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Abstract: Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and
PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA
receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit
resistance against BLU-285 and thus require other treatment strategies. This can be addressed
by employing a drug delivery system that transports a combination of drugs with distinct cell
targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels
(NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with
inverse electron-demand Diels–Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-
norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol.
The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not
trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica
Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug
release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1
family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics
of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry
for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable
of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore,
multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R
cells, demonstrating the utility of this carrier system.

Keywords: nanogels; drug delivery; GIST; iEDDA; polyglycerol

1. Introduction

The most frequent mesenchymal neoplasm of the digestive system are gastrointestinal
stromal tumors (GISTs). GISTs are believed to develop from the interstitial cells of Cajal
or related stem cells. They are classified by proto-oncogene receptor tyrosine kinase KIT
or platelet-derived growth factor receptor alpha (PDGFRA)-activating mutations [1,2].
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Approximately 80% of GISTs contain KIT gene mutations, while an additional 10% dis-
play PDGFRA gene mutations, resulting in constitutive activation of the KIT receptor and
downstream signaling pathways that promote cell survival, growth, and proliferation [3–5].
GISTs occur most frequently in the stomach (60%) and small intestine (25%). However,
they can also be found in the rectum (5%), esophagus (2%), and several other places
(5%), including the appendix, gallbladder, pancreas, mesentery, omentum, and retroperi-
toneum [6–15]. Surgical resection is the most common form of GIST treatment. Patients
with low-risk or intermediate-risk cancers have reasonably favorable outcomes, whereas
recurrence is nearly unavoidable after the excision of high-risk tumors [16]. Single-agent
and combination chemotherapy trials have routinely failed to produce partial response
rates of more than 5% [17]. These unfavorable observations could be attributed to high
levels of multi-drug resistance protein expression in many GISTs [18,19].

With the development of novel medications, such as Sunitinib, Imatinib, and Avapri-
tinib (BLU-285), which target the cancer-specific KIT and PDGFRA tyrosine kinase receptors,
the previously bleak prospects for patients with locally progressed or metastatic GISTs
have significantly improved. Secondary genetic mutations, on the other hand, induce drug
resistance and impede the development of new therapeutic options. For example, GIST
cells with the common D842V mutation in the PDGFRA gene are relatively insensitive to
the drug Imatinib [20]. Furthermore, patients with the D842V mutation might generate a
secondary mutation, D842V + G680R, which makes them resistant to BLU-285 [4]. Using
a combination of drugs is one technique for combating drug resistance in GISTs. Tane-
spymicin (17-AAG) is a geldanamycin derivative that preserves significant anticancer action
while reducing hepatotoxicity and improving bioavailability [21]. It binds specifically to
the ATP-binding domain of heat shock protein 90 (HSP 90), preventing the development of
the HSP 90 multichaperone complex. This causes client proteins to be degraded via the
ubiquitin–proteasome pathway [22]. Even though HSP 90 is present in normal cells, its
overexpression has been linked to the development of many solid tumors. As a result, it
has been proposed as a universal biomarker for cancer progression. According to research,
17-AAG can selectively target cancer cells and restrict tumor growth [23]. Furthermore, it
was shown that combining imatinib with 17-AAG had a synergistic effect and could be used
to address imatinib-resistant cells [24]. However, due to 17-AAG’s poor water solubility,
systemic administration requires drug solubilizers, such as DMSO. Moreover, 17-AAG
has a short half-life circulation time and reasonable hepatotoxicity, limiting its clinical
application [22]. Hydrophobic drugs can be encapsulated non-covalently to circumvent
these difficulties in nano-sized drug delivery systems, such as nanogels (NGs). NGs are
crosslinked, three-dimensional networks of hydrophilic or amphiphilic polymers with sizes
ranging from 10 to 1000 nm [25,26]. They can be manufactured from hydrophilic polymers
that swell in aqueous media, such as polyethylene glycol [27], polyoxazoline [28], dendritic
polyglycerol (dPG) [29], and hyaluronic acid [30]. They have a variety of adjustable charac-
teristics that can be used to improve drug loading, specify drug release, and target specific
cell receptors. Thereby, a common strategy is the incorporation of degradable bonds that
can be addressed by disease-specific stimuli such as the overexpression of esterases and
lipases [31], reduced intracellular pH values in endo- and lysosomes [32], and elevated
levels of GSH in the cytosol of cells [33].

Mini- and micro-emulsion polymerizations are routinely used to produce NGs. How-
ever, this approach necessitates the use of surfactants, and removing them after the reac-
tion has ended can become challenging. As an alternative, Steinhilber et al. proposed a
surfactant-free preparation process based on adding a macromonomer solution into a non-
solvent while vigorously stirring. This results in the formation of nano-sized aggregates
in which the particles crosslink [34]. Despite its mild and surfactant-free conditions, this
approach demands crosslinking strategies with fast reaction kinetics that can be carried out
in an aqueous environment and with crosslinking moieties that are inert to other functional
groups. This can be addressed by click-type reactions, such as the inverse electron-demand
Diels–Alder cycloaddition (iEDDA), between methyl tetrazines and norbornenes.
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In this work, we report the synthesis of esterase-responsive dPG-based NGs that
can address drug resistance in rare GISTs. NGs were formed through iEDDA-mediated
nanoprecipitation. Loading of the NGs with BLU-285 and 17-AAG was achieved through
co-precipitation of the drugs. Applying the enzyme Candida Antarctica Lipase B (CALB) to
the NGs initiated network degradation. In vitro experiments were performed to investigate
the NGs’ compatibility with fetal bovine serum (FBS) and red blood cells and the system’s
ability to treat multiple GIST cells with varying drug resistances.

