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Abstract

Definitions of modeling competence in science education

do not yet include noncognitive factors. However,

noncognitive factors are central to competence and

might thus substantially improve our understanding of

modeling competence. In this article, we analyze volition

during preservice science teachers' engagement with a

black‐box modeling task and its relation to established

aspects of modeling competence: metamodeling knowl-

edge, modeling process, and modeling product. A cluster

analysis of the occurrence of volition categories resulted

in three clusters of volitional behavior. The clusters

describe three different volition types: one action‐

oriented type applying a self‐regulative strategy and

two state‐oriented types applying self‐controlling strate-

gies. Correlation analyses between clusters, volition

categories and modeling process variables indicate

benefits of the self‐regulative strategy.
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1 | INTRODUCTION

Developing and using models is described as a core practice in science education (Next Generation Science

Standards [NGSS], 2013), and many countries address modeling competence in science education curricula

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2015; British Columbia Ministry of

Education [BCMOE], 2019; Kultusministerkonferenz [KMK], 2020; Victorian Curriculum and Assessment Authority

[VCAA], 2016). However, the central role of modeling might be overlooked in the science classroom as teachers and

preservice teachers lack the necessary competencies to use modeling in scientific reasoning and inquiry in class

(Justi & Gilbert, 2002; Krell & Krüger, 2016; Torres & Vasconcelos, 2015). To make use of the full potential of

modeling in the science classroom, modeling competence must take center stage in teachers' professional

development (Günther et al., 2019; Justi & van Driel, 2006; Nielsen & Nielsen, 2021). Following definitions of the

term competence (e.g., Weinert, 2001), one can define modeling competence as “the ability to gain insightful

knowledge with models, to be able to judge models with regard to their purpose, and to reflect on the process of

gaining knowledge through models and modeling” (Upmeier zu Belzen et al., 2019, p.12). However, despite a wide

consensus regarding the importance of motivation, volition, and affect for any competence (Weinert, 2001),

research in science education has mainly focused on the cognitive aspects of modeling competence (Chiu &

Lin, 2019). As modeling can be frustrating (Thomas & Hart, 2010) because of its nonlinear approach (Morrision &

Morgan, 1990) and high cognitive demands (Hogan & Thomas, 2001), the modeler's volition will be critical for

engaging in a modeling process. Thus, considering volition might be crucial in efforts toward a comprehensive

understanding of modeling competence. This study analyzes the role of volition in preservice science teachers'

modeling performance, aiming to identify the relevance of volition for preservice science teachers' modeling

competence.

2 | THEORETICAL BACKGROUND

The following introduces central concepts of this study: modeling, competence, modeling competence, and volition.

We argue that contemporary concepts of modeling competence in science education solely focus on cognitive

aspects and, therefore, fail to encompass key dispositions for modeling performance.

2.1 | Modeling

Modeling is a powerful epistemic tool for investigating, representing, explaining, and predicting phenomena

(Giere, 1997; Passmore et al., 2014). This tool targets the phenomena in a cyclic process of developing and using

models (Giere, 1997) to reduce the inherent complexity (Godfrey‐Smith, 2006; Knuuttila, 2011). Consequently,

scientific models can be defined as epistemic tools for sense‐making (Knuuttila, 2011). Modeling is described as a

core scientific method (Passmore et al., 2014), framing other scientific methods, for example, using an experiment

to validate a model (Giere, 1999; Lehrer & Schauble, 2015). From this perspective, modeling becomes the paradigm

of “model‐based science” (Godfrey‐Smith, 2006) itself (Kuhn, 1970).

In practice, a scientific question or problem guides the process of modeling (Knuuttila, 2011). Knuuttila (2011)

describes modeling as externalizing thinking using means of representation for construction and manipulation of the

target. These properties allow using the model to predict or formulate a hypothesis. Comparing the model‐based

prediction to the data collected in the “real world” (Giere, 1997) allows evaluating whether the model fits or needs

revision (Giere, 1997). The scientist iterates this cyclic process until the fit is satisfactory. However, as all models are

approximations in some way, a perfect fit will never exist between model and reality (Levins, 1966;

Odenbaugh, 2005).
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2.2 | Competence

According to Weinert's (2001) pioneering definition, competencies are cognitive skills and abilities and the

associated motivation, volition, social skills, and willingness to solve specific problems in variable but related

situations. Without challenging the relevance of its original complexity, this definition has often been reduced to its

cognitive aspects to allow for defining specific competence models and enable a more pragmatic assessment (e.g.,

Klieme et al., 2007). Rychen and Salganik (2003) highlight the importance of the mobilization of psychosocial

prerequisites to meet complex demands in a particular context. They thus connect back to Weinert's definition in its

complexity. Blömeke et al. (2015) describe competence as a continuum: the competent person translates cognitive

and affect‐motivational dispositions into situation‐specific skills, that lead to the observable performance.

Despite the reduction of competence to its cognitive aspects for pragmatic reasons in empirical studies (e.g.,

Baumert & Kunter, 2013; Kauertz et al., 2012; Waddington et al., 2007), the relevance of both cognitive and

noncognitive aspects for any competence remains uncontested and even central to the theoretical discussion. In

conclusion, we define competence as a complex set of cognitive and noncognitive dispositions needed to solve

tasks in specific contexts. Following this definition, cognitive dispositions are not sufficient for successful

performance. Neither are assessments of cognitive dispositions sufficient to assess a person's competencies.

2.3 | Modeling competence in science education

Modeling competence is defined as the skills needed to initiate an epistemic process while constructing models, to

draw evidence from models, to judge models based on their purpose, and to reflect the modeling process (Upmeier

zu Belzen et al., 2019). Most conceptions divide modeling competence in the metamodeling knowledge and

modeling process (Nicolaou & Constantinou, 2014; Nielsen & Nielsen, 2021).

