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Multipartite entanglement enables secure and anonymous key exchange between multiple parties in a network.
Greenberger-Horne-Zeilinger states have been introduced as resource states for anonymous key exchange
protocols, in which an anonymous subset of parties within a larger network establishes a secret key. However,
the use of other types of multipartite entanglement for such protocols remains relatively unexplored. Here,
we demonstrate that linear cluster states can serve as a versatile and potentially scalable resource in such
applications. We implemented an anonymous key exchange protocol with four photons in a linear cluster state
and established a shared key between three parties in our network. We show how to optimize the protocol
parameters to account for noise and to maximize the finite key rate under realistic conditions. As cluster states
have been established as a flexible resource in quantum computation, we expect that our demonstration provides
a first step towards their hybrid use for networked computing and communication.
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I. INTRODUCTION

Quantum communication has been expanded from the ini-
tially proposed bipartite key exchange [1,2] to networked
settings [3–6]. One particularly interesting application of
quantum networks is conference key agreement [7,8]. In such
protocols, multipartite entangled states are used to realize
a key exchange in a quantum network. It has been shown
that such a networked key exchange is possible by sharing
Greenberger-Horne-Zeilinger (GHZ) states in a network [9].
Their quantum correlations can be harnessed for establishing
a joint key and for performing verification. In the latter step,
an eavesdropper or any other deviation in the protocol can be
detected, similar to the bipartite case, making the protocol
secret [7]. Networked key exchange has been shown to be
more efficient than several bipartite links [10,11].

Furthermore, the use of multipartite entanglement made it
possible to efficiently realize another security feature beyond
secrecy: anonymity. It hides the information who a party is
communicating with. This is an important feature, for exam-
ple, in situations where the message is more or less clear
once the recipient is known: an employee communicating
with a head hunter of a competing company, a whistle blower
contacting investigative journalists, or a person consulting a
medical specialist. By exploiting the particular properties of
GHZ states, multiple parties can communicate in a quantum
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network with their identities protected [11,12]. In other words,
a key is exchanged between a subset of parties of a net-
work while it remains hidden which parties belong to this
subset. Such anonymous quantum conference key agreement
also allows verification and thus the detection of deviating
parties or eavesdroppers. There are various implementations
of conference key agreement and its anonymous equivalent in
quantum networks [10,13,14].

So far, many protocols for conference key agreement build
strongly on the particular correlations of GHZ states [11–14].
This invites the question whether multipartite entangled states
other than GHZ might be suitable as a resource for such
protocols. Of particular interest with regard to scalability are
physical quantum networks that, due to their topology or
physical hardware, favor building up links in the form of linear
cluster states.

Here, we study the use of linear cluster states as a resource
for anonymous conference key agreement between a subset of
parties in a larger network. We generate four-photon cluster
states and demonstrate that they provide a basis for key ex-
change between three parties of our network by implementing
a recently introduced protocol [15]. Specifically, we exchange
a key with a length of 40 kbit and demonstrate the encryption,
sharing, and decryption of a picture over the network. We
evaluate the success rates of the protocol for different network
configurations and examine the influence of experimental im-
perfections, in particular, how the parameters of the protocol
can be adapted to certain noise values.

While we are focusing on a key exchange in a network of
four parties, the protocol can be scaled to anonymous three-
partite communication in a larger network. As such, our work
establishes the potential of cluster states beyond applications
in quantum computing [16].
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FIG. 1. Sharing of the linear cluster state in the network. (a) The
general protocol uses three linear cluster states, where Alice and
Charlie have the first and last qubit, respectively, of the central linear
cluster state, which is used for key generation. The use of three
cluster states ensures the anonymity of all parties (see Ref. [15] for
details). (b) In this paper, we generate a four-qubit linear cluster state
acting as the central cluster state. From this, we extract a state that is
locally equivalent to a three-qubit linear cluster state. The exact state
held by ABC depends on the disentangling measurement as well as
on the outcome of that measurement.

II. PROTOCOL

We start by introducing the main steps of the protocol
[15]. The first step is the creation of the resource state, a
linear cluster state, followed by its distribution to all parties
in the network. Such a linear cluster state can, in general,
be created by each party holding a qubit in the state |+〉 =
(|0〉 + |1〉)/

√
2, where |0〉 and |1〉 are the computational basis

states. The qubits are then entangled by applying CPhase
gates between pairs of neighboring qubits [17]. Here, the
action of the CPhase gate is CPhase|i j〉 = (−1)i j |i j〉 [18]. In
photonic settings, like the one studied here, one often starts
with two-qubit entangled states that are then fused to a larger
cluster state [19]. This cluster state is then shared in the
network such that each party receives one qubit.

