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Simple Summary: In oncology, the identification of early predictors of response/survival is of
particular interest. C-reactive protein (CRP) concentrations have been associated with advanced
non-small-cell lung cancer and poor prognosis. We characterized the association between anticancer
drug exposure, tumor size as a marker of tumor dynamics, and CRP as a marker of inflammation
and derived different predictors. CRP at the beginning of treatment cycle 3 (day 42) was identified as
the strongest predictor of both progression-free survival and overall survival, and the inflammatory
status, monitored by CRP concentration, emerged as a promising prognostic marker. The high
significance of longitudinal CRP concentrations compared to baseline concentrations provided a
true reflection of the patient status. This framework could be applied to other treatment modalities
such as immunotherapies or targeted therapies, allowing the identification of patients at risk of
early progression and/or short survival to spare them unnecessary toxicities and offer alternative
treatment decisions.

Abstract: In oncology, longitudinal biomarkers reflecting the patient’s status and disease evolution
can offer reliable predictions of the patient’s response to treatment and prognosis. By leveraging
clinical data in patients with advanced non-small-cell lung cancer receiving first-line chemotherapy,
we aimed to develop a framework combining anticancer drug exposure, tumor dynamics (RECIST
criteria), and C-reactive protein (CRP) concentrations, using nonlinear mixed-effects models, to
evaluate and quantify by means of parametric time-to-event models the significance of early longitu-
dinal predictors of progression-free survival (PFS) and overall survival (OS). Tumor dynamics was
characterized by a tumor size (TS) model accounting for anticancer drug exposure and development
of drug resistance. CRP concentrations over time were characterized by a turnover model. An
x-fold change in TS from baseline linearly affected CRP production. CRP concentration at treatment
cycle 3 (day 42) and the difference between CRP concentration at treatment cycles 3 and 2 were the
strongest predictors of PFS and OS. Measuring longitudinal CRP allows for the monitoring of inflam-
matory levels and, along with its reduction across treatment cycles, presents a promising prognostic
marker. This framework could be applied to other treatment modalities such as immunotherapies or
targeted therapies allowing the timely identification of patients at risk of early progression and/or

short survival to spare them unnecessary toxicities and provide alternative treatment decisions.
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1. Introduction

Lung cancer is the second most common cancer type and the leading cause of cancer-
related death [1]. Amongst all lung cancer cases, non-small-cell lung cancer (NSCLC)
accounts for approximately 85% of these cases. At the time of diagnosis, the majority
of NSCLC patients are at an advanced stage when the tumor has already metastasized,
which consequently leads to patients having a very poor prognosis and an expected 5-year
survival of only <7% [2]. This high disease burden and poor prognosis calls for markers
that can timely predict patients with poor response to treatment as well as identify patients
at risk of poor prognosis, for better treatment decisions.

Past research has focused on the identification of several (bio)markers to predict
treatment response and patients at increased risk of recurrence and/or poor prognosis
in NSCLC [3,4]. Serum/blood biomarkers offering a prognostic value in NSCLC are
appealing given that their collection through blood sampling is minimally invasive and
their measurements are cost-effective. However, the focus has usually been on baseline
measurements when assessing the prognostic value of serum/blood biomarkers rather than
their longitudinal measurements [5-9]. The latter would have the added advantage of not
only looking into the kinetics but also taking into consideration the influence of treatment
and disease evolution over time on the relevant markers. Amongst the potential markers
that have been previously investigated is C-reactive protein (CRP), a systemic inflammatory
marker and a metric of inflammatory response. CRP is produced by the hepatocytes
in response to the release of the inflammatory cytokines, e.g., interleukin 6 (IL-6) [10],
and high concentration (>10 ug/mL) has been associated with advanced cancer stages,
metastasis, and poor prognosis [11] in different cancer types including NSCLC [6,7,12-15].
Although the causal relationship between inflammation and advanced tumor disease is
still unclear [11,16], the association of an inflammatory state with malignancy has been
described [11,17,18].

Pharmacometric modeling and simulation (M&S) represents a multidisciplinary sci-
ence integrating biology and mathematical and statistical methods to characterize, under-
stand, and predict the behavior of a biological system (here NSCLC patients receiving
drug treatment) through the development of a simplified representation of the complex
drug-biological system interaction (i.e., the pharmacometric model) [19]. M&S can not only
impact drug development through guidance on dosing selection but also clinical practice
by predicting clinical response, optimizing the benefit-risk assessment, and guiding dos-
ing strategies and therapy decisions through model-informed precision dosing [20]. The
integration of pharmacokinetic (e.g., drug exposure) and/or pharmacodynamic models
(e.g., tumor dynamics, biomarkers) with survival analyses, within a modeling framework,
offers a powerful approach to monitoring the efficacy of treatment and predicting clinical
outcomes, accounting for and quantifying the heterogeneity and variability within the
patient population that M&S offers [21].

Our objective was to (a) develop a framework to understand and quantify the re-
lationship between anticancer drug exposure, tumor dynamics, and CRP to (b) identify
early longitudinal prognostic predictors of the commonly used clinical efficacy endpoints,
progression-free survival (PFS), and overall survival (OS), in advanced NSCLC patients
treated with first-line platinum-based chemotherapy. We also focused on longitudinal
CRP metrics in combination with patient- and treatment-specific information to explore
whether monitoring inflammation, through CRP, would reflect disease outcomes. These
objectives were achieved by leveraging clinical data from patients with advanced NSCLC
using pharmacometrics M&S principles, specifically nonlinear mixed-effects and para-
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metric time-to-event models to allow for further exploration of the performance of the
identified predictors under different conditions.

2. Materials and Methods
2.1. Clinical Data

Data from an open-label, randomized, two-arm, phase III, multicenter study—the
CEPAC-TDM study, were used to establish the quantitative relationship between anticancer
drug exposure, tumor dynamics, and CRP concentration and to identify significant pre-
dictors of efficacy endpoints thereafter [22]. A total of 365 patients with newly diagnosed
advanced NSCLC were treated with paclitaxel (3-h intravenous infusion) in combination
with either carboplatin (target AUC = 6 mg-min/mL) or cisplatin (80 mg/m?) on day
one of each of the three-week-long (21-day) cycle, for up to six cycles. In the standard
body surface area (BSA)-guided dosing arm, 182 patients received standard paclitaxel
doses of 200 mg/m?, while in the pharmacokinetic (PK)-guided dosing arm, 183 patients
received individualized paclitaxel doses according to a developed algorithm based on
paclitaxel exposure and grade of neutropenia from the previous cycle [23]. PK sampling
was performed in only the PK-guided dosing arm patients, 24 h (16-30 h) after the start of
paclitaxel infusion.

Routine blood sampling was performed at baseline, on days 1 and 15 of each treatment
cycle, and at the end-of-treatment (EOT) visit (27-35 days after the last treatment dose) for
assessment of safety.