Metamodeling knowledge is “a type of nature of science understanding,” which includes knowledge about “how

models are used, why they are used, and what their strengths and limitations are, in order to appreciate how science

works and the dynamic nature of knowledge that science produces” (Schwarz, Reiser, et al., 2009). The modeling process

defines the actual modeling activity or practices aiming at developing a specific modeling product (e.g., Schwarz, Reiser,

et al., 2009). Under this conception, metamodeling knowledge should guide the modeling process (Krüger et al., 2018;

Nielsen & Nielsen, 2021; Schwarz, Reiser, et al., 2009), of which the modeling product indicates the quality (Karnaou

et al., 2018; Schwarz, Reiser, et al., 2009). Hence, metamodeling knowledge, process, and product constitute the three

core dimensions of modeling competence in science education (see Table 1 for a summary of prominent frameworks).

Göhner, Bielik, and Krell (2022) developed scales to measure the quality of a modeling process in terms of its

complexity and homogeneity, that is, independent of the modeling product. The variety of modeling activities

indicate the complexity of the modeling process and the pattern of transitions between the activities the

homogeneity. This approach allows to assess the two dimensions of modeling process and modeling product

separately. In line with theoretical frameworks (Table 1), we can thus empirically separate knowledge, process, and

product as core modeling competence dimensions.

Studies indicate teachers' and preservice science teachers' limited modeling competence: The metamodeling

knowledge of many teachers is reduced to understanding models as representations (Justi & Gilbert, 2002; Krell &

Krüger, 2016). Such limited understanding hinders a model‐based engagement in scientific reasoning and inquiry in the

classroom (Khan, 2011; Schwarz & Gwekwerere, 2007). Thus, it seems apparent that preservice science teachers'

modeling practice lacks complexity and skill (Dauer et al., 2021; Göhner & Krell, 2022) and their modeling products leave

room for improvement (Ammoneit et al., 2023; Göhner et al., 2022; Mulder et al., 2011). A comprehensive understanding

of modeling competence can help systematically improve teachers' modeling competence (Chiu & Lin, 2019). However,

based on the concepts of competence, the various concepts of modeling competence in science education remain too

narrow and focus on cognitive dispositions and observable processes or products (Table 1). Thus, considering the

noncognitive factors might contribute to a better understanding of modeling competence in science education.
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2.4 | Volition

A clarification of the targeted noncognitive aspects becomes necessary to allow consideration of noncognitive aspects in

modeling competence. We find the following noncognitive aspects within the definitions of competence: motivation,

volition, social skills (Weinert, 2001), noncognitive psychosocial prerequisites (Rychen & Salganik, 2003), and affect‐

motivation (Blömeke et al., 2015). We focus this study on individual preservice science teachers' modeling and thus do

not consider social skills (Weinert, 2001) or psychosocial prerequisites (Rychen & Salganik, 2003). The affect‐motivation

(Blömeke et al., 2015) can be differentiated into motivation and volition (Weinert, 2001). Motivation describes how

needs, goals, and motives contribute to initiating action (Baumann et al., 2018). Volition describes how people, once

committed to a course can convert their intentions and goals into action (Baumann et al., 2018). Concerning modeling, the

motivational aspect might be connected to the diffidence some students encounter while modeling for the first time (Han

& Gutierez, 2021). However, many novices engage actively in modeling (e.g., Ammoneit et al., 2023; Gray et al., 2022).

Nonetheless, students (Pierson et al., 2017) and preservice teachers (Göhner et al., 2022; Göhner & Krell, 2022) generally

do not reach high levels of modeling competence. The lacking proficiency is so far explained with lacking possibility to

TABLE 1 Summary of prominent frameworks for modeling competence in science education along the three
dimensions of knowledge, practice, and product.

Knowledge Practice Product

Schwarz, Reiser,
et al. (2009)

Models change to capture
improved understanding built
on new findings

Models are generative tools for

predicting and explaining

Constructing models
Using models to explain and

predict
Evaluating modelsRevising

models

Nicolaou and
Constantinou

(2014)

Metamodeling knowledge
(purpose of models, use of

models)
metacognitive knowledge of the

modeling process

Create
use

compare
revise
validate

Chiu and Lin (2019) Models and modeling knowledge

(ontology, epistemology,
methodology)

metacognitive knowledge of
models and modeling
(planning, monitoring,

executing, evaluating)

Development

elaboration
application
reconstruction

Internal

representations
external

representations

Nielsen and
Nielsen (2021)

Nature and purpose of models
value and utilization of models in

science, society, and education

Using models for: (a) describing,
explaining, and

communication (b)
prediction

designing models
evaluating models
revising models

comparing models
selecting models

Göhner et al. (2022) Nature of models
multiple models

purpose of models
testing models
changing models

Modeling activities:
exploration,

development,
prediction

Quality of modeling
product
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gain modeling experience (Böschl et al., 2023; Wade‐Jaimes et al., 2018). However, new inquiry methods, inquiry‐based

learning, andmodeling are often experienced as challenging (Cheng & Lin, 2015; Crawford & Cullin, 2004; Schwarz, 2009),

highlighting that an opportunity for engaging in modeling practice is not enough, but that successful modeling also

requires sufficient affect‐motivational skills. Considering volitional factors in learning and research settings can lead to a

more comprehensive understanding of modeling competence and sophisticated instruction. While both aspects of affect‐

motivation appear relevant to modeling competence, all participants volunteered to take part in this study, so their

motivation will be biased. Therefore, this study will focus on volition.

Kuhl describes volition as a system (e.g., Kuhl, 2001; Kuhl & Fuhrmann, 1998) (see Figure 1). In this system, the

interplay of goal orientation and self‐assertion is central, involving both conscious and subconscious processes.

Goal orientation is focused on the external world; the goal arises from the orientation in the world surrounding the

individual (Kuhl & Fuhrmann, 1998). In the context of modeling, the goal could be to construct a model that will be

rewarded with recognition or a good grade needed to pursuit greater goals. Self‐assertion is the agent for the

individual. It is recognizing emotional needs and the individual's identity (Kuhl & Fuhrmann, 1998). In the context of

modeling, this could be the epistemological interest in developing models, or fun in tinkering, but also the

identification as a modern scientist and the recognition of needs outside the goal that need satisfaction. Obtaining

self‐assertion enhances easy access to subconscious resources (Baumann et al., 2018; Kuhl, 2001). Contrary, giving

up self‐assertion enhances introjection. The individual becomes alienated from the goal, denying access to

subconscious resources. This hinders an enduring and creative work process (Kuhl, 2001).

