
Chapter 6

Java Server Pages
Reverse Engineering

6.1 JSPick - A Java Server Pages Design Recov-

ery Tool

JSPick [127][66] is a reverse engineering tool for Java Server Pages based pre-
sentation layers. JSPick allows for automatic generation of a documentation of
the whole system interface in an easy to read specification language.

Consider javadoc, the standard Java documentation tool. It is not suitable
for documenting Java Servlets1, because applying javadoc to the customized
server script classes leads only to the documentation of the technical parameters
HTTPRequest and HTTPResponse. The documented technical signatures are
not amenable for a reasonable application of proposed specification techniques
like e.g. design by contract [123][124][182]. The interesting parameters, which
are significant for the functional requirements and the business logic, namely the
HTML form parameters provided by the forms or links calling the page, cannot
be documented automatically. All this amounts to say that javadoc is a pure
redocumentation tool in the sense of [29]. The generated code documentation
adds no value to the semantics that can be read directly from the code, only a
visualization is created.

In contrast, JSPick is a design recovery tool in the sense of the reverse engi-
neering seminal paper [29]. JSPick exploits the Next Server Pages concepts in
order to infer from the code a meaningful documentation at a higher abstraction
level. JSPick extracts from a system interface all pages with their signatures
together with the contained links and forms. JSPick generates a GUI browser
for a given system. With that browser the developer can examine source code,

1Anyway javadoc would not be applied to the Java Servlets code that is generated by a
JSP container. However the considerations concerning javadoc foster the understanding of
the JSPick concepts.

53



54 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING

abstract syntax trees, type information, warnings and the linkage structure of
the system in quest under several different viewpoints.

Listing 6.1
<html>

<head><title>Example Page</title></head>

<body>

<form action="http://www.somewhere.net/targetedPage.jsp" method="get">

<input type="text" name="a">

<input type="text" name="b">

<input type="text" name="b"><%

for (i=0;i<2;i++){%> <input type="text" name="c"><%}

if (cond){%> <input type="text" name="d"> <%}

if (cond){%> <input type="text" name="e"> <%}

else { if (cond){%> <input type="text" name="e"> <%}

else {%> <input type="text" name="e"> <%}

}%>

<input type="radio" name="f">

<input type="radio" name="f"><%

for (i=0;i<2;i++){%> <input type="radio" name="f"><%}

if (cond){%> <input type="radio" name="g"> <%}%>

<select name="h"><option>A<option>B</select>

<select multiple name="i"><option>A<option>B</select>

<input type="hidden" name="j"><%

if (cond){%>

<input type="radio" name="k">

<input type="radio" name="k"><%

} else {%>

<select name="k"><option>A<option>B</select><%

}%>

</form><%

v1=request.getParameterValues("x");

v2=request.getParameter("y");

v3=request.getParameterValues("z");

if (cond) { v4=request.getParameter("z"); }

%>

</body>

</html>

Ensuring Robust Block Structure

As a basic feature JSPick encounters violations of the combined Java/XHTML
block structure: Java and markup language block structure should be compat-
ible as described in section 3.6.



6.1. JSPICK - A JSP DESIGN RECOVERY TOOL 55

Figure 6.1: JSPick Screenshot. The figure shows a partial type description
window. Such a windows displays type information about the web signature of
a Java Server Page and the form types of its possibly several contained forms.



56 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING

Recovering Form Types

For every form information about the dynamically provided form input capa-
bilities is created. The information inferred with respect to a given form is
called its form type in the sequel. Consider the JSP example page in listing 6.1.
One kind of window generated by JSPick is shown in Figure 6.1 which prepares
the inferred information in several manners. For a form each targeted formal
parameter is given2. If it is sure that always exactly one control is generated
for a certain parameter then it is given as a single parameter. Otherwise it
is given as an array parameter. Thereby a collection of radio buttons is one
single control: a set of radio buttons offers the user one capability to select one
single data item and is therefore conceptually equal to one single select menu.
A multiple select menu is considered a collection of controls. A multiple select
menu is conceptually equal to a set of check boxes: each of its options offers the
user a capability to select or deselect a data item independently from the other
menu options. The conceptual view of radio buttons and multiple select menus
is summarized again in the informal equation 6.1.

mulitple radio buttons
≡ one single select menu
6≡ one multiple select menu
≡ multiple check boxes

(6.1)