Tumor size (TS), defined as the sum of the longest diameters of a maximum of five tar-
get lesions, was evaluated according to the Response Evaluation Criteria in Solid Tumours
(RECIST) criteria (version 1.1) [24], and was measured at baseline and subsequently every
six weeks, i.e., before the start of treatment cycle 3 and cycle 5, at the EOT, and then every
eight weeks during follow-up, until progression was observed.

Serum CRP concentrations over time were available from the biomarker substudy
of the CEPAC-TDM study including 258 patients. CRP concentration was measured on
day 1 of treatment cycles 1 (baseline), 2, and 3; day 2 of treatment cycles 1 and 2; and at
the EOT visit. CRP quantification was performed at the Institute of Laboratory Medicine,
Munich Biomarker Research Center, German Heart Center Munich, Technical University
Munich/Germany using a validated commercial assay-based latex-enhanced turbidimetry
on the Cobas C501 analyzer (Roche Diagnostics, Mannheim, Germany).

Patients were followed up every three months for survival. According to protocol,
patients who dropped out during the study were still followed up for information on
progression and survival.

The study was approved by the respective institutional review boards (Ostschweiz, St.
Gallen/Switzerland; Eberhard-Karls-Universitit, Tiibingen/Germany) and conducted in
accordance with the ICH Harmonised Tripartite Guidelines for Good Clinical Practice 1996,
Directive 91/507 /EEC [25], Declaration of Helsinki, Directive 2001 /20/EC [26], and local
legislation (EUDRACT 2010-023688-16). All patients provided written informed consent
before study initiation. Further details on the study, inclusion and exclusion criteria, and
the dosing algorithm, have been previously published [22,23].

2.2. Modeling Framework

The developed modeling framework comprised two stages. First, in order to establish
the quantitative relationship between anticancer drug exposure, tumor dynamics, and
CRP concentration, a TS model was developed to characterize the change in TS over
time while accounting for the influence of drug exposure. Model-predicted longitudinal
TS (as a metric of tumor dynamics) was then coupled to a CRP model to characterize
circulating CRP concentrations using nonlinear mixed-effects models (Figure 1, I). In the
second stage, patient- and disease-related characteristics as well as different model-derived
metrics of CRP and TS were explored as predictors of PFS and OS by means of a parametric
time-to-event model (Figure 1, II).
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I: Understanding the relationship between anticancer drug exposure, tumor
dynamics and CRP concentrations, and model-derived predictors
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Figure 1. Schematic overview of the different stages undertaken to identify significant predictors of

Patient- and
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progression-free survival and overall survival. CRP: C-reactive protein.

2.2.1. Characterization of the Relationship between Drug Exposure, Tumor Dynamics, and
C-Reactive Protein Concentration

Characterization of Tumor Dynamics

A recently published TS model based on the presented clinical data was used to
characterize the time course of TS and predict individual TS over time (Figure 1, I). The
detailed development of the TS model has been previously published [15]. In brief, change
in TS over time was described considering a linear net tumor growth and first-order
drug-induced tumor decay. Drug-induced tumor decay was described as a function of
paclitaxel area under the plasma concentration-time curve from the start to end of a cycle
(AUCycle), based on a single paclitaxel dose, administered on the first day of the 21-day
cycle. To account for the development of drug resistance, the drug effect was estimated as
exponentially decreasing over time (the equation describing the TS model is provided in
Supplementary Section Sla).

Model development was initially based only on the PK-guided dosing arm data due to
non-availability of paclitaxel PK data in the BSA-guided dosing arm but was later extended
to include both the BSA- and PK-guided dosing arms using the multiple imputation
approach [15,27-29].

Population TS model parameters and their uncertainty were derived from the multiple
imputation framework as described by Rubin [15,27,30]. Additionally, individual TS param-
eter estimates were derived following the same principle described by Rubin [30] (further
details in Supplementary Section S1b). This allowed for a sequential modeling approach
where individual TS parameter estimates along with their uncertainty would be leveraged
to estimate TS over time and consequently allowed to influence CRP production [31].

Characterization of C-Reactive Protein Concentration-Time Course

The CRP model aimed to characterize circulating CRP concentrations through a
turnover model: in this model, CRP concentrations were governed by a zero-order pro-
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duction with rate constant Kj;, and a first-order degradation with rate constant K, [32,33].
For baseline CRP concentration, a steady state was assumed corresponding to the ratio of
Kiy:Kout [32,33]. Kour was fixed to result in a CRP half-life of 19 h, which was reported to be
independent of the (patho)physiological state of the individual [34]. Only interindividual
variability (IIV) associated with K;,, was considered, since it was the single determinant of
CRP concentration. Moreover, additional residual variability that could not be explained
by IIV was also quantified.

Variables that could impact CRP concentrations were chosen based on clinical rele-
vance and graphical correlations (i.e., correlation between those variables and individual
Ki,) and were investigated for a potential statistically significant impact only on K;,—as the
precursor conversion step of CRP production—using a stepwise covariate model (SCM)-
building approach [35,36] (further details on the model development, list of tested variables,
and description of the SCM procedure are provided in Supplementary Sections Slc and d).

Linking Tumor Dynamics to C-Reactive Protein Concentration-Time Course

To simultaneously associate the estimated individual TS to CRP production (Figure 1, I),
different models were explored. These included assuming a direct influence (linear, expo-
nential, power, fractional change models) as well as investigating the potential for a delayed
effect (effect compartment, different transit compartments with n = 1-4 compartments).
Moreover, different TS metrics were explored: absolute TS, the difference in TS from base-
line TS, the ratio of TS to baseline TS (i.e., fold change in TS from baseline TS), and TS slope
(i.e., first derivative over time). A combined influence of baseline TS and the difference in
TS from baseline TS, or the relative change in TS to baseline TS, was also investigated.

In a subsequent step, to account for the heterogeneity in the patients” CRP profiles
and the diverse individual TS, the impact of accounting for IIV on the parameters of the
function describing the relation between the TS metric and CRP production was explored.

Selection and evaluation of the best model for the characterization of circulating
CRP concentration was based on parameter precision, numerical improvement in model
performance, goodness-of-fit (GOF) plots, and predictive performance demonstrated by the
visual predictive checks (VPC) for models that successfully converged. Moreover, model
robustness and parameter uncertainty were assessed through bootstrapping the dataset
1000 times.

2.2.2. Characterization of Efficacy Endpoints and Their Predictors

Clinical efficacy endpoints (PFS and OS) were characterized to evaluate the prognostic
value of the different predictors using parametric time-to-event (TTE) models, and later
to allow for simulations under different predictor levels. Different hazard functions (ex-
ponential, Weibull, Gompertz, log-logistic, and lognormal) were explored to characterize
PFS events over time. For OS, exponential, Weibull, and Gompertz hazard functions were
explored. Since it was previously demonstrated that no significant difference in PFS or OS
existed between both treatment arms (p-value = 0.228 and p-value = 0.682, respectively [22]),
no stratification was adopted, and both arms were pooled for a joint characterization of
PFS and OS. No variability (i.e., IIV) was considered, as only one event was available
per patient.