The general protocol for a network with n parties has been
introduced in Ref. [15] and is summarized in Appendix A. In
this paper, we focus on a network with four parties and aim
at exchanging a key between three of the parties: Alice, Bob,
and Charlie (ABC). The protocol now works as follows: We
generate a four-qubit linear cluster state |LC4〉 that is shared
within the network. The state is defined as described above
and reads

|LC4〉 = 1
2 (|+00+〉 + |+01−〉 + |−10+〉 − |−11−〉), (1)

where |±〉 = (|0〉 ± |1〉)/
√

2. The party not participating in
the key exchange (NP) then performs a measurement in the
Pauli basis σX or σY . This measurement effectively removes
their qubit from the four-qubit cluster state and leaves a three-
qubit cluster state with ABC (see Fig. 1).

ABC measure their qubits to generate a key, exploiting the
correlations of the three-qubit linear cluster state which is lo-
cally equivalent to a three-qubit GHZ state. This measurement
type is called key generation. As the exact three-qubit state
between ABC depends on the outcome of the disentangling
measurement of the NP party, ABC perform bitflips condi-
tioned on that measurement outcome (see Appendix C). In
addition, ABC perform verification measurements by measur-
ing a stabilizer element of the linear cluster state. This is a
Pauli operator to which the state is an eigenstate with eigen-
value +1. Thus, the correlations between the measurement

outcomes of ABC are known. If ABC receive measurement
outcomes that are correlated in an unexpected way, this
reveals possible eavesdropping attacks and parties in the net-
work that deviate from the protocol. Before they perform a
measurement, ABC coordinate if it is a key generation or
a verification measurement and encrypt this communication
with a preshared key. The measurement bases for both types
of measurement are given in Appendix C.

The protocol not only enables the creation of a secret
key between ABC, but also guarantees their anonymity. This
means that only within the group of ABC, the network po-
sitions of each other are known, but are kept secret from all
NP parties [15]. The protocol maintains the anonymity of
ABC during all its steps, as long as there is no collective
attack. This entails that the NP parties are not able to conclude
anything about the positions of ABC from their measurement
instruction, measurement outcome, or any public communi-
cation they follow. For detailed explanations and proofs, we
refer to Appendix A and Ref. [15].

We perform verification measurements in a percentage
p of the L total rounds, where one round is a four-
fold event. For both types of settings, we define Qkeygen =
nkeygen,incorr/nkeygen,tot and Qverif = nverif,incorr/nverif,tot as the ra-
tio of incorrect rounds nincorr to total rounds ntot for the
respective round types. The success rates of the key generation
and the verification rounds are then given by 1 − Qkeygen and
1 − Qverif, respectively. The parameter Qkeygen is an upper
bound for the pairwise bit error rates QA,B

keygen, between Alice

and Bob, and QA,C
keygen, between Alice and Charlie. Qverif allows

us to infer the maximal knowledge that a potential eavesdrop-
per could gain about the key. In the postprocessing steps, error
correction and privacy amplification can be applied to the raw
key to receive a correct and secret key. The number of key
bits needed for those postprocessing routines depends on the
maximum of the pairwise bit error rates QA,B

keygen and QA,C
keygen for

error correction and on Qverif for privacy amplification as well
as on the desired level of security (see Sec. 3.2 of Ref. [15]).

III. EXPERIMENT AND RESULTS

In our implementation, we generate two pairs of entangled
photons and fuse them to a four-photon linear cluster state
by applying a photonic CPhase gate on one photon from
each pair [20]. We use polarization encoding |0/1〉 = |H/V 〉.
The two entangled photon pairs are created by spontaneous
parametric down conversion (SPDC) in barium borate (BBO)
crystals. A scheme of the protocol implementation is shown
and described in Fig. 2. The experimental setup is shown
in Fig. 6.