2. Results
2.1. Macromonomer Synthesis

dPG belongs to the polymer class of polyethers and displays excellent stealthing prop-
erties and biocompatibility [35–37]. However, it lacks inherent biodegradability, limiting
its utilization to smaller-sized polymer fragments below the renal threshold to prevent
accumulation in unwanted organs and undesired tissues. These macromonomers can be
crosslinked with biodegradable linkers to obtain high molecular weight dPGs. The overall
strategy in this work was to develop esterase-responsive dPG-based NGs through iEDDA
crosslinking. dPG was synthesized in an anionic ring-opening polymerization starting
from glycidol. Under Steglich esterification conditions, further functionalization of the
exterior hydroxyl groups with Norb-COOH and metTet-COOH resulted in the formation
of dPG-O-metTet and dPG-O-Norb with 96% yield and 86% yield, respectively. The occur-
ring iEDDA between both macromonomers during inverse nanoprecipitation led to the
formation of NGs (Scheme 1).
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rt, 60 min. (b.) dPG (10 kDa), DMAP, pyridine, 60 ◦C, o.n.

2.2. Nanogel Formation and Drug Loading

Inverse nanoprecipitation was performed by premixing an aqueous solution of dPG-O-
metTet and dPG-O-Norb, followed by their subsequent injection into acetone. Crosslinking
was terminated by the addition of water. This method relies on the addition of a good sol-
vent, such as water, into a non-solvent, such as acetone. Due to a reduction in the precursors’
solvent quality, their homogenous nucleation in nano-sized water droplets occurs, followed
by iEDDA-mediated crosslinking. NGs were obtained after evaporation of the organic
solvent under reduced pressure as a stable dispersion in water. Their size and spherical
morphology were proven by dynamic light scattering (DLS) and cryogenic transmission
electron microscopy (cryo-TEM). Gaussian analysis of the detected particles in cryo-TEM
revealed a mean size of 146 nm, slightly smaller than the measured hydrodynamic diam-
eter of 257 nm in DLS. This can be explained by the hydration shell that forms around
particles during DLS analysis but is absent during cryo-TEM measurements (Figure 1a,b).
Co-precipitation of 17-AAG and BLU-285 was achieved by premixing the drugs with one
of the precursors and led to the formation of multi-drug-loaded NGs with hydrodynamic
diameters ranging from 250 to 360 nm. Loading experiments were carried out with a drug
loading ratio of 5 wt%. Quantification of the obtained drug loading contents (DLCs) was
determined by UV/Vis spectroscopy for 17-AAG using its unique absorbance at 550 nm
(Table 1, Figure S1) and by fluorescence spectroscopy for BLU-285 using 380 nm as the
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excitation wavelength and 440 nm as the absorbance wavelength (Table 1, Figure S2). For
the single-drug-loaded NGs (17-AAG@NGs and BLU-285@NGs), a DLC of 4.95 wt% could
be determined, yielding encapsulation efficiencies (ee) of 99%. For combinational loading,
quantitative ee could be obtained for 17-AAG, and slightly reduced DLCs of 3.10 wt% could
be observed for BLU-285, indicating saturation of the system. These experiments suggest
that the NGs are capable of encapsulating hydrophobic drugs in their polymer network.
Drug retainment is most likely achieved through hydrophobic interaction between the
cargo and the organic linker structure of the reacted tetrazine and norbornene moieties.
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Figure 1. Results of NG formation. (a) Size distribution of loaded and empty NGs determined by
DLS. (b) cryo-TEM of free NGs in PBS at 1.00 mg/mL, showing the spherical appearance of the
particles. Gaussian analysis of multiple measurements determined the particle size.

Table 1. The table shows obtained data from loading experiments with 17-AAG and BLU-285 where
[wt%]theo specifies the drug amounts used for drug for encapsulation, and [wt%]calc the drug amounts
determined after encapsulation and purification.

Entry Name DLC [wt%]theo DLC [wt%]calc
1 ee (%) Size [d.nm] 2 PDI 2 ζ—Potential [mV] 2

1 Empty NGs - - - 257 ± 7 0.06 ± 0.01 −0.6
2 17-AAG@NGs 5 4.95 99 276 ± 4 0.20 ± 0.01 1.9
3 BLU-285@NGs 5 4.95 99 272 ± 12 0.10 ± 0.04 3.9

4 Comb@NGs
17-AAG 5 5.00 Quant.

361 ± 18 0.21 ± 0.05 3.8BLU-285 5 3.10 62

1 Determined via UV/Fluorescence λabs = 550 nm for 17-AAG; λex = 380 nm, λabs = 440 nm at 25 ◦C in 1.5 mM
PBS. 2 Determined with a Zetasizer Nano-ZS at 25 ◦C in 1.5 mM PBS.