Since the primary objective was to identify early longitudinal predictors of PFS and
OS, we focused on metrics derived from the first three treatment cycles. Consequently, a
landmark time [37] was chosen at the beginning of treatment cycle 3 (i.e., day 42 from the
start of treatment) such that PFS would be defined as the time from the start of treatment
cycle 3 until objective tumor progression or death, whichever occurs first, and OS would be
defined as the time from the start of treatment cycle 3 until patient death. Table 1 lists the
model-derived CRP- and TS-related metrics calculated from the early (< treatment cycle
3) longitudinal CRP and TS predictions, respectively as well as neutrophil-to-lymphocyte
ratio-related metrics. In addition, factors relating to disease aggressiveness and overall
health status of the patient were also considered and included: baseline Eastern Cooperative
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Oncology Group (ECOG) performance status, smoking status, presence/absence of liver
lesions, presence/absence of brain lesions, disease stage, tumor histology, number of target
lesions, number of non-target lesions, and sum of target and non-target lesions.

Table 1. List of tested predictors in the parametric time-to-event models of progression-free survival
and overall survival.

Predictor Derivation Abbreviation

Markers of inflammation
CRP-related metrics

Observed baseline BLCRP BLCRP
Model-estimated cycle 1 day 1 CRPeycle1 CRPeycle1
Model-estimated cycle 2 day 1 CRPeycle2 CRPyclen
Model-estimated cycle 3 day 1 CRPycle3 CRPyles
Absolute difference in CRP concentration:
cycle 2 from cycle 1 CRPyc1e2 —CRPeycle1 CRPeycle2-1
cycle 3 from cycle 1 CRPyc1e3—CRPyclel CRPeycles-1
Cycle 3 from CyCle 2 CRPcycle?:*CRPcycleZ CRPCycle3-2
Relative change in CRP concentration:
cycle 2 from cycle 1 (CRPycrer —CRPeycle1)/ CRPeyclet CRP(cycle2-1)/cyclel
Cycle 3 from CyCle 1 (CRPcycleS _CRpcyclel)/ CRPcyclel CRP (cycle3-1)/cyclel
cycle 3 from cycle 2 (CRPcycle3 7CRPcycle2)/ CRPcycleZ CRP (cycle3-2)/cycle2
Fold change in CRP concentration:
cycle 2 from cycle 1 CRPycte2/ CRPeyclet CRPycle2/1
cycle 3 from cycle 1 CRPyc1e3 / CRPeycle1 CRPycle3/1
cycle 3 from cycle 2 CRPcycle3/ CRPeycle2 CRPeycle3/2
Neutrophil-to-lymphocyte ratio-related metrics
Observed cycle 1 day 1 N/Leyelet N/Leyclel
Observed cycle 2 day 1 N/Leyden N/Leyele2
Absolute difference in neutrophil-to-lymphocyte ratio: cycle 2 from cycle 1 N/Leyete2—=N/Leyelen N/Leyelez-1
Relative change in neutrophil-to-lymphocyte ratio: cycle 2 from cycle 1 (N/Leyce2=N/Legyete1)/N/ Leyeler N/L(cycle2-1)/cyclet
Fold change in neutrophil-to-lymphocyte ratio: cycle 2 from cycle 1 (N/Leyete2)/ (N/Leyeten) N/Leycle2/1
Tumor size-related metrics
Observed baseline tumor size — BLTS
Model-estimated tumor growth rate — Kerowth
Model-estimated tumor size at week 7 relative to baseline tumor size TSwyeek7 /BLTS RS7

CRP: C-reactive protein; BLCRP: baseline CRP concentration; TS: tumor size; BLTS: baseline tumor size; TSyeek7:
model-estimated tumor size at week 7; RS7: estimated tumor size at week 7 relative to baseline tumor size; N/L:
neutrophil-to-lymphocyte ratio; Kg;o,¢: linear net tumor growth rate constant.

Predictors were tested on the hazard function that best described the distribution
of the events using an SCM approach, with the same statistical criteria as described in
Supplementary Section S1d. In addition to these criteria, the precision of the estimates of
the parameter and predictor effect, and the absence of correlation to a previously included
predictor were further criteria for the inclusion of a predictor.

Comparison and selection of the different TTE models were based on the precision
of parameter estimates, numerical improvement (calculated using the Akaike information
criterion, AIC), and the model’s predictive performance based on Kaplan-Meier VPC (KM
VPC) where proportions of the predicted patients not having an event were plotted along
with their 90% CI against the proportion of the observed events in the patients. Then, both
the observed and median distributions of the TTE were compared. The robustness of the
model and the uncertainty of the final model parameter estimates were assessed through a
bootstrap (n = 1000).

2.2.3. Assessment of the Impact of Identified Predictors of Efficacy

The impact of the identified significant predictors on the event of interest (PFS, OS)
was quantified through simulations (n = 250) using the final TTE model and the different
percentiles of the distribution of each of the significant continuous predictors or the different
categories, in the case of a categorical predictor. The impact on median TTE could then be
assessed and compared to the observed median TTE.
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2.3. Data Analysis and Software

All modeling and simulation work was performed with NONMEM 7.4.3 (Icon De-
velopment Solutions, Ellicott City, MD, USA) [38] using PsN 4.8.1 (Uppsala University,
Uppsala, Sweden) [36] and Pirafia 2.9.4 (Certara Inc., Princeton, NJ, USA) [39]. Dataset
preparation and visualizations were performed in R 3.5.3 (The project for statistical com-
puting. Vienna, Austria) [40]. Parameters were estimated using the first-order conditional
estimation method with interaction in the tumor dynamics and CRP models, while in the
TTE models, parameters were estimated with the first-order method since one observation
per patient was available, and no IIV was estimated.