As a further information the control kind of each targeted formal parameter
is given. If it is possible, that a parameter is targeted by different kinds of
controls it is given the various-control, which is a pseudo control that has been
introduced merely for this purpose. The most succinct JSPick presentation of
the web signature and the form type that is extracted from the code in listing 6.1
is the following:

jsp examplePage.jsp( []x, z, y){
form calls http://www.somewhere.net/targetedPage.jsp(

TEXT a, TEXT[] b, TEXT[] c, TEXT[] d, TEXT e, RADIO f,
RADIO[] g, SELECT h, SELECT[] i, HIDDEN j, VARIOUS k

);
}

Summing up, a form type maps each formal parameter targeted by the form to
a type consisting of a control kind and a possibly array annotation. Thereby the
typing is oriented towards the NSP parameter rules given in section 3.3. The
presented form types already provide the developer with a valuable debugging
information. The second kind of information are extracted page signatures.

2We adopt NSP terminology in the context of Java Server Pages: a formal parameter
is a name that is requested in a server page. A targeted formal parameter is a control’s
name-attribute. A formal parameter targeted by a form is the name-attribute of a possibly
generated control contained in the form.



6.1. JSPICK - A JSP DESIGN RECOVERY TOOL 57

Recovering Page Signatures

The JSPick page signatures are crucially motivated by an insight into the
specific interplay between HTML/XHTML forms and JSP server pages: the
request.getParameter-method of the request-object should only be used for a
parameter if it is sure that the parameter has at most one value3. Formu-
lated in another way, if a parameter might have more than one value the
getParameterValues-method should be used. This guideline motivates the way
JSPick infers the web signature. If in a page a parameter is only requested by
a getParameterValues-method, it is a formal array parameter. If in a page a
parameter is possibly requested by a getParameter-method, it is a formal single
parameter. Based on inferred form types and web signatures, JSPick can de-
tect potential violations of the guideline described above and can generate an
appropriate warning.

Implementation

The implementation of the JSPick reverse engineering tool encompasses
4,5 klocs. It is based on both standard [176] and innovative [141] compiler con-
struction techniques. The state-of-the-art compiler generator ANTLR [159][142]
has been employed. A detailed discussion of features, design, and implementa-
tion of JSPick is provided by [127].

Further Work

The information extracted by JSPick can be analyzed with respect to several
classes of potential sources of error. For example, it is easy to implement reports
on the following non-mutual exclusive indicators for a flawed design:

• A parameter is requested by a getParameter-method, but it is not provided
by a targeting form.

• A parameter is provided by a form, but it is not requested in the targeted
Java Server Page anywhere.

• Forms targeting the same Java Server Page may target different formal
parameters.

• A form targets a non-existing form.

• A parameter may be requested by both a getParameter-method and a
getParameterValues-method.

• A formal parameter that is targeted by a password control may be targeted
by another non-password control.

3This is clearly stated in the online API documentation of the Java Servlet technology 2.2.
The reason for this is obvious: the getParameter-method only returns the first value if it is
applied to a string parameter [49]. More seriously in the elder Servlet [48]versions 2.1a this
behavior is just proposed and the return value has been implementation dependent in such
cases.



58 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING

6.2 Formal Semantics of JSPick

This chapter formalizes the semantics of the core functionality of the reverse
engineering tool JSPick, i.e. the recovery of a high-level description of the form
parameters. The semantics is formalized as a pseudo-evaluation. A pseudo-
evaluation runs a program with non-standard values instead of concrete values
for the purpose of static program analysis. The pseudo-evaluation technique has
been introduced with type checking in the GIER ALGOL compiler [129][128],
where a program is executed on types instead of values4. Pseudo-evaluation has
been taken up with other, more sophisticated notions of program analysis like
data flow analysis [113] or abstract interpretation [43], each with other emphasis.

In JSPick pseudo-evaluation is preceded by parsing a program with respect
to an non-standard abstract syntax, called pseudo-syntax in the sequel, that
consists only of constructs that are relevant with respect to the desired program
analysis. The pseudo-evaluation is formalized as a semantics function, i.e. in
denotational style5. The complete definition of the semantics function is given
in Figure 6.2 for easy reference.

First the JSPick pseudo-syntax is given by an extended context free gram-
mar6. It picks up and formalizes the narrowed viewpoint of server pages syntax
that has been necessary to describe the NSP coding rules as explained in sec-
tion 3.3. Consequently the JSPick pseudo-syntax consists of controls as basic
building blocks plus sequencing, if-structure, if-else-structure, switch structures,
and loop. JSPick does not distinguish between completed and uncompleted
switch structures in the sense of NSP for the following reason: in NSP it is a
coding convention, that all branches of a switch structure must be ended by
a break-statement. But in JSPick this cannot be demanded, because JSPick
is designed as a tool for existing code. Fortunately it does not pose a prob-
lem, a useful form type inference can be defined with respect to another switch
structure distinction. JSPick distinguishes between unique and arbitrary switch
structures. In a unique switch structure all branches end with a break state-
ment and the last branch is a default branch. All other switch-structures are
arbitrary switch structures.