The generated state is characterized using quantum state
tomography and a maximum likelihood estimation [21].
The fidelity at a pump power of 400 mW is estimated
to 79.9 ± 0.8%. The main source of noise is higher-order
emission of the SPDC sources, which accounts for 4% of
all events. In addition, partial distinguishability as well as
spectral mixedness affect the two photon interference at the
polarization-dependent beam splitter (PDBS) in the imple-
mentation of the CPhase gate.
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FIG. 2. Schematic view of the implementation of the protocol.
We generate two pairs of entangled photons in the state |�−〉 =
(|H〉|V 〉 − |V 〉|H〉)/

√
2. Applying a CPhase gate to one photon from

each pair generates a four-photon cluster state upon postselection.
The four qubits are allocated to the different parties Alice, Bob, and
Charlie, (ABC) and a not participating party (NP). Polarization mea-
surements of the qubits can be realized in any basis and thus allow
disentangling, key generation, and verification operations. Note that
we create a state that is locally equivalent to the state given in Eq. (1)
and account for the local unitaries by adapted measurement settings;
see Appendix C for details.

In our implementation, Alice and Charlie hold the first and
last qubit of the state, respectively, meaning that either the
party holding the second or third qubit is NP. In total, there ex-
ist four experimental configurations, as either measurement in
the Pauli basis σX or σY can be used to disentangle the parties
that do not participate while preserving entanglement between
ABC. We label those configurations X2, Y2, X3, Y3, where the
letter indicates the type of disentangling measurement and
the number the party removing themselves from the network.
The choice of the configuration determines the measurement
settings of each party for the key generation and verification
rounds. We measure all eight measurement settings—one key
generation setting and one verification setting for each of the
four configurations—and determine the success rate for each
setting (see Fig. 3).

For the implementation of the protocol in a realistic setting,
we choose randomly whether key generation or verification is
performed using a biased random number generator. A single
fourfold event is considered a round. For each setting, we
integrate over a time of 60 s, which we call a run containing
multiple rounds. At the start of each run, the biased random
number generator indicates if the next run is a key generation
run or a verification run.

We set p = 10%; we exchange 41 033 bits for key gen-
eration and measure 3794 rounds for verification. From the
measurements, we obtain a success probability of (87.76 ±
0.54)% for the key generation rounds and (87.01 ± 0.55)%
for the verification rounds. Note that because the random
number generator is called only a finite number of times, the

FIG. 3. Success rate of key generation and verification rounds for
the four different configurations.

ratio of verification rounds from total rounds slightly differs
from the value of p.

To illustrate the protocol and give a visual idea for the error
rate, we use the key to encrypt a binary image by performing
an XOR operation for every image pixel with a bit from
Alice’s key (see Fig. 4). The XOR operation is defined for
binary numbers x, y as the sum modulo 2: XOR(x, y) = x ⊕ y.
Bob and Charlie can decrypt the image using their keys: If the
bits of the encryption and decryption key are the same, the
original image pixel is retrieved. However, if due to errors,
bits of the encryption and decryption key are different, this
will result in an incorrectly communicated image pixel. In
our implementation, this noise arises from imperfections in
the state preparation and transmission. As a result, classical
postprocessing is necessary because, with an erroneous key,
the sent message will also contain errors.

Error correction

We use low-density parity check codes (LDPCs) to per-
form error correction (see Appendix D). Alice computes
parity bits called error syndrome from her raw key and sends
them to Bob and Charlie, who then correct their key. The ratio
r between the number of raw key bits and the sum of raw key
and parity bits is called the code rate and its chosen value is
dependent on the error rate. If r is too high, meaning if not
enough parity bits are used, not all errors can be corrected.
For different values of r and depending on QA,B

keygen and QA,C
keygen,

respectively, the error can be corrected partially or completely
(see Table I). For the keys in this paper, all errors could be
corrected using a code rate of r = 0.5. A detailed explanation

TABLE I. Ratio of bits different from Alice’s key in the keys
of Bob and Charlie for the raw key and error corrected keys with
different code rates r.

Bob (%) Charlie (%)

Raw key 10.37 9.67
r = 2 : 3 10.22 8.88
r = 3 : 5 6.82 0
r = 1 : 2 0 0
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FIG. 4. Encryption and decryption with the generated key. Left: Alice encrypts a binary image using her key and sends the encrypted image
to Bob and Charlie. In this exemplary case, an XOR operation is used for encryption. Right: Bob and Charlie use their keys to decrypt the
sent encrypted image. In case of using a not corrected key, the obtained image contains errors. Note that this figure at the same time illustrates
the necessity of privacy amplification, as it must not be possible for any adversary to guess parts of the transmitted message when having a
partially correlated key.

and the chosen parameters of the error correction procedure
can be found in Appendix D.