3. Results
3.1. Clinical Data

Out of the 365 patients enrolled in the CEPAC-TDM study, 258 patients were enrolled
in the biomarker substudy and had longitudinal CRP concentrations totaling 945 CRP
measurements. The demographic and clinical characteristics of these 258 patients (Supple-
mentary Table S2) were similar to the full patient population [22]. Six CRP samples (0.635%)
were below the lower limit of quantification (LLOQ), and only one CRP sample (0.106%)
was above the upper limit of quantification (ULOQ). Because of the low percentage of
below LLOQ samples, they were excluded from the analysis dataset with the assump-
tion that they would not significantly influence model development. The ULOQ sample,
which was subjected to a dilution validation, was temporarily excluded during the model
development stages to avoid potential bias but was later re-introduced at the final stage
of each key model. Only one patient had two CRP measurements, both of which were
below LLOQ, and thus that patient was excluded from the analysis. Hence, the analysis
dataset summed up to a total of 257 patients (939 CRP measurements: median 13.4 mg/L;
range 0.320-529 mg/L). The sampling frequency of CRP is represented in supplementary
Table S3, and the CRP concentration-time profile is represented in Figure 2. Details of TS
measurements have been previously reported [15]. Times of disease progression and death
were available for 58.5% and 67.8% of the patients, respectively. Patients with unknown
progression or survival time were right censored at their time of last observation. The max-
imum follow-up time for progression was 28.7 months and for survival was 32.5 months.
Median PFS and OS were 5.97 months and 10.3 months, respectively.
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3.2. Modeling Framework

3.2.1. Characterization of the Relationship between Drug Exposure, Tumor Dynamics, and
C-Reactive Protein Concentration

Characterization of Tumor Dynamics

The median values of our derived individual TS parameter estimates were in line
with the final population TS parameter estimates from both treatment arms previously
reported in [15] (Supplementary Table S4). Net tumor growth was estimated to occur
linearly at a rate of 0.742 mm/month. Paclitaxel-induced tumor decay occurred at a first-
order rate of 2.30 x 10> (umol/L-h)~1-h~!, whereas baseline paclitaxel effect declined at
an exponential rate of 0.021 day !, resulting in a 58.6% (46.1-68.3%) reduced drug effect at
the end-of-treatment cycle 2 [15]. A detailed description of the TS model performance and
its evaluation has been previously published [15].

Characterization of C-Reactive Protein Concentration-Time Course

The CRP turnover model predicted both the average and individual CRP concentra-
tions under the steady-state assumption: only baseline IL-6, baseline TS, disease stage,
and smoking status affected CRP production, i.e., for a non-smoker with stage IV NSCLC,
baseline IL-6 of 2.57 pg/mL and TS of 8.25 cm (median values), K;,, was estimated to be
0.297 (mg-L~1)-h~!, corresponding to a population steady-state baseline CRP concentration
of 8.14 mg/L (Table 2) [41]. Current smokers, with disease stage IV, high baseline IL-6
(14.9 pg/mL, i.e., 95th percentile), and high tumor load (baseline TS: 17.8 c¢m, i.e., 95th
percentile) would have a 68.3-fold higher K;,, and consequently a less favorable higher
inflammatory level compared to non-smokers with less aggressive disease stage (stage
IIB), lower baseline IL-6 (0.438 pg/mL, i.e., 5th percentile), and lower tumor load (baseline
TS: 2.20 cm, i.e., 5th percentile). Functional relationships between Kj;, and these identified
variables and the detailed univariate effect of each of these variables on K}, are depicted
in the Supplementary Section Sle and Figure S3, respectively. The inclusion of these vari-
ables explained 27.2% of the IIV associated with Kj,, and resulted in significant model
improvement (p-value < 0.0001).

Since baseline TS is inherently considered within the longitudinal TS data, the former
was removed from the model to avoid its redundant inclusion, before informing the CRP
model with longitudinal TS. Additionally, to ensure a basal physiological level of CRP
production regardless of the TS impact, a basal unperturbed K;, (Kj, pssa1) Was added,
reflecting a basal CRP concentration of 0.3 mg/L (i.e., corresponding to the LLOQ of CRP
concentration) (Figure 3).

« BaselineIL-6
E Disease stage
Tumor size (t) -Slope & Smoking status
Baseline tumor size .
v
Kin Kout
—
—
Kin,basal

Figure 3. Schematic representation of the coupled tumor dynamics-CRP model. In the CRP turnover
model (dark blue), CRP concentration was influenced by two production rate constants (K, ) and
(Kin pasar), the latter being unperturbed by influential variables or tumor size to ensure a basal level
of CRP concentration. CRP production rate constant (K;,) was influenced by baseline interleukin 6
(IL-6), disease stage, and smoking status. The tumor size model-derived longitudinal ratio of tumor
size to baseline tumor size (pink) informed CRP production through a linear relationship (i.e., slope
parameter). K,,;: CRP degradation rate constant. CRP: C-reactive protein.
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Table 2. Parameter estimates of the CRP turnover model and the coupled tumor dynamics-CRP

turnover model.

Coupled Tumor Dynamics-CRP

CRP Turnover Model
Parameter Turnover Model
Estimate RSE, % 95% CI 2 Estimate RSE, % 95% CI P

Fixed-effect parameters

Kiy [(mg-L~1)-h™1] 0.297 17.9 [0.204, 0.429] 0.390 0.60 [0.252, 0.602]

Kin,hzzsal [(mg‘Lil)'hill - - —_— 0.0109 © — —_

Kot [n71 0.0365 4 — — 0.0365 4 — —

Slope (linear parameter linking tumor size to CRP) — — — 0.819 6.70 [0.711, 0.952]
Parameters of the effect of identified variables on K, ©

Baseline IL-6 f 0.263 14.0 [0.175, 0.324] 0.315 8.20 [0.244, 0.363]

Baseline tumor size & 0.0432 28.0 [0.017, 0.070] — — —

Disease stage IIIB relative to stage IV h —0.401 28.7 [—0.596, —0.102] —0.392 26 [—0.598, —0.097]

Former smokers relative to non-smokers ! 0.536 57.8 [0.020, 1.415] 0.645 12.1 [0.0353, 1.64]

Current smokers relative to non-smokers ! 1.11 40.0 [0.378,2.272] 1.26 19 [0.398, 2.56]
Interindividual variability in respective parameters [CV, %]

in 7.60 [80.2, 109] 92.1 7.40 [74.2,107]
Slope — — — 60.4 15.2 [40.3,77.9]
Kerowth - — - 1001 — —
— — — 1007 — —

A — - — 1001 — —

Baseline tumor size — — — 1007 — —
Residual variability

Oexp ' [SD, mg/mL] 0.889 3.70 [0.818, 0.953] 0.763 1.70 [0.686, 0.831]

2 95% confidence interval (CI) obtained from 1000 bootstrap runs (successful minimization = 99.6%), b 95% CI
obtained from 1000 bootstrap runs (successful minimization = 97.9%), © fixed to corresponding lower limit of
quantification of CRP concentration (0.3 mg/L), ¢ fixed to literature value [34], ¢ for the detailed functional
relationships between K;;, and these identified variables, see Supplementary Section Sle, { linear function,
& exponential function, h fractional change function, i estimated as additive residual variability on log—scale,j fixed,
variability derived from reported uncertainty as described in [31]; B: paclitaxel area under the concentration-time
curve from start to end of a cycle-driven tumor decay rate constant at start of treatment (t = 0); CRP: C-reactive
protein; CV: coefficient of variation; IL-6: interleukin 6; K;,: CRP zero-order production rate constant; Kj, pssai:
CRP basal unperturbed zero-order production rate constant; Ko,:: CRP first-order degradation rate constant;
kerowsn: linear net tumor growth rate constant; A: rate constant for exponential decline in drug effect over time;
RSE: relative standard error; SD: standard deviation.