2.3. Nanogel Degradation

To investigate the susceptibility of the present ester bonds, NGs were exposed to
CALB and incubated under physiological conditions (PBS 154 mM, pH 7.4, 37 ◦C). DLS
measurements of the corresponding NGs revealed a shift of the hydrodynamic diameter to
smaller-sized values of about 20 nm after 6 days of enzyme incubation. Similar changes
could be observed for the PBS control after 11 days of incubation, indicating an ester
response to CALB (Figure 2a). As proof, 1H NMR degradation experiments were carried
out with the dPG-O-Norb macromonomer. The shift in the proton signal of the norbornene
double bond was used to examine the degradation. Similar to the DLS experiment, the
esters responded faster to CALB since the appearance of the reference peak began to change
after 3 days for CALB and 14 days for the PBS control (Figure 2b).
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Figure 2. Overview of degradation experiments. (a) Degradation of NGs in the presence of PBS (blue)
and Novozyme-435 (cyan) determined by DLS. (b) Degradation of dPG-O-Norb in the presence of
PBS (top) and Novozyme-435 (down) determined by 1H NMR measurements. The insert shows
the signal of the double bond of norbornene, indicating that NG degradation can be related to
ester hydrolysis.

2.4. Compatibility Studies

The biocompatibility of the NGs was investigated by performing stability studies in
the presence of serum proteins and blood cells. Therefore, NGs were incubated with FBS
at 37 ◦C over a period of 48 h. After distinct time points, samples were withdrawn from
the solution and purified by fast protein liquid chromatography (FPLC) to separate the
NGs from the serum proteins (Figure 3a). The NG stability was investigated by calculating
the NG to FBS peak ratio, with a reduction in the NG peak integral suggesting partial
NG degradation. From the chromatograms, after 24 and 48 h, NG peak ratios could be
determined, ranging from 99 to 105%. This could indicate that parts of the serum proteins
overlap with the NG peak or that some proteins adhere to the NG’s surface, leading to a
simultaneous elution from the column. To clarify this observation, isolated NG samples
were subjected to DLS analysis (Figure 3b). Here, no mixed fractions could be observed.
Upon incubation with FBS, a slight reduction in the hydrodynamic diameter from 215 to
189 nm could be detected initially. However, there were no further changes in size over a
period of 48 h. Moreover, zeta potential measurements revealed that the NGs kept their
slightly negative surface charge, indicating the absence of charged serum proteins in the
collected NG fraction (Table 2). The biocompatibility of the NGs was further assessed by
conducting ex vivo hemolysis assays. Here, red blood cells were incubated with empty and
loaded NGs, and the amount of released hemoglobin was detected spectrophotometrically
to quantify red blood cell disruption [38]. Over a period of 24 h, less than 5% hemolysis
could be detected for all tested NG compounds (Figure S3). Together with the results
obtained from FBS stability studies, this indicates the biocompatibility of the NGs.

Table 2. The table shows analysis data of FBS stability studies obtained from chromatograms of
Figure 3a and DLS measurements of Figure 3b.

Time NG Area (%) 1 Size [d.nm] 2 PDI 2 Z—Potential [mV]2

Prior to inc. - 215 ± 1 0.10 ± 0.10 −0.6 ± 0.5
0 day 100.00 ± 0.71 189 ± 3 0.03 ± 0.06 −2.26 ± 0.5
1 day 104.48 ± 0.67 198 ± 4 0.10 ± 0.02 −2.08 ± 0.4
2 days 99.77 ± 0.74 182 ± 2 0.15 ± 0.02 −1.94 ± 0.7

1 Determined from FPLC chromatograms by dividing the NG peak area by the FBS peak area. 2 Measured with
Zetasizer Nano-ZS at 25 ◦C in 1.5 mM PBS.
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2.5. Cellular Uptake

To ensure the intracellular release of 17-AAG and BLU-285, it is necessary that the
NGs can surpass the cellular membrane of GIST cells. To investigate this requirement,
norbornene-NH2 was coupled to a Cy5 derivative via amide coupling (Figure S8) and cova-
lently attached to dPG-O-metTet via iEDDA cyclization prior to NG formation (Figure S14).
Then, GIST cells from the T1 family were exposed to the dye-labeled NGs over a period of
120 min, and confocal laser scanning microscopy (CLSM) was performed to demonstrate
successful cell internalization (Figure 4). The NGs were again exposed to the GIST cells
to quantify the kinetics behind the cellular uptake. After defined time points, the cells
were rinsed, detached, and subjected to flow cytometry analysis to determine the number
of Cy5-NG-containing cells. Over a period of 120 min, an increasing linear trend of Cy5
positive cells could be observed for all cell lines with comparable slopes (Figures S4 and S5).
This suggests that the uptake of the NGs is not influenced by the genetic mutations of the
GIST cells.