4Another early usage of the pseudo-evaluation technique is object code optimization [100]
in ALGOL compilers.

5The original paper on pseudo-evaluation [129] gives an operational-style specification with
respect to stack transformations.

6The production rules of an extended context free grammar may have regular expressions
as right hand sides. Nonterminals are underlined. The syntactic category that corresponds to
a given nonterminal is depicted in bold face.



6.2. FORMAL SEMANTICS OF JSPICK 59

pseudo ::= (element)+

element ::= control
| if pseudo
| ifElse pseudo pseudo
| switcharbitrary (pseudo)+
| switchunique (pseudo)+
| loop pseudo

The usual types of HTML/XHTML controls are supported. Every control
node carries the information about the name of the targeted formal parameter.
The set of names is not specified.

control ::= controltype name

controltype ::= text | textarea | password
| hidden | checkbox | radiobutton
| singleselect | multipleselect

name ::= n ∈ name

The types that are assigned to targeted formal parameters as part of a form
type are given by a little context free grammar, too. A type can be either a
basic type or a basic type together with an array annotation. The basic types
differ from the control types of the pseudo-syntax. It is not distinguished be-
tween single select menus and multiple select menus. The various pseudo-control
is introduced.

parametertype ::= basictype | basictype [ ]

basictype ::= TEXT | TEXTAREA | PASSWORD
| HIDDEN | CHECKBOX | RADIOBUTTON
| SELECT
| VARIOUS

The semantics of JSPick form type inference is specified as a semantics func-
tion (6.2) that maps a pseudo-syntax tree to a form type. A form type is a finite
partial function that assigns types to parameter names. Initially the semantics
function is applied to the entire content of a form.

[[ ]] : pseudo → name ||−→ parametertype (6.2)

In order to define the semantics function it is helpful to have an auxiliary func-
tion (6.3) at hand that yields the contained basic type for every parameter type.



60 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING

⇓ : parametertype → basictype

⇓ t =

{
t , t ∈ basictype

t′ , t = t′[ ]

(6.3)

The form type of a single control is defined only for the formal parameter that
is targeted by the control. If the control is a multiple select menu the parameter
is assigned the select basic type and an array annotation. If it is a single select
menu the parameter is assigned the select basic type only. In all other cases
simply the control type is assigned to the parameter, without array annotation.

[[controltype name]] =

λn .




⊥ , n 6= name

TEXT , controltype = text

TEXTAREA , controltype = textarea

PASSWORD , controltype = password

HIDDEN , controltype = hidden

CHECKBOX , controltype = checkbox

RADIOBUTTON , controltype = radiobutton

SELECT , controltype = select

SELECT [ ] , controltype = multipleselect

(6.4)

The if-construct is semantically equivalent to an arbitrary switch structure and
the if-else-construct is semantically equivalent to an unique switch structure in
the way defined in the equations (6.5).

[[if p ]] = [[switcharbitrary p ]]
[[ifElse p1 p2 ]] = [[switchunique p1 p2 ]] (6.5)

Equation 6.6 defines how a form type is assigned to a unique switch struc-
ture7. For a unique switch structure it is ensured, that exactly one branch is
executed. This fact can be exploited to possibly infer a single parameter type
for a targeted formal parameter. Assume an arbitrary fixed name. If none of
the branches yields a control that targets that name, the switch structure does
not, too. If all branches always target that name with exactly one control the
complete switch does so, too. If at least one branch targets the name but it is
not sure that it produces exactly one control the switch targets the name with
a control array. Equally if at least one branch targets the name and at least one
branch does not target the name the switch targets the name with a control ar-
ray. Thereby if all branches target the name with the same kind of control, the
switch targets the name with this uniquely known control, otherwise it targets

7Free occurrences of the meta type variable t are implicitly existentially quantified in the
equations of this section.



6.2. FORMAL SEMANTICS OF JSPICK 61

the name with the special various control.

[[switchunique p1 . . . pn]] =

λn .




