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Abstract
The temporal and spatial scale dependent relation of Convective Available Potential Energy (CAPE) and
precipitation is investigated. Using the COSMO-REA6 data set, we ask which of the standard machine
learning algorithms: perceptron, support vector machine, decision tree, random forest, k-nearest neighbor
and a simple kept deep neural network algorithm can best relate these two variables. Then, we concentrate
on decision trees and evaluate the relation of CAPE and precipitation across different scales. We investigate
temporal resolutions of 1 hour to 24 hours and horizontal resolutions of 6 km up to 768 km. Regarding ten
CAPE and two precipitation classes we find accuracy scores mostly of about 0.7 across all scales. Taking
the Dynamic State Index (DSI) as additional predictor into account leads to an overall increase of the scores.
We further introduce a theoretical relation of CAPE and precipitation based on the works of Hans Ertel
(1933), which will be analyzed in future studies. Today it is natural to tackle complex atmospheric processes
using machine learning methods. These data based methods are suggested as additional tool to complement
the results gained by the governing equations of atmospheric motion.
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1 Introduction

Precipitation, its impact and forecast is a present topic
in our daily life. But cloud physics is not fully under-
stood leading to uncertainties in the forecast of rainfall.
Especially convective precipitation can be very local and
the intensity can vary even between different urban dis-
tricts of one city. Regarding the larger scales, synop-
tic fronts can be stretched in the order 1000 kilome-
ters. They can be detected on satellite images and their
forecasts are quite good. Even though smaller convec-
tion can be detected on satellite images too, the exact
location of rainfall is hard to predict. From dynamical
perspective, precipitation is related to atmospheric in-
stability that is characterized by a large vertical temper-
ature gradient. The relation of extreme precipitation and
temperature anomalies is for example shown in Müller
et al. (2020). However, a more accurate parameter that
takes the vertical temperature gradient into account and
measures hydrostatic instability is the Convective Avail-
able Potential Energy, short CAPE, see e.g. Weisman
and Klemp (1982), Holton (2004), Khouider (2019).
Assuming adiabatic conditions and that there is no mix-
ing of an air parcel with its environment during ascent,
CAPE measures, how much an air parcel can be lifted
and how much kinetic energy could be obtained. Let
now Tv be the virtual temperature that is approximately
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given by

Tv ≈ T (1 + 0.61
ρv

ρ
) (1.1)

with the density of water vapor ρv and the density of dry
air ρ, see e.g. the book of Markowski and Richard-
son (2011). Considering a moist air parcel, its virtual
temperature is the temperature at which the total pres-
sure and density of the theoretical dry air parcel is
equal to the moist air parcel. Following Markowski and
Richardson (2011) and expressing the buoyancy B as
the virtual temperature perturbation of a lifted air par-
cel T ′v divided by the virtual temperature of the environ-
ment Tv, CAPE can be defined as follows:

CAPE = g
∫ ZET

zLFC

B dz = g
∫ ZET

zLFC

T ′v
Tv

dz , (1.2)

where zLFC is the so-called Level of Free Convection,
short LFC. At this height zLFC, the rising air parcel be-
comes significantly warmer than its environment, zET is
the height, where the rising air parcel has equal temper-
ature (ET) to its environment and g is the acceleration
due to gravity. The virtual temperature of the lifted air
parcel is Tv = T v + T ′v.

CAPE and its relation to convection has been inves-
tigated in several studies, see for example Rennó and
Ingersoll (1996), who present a theory for convection
related to CAPE based on the heat engine framework, or
see the work of Ramezani Ziarani et al. (2019), who
consider CAPE and dew-point temperature to charac-
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terize rainfall-extreme events in the South-Central An-
des. Recently, Rybka et al. (2020) investigate CAPE nu-
merically and Polzin et al. (2022) study the relation
of CAPE to the vertical velocity considering a direct
Bayesian model reduction algorithm.

Even though many works have confirmed that CAPE
is a useful variable to indicate convective events, also
considered in climate studies, from the definition of
CAPE it follows, that the values of CAPE should
not be taken as exact determined numbers (Riemann-
Campe et al., 2009; Adams and Souza, 2009; Na-
tional Weather Service, 2023; Williams and Ren-
no, 1993). Therefore, to study relations of CAPE and
precipitation, classification algorithms seem to be a rea-
sonable choice. Moreover, the steadily grown amount
of data of increasing resolutions together with today’s
numerical possibilities to apply machine learning algo-
rithms motivate to consider these tools to address the
following research questions:

1. Can we use todays increasing possibilities of the ap-
plicability of machine learning algorithms to inves-
tigate the relation of CAPE and precipitation across
various temporal and spatial scales?

2. Which algorithm provide the best relations of CAPE
and precipitation?

3. Which benefits provide the Dynamic State Index
(DSI) and the Thunderstorm Occurrence Parame-
ter (TOP) as additional input variable?

4. Is there a theory of the relation of CAPE to precipi-
tation?

In order to answer these questions, the paper is struc-
tured as follows. In Section 2 we summarize the ma-
chine learning algorithms and the accuracy scores that
we use for our study. The accuracy score is defined as
the number of correctly classified data instances over the
total data. We apply these methods to data that we out-
line in Section 3, where we also describe the steps of
preprocessing. The results of the time and spatial depen-
dent relation of CAPE and precipitation are represented
in Section 4. Furthermore, we show that taking the DSI
as additional input variable into account leads to higher
scores. As an alternative approach, we shortly summa-
rize the theoretical relation of CAPE and precipitation
based on the work of Hans Ertel (Ertel, 1933) in Sec-
tion 4.4 and finally summarize our results in Section 5.

