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A B S T R A C T   

Despite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend 
speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable speech-in- 
noise comprehension remain to be elucidated. The present study investigated the neural tracking of acoustic and 
semantic speech information during noisy naturalistic speech comprehension. Participants listened to narrative 
audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio (SNR) levels (no noise, 3 
dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded. A temporal response function 
(TRF) method was employed to derive event-related-like responses to the continuous speech stream at both the 
acoustic and the semantic levels. Whereas the amplitude envelope of the naturalistic speech was taken as the 
acoustic feature, word entropy and word surprisal were extracted via the natural language processing method as 
two semantic features. Theta-band frontocentral TRF responses to the acoustic feature were observed at around 
400 ms following speech fluctuation onset over all three SNR levels, and the response latencies were more 
delayed with increasing noise. Delta-band frontal TRF responses to the semantic feature of word entropy were 
observed at around 200 to 600 ms leading to speech fluctuation onset over all three SNR levels. The response 
latencies became more leading with increasing noise and decreasing speech comprehension and intelligibility. 
While the following responses to speech acoustics were consistent with previous studies, our study revealed the 
robustness of leading responses to speech semantics, which suggests a possible predictive mechanism at the 
semantic level for maintaining reliable speech comprehension in noisy environments.   

1. Introduction 

Noise is an inevitable part of daily life, from car horns on the streets 
to background music at parties, and it presents a significant challenge to 
verbal communication. Reliable speech comprehension in noisy envi
ronments is crucial in various situations such as education or emergency 
service. Despite the distortion of auditory information, individuals with 
normal hearing can comprehend speech with ease. Understanding the 
adaptive neural mechanisms that enable robust speech-in-noise 
comprehension is essential for clinical intervention for hearing/ 
language-impaired groups and for developing hearing-aid techniques. 

Neurophysiological studies have revealed important insights into 
how noise affects speech processing. Using the event-related techniques, 
cortical auditory evoked potentials (CAEP) elicited by auditory and 
speech stimuli have been found to show delayed latencies and reduced 
amplitudes under adverse conditions, including the early component P1- 
N1-P2 complex related to primary sound processing (Billings et al., 
2009, 2011), and the later components such as the N2 component 
related to phonological analysis (Billings et al., 2009; Martin and Sta
pells, 2005; Tomé et al., 2015; Whiting et al., 1998) and the P3 
component related to speech discrimination (Kaplan-Neeman et al., 
2006; Koerner et al., 2017; Martin and Stapells, 2005; Whiting et al., 
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1998). In recent years, studies have focused more on the neural tracking 
of continuous speeches. i.e., the alignment between neural activities and 
the quasi-rhythmic fluctuations of continuous speech (see reviews, 
Brodbeck and Simon 2020, Ding and Simon 2014, Giraud and Poeppel 
2012, Lakatos et al. 2019, Obleser and Kayser 2019). Specific temporal 
dynamics of neural tracking can be described via system identification 
methods such as the temporal response function (TRF; Crosse et al. 
2016, 2021) by relating neural signals with speech features such as 
acoustic envelope. Neural tracking has been found to remain stable 
under mild and moderate noise, and it is regarded as an essential tool for 
segregating speech from the noisy background (Ding and Simon, 2013). 
Nevertheless, the TRF-based studies have also reported delayed la
tencies and/or reduced amplitudes of the neural tracking in noisy con
ditions (Gillis et al., 2022a; Mirkovic et al., 2019; Muncke et al., 2022; 
Zou et al., 2019), similar to previous event-related studies. These results 
suggest an impaired acoustic processing efficiency in noisy environ
ments (Gillis et al., 2022a; Kaplan-Neeman et al., 2006). In addition to 
auditory processing, semantic processing also plays a vital role in 
speech-in-noise comprehension and has been paid substantial emphasis. 

Semantic processing could be a crucial factor in robust speech 
comprehension against noisy environments. Numerous research has 
shown that coherent semantic context enabling anticipating upcoming 
stimuli contributes to an effective understanding of degraded speech 
(Miller et al., 1951; Obleser and Kotz, 2010, 2011; Sohoglu et al., 2012; 
Zekveld et al., 2011). For example, Miller et al. (1951) found that words 
in coherent sentences had higher intelligibility compared with the same 
words in unrelated word lists during speech-in-noise comprehension. 
Regarding the influence of noise on semantic processing, such as the 
N400 component (Kutas and Federmeier, 2011; Kutas and Hillyard, 
1984), several studies have reported robust or increased amplitude of 
N400 under mild degradation, which might be related to additional 
cognitive effort (Jamison et al., 2016; Romei et al., 2011; Zendel et al., 
2015), while other studies reported reduced/delayed N400 for degraded 
speech, which might be related to damaged signal quality (Aydelott 
et al., 2006; Connolly et al., 1992; Daltrozzo et al., 2012; Obleser and 
Kotz, 2011; Strauß et al., 2013). These mixed results provided valuable 
information on the complex relationship between noise and semantic 
processing. Moreover, it was discovered that semantic processing in
cludes early responses before the onset of the stimulus, which was 
considered to be associated with semantic prediction (Grisoni et al., 
2017, 2021; Pulvermüller and Grisoni, 2020). Nevertheless, it is still 
unknown how this pre-onset response is modulated by noise at various 
signal-to-ratios (SNRs). These inconsistent results and inadequate ex
plorations of noise effect on semantic processing may be due to limita
tions inherent in the event-related design. This design typically uses 
highly-controlled and short-duration speech units, such as individual 
words (e.g., Romei et al. 2011) or disconnected sentences (e.g., Strauß 
et al. 2013), which only contain limited semantic/contextual 
information. 

The recent rise of the naturalistic speech paradigm is expected to 
expand our knowledge of the neural mechanisms of semantic processing 
during speech-in-noise comprehension (Li and Zhang, 2023). Compared 
to the highly-controlled and short-duration speech units, continuous 
naturalistic speech stimuli provide a better resemblance to our daily 
communications because of a longer duration, more flexible content, 
and less deliberate semantic violations (Alday, 2019; Alexandrou et al., 
2020; Hartley and Poeppel, 2020; Sonkusare et al., 2019; Willems et al., 
2020; Wöstmann et al., 2017). Most of all, the continuous naturalistic 
speech stimuli provide rich context-based semantic information (Alday, 
2019; Alexandrou et al., 2020; Hamilton and Huth, 2020; Sonkusare 
et al., 2019), which is indispensable for semantic prediction and reliable 
speech comprehension in chaotic daily environments. In addition, via 
state-of-art computational linguistic models, the semantic information 
of naturalistic speech can be quantified, and the semantic-level neural 
tracking can be directly measured (Broderick et al., 2018, 2019, 2021; 
Gillis et al., 2021; Koskinen et al., 2020; Mesik et al., 2021; Weissbart 

et al., 2020), presenting a powerful tool to investigating how semantic 
processing is affected by noise at different SNRs. 