Self‐regulation is the volitional process that is enhanced by self‐assertion (Kuhl, 2001). The self‐regulated individual

feels self‐efficient and is self‐determined; these attributes enable decisiveness and result in automatic goal‐orientation.

Self‐regulated individuals meet challenges with emotional management, including self‐motivation and self‐soothing

(Fröhlich & Kuhl, 2003). Self‐inhibition counteracts self‐regulation (Kuhl, 2001): The individual alienates from the goal,

resulting in brooding, perceptual rigidity, and compulsive preservation (Fröhlich & Kuhl, 2003).

Low self‐assertion, lack of self‐regulation, or unexpected challenges require self‐control to maintain goal

orientation, prioritizing outer goals over emotions (Kazén & Kuhl, 2022; Kuhl, 2001). The self‐controlled individual

exercises self‐discipline, controlling impulses while pursuing the goal actively. Self‐control encompasses the ability

to plan and manage failure. Emotions are directed to anxious motivation imaging negative consequences of failure

(Fröhlich & Kuhl, 2003). This introjection can lead to volitional inhibition if reaching the goal remains difficult even

with exercising self‐control (Baumeister et al., 1998). Volitional inhibition counteracts self‐control. The individual

has a reduced self‐efficacy and acts only on foreign determination. A lack of energy, low concentration, and

listlessness hinder a self‐determined process (Fröhlich & Kuhl, 2003). The individual gives up self‐control, because it

feels unfit for reaching the goal it is not identifying with (Kuhl, 2001). It works superficial and resistant.

F IGURE 1 Model of volition after theory by Kuhl (2001). The action‐oriented type includes self‐regulating own
behavior, while the state‐oriented type is self‐controlling. Self‐inhibition counteracts self‐regulation and volitional
inhibition counteracts self‐control. Volition avoidance counteracts volition altogether.
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Volitional inhibition can result in volition avoidance, which describes the general avoidance of self‐managing

processes (Kuhl, 2001; Kuhl & Fuhrmann, 1998). Volition avoidance is characterized by effort avoidance,

resignation, and defiance (Fröhlich & Kuhl, 2003). Perceived difficulties and requirements are deliberately not met

(Kuhl, 2001). The individual does not want to reach the goal.

Empirical studies found two volitional orientations: action‐orientation and state‐orientation (Kazén &

Kuhl, 2022; Koole et al., 2012). An action‐oriented person's dominant strategy involves self‐regulation. A state‐

oriented person's dominant strategy is self‐control. Under nondemanding conditions, both types perform equally

well (Jostmann & Gieselmann, 2014), but in complex tasks, the action‐oriented type outperforms the state‐oriented

type (Jostmann & Gieselmann, 2014; Kazén & Kuhl, 2022). Modeling poses high cognitive demands (Hogan &

Thomas, 2001). Thus, we expect these volitional strategies to explain individuals' modeling performance and expect

volition to constitute an important part of modeling competence.

2.5 | Goal and research questions

This study aims to investigate the relevance of volition (including categories of self‐regulation, self‐inhibition, self‐

control, volitional inhibition, and volition avoidance) in preservice science teachers' modeling competence. Specifi-

cally, we address the following research questions (RQ):

RQ1: How does volition occur in preservice science teachers' modeling processes?

RQ2: How does volition relate to metamodeling knowledge, modeling process, and modeling product?

Based on prior studies, we expect to find distinct patterns of the volition categories, indicating an action‐oriented

and a state‐oriented type (Kazén & Kuhl, 2022; Koole et al., 2012). As modeling is challenging, we expect the action‐

oriented type to engage in a more complex modeling process (Jostmann & Gieselmann, 2014; Kazén & Kuhl, 2022),

resulting in a higher‐quality modeling product (Göhner et al., 2022). Generally, self‐regulation should positively relate

to the complexity and homogeneity of preservice science teachers' modeling processes, and a higher quality product,

as highly developed self‐regulation generally allows for better academic performance in science (Schraw et al., 2006;

Schunk, 1996; Zheng et al., 2020). Because self‐regulation enhances a comprehensive engagement with a complex

task (Baumeister et al., 2007), we also expect it to incubate the use of metamodeling knowledge.

3 | METHODS

The data for this study partly comes from existing published studies (Göhner et al., 2022; Göhner & Krell, 2022;

Nordheimer, 2019). We analyze the data secondarily in this study to investigate the relevance of volition in

preservice science teachers' modeling competence.

3.1 | Sample

The sample consisted of preservice science teachers enrolled in the teacher education program (bachelor or master)

in one of two participating German universities. Preservice science teachers in Germany usually study two subjects

in a six‐semester bachelor's program, followed by a four‐semester master's program. The grounding studies used a

theoretical sampling strategy, heterogeneous sampling (Patton, 1990) to increase the likelihood of observing

various modeling processes. Established pen‐and‐paper instruments measured the screening variables scientific
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reasoning (Krüger et al., 2020) and general cognitive abilities (Liepmann et al., 2007). Fifty‐seven preservice science

teachers with extreme scores (one‐half standard deviation higher or lower than the mean scores of the respective

norm sample) in both assessments qualified to participate in the study. Thirty‐six preservice science teachers

participated, aged between 17 and 39, with an average age of 24. All of them studied biology; twenty‐

three participants in the bachelor's program, and 13 in the master's program. Eight preservice science teachers

studied another scientific subject (e.g., chemistry or physics).

Participation in the study was not mandatory for any university courses or obligatory parts of the curriculum;

participation was voluntary and each participant gave informed consent. Researchers and participants had no

formal relationships with one another.