2 Methods

To investigate the temporal and spatial scale-dependent
relation of CAPE and precipitation, we consider the fol-
lowing methods: classical logistic regression, percep-
tron algorithms, support vector machine (svm), deci-
sion tree/random forest, k-nearest neighbor and a sim-
ple deep neural network. First we give a short summary
of these methods. We will use the following notation:

x = (x1, . . . , xm) are m CAPE categories that we relate
to two precipitation classes y = 1 or y = 0, where y = 1
is the class of all precipitation intensity events with in-
tensity greater than the 75th percentile and y = 0 rep-
resents the class of lower precipitation intensity. For all
models, the vector w = (w1, . . . ,wn) denotes the weights
for n inputs that are treated differently by the algorithms
summarized in a)–f). See e.g. Raschka and Mirjalili
(2017) for a more detailed explanation of these meth-
ods and for the implementation with the programming
language python.

a) Logistic regression is a widely used, linear classifi-
cation model. Let p be the probability for y = 1 (heavy
precipitation). The so-called logit function is defined as
the logarithm of the odd ratio p/p − 1:

logit(p) = log
p

p − 1
(2.1)

Now, let p(y = 1|x) the conditioned probability that a
sample belongs to y = 1 given by its feature x. The linear
relation between the feature values and the log-odds is
given by:

logit(p(y = 1|x)) =

m∑
i=0

wixi = wT · x := z (2.2)

The inverse gives us the probability that a particular
sample belongs to one of the classes. This is called the
logistic sigmoid function φ:

φ(z) =
1

e−z , (2.3)

which has the characteristic S-Shape.

b) Perceptron algorithm is a linear classifier that
is used for supervised learning of binary classifiers.
Roughly speaking, it finds the best line separating two
data sets. Already in 1958 the algorithm was introduced
by Frank Rosenblatt. The algorithm learns a thresh-
old function that maps the real-valued input vector (e.g.
of CAPE values) x = (x1, . . . , xn) to the output f (x),
which is either 1 (precipitation over a a certain thresh-
old) or 0 (no precipiation). Mathematically, the func-
tion f is given by:

f (x) =

{
1 if

∑n
i=1 wi · xi + b > 0

0 otherwise ,
(2.4)

where wi, . . .wn are the weights, n the number of inputs
and b the bias.

c) Support vector machine (svm). This machine learn-
ing algorithm is designed to find a hyperplane in a
N-dimensional space, where N is the number of features.
The hyperplane classifies the data points. Our goal is to
distinguish between two classes of precipitation inten-
sity, where the precipitation intensity is a scalar, there-
fore, the hyperplane is a line. The key difference to the
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perceptron algorithm is that the perceptron algorithm
stops after it classifies data correctly. In contrast, svm
finds the best plane with the the maximum margin. This
is the general objective of svm: Finding a hyperplane
(i.e. a line) that has the maximum distance, or maximum
margin, between data points of two classes. Obtaining a
maximal margin distance leads to a more precise classi-
fication of future data points.

d) k-nearest neighbor (knn) This algorithm deter-
mines k nearest neighbors. First, using a training data
set, clusters of similar characterizations are found. Each
cluster is a class. A new data point is then assigned to
the majority class of nearest neighbors.

e) Decision tree/random forest A decision tree works
as the name indicates: Starting in a tree root, the data is
recursively split. The simple decision rules of the splits
are inferred from the training data. A random forest can
be seen as a number of decision trees.

f) Simple Deep learning A neural network with multi-
ple layers between the input and output layers is called
a Deep Neural Network (DNN). One advantage of the
use of a DNN with more than one layer is that such a
network produces a nonlinear decision boundary with
nonlinear combinations of the weight and inputs.

Technical settings: For the calculations the python
tools scikit-learn, keras, numpy and panda is used.
Thereby the set of labels predicted for a sample must ex-
actly match the corresponding set of labels in ytrue. For
the deep NN we consider tanh and softmax as activa-
tion functions, 50 epochs and a batch size of 64; for knn
we use the Minkowsi metric, 3 nearest neighbors, for
decision tree/random forest the Gini criterion is used,
number of trees: 10 times the number of considered grid
boxes and a depth of 5–10, where mostly 5 layers hold
the best results. For the log regression the l2 penalty is
considered.

Accuracy score: For all methods, we consider sklearn
.metrics.accuracy_score, that computes the subset accu-
racy. Let ŷi be the predicted value of the i-th sample and
yi the corresponding true value, then the fraction of cor-
rect predictions over the number of samples n is defined
as

accuracy(y, ŷ) =
1
n

n−1∑
i=0

1(ŷi = yi) (2.5)

with the indicator function 1(x). See the scikit-learn
manual for further information. From definition Eq. (2.5)
it follows that the score is real valued and greater or
equals to 0, and smaller or equals to 1.

3 Data

For the evaluation of the methods summarized in Sec-
tion 2 to address research questions 1, 2 and 3 the
COSMO-REA6 data set is used. The reanalysis data
set is based on the non-hydrostatic, numerical weather
prediction model COSMO of the German Weather Ser-
vice (Deutscher Wetterdienst) with a continuous nudg-
ing scheme, see Bollmeyer et al. (2015). The COSMO-
REA6 data set has a horizontal resolution of about 6 km
and 40 vertical layers. We mainly consider the variables
total precipitation and CAPE. The initial temporal res-
olution is one hour. The 3D wind, the temperature and
the geopotential for level 21, which is about 600 hPa,
are used to calculate the Dynamic State Index, see
Eq. (3.3). The months July and August during the years
2013–2015 are analyzed. Spatially, we consider a box
bounded by the latitudes 47.71°–54.74° N and the lon-
gitudes 2.50°–14.16° E. This domain contains parts of
the Netherlands, Belgium, France, Germany, and parts
of the Czech Republic. To compare the relation of the
variables with respect to grid boxes of different sizes we
average the original data. The spatial location of the do-
mains are illustrated in Figure 1. See also the caption
for a more precise explanation of the location of the do-
mains.

