
Handling editor: Dr. Teja Kattenborn
Received: October 10, 2022. Revised: August 30, 2023. Accepted: September 8, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of Institute of Chartered Foresters.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Forestry: An International Journal of Forest Research, 2024, 97, 376–387

https://doi.org/10.1093/forestry/cpad049
Advance access publication date 11 October 2023

Original Article

Forest canopy mortality during the 2018-2020 summer
drought years in Central Europe: The application of a
deep learning approach on aerial images across
Luxembourg
Selina Schwarz1,*, Christian Werner1, Fabian Ewald Fassnacht2,3 and Nadine K. Ruehr1,2

1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), 82467
Garmisch-Partenkirchen, Germany
2Karlsruhe Institute of Technology (KIT), Institute of Geography and Geoecology (IfGG), 76131 Karlsruhe, Germany
3Freie Universität Berlin (FUB), Remote Sensing and Geoinformation, 12249 Berlin, Germany

*Corresponding author: selina.schwarz@kit.edu

Abstract

Efficient monitoring of tree canopy mortality requires data that cover large areas and capture changes over time while being precise
enough to detect changes at the canopy level. In the development of automated approaches, aerial images represent an under-exploited
scale between high-resolution drone images and satellite data. Our aim herein was to use a deep learning model to automatically
detect canopy mortality from high-resolution aerial images after severe drought events in the summers 2018–2020 in Luxembourg. We
analysed canopy mortality for the years 2017–2020 using the EfficientUNet++, a state-of-the-art convolutional neural network. Training
data were acquired for the years 2017 and 2019 only, in order to test the robustness of the model for years with no reference data. We
found a severe increase in canopy mortality from 0.64 km2 in 2017 to 7.49 km2 in 2020, with conifers being affected at a much higher
rate than broadleaf trees. The model was able to classify canopy mortality with an F1-score of 66%–71% and we found that for years
without training data, we were able to transfer the model trained on other years to predict canopy mortality, if illumination conditions
did not deviate severely. We conclude that aerial images hold much potential for automated regular monitoring of canopy mortality
over large areas at canopy level when analysed with deep learning approaches. We consider the suggested approach a cost-efficient
and -effective alternative to drone and field-based sampling.
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Introduction
Forests cover about 31% of the global land area (FAO and UNEP
2020) and compose a contemporary net sink of >20% of anthro-
pogenic CO2 emissions (Pan et al. 2011, Le Quéré et al. 2018,
Pugh et al. 2019, Friedlingstein et al. 2020). They also provide
other important ecological and economic services. An increase
in extreme weather events, like prolonged drought periods, poses
a severe challenge for current forest ecosystems. Pronounced
tree mortality incidents have been observed across many biomes
around the world during the last decades (Stocker et al. 2014,
Hoegh-Guldberg et al. 2018, Hari et al. 2020, Hammond et al. 2022).
Despite an intensification of research on the drivers of forest
canopy mortality, we still have an incomplete picture on this
phenomenon and its underlying processes (Lindner et al. 2010,
Hartmann et al. 2018). From 2018 to 2020, Central and Northern
Europe have experienced three consecutive summer droughts
coupled with high temperatures (Buras et al. 2020, Rakovec et al.
2022). These events resulted in large-scale forest damages and
pronounced tree dieback across Europe (Schuldt et al. 2020, Senf
& Seidl, 2021b]. While some studies have explored the effects

of disturbances on a broad scale (Senf & Seidl, 2021a], accessi-
ble information on canopy mortality from these events at the
level of single trees and tree groups is still missing in many
parts of Europe. To derive a more consistent picture on trends in
canopy mortality, we hence need to further improve existing forest
monitoring and mapping tools to provide information on canopy
mortality that is consistent in space and time (Allen et al. 2010,
Senf et al. 2015).