The two frequently adopted semantic features in speech-related 
neuroscience research are entropy and surprisal derived from informa
tion theory (Brodbeck et al., 2022; Donhauser and Baillet, 2020; Gold
stein et al., 2022; Heilbron et al., 2022), which respectively measures 
the semantic uncertainty of the upcoming stimuli and the unexpected
ness of the current stimulus (Pickering and Gambi, 2018; Willems et al., 
2016). The word surprisal was found to be associated with the superior 
temporal gyrus and inferior frontal sulcus, etc. (Willems et al., 2016), 
and is linked to an N400-like neural response, i.e., negativity at around 
400 ms within the central-parietal electrodes (Broderick et al., 2021; 
Gillis et al., 2021; Heilbron et al., 2022). The word entropy was asso
ciated with neural activities within the left ventral premotor cortex, left 
middle frontal gyrus and right inferior frontal gyrus, etc. (Willems et al., 
2016). Furthermore, Goldstein et al. (2022) derived word entropy from 
deep language models (GPT-2) and correlated them with electro
corticography (ECoG) signals. The results indicated that entropy was 
related to neural activities in the left-lateralized channels at several 
hundred milliseconds before the word onset. This pre-onset response is 
consistent with the semantic prediction potential (SPP) in event-related 
studies as a direct neural signature for semantic prediction (Grisoni 
et al., 2021; Pulvermüller and Grisoni, 2020). A recent study by Yasmin 
et al. (2023) discovered that the N400-like response in semantic-level 
neural tracking remained robust under mild and moderate noise con
ditions and declined abruptly at the high-noise level (SNR = − 3 dB). 
However, the noise effect on the pre-onset response in semantic-level 
neural tracking is still unexplored. 

The current study aimed to investigate the neural mechanisms of 
speech-in-noise comprehension by simultaneously focusing on both the 
acoustic and semantic levels as well as both the pre-onset and the post- 
onset stages. A naturalistic speech comprehension paradigm was 
employed, as the naturalistic speech stimuli were expected to provide 
better ecological validity and contextual information (Alday, 2019; 
Sonkusare et al., 2019). 60-channel EEGs were recorded while the par
ticipants listened to spoken narratives at three SNRs (no noise, 3 dB, − 3 
dB). Following previous studies, the amplitude envelopes of the speech 
stimuli were extracted as the acoustic feature (Di Liberto et al., 2015; 
O’Sullivan et al., 2015). Two typical semantic features were calculated 
by a Chinese NLP model, i.e., word entropy and word surprisal (Gillis 
et al., 2021; Weissbart et al., 2020; Willems et al., 2016; Koskinen et al., 
2020; Mesik et al., 2021; Broderick et al., 2021). The neural responses to 
the acoustic and semantic features were estimated using the TRF method 
(Crosse et al., 2016), which yields the spatiotemporal dynamics of how 
our brain tracks these features in naturalistic speeches. The pre-onset 
and post-onset responses in the current study were defined as signifi
cant TRF responses with negative and positive time lags, respectively. 
Especially, we conducted TRF analyses and detected significant TRF 
responses separately at different SNR levels to capture all potential 
neural signatures. We hypothesize that the acoustic-level TRF could be 
related to delayed peak latencies or reduced amplitudes under noisy 
conditions as in previous studies (Gillis et al., 2022a; Mirkovic et al., 
2019; Muncke et al., 2022; Zou et al., 2019). As for the semantic-level 
TRF, we hypothesize that both the pre-onset and post-onset response 
could show resilience against noise (Yasmin et al., 2023). By exploring 
the pre-onset and post-onset temporal dynamics of low- and high-level 
processing, this study hopes to gain a more complete overview of the 
noise effect on neural processing during naturalistic speech 
comprehension. 

2. Methods 

2.1. Participants 

Twenty college students (10 females, ages ranging from 19 to 28 
years old) participated in the study. The sample size was determined to 
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be sufficient by reference to previous TRF-based studies on the human 
speech processing (e.g., Broderick et al. 2018, Di Liberto et al. 2015). 
One male participant was excluded due to technical problems during 
data recording. The data of the remaining nineteen participants (age: 
mean ± SD = 21.79 ± 1.99) were included in the subsequent analyses. 
All participants were native Chinese speakers, right-handed, with 
normal hearing and normal or corrected-to-normal vision by self-report. 
The study was conducted in accordance with the Declaration of Helsinki 
and was approved by the local Ethics Committee of Tsinghua University. 
Written informed consent was obtained from all participants. 

2.2. Materials 

Thirty narrative audio recordings from our previous studies (Li et al., 
2021b, 2022) were used as stimuli. These audio recordings were 
recorded from six native Chinese speakers with professional training in 
broadcasting. The participants were unfamiliar with the content of these 
narrative audio recordings, which were about speakers’ personal expe
riences on daily-life topics adapted from the National Mandarin Profi
ciency Test. Each narrative audio recording lasted for around 90 s and 
was recorded by a regular microphone at a sampling rate of 44,100 Hz in 
a sound-attenuated room. 

These speech stimuli were further processed into three versions at 
three different SNR levels: no-noise (NN), low-noise (SNR = 3 dB), and 
high-noise (SNR = − 3 dB), where speech intensity percentage was 100 
%, 60 %, and 40 %, respectively. This procedure was achieved by adding 
spectrally matched stationary noise, which was generated based on a 
50th-order linear predictive coding (LPC) model estimated from the 
original speech recording (Broderick et al., 2018). The SNR levels were 
selected following previous studies (Ding and Simon, 2013), and were 
produced by varying the noise intensity while keeping the intensity of 
original speech (measured by its root mean square) constant (Ding and 
Simon, 2013). 

For each narrative audio recording, two four-choice questions were 
prepared by the experimenters to assess one’s speech comprehension 
performance. These questions and the corresponding choices were tar
geted at detailed narrative contents that would demand significant 
attentional efforts. For instance, one question following a narrative 
audio recording about one’s major was, “What is the speaker’s most 
likely major as a graduate student? (说话人的研究生专业最可能是什 
么?)” and the four choices were (1) Social science, (2) International 
politics, (3) Pedagogy and (4) Psychology (1. 社会科学, 2. 国际政治, 3. 
教育学 and 4. 心理学). 