Linking Tumor Dynamics to C-Reactive Protein Concentration-Time Course

The relation between tumor dynamics and CRP concentrations was best characterized
by a linear model relating the ratio of TS at any given time to baseline TS (i.e., x-fold change

in TS from baseline TS, (#m)/ to CRP production rate constant (Kj,,) (Figure 3).
For a patient with typical Kj,, = 0.390 (mg~L_1)oh_1 (Table 2) and a ratio of TS to baseline TS
of 1, a change in that ratio from 1 to 0.5 (i.e., 50% tumor shrinkage) would linearly decrease
the TS-dependent K;;, (Kj,, 75) from 0.319 (mg-L’l)~h’1 to 0.160 (mg-L’l)-h’l, i.e., a 50%
reduction in CRP production rate constant (K;, 75 = Kin~0.819~ngl+my A large
IV of 60.4 CV% was associated with this linear relationship and explained the variable
patients” CRP profiles and their diverse individual TS. Parameters were estimated with
good precision (RSE < 26%, Table 2), and a graphical evaluation of the model showed no
misspecification and adequate predictive performance (GOF plots and VPC are provided

in Supplementary Figures S4 and S5, respectively).

3.2.2. Characterization of Efficacy Endpoints and Their Predictors
Progression-Free Survival Model

Given the chosen landmark time, only patients who survived without progression up
to at least treatment cycle 3 (i.e., day 42 from the start of treatment) were included in the TTE
analysis (203 out of 257 patients with CRP measurements, 78.9%, median PFS: 7.07 months).
An initial increase in hazard followed by a decrease (i.e., a lognormal distribution of
the event time described by a parametric lognormal hazard function, Equation (1)) best
described the observed PFS over time (Table 3) compared to the other explored hazard
functions (detailed comparison against base models with the different hazard functions is
provided in Supplementary Section S1f). The inflammatory level at treatment cycle 3, i.e.,
CRPcycle3, and the extent of reduction in the inflammatory level between treatment cycle
3 and cycle 2, i.e., CRPye3-2, significantly affected the hazard, Equation (2) (i.e., risk of
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progression or death) (for the derivation of CRPyje3 and CRPcycle3-2, see Table 1). Hence,
we obtained the following final PFS model:

2

() 1 o3 (EE "
0 = ’
2702 log(t) —p
tV2mos 1 — ¢ ( - )
— ECRPC cle3—2
h(t) - hO(t)' (1 + ECRPcyCm 'CRPcycle3) ’ (CRPcycle?afZ v ) (2)

where hy(t) is the baseline lognormal hazard function parameterized by the mean (y)
and standard deviation () of the underlying normal distribution, as well as the standard
normal cumulative distribution function (¢); Ec RPyyeies and Ecgrp,,,, , are parameters re-
lating the effect of CRP; 3 (linear function) and CRPyce3-2 (power function) to the
hazard, respectively, while h(t) is the modified lognormal hazard after the inclusion of
the identified predictors. Using KM VPC and based on simulations from the final PFS
model, Figure 4a shows the predictive model performance after the inclusion of the two
CRP-related predictors. Although there was a slight underprediction, i.e., prediction of later
PFS events, between 7 months and 14 months, in general, the model adequately predicted
the distribution of events over time, and the observed events fell within the 90% CI of the
simulated events.

Table 3. Parameter estimates of the parametric progression-free survival model 2.

Parameter Estimate RSE, % 95% CI P
Fixed-effect parameters
o [unitless] 0.906 8.80 [0.755, 1.14]
u [unitless] 9.11 2.50 [8.76, 9.86]
Parameters of the effects of identified predictors on hazard function
CRPyles 0.109 55.4 [0.0348, 0.445]
CRPycles-2 d —0.26 37.2 [—0.461, —0.0637]

2 time unit of the lognormal hazard function is [hour], b 959% confidence interval (CI) obtained from 1000 bootstrap
runs (successful minimization = 99.9%), © linear function, d power function, o: mean of the lognormal hazard
function; w: standard deviation of the lognormal hazard function; CRP: C-reactive protein; CRP¢yce3: CRP
concentrations at treatment cycle 3; CRPcyle3-2: difference in CRP concentrations between treatment cycle 3 and
cycle 2; RSE: relative standard error.

The univariate impact of CRP;¢e3 and CRPyc1e3-2 on the median PFS was explored
at the upper (95th percentile) and lower values (5th percentile) of their respective distri-
bution (Figure 4b): the inflammatory level at treatment cycle 3 showed a higher impact
(i.e., 7.47 months difference between 5th and 95th percentile of CRP,¢3) on median PFS
compared with the reduction in inflammatory level from treatment cycle 3 to cycle 2 (i.e.,
4.66 months difference between 5th and 95th percentile of CRPyce3-2)- Additionally, to
explore the combined impact of both predictors, for a patient cohort with low inflammatory
level at treatment cycle 3 and high reduction in inflammatory level between treatment
cycle 3 and cycle 2 (i.e., favorable condition), median PFS was 16.5 months, whereas for a
patient cohort with a high inflammatory level at treatment cycle 3 and low reduction in
inflammatory level between treatment cycle 3 and cycle 2 (i.e., less favorable condition),
median PFS was 13.4 months shorter (Figure 4c).

Overall Survival Model

Similar to the PFS TTE model development, only patients who survived up to at
least treatment cycle 3 (i.e., day 42 from the start of treatment) were included in the TTE
analysis (235 patients out of 257 patients with CRP measurements, 91.4%, median OS:
11.1 months). The observed OS over time was best described by a TTE base model with a
parametric Weibull function (Equation (3)) compared with the exponential or Gompertz
hazard functions (detailed comparison against base models with the different hazard
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functions is provided in Supplementary Section S1g). The hazard of death was increasing
with time, indicated by the shape parameter (x) estimate of 1.68, i.e., >1 (Table 4). As with
PFS, the inflammatory level at treatment cycle 3, i.e., CRP¢ye3, and the reduction in the
inflammatory level between treatment cycle 3 and cycle 2, i.e., CRP¢ycle3-2, significantly
affected the hazard (i.e., risk of death). In addition, tumor load, i.e., baseline TS and
presence of liver lesions, were identified as significant predictors (Equation (4)). Compared
with the base model, the inclusion of these four predictors contributed to an improved
model performance, i.e., prediction of the risk of death (p-value < 0.0001). Using KM VPC
and based on simulations from the final OS model, after the inclusion of these variables, the
model demonstrated good predictive performance where the observed events fell within
the 90% CI of the simulated events (Figure 5a). Hence, we obtained the following final
OS model:

ho(t) = Ao (A1) 6)