2.6. Cell Viability Studies

By proving the capability of GIST cell internalization and compatibility with serum pro-
teins and red blood cells, cell viability measurements were performed to further investigate
the in vitro properties of the empty and loaded NGs.

The empty NGs did not show a cytotoxic effect on the tested cell lines over a period of
48 h up to a concentration of 1000 µg/mL (Figure 5a). Exposing the cells to the drug-loaded
analogs led to similar cytotoxic effects as the treatment with the free drugs in the range of
320 to 80 ng/mL (Figure 5b–d, Figure S6). As a visual proof for this observation, live cell
imaging was performed with the T1 cell line and the NG compounds over a period of 48 h.
While the presence of empty NGs did not influence cell proliferation and morphology, cell
apoptosis could be observed in all cases for the loaded derivatives due to the formation
of round and detached cells (Figure 5e–h). The obtained cell viability data were further
analyzed by grating dose–response curves to estimate IC50 values (Table 3). The IC50 values
of 17-AAG@NGs were 2-fold higher than those of the free 17-AAG. In the case of BLU-
285, the opposite observation could be made, as the BLU-285@NGs demonstrated better
inhibitions with IC50 values that were reduced by more than 2 folds compared to the free
drug. Surprisingly, the resistant T1-α-D842V-G680R responded slightly to BLU-285@NGs
with an IC50 value of 400 nM. Applying the free combinational treatment of 17-AAG and
BLU-285 displayed high IC50 values in the range of 370–450 nM. However, the loaded
Comb@NGs showed IC50 values for the T1 and T1-α-D842V that are in accordance those
of the with 17-AAG@NGs and BLU-285@NGs. In the case of the resistant T1-α-D842V-
G680R, the Comb@NGs showed the lowest IC50 value for the tested NG compounds with
138 nM. These results suggest that the NGs are capable of cell internalization and subse-
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quent intracellular drug release. Furthermore, the obtained results from the Comb@NGs
suggest that this system could help to address several GIST T1 tumors with varying genetic
mutation patterns.
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Table 3. Determined IC50 values from Figure 5b–c and Figure S6.

Cell Line
IC50 [nM]

Free 17-AAG 17-AAG@NGs Free BLU-285 BLU-285@NGs Free Comb Comb@NGs

GIST T1 89 ± 1 165 ± 1 446 ± 2 120 ± 1 451 ± 3 136 ± 1
T1-α-D842V 104 ± 1 224 ± 1 383 ± 3 190 ± 2 377 ± 3 236 ± 2

T1-α-D842V-G680R 104 ± 1 236 ± 1 - 401 ± 3 370 ± 3 138± 2
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3. Discussion

This work demonstrates the synthesis and detailed characterization of a novel esterase-
responsive polyglycerol-based NG system that is formed by iEDDA-based crosslinking.
Due to the hydrophobic segments in the NG framework, internalization of the hydrophobic
drugs could be achieved through in situ encapsulation of BLU-285 and 17-AAG during
inverse nanoprecipitation. The cleavage reaction of incorporated esters in the NG network
structure was studied by 1H NMR spectroscopy and DLS measurements. It could be shown
that hydrolysis rates were significantly enhanced upon CALB incubation compared to the
PBS control, and NG degradation could be associated with ester cleavage. Biocompatibility
of the NGs was proven by performing FBS stability studies and hemolysis assays. CLSM
and flow cytometry revealed internalization of the NGs into various GIST T1 cell lines with
comparable uptake kinetics. Cell viability measurements and live cell imaging showed
that exposing different cells of the T1 family to the loaded NGs led to reduced cell viability,
indicating intracellular drug release. Furthermore, it could be shown that multi-drug-
loaded NGs showed a significant effect against the tested cell lines and induced apoptosis
to BLU-285-resistant T1-α-D842V-G680R with comparably low IC50 values. This suggests
that the present system could be a promising carrier platform for addressing multi-drug
resistance in rare GISTs. Further studies, such as applying a tumor spheroid model, could
help to reveal the full potential of the presented system.

4. Materials and Methods
4.1. Chemicals and Reagents

5-Norbornene-2-carboxylic acid, DMF, pyridine, DMAP, Novozyme 435, Amphotericin
B, L-Glutamine, HATU, and fetal bovine serum (FBS) were purchased from Sigma-Aldrich
(Merck KGaA, Darmstadt, Germany). EDC·HCl was purchased from Carl-Roth (Carl
Roth GmbH + Co. KG, Karlsruhe, Germany). BLU-285 and 17-AAG were purchased
from MedChemExpress (MedChemExpress EU—MedChemTronica, Sollentuna, Sweden).
Penicillin-Streptomycin (Pen-Strep) was purchased from Invitrogen. Iscove’s Modified
Dulbecco’s Medium (IMDM) and LysotrackerTM Green DnD-26 were purchased from
Thermo Fisher Scientific (Thermo Fisher Scientific Inc., Darmstadt, Germany). Water was
used from a Milli-Q station from Millipore. All reactions were performed under an argon
atmosphere using standard Schlenck techniques and an oil pump vacuum.
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4.2. NMR

In the described deuterated solvents, 1H-NMR spectra were obtained at 300 K on a Joel
ECX 400 (400 MHz) or a Bruker Avance III (700 MHz). Chemical shifts (δ) are reported in
parts per million (ppm) with regard to the corresponding solvent peaks. A Bruker Avance
III (176 MHz) was used to record 13C-NMR at 300 K. Chemical shifts are expressed in parts
per million (ppm) with respect to the residual solvent peaks. The spectra were decoupled
from proton broadband.