2.3. Procedure 

Before the start of the experiment, the participants had one practice 
trial to get familiar with the procedure, with an additional narrative 
audio recording at the no-noise level not used in the formal experiment. 
The formal experiment consisted of 30 trials, with 10 trials per SNR 
level. In each trial, the participants listened to narrative audio re
cordings at one of the three SNR levels. The participants were required 
to maintain visual fixation on a fixation cross displayed on the computer 
screen in front of them and to minimize eye blinks and all other motor 
activities during listening. The order of the narrative audio recordings 
and their assigned SNR levels was randomized for each participant. 

After each trial, the participants were instructed to answer two four- 
choice questions about the content of the narrative audio recording 
using the computer keyboard. The averaged accuracies across all trials 
(separately for each SNR level) were used to reflect the participants’ 
comprehension performance. After completing these questions, the 
participants were instructed to rate the perceived clarity and intelligi
bility of the narrative audio recording on a 100-point rating scale and 
rested for at least 5 s before moving on to the next trial. No feedback was 
given to the participants about their comprehension performance during 
the experiment. 

The experimental procedure was programmed in MATLAB using the 
Psychophysics Toolbox 3.0 (Brainard, 1997). The speech stimuli were 
delivered to listeners seated in a sound-attenuated room via an air-tube 
earphone (Etymotic ER2, Etymotic Research, Elk Grove Village, IL, USA) 
to avoid environmental noise and equipment electromagnetic interfer
ence. The volume of the audio stimuli was adjusted individually for each 
participant to a comfortable level, and it was kept consistent across 
trials. The experimental procedure is illustrated in Fig. 1. 

2.4. EEG recording and preprocessing 

EEG signals were recorded from 60 channels with a NeuroScan 
amplifier (SynAmp II, NeuroScan, Compumedics, USA) at a sampling 
rate of 1000 Hz. Electrodes were positioned according to the interna
tional 10–20 system, including FP1/2, FPZ, AF3/4, F7/8, F5/6, F3/4, 
F1/2, FZ, FT7/8, FC5/6, FC3/4, FC1/2, FCZ, T7/8, C5/6, C3/4, C1/2, 
CZ, TP7/8, CP5/6, CP3/4, CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ, 
PO7/8, PO5/6, PO3/4, POZ, Oz, O1/2, referenced to an electrode be
tween CZ and CPZ with a forehead ground at FZ. Electrode impedances 
were kept below 10 kOhm for all electrodes throughout the experiment. 

The recorded EEG data were first notch filtered to remove the 50 Hz 
powerline noise. Independent Component Analysis (ICA) was performed 

Fig. 1. Experimental procedure. The participants listened to 30 naturalistic narrative audio recordings which each lasted around 90 s. These audio recordings were 
mixed with three levels of spectrally matched stationary noise: no-noise (NN), low-noise (SNR = 3 dB), and high-noise (SNR = − 3 dB). The 60-channel EEG signals 
were recorded during listening. After listening to each narrative audio recording, the participants were required to complete a comprehension test and report the 
clarity and intelligibility rating. In the comprehension test, two four-choice questions per audio recording based on the narrative content were used. 
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to remove artifacts such as eye blinks and eye movements based on vi
sual inspection. Around 4–12 independent components (ICs; mean =
6.6) were removed per participant. The remaining ICs were then back- 
projected onto the scalp EEG channels to reconstruct the artifact-free 
EEG signals. The EEG signals were then re-referenced to the average 
of all scalp channels and downsampled to 128 Hz. Afterward, EEG sig
nals were filtered into the delta (1–4 Hz) and theta (4–8 Hz) bands, 
which have been previously reported to be important for speech neural 
tracking (Ding et al., 2014; Etard and Reichenbach, 2019; Keitel et al., 
2017; Koskinen et al., 2020; Li et al., 2023; Peelle et al., 2013). For 
comprehensiveness, we also included the alpha (8− 12 Hz) and beta 
(12− 30 Hz) bands into analyses. Causal FIR (Finite Impulse Response) 
filters were employed to ensure that the filtered EEG signals were 
determined only by the current and previous data samples, which was 
important for the present study focusing on the fine-grained time course, 
particularly considering the pre-onset neural responses (de Cheveigné 
and Nelken, 2019). 

These preprocessed EEG signals were segmented into 30 trials, from 
5 to 90 s (duration = 85 s), relative to the speech onsets of each trial to 
avoid possible onset and offset effects. All preprocessing was conducted 
offline using MATLAB and the Fieldtrip toolbox (Oostenveld et al., 
2011). 

2.5. Feature extraction 

Three types of features were extracted to represent the acoustic 
(amplitude envelope) and semantic (word entropy, word surprisal) in
formation for each narrative audio recording. An example of these 
speech features is illustrated in Fig. 2A. 

Acoustic feature. The amplitude envelope for each narrative audio 
recording was calculated as the absolute values after a Hilbert transform 
and then downsampled to the sampling rate of 128 Hz to match that of 
the EEG signals. 

Semantic features. Before feature extraction, the narrative audio re
cordings were converted to text by Iflyrec software (Iflytek Co., Ltd, 
Hefei, Anhui) and then segmented into words based on the THU Lexical 
Analyzer for Chinese (THULAC) toolbox (Sun et al., 2016). 

Two semantic features, word entropy and word surprisal, were 
extracted. Word entropy measures the uncertainty of predicting the 
upcoming word based on the context so far and was calculated as Eq. (1): 

Entropy(t) = −
∑

wt+1

P(wt+1|w1,⋯,wt)logP(wt+1|w1,⋯,wt) (1) 

Word surprisal measures how surprising the current word is given 
the previously encountered words and was calculated as Eq. (2): 

Surprisal(t) = − logP(wt|w1,⋯,wt− 1) (2)  

where, w1,…,wt− 1 are the existing word sequence and P(wt |w1,…,wt− 1)

is the conditional probability of next word (Willems et al., 2016). These 
NLP calculations were conducted by ADAM, a widely accepted 
Long-Short Term Memory (LSTM) Neural Network model (Kingma and 
Ba, 2015). The model was trained on the corpora corpus of the People’s 
Daily with 534,246 Chinese words. See Supplementary Table S1 for 
more information about the model and Supplementary Table S2 for 
more information about the descriptive statistics of semantic features. 