IV. ANALYSIS OF NOISE-ADAPTED
PARAMETER CHOICE

In this section, we analyze how the choice of the protocol
parameters affects the performance of the protocol. As the
optimal postprocessing methods may depend on the particular
noise level and raw key length, our analysis is independent
of specific postprocessing methods. For this analysis, we per-
form another run of the protocol in the configuration X2 and
set p = 2%. We retrieved 11 108 rounds in total, including
10 814 key generation rounds and 294 verification rounds.
From the measurement outcomes, we estimate the values
Qverif = (11.2 ± 1.8)% and max(QA,B

keygen, QA,C
keygen) = (9.59 ±

0.28)%.
In a realistic setting, errors in the key could be introduced

by an eavesdropper trying to gain knowledge about the key,
thus compromising the security of the protocol. Therefore,
privacy amplification is needed in addition to error correction.
For both error correction and privacy amplification, a fraction
of the exchanged key has to be used. Note that different to
other conference key agreement schemes, for maintaining the
anonymity of ABC, the error syndrome is encrypted. How-
ever, this still leads to the same amount of key used for the
postprocessing in total, since less key is needed for privacy
amplification compared to other schemes. The fraction of the
key needed for those postprocessing steps should be small
compared to the key length to obtain a positive key rate. It
depends on the parameters Qverif and max(QA,B

keygen, QA,C
keygen) as

they indicate the level of information leakage and errors in
the key, respectively. If Qverif and max(QA,B

keygen, QA,C
keygen) are

too high, no secure and correct key can be achieved using the
postprocessing steps.

The asymptotic key rate (AKR) is an upper bound to the
maximal achievable fraction of the raw key which can be used
as a correct and secure key. For the protocol used here, it is

given by

AKR = 1 − h(Qverif ) − h
(

max
(
QA,B

keygen, QA,C
keygen

))
, (2)

where h is the binary entropy:

h(x) := −x log2(x) − (1 − x) log2(1 − x). (3)

The binary entropy takes values between 0 and 1, there-
fore the AKR has a value between −1 and 1. A negative
value indicates that Qverif and max (QA,B

keygen, QA,C
keygen) are too

large and thus the postprocessing steps cannot be carried
out. The values measured in our experiment correspond
to h(Qverif ) = 0.507 ± 0.055 and h( max(QA,B

keygen, QA,C
keygen)) =

0.456 ± 0.001, thus leading to a positive value of AKR =
0.0375 ± 0.0557.

For finite keys of length L, the communication of the ver-
ification rounds and statistical uncertainties in the estimation
of the errors lead to a smaller ratio of secure and correct key
to raw key. This ratio is called the finite key rate (FKR). The
AKR is the limit of the FKR for L → ∞. The fact that the esti-
mated parameters Qverif and max (QA,B

keygen, QA,C
keygen) are subject

to statistical fluctuations leads to the possibility that even after
postprocessing the key is not secret or incorrect. The tolerated
level of the probability for a not secret or for an incorrect key
is specified by the parameters εS and εC, respectively. Here,
εS is the secrecy parameter which implies that the generated
key is εS close to uniformly random for any adversary. εC

is the correctness parameter that implies that the probability
that the keys of the participants are different is smaller than
εC. Together, these are referred to as the security parameters
and are chosen close to zero. The postprocessing steps are
adjusted to these parameters, meaning that the postprocessing
is carried out like in a scenario where a higher ratio of the key
is leaked and more errors occurred than the estimated values
of Qverif and max (QA,B

keygen, QA,C
keygen) suggest. Hence, in addition

to Qverif and max (QA,B
keygen, QA,C

keygen), the FKR depends on the
parameters εS, εC as well as on L, p, and a free parameter
ε. The exact formula is given in Appendix E. If all other
parameters are given, one can estimate by numerical means
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FIG. 5. Dependence of finite key rate FKR on the raw key length
L and p. For the security parameters, the values ε = 10−5, εC = 10−5,
and εS = 2 × 10−5 are chosen [see Appendix E, Eq. (E1)]. The
minimal L at which one can get a positive FKR with the parameters
estimated in this setup is given by L = 1.46 × 108 when choosing a
p = 0.12 %. The blue line indicates popt, which is the optimal choice
of p for each L, meaning the value of p at which the FKR becomes
maximal for each fixed L. In the limit of L → ∞, popt goes to zero.
Therefore, the AKR does not depend on p.

the optimal choice popt of the parameter p, which maximizes
the FKR. In Fig. 5, the FKR is shown for the values of Qverif

and max (QA,B
keygen, QA,C

keygen) that we measured in our setup for
different values of p and L, together with popt for each L.