3.1 Preprocessing 1: Calculating the input
variables

Before the data are spatially averaged for the scale de-
pendent analysis, the accumulated precipitation data has
to be separated into a hourly time resolution. In the last
part of our study we consider the Dynamic State Index
(DSI) as additional predictor variable. This Index is cal-
culated before further steps could be taken. The DSI is
derived from the primitive equations and indicates at-
mospheric developments by unifying the information of
the energetic and the vorticity state of the atmosphere
(Névir, 2004). We denote with ρ the density, with ξa the
absolute vorticity vector, v is the 3D wind vector, cp the
specific heat constant for dry air, T is the temperature
and θ the potential temperature. Then, the DSI is de-
fined as the Jacobi-determinant of the gradients of the
potential vorticity

Π = ρ−1ξa · ∇θ , (3.1)

which gives the vortex-information, the gradient of the
Bernoulli function

B =
1
2

v2 + cpT + φ , (3.2)

which contains the kinetic energy, and the gradient of
the potential temperature

DSI :=
∂(Θ, B,Π)
∂(a, b, c)

=
1
ρ

∂(Θ, B,Π)
∂(x, y, z)

=
1
ρ

(∇θ × ∇B) · ∇Π

(3.3)
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Figure 1: The large red box marks the large domain of 7682 km2. The blue box marks the region we consider for the data of the
3842 km2 domain, the green box labels the 1922 km2 domain, the dashed orange boxes are the boxes considered for the calculations with
the resolution of 962 km2, the same region is considered for the data in boxes of size 482 km2 and 242 km2. The dashed purple quarter of the
yellow box is the domain for the 122 km2 boxes and the pink box denotes the region containing the original 62 km2 domains. In this purple
domain fit in total 64 grid boxes of size 62 km2.

with the Lagrangian mass coordinates a, b, c: dm =
da db dc = ρ dx dy dz and the density ρ.

The DSI is defined such that it is zero under adia-
batic, inviscid, steady conditions (Névir, 2004). On the
other hand, DSI signals unequal to zero indicate dia-
batic, viscous and non-steady states of the atmospheric
flow field. Previous works have shown that DSI values
unequal to zero are correlated to diabatic processes, es-
pecially precipitation (in a height of about 600 hPa), see
e.g. Müller et al. (2018); Claussnitzer and Névir
(2009). To differentiate more specific between moist air
with and without phase changes and precipitating air, a
complex hierarchy of DSI variants for these moist pro-
cesses is developed by Hittmeir et al. (2021) and could
be applied in future studies on the relation of CAPE and
precipitation. Moreover, illustrating DSI fields show that
the DSI is characterized by a dipole structure, which
gives rise to the direction of motion, see e.g. Müller

and Névir (2019). Additionally to the DSI we con-
sider the so-called Thunderstorm Occurrence Parameter,
short TOP, that combines DSI and CAPE:

TOP = | DS I|0.6 · CAPE0.5 . (3.4)

This parameter is introduced by Schartner et al.
(2009).

3.2 Preprocessing 2: Averaging the input
variables

The variables total precipitation, CAPE, DSI and TOP
are temporally averaged over 3 hours, 4 hours, 6 hours,
12 hours and 24 hours. Furthermore, the data is spatially
averaged such that we obtain data in grid boxes of sizes
62 km2, 122 km2, 242 km2, 482 km2 962 km2, 1922 km2,
3842 km2 and 7682 km2. All averages are arithmetic
means. The spatial domains are sketched in Figure 1.
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3.3 Preprocessing 3: Classifying data in
categories

For a first investigation of the relation of CAPE to pre-
cipitation for different temporal and spatial scales, we
separate the total precipitation into the two categories
no rain and rain, where only total precipitation intensi-
ties greater than the 75th percentile is considered. We re-
mark that the sample sizes of both categories are equal.
In case there are more events in the category no rain we
took an additional random sample of the category rain to
obtain equally sized samples. Thereby, we use the pack-
age resample from sklearn.utils.

Each of the CAPE, DSI, TOP values are divided into
10 categories, where the categories are the 10 %, 20 %,
30 %, . . . percentiles, such that all categories have the
same number of events.

3.4 Preprocessing 4: Training and test data

For all algorithms, we consider 70 percent of the data as
training data and the remaining 30 percent of the data as
test data set.

4 Results

In this section, we tackle all four research questions
asked in the introduction. First, to gain an impression
of the different variables we are evaluating, we show the
spatial structures of CAPE, DSI and TOP and precip-
itation. Second, to answer the first two research ques-
tions, we compare the different machine learning algo-
rithms summarized in Section 2. Third, we choose the
algorithm with the highest score to calculate the rela-
tions of CAPE and precipitation across various temporal
and spatial scales. To address the third research question,
we take DSI and TOP as additional input variables into
account and demonstrate their usefulness as parameters
for finetuning. Finally, we show a theoretical relation of
CAPE and precipitation intensity.

4.1 The spatial structure of CAPE, DSI, TOP
and precipitation

One example of the spatial structure of the variables
CAPE, DSI, TOP and precipitation is shown in Figure 2.
The variables are represented for three hourly time steps.
Comparing the CAPE field that is shown in the first row
with the precipitation field depicted in the last row we
recognize a time shift. Regarding CAPE, i.e. the avail-
able potential energy, we keep in mind that the energy
does not has to be converted. But as higher the CAPE
values, as higher is the probability that there will be con-
vective activity, e.g. rain, whereas the DSI can be seen
as a trigger parameter. Focusing the location of maximal
CAPE values in the figure in the first row, first column,
and comparing this figure with the figure of the precip-
itation intensity in the last row, last column, it can be
recognized that the location of maximal CAPE values

is reached two hours later by a convective cell with in-
tense precipitation. We recognize a similar time shift of
the DSI (second row) with the TOP index (third row),
which can be explained as follows: The DSI is defined
via gradients of the potential temperature, the Bernoulli
function, containing the kinetic energy and the poten-
tial vorticity, see Eq. (3.3). Thus, the DSI identifies lo-
cal changes, i.e. the developments of different processes,
such as the approaching of storms before the rain falls
out. The TOP index is defined as the product of CAPE
and DSI, see Eq. (3.4). This variable combines CAPE
and DSI and concentrates on the regions of strong con-
vective activity, such as thunderstorms.