Traditional forest monitoring approaches via ground-level for-
est inventories face many challenges, such as large temporal gaps
between individual measurement campaigns and high expenses
for equipment and staff, while comparably small areas are actu-
ally assessed (Neeff & Piazza 2019). Meanwhile, the technolog-
ical and methodological developments in remote sensing have
given scientists tools to regularly acquire high-resolution data of
the Earth’s surface (Lechner et al. 2020). Satellite-based remote
sensing products provide information on forest cover dynamics,
typically at 10–30 m resolution. These data capture for instance
large patches of forest die-off very well (Hansen et al. 2013, Senf
& Seidl, 2021b]. At the same time this resolution is too coarse
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to detect smaller changes such as interspersed canopy die-back
in response to climatic stress (Hartmann et al. 2018). Sensors
mounted on planes or unmanned aerial vehicles (UAVs) are more
suitable for this task since individual tree crowns become increas-
ingly visible at higher resolution (< 1m) and as a consequence,
interspersed canopy mortality detection improves (Lu & He 2017).
High-resolution data have been frequently used for instance for
detailed analysis of vegetation structure and composition (Csillik
et al. 2018, Kattenborn et al. 2020, Schiefer et al. 2020), but the area
covered in scientific studies is typically relatively small. However,
in many Central European countries aerial surveys are regularly
performed to gather aerial images (i.e. orthoimagery) over large
regions or entire countries, usually during the vegetation period.
These data often remain behind pay-walls, but over the last years
they have been made increasingly available by official sources.
This trend opens opportunities for research as well as forest
management. Aerial imagery could therefore be an important,
yet under-explored, resource to detect and automatically monitor
canopy mortality.

Recent advances in machine learning, and particularly in con-
volutional neural networks (CNNs), offer new pathways to auto-
matically map canopy mortality. CNNs are deep learning algo-
rithms that were developed for pattern analysis. They are able
to extract location-invariant low-level features from images for
more efficient classification (Krizhevsky et al. 2017, Hoeser &
Kuenzer 2020). Over the last years CNNs and other deep learning
algorithms have become increasingly popular in remote sensing
and ecological research (Zhu et al. 2017, Voulodimos et al. 2018,
Brodrick et al. 2019, Ma et al. 2019, Reichstein et al. 2019, Hoeser
& Kuenzer 2020, Yuan et al. 2020, Kattenborn et al. 2021). The
suitability of CNNs to extract various forest/tree attributes at
different spatial resolutions has been demonstrated in numerous
studies [e.g. Chang et al. 2019, Brandt et al. 2020, Ferreira et al.
2020, Kattenborn et al. 2020, Schiefer et al. 2020), but tree/canopy
mortality has only been explored in a few studies using CNNs
so far [e.g. Hamilton et al. 2021, Hickman et al. 2022). Moreover,
while aerial images from governmental organizations are widely
used by foresters (Fensham & Fairfax 2002), few studies have used
available aerial images in combination with CNNs (Fricker et al.
2019, Sylvain et al. 2019, Chiang et al. 2020, Tao et al. 2020). Most
of these studies have been limited spatially and temporally. This
is because they typically employ data that were acquired specif-
ically for that specific study and have therefore little potential
to be used for long-term monitoring. Additionally, the studies
using CNNs have typically been restricted to relatively small
areas (Schiefer et al. 2020). Studies examining canopy mortality
over larger spatial extents, e.g. countries, and exploiting available
and systematically acquired aerial images are to our knowledge
missing so far. In addition, in order to explore the potential for
such large-scale, high-resolution aerial images to be used in forest
monitoring networks we also need to test the transferability of
trained algorithms across years.

In this study we fill this research gap by exploring the auto-
matic detection of forest canopy mortality from available aerial
images for the country of Luxembourg. We focus on the effects of
the 2018–2020 summer droughts, which have resulted in higher
than usual canopy mortality in Central Europe (Schuldt et al.
2020). Our specific objectives were to (1) investigate the applica-
tion of freely available aerial images to identify canopy mortality
using a state-of-the-art CNN model, (2) assess the transferability
of the trained model by applying it to data from years it was not
trained on, and (3) apply the model to assess canopy mortality
dynamics in conifer and broadleaf trees during three extreme
drought years (2017–2020).

Methods
Study site and characteristics
The study area covers all forests of Luxembourg as defined by
the LIS-L land cover data set (Korzeniowska 2020) (Fig. 1). The
country of Luxembourg is located in Central Europe, between
49◦ and 51◦ latitude and 5◦ and 7◦ longitude. It has an area of
2586 km2 of which 37% is covered by forests. Around 71% of
the forests are broadleaf trees and 23% conifers; 5% are mixed-
stands (Korzeniowska 2020). Luxembourg has a diverse topog-
raphy and while the south of the country is characterized by
relatively low elevation of about 250 m a.s.l, the North is more
hilly, with elevation reaching 560 m a.s.l. In 2018, central Europe
was affected by a severe summer drought (Schuldt et al. 2020),
which had pronounced impacts on forests including wide-spread
tree mortality (Buras et al. 2020, Obladen et al. 2021, Senf & Seidl,
2021b]. In the following 2 years the summers in Central Europe
continued to be hotter and drier than average, which contin-
ued to impact forest conditions (Rakovec et al. 2022). According
to data from the meteorological station at the Airport Findel,
Luxembourg (MeteoLux), the summer of 2018 was exceptionally
hot and dry. July 2018 showed an extraordinary vapour pressure
deficit anomaly, alongside low precipitation resulting in the most
negative monthly climatic water balance among 2016–2020 (Fig.
S1). But also in 2019 and to some degree in 2020 the summers were
on average drier and warmer compared with the 30-year average
(1981–2010).