3.2 | Context—Think aloud during black box modeling task

The grounding study applied a water black box modeling task. The black box approach is established in science

education research to study processes of scientific thinking and modeling (Krell & Hergert, 2019). It presents an

artificial object without direct access to the inner structure to the participants. Filling the black box with water

(input) and measuring the outputs of water are the only means to explore the water black box. This setting allows to

test hypotheses about the object easily, allowing the participants to focus on modeling the inner structure without

technical challenges (see Krell, Walzer, Hergert, et al., 2019, for a detailed description of the black box). Asking the

participants to concurrently think aloud (Leighton & Gierl, 2007) gave additional insights into the participants'

reasoning and volition processes. The participants developed their model by drawing on a chalkboard without time

constraints. They received several vessels, measuring cylinders, and a water reservoir to solve this task (for more

detail on the setting, see Göhner et al., 2022).

The black box approach does not constitute a modeling environment situated authentically within a research

field. This is beneficial for studying the connection between the modeling process and volition; the black box

approach confronts all participants with a challenging modeling task independent of their prior knowledge that

might bias volitional processes making the task easier for knowledgeable participants.

3.3 | Data collection and analysis

The behavior and verbalizations of the participants engaging in the black box modeling task were videotaped. The

length of the participants' modeling processes varied between 8min to almost 2 h (mean length: 1 h 9min). The

verbalizations were transcribed verbatim, including selected behavioral aspects (e.g., making an input or observing

an output). Göhner et al. (2022) analyzed these transcripts qualitatively in MAXQDA to identify single modeling

activities and expressions of metamodeling knowledge. Nordheimer (2019) analyzed the same transcripts for

volition. In these grounding works, all qualitative data analyses followed the methodological frame of qualitative

content analysis. Category systems guided the analysis; different persons coded the transcripts, finding consensus

coding after discussion, and calculating Cohen's Kappa (κ) as a measure of intrarater‐ and interrater‐agreement

(Schreier, 2012). We combine and reanalyze the data to address our research questions. The following provides an

overview of the included variables and conducted procedures.

3.3.1 | Volition

The assessment of volition is guided by Fröhlich and Kuhl's volition survey (2003) consisting of the five main concepts

and subcategories in the conception of volition: Self‐regulation, self‐inhibitions, self‐control, volitional inhibition, and
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volition avoidance (see Supporting Information: Appendix 1 for subcategories). Nordheimer (2019) developed a

corresponding coding framework by adapting the survey to the material. She reduced the subcategories to the

occurrence in the participants' statements, combined nondiscriminate ones, and selected anchor examples. Two

research then assigned the participants' statements during the black box modeling task to the subcategories,

consisting of a few connected sentences, with a satisfying intercoder reliability (Nordheimer, 2019). One of the the

subcategories, self‐soothing, was only coded for three statements all belonging to the same participant. We included

this subcategory in self‐motivation, as it was not discriminate. Both subcategories belong to self‐regulation. Table 2

displays all included subcategories, including a definition and example.

We used the proportion of statements in each (sub‐) category of the total number of volitional statements to

reduce the influence of sequence length and tendency to express volition to address RQ1 (indicators for self‐

regulation in preservice science teachers' modeling processes).

3.3.2 | Cluster analysis

The k‐means and PAM algorithm facilitated by the statistic software R (R Core Team, 2020) clustered the

proportion of each volition main category to identify types of volition in modeling activity. The Hopkins Statistic of

0.933 indicated a pattern in the data structure suitable for cluster analysis (Hopkins & Skellam, 1954). The functions

pamk and kmeansruns from the R‐Package fpc (Hennig, 2020) determined the appropriate number of clusters both

estimate the number of clusters by optimum average silhouette width and Calinski–Harabasz index (Calinski &

Harabasz, 1974).

3.3.3 | Metamodeling knowledge, modeling process, and model score

We reanalyzed data from Göhner et al. (2022) to address RQ2. They assessed the participants' metamodeling

knowledge based on the framework by Upmeier zu Belzen et al. (2019). Statements related to the five aspects

nature of models, multiple models, purpose of models, testing models, and changing models of metamodeling

knowledge, verbalized by the participants throughout their modeling process, were identified and coded

accordingly (for detail, see Göhner et al., 2022).

The modeling process was analyzed by Göhner et al. (2022), who coded the modeling activities the participants

engaged in. The participants conducted between 6 and 18 (mean: 12) different modeling activities in their modeling

processes. Göhner et al. (2022) assigned the activities to the categories of exploration, development, and prediction (see

Supporting Information: Appendix 2 for subcategories). The variables exploration, development, and prediction give the

proportion of the respective category in the number of total activities. The category pattern allows calculating the

modeling process' complexity and homogeneity (Göhner & Krell, 2022). Complexity determined using the graph metric

known as “communities,” which involves counting all subgraphs within each state transition graph (Porter et al., 2009).

The basic communities score was normalized by subtracting the communities score of each participant from the

maximum communities score achieved in this study. Thus, the complexity is higher the more different activities are

included in the modeling process. The centrality of every state transition graph was determined to estimate homogeneity.

The centrality score was reciprocally transformed, as centrality describes the dependence of a graph on a single knot

(Newman, 2018). The homogeneity is high if the transition between the modeling activities distribute equally (for details,

see Göhner and Krell, 2022). We include the following variables in our analysis: number of activities, complexity,

homogeneity, exploration, development, and prediction.

The quality of the modeling product resulting from the modeling process was scored on a range from 0 to 3 (for

detail, see Göhner et al., 2022). We included the model score to measure the outcome of the process. For overview,

see Table 3.
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TABLE 2 Framework for assessing volition.

Category Subcategory Definition Example

Self‐
regulation

Decisiveness The participants dare to make
critical decisions.

“Am I going to delete the rest now? I don't
know. But I think I'll delete the rest
now. That just confuses me anyway.”
(wipes the blackboard) (Angelina)

Self‐motivation The participants show positive
emotions to keep going.