4.3. GPC

Gel permeation chromatography (GPC) was measured on an AGILENT 1100 at
5 mg/mL sample concentration using a pullulan standard 0.1 M NaNO3 solution as an
eluant and a PSS Suprema column 10 µm with a flow rate of 1 mL/min. The signals were
detected with an RI detector.

4.4. Synthesis of Materials

Synthesis of metTet-COOH, Cy5-Norb, and dPG-OH

metTet-COOH and dPG-OH were synthesized according to the literature [39,40]
(Figures S7–S9).

Synthesis of dPG-O-metTet

metTet-COOH (1.11 g, 5.15 mmol, 1.2 eq.) was dissolved in dry DMF (40 mL). HATU
(2.12 g, 5.58 mmol, 1.3 eq.), DMAP (0.68 g, 5.58 mmol, 1.3 eq.), and EDC·HCl (0.99 g,
5.15 mmol, 1.2 eq.) were added. The solution was stirred for 1.5 h at rt. In a second Schlenk
flask, dPG (3.97 g, 0.397 mmol, 1 eq.) was dissolved in dry DMF (20 mL), and DMAP
(0.68 g, 5.58 mmol, 1.3 eq.) and pyridine (0.41 g, 5.15 mmol, 1.2 eq.) were added. The
solution containing the 5-Norbornene-2-carboxylic acid was added to the polymer solution
for 30 min via a syringe. The solution was stirred overnight at 60 ◦C and purified with
dialysis in methanol for 4 days. dPG-O-Met-Tet was obtained as a purple methanolic
solution (1.05 g, 4.89 mmol, dF = 8%, 95%). 1H NMR (700 MHz, CD3OD): δ = 8.70–8.36
(m, 2 H, H-aryl), 8.34–8.00 (m, 2 H, H-aryl), 4.03–3.38 (m, dPG-backbone), and 3.07 (s,
3 H, methyl-H) ppm (Figure S10). 13C NMR (176 MHz, CD3OD): δ = 169.2, 167.1, 164.7,
137.6, 134.6, 131.5, 128.9, 81.6, 81.4, 80.1, 79.9, 74.0, 73.0, 72.5, 72.4, 72.2, 71.0, 70.7, 69.8, 69.6,
67.8, 66.2, 64.5, 64.4, 62.8, 61.9, 49.9, 49.4, 49.2, 49.1, 49.0, 48.9, 48.8, 48.6, and 21.4 ppm
(Figure S11).

Synthesis of dPG-O-Norb

5-Norbornene-2-carboxylic acid (1.84 g, 13.33 mmol, 1.2 eq.) was dissolved in dry
DMF (50 mL). HATU (5.49 g, 14.44 mmol, 1.3 eq.), DMAP (1.76 g, 14.44 mmol, 1.3 eq.), and
EDC·HCl (2,56 g, 13.33 mmol, 1.2 eq.) were added, and the solution was stirred for 1.5 h at
rt. In a second Schlenk flask, dPG (5.48 g, 0.548 mmol, 1 eq.) was dissolved in dry DMF
(15 mL), and DMAP (1.76 g, 14.44 mmol, 1.3 eq.) and pyridine (1.05 g, 13.33 mmol, 1.2 eq.)
were added. The 5-Norbornene-2-carboxylic acid solution was added to the polymer
solution for 30 min via a syringe. The resulting solution was stirred overnight at 60 ◦C and
purified with dialysis in methanol for 4 days. dPG-O-Norb was obtained as a colorless
methanolic solution (1.58 g, 11.46 mmol, dF = 6.0%, 86%).

1H NMR (700 MHz, CD3OD): δ = 8.70–8.40 (m, 1 H, H-olefin), 8.35–8.31 (m, 1 H,
H-olefin), 4.00–3.40 (m, dPG-backbone), 3.28–3.14 (m, 1 H, H-bridgehead), 3.12–2.98 (m,
1 H, H-bridgehead), 2.95–2.18 (m, 1 H, H-bridgehead), and 1.60–0.85 (m, 1 H, H-bridge)
ppm (Figure S12).