4.2 Using machine learning algorithms to
analyze the relation of CAPE and
precipitation

We will concentrate on only two precipitation cases:
rain and no rain, where the class rain contains precip-
itation intensities equal and above the 75th percentile
of all considered precipitation events. For example, for
the original data with a horizontal resolution of 6 km
and a one hour time resolution, a precipitation inten-
sity of 0.7 mm/h is taken as threshold. The CAPE cat-
egories are classified into 10 classes. While we will in-
vestigate standard machine learning techniques, Polzin
et al. (2022) investigate the relation of CAPE to the ver-
tical velocity using an alternative approach called Di-
rect Bayesian Model Reduction Gerber and Horenko
(2017) using reanalysis data. In contrast, Gottwald
et al. (2016) analyse data-driven stochastic models of
tropical convection by using observations of the rain rate
to build an entirely observation-based stochastic model.

4.2.1 Comparison of different machine learning
methods

Regarding all outcomes of the methods logistic regres-
sion, perceptron, support vector machine (SVM), de-
cision tree, random forest, k-nearest neighbor, and the
simple deep neural network, over all, we find that the
decision tree/random forest algorithms show the highest
accuracy scores across all spatial and temporal scales.
The deep neural network shows similar results. But
since it takes more computational effort to calculate the
deep neural network, we suggest the use of the decision
tree/random forest algorithm. But we note, that every
other algorithm did show good results for distinguished
spatial-temporal scales.

In Table 1 the scores of the different algorithms are
shown for two exemplary data sets. The second col-
umn is the score for the data averaged to domains of
the size 962 km2 and the 24 h mean is evaluated. The
two precipitation categories are separated by a threshold
of 0.091 mm, which seems to be a small number, but we
recall that we take the arithmetic mean which leads to a
small value of the 75th percentile of the considered data
set. The averaging leads to a total number of 262 data
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Figure 2: The variables CAPE (first row), DSI (second row), TOP (third row) and total precipitation (last hour accumulated; fourth row) are
shown for the 2014/06/09 8 UTC (first column), 9 UTC (second column) and 10 UTC (third column). All three variables CAPE, DSI and
TOP indicate the region of intense precipitation before it is raining.

points for this comparison. In this case, almost all meth-
ods show similar and good results. Only the k-nearest
neighbour algorithm does not work as good. The third
column shows the scores for the boxes of size 242 km2.
For this resolution we obtain in total 2828 data points.
For this setting we consider precipitation categories with
intensity smaller and greater than 0.143 mm per hour,
and 10 CAPE categories. But there are examples, where
the svm algorithm shows similar scores. For example,
for grid boxes of the size 48 km x 12 km we obtain a

score of 0.750 for the training as well as for the test data
set. Applying the decision tree algorithm to this data
leads to a score of 0.750 and 0.726 for the training and
test data.

Regarding all results, we remark that we used the
same technical settings for all scales, which can lead to
over- and/or underfitting. Adapting these settings more
precisely for every scale would optimize the results.
Overall, the decision tree and random forest algorithms
show the best scores. The classical logistic regression
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Table 1: The second column is the score for the data averaged for
regions of a horizontal resolution of 96 km, i.e. Germany is divided
into 8 regions, and temporally the data is averaged to the 24 h mean.
The third row shows the scores for the case that we divide Germany
into smaller subdomains regarding a temporal mean of 24 hours. The
depth for the decision tree and random forest algorithms is five.

accuracy accuracy
Method hor. res 96 km hor. res. 24 km

24 h mean 24 h mean

Training accuracy log reg 0.705 0.715
Test accuracy log reg 0.696 0.720
Accuracy perceptron 0.696 0.482
Misclassified perceptron 24 440
Accuracy svm train 0.696 0.482
Accuracy svm test 0.696 0.757
Accuracy tree train 0.705 0.727
Accuracy tree test 0.696 0.757
Accuracy forest train 0.705 0.727
Accuracy forest test 0.696 0.757
Accuracy knn train 0.464 0.508
Accuracy knn test 0.582 0.482
Accuracy DNN train 0.705 0.715
Accuracy DNN test 0.697 0.720

shows almost as good scores as the tree algorithms. But
there are cases, e.g. for the 62 km2 domain, where the
decision tree has higher scores than logistic regression
algorithms (0.742 vs. 0.672). The scores of the deep
neural network are in the same order as the scores of the
decision trees for all scales. But these calculations need
more time. The high scores for decision trees/random
forest and the simple neural network can be explained by
the fact that they capture nonlinear relations, i.e. they act
as nonlinear mappings. In the following, we will stick to
the relatively simple decision tree algorithm for further
analysis of the temporal spatial dependencies of CAPE
and precipitation in the next subsection.

4.2.2 Investigating temporal-spatial dependencies
of CAPE and precipitation via decision trees

As explained in the previous paragraph, regarding all
methods, the decision tree/random forest algorithms
show the most consistent, highest accuracy scores across
all scales.

Table 3 shows the accuracy scores of the spatial re-
lation of CAPE to precipitation. As fix temporal resolu-
tion three hours are chosen, because of the time shift of
the variables as exemplary shown in Figure 2. Regarding
Table 3 the highest scores can be observed for about the
same horizontal resolution, for the horizontal resolution
of 24–96 km, the next higher order of resolution shows
similar results. A reason might be the relation of the size
of the convective event with the chosen time averaging
of 3 hours, that fit together. Choosing a 24 hour average,
we might get higher accuracy scores in the larger grid
boxes.