“[…] well I put in 400 and 600 came out. […]
So, this time more came out than I put

in. Um. That's kind of humorous.”
(James)

Self‐
determination

The participants formulate own
goals and interests instead of
focusing on external
demands only.

“Since we are into models, it would also be
interesting for me to think about what
that might be a model for. […] Um, but
maybe there is one correspondence in

nature which I can't think of right now.”
(James)

Self‐efficiency Participants show believe that
their own skills are sufficient to
solve the task.

“That's how I think the whole thing should
look roughly […] so I don't know what
else I should do to get the whole thing
[the mechanism of the BB] more
precisely.” (Raphael)

Self‐inhibition Brooding Participants are blocked by
thought spiraling with negative

emotions.

“Sorry, I don't really know what I'm thinking
right now. I have the feeling I am

blocked right now.” (Angelina)
“Ok, I have to think about it, it's really

confusing. Everything here annoys me.
It's really annoying.” (Frida)

Compulsive

preservation

Participants show difficulties to

switch between tasks

T: “Are you remembering to think out

loud?” […] P: “Yeah, okay. I forget that
because I can't, so some things are just
difficult to think out loud.” (Frida)

Self‐control Anxious
motivation

Participants associate negative
feelings or consequences with

failure.

“What if I get no result at all?” (Lauren)
“I hope this is actually not a student

experiment for the 5th grade or
something and I'm gritting my teeth.”
(Angelina)

Goal‐oriented
attention

Participants concentrate on
processing the task.

“Okay, focus. 400 milliliters. If I put in 400
milliliters and there's 400 in the black
box […]” (Cynthia)

Impulse control Participants actively suppress
distractions that do not belong

to the task but impulsively gain
their attention.

“It's probably not so good that I spilled
things like that, but ok.” (Lauren)

“Then 400 run out again. […] There are still
mosquitoes. It bit, that gives a mosquito
bite. There are about 800 in it. 400
don't run out 600.” (Iris)

Failure
management

Participants resume the task
productively after miss.

“Or did I make a mistake writing it down? I'll
make another table, go through it again

completely and write it down again in a
clearer way, not with the arrows.” (Iris)

(Continues)
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3.3.4 | Relationships between the modeling performance and volition

We calculated Spearman's rank correlations to analyze the relationship between all z‐standardized variables of the

modeling performance (metamodeling knowledge, exploration, development, prediction, complexity, homogeneity,

and the model score) and for each category and the subcategories of self‐regulative behavior. Furthermore, we

applied the nonparametric Mann–Whitney U test due to the relatively small sample size to identify possible group

differences. We address RQ 2 using these analyses.

TABLE 2 (Continued)

Category Subcategory Definition Example

Ability to plan Participants structure the task. “I'm trying to be at least somewhat
systematic […]. So that means I make a
table. Enter the volume in the column,

how much I put in, and then ultimately
see the effect of how much water
comes out, and then note both each
time. In order to be able to deduce what
this model could be like.” (Carlo)

Pursuit of goal Participants direct their activities

toward the immediate aim of
the task (drawing the inside of
the box).

“Maybe I shouldn't dwell on the theory, but

think about what it looks like in there [in
the BB].” (Iris)

Volitional
inhibition

Foreign
determination

Participants only work upon
foreign activation.

T: “Ok, can you imagine how it could work?”
P: “Well, I can only guess that there
would definitely have to be several
vessels […].” (Carlo)

Low self‐
efficiency

Participants doubt their skills will

suffice to solve the task.

“[…] I'm not an engineer or a technician either

[…] I just lack a bit of background
knowledge or a few ideas […] because I
don't usually deal with that either.” (James)

Low

concentration

Participants are being distracted. P: “Shit, I spilled something. I need.” T:
“Don't you want to clean it up
afterwards?” P: “Yes.” (Frida)

Listlessness Participants show a lack in energy
to proceed.

“Ok, I'm kind of tired of it.” (Frida)
“I'm done.” (Angelina)

Volition

avoidance

Effort avoidance Participants actively avoid effort. “I would finish it with that, because

otherwise I would really ruin myself. T:
So, this is your final model? P: This is my
final model actually.” (Boris)

Resignation Participants are not willing to
resume after a miss.

“Oh, that's enough for me now. I can't
figure it out, I don't see a pattern in
there.” (Carlo)

“I think the point will soon be reached

where I say I can't think of anything
else. It bothers me because I can spend
hours on such puzzles.” (Iris)

Defiance Participants reject meeting basic
requirements of the task (try to

draw the inside of the box).

T: You don't want to draw anything? P:
“No.” T: “Ok.” P: “I'm not that

enthusiastic about drawing.” (Carlo)
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3.3.5 | Analysis of sample cases

We provide three sample cases for in‐depth insights into the potential nature and direction of the

relationships between preservice science teachers' modeling process and self‐regulative behavior.

Code lines illustrate the modeling processes of the selected cases showing the sequential order of the

individual modeling activities and their self‐regulative behavior. We chose three distinct cases to illustrate the

range of volitional processes and highlight challenges for the design of modeling settings for research or

learning.

4 | FINDINGS

4.1 | Volition in preservice science teachers' modeling processes (RQ1)

4.1.1 | Overview of volition categories

The number of volitional statements the participants made ranged between 6 and 54; the median was 22. The

volition categories differed in their proportions (see Figure 2); self‐regulation, self‐control, and self‐inhibition with

higher scores and variances than self‐inhibition and volition avoidance. Self‐control had the highest median (0.32),

indicating that about one‐third of all volitional statements have a self‐controlling nature. We clustered the results to

gain more insight in interindividual differences.

4.1.2 | Volition patterns in preservice science teachers' modeling processes

Overall, the cluster analysis produces stable results: both algorithms give near identical clusters, similar in size and

fit (see Figure 3). The average silhouette width is 0.37 and, thus, acceptable. No person was mismatched

TABLE 3 Summary of variables and scales describing metamodeling knowledge, modeling process, and
modeling product.