B(E) = ho(t)-(CRPayass”™ "8 )-(CRPyyeg 2" 192)- (BLTSF0irs)
1 ,no liver lesions 4)
1 4 Ejjyer , with liver lesions

where h(t) is the baseline Weibull hazard function parameterized by the scale (1) and shape
() parameters. ECRpCWe3 , ECRprcle372, Eprrs, and Ejje, are parameters relating the effect
of CRPyy1e3 (power function), the difference between CRPy i3 and CRPyycjea (CRPyycre3-2,
power function), the baseline TS (BLTS, power function), and the presence of liver lesions
(fractional change function) to the Weibull hazard, respectively, while h(t) is the modified
Weibull hazard after inclusion of these predictors.
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Figure 4. Kaplan-Meier visual predictive checks and impact of identified predictors on median PFS.
(a) Kaplan-Meier visual predictive checks (1 = 250) comparing predictive performance of time-to-
event final PFS model with lognormal hazard function and identified predictors, to the observed PFS
data. Solid line: observed PFS data (thin vertical lines represent censoring times corresponding to the
time of the patient’s last participation in the study); dashed line: median model-predicted profile,
with 90% confidence interval (beige shade). (b) Forest plot of the impact of identified significant
predictors on median PFS. Effects of continuous predictors (i.e., CRPeycle3s CRPeycles-2) are shown
at the 5th and 95th percentiles of the respective predictor. Black dots: predictor effects; horizontal
lines: 95% confidence intervals. (c) Kaplan-Meier plots of simulated (1 = 250) PFS profiles under the
combined effect of the 5th percentile of the continuous predictors (CRP¢ycle3: 1.34 mg/L, CRP¢yce3.2:
—6.30 mg/L) and the 95th percentile of the continuous predictors (CRP¢ycle3: 65.7 mg/L, CRP¢ycle3-2:
—0.121 mg/L). Dashed black line: simulated profile at the 95th percentile predictor level; solid black
line: simulated profile at the 5th percentile predictor level; pink shaded area: 90% confidence intervals
of simulated profiles at 95th percentile predictor level; purple shaded area: 90% confidence intervals
of simulated profiles at 5th percentile predictor level; dotted horizontal line: 50% PFS; dashed vertical
line: median PFS time at 95th percentile values of the predictors; dotted vertical line: observed
median PFS time; solid vertical line: median PFS time at 5th percentile values of the predictors. CRP:
C-reactive protein; PFS: progression-free survival.
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Table 4. Parameter estimates of the parametric overall survival model.

Parameter Estimate RSE, % 95% CI 2

Fixed-effect parameters
A[1/h] 1.6 x 1075 25.7 [9.32 x 1076, 2.65 x 107%]

o [unitless] 1.68 5.30 [1.54,1.92]
Parameters of the effects of identified predictors on hazard function

CRPycres ° 0.781 12.8 [0.595, 0.999]

CRPycies2 —0.392 24.9 [-0.606, —0.185]
Baseline tumor size 0.491 33.2 [0.201, 0.881]
Liver lesions © 1.02 36.3 [0.374,2.03]

2 95% confidence interval (CI) obtained from 1000 bootstrap runs (successful minimization = 98.7%), ® power
function, € fractional change function, «: shape parameter of the Weibull hazard function; A: scale parameter of the
Weibull hazard function; CRP: C-reactive protein; CRPye3: CRP concentrations at treatment cycle 3; CRPycle3-2:
difference in CRP concentrations between treatment cycle 3 and cycle 2; RSE: relative standard error.
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Figure 5. Kaplan-Meier visual predictive checks and impact of identified predictors on median OS.
(a) Kaplan-Meier visual predictive checks (1 = 250) comparing predictive performance of time-to-
event final OS model with Weibull hazard function and identified predictors to the observed OS data.
Solid line: observed OS data (thin vertical lines represent censoring times corresponding to the time
of the patient’s last participation in the study); dashed line: median model-predicted profile, with
90% confidence interval (green shade). (b) Forest plot of the impact of identified significant predictors
on median OS. Effects of continuous predictors (i.e., CRP¢yc1e3, CRPcycle3-2, baseline tumor size) are
shown at the 5th and 95th percentiles of the respective predictor, and effects of categorical predictors
(i.e., liver lesions) are shown relative to the reference category. Black dots: predictor effects; horizontal
lines: 95% confidence intervals. (c¢) Kaplan-Meier plots of simulated (n = 250) OS profiles under the
combined effect of the 5th percentile of the continuous predictors (CRPyje3: 1.40 mg/L, CRP¢ycie3-2:
—7.56 mg/L, baseline tumor size: 2.34 cm) in absence of liver lesions and the 95th percentile of the
continuous predictors (CRP¢yje3: 80.7 mg/L, CRPyle3.2: —0.114 mg/L, baseline tumor size: 16.9 cm)
in presence of liver lesions. Dashed black line: simulated profile at the 95th percentile predictor level
in presence of liver lesions; solid black line: simulated profile at the 5th percentile predictor level
in absence of liver lesions; pink shaded area: 90% confidence intervals of simulated profiles at 95th
percentile predictor level in presence of liver lesions; purple shaded area: 90% confidence intervals of
simulated profiles at 5th percentile predictor level in absence of liver lesions; dotted horizontal line:
50% OS; dashed vertical line: median OS time at 95th percentile values of the predictors in presence of
liver lesions; dotted vertical line: observed median OS time; solid vertical line: median OS time at 5th
percentile value of the predictors in absence of liver lesions. CRP: C-reactive protein; TS: tumor size.

The univariate impact of the identified predictors on the median OS was explored at
the upper (95th percentile) and lower values (5th percentile) of the respective predictor
distribution, in the case of continuous predictors, and in the case of categorical predictors,
it was explored with respect to the reference predictor category: the inflammatory level
showed by far the highest impact (i.e., 25.6 months difference between the 5th and 95th
percentile of CRP,3) on median OS compared with the reduction in inflammatory level
(ie., 11.15 months difference between the 5th and 95th percentile of CRPe3-2) or the
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tumor load (i.e., 7.24 months difference between the 5th and 95th percentile of BLTS)
(Figure 5b). For a patient cohort with a low inflammatory level at treatment cycle 3, a high
reduction in inflammatory level between treatment cycle 3 and cycle 2, and a low tumor load
in the absence of liver lesions, the median OS was not reached until 33 months (Figure 5c),
whereas for a patient cohort with a worse-case disease state—a high inflammatory level
at treatment cycle 3, a low reduction in inflammatory level between treatment cycle 3
and cycle 2, and a high tumor load in presence of liver lesions—median OS was only
2.24 months (i.e., combined impact of all predictors).