After extracting the semantic features of each word, the word onset 
timings were estimated via Iflyrec software. Impulses at the word onset 
time were manipulated with corresponding semantic feature values to 
generate one-dimensional “semantic vectors” (e.g., Broderick et al. 
2018, Gillis et al. 2021). The sampling rate of the semantic vectors was 
128 Hz to match the EEG signals. 

2.6. Modeling of the stimulus-response relationship 

The Temporal Response Function (TRF) modeling method based on 

ridge regression was adopted to explore the relationship between the 
neural activities and the three types of stimulus features (Crosse et al., 
2016, 2021). Forward modeling was first used to illustrate the specific 
spatiotemporal response patterns and identify key electrodes and time 
lags in TRF responses of the corresponding speech feature, and then 
backward modeling was adopted to verify the possible contribution of 
these identified neural correlates (e.g., Broderick et al. 2019, Etard and 
Reichenbach 2019). The overall procedure of the modeling analyses is 
shown in Fig. 2B and C. 

Forward modeling. With a forward modeling approach, we described 
neural response patterns to different speech features by linear spatio
temporal filters called TRFs, which measure how neural signals from 
different regions are modulated by stimulus features at different time 
lags (Crosse et al., 2016). The estimated TRF together with the corre
sponding speech feature was used to predict the EEG responses from 
each electrode. The prediction accuracy measured as the Pearson’s 
correlation between the actual and predicted EEG signals represents the 
performance of the forward model. The TRF, w, is measured by Eq. (3): 

w =
(
ST S + λI

)− 1ST r (3) 

where, S is the lagged time series of the stimulus features, r is the 
neural signals, and I is the identity matrix. The time lags for forward 
modeling were chosen to cover a relatively broad time range, from 
− 1000 to 1000 ms (Goldstein et al., 2022; Li et al., 2021a, 2023). The λ 
is the regularization parameter used to prevent overfitting and ranged 
between 0.1 and 1000 in steps of the powers of 10 empirically (Gillis 
et al., 2022b). The cross-validation procedure was implemented in a 
leave-one-trial-out procedure within each participant: each time, the 
model was trained based on 9 trials and tested on the left-out trial, which 
was repeated for each of the 10 trials at three SNR levels separately. The 
λ value that produced the highest prediction accuracy averaged across 
trials after cross-validation was selected as the regularization parameter 
for all trials at a certain SNR level per participant. TRF amplitudes were 
further transformed into z-scores before statistical analyses (Ding et al., 
2014; Gillis et al., 2021; Li et al., 2021b). 

The statistical significance of the estimated TRFs was estimated by 
constructing control TRF models (Weissbart et al., 2020). We built 
control models by constructing TRF models using shuffled stimulus 
features and the EEG recordings in the same way as for the computation 
of the actual TRFs. The shuffled amplitude envelope was constructed by 
randomly shuffling the feature value within a trial while keeping the 
timing of the quiet fragments. The shuffled word entropy and word 
surprisal were constructed by randomly shuffling the feature value 
within a trial while keeping the timing of impulses. Therefore the speech 
features that described acoustic and linguistic word onsets were not 
altered and thus left no impact on TRFs’ significance (Weissbart et al., 
2020). The shuffling was repeated 1000 times and resulted in 1000 
control TRFs for a corresponding actual TRF. 

A nonparametric cluster-based permutation test was applied to ac
count for multiple comparisons (Maris and Oostenveld, 2007). For each 
electrode-time bin in the actual and control TRFs, a one-sample t-test 
was used to examine whether the TRF amplitudes significantly differed 
from 0. Then neighboring electrode-time bins with an uncorrected 
p-value less than 0.01 were combined into clusters. The minimum 
number of neighboring significant channels that was required for in
clusion in a cluster was 2. For each cluster, the sum of the t-statistics was 
obtained. A null distribution was created from the 1000 control test 
statistics, i.e., the maximum cluster-level t-statistics. The corrected 
p-value for each cluster was calculated as the proportion of control test 
statistics greater than the actual cluster-level t-statistics. Clusters with 
p-values below 0.05 were selected for further analyses. We implemented 
the same statistical analyses procedure for each of the 18 TRFs (3 
stimulus features × 2 frequency bands × 3 SNR levels). The EEG elec
trodes and time lags from significant clusters were regarded as ROIs/
TOIs. Then peaks were estimated within these ROIs/TOIs, and the peak 
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amplitudes and peak latencies were compared across different SNRs. 
Backward modeling. With a backward modeling approach, we 

simultaneously took neural signals from several electrodes to recon
struct stimulus features with a decoder. The reconstruction accuracy was 
measured as the Pearson’s correlation between the actual and recon
structed stimulus features. The decoder, g, is calculated by Eq. (4), where 
R is the lagged time series of the EEG data. The reconstructed feature, 
ŝ(t), is calculated by Eq. (5) where n is the EEG electrodes, and τ is the 
time lags (Broderick et al., 2019). 

g =
(
RT R + λI

)− 1RT s (4)  

ŝ(t) =
∑

n

∑

τ
rn(t + τ)gn(τ) (5) 

Only the exact ROIs/TOIs from significant clusters found in the for
ward modeling were included in the backward modeling. The EEG sig
nals and stimulus features were downsampled to 64 Hz for better 
computational efficiency. The same leave-one-trial-out cross-validation 
procedure as in the forward modeling approach was conducted to obtain 
the optimal regularization parameter and calculate the reconstruction 
accuracy. We also estimated the control decoders using the same shuf
fling methods in forward modeling. The reconstruction accuracies from 
the 1000 control decoders were averaged and compared with the actual 
decoder via a one-tailed paired t-test, and the p values of clusters were 

Fig. 2. Speech feature extraction and Temporal Response Function analyses. (A) Three types of speech features were extracted, including one acoustic feature 
(amplitude envelope) and two semantic features (word entropy and word surprisal). The two semantic features were derived from a computational linguistic model 
and one-dimensional vectors were generated with impulses manipulated with semantic feature values at the corresponding word onsets time. (B) Forward modeling. 
TRFs were extracted by regressing each of the three types of speech features against the EEG signals separately. The significance of these TRFs was estimated by 
comparing them with the corresponding control TRFs, which were modeled based on EEG signals and shuffled speech features. The resulting spatiotemporal ranges 
were identified as regions of interest (ROIs) and time lags of interest (TOIs). (C) Backward modeling. These three types of speech features were separately recon
structed through backward TRF models, and the reconstruction accuracy (Pearson’s r) depicted the strength of neural tracking. Control backward models were 
constructed with EEG signals and shuffled features. 
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corrected via the false discovery rate (FDR) method (Benjamini and 
Hochberg, 1995). 