Data Scale Framework

Metamodeling
knowledge

Transcripts Average of scores in:
nature of models,
multiple models,
purpose of models,

testing models,
changing models
on a scale with Levels 0–3

Upmeier zu Belzen
et al. (2019)

Modeling activities Transcripts Exploration, development, predi
ction

Krell, Walzer, Hergert,
et al. (2019)

Complexity Modeling
activities

Inverted communities, scale from 0 to 14 Göhner and Krell (2022)

Homogeneity Modeling
activities

Reciprocal centrality of graphs, scale from 0
to 2.5

Göhner and Krell (2022)

Model score Modeling

products

Scale with Levels 0–3 Göhner et al. (2022)
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(silhouette < 0). From here, we refer to the numbering of the k‐means algorithm (see Figure 3). Cluster 1 is the

smallest (n = 10). Its average silhouette width is 0.45. Cluster 2 is the biggest (n = 15). Its average silhouette width is

0.3. Cluster 3 includes 11 participants. Its average silhouette width is 0.38.

Looking at each cluster in detail, different volition patterns become visible (see Figure 4). A

Mann–Whitney U test also indicates a significant difference in self‐regulation, self‐control, and volitional

inhibition between clusters (see Supporting Information: Appendix 3 for all values). Participants in Cluster 1

show the highest proportion in volitional inhibition (f = 1, both cases), in which all clusters differ significantly

(p values < 0.01, f = 0.88, cluster 2~3). Participants in Cluster 2 show a significantly higher proportion of

self‐control than people from clusters 2 and 3 (p values < 0.01, f = 1 in both cases). Participants in Cluster 3

occupy significantly more often with self‐regulation than individuals in Clusters 1 and 2 (p values < 0.01, f = 1,

both cases). No significant differences exist between the clusters regarding self‐inhibition and volition

avoidance.

4.2 | Relation between volition and the competence dimensions metamodeling
knowledge, modeling process, and modeling product (RQ 2)

4.2.1 | Overview of metamodeling knowledge, modeling process, and model score

First, we provide an overview of the assessed metamodeling knowledge, modeling process, and the model score

(see Figure 5). The median of the articulated metamodeling knowledge was at level 2 on a scale ranging from 0 to 3.

Regarding the activities, exploration dominated 2/3 of the modeling process, development had a median of 0.2, and

prediction 0. The median for complexity was 5 on a scale ranging from 0 to 13. The homogeneity was evenly spread

with a median of 1.5 and a third quantile from 0.75 to 2.5. The median of the model score was 1, with only few

participants reaching the highest level (3).

F IGURE 2 Proportion of volitional categories in participants' statements.
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4.2.2 | Relation between volition categories and metamodeling knowledge, modeling
process, and model score

The correlation analysis of the individual categories (see Figure 6) revealed significant relations between

volition categories and modeling performance variables (see Figure 6). For example, self‐regulation is

positively related to model development. Thus, participants with a high proportion in self‐regulative

statements engage in a higher proportion of developing activities or vice versa, compared with participants

with a preference for other dimensions in their volitional pattern. There was no significant relation between

the volition categories and metamodeling knowledge or the model score. We will now report on all significant

correlations found in the subcategories.

The self‐regulation subcategory self‐efficiency is related to homogeneity (0.34, p value < 0.1), exploration

(−0.57, p value < 0.01), and development (0.58, p value < 0.01). The self‐control subcategory failure management is

F IGURE 3 Visualization of clustering and silhouette with for (1) kmeans and (2) PAM algorithms of participants'
volitional statements.
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related to development (0.34, p value < 0.1) and pursuit of goal negatively to homogeneity (−0.47, p value < 0.05).

Volitional inhibition is not related to metamodeling knowledge, the modeling process, or model score. However, the

subcategory foreign determined is negatively related to metamodeling knowledge (−0.34, p value < 0.1) and

complexity (−0.46, p value < 0.05), and the subcategory listlessness is positively related to metamodeling knowledge

(0.36, p value < 0.1). The volition avoidance subcategory resignation is positively related to exploration (0.45,

p value < 0.05) and negatively to prediction (−0.37, p value < 0.1).

4.2.3 | Relation between clusters and metamodeling knowledge, modeling process, and
model score

Regarding the process variables (see Supporting Information: Appendix 4 for all values), Cluster 2 has significantly

higher proportions in exploration (p value < 0.05, f = 0.74) and lower proportions in development than Cluster 3

(p value < 0.05, f = 0.78). Cluster 1 had fewer total activities than Cluster 2 (p value < 0.1, f = 0.70) and a lower

F IGURE 4 Boxplots of volition dimension for each cluster.

F IGURE 5 Boxplots of variables for metamodeling knowledge, modeling process, and modeling product.
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metamodeling knowledge (p value < 0.05, f = 0.77). However, Cluster 1 has a significantly higher homogeneity than

Cluster 2 (p value < 0.01, f = 0.83). No other significant differences exist between the three clusters, they do not

differ significantly in prediction, complexity, and the model score.

4.2.4 | Sample cases

This section will present three cases in more detail as illustrative examples. The examples each belong to a different

cluster. However, the chosen examples (see Table 4) do not represent the cluster but shall illustrate different

volition strategies during the model process.

F IGURE 6 Correlation plot for metamodeling knowledge, modeling process, and modeling product variables
and volition categories, p value < 0.1.
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Boris' pattern is very distinct (see Figure 7). He elaborates rather quickly from exploration to prediction and

quits after only 25min. A strong volitional inhibition characterizes his volition pattern; he expresses a feeling of

foreign determination throughout the modeling process. The first occurrence of volition avoidance at minute 15 is

very early compared with the other cases. He expresses effort avoidance at this instance and shortly before he ends

his process. Initially, he feels self‐efficient; he is self‐motivating once and feels decisive before quitting. He

self‐controls himself once; while engaging in a predictive activity, he controls an impulse.

In summary, Boris modeling process is concise with a quick elaboration accompanied by strong volitional

inhibition. His final model was scored on level 1 (see Table 4).