3.2.3. Impact of Different Levels of Inflammation on Efficacy Endpoints

Since the inflammatory level at treatment cycle 3 was the most impactful predictor of
both PFS and OS, the prognostic value of the different levels of CRP;.3 were systematically
explored. Simulations from the final PFS and OS models based on the different percentiles
of CRPyc1e3 showed an even impact on PFS and OS, with—as expected—a shorter PFS and
OS associated with an increased inflammatory level, and no threshold detected (Figure 6a,b,
respectively). Comparison of these simulated profiles against the observed PFS and OS
events and based on different percentile intervals of the model-estimated CRP;; 3 is shown
in Figure 6¢,d, respectively. In the PFES KM plot (Figure 6c), the upper and lower percentile
intervals showed a similar pattern to the simulated profiles (Figure 6a) and the lowest three
percentile intervals showed a comparable median PFS, although there was an observed
overlap of the intermediate CRP,3 percentile intervals. For OS, Figure 6d depicted a
similar pattern to the simulation results (Figure 6b) with a corresponding median OS for all

the percentile intervals—except for the lowest two which were simulated to have a longer
median OS.
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Figure 6. Upper panel: Kaplan-Meier visual predictive checks (n = 250) of simulated (a) progression-
free survival events and (b) overall survival events at different concentrations (i.e., percentiles) of
CRPyle3- Different colors in the upper panel indicate different percentiles. Lower panel: Kaplan-
Meier plots of observed distribution of (c) progression-free survival and (d) overall survival events
stratified by model-estimated CRPyje3, color-coded by the different percentile intervals. Percentile
intervals were chosen so that their median corresponds to the percentiles of the simulated profiles in
the upper panel, i.e., 5th, 25th, 50th, 75th, and 95th. Solid colored line: observed progression-free
survival or overall survival; thin vertical lines: censoring times corresponding to the time of the
patient’s last participation in the study; different colors indicate different percentile intervals.
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4. Discussion

We successfully identified early predictors of efficacy in advanced NSCLC patients
and demonstrated that not only lower concentrations of CRPye3 (i.e., lower inflammatory
state) but also a larger reduction in the inflammatory level, specifically a larger difference
between CRPycle3 and CRPyle2 (i-€., Sth percentiles), were associated with longer PFS
(median PFS: 16.5 months; observed median PFS: 7.07 months). In addition to the latter
two CRP-related metrics, lower tumor load (i.e., baseline TS, 5th percentile), and absence of
liver lesions were associated with longer survival (median OS not reached after 33 months;
observed median OS: 11.1 months). The developed coupled tumor dynamics-biomarker
model predicted circulating CRP concentrations and characterized the association between
TS, a metric of tumor dynamics, and CRP, an inflammatory serum biomarker and a marker
of disease aggressiveness. Moreover, this coupled model paved the way to explore the
predictive value of model-derived variables of the longitudinally predicted CRP and TS
data, along with patient- and disease-related characteristics with respect to PFS and OS in
patients with advanced NSCLC.

We leveraged our previously developed TS model [15], where tumor decay was linked
to paclitaxel PK exposure to account for dose adaptations. We adopted a sequential model-
ing approach [31] where individual TS parameter estimates along with their uncertainty
were leveraged to estimate TS over time and consequently informed circulating CRP con-
centrations. This approach was chosen for its higher precision and lower bias compared
to only using the population parameter estimates [31], and to account for the variability
and uncertainty encountered from the multiple imputation framework within which the
TS model was developed. A similar framework, linking tumor dynamics to the circulating
serum biomarkers, was previously applied in small-cell lung cancer [42]. In that frame-
work, a hypothetical tumor dynamic compartment, informed by the potential impact of
the different treatment strategies influenced the biomarker concentrations; however, no
impact of the drug concentration was considered. Thus, to our knowledge, our developed
modeling framework is the first to link drug exposure and tumor dynamics to serum
biomarker concentration in NSCLC, which we believe can be applied in different settings
within oncology, e.g., different treatment modalities and /or cancer types.

The identified influential variables on CRP production were plausible, being baseline
IL-6, baseline TS, disease stage, and smoking status. IL-6 is the biochemical precursor to
CRP [10], whereas baseline disease stage and TS are metrics of disease aggressiveness and
reflect CRP’s positive correlation with advanced disease stage and metastasis [11]. Smoking
status was previously confirmed to have a positive impact on CRP concentration, even after
smoking cessation, possibly mediated through a chronic systemic inflammatory response
and oxidative stress [43,44]. Thus, a current smoker with high inflammatory cytokine
concentration, i.e., baseline IL-6, high tumor burden, and more advanced disease stage,
would have a 68.3-fold faster CRP production rate and consequently a higher, unfavorable
inflammatory level than a non-smoker with low inflammatory response, low tumor burden,
and less advanced disease stage.

The association between CRP and NSCLC is not fully clear yet; however, IL-6 and the
inflammatory state are expected to play a role [11,45]. Different mechanisms have been
postulated for the relation between tumor and CRP: (a) CRP could be released in response
to the inflammatory status caused by the tumor growth, (b) CRP could be a result of the
body’s response to tumor antigens or the increased production of inflammatory cells from
the malignant cells [12], or (c) CRP release is mediated through its precursor IL-6 which has
been shown to be upregulated in response to treatment, e.g., paclitaxel and platinum drugs
and involved in cancer resistance [45]. The linear model linking the TS relative to baseline
TS, to CRP production translates to the fact that the inflammatory status associated with the
malignant tumor stimulates inflammatory cytokines that in turn activate the hepatocytes
to release CRP [11].

Our coupled tumor dynamics-CRP model predicted TS and CRP concentrations across
the whole duration of treatment. Hence, post-treatment TS and CRP concentrations were
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estimated for all patients and allowed for a rich assessment of non-baseline CRP concen-
trations and tumor shrinkage at later time points. Nevertheless, our focus was on “early”
metrics for future translation into clinical practice where early metrics are necessary for
timely decision-making. For this reason, we identified the first three treatment cycles to be
of relevance and consequently chose a landmark time defined at the start of treatment cycle
3 for investigation of PFS and OS and did not explore later predictors or the impact of later
landmark times. Landmark survival analysis has been commonly applied before [46—49] to
investigate non-baseline predictors, e.g., tumor dynamics, and avoids predicting events
before the monitoring time of the predictor (i.e., prediction of PFS or OS before assessment
of CRP at treatment cycle 3) [20].