Orthoimagery and reference data
This study uses freely available true-colour (RGB) and near-
infrared (NIR) aerial orthoimagery from the government of
Luxembourg (https://www.data.public.lu/). As deep learning
models are able to arithmetically combine spectral bands during
training, we did not provide such information a priori. The aerial
images were acquired annually during the vegetation period
(Table S1), mostly during July and August, but in 2017 survey
flights took place in June and in 2020 some areas were surveyed
in September. For our study we selected aerial images covering
four consecutive years (2017–2020) with a ground resolution of 25
cm in 2017, 20 cm in 2018 and 2019, and 10 cm in 2020 for the
whole country. We z-score normalized the spectral information
of the four channels to values between 0 and 1 prior to use in
the model, by subtracting the pixel values of each channel by the
mean and dividing it by the standard deviation of the channel
in the data set (LeCun et al. 2012). To have a consistent data set
with the same ground resolution we re-sampled the aerial images
from 2017 and 2020 to 20 cm.

We generated the reference data for the model as follows
(full protocol: see Methods S1). We defined canopy mortality as
standing dead tree canopy area. Tree canopies were considered
dead if we observed total browning/bleaching of the crown in
conifers and the complete loss of leaves in broadleaf trees.
The aerial images were visually assessed and canopy areas of
standing dead trees manually labelled by drawing a polygon
shape (feature) using the open Software QGIS, Version 3.12
(Development Team 2020). We did not delineate each dead tree
separately but the dead forest canopy which could also consist of
a cohort of dead trees. During this process we took great care to
accurately label the exact shape of the dead canopy area including
larger branches. Dead forest canopies were differentiated into
conifer and broadleaf trees. This was done for several forested
areas throughout Luxembourg (Fig. 1) with the most extensive
reference data set originating from the Attert catchment where
canopy mortality was mapped previously in an area of 314 km2
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Figure 1. Map of the study area Luxembourg and the location of forests within the country. Shown is (A) the central location of Luxembourg in Europe,
(B) the distribution of forest types within Luxembourg and sites where reference data were acquired by visual examination of aerial imagery. The black
framed sites were mapped for 2017 and 2019 and sites with black dots for all years (2017–2020). The black hatched sites were additionally mapped in
2017 to increase the amount of reference data in that year. The distribution of forests is based on land use products provided by the Land Information
System for Luxembourg (LIS-L) (https://data.public.lu/en/datasets/lis-l-land-cover-2018/).

(Haffter 2020). Additional areas to generate reference data were
chosen to cover different forest conditions across Luxembourg.
The areas of these additional data sites range between ∼2 and
3 km2. Everything outside dead broadleaf and dead conifer
trees was classified as background. Reference data were initially
mapped for 2019 only, with a count of 13 378 features. Due to the
lower image quality and relatively low canopy mortality in 2017,
additional reference data were acquired for that year to improve
model predictions. To test the transferability of the model to
other years, we labelled additional testing data for 2018 and 2020
in three of the six areas (Fig. 1). In total we mapped 209 and 1991
features in 2018 and 2020, respectively (Table 1). The distribution
of classes in the data set exhibited a strong imbalance between
dead tree classes and the background class (the background
outweighing the dead classes) as most forest stands and other
land uses are part of the background. There was also an imbalance
between the occurrence of dead conifers and dead broadleaf trees,
as conifers made up c. 90% of the reference data.

Neural network architecture
CNNs are a family of deep learning networks that utilize con-
volutional layers, which are used to exploit information of spa-
tially adjacent pixels and are therefore very efficient in detecting
structural patterns or objects in images (Rawat & Wang 2017).