Rocco's pattern was a rather common pattern (see Figure 8). Rocco starts exploring the model under self‐

control, focusing on pursuing the goal and controlling impulses. He also shows self‐regulating behavior, specifically

decisiveness, self‐motivation, and self‐efficacy. During a development phase, he shows listlessness at a possible

setback. Notably, he made no volition statement during the developing activities. After 35min he goes back to

exploring the model. After one impulse control, he starts brooding, expresses listlessness again, and resigns.

In summary, Rocco's modeling process is shaped by two distinct parts: the first part is dominated by self‐control

and self‐regulation, and the second part by inhibition and avoidance. Rocco does not engage in predictive activities

in his process, lasting 46min and resulting in a modeling product scored at level 2 (Table 4).

Floyd's modeling activities are similar to Rocco's in the first 45min (see Figure 9). His process starts with exploring

the black box with self‐control; first, he focuses on the goal and then manages failure. He is self‐regulating himself, being

decisive. After a phase of developing his model, he resumes the exploration and is also struggling with volitional inhibition,

especially expressing a feeling of low self‐efficiency. Nevertheless, in contrast to Rocco, he does not resign after about

TABLE 4 Case scores in the variables measuring metamodeling knowledge, modeling process, and modeling
product.

Case
Meta‐modeling
knowledge Exploration Development Prediction Complexity Homogeneity

Model
score

Boris 2 0.23 0.23 0.23 5 1.85 1

Rocco 3 0.74 0.18 0 3 2.17 2

Floyd 2 0.54 0.28 0 5 1.96 3

F IGURE 7 Boris' process for details on y‐axis see appendices. The size of each data point corresponds to the time
spent on each activity. The color scale of the data points from red over blue to green indicates the activity category.
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45min but continues his process, going back to developing the model. His volition is now dominated by self‐regulation,

mainly self‐motivation and self‐efficiency. He resumes pursuing his goal before finishing his process.

In summary, Floyd begins the task with self‐control. He reacts with volitional inhibition after the first set‐backs

and then switches to the action‐oriented mode, self‐regulating his actions. Floyd is one of the few high‐performing

students with a model score of 3 (Table 4). Notably, though, he is not involved in predictive activities.

5 | DISCUSSION

We will start with the discussion on the occurrence and patterns of the volition categories self‐regulation, self‐

inhibition, self‐control, volitional inhibition, and volition avoidance (RQ1). Then, the relation between volition and

metamodeling knowledge, modeling process, and modeling product will be discussed (RQ2). We will elaborate on

the different variables used to indicate the modeling process.

F IGURE 8 Rocco's process for details on y‐axis see appendices. The size of each data point corresponds to the time
spent on each activity. The color scale of the data points from red over blue to green indicates the activity category.

F IGURE 9 Floyd's process for details on y‐axis see appendices. The size of each data point corresponds to the time
spent on each activity. The color scale of the data points from red over blue to green indicates the activity category.

AMMONEIT ET AL. | 459

 1098237x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sce.21841 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [22/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5.1 | Volition in preservice science teachers' modeling processes (RQ 1)

During the modeling task, preservice science teachers mainly expressed processes of self‐regulation, self‐control,

and volitional inhibition. Statements on self‐inhibition and volition avoidance have smaller proportions. Many

participants might have regulated self‐inhibition with self‐control since self‐control can be used to substitute for

self‐regulation when self‐assertion cannot be upheld (Baumeister et al., 1998). The study design explains the small

proportion of volition avoidance. As participants were free to quit the modeling task at any time, one can assume

participation ended when volition avoidance occurred, such as in the cases of Boris and Rocco. This interpretation is

supported by the negative correlation between volition avoidance and the number of activities.

We expected to find distinct volition patterns that differ between an action‐ and state‐oriented type

(Kazén et al., 2008). As expected, the data structure was clustered. Two algorithms identically reproduced

three clusters with no person mismatched. The clusters can be interpreted as one action‐oriented and two

state‐oriented types. The state‐oriented types differed in the proportion of self‐control and volitional

inhibition. An interpretation of this difference is that participants in Cluster 1, due to the high demands of the

task, could not uphold the self‐controlling strategy resulting in volitional inhibition. Cluster 2 participants were

either not as challenged by the task or could, despite the challenge, maintain self‐control (Baumeister

et al., 1998). Individual resources could explain the difference and the amount of self‐control the participant

had to exert before participating in the modeling task (Baumeister et al., 1998).

5.2 | Volition in relation to modeling process, metamodeling knowledge, and modeling
product (RQ2)

5.2.1 | Volition in relation to modeling activities of exploration, development, prediction

The action‐oriented type is expected to involve more complex activities than the state‐oriented (Baumeister

et al., 2007; Kazén et al., 2008). Consequently, self‐regulation was expected positively related to complex

activities. The modeling process' complexity is increased by developing and predictive activities and decreased

by a dominance of explorative activities (Göhner et al., 2022). Thus, the action‐oriented type was expected to

have higher values in development and prediction, and the action‐oriented type higher values in exploration.

Self‐regulation was expected to relate positively to development and prediction. As volition is of general

importance to engage in complex tasks (Kuhl, 2001), we expected volition avoidance to relate positively to

explorative activities.

Our results show the expected significant difference between Clusters 2 and 3 in exploration and

development but none in prediction. We also find that self‐regulation is positively related to model

development activities in the modeling process and negatively to exploration. Volition avoidance was

positively related to explorative activities, as expected.

Self‐efficiency is a subcategory of self‐regulation. It is of extraordinary importance in self‐regulated learning

because it allows one to meet challenges productively (Bandura, 1999; Schraw et al., 2006; Zimmerman, 1989). In

this study, self‐efficiency shows a higher correlation with development and a stronger negative correlation with

exploration than overall self‐regulation. Thus, self‐efficiency might be a crucial component in elaborate modeling

activity.

In summary, the volition pattern is likely to influence the modeling activity. Self‐regulative behavior and the

active‐oriented type relate to higher engagement in developing a model instead of just exploring the existing one.