V. CONCLUSION AND OUTLOOK

In this paper, we demonstrated anonymous quantum con-
ference key agreement using a linear cluster state. We showed
the encryption of a picture and analyzed the security param-
eters in the experimental setup and from this the finite and
(positive) AKR. The change of the network configuration—
meaning who belongs to the communicating subgroup and
who does not—only requires the change of the measurement
settings, which makes the introduced protocol a feasible and
flexible technique of networked communication. This paper
widens the range of possible resource states used for such
networked communication tasks. As cluster states are an im-
portant resource in quantum computation, this could open an
avenue to the hybrid use of these resource states for networked
computing and communication.

The development of novel schemes for state generation
and state transmission have the potential to further improve
the protocol performance and enable its application for real
world communication tasks. One possibility would be to use
quantum repeaters to achieve a subexponential rate-distance
scaling. However, quantum repeaters may introduce errors on
the quantum state itself and, thus, examining the trade-off
between using repeaters and the fidelity of the shared multi-
partite entangled state will be an important research topic for
the future. Alternatively, there also exist schemes of photon-
loss-tolerant encoding which could be used to overcome the
distance limitation introduced by loss [22]. In addition to loss,
one challenge when scaling the system up is the scaling of
the state generation. The use of quantum dot emitters gener-
ating high numbers of entangled photons is a promising way

to tackle the current challenge of probabilistic linear-optics
entangling gates [23]. Future work could address the question
of finding optimal network architectures that reduce the over-
all transmission distance and incorporate such deterministic
sources of entangled states.

When extending the network to larger systems, questions
for an efficient usage of the states arise: Is it possible to
use one resource state for several communicating parties in
parallel? Can parts of a state still be used if the state was due to
losses not entirely transmitted? Furthermore, a detailed study
of the noise occurring in the implementations will be the key
to developing adapted protocols.
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APPENDIX A: SUMMARY OF THE PROTOCOL

The general protocol was introduced in Ref. [15]. There,
every party shares in the beginning a Bell pair with each of
their two neighbors, meaning every party holds two qubits.
In the first step, all parties except Alice and Charlie fuse
their two qubits together, which leads to three linear cluster
states. In the middle linear cluster state, Alice and Charlie
are the first and last party, respectively, which is necessary
for the following steps of the protocol to work. The middle
state is used for key generation. The outer two states hide
the identity of Alice and Charlie. In the next step, the NP
parties disentangle themselves from the state by performing
either a measurement in the Pauli basis σX or σY . The first
party decides randomly which basis to choose, and tells the
next party the basis. The following parties always take the
measurement basis different from the preceding party, leading
to an alternating way of disentangling measurements. Alice,
Bob, and Charlie measure in different measurement bases,
either to perform key generation or verification. Afterward,
they perform error correction and privacy amplification.

During all protocol steps, the anonymity of ABC is hidden
from all the NP parties: For all possible positions of ABC
in the network, there exist two ways for the NP parties to
perform the disentangling measurement, and which one they
perform is decided uniformly at random. Thus, if a NP party
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FIG. 6. Experimental setup.

is instructed to perform a measurement in a certain basis,
this could belong to any possible positioning of ABC in the
network with equal probability, meaning that the party does
not gain any knowledge about the positions of ABC. It must
also not be possible for the NP parties to find out the mea-
surement bases of the other parties, as ABC measure in bases
different from the ones of the NP parties. In principle, they
could use their measurement outcomes for this. However, this
is not possible due to the no-signaling theorem [24]. Hence,
the measurement outcome cannot be used by the NP parties to
undermine the anonymity of ABC. All communication needed
during the postprocessing steps is encrypted with the pre-
shared key and then broadcasted; the NP parties send random
bit strings of the same length. Therefore, it remains hidden
which parties actually communicate during these steps and
which only mimic this. In this way, the communicating parties
ABC remain hidden also during the postprocessing steps.