The depth of these networks enables the algorithm to learn how
to identify complex textural features (Zhu et al. 2017). Here, we
used the U-Net architecture EfficientUNet++ (Silva et al. 2021). U-
Net architectures (Ronneberger et al. 2015) are a type of semantic
segmentation models that are used for pixel-wise classification.
They were originally developed for use in the biomedical sector,
but have been successfully adopted in environmental science. U-
Nets consist of an encoding and decoding branch of layers. In
the encoder or contraction path, the image size is reduced with
convolution and max pooling operations while also increasing the
number of channels. In the decoder or expansion path the image
size is again gradually increased. The layers of the encoding and
decoding paths are connected through Skip Connections. Hereby,
the activations of the encoder are forwarded to the decoder,
providing the spatial identity of the data (Brodrick et al. 2019,
Hoeser & Kuenzer 2020, Kattenborn et al. 2021).

We implemented our EfficientUNet++ model (Silva et al. 2021)
in Python (Version 3.9.12), using PyTorch (Version 1.11.0) and
the PyTorch Lightning framework (Version 1.5.10). As encoder we
chose the EfficientNet-b5 (Tan & Le 2020), which is pretrained on
the ImageNet database. We used the albumentations-package for
image augmentation to rotate and flip the images, and change
brightness by a factor range of 0.2 and contrast by 0.15. The learn-
ing rate was set to 0.0003. Additionally, we implemented cosine
learning rate annealing to avoid local minima during training. Due
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Table 1. Number of reference data features for each year. The data were divided into three datasets for training, validation, and testing
of the model with a ratio of (A) 70%, (B) 20%, and (C) 10%. The numbers in brackets represent the amount of broadleaf and conifer
features. For 2018 and 2019 we only mapped reference data for testing, as the U-Net model was trained on reference data from 2017
and 2019 only.

Year Reference data (n features)

(A) Training (B) Validation (C) Testing Total (Broadleaf / Conifer)

2017 1901 543 273 2717 (255 / 2462)
2018 – – 219 219 (13 / 206)
2019 9365 2676 1337 13 378 (1182 / 12 196)
2020 – – 1991 1991 (296 / 1695)

Figure 2. Workflow diagram illustrating the process of reference data
acquisition and usage to build and test the CNN. First, reference data
were acquired through visual assessment of the aerial imagery and split
into training, validation, and testing data sets. The model was first
trained using the training data and tuned with the validation data. The
testing data set was used to independently assess model performance
and to calculate the F1-scores.

to the imbalance between the two dead-tree classes (conifer and
broadleaf) and the dominance of the background class we used a
combination of loss terms. The total loss was defined as the sum
of the generalized dice loss (Sudre et al. 2017), focal loss (Lin et al.
2017), and boundary loss (Kervadec et al. 2021). As the boundary
loss grows with distance from the dead forest polygon, it helps the
model delineate dead tree canopies more precisely (Kervadec et al.
2021).

CNN initialization and training
We used the WebDataset format, storing our tiled reference data
as.tar files (Methods S2). As a result we split the images and
reference data into patches of 256 px × 256 px and allocated these
into batches of n=16. Each batch of the data sets was composed
in equal parts from images with occurrence of dead canopy pixels
and randomly chosen other patches in order to not overfit the
model on the relative scarce occurrence of dead tree pixels. To
balance the data in each data set, we made sure that samples
from both years were allocated proportionally to the data sets. The
reference data were randomly split into training (70%), validation
(20%), and testing (10%) data sets (Fig. 2).

We tested four input configurations for the U-Net model, which
varied in spectral bands and number of predicted classes. We
explored whether the inclusion of the NIR band improved model
predictions, compared with using the RGB bands only. We also
distinguished between a base classification scenario (dead canopy
and background, referred to as binary) and a multi-class approach
with three classes (dead conifers, dead broadleaf, and background,
referred to as multi) to check whether splitting the dead canopy
class into dead conifers and dead broadleaf would decrease the
model performance. This resulted in the four model configura-
tions binary/RGB, binary/RGBN, multi/RGB, and multi/RGBN. For
each configuration the U-Net model was trained for a maximum

of 500 epochs and the training was terminated if the dice score
did not improve over an 100 epoch interval.

For the final canopy mortality predictions we selected the mul-
ti/RGB model because of its good performance (F1-score) and its
increased thematic detail. We trained a total of three multi/RGB
models and derived the inference using all three in a majority
vote. For this process a class was assigned to each pixel according
to the result of a majority of model outputs. Inference was run on
256 px × 256 px patches. We finally vectorized the resulting raster
outputs using the gdal package (GDAL/OGR contributors 2020)
to facilitate further analysis. All output features inside forests
(Korzeniowska 2020) were selected and canopy mortality area
was derived using QGIS V. 3.16 (Development Team 2020). We
only included canopy mortality areas >0.5 m2 to remove false
positives, unlikely to represent actual canopies.