The relation of CAPE to precipitation for different
spatial and temporal scales calculated with the decision

Table 2: Accuracy of the method with best score for the relation of
CAPE to precipitation via different temporal and spatial scales, each
box: 1st row: accuracy of the training data, 2nd row: accuracy of the
test data. The blue marked values are the output of the original model
resolution with no averaging.

Resolution 1 h 3 h 4 h 6 h 12 h 24 h

768 km 0.656 0.697 0.753 0.696 0.750 0.769
0.691 0.720 0.725 0.697 0.857 0.724

384 km 0.739 0.763 0.780 0.754 0.752 0.852
0.721 0.716 0.752 0.781 0.765 0.820

192 km 0.725 0.763 0.727 0.705 0.727 0.796
0.712 0.720 0.679 0.696 0.744 0.708

96 km 0.723 0.700 0.712 0.721 0.763 0.705
0.723 0.745 0.725 0.674 0.720 0.696

48 km 0.735 0.727 0.734 0.737 0.743 0.721
0.732 0.725 0.723 0.729 0.718 0.674

24 km 0.695 0.736 0.736 0.725 0.725 0.727
0.692 0.722 0.728 0.731 0.719 0.757

12 km 0.690 0.681 0.684 0.723 0.720 0.732
0.692 0.693 0.679 0.733 0.743 0.738

6 km 0.713 0.693 0.703 0.690 0.705 0.742
0.715 0.693 0.690 0.702 0.691 0.724

tree algorithm is presented in Table 2. We recognize
scores mostly greater than 0.7 across all temporal and
spatial scales. The 24 h mean shows the highest scores
across all spatial scales. This might be explained as fol-
lows: the time shift of CAPE and precipitation, as dis-
cussed in the first paragraph of this section and illus-
trated in Figure 2, is 1–3 of hours and captured by the
24 h mean. We recall that CAPE indicates the available
potential energy that will not necessarily be transformed.
Detecting a CAPE signal, it can take 1–3 hours until
we can measure precipitation. During this time, clouds
might be moved. Dynamic processes explain the weaker
scores for the one hourly data and small spatial resolu-
tions. On the other hand this leads to higher scores for
the 24 hour means as shown in the last column in Ta-
ble 2.

We recall that we use the same technical configura-
tions for all time and temporal scales, which can lead
to over- and underfitting. Further technical adjustment
would approve the results.

4.3 Considering the DSI and the TOP index as
additional predictor variable

Due to the definition of CAPE there are cases with
CAPE values greater than zero, but without precipita-
tion. Therefore, to optimize the relation of CAPE and
precipitation we suggest to take the Dynamic State In-
dex (DSI) defined in Eq. (3.3) as additional input pa-
rameter into account. On the one hand, the DSI is zero
for the adiabatic, inviscid basic state, such as persistent
high pressure areas (Müller and Névir, 2019). On the
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Table 3: Accuracy of the method with best score for different grid box sizes for the 3 h-averaged data X: CAPE, y: precipitation, the decision
tree with 5 layers is used.

768 km 384 km 192 km 96 km 48 km 24 km 12 km 6 km

768 km 0.710 0.492 0.601 0.589 0.579 0.612 0.587 0.621
0.707 0.588 0.545 0.593 0.570 0.612 0.582 0.624

384 km 0.763 0.640 0.603 0.588 0.596 0.598 0.592
0.716 0.566 0.649 0.591 0.594 0.585 0.580

192 km 0.763 0.705 0.720 0.708 0.578 0.591
0.720 0.739 0.722 0.724 0.569 0.581

96 km 0.700 0.723 0.715 0.556 0.573
0.745 0.738 0.738 0.552 0.568

48 km 0.727 0.719 0.556 0.569
0.725 0.736 0.544 0.567

24 km 0.722 0.549 0.564
0.736 0.529 0.552

12 km 0.708 0.512
0.721 0.518

6 km 0.693
0.693

Table 4: Accuracy of the method with best score for the relation
of the two input variables CAPE and the DSI to precipitation via
different temporal and spatial scales, each box: 1st row: accuracy of
the training data, 2nd row: accuracy of the test data. Using the DSI
as additional predictor increases the scores across all scales.

hor. resolution 1 h 3 h 4 h 6 h 12 h 24 h

768 km 0.746 0.767 0.802 0.743 0.789 0.831
0.722 0.720 0.762 0.697 0.750 0.793

384 km 0.775 0.781 0.829 0.835 0.829 0.889
0.783 0.813 0.780 0.750 0.804 0.869

192 km 0.747 0.796 0.750 0.732 0.788 0.815
0.741 0.685 0.705 0.759 0.767 0.667

96 km 0.739 0.754 0.747 0.752 0.732 0.732
0.739 0.752 0.741 0.720 0.747 0.747

48 km 0.749 0.740 0.749 0.756 0.752 0.752
0.743 0.729 0.730 0.746 0.720 0.720

24 km 0.714 0.744 0.748 0.737 0.747 0.747
0.714 0.736 0.745 0.748 0.729 0.729

12 km 0.714 0.716 0.722 0.749 0.742 0.752
0.714 0.735 0.711 0.740 0.723 0.741

6 km 0.730 0.726 0.741 0.738 0.744 0.762
0.730 0.726 0.734 0.737 0.711 0.749

other hand, non-zero valued DSI dipole structures can
be used to indicate atmospheric developments such as
hurricanes (Weber and Névir, 2008) or precipitation
(Müller et al., 2018). Therefore, we propose the com-
bination of CAPE and DSI as input variables to optimize
the classification of the target variable precipitation. The
results for the spatial-temporal relations are shown in
Table 4 and the results of the spatial relations are sum-

marized in Table 5. Indeed, taking the DSI additionally
into account improves the scores across all temporal and
spatial scales.