In sum, the analyses of neural tracking followed two main steps. (1) 
We calculated the actual forward model and control forward models and 
identified ROIs/TOIs according to clusters with significant differences 
between them. (2) We estimated the reconstruction accuracy based on 
these ROIs/TOIs. This procedure resulted in (1) the specific spatiotem
poral TRF response pattern and (2) the strength of neural tracking 
(reconstruction accuracy) for analyses. 

Given that the neural signatures of speech processing could exhibit 
different spatiotemporal patterns at various SNR levels (e.g., Bidelman 
and Howell 2016, Billings et al. 2009, Strauß et al. 2013), we conducted 
separate statistical tests for identifying significant clusters in the TRF 
responses at different SNR levels, in order to capture all potentially 
significant results without missing anything. 

We classified these significant clusters into two types based on their 
spatiotemporal dynamics: those with largely overlapped spatiotemporal 
patterns across all SNR levels, which could represent a reliable response 
across all SNR levels, and those with unique patterns at a certain SNR 
level, which might signify distinct processing mechanisms under certain 
circumstances. This was achieved by visual inspection and calculating a 
similarity index, which derived from the average of the temporal and 
spatial similarity. See Supplementary Fig. S2 for more information. The 
consistent clusters were compared to explore how the commonly shared 
neural signature adapted to noise, while the unique clusters received less 
attention in subsequent analyses. Linear-mixed effect (LME) models and 
Spearman’s correlation was conducted to examine the relationship be
tween neural tracking and behavioral performance. 

Before modeling, the three types of stimulus features across all trials 
and EEG signals across all channels were z-scored as recommended to 
ensure consistent scaling (Crosse et al., 2016, 2021). Modeling and an
alyses for different stimulus features were conducted independently. 
Considering we focused on the neural tracking of underlying hierar
chical information in speech rather than physical stimulus, we adopted 
the same stimulus features of no-noise speech for the other two SNR 
levels (Ding and Simon, 2013; Fuglsang et al., 2017). The forward and 
backward modeling was conducted in MATLAB using the Multivariate 
Temporal Response Function (mTRF) toolbox (Crosse et al., 2016). The 
cluster-based permutation test was conducted in the FieldTrip toolbox 
(Oostenveld et al., 2011). Other statistical analyses were conducted via 
MATLAB functions and IBM SPSS Statistics software (IBM corp, 2019). 

3. Results 

3.1. Behavioral performance 

The speech comprehension performance was measured as the aver
aged response accuracy of the four-choice questions and was found to be 
significantly different among the three SNR levels (rmANOVA, F(2, 36) 
= 6.74, p = 0.003). The speech comprehension performance was 95.26 
± 1.05 %, 90.79 ± 2.10 %, and 85.26 ± 2.63 % (mean ± SE) at the no- 
noise level, low-noise level, and high-noise level, respectively. The 
comprehension performance at the high-noise level was significantly 
lower than that at the no-noise level (post-hoc t-test, p = 0.006, Bon
ferroni corrected). In addition, it should be noted that the comprehen
sion performance was still well above chance level even at the high- 
noise level (one-tailed t-test, t(18) = 22.88, p < 0.001). 

The subjective ratings of clarity and intelligibility showed a similar 
pattern with significant differences among the SNR levels (rmANOVA, F 
(2, 36) = 148.32 and 35.31, ps < 0.001). The normalized clarity rating 
scores were 0.94 ± 0.01, 0.66 ± 0.04, and 0.35 ± 0.04 (mean ± SE), 
and the normalized intelligibility rating scores were 0.93 ± 0.01, 0.88 
± 0.02, and 0.73 ± 0.03 (mean ± SE) at the no-noise, low-noise, and 
high-noise level, respectively. Post hoc t-tests revealed significant pair
wise differences for all possible comparisons (ps < 0.01, Bonferroni 
corrected). The behavioral performance is illustrated in Fig. 3. These 
results suggested that the effect of noise on speech comprehension and 
perception was effectively manipulated. 

3.2. Summary of all significant clusters in the acoustic- and semantic-level 
TRF responses 

We summarized all significant clusters in the acoustic- and semantic- 
level TRF responses in Fig. 4. Significant clusters were only found in the 
delta/theta bands but not alpha/beta bands (see Supplementary Fig. S1 
for more information). The specific time lags of TOIs of clusters were 
listed in Supplementary Tables S3 and S4. According to visual inspection 
and the similarity index (shown in Supplementary Fig. S2), these sig
nificant clusters were classified into responses that exhibited relative 
consistency across different SNR levels, as well as distinctive response at 
a certain SNR level. 

Clusters with largely overlapped spatiotemporal patterns across all 
SNR levels were found in theta-band acoustic-level TRFs (i.e., A1, A2, 
A3) and delta-band entropy-based semantic-level TRFs (i.e., E1, E2, E3). 
Detailed analyses of them are demonstrated in the Sections 3.3 and 3.4, 
respectively. Several clusters with similar spatiotemporal patterns 
shared by certain SNR levels, such as the acoustic-level TRF response 

Fig. 3. Behavioral results. Black dots indicate data points from each participant. Error bars denote the standard error. *: p < 0.05, **: p < 0.01, ***: p < 0.001.  
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within the occipital electrodes (i.e., A4 and A5) and the post-onset en
tropy-based semantic-level TRF responses within the central electrodes 
(i.e., E5 and E6). Analyses of them are demonstrated in Supplementary 
Figs. S3 and S4. No further analysis was done for the other unique 
clusters at the no-noise level. No significant TRF responses to word 
surprisal were found. 

3.3. Acoustic-level TRF responses with delayed latencies as noise 
increases 

Significant acoustic-level TRF responses in the theta band were 
found at all SNR levels and showed a similar positivity within central 
electrodes at around 300~500 ms (i.e., A1, A2a, A3b), as demonstrated 
in Fig. 5A. At the no-noise level, the TRF showed positivity in the central 
electrodes with a latency of around 400 ms (cluster-level p < 0.01). At 

the low-noise and high-noise levels, the TRF showed similar positivity in 
the central electrodes with a latency of around 430 (cluster-level p <
0.01) and 440 ms (cluster-level p < 0.01). We estimated the peak 
amplitude and peak latency for the positive peak at each SNR level. The 
peak latencies were significantly different among the three SNR levels 
(rmANOVA, F(2, 36) = 21.42, p < 0.001), and post-hoc t-tests revealed 
significantly delayed peak latencies as noise increased (ps < 0.05, 
Bonferroni corrected), as shown in Fig. 5C. No significant differences 
were found in the peak amplitudes (rmANOVA, F(2, 36) = 0.64, p =
0.535). 