CNN performance
The overall model performance was assessed through the F1-
score, which is the harmonic mean of precision and recall and
is robust for asymmetrical data sets (Kattenborn et al. 2021). We
calculated the F1-score for each year and model input combina-
tion and created confusion matrices for the individual classes.
F1-scores were calculated excluding the background class, which
represents everything other than dead canopies, as this class was
very dominant and would positively bias the evaluation.

In order to provide a map of canopy mortality for the whole
country we split the results into grid cells with a size of 1024 px ×
1024 px each (∼4 ha) and obtained the percentage of forest cover
per cell. We calculated the percentage of canopy mortality based
on the number of dead canopy pixels compared with forest area.
We also obtained canopy mortality rates per year and created an
accumulated canopy mortality map.

Results
Model performance
We found the F1-score to range between 60% and 70% inde-
pendently of model configuration or year. When comparing dif-
ferent combinations of spectral channels for the U-Net model,
we found the inclusion of the NIR data did not improve the
performance of the model (Table 2). For instance, the F1-score
increased slightly from 69.7% to 71.0% for the binary classifica-
tion, while it decreased from 67.6% to 66.2% in the multi-class
classification. The differentiation between conifer and broadleaf
trees did not result in a clearer picture on the inclusion of NIR data
either, as it only improved the F1-score in the broadleaf class, but
decreased it in conifers (Table 2). The more complex multi-class
model differentiating into conifers and broadleaf showed that the
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Table 2. F1-scores for all input combinations (binary/RGB, multi/RGB, binary/RGBN, multi/RGBN) over all years; we chose the
multi/RGB setup for our final model. F1-scores for the conifer and broadleaf classes are given for the multi/RGB model setup.

F1-score [%] Binary Multi Conifer Broadleaf

RGB 69.7 67.6 75.9 46.8
RGBN 71.0 66.2 72.5 52.9

Table 3. F1-scores of all years 2017–2020 for the multi/RGB set-up. We used n features in testing for each given year. F1-scores are
reported with and without the background class.

2017 2018 2019 2020

F1-score [%] 69.8 61.6 68.0 64.8
F1-score incl. background [%] 99.7 99.6 99.3 98.9
Sample size (n) 273 210 1337 1901

Figure 3. Example of a patch of forest where canopy mortality was not
apparent in the reference data but classified correctly by the U-Net.
Shown are (A) the aerial image of a forest with few dead tree canopies
and some bare forest floor, and (B) the correct detection of the dead tree
canopies by the U-Net. The model was able to clearly distinguish
between canopy mortality and the bare forest ground.

model was able to separate between these two mortality classes
(e.g. see Fig. 5) (F1 of 67.6%). Including the background class would
result in F1-scores >0.99 in all tested model combinations.

Given that the inclusion of the NIR did not improve the per-
formance overall, so we used the simpler RGB models for all
other analyses. As training our models to differentiate between
broadleaf and conifer mortality was relatively successful, we
explored canopy mortality in Luxembourg based on the multi-
class model in more detail. The model was able to generalize
learned patterns to years with no reference data (2018 and 2020).
F1-scores in those years were slightly lower than for the years with
reference data (2017 and 2019), but remained above 60% (Table 3).
Moreover, the model was able to detect incorrectly labelled ref-
erence data, for instance detecting canopy mortality even when
it was missed in the reference data set (Fig. 3). The dead canopy
pixels detected by the model did generally align better to the true
dead tree pixel occurrence than the manually drawn reference
data, as labellers usually cannot produce pixel-perfect dead tree
canopy boundaries.

We identified areas where the model was less successful in
mapping canopy mortality and noticed that the model was rel-
atively more prone to miss areas of canopy mortality in the
years 2018 and 2020. We also found that canopy mortality was
more likely to be omitted if the canopy area was affected by low
illumination conditions or cast shadows (Fig. 4). Broadleaf trees
were less likely to be mapped correctly by the model. We found
that 53.3% of mapped polygons matched the reference data and

Figure 4. Examples of the effects of light conditions during aerial
observations on the model performance. Shown are two examples in
2020 when (A) shading resulted in omission errors and dead canopies
were not identified by the U-Net model, and (B) dead canopies were
clearly identified by the model and no interference with shading
occurred.