13C NMR (176 MHz, CD3OD): δ = 169.2, 167.1, 164.7, 137.6, 134.6, 131.5, 128.9, 81.6,
81.4, 80.1, 79.9, 74.0, 73.0, 72.5, 72.4, 72.2, 71.0, 70.7, 69.8, 69.6, 67.8, 66.2, 64.5, 64.4, 62.8, 61.9,
49.9, 49.4, 49.2, 49.1, 49.0, 48.9, 48.8, 48.6, and 21.4.ppm (Figure S13).
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Cy5-Labeling of dPG-O-metTet

Cy5-Norb (8.00 mg, 0.01 mmol) was added to a solution of dPG-O-metTet (50 mg,
5.00 nmol) in water (1.00 mL), heated to 37 ◦C, and stirred for 4 h. The obtained product was
purified via SEC (SephadexTM G-25) to obtain the Cy5-labeled dPG-O-metTet (13 mg/mL
in water) (Figure S14).

Cy5-Labeling of NGs

Cy5-dPG-O-metTet (0.4 mg, 30 µL from 13 mg/mL stock) and dPG-O-metTet (2.6 mg,
13 µL from 200 mg/mL stock) were diluted in water (467 µL). In a separate vial, dPG-O-
Norb (3.00 mg, 15 µL from 200 mg/mL stock) was diluted in water (485 µL). The resulting
dPG-O-Norb solution was added quickly to the dPG-O-metTet solution, briefly vortexed
for 5 s, and the combined mixture was injected into acetone (20 mL) under vigorous stirring.
The suspension was stirred for another 5 s and then kept still. After 30 min, water (10 mL)
was added to terminate the reaction. The solution was transferred into a 50 mL round
bottom flask, and the solvent was evaporated under reduced pressure to yield NGs with a
final concentration of 5 mg/mL. Purification and transfer to a PBS solution were achieved
through dialysis (MWCO = 100 kDa, 4 days).

4.5. Procedures
4.5.1. NG Formation

The NGs were prepared through inverse nanoprecipitation following a protocol in the
literature [39].

Macromonomers dPG-O-metTet and dPG-O-Norb were stored in aqueous stock solu-
tions (200 mg/mL, MilliQ-water). A total of 53 µL of dPG-O-metTet (8.00 mg, 40 µL from
200 mg/mL stock) was diluted in water (460 µL). In a separate vial, 80 µL of the dPG-O-
Norb (12 mg, 60 µL from 200 mg/mL stock) was diluted with water (480 µL). The resulting
dPG-O-Norb solution was added quickly to the dPG-O-metTet solution, briefly vortexed
for 5 s, and the combined mixture was injected into acetone (20 mL) under vigorous stirring.
The suspension was stirred for another 5 s and then kept still. After 20 min, water (10 mL)
was added to terminate the reaction. The solution was transferred into a 50 mL round
bottom flask, and the solvent was evaporated under reduced pressure to yield NGs with a
final concentration of 20 mg/mL. Purification and transfer to a PBS solution were achieved
through dialysis (MWCO = 100 kDa, 4 days).

4.5.2. Cryo-TEM

At room temperature, 4 µL of the NG solution were placed on hydrophilized holey
carbon-filmed grids (Quantifoil R1/2), while the excess fluid was removed by utilizing
filter paper to create an ultra-thin solution layer that spans the holes in the carbon film.
After vitrification in liquid ethane, which was performed with an automated vitrification
robot (FEI Vitrobot Mark III), the grids were stored in liquid nitrogen. They were stabilized
by a copper auto grid and fixed with a spring clamp under liquid nitrogen. The auto
grids were transferred into the microscope under liquid nitrogen using the microscope’s
autoloader. Cryogenic transmission electron microscopy (cryo-TEM) was performed using
a Talos Arctica transmission electron microscope (Thermo Fisher Scientific Inc., Waltham,
MA, USA. Micrographs were obtained by following the microscope low-dose protocol at
28,000× primary magnification and 200 kV acceleration voltage. Images were captured
at full resolution (4k) using a Falcon 3CE direct electron detector (48 aligned frames). An
appropriate contrast was achieved by setting the de-focus to 5 µm.

4.5.3. Drug Encapsulation

The loading of 17-AAG, BLU-285, and their combination was achieved through co-
precipitation. 17-AAG and BLU-285 were stored in a sock solution (20 mg/mL, DMSO).
The desired drug (1.00 mg, 50 µL from 20 mg/mL stock) was added to the diluted dPG-
O-metTet solution, and the NG formation protocol was carried out. The drug loading
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content (DLC) was determined via UV/Vis for 17-AAG using its unique absorbance at
550 nm (Figure S9) and via fluorescence for BLU-285 using 380 nm as λex and 440 nm as
λem (Figure S10) and calculated via Equation (1). The encapsulation efficiency (ee) was
calculated as depicted in Equation (2) by dividing the determined amounts of encapsu-
lated drugs (DLCdetermined) by the drug amounts used encapsulation DLCtheory. UV/Vis
measurements were conducted on an Agilent Cary 8454 UV-visible spectrophotometer
using half-micro quartz cuvettes. Fluorescence spectroscopy was performed on a Tecan
plate reader (infinite pro200, TECAN-reader Tecan Group Ltd., Zurich, Switzerland).