⊥ , ∀
1≤i≤n

([[pi]]n)↑
t , ∀

1≤i≤n
([[pi]]n) = t ∈ basictype

VARIOUS , ∀
1≤i≤n

([[pi]]n) ∈ basictype

t[ ] , ∀
1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(6.6)

For an arbitrary switch structure it is not sure, that exactly one of the branches
is executed. Therefore the switch structure either does not target a given name
or targets that name with a control array. Apart from that arbitrary switches
are equal to unique switches with regard to the form type. Therefore equa-
tion 6.7 immediately arises form equation 6.6 by dropping the second and third
line.

[[switcharbitrary p1 . . . pn]] =

λn .



⊥ , ∀

1≤i≤n
([[pi]]n)↑

t[ ] , ∀
1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(6.7)

A loop targets every formal parameter that is targeted by its body with a con-
trol array.

[[loop p ]] = λn .

{
⊥ , ([[p]]n)↑(⇓([[p]]n)

)
[ ] , else

(6.8)

The form type of sequences of document parts is defined in equation 6.9.

[[p1 . . . pn]] =

λn .




⊥ , ∀
1≤i≤n

([[pi]]n)↑
[[pi]]n , ∃ !

1≤i≤n
([[pi]]n)↓

radiobutton ,
∀

1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = radiobutton

)
∧ ∃

1≤i≤n

(
([[pi]]n) = radiobutton

)
t[ ] , ∀

1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(6.9)
Assume a sequence document parts and that at least one of the parts targets

a given name. If there is only one part that targets the name and furthermore
the part targets the name with a single control then it is safe that the sequence



62 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING

targets the name with this single control. If all parts that target the name
provide the same kind of control other than radio button, then the sequence
targets the name with an array of the given control. Radio buttons are special,
because they together provide a control. If a name is assigned a radio button
and an array annotation this means only that it is not sure whether a radio
button control is generated, it cannot mean that possibly more than one control
is generated. Therefore if all document parts that target a given name provide
radio buttons and at least one part is safe to provide a single radio button
control, the sequence targets the name with a single radio button control8. At
a last rule, if several parts target a given name with different kinds of control,
the sequence targets the name with an array of various controls.

8JSPicks treats the generation of a one single radio button as a correct alternative, too.
This treatment of radio buttons once more points up that JSPick is a tool for existing code:
a lot of web designer deliberately use a single radio button this way as a kind of check box,
though this is not in accordance with recommended good practice like e.g. [125].



6.2. FORMAL SEMANTICS OF JSPICK 63

[[controltype name]] =

λ n .

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

⊥ , n 6= name

TEXT , controltype = text

TEXTAREA , controltype = textarea

PASSWORD , controltype = password

HIDDEN , controltype = hidden

CHECKBOX , controltype = checkbox

RADIOBUTTON , controltype = radiobutton

SELECT , controltype = select

SELECT [ ] , controltype = multipleselect

[[if p ]] = [[switcharbitrary p ]]
[[ifElse p1 p2 ]] = [[switchunique p1 p2 ]]

[[switcharbitrary p1 . . . pn]] =

λ n .

8>>><
>>>:
⊥ , ∀

1≤i≤n
([[pi]]n)↑

t[ ] , ∀
1≤i≤n

(([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype)

VARIOUS[ ] , else

[[switchunique p1 . . . pn]] =

λ n .

8>>>>>>>>><
>>>>>>>>>:

⊥ , ∀
1≤i≤n

([[pi]]n)↑
t , ∀

1≤i≤n
([[pi]]n) = t ∈ basictype

VARIOUS , ∀
1≤i≤n

([[pi]]n) ∈ basictype

t[ ] , ∀
1≤i≤n

(([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype)

VARIOUS[ ] , else

[[loop p ]] = λ n .

(
⊥ , ([[p]]n)↑�⇓([[p]]n)

�
[ ] , else

[[p1 . . . pn]] =

λ n .

8>>>>>>>>>>>><
>>>>>>>>>>>>:

⊥ , ∀
1≤i≤n

([[pi]]n)↑
[[pi]]n , ∃ !

1≤i≤n
([[pi]]n)↓

radiobutton , ∀
1≤i≤n

(([[pi]]n)↑ ∨ ⇓([[pi]]n) = radiobutton)

∧ ∃
1≤i≤n

([[pi]]n) = radiobutton

t[ ] , ∀
1≤i≤n

(([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype)

VARIOUS[ ] , else

Figure 6.2: JSPick Pseudo-Evaluation. The figure contains the complete speci-
fication of the semantics of the reverse engineering tool JSPick with respect to
type inference of form types. JSPick is a design recovery tool for Java Server
Pages based presentation layers.



64 CHAPTER 6. JAVA SERVER PAGES REVERSE ENGINEERING