Characterization of PFS and OS by means of a parametric TTE model with the chosen
landmark time demonstrated an initial increase in the risk of PFS followed by a later de-
crease (i.e., lognormal distribution of hazard), probably initially dominated by progression
and death events and later dominated only by the death events, whereas a Weibull distri-
bution of hazard characterized the increasing risk of death with time. While previous work
has already reported a positive correlation between baseline CRP concentrations and poor
prognosis in NSCLC [13,15,45,50], no one, to our knowledge, has looked into CRP kinetics
over the treatment time. Exploration of potential predictors revealed superior predictivity
for non-baseline CRP concentrations compared with baseline CRP concentrations. Specifi-
cally, CRPycle3 Was a stronger predictor for both PFS and OS compared with the other time
points, e.g., baseline CRP or CRP¢ycep- This indicated that as the patient moves further
in time (i.e., treatment cycles), CRP becomes more representative of the patient’s disease
status especially after receiving treatment, compared with baseline measurement that only
reflects the patient’s situation before treatment starts. Additionally, the degree of reduction
in the inflammatory level between treatment cycle 3 and cycle 2 (CRP¢yje3-2) was also a
strong predictor of PFS and OS, adding to the fact that not only absolute CRP concentration
was reflective of the patient’s prognosis but also its dynamic change and reduction across
treatment duration.

CRP at later treatment cycles was always a dominating significant predictor. An
investigation of a landmark time at treatment cycle 2, compared to our presented results
at a landmark time at treatment cycle 3, identified very similar predictors but with a
weaker impact. The most recent CRP concentration, i.e., CRPycjep, was the most significant
predictor of PFS, and along with liver lesions, of OS (for OS, BLTS was significant at p-value
0.05 but not 0.01, and CRPye32 was no longer an investigated variable). This indicated
that the later CRP time points were always the most statistically significant predictors
in comparison to baseline measurements. Whereas on the one hand, a landmark time at
treatment cycle 3 offers the opportunity to identify more impactful predictors and account
for the extent of reduction in CRP concentrations, an even earlier monitoring time—if
needed—still identified CRP to be dominating and CRPyje» to be the strongest predictor
of efficacy endpoints, despite a weaker magnitude of impact compared with CRPye3
(parameter effects for CRPyle2 and CRPycle3 0n PFS hazard function 0.0416 vs. 0.109 and
on OS hazard function 0.304 vs. 0.781, for landmark times at treatment cycles 2 and
3, respectively).

In addition to CRP-related metrics, the presence of liver lesions and a higher tumor
load were associated with shorter survival, i.e., worse prognosis. Our results are in line with
previous work [51-53], which reported worse prognosis for lung cancer patients with liver
metastasis, whereas, similarly, baseline TS was a consistent prognostic variable in NCSLC
patients [15,46,54]. Although tumor shrinkage was previously reported to have a significant
impact on efficacy outcomes [46,47,55-58], in our work, only baseline TS, as a tumor-related
metric, was significant for OS. This could be attributed to the fact that in the previous
work, only baseline characteristics were explored besides the longitudinal tumor-size
changes, whereas in our presented work, longitudinal CRP- and neutrophil-to-lymphocyte
ratio-related metrics were additionally explored that could have masked the impact of
tumor shrinkage. This is a sign that longitudinal variables, whenever present, dominate
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their respective baseline variables and that longitudinal CRP is more significant than
longitudinal TS, when tested combined. Finally, we also demonstrated the profound impact
the inflammatory status has, as depicted by the different CRP¢ye3 concentrations, on the
risk of PFS and OS. Thus presenting a promising prognostic marker of disease outcome if
monitored through measuring CRP concentration. It is worth noting that we focused on
whether monitoring inflammation, through longitudinal CRP measurements, could reflect
disease outcome rather than whether modulating inflammation could be a good prognostic
factor. Therefore, the impact of IL-6 modulators/blockers and /or reduction in CRP was not
our intended objective. On the contrary, we sought to leverage the elevated inflammatory
markers as a reflection of the patient’s disease and prognostic status.

Our TTE models did not account for patients who dropped out from the study since
according to the study protocol those patients were still followed up for information
on progression and survival. Therefore, a drop-out event (i.e., exit from the study) was
not considered to be a competing event nor was it considered a censored event on its
own. Although this modeling framework was applied to a specific patient cohort and
study design, and consequently the impact of the identified predictors is in the first place
only applicable to this specific setting, the same modeling framework can generally be
applied to explore the potential of different biomarkers and across different treatment
modalities within the clinical setting. Given our specific patient cohort and the unique
characteristics of our dataset, the evaluation of our model with an external dataset of similar
characteristics was not possible. Moreover, splitting the data into training and testing
datasets was not an optimal approach given the small number of patients and the risk of
loss of power. Nevertheless, to overcome these hurdles, we alternatively sought to compare
our simulation-based results to our observed data—as presented in Figure 6. Despite the
small number of patients compared to previous assessments [46,52], our developed models
precisely estimated the parameters and showed good predictivity and confidence levels.
Even though we leveraged baseline IL-6 concentration to inform CRP production, as a
significant predictor, the availability of longitudinal IL-6 concentration would have allowed
a possible linkage of IL-6 kinetics, as a precursor to CRP production, to the CRP kinetic
profile and consequently the possibility for an even earlier prediction of the expected CRP
concentration, as previously applied in breast cancer, where IL-6 was found to peak two
days before CRP [59].

In this work, we aimed to reliably and realistically identify the patients” expected
PFS and OS for relevant actions to be taken, e.g., treatment optimization to tackle the
expected outcome. Indeed, it is worth first evaluating this modeling framework for optimal
CRP sampling strategies that can provide the most precise predictions for the endpoint of
interest in clinical practice. When the most informative timepoints are identified, potential
limitations that could arise from longitudinal sampling, e.g., more laborious work, extra
cost compared to single sampling, and patient compliance for repeated sampling, are
minimized. This could then pave the way for a subsequent step in which the framework
could be integrated into an interactive platform, e.g., the R Shiny app for a seamless
application in the clinical setting and the real-world of NSCLC. Furthermore, as next steps
the impact of different dosing regimens could be investigated or an optimal treatment
strategy identified. Thus, this work has the potential to be expanded and linked to dosing
recommendations for a model-informed precision dosing and therapy optimization in
clinical practice within or outside the scope/therapeutic area of oncology [60,61].

5. Conclusions

In conclusion, our clinical data reflected the real-world target population along with
the potential and challenges of handling missing data. Our successfully developed tumor
dynamics-biomarker model adequately characterized the longitudinal CRP concentrations,
providing a link between chemotherapy-driven TS and CRP. Moreover, besides disease-
related factors, CRPycje3 and CRPye3.2 Were stronger prognostic factors compared with
baseline CRP concentrations to identify patients with advanced NSCLC at earlier risk of
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progression and/or death, for timely decision-making and therapy optimization. CRP
represents a minimally invasive and easily assessed intrinsic serum biomarker. Although it
is a non-specific serum biomarker, our work has nevertheless demonstrated that it provides
a strong prognostic value regarding patients’” progression and survival, especially when
combined with tumor load and liver lesions as in OS. Measuring CRP over the course
of treatment and in our case for NSCLC patients at treatment cycle 3 and cycle 2 allows
monitoring of the inflammatory level and offers the potential to become a promising
prognostic marker to better guide treatment decisions.
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