APPENDIX B: SETUP

In our setup (see Fig. 6), we generate two entangled photon
pairs by pumping two BBO crystals cut for type-II-SPDC with
a pulsed titanium-sapphire laser (τ = 140 fs, λ = 780 nm up-
converted to λ = 390 nm, P = 400 mW). The generated Bell
pairs are fiber coupled and one photon of each Bell pair
is overlapped at a PDBS. This PDBS transmits horizontally
polarized photons and reflects 2/3 of the vertically polarized
photons. Two further PBDSs, one in each output mode of the
first, reflect 2/3 of the |H〉 photons and transmit all |V 〉 pho-
tons. All PDBSs together form a photonic CPhase gate upon
coincidence detection, postselecting all events which result in
one photon per output mode (1/9 of the cases) [20]. For each
channel, a combination of a half wave plate (HWP), a quarter

wave plate (QWP), and a polarizing beam splitter enables the
measurement of the respective qubit in the necessary bases,
followed by an avalanche photo diode for photon detection.
The setup generates a state which is locally equivalent to a
four-photon linear cluster state up to local unitaries which we
absorb in the measurement bases.

APPENDIX C: MEASUREMENT SETTINGS
OF THE PROTOCOL

The measurement of the NP parties projects the state held
by ABC on a state that is locally equivalent to the three-qubit
linear cluster state. The exact state depends on the measure-
ment setting of the NP party as well as on the outcome of
that measurement. The exact states between ABC are given in
Table II.

In our setup, we generated the state

|LC′
4〉 = 1

2 (|HV HV 〉 + |HVV H〉 − |V HHV 〉 + |V HV H〉),

(C1)

which is locally equivalent to the state

|LC4〉 := CZ1,2CZ2,3CZ3,4|++++〉
= 1

2 (|+00+〉 + |+01−〉 + |−10+〉 − |−11−〉),
(C2)

where CZi, j is a CPhase gate acting on qubits i and j. The two
states |LC4〉 and |LC′

4〉 are related by |LC′
4〉 = (H ⊗ σX ⊗

σX ⊗ H )|LC4〉, where H denotes a Hadamard gate. The mea-
surement settings M̂ ′

i for the state |LC′
4〉 are related to the ones

of |LC4〉 by M̂ ′
i = (H ⊗ σX ⊗ σX ⊗ H ) M̂i (H ⊗ σX ⊗ σX ⊗

H )†. The measurement bases for the different configurations
of both states are listed in Table III.

033222-6



EXPERIMENTAL ANONYMOUS CONFERENCE KEY … PHYSICAL REVIEW RESEARCH 5, 033222 (2023)

TABLE II. Shared state between ABC after the disentangling measurement of NP and measurement settings for the different configurations.
|±i〉 = (|0〉 ± i|1〉)/

√
2 are the eigenstates to the Pauli matrix σY . For all configurations, the state between ABC is locally equivalent to the

three-qubit linear cluster state |LC3〉 = (|+0+〉 + |−1−〉)/
√

2. The exact state between ABC depends on the measurement outcome M =
±1 = (−1)m of the disentangling measurement of NP, where m ∈ {0, 1}. For the key generation measurement, ABC use a measurement basis
where they will get all the same measurement outcome. If m is 1, one party has to perform a bitflip which can be done after the measurement.
For the verification measurement, an element of the stabilizer of the state held by ABC is measured. For readability, the notation is changed: Z
(X , Y ) denotes a measurement in the Pauli basis σZ (σX , σY ) and the index denotes the qubit on which the measurement is applied.

Configuration State shared between ABC Key generation measurement Verification measurement

X2
1√
2

X m
1 (|00+〉134 + |11−〉134) Z1Z3X4 X1X3Z4

Y2
1√
2

Zm
1 (|+i0+〉134 + i |−i1−〉134) Y1Z3X4 X1X3Z4

X3
1√
2

X m
4 (|+00〉124 + |−11〉124) X1Z2Z4 Z1X2X4

Y3
1√
2

Zm
4 (|+0+i〉124 + i |−1−i〉124) X1Z2Y4 Z1X2X4

APPENDIX D: ERROR CORRECTION PROCEDURE

To correct the errors Err(KeyA, KeyB) and
Err(KeyA, KeyC ) between the key of Alice and the keys
of the other participants, LDPC matrices are used. Using
such a matrix, Alice calculates parity check bits from the raw
key in a first step. Then Alice sends her parity bits to Bob
and Charlie via a classical channel. From the bits sent by
Alice and their raw key Bob and Charlie can infer which bits
were (most likely) subject to noise and therefore flipped. The
identified bits are then corrected by flipping them back.