The reconstruction accuracies from the corresponding ROIs/TOIs 
were significantly higher in the actual decoders than in the control de
coders (ps < 0.01, FDR corrected, Fig. 5B). Comparing the reconstruc
tion accuracies revealed significant differences among the three SNR 
levels (rmANOVA, F(2, 36) = 6.19, p = 0.010 with Greenhouse-Geisser 

Fig. 4. Significant clusters in TRF responses to (A) amplitude envelope, (B) word entropy, and (C) word surprisal at different SNR levels and frequency bands. 
Significant clusters are numbered A1− A5 and E1− E8. Clusters with similar spatiotemporal patterns are organized in the same row. ROIs of clusters are shown as 
black dots in the corresponding topography. The colored curves are the mean of TRFs averaged among ROIs across participants. The shaded areas denote the standard 
error of TRFs. The colored horizontal line below the TRF curve indicates the TOIs of the cluster. The a and b refer to clusters with the same ROIs but different TOIs. n. 
s.: no significant cluster was found. 

X. Zhang et al.                                                                                                                                                                                                                                   



NeuroImage 282 (2023) 120404

8

correction), and post-hoc t-tests revealed significantly weakened neural 
tracking at the high-noise level compared with the no-noise level and the 
low-noise level (ps < 0.05, Bonferroni corrected, Fig. 5C). 

3.4. Semantic-level TRF responses with earlier latencies as noise increases 

Significant semantic-level TRF responses to word entropy in the delta 
band were found at all SNR levels. They showed similar negativity at 
around 200~600 ms leading to speech fluctuation onset, as 

Fig. 5. Acoustic-level TRF responses in the theta band at different SNR levels. (A) The bold curves in different shades of red are the mean of TRFs averaged among 
ROIs across participants at the three SNR levels. The gray curves are TRFs averaged among the ROIs of each participant. The colored horizontal line at the bottom of 
each plot indicates TOIs over which TRFs differed significantly from the control models. Dots in the corresponding topographies depicted the ROIs. (B) Recon
struction accuracy calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise effect on the peak amplitude, peak latency, 
and reconstruction accuracy. gray dots indicate data points from each participant. Error bars denote the standard error. n.s.: not significant, *: p < 0.05, **: p < 0.01, 
***: p < 0.001. 
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demonstrated in Fig. 6A. The time lags of pre-onset processing to word 
entropy showed a gradual advanced trend as noise increased. The time 
lag was approximately from around − 300 ms to − 180 ms at the no-noise 
level (cluster-level p < 0.05) and was from around − 400 ms to − 250 ms 
at the low-noise level (cluster-level p < .05), from around − 630 ms to 
− 360 ms at the high-noise level (cluster-level p < 0.01). We estimated 

the peak amplitude and peak latency for the pre-onset negative peak at 
each SNR level. The peak latencies were significantly different among 
the three SNR levels (rmANOVA, F(2, 36) = 58.08, p < 0.001), and post- 
hoc t-tests revealed that as noise increased the peak latencies were 
gradually earlier (ps < 0.05, Bonferroni corrected), as shown in Fig. 6C. 
No significant differences were found in the peak amplitudes 

Fig. 6. Semantic-level TRF responses to word entropy in the delta band at different SNR levels. (A) The bold curves in different shades of green are the mean of TRFs 
averaged among ROIs across participants at the three SNR levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored horizontal line 
at the bottom of each plot indicates TOIs over which TRFs differed significantly from the control models. Dots in the corresponding topographies depicted the ROIs. 
(B) Reconstruction accuracy calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise effect on the peak amplitude, peak 
latency, and reconstruction accuracy. gray dots indicate data points from each participant. Error bars denote the standard error. n.s.: not significant, †: p < 0.1, *: p <
0.05, **: p < 0.01, ***: p < 0.001. 
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(rmANOVA, F(2, 36) = 0.63, p = 0.538). 
The pre-onset TRF responses to word entropy exhibited different 

spatiotemporal patterns at three SNR levels. At the no-noise level, the 
ROIs included frontal-parietal electrodes and exhibited obvious left 
lateralization. At the low-noise level, the ROIs showed similar left- 
lateralized topological distribution but included more electrodes, 
while at the high-noise level, no obvious lateralization was observed in 
the frontal-parietal ROIs. 

The reconstruction accuracies from corresponding ROIs/TOIs were 
significantly higher in the actual decoders than in the control decoders 
at both the low-noise level (p < 0.05, FDR corrected) and the high-noise 
level (p < 0.001, FDR corrected), but only marginally significant at the 
no-noise level (p = 0.073, FDR corrected), as shown in Fig. 6B. 
Comparing the reconstruction accuracies among different SNR levels 
revealed no significant differences (rmANOVA, F(2, 36) = 1.64, p =
0.208, Fig. 6C). 

3.5. Correlation between TRF responses and behavioral performance 

As the peak latencies of both the post-onset positive peak of acoustic- 
level TRFs and the pre-onset negative peak of semantic-level TRFs 
showed significant differences among SNR levels, we then created linear 
mixed effect models to explore whether these peak latencies were sen
sitive predictors of the behavioral performance with the following 
general formula:  

where “Behavioral performance” refers to the comprehension perfor
mance, clarity, or intelligibility ratings. “SNR” takes the values of speech 
intensity percentage, i.e., 100 %, 60 %, and 40 %. “Peak latency” refers 
to the peak latencies of either the acoustic-level post-onset TRFs or the 
semantic-level pre-onset TRFs, depending on the specific model being 
investigated. “SNR:Peak latency” refers to the interaction between them. 
A random intercept per participant was included in the model. “Peak 
latency” and “SNR:Peak latency” were added between brackets to the 
general formula because these factors were included only if they led to a 
lower Akaike Information Criterion (AIC) which indicated a better 
fitting (Verschueren et al., 2022). Results showed that overall, the 
behavioral performance was correlated with SNR levels, which echoed 
the behavioral results in the Section 3.1. More importantly, the earlier 
peak latencies of semantic-level pre-onset TRF response were correlated 
with the decreasing comprehension performance (LME, β = 2.61 ×
10− 4, t(52.64) = 1.853, p = 0.069) and the decreasing perceived intel
ligibility (LME, β = 9.26 × 10− 4, t(40.48) = 3.497, p = .001). And the 
correlation with intelligibility was more prominent as noise increased 
(LME interaction, β = − 7.69 × 10− 4, t(45.80) = − 1.987, p = 0.053), as 
illustrated in Table 1 and Fig. 7. The relationships between the recon
struction accuracies and the behavioral performance were also 

examined through Spearman’s correlation and summarized in Supple
mentary Tables S5 and S6. 

