name of the current task and the updated list of
team members and it invites the user to control the result. The user has the
option to return to the entry page or to edit the task again.

A.1.3 Task Manager Feature Specification

The task manager feature that has been described in section A.1.2 is modeled by
the form chart given in Figure A.1 and a layered data model given in Figure A.2.
The persistent data is given by the semantic data model: every task has a name
and a list of team members. The semantics of the data dictionary types, i.e.
the message types, and their interplay with semantic data types is explained
in [178]: every type introduced in the semantic data model is available in the
data dictionary as opaque reference type, which consists of the keys to the
persistent data objects.

We do not give a complete dialogue constraint specification. We pick the dia-
logue constraints for one page/server transition as an example. A page/server tran-
sition is annotated with an enabling condition, a client output constraint, and
a server input constraint.

1The task manager feature is a feature in the sense of feature orientation [60]. That is
the specification of the pages that make up the respective dialogue are partial specifications.
In a complete system specification the single pages may offer more information and more
interaction capabilities. For example the page just described will have a link for the registration
of a new task in the complete system specification.

98 APPENDIX A. INTEGRATION WITH FORM-ORIENTED ANALYSIS

taskManager
taskManagerPage

removeTaskAlert

editTaskPage changeTaskAlert

removeTask

editTask

deleteTask

changeTask

Form Chart

Figure A.1: Form Chart Diagram. The figure visualizes a task manager feature
of a combined CSCW/project management tool.

TaskManager TaskManagerPage
RemoveTask

name:String

taskId:Task

taskId:Task

TaskInfo

RemoveTaskAlert

taskId:Task

name:String

DeleteTask

taskId:Task

EditTask

taskId:Task

EditTaskPage

taskId:Task

name:String

ChangeTaskAlert

taskId:Task

teamMemberNames:Set(String)

ChangeTask

taskId:Task

deleteIds:Set(ProjectMember)

addIds:Set(ProjectMember)
name:String

id:ProjectMember

ProjectMemberInfo

 Task

name:String

ProjectMember

name:String

phone:String

studentId:String

passwd:Passwd

Semantic Data Model

Data Dictionary

*

*

taskInfos

possibleMembersteamMembers * *

teamMembers

Figure A.2: Layered Data Model. The figure visualizes the form-oriented data
model which underlies a task manager feature of a combined CSCW/project
management tool. The data model consists of two layers, a data dictionary and
a semantic data model. Data model types are used as opaque reference types
in the data dictionary.

A.2. MAPPING A FORM-ORIENTED SPECIFICATION TO NSP 99

Listing A.1

editTaskPage to changeTask{

enabling:

clientOutput:

changeTask.taskId=editTaskPage.taskId

editTaskPage.teamMembers->includesAll(changeTask.deleteIds)

editTaskPage.possibleMembers->includesAll(changeTask.addIds)

serverInput:

ChangeTask.deleteIds->notEmpty or ChangeTask.addIds->notEmpty

}

We consider the page editTaskPage in Figure A.1, which offers the user a
form with two select menus for removing and adding team members. We con-
sider the transition that is triggered by submitting the form, i.e. the transition
to the changeTask server action. In listing A.1 the constraints for this transi-
tion are given. The enabling condition is empty. We consider the constraints
of the client output specification next. First the current taskId must be passed
unchanged to the server action. Then the team members that have been chosen
to be deleted must actually belong to the list of team members presented to
the user. The team members that should be added to the team are constrained
analogously. The server input constraint states that the server action should
only be executed if the user has selected at least one change.

A.2 Mapping A Form-Oriented Specification to
NSP

The form-oriented feature specification given in section A.1.3 is implemented by
the NSP server pages given in listings A.2 to A.5. Under the chosen transforma-
tion always a server action and the adjacent client page is implemented by one
server page. The server page DeleteTask implements the effect of data deletion,
but it does neither implement the retrieval of information for the client page
taskManagerPage nor its presentation. For this purpose it reuses the imple-
mentation provided by the server page TaskManager by forwarding to it. The
transformation of server actions and client pages is summarized in the informal
equation A.1.

taskManager taskManagerPage 7→ TaskManager

removeTask removeTaskAlert 7→ RemoveTask

deleteTaskManager taskManagerPage 7→ DeleteTask ; TaskManager

editTask editTaskPage 7→ EditTask

changeTask changeTaskAlert 7→ ChangeTask

(A.1)

The message types of server actions are directly mapped to web signatures of
NSP server pages.

100 APPENDIX A. INTEGRATION WITH FORM-ORIENTED ANALYSIS

Some message type parameters of client pages are mapped to formal param-
eters of a server page. Others are mapped to local variables of a server page or
Java expressions. The mapping is pictured by the informal equation A.22.

TaskManagerPage.taskInfos.taskId 7→ TaskManager.taskIds
TaskManagerPage.taskInfos[i].name 7→ .getTaskName(TaskManager.taskIds[i])
RemoveTaskAlert.taskId 7→ RemoveTask.<param>taskId

RemoveTaskAlert.name 7→ .getTaskName(RemoveTask.<param>taskId)
EditTaskPage.taskId 7→ EditTask.<param>taskId

EditTaskPage.name 7→ .getTaskName(EditTask.<param>taskId)
EditTaskPage.teamMembers.id 7→ EditTask.teamMemberIds
EditTaskPage.teamMembers.name[i]
7→ getProjectMemberName(EditTask.teamMemberIds[i])

EditTaskPage.possibleMembers.id 7→ EditTask.possibleMemberIds
EditTaskPage.possibleMembers.name[i]
7→ getProjectMemberName(EditTask.possibleMemberIds[i])

ChangeTaskAlert.taskId 7→ ChangeTask.<param>taskId

ChangeTaskAlert.teamMemberNames[i] 7→ ChangeTask.teamMemberNames

(A.2)

Note how the NSP submit button concept is used for realizing several possible
page/server transitions of a client page directly. For example the submit buttons
in listing A.2 target different server pages.