Moreover, we consider the TOP index defined in
Eq. (3.4) as a further parameter, but the scores did not
optimize the results compared to the DSI. This can be
explained by the definition of TOP, which is designed
to capture local extreme events such as intense thun-
derstorms. The TOP index is useful to identify thunder-
storms and intense precipitation. But in this work, we
only discuss two precipitation classes rain and no rain
and do not further distinguish between precipitation
events of different intensity. We propose the TOP index
for further studies on precipitation extremes.

4.4 Theoretical relation of CAPE to
precipitation

In order to answer research question 4, where we ask
for a theoretical relationship of CAPE and precipitation
we start with the frequently discussed relation of CAPE
to the vertical velocity. The derivation is for example
given by Holton (2004). We recall the theoretical re-
lation of the vertical velocity and precipitation intensity
introduced by Ertel (1933) and from this we shortly de-
rive the theoretical relation of CAPE and precipitation.

The Convective Available Potential Energy, short
CAPE, is given by the integral from the level of free
convection (LFC) to the equilibrium level (ET), as de-
fined in Eq. (1.2). Reformulating the vertical momen-
tum equation leads to the following quadric relation of
the maximal vertical velocity and CAPE:

v2
z

2
= CAPE ⇐⇒ vz =

√
2 · CAPE . (4.1)
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Table 5: Accuracy of the method with best score for different grid box sizes for the 3 h-averaged data X: CAPE, DSI, y: precipitation, the
results of the random forest algorithm are shown providing the highest scores.

768 km 384 km 192 km 96 km 48 km 24 km 12 km 6 km

768 km 0.765 0.714 0.742 0.716 0.691 0.720 0.740 0.649
0.729 0.628 0.671 0.723 0.673 0.736 0.736 0.656

384 km 0.829 0.733 0.686 0.666 0.668 0.716 0.722
0.742 0.580 0.626 0.665 0.670 0.715 0.704

192 km 0.826 0.767 0.773 0.759 0.683 0.722
0.636 0.752 0.766 0.764 0.993 0.723

96 km 0.767 0.757 0.740 0.597 0.652
0.735 0.748 0.744 0.585 0.639

48 km 0.760 0.736 0.573 0.605
0.745 0.740 0.572 0.591

24 km 0.744 0.561 0.591
0.750 0.539 0.577

12 km 0.730 0.543
0.743 0.532

6 km 0.729
0.724

The relation of the vertical velocity and precipitation
has been analysed numerically and statistically, see e.g.
Pendergrass and Gerber (2016), Weijenborg et al.
(2017), or Müller et al. (2020), but it is only rarely
discussed theoretically. Almost ninety years ego, Ertel
(1933) suggested the following relation between the
vertical velocity vz and the precipitation intensity I:

vz =
39.2

log
(
θH
θh

) I
p
. (4.2)

We follow the dimensions used in Ertel (1933), where
the precipitation intensity I is given in mm/(60 min).
Moreover, p denotes the arithmetic mean of the pres-
sure between the heights LFC and ET. Now, we com-
bine the quadric relation of CAPE and the vertical veloc-
ity Eq. (4.1) with Ertels relation of the vertical velocity
and the precipitation intensity Eq. (4.2) and obtain the
quadratic relation of CAPE and the precipitation inten-
sity:

CAPE =
v2

z

2
=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝ 39.2

log
(
θH
θh

) I
p

⎞⎟⎟⎟⎟⎟⎟⎠
2

= 768.32

⎛⎜⎜⎜⎜⎜⎜⎝ I

log
(
θET
θLFC

)
p

⎞⎟⎟⎟⎟⎟⎟⎠
2

.

(4.3)

It follows that:

CAPE ∝ I2. (4.4)

Therefore, we theoretically assert that there is a relation
of CAPE and precipitation. But we leave the verification
of Eq. (4.3) to future work. In general, since the com-
putational effort increases exponentially, we think ma-
chine learning approaches should be considered not to

substitute, but to complement the results of the theoreti-
cal equations of motions of atmospheric dynamics.

5 Conclusion

In this work, we use machine learning algorithms to in-
vestigate the scale dependent relation of the predictor
variable CAPE and the predictand variable precipitation
taking additionally DSI and the TOP as predictor vari-
ables into account. The goal was to tackle the following
four research questions: (1) Can we use todays increas-
ing possibilities of the applicability of machine learn-
ing algorithms to investigate CAPE and precipitation
across various temporal and spatial scales? (2) Which
algorithms provide the best relations of CAPE and con-
vective activity? (3) Which benefits provide the Dynamic
State Index (DSI) and the Thunderstorm Occurrence Pa-
rameter (TOP) as additional input variable? and (4) Is
there a theory of the relation of CAPE with precipita-
tion? To answer these question, the COSMO-REA6 data
set with an initial horizontal resolution of 6 km and a
spatial resolution of one hour are used. In order to obtain
the lower resolutions to analyze relations of the variables
across different spatial and temporal scales, the data is
filtered. We finally analyze data of a temporal resolu-
tion of 24 hours up to one hour. Furthermore, we re-
gard different spatial scales with horizontal resolutions
of 6 km, 12 km, 24 km, 96 km, 48 km, 96 km, 192 km,
384 km and 768 km. For each resolution we consider
two precipitation classes (rain/no rain) and 10 classes
of each of the predictor variables CAPE and DSI.

To answer the first two questions, we start with a
comparison of the accuracy scores of the different meth-
ods logistic regression, perceptron, support vector ma-
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chine, decision tree and random forest, k-nearest neigh-
bor and a simple deep neural network. Overall, we find
that the decision tree algorithm and random forest pro-
vide the best scores. The deep neural network shows
very similar scores. Both models are nonlinear classi-
fiers. These findings confirm the results of Grazzini
et al. (2020), who investigate a methodology for iden-
tification and systematic classification of extreme pre-
cipitation events over northern central Italy. They find
that the random forest classifier turn out to be decisive
in finding an optimal classification and for neglecting
non-useful predictors.