DLC (wt%) =
mloaded drug

mNG
(1)

ee (%) =
DLCdetermined

DLCtheory
∗ 100 (2)

4.5.4. Macromonomer Degradation

dPG-O-Norb (2 × 30 mg) was taken from the methanolic stock solutions and dried
overnight. Each sample was dissolved in a deuterated PB buffer solution (1.00 mL, 10 mM,
pH = 7.4), and 200 wt% of Novozyme 435 with respect to the polymer amount was added to
one of the samples. DMSO (10 Vol%, 0.10 mL) was added to the buffer solution to prevent
precipitation of the formed degradation products in water, and the pH was again adjusted
to 7.4. Afterward, all NMR tubes were incubated for 1 h at 37 ◦C and measured at 400 MHz.
After each measurement, the samples were stored in the incubator at 37 ◦C until the next
measurement cycle started.

4.5.5. NG Degradation

Degradation of the obtained NGs was determined through DLS measurements. Two
samples of NGs were diluted to a final concentration of 5 mg/mL in PBS. A total of 200 wt %
of Novozyme 435 with respect to the NG amount was added to one of the samples. They
were incubated at 37 ◦C, and DLS measurements were conducted each day to determine
the hydrodynamic diameter of the NGs. All measurements were conducted in triplicates.
Dynamic light scattering (DLS) and zeta potential were measured on a Malvern zeta-sizer
nano ZS ZEN 3600 using a He-Ne laser (λ = 532 nm) at 173◦ backscatter and automated
attenuation at, if not stated differently, 37 ◦C. All sample measurements were performed as
triplicates, yielding a mean size value plus standard deviation.

4.5.6. Serum Stability

The obtained NGs (0.1 mL from 20 mg/mL stock) were diluted in fetal bovine serum
(FBS) (1 mL) and incubated at 37 ◦C. After 0 h, 24 h, and 48 h, 0.3 mL of the solution
was withdrawn and purified via fast protein liquid chromatography. The collected NG
fractions were further analyzed in DLS. The stability of the NGs in the presence of FBS was
determined by dividing the peak area of the NGs by the peak area of the FBS. This quotient
was set to 100% for the 0 h measurement. In all further measurements (i = 24 h, 48 h),
the stability was determined in relation to this quotient (Equation (3)). All measurements
were performed as triplicates. Fast protein liquid chromatography was conducted on an
ÄKTAprime plus device (GE Lifescience, Chicago, IL, USA) equipped with a Superdex 200
10/300 GL column, UV detector (280 nm), and 100 µL loop. PBS (154 mM, pH 7.4) was
used as an eluent. All measurements were conducted with a flow rate of 0.7 mL/min.

Stability (%) = 100 ∗
Peak Area o f NGi

Peak Area o f FBS+NGi
Peak Area o f NG0 h

Peak Area o f FBS+NG0 h

(3)

i = 0, 1, 2 days.
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4.5.7. Ex vivo Red Blood Cell Hemolysis Assay

The hemocompatibility of free NGs and their loaded analogs (17AAG@NGs, BLU-
285@NGs, and comb@NGs) was evaluated according to a published protocol [38]. Briefly,
fresh donor blood was separated into serum and red blood cells. After washing, a 1:25
dilution of erythrocytes (100 µL) was incubated at 37 ◦C for 1 h, 4 h, and 24 h with
different concentrations of the abovementioned samples (100 µL). DPBS (100 µL) was
used as the negative control and 1% Triton X-100 (100 µL) as the positive control. The
supernatant (100 µL) was transferred to a flat 96-well plate for absorbance measurements at
410 nm. Absorption is proportional to hemoglobin content in the supernatant. This allows
conclusions to be drawn about the effect of a compound on cell lysis. Results are plotted as
% hemolysis after subtraction of the absorbance of the negative control and normalization
to the positive control (Figure S11).

4.5.8. Cell Lines and Cultivation

All cell lines were kindly gifted by Prof. Sebastian Bauer from UK Essen. GIST882 cells
were cultured in RPMI 1640 supplemented with 15% (v/v) of FBS, a 1% (v/v) penicillin–
streptomycin solution (100 IU/mL of Penicillin G Sodium Salt and streptomycin sulfate
(100 µg/mL)) (Pen-Strep), and 1% (v/v) l-glutamine. The remaining cell lines were grown
in IMDM supplemented with 10% (v/v) of FBS, a 1% (v/v) penicillin–streptomycin solution,
and 1% (v/v) l-glutamine. T1-α-D842V and T1-α-D842V + G680R cells were treated with
Imatinib (200 nM) and BLU-285 (100 nM) drugs, respectively.

4.5.9. Cellular Uptake Studies

CLSM monitored Cellular Uptake. A total of 20,000 cells per well were seeded on
8-well ibidi slides and incubated for 48 h. Then, the cells were washed with PBS and treated
with Cy5-labeled NGs with a final concentration of 500 µg/mL. After 2 h of incubation,
the cells were stained with Hoechst 33,342 (1 µg/mL), washed twice with PBS, covered
with a fresh cell culture medium, and incubated with Lysotracker Green DND 26 (500 nM)
for 10 min before imaging. Confocal pictures were captured using an inverted confocal
laser scanning microscope, Leica DMI6000CSB SP8 (Leica, Wetzlar, Germany), with a
63×/1.4 HC PL APO CS2 oil immersion objective, as well as the manufacturer-supplied
LAS X 5.1.0 software.