The output constraints for project members of listing A.1 are easily fulfilled,
because only select menus has been chosen to implement the lists of team mem-
bers and possibly project members: the user cannot choose values that lead to a
violation of the constraint. The server input constraint of listing A.1 is ignored
in the current implementation. It has status TBD [95] per definition, i.e. only
in a complete specification will be decided whether the server input constraint
is ensured by client side scripting or additional dialogue.

2Formal server page parameters are marked by a juxtaposed <param>-tag in equation A.2.
The methods in equation A.2 are class methods of the imported class CustomerBase. The
class name CustomerBase is dropped. The semantics of the methods is implicitly specified by
equation A.2, too.

A.2. MAPPING A FORM-ORIENTED SPECIFICATION TO NSP 101

Listing A.2

<nsp name="TaskManager">

<html>

<head><title>Task Manager</title></head><java>

import myBusinessModel.CustomerBase;</java>

<body><java>

TaskId taskIds[]=CustomerBase.getTaskIds();</java>

<form callee="editTask">

<select param="taskId"><java>

for (i=0;i<taskIds.length;i++){</java>

<option>

<value>

taskIds[i]

</value>

<label>

CustomerBase.getTaskName(taskIds[i])

</label>

</option><java>

}</java>

</select>

<submit callee="removeTask"><label>Remove</label></submit>

<submit callee="editTask"><label>Edit</label></submit>

</form>

</body>

</html>

</nsp>

Listing A.3

<nsp name="RemoveTask">

<param type="TaskId" name="taskId"></param>

<html><head><title>Remove Task Alert</title></head>

<body>

Do you really want to remove task

<javaexpr>CustomerBase.getTaskName(taskId)</javaexpr>

 ?

<form callee="deleteTask">

<submit callee="deleteTask">

<label>YES</label>

<hidden>taskId</hidden>

</submit>

<submit callee="taskManager">

<label>NO</label>

</submit>

</form>

</body>

</nsp>

102 APPENDIX A. INTEGRATION WITH FORM-ORIENTED ANALYSIS

Listing A.4

<nsp name="EditTask">

<param type="TaskId" name="taskId"></param>

<html><head><title>Edit Task</title></head>

<body>

You want to edit task

<javaexpr>CustomerBase.getTaskName(taskId)<javaexpr>

 .

<link callee="taskManager">Back to task manager.</link>

<form callee="changeTask"><java>

ProjectMemberId[] teamMemberIds = CustomerBase.getTeamMemberIds(taskId);

ProjectMemberId[] possibleMemberIds =

CustomerBase.getProjectMemberIdsUnequalTo(teamMemberIds);

if (teamMemberIds.length>0) {</java>

Remove the following team members from the task:<java>

<select multiple param="deleteIds"><java>

for (i=0;i<teamMemberIds.length;i++) {</java>

<option>

<value>

teamMemberIds[i]

</value>

<label>

<javaexpr>

CustomerBase.getProjectMemberName(teamMemberIds[i])

</javaexpr>

</label>

</option>

</select>

}</java>

if (possibleMemberIds.length>0) {</java>

Add the following team members to the task:<java>

<select multiple param="addIds"><java>

for (i=0;i<possibleMemberIds.length;i++) {</java>

<option>

<value>

possibleMemberIds[i]

</value>

<label>

<javaexpr>

CustomerBase.getProjectMemberName(possibleMemberIds[i])

</javaexpr>

</label>

</option>

</select>

}</java>

<hidden param="taskId">taskId</hidden>

<submit></submit>

</form>

</body>

</nsp>

A.2. MAPPING A FORM-ORIENTED SPECIFICATION TO NSP 103

Listing A.5

<nsp name="ChangeTask">

<param type="TaskId" name="taskId"></param>

<param type="ProjectMemberId[]" name="deleteIds"></param>

<param type="ProjectMemberId[]" name="addIds"></param>

<html><head><title></title></head>

<body><java>

CustomerBase.deleteTeamMembers(deleteIds);

CustomerBase.addTeamMembers(addIds);

</java>

You changed the task

<javaexpr>CustomerBase.getTaskName(taskId)</javaexpr>

 .

Please check if the changes are correct !

The task are assigned the following team members:
<java>

String[] teamMemberNames = CustomerBase.getTeamMemberNames(taskId);

for (i=1;i<teamMemberIds.length;i++){</java>

<javaexpr>i</javaexpr>.

<javaexpr>teamMemberNames[i]</javaexpr>

<java>

}</java>

<form callee="taskManager">

<hidden param="taskId">taskId</hidden>

<submit callee="taskManager"><label>OK</label></submit>

<submit callee="editTask"><label>Edit Task Again</label></submit>

</form>

</body>

</nsp>

Listing A.6

<nsp name="DeleteTask">

<param type="TaskId" name="taskId"></param>

<html><head><title></title></head>

<body><java>

CustomerBase.deleteTask(taskId);</java>

<forward callee="taskManager"></forward>

</body>

</nsp>

104 APPENDIX A. INTEGRATION WITH FORM-ORIENTED ANALYSIS