As we have shown in Section 4.4 theoretically, the re-
lation of CAPE and precipitation intensity is quadratic,
i.e. nonlinear. This explains the over all good results of
the decision tree algorithm and the deep neural network.
Because of the additional computer effort of deep neural
networks, we concentrate on the decision tree algorithm
for the analysis of the scale dependence relation. Over-
all, we find scores about 0.7 across all scales. We did
use the same technical configurations for all temporal
and spatial resolutions. Therefore, we think that specific
technical finetuning would optimize the results. In this
first study, we only consider two precipitation classes
and ten CAPE categories. It is wishful to increase the
number of categories for a more precise forecast of pre-
cipitation intensities.

To tackle the third research question, we take the Dy-
namic State Index (DSI) as additional input variable into
account. This leads to a slightly increase of the accuracy
scores. The DSI unifies local changes of the kinetic en-
ergy (via the Bernoulli function), of the potential tem-
perature and of the vorticity into one scalar. This means
that the DSI indicates different processes. While CAPE
provides information about the convective available po-
tential energy, the DSI indicates regions, where the re-
lease takes place.

Therefore, the DSI seems to be a suitable variable
that should be additionally taken into account to opti-
mize the relation of CAPE and precipitation. For fur-
ther optimization, different scale-dependent DSI vari-
ants could be taken into account, such as the DSI vari-
ants for moist processes that are recently introduced by
Hittmeir et al. (2021). We also regard the TOP index
as predictor variable, which is especially useful for the
identification of intense precipitation events. Since we
considered here only two precipitation classes, the TOP
index did not improve our results. But it seems to be
an interesting variable for studies on precipitation ex-
tremes.

The classification of precipitation into two classes
leads to scale independent results. Considering more
classes of precipitation intensity might lead to scale de-
pendent scores: lower scores for high resolutional data
and higher scores for lower resolutional data, which will
be analyzed in future studies. Here, the accuracy score
that counts the number of correctly classified data in-
stances over the total number of data instances is eval-
uated to compare relations via different models across

different scales. For a specific analysis at a certain scale
further scores could be taken into account.

In order to answer the fourth initially asked research
question, we show a theoretical relation of CAPE and
precipitation. This should be evaluated in future work in
order to e.g. prognose the intensity of precipitation in
more detail.

We conclude that we suggest the use of machine
learning algorithms, especially decision trees, to com-
plement parameterization schemes. Decision trees are
simple nonlinear networks. Of course, deep learning net-
works are also nonlinear classifiers. But neural networks
need to be designed more complex for a higher score,
which would take more computational time. In gen-
eral we think that machine learning can not and should
not be applied to substitute the atmospheric equations
of motions. But the increasing computer effort and the
progress in the enhancements of the coding of machine
learning algorithms makes it almost naturally to use
machine learning algorithms to complement the results
gained by the equations of motions. Especially, the ma-
chine learning approach is helpful for learning the evo-
lution of complex systems and processes such as con-
vection.

Acknowledgements

We thank the anonymous reviewer for the helpful com-
ments and suggestions. We acknowledge support by the
German Research Foundation for their support within
the framework of CRC 1114 ‘Scaling Cascades in Com-
plex Systems’, project A01 and the Open Access Publi-
cation Fund of TU Berlin.

References
Adams, D.K., E.P. Souza, 2009: Cape and convective events

in the southwest during the north american monsoon. – Mon.
Wea. Rev. 1, 83–98, DOI: 10.1175/2008MWR2502.1.

Bollmeyer, C., J. Keller, C. Ohlwein, S. Wahl,
S. Crewell, P. Friederichs, A. Hense, J. Keune, S. Knei-
fel, I. Pscheidt, others, 2015: Towards a high-resolution
regional reanalysis for the european cordex domain. – Quart.
J. Roy. Meteor. Soc. 686, 1–15, DOI: 10.1002/qj.2486.

Claussnitzer, A., P. Névir, 2009: Analysis of quantitative
precipitation forecasts using the dynamic state index. – Atmos.
Res. 4, 694–703, DOI: 10.1016/j.atmosres.2009.08.013.

Ertel, H., 1933: Die vertikale Luftbewegung bei Starkregen. –
Meteorol. Z. 2, 149–152.

Gerber, S., I. Horenko, 2017: Toward a direct and scal-
able identification of reduced models for categorical pro-
cesses. – Proc. Natl. Acad. Sci. 19, 4863–4868, DOI: 10.1073/
pnas.1612619114.

Gottwald, G.A., K. Peters, L. Davies, 2016: A data-driven
method for the stochastic parametrisation of subgrid-scale
tropical convective area fraction. – Quart. J. Roy. Meteor. 694,
349–359, DOI: 10.1002/qj.2655.

Grazzini, F., G.C. Craig, C. Keil, G. Antolini, V. Pa-
van, 2020: Extreme precipitation events over northern italy.
part i: A systematic classification with machine-learning tech-
niques. – Quart. J. Roy. Meteor. 726, 69–85, DOI: 10.1002/
qj.3635.

http://dx.doi.org/10.1175/2008MWR2502.1
http://dx.doi.org/10.1002/qj.2486
http://dx.doi.org/10.1016/j.atmosres.2009.08.013
http://dx.doi.org/10.1073/pnas.1612619114
http://dx.doi.org/10.1002/qj.2655
http://dx.doi.org/10.1002/qj.3635


Meteorol. Z. (Contrib. Atm. Sci.)
32, 2023

A. Rudolph & P. Névir: CAPE and precipitation 497

Hittmeir, S., R. Klein, A. Müller, P. Nèvir, 2021: The Dy-
namic State Index with moisture and phase changes. – J. Math.
Phys. 62, 1231091, DOI: 10.1063/5.0053751.