Specifically, the DVB-S2 standard [25] is applied, provid-
ing matrices of the form

HEC = [H ′|S], (D1)

where H ′ is a sparse matrix of dimension (N − k) × k and S
is a staircase matrix of dimension (N − k) × (N − k). Here
k refers to the number of information bits, while N is the
combined number of parity check bits and information bits.
Possible values of N within the standard are 64 800 and
16 200. Due to the length of the created key, the latter one
is chosen. Depending on the error rate, a code rate of r = k/N
is chosen. A higher r hereby corresponds to less parity check
bits and hence is used for low error rates. To correct all errors
in Bob’s and Charlie’s keys, r is set to 1/2.

Alice divides her key in blocks of k bits and calculates the
parity check bits for each block using HEC. Bob and Charlie
receive these parity check bits over a classical verified chan-
nel. At Bob’s and Charlie’s site, they now have their respective
key which contains errors and the check bits of Alice, which
are assumed to be transmitted without errors. With the knowl-

edge of HEC, Bob and Charlie can correct their errors. For
this, the ldpcEncode and ldpcDecode functions provided by
MATLAB are used. For the latter, the belief propagation algo-
rithm is chosen [26].

Note that the shortening of the key in the finite case is
typically higher than the value of h(max (QA,B

keygen, QA,C
keygen)).

Similar to the choice of popt, there exists an optimal choice
of the particular error correction scheme for every raw key
length L and given noise parameters max (QA,B

keygen, QA,C
keygen).

The longer the raw key length L gets, the smaller the resulting
inefficiency of the optimal error correction scheme becomes.
As it can become arbitrarily small, it is not considered in the
AKR, which is an upper bound to the FKR.

APPENDIX E: FINITE KEY ANALYSIS

The finite key analysis is done using the following
equation:

FKR = (1 − p)

(
1 − h

(
Qverif + μ

(
εS − ε

2

))

− h
(

max
(
QA,B

keygen, QA,C
keygen

))) − h(p)

+ 1

L
(log2 (ε2εC) − 2), (E1)

where

μ(x) =
√

l + κ

lκ

l + 1

l
ln

1

x
, (E2)

TABLE III. Measurement settings for the different network configurations. The configuration is indicated by a letter and an index denoting
the measurement basis σX /σY and the not participating party, respectively. For each configuration, the measurement settings for parties 1–4
are shown for key generation and verification measurements. For readability, the notation is changed: Z (X , Y ) denotes a measurement in the
Pauli basis σZ (σX , σY ) and the index denotes the qubit on which the measurement is applied. The measurements are realized by setting the
quarter-wave plate and half-wave plate to the corresponding angles. With the notation (angle QWP, angle HWP), these are (45◦, 22.5◦) for X ,
(45◦, 0◦) for Y and (0◦, 0◦) for Z .

Configuration Key generation |LC4〉 Key generation |LC′
4〉 Verification |LC4〉 Verification |LC′

4〉
X2 Z1X2Z3X4 X1X2Z3Z4 X1X2X3Z4 Z1X2X3X4

Y2 Y1Y2Z3X4 Y1Y2Z3Z4 X1Y2X3Z4 Z1Y2X3X4

X3 X1Z2X3Z4 Z1Z2X3X4 Z1X2X3X4 X1X2X3Z4

Y3 X1Z2Y3Y4 Z1Z2Y3Y4 Z1X2Y3X4 X1X2Y3Z4
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with l being the number of verification and κ the number
of key generation rounds, which asymptotically gives l = pL
and κ = (1 − p)L. The parameter ε > 0 is a free parame-
ter; one can optimize over ε and p for a given L, Qverif,
max(QA,B

keygen, QA,C
keygen) and security parameter εS. As a usual

approach, ε was fixed in our analysis. The factor (1 − p)

takes into account that only a fraction (1 − p) of all rounds
key generation is performed. The contribution of the privacy
amplification is modified with respect to the asymptotic case
to account for statistical effects in the finite case. Also, there
is an additional term h(p) for the communication of the round
types. For details, see Ref. [15].
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