The kinetics of NG uptake into the GIST cells was determined by flow cytometry.
GIST cells were seeded on a 24-well plate at a concentration of 150,000 cells per well. After
48–72 h of seeding, cells were treated with Cy5-labeled NGs with a final concentration of
500 µg/mL Cy5 in 0.5 mL medium for 15, 30, 60, and 120 min. After the treatment, the cells
were rinsed twice with PBS and detached using 200–250 µL trypsin. The cells were collected
with medium, centrifuged at 400× g for 5 min, and resuspended in fresh medium. The cell
suspension was subjected to flow cytometry analysis (Figures S12 and S13). Flow cytometry
was performed on a Atune NxT (Thermo Fisher) flow cytometer. Data were acquired by
Attune™ NxT Software v2.7 and further processed with FlowJo V10 analysis software.

4.5.10. Cell Viability

Cell viability of the loaded and free NGs on GIST T1, GIST 882, T1-α-D842V, and
T1-α-D842V + G680R cells was determined by following a protocol in the literature for the
CCK-8 assay [39]. In a 96-well plate, 90 µL of PBS was added to each outer well. For the
inner wells, 90 µL of a cell suspension containing 5 × 104 cells were seeded into each well,
and the plate was incubated at 37 ◦C and 5% CO2 overnight. For the tested compounds,
serial dilutions were performed to obtain the desired concentrations, and 10 µL of each was
added to the cells in triplicates. SDS (1%) and non-treated cells were used as positive and
negative controls, respectively. After 42 h of incubation at 37 ◦C and 5% CO2, 10 µL of the
CCK-8 solution was added to each well. After another 3 h of incubation, the absorbance
at 450 nm was measured in triplicates by utilizing a Tecan plate reader (Infinite Pro200,
TECAN-reader Tecan Group Ltd.). The absorbance at 650 nm was used as an internal
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reference wavelength. Cell viability was determined by setting the obtained values for
the non-treated control to 100% after subtracting the background using Microsoft Excel®

2019 software. All other values were calculated in relation to this value following the
same procedure. The half-maximal inhibitory concentration (IC50) was calculated with
GraphPad Prism 6.01 (Graph Pad Software, San Diego, CA, USA) using the log (inhibitor)
vs. normalized response variable slope equation. Lionheart FX Automated Live Cell Image
(Bio Tek Instruments, Winooski, VT, USA) was used to examine the effect of empty and
loaded NGs on the morphology of T1 cells. A high-contrast brightfield accessory kit (Bio
Tek, Winooski, VT, USA) was used to monitor the cellular morphology changes. Images
were captured at 4× in a high-contrast brightfield channel. A total of 10,000 cells per well
were seeded on a 96-well culture plate for 24 h. The cells were then treated with NGs
(100 µL) and live-imaged for 48 h. Environmental conditions were maintained at 37 ◦C and
5% CO2 within the Lionheart throughout the imaging.

All cell experiments were conducted according to German genetic engineering laws
and German biosafety guidelines in the laboratory (safety level 1).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph16111618/s1, Figure S1: Calibration curve of 17-AAG obtained
from UV/Vis measurements at 550 nm; Figure S2: Calibration curve of BLU-285 obtained from
fluorescence measurements using 380 nm as λex and 440 nm as λem; Figure S3: Results of the ex vivo
red blood cell hemolysis assay. The absorbance of the supernatant at 410 nm after the ex vivo red
blood cell hemolysis assay of a) empty NGs and b) loaded NGs (n = 3) after 24 h. DPBS was used
as a negative control ((−), n = 6) and 1% Triton X-100 as a positive control ((+), n = 6); Figure S4:
Flow cytometry histograms of (a) GIST T1, (b) T1-α-D842V, and (c) T1-α-D842V-G680R cells treated
with Cy5-labeled NGs over a period of 48 h; Figure S5: Fluorescence intensity quantification of flow
cytometry experiments; Figure S6: Cell viability results of (a) free 17-AAG, (b) free BLU-285, and (c)
free comb; Figure S7: 1H NMR (400 MHz, DMF-d7) of metTet-COOH; Figure S8: 1H NMR (700 MHz,
CD3OD) of Cy5-Norb; Figure S9: GPC of dPG-OH; Figure S10: 1H NMR (700 MHz, CD3OD) of
dPG-O-metTet; Figure S11: 13C NMR (176 MHz, CD3OD) of dPG-O-metTet; Figure S12: 1H NMR
(700 MHz, CD3OD) of dPG-O-Norb; Figure S13: 13C NMR (176 MHz, CD3OD) of dPG-O-Norb; and
Figure S14: UV/Vis spectra of dPG-O-metTet (blue) and Cy5-dPG-O-metTet (green).
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