4. Discussion 

The current study investigated the neural tracking of hierarchical 
features of naturalistic speech in noisy situations using a TRF-based 
technique. Significant post-onset acoustic-level TRF responses were 
found within the central electrodes at around 400 ms, and the peak la
tencies were delayed as noise increased. Significant pre-onset semantic- 
level TRF responses were found within the frontal electrodes at around 
− 600~− 200 ms. The peak latencies showed a gradually advanced trend 
as noise increased, and increased advancement was correlated with 
decreasing comprehension performance and intelligibility. These find
ings indicated that noise differently modulates acoustic and semantic 
processing and suggested that robust and adaptive semantic pre- 
activation could play a vital role in reliable speech comprehension in 
noisy environments. 

The delayed peak latency in the acoustic-level TRF responses as noise 
increased was in line with several previous studies, suggesting an 
impaired efficiency in challenging conditions with background noise 
(Gillis et al., 2022a; Mirkovic et al., 2019; Muncke et al., 2022; Yasmin 
et al., 2023; Zou et al., 2019). As the frontally and centrally distributed 
channels (corresponding to the primary auditory cortex, superior tem
poral gyrus, premotor cortex, etc.) have been frequently reported to be 
related to the processing of speech acoustics (e.g., Bidelman and Howell 

2016, Broderick et al. 2019, Hickok and Poeppel 2007, Zou et al. 2019), 
the present TRF results would imply similar recruitment of these brain 
regions for acoustic-level processing for naturalistic speech under 
various SNR levels. However, the post-onset 400 ms latency was later 
compared to the commonly reported latency of < 300 ms in previous 
studies (Gillis et al., 2022a; Yasmin et al., 2023). This discrepancy could 
be due to the causal filter used for EEG signal preprocessing in the 
present study, possibly resulting in a delayed TRF compared to previous 
studies using noncausal filters, similar as reported by Etard and Reich
enbach (2019). Alternatively, it could be possible that the latency 
modulation started earlier but only reached significance later for the 
present dataset, as the observed TRF responses exhibited an oscillatory 
pattern starting much earlier than 400 ms (Fig. 5C). While an impaired 
processing efficiency has been associated with both amplitude and la
tency modulation by noise in previous studies (Muncke et al., 2022; 
Zion Golumbic et al., 2013; Zou et al., 2019), the present study together 
with a series of other studies reporting latency-only results would sug
gest latency as a more sensitive candidate for noisy speech processing 
(Ding and Simon, 2013; Kaplan-Neeman et al., 2006; Whiting et al., 
1998). 

At the semantic level, our findings on the pre-onset response to word 

Table 1 
LME models of the behavioral performance as a function of SNR and peak latency. Each row indicates a different model. The SNR was given as a percentage (100 %, 60 
%, 40 %).    

SNR Peak latency SNR:Peak latency   

β t p β t p β t p 

Comprehension performance TRFacoustic 1.46×10–2 3.835 .001 No lower AIC No lower AIC 
TRFsemantic 6.23×10–2 1.056 .297 2.61×10–4 1.853 .069 No lower AIC 

Clarity TRFacoustic 8.87×10–1 16.481 < 0.001 No lower AIC No lower AIC 
TRFsemantic 8.87×10–1 16.481 < 0.001 No lower AIC No lower AIC 

Intelligibility TRFacoustic 1.74×10–1 6.050 < 0.001 No lower AIC No lower AIC 
TRFsemantic − 1.34×10–1 − 1.147 .257 9.26×10–4 3.497 .001 − 7.69×10–4 − 1.987 .053  

Behavioral perf ormance ∼ SNR ( + Peak latency) ( + SNR : Peak latency) + Random   
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entropy were consistent with recent studies, in which the neural re
sponses to entropy have been reported to involve neural activities within 
the left hemisphere at up to 800 ms before onset (Goldstein et al., 2022; 
Weissbart et al., 2020; Willems et al., 2016). This pre-onset prediction 
mechanism for the upcoming stimuli was regarded as a fundamental 
computational principle in the human language processing (Goldstein 
et al., 2022). Our results echo these findings and highlight the potential 
of entropy as a promising index for exploring forward-looking prediction 
mechanisms. 

More importantly, our results extend the present understanding of 
the predictive mechanism with the manipulation of the SNR levels and 
suggest a distinct mechanism for speech-in-noise comprehension at the 
semantic level. The significant pre-onset response to word entropy 
appeared at all SNR levels, which would imply that such a forward- 
looking prediction was robust against noise. In addition, we found 
that the peak latencies of the pre-onset responses became earlier with 
increasing noise, and that increased forward shift trend at each SNR 
level was correlated with poorer perceived intelligibility as well as 
decreasing comprehension performance. One possible explanation for 
this phenomenon is that our brain could adjust the timing of predictive 
processing in response to adverse environments. As semantic prediction 
can facilitate speech comprehension (Mattys et al., 2012; Miller et al., 
1951; Obleser and Kotz, 2010; Pickering and Gambi, 2018; Zekveld 
et al., 2011), the brain relies on it more heavily as noise increases to 
counteract distorted auditory input. Nevertheless, noise can increase the 
processing load and decrease the processing efficiency (Gillis et al., 
2022a; Kaplan-Neeman et al., 2006; Kong et al., 2014; Mirkovic et al., 
2019). To compensate for the interference, the neural system initiates 
the pre-onset response earlier and extends it for a longer duration, giving 
our brain more time for the preparation of the upcoming speech infor
mation. The more degraded the speech, the greater the need for this kind 
of “early-bird” compensation. Another possible explanation is that in 
noisy environments our brain relies more on longer-range prediction 
based on higher-level context information to enhance speech compre
hension. According to a recent study based on GPT-2 and functional 
Magnetic Resonance Imaging (fMRI) (Caucheteux et al., 2023), the 
forward-looking prediction involved hierarchical representations and 
multiple time scales, with the maximum of forecast distance reaching 8 
words (corresponding to approximately 3.15 s). Future studies could 
employ local and context-unified entropy (e.g., Brodbeck et al. 2022) 

and longer time windows to further elucidate the noise effect on the 
forward-looking prediction. Overall, our findings suggest that the brain 
has a robust and adaptive prediction mechanism for reliable speech 
comprehension in noisy environments. As such a pre-onset signature 
was not observed at the acoustic level, our results suggest the predictive 
mechanism might be mainly focused at the semantic level (Goldstein 
et al., 2022; Grisoni et al., 2021), where the speech information is ex
pected to be more abstract and more robust against noise (Yasmin et al., 
2023). 