We did not find the expected relation to predictive activity, probably due to the small number of participants

engaging in predictive activities (n = 14).
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5.2.2 | Volition in relation to complexity and homogeneity

The results of the modeling activities indicate that self‐regulation might positively relate to the complexity of the

modeling process. However, the relation did not show in the study. As complexity is calculated from the variety of

activities (Göhner et al., 2022), the lack of significant relation between volition variables and predictive activities is a

likely reason.

Also, no positive relation between self‐regulation on homogeneity was found. Only the subcategory self‐

efficiency was significantly positively related to homogeneity. Further, self‐control is negatively related to the

homogeneity of the modeling process. Self‐efficiency allows actively and often switching between activities. Self‐

control, on the other hand, hinders such switching, as it hinders action and, therefore, leads to a higher persistence

in one activity (Goschke & Kuhl, 1993). Since homogeneity seems to not have a significant impact on the modeling

product, its relevance to modeling competence requires further investigation.

5.2.3 | Volition in relation to the modeling product

Highly developed self‐regulation generally allows for better academic performance in science (Schraw et al., 2006;

Schunk, 1996; Zheng et al., 2020). It was thus expected to relate positively to the model score. But the modeling

process's complexity remains the only significant impact on the model score, and as self‐regulation is unrelated to

complexity, it is unrelated to the model score. There was also neither a relation between any volition category nor

between a cluster and the model score.

5.2.4 | Volition in relation to the metamodeling knowledge

Metamodeling knowledge is described as a prerequisite for advanced modeling performance, guiding activity under meta-

cognition (Krüger et al., 2018; Nielsen & Nielsen, 2021; Schwarz, Reiser, et al., 2009). Thus, we assumed that

metamodeling knowledge positively relates to self‐regulation because it describes an encompassing engagement with

the task while easily accessing personal resources (Baumeister et al., 2007; Kuhl, 2001). The only relation to

metamodeling knowledge found was between subcategories of volitional inhibition: a negative relationship between

foreign determination and the positive relation to listlessness.

The negative relation of foreign determination seems to support our understanding; people who are foreign

determined during their modeling process do not access metamodeling knowledge. The positive relation to

listlessness is challenging to interpret. Participants may feel listless when reflecting on what is needed to solve the

task. Possibly, their listlessness lets them escape from the actual activity and start reflecting on general modeling

knowledge. In this sense, metacognition might be related to a lack of positive emotion and, in fact, be negatively

related to self‐regulation (Goschke & Kuhl, 1993). A phenomenon called “lost in thought” (Kazén et al., 2008). Either

way, no strong evidence exists for the relation between the activation of metamodeling knowledge and volition

style. Yet, metamodeling knowledge relates positively to prediction.

6 | LIMITATIONS

This study has some limitations. First, the sample size is modest and only consists of preservice science teachers,

potentially limiting our findings' generalizability to this specific group. We did not test general preference in volition,

for example, in a pen‐and‐paper test to compare the volition expressed during the modeling process. Neither did we

ask the participants how volitional tied they were at the time of the participation, for example, if they had to
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complete a task requiring much self‐control right before participation or were emotionally worn out for any reason.

Regarding assessing the modeling processes, the black box as a modeling task may have limited the participants in

their engagement, as it is a rather abstract and complex task (Leden et al., 2020). Also, regarding noncognitive

aspects, connecting the modeling task to an authentic research scenario over a longer period of time might be

crucial (Vasconcelos & Kim, 2020). In this context, other noncognitive factors of competence still require testing

regarding their relevance for modeling performance and volition. As motivation is a prerequisite for volitional

processes (Baumann et al., 2018), the motivation for modeling task will probably influence the volition pattern

during modeling activity. Motivation may also have direct relevance for the modeling process not mediated by

volition.

6.1 | Conclusion and outlook

Our results show that volition is a relevant but not a crucial factor in modeling competence. Three different volition

types during the modeling process of preservice teachers could be distinguished, one action‐oriented and two

state‐oriented types. The three types differ between the volition categories and some modeling process variables.

The state‐oriented types specifically differ between the proportion of self‐control versus volitional inhibition. We

find a positive, yet weaker than expected, relation between self‐regulation and the modeling process. There was no

impact of self‐regulation on the model score. We reject the hypothesis that self‐regulation will enhance the use of

metamodeling knowledge due to the lack of evidence.

Self‐regulation regulates learning processes in general (Schraw et al., 2006; Zimmerman, 1989), while

metamodeling knowledge should help regulate modeling processes (Chiu & Lin, 2019; Schwarz, Reiser, et al., 2009).

Although self‐regulation does not enhance metamodeling knowledge, it could still constitute a complementary or

consecutive part of this dimension of modeling competence. Self‐regulation and the action‐oriented type positively

relate to development and metamodeling knowledge to prediction. Modeling is a complex task with high cognitive

demands (Hogan & Thomas, 2001). Possibly, self‐regulation is needed to start involvement in the modeling process

and metamodeling knowledge to reach a high level. More research on this observation is needed, as the sample is

too small to prove this relationship.

An experimental approach introducing training in self‐regulated learning to enhance modeling competence may

possibly help investigating the relationship between self‐regulation and metamodeling knowledge. Although

inquiry‐based learning in general (Jacobs, 2022; Sabourin et al., 2013; Schraw et al., 2006) and modeling in specific

(Panaoura et al., 2009; Schunk, 1981) have been discussed and assessed in their benefit for self‐regulated learning,

the reverse relation is yet to be investigated.

High level modeling processes have so far been difficult to study empirically, because they seldomly occur

(Pierson et al., 2017). Although the first evidence for connection between volitional processes and the modeling

process is weaker than expected, the creative element in modeling and its cycling nature in which an ongoing

evaluation and revision is necessary (Upmeier zu Belzen et al., 2019) call for self‐regulated processes. Actively

supporting self‐regulative strategies might benefit endeavors to strengthen high level modeling processes and thus

enable further research and improve modeling processes in classrooms.
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