Holton, J.R., 2004: An Introduction to Dynamic Meteorology,
volume 4. – Academic Press.

Khouider, B., 2019: Models for tropical climate dynamics:
waves, clouds, and precipitation, volume 3. – Springer.

Markowski, P., Y. Richardson, 2011: Mesoscale meteorology
in midlatitudes, volume 2. – John Wiley & Sons.

Müller, A., P. Névir, 2019: Using the concept of the dy-
namic state index for a scale-dependent analysis of atmo-
spheric blocking. – Meteorol. Z. 28, 487–498, DOI: 10.1127/
metz/2019/0963.

Müller, A., P. Névir, R. Klein, 2018: Scale dependent ana-
lytical investigation of the dynamic state index concerning the
quasi-geostrophic theory. – Math. Climate Wea. Forecast 1,
1–22, DOI: 10.1515/mcwf-2018-0001.

Müller, A., B. Niedrich, P. Névir, 2020: Three-dimensional
potential vorticity structures for extreme precipitation events
on the convective scale. – Tellus A 1, 1–20, DOI: 10.1080/
16000870.2020.1811535.

National Weather Service, 2023: Severe Weather Top-
ics. – Published online, https://www.weather.gov accessed:
2023-02-2.

Névir, P., 2004: Ertel’s vorticity theorems, the particle rela-
belling symmetry and the energy-vorticity theory of fluid
mechanics. – Meteorol. Z. 6, 485–498, DOI: 10.1127/
0941-2948/2004/0013-0485.

Pendergrass, A.G., E.P. Gerber, 2016: The rain is askew: Two
idealized models relating vertical velocity and precipitation
distributions in a warming world. – J. Climate 18, 6445–6462,
DOI: 10.1175/JCLI-D-16-0097.1.

Polzin, R., A. Müller, H. Rust, P. Névir, P. Koltai, 2022:
Direct bayesian model reduction of smaller scale convective
activity conditioned on large-scale dynamics. – Nonlin. Pro-
cess. Geophys. 29, 37–52, DOI: 10.5194/npg-29-37-2022.

Ramezani Ziarani, M., B. Bookhagen, T. Schmidt, J. Wick-
ert, A. de la Torre, R. Hierro, 2019: Using convective
available potential energy (cape) and dew-point temperature

to characterize rainfall-extreme events in the south-central an-
des. – Atmosphere 7, 379, DOI: 10.3390/atmos10070379.

Raschka, S., V. Mirjalili, 2017: Python machine learning:
Machine learning and deep learning with python. – Scikit-
Learn, and TensorFlow.

Rennó, N.O., A.P. Ingersoll, 1996: Natural convection as a
heat engine: A theory for cape. – J. Atmos. Sci. 4, 572–585,
DOI: 10.1175/1520-0469(1996)053<0572:NCAAHE>
2.0.CO;2.

Riemann-Campe, K., K. Fraedrich, F. Lunkeit, 2009: Global
climatology of convective available potential energy (cape)
and convective inhibition (cin) in era-40 reanalysis. – Atmos.
Res. 1–3, 534–545, DOI: 10.1016/j.atmosres.2008.09.037.

Rybka, H., U. Burkhardt, M. Köhler, I. Arka, L. Bugliaro,
U. Görsdorf, Á. Horváth, C.I. Meyer, J. Reichardt,
A. Seifert, J. Strandgren, 2020: The behavior of high-cape
(convective available potential energy) summer convection
in large-domain large-eddy simulations with icon. – Atmos.
Chem. Phys. 6, 4285–4318, DOI: 10.5194/acp-2020-635.

Schartner, T., P. Névir, G. Leckebusch, U. Ulbrich, 2009:
Analysis of thunderstorms with the dynamic state index (dsi)
in a limited area high resolution model. – In: 5th European
Conference on Severe Storms, 12–16.

Weber, T., P. Névir, 2008: Storm tracks and cyclone de-
velopment using the theoretical concept of the dynamic
state index (dsi). – Tellus A 1, 1–10, DOI: 10.1111/
j.1600-0870.2007.00272.x.

Weijenborg, C., J. Chagnon, P. Friederichs, S. Gray,
A. Hense, 2017: Coherent evolution of potential vorticity
anomalies associated with deep moist convection. – Quart.
J. Roy. Meteor. 704, 1254–1267.

Weisman, M.L., J.B. Klemp, 1982: The dependence of nu-
merically simulated convective storms on vertical wind shear
and buoyancy. – Mon. Wea. Rev. 6, 504–520, DOI: 10.1175/
1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

Williams, E., N. Renno, 1993: An analysis of the conditional
instability of the tropical atmosphere. – Mon. Wea. Rev. 1,
21–36, DOI: 10.1175/1520-0493(1993)121<0021:AAOTCI>
2.0.CO;2.

http://dx.doi.org/10.1063/5.0053751
http://dx.doi.org/10.1127/metz/2019/0963
http://dx.doi.org/10.1515/mcwf-2018-0001
http://dx.doi.org/10.1080/16000870.2020.1811535
https://www.weather.gov
http://dx.doi.org/10.1127/0941-2948/2004/0013-0485
http://dx.doi.org/10.1175/JCLI-D-16-0097.1
http://dx.doi.org/10.5194/npg-29-37-2022
http://dx.doi.org/10.3390/atmos10070379
http://dx.doi.org/10.1175/1520-0469(1996)053%3C0572:NCAAHE%3E2.0.CO;2
http://dx.doi.org/10.1016/j.atmosres.2008.09.037
http://dx.doi.org/10.5194/acp-2020-635
http://dx.doi.org/10.1111/j.1600-0870.2007.00272.x
http://dx.doi.org/10.1175/1520-0493(1982)110%3C0504:TDONSC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1993)121%3C0021:AAOTCI%3E2.0.CO;2