Interestingly, the spatial patterns of TRF responses to word entropy 
showed left-lateralization at the no-and low-noise levels and recruited 
bilateral hemispheres at the high-noise level. The left-lateralization has 
been reported in studies on speech-in-noise comprehension (Li et al., 
2021b) and was found to be sensitive to linguistic content (Peelle et al., 
2013), word entropy (Willems et al., 2016), and semantic expectancy 
(Golestani et al., 2013; Obleser and Kotz, 2010). Our results would 
support the left-lateralized brain regions for predictive speech process
ing at the semantic level. Meanwhile, research has reported that regions 
within the right hemisphere, such as the right inferior frontal gyrus, are 
sensitive to semantic features such as entropy (Willems et al., 2016) and 
that the involvement of the right hemisphere increased under degraded 
conditions (Bidelman and Howell, 2016), which was hypothesized as the 
possible recruitment of additional regions for compensation (Shtyrov 
et al., 1998, 1999). Accordingly, our results suggest that the involve
ment of bilateral hemispheric in adverse environments might reflect a 
semantic-related compensation mechanism. 

Our results suggested the specificity of the frequency band for pro
cessing different levels of speech information. Specifically, acoustic- 
level TRF response was primarily associated with the theta band 
whereas semantic-level TRF neural response was dominated by the delta 
band (Fig. 4). This could be explained as that theta- and delta-band 
neural tracking have different functional roles: the former is related to 
acoustic processing while the latter is related to sematic/syntactic pro
cessing (Dai et al., 2022; Ding et al., 2014; Etard and Reichenbach, 2019; 
Kösem and van Wassenhove, 2017; Li et al., 2023). Alternatively, this 
distinction could be related to the intrinsic temporal properties of the 
speech features (Lalor, 2018), that is, a faster acoustic-level fluctuation 
at the theta rhythm and a slower semantic-level fluctuation at the word 
rate similar to the delta rhythm. Further studies could employ careful 
experimental manipulation to clarify whether this frequency-specific 

Fig. 7. Correlation between the peak latencies of the semantic-level pre-onset TRFs and (A) the comprehension performance and (B) the perceived intelligibility. 
Colored dots indicate data points from each participant at different SNR levels. 
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neural tracking is the result of intrinsic neural oscillations or 
stimulus-evoked responses (see a review, Obleser and Kayser 2019). For 
instance, researchers could manipulate the speech rate (Oganian et al., 
2023) and examine whether the frequency characteristics of neural 
tracking at the semantic level change in response to the varying word 
rates. 

The present study has some limitations to be noted. First, there were 
several significant TRF responses to word entropy not included in the 
above analyses and discussions, which were primarily observed at the 
no-noise level. As the focus of the present study was speech-in-noise 
comprehension, these responses were not further discussed. Neverthe
less, they also reflected speech information processing that would 
deserve investigations in future studies. Second, while the present study 
only adopted word entropy and word surprisal as two semantic-level 
features (Gillis et al., 2021; Goldstein et al., 2022; Heilbron et al., 
2022; Weissbart et al., 2020; Willems et al., 2016), the rapid develop
ment in NLP methods especially the large language models (LLMs) 
present us with a broader range of options such as semantic embedding 
(Heilbron et al., 2022). Future studies could employ additional indexes 
to fully demonstrate the adaptation mechanism of speech-in-noise 
comprehension. Furthermore, beyond feature extraction, the LLMs 
also could serve as brain-aligned agents which could be compared with 
humans and help unveil shared (or unique) mechanisms in the human 
brain (Caucheteux et al., 2023; Goldstein et al., 2022; Mahowald et al., 
2023; Schrimpf et al., 2020). In sum, future studies could employ the 
promising NLP-based approach to further extend our understanding of 
language processing. Third, despite the advantage of the high temporal 
resolution of EEG in exploring temporal dynamics, the relatively poor 
spatial resolution limits the ability to investigate brain regions involved 
in predictive mechanisms. A more fine-grained analysis of the spatio
temporal dynamics of semantic prediction would require techniques 
such as fMRI, ECoG, or multimodal approaches. 

In summary, the current study investigated how noise affected 
acoustic and semantic processing during naturalistic speech compre
hension. With increasing noise, acoustic processing became increasingly 
delayed whereas semantic processing became increasingly advanced. 
Our results suggest that, while the efficiency of brain processing of 
speech information is indeed impaired by noise, the brain could 
compensate for the associated effects through active prediction at the 
semantic level. Overall, the present findings are expected to contribute 
to the growing research on the neural mechanisms of naturalistic speech 
comprehension in noisy environments. 
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linguistic information impairs neural tracking of attended speech. Curr. Res. 
Neurobiol., 100043 https://doi.org/10.1016/j.crneur.2022.100043. 

X. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.neuroimage.2023.120404
https://doi.org/10.1080/23273798.2018.1546882
https://doi.org/10.1080/23273798.2018.1546882
https://doi.org/10.1080/23273798.2018.1518534
https://doi.org/10.1111/j.1469-8986.2006.00448.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuroimage.2015.09.020
https://doi.org/10.1097/AUD.0b013e3181ec5c46
https://doi.org/10.1016/j.heares.2009.04.002
http://refhub.elsevier.com/S1053-8119(23)00555-4/sbref0008
https://doi.org/10.7554/eLife.72056
https://doi.org/10.1016/j.cophys.2020.07.014
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1523/JNEUROSCI.0584-19.2019
https://doi.org/10.1523/JNEUROSCI.0584-19.2019
https://doi.org/10.1038/s41598-021-84597-9
https://doi.org/10.1038/s41598-021-84597-9
https://doi.org/10.1038/s41562-022-01516-2
https://doi.org/10.1038/s41562-022-01516-2
https://doi.org/10.1016/0093-934X(92)90018-A
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnins.2021.705621
https://doi.org/10.1016/j.crneur.2022.100043


NeuroImage 282 (2023) 120404

13

Daltrozzo, J., Wioland, N., Kotchoubey, B., 2012. The N400 and Late Positive Complex 
(LPC) effects reflect controlled rather than automatic mechanisms of sentence 
processing. Brain Sci. 2 (3) https://doi.org/10.3390/brainsci2030267. Article 3.  
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