F1-scores were lower for broadleaf trees, compared with conifers
(Table 2).

Canopy mortality dynamics and patterns
Analysing the multi-class model output showed a difference in
canopy mortality patterns between conifer and broadleaf trees.
We found that conifer mortality was typically clumped, while
broadleaf mortality occurred in a more scattered pattern with
mostly individual dead trees (Fig. 5). We tested this observation
using a nearest neighbour analysis, which supported our findings
(Fig. S4). Overall, we found a noticeable increase in canopy mor-
tality rates in Luxembourg following the 2018 summer drought
(Fig. 6). The area of dead forest canopy rose from 0.64 km2 in
2017 to 7.49 km2 in 2020. While the increase of dead canopy area
between 2017 and 2018 was moderate, we found a substantial
increase by 2.71 km2 in 2019 and 3.85 km2 in 2020. Most of the
mortality (c. 80%) could be attributed to conifers, albeit their much
lower cover (c. 24.5%) compared with broadleaf trees in the forests
of Luxembourg. We overlaid and merged yearly canopy mortality
in QGIS to account for trees that were removed between years
and therefore obtain a more accurate estimation of the increase
of dead canopy area. This approach suggested an increase of 11.06
km2 instead of 7.49 km2 from 2017 to 2020.

We created visualizations of canopy mortality patterns for the
whole of Luxembourg for the time period 2017–2020 at a spatial
resolution of c. 4 ha resulting in a total of 12 918 grid cells (Fig. 7).
We found that canopy mortality incidences occurred in <25% of
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Figure 5. Examples of canopy mortality in 2019 detected by the U-Net
model. Shown is the ability of the model to detect (A) clustered conifer
canopy mortality and (B) patchy broadleaf canopy mortality. (B) also
exemplifies the diversity of shape in dead broadleaf trees which
challenges the U-Net model, resulting in a small misinterpretation. That
is the small central feature which marks deadwood lying on the ground.

Figure 6. Development of the dead forest canopy area in Luxembourg
derived from the U-Net model. Given are the annual standing broadleaf,
conifer and total canopy mortality area from 2017 to 2020. Note that the
total forest area of Luxembourg is 960 km2.

the grid cells in 2017 and 2018 and the percentage of dead forest
canopy compared with forest cover remained low. In 2019, more
than 65% of the forested grid cells experienced canopy mortality
with 0.5% of forest area on average. In 2020, incidences of canopy
mortality were occurring in most grid cells and mortality averaged
at 1%, but in some areas canopy mortality reached values of 10%
and higher. Overall, canopy mortality appeared to be approxi-
mately equally distributed within the forests of Luxembourg with
hotspots in the centre-northeast and south (Fig. 7).

We also derived maps of the differences in annual canopy
mortality for 2018, 2019, and 2020 by subtracting percentage of
canopy mortality from the previous year. We found a clear trend
of increasing canopy mortality in 2019 following the summer
drought in 2018. This increase was further accelerating in 2020
and more evenly distributed throughout the country, except for
an area in the northwest of Luxembourg which seemed to exhibit
a decrease in canopy mortality. This decrease was, however, due
to shadowing of the aerial images, which will be discussed in the
following section (Fig. 8).

Discussion
In this study, we demonstrated the suitability of aerial images
in combination with a semantic segmentation using a CNN, to
map canopy mortality across an area of more than 2500 km2. We
showed that (1) we could use the model to map canopy mortality
from aerial images with an F1-score of 68%, (2) for years without
reference data, we could successfully transfer the trained model
to other years to predict canopy mortality, even though severe
changes in illumination conditions may require the acquisition
of (a limited amount of) additional reference data, and (3) how

trends in canopy mortality from 2017 to 2020 could be derived for
the study area using our map products. The trends indicated a
severe rise in canopy mortality from 0.64 to 7.49 km2.

Dead tree classification
The overall F1-score of the model was 68%, which is in line with
similar studies classifying characteristics of forests (Tao et al.
(2020) (OA=65%-80%), Fricker et al. (2019) (F1=64%), Hickman et al.
(2022) (F1=71 %), Schiefer et al. (2020) (F1-score 73%)), but the
differences in data characteristics (resolution, spectrum, acquisi-
tion), classification models, and accuracy assessment complicate
direct comparisons between the studies. Sylvain et al. (2019) who
similarly classified alive and dead broadleaf and conifer trees
reported global accuracy between 86% and 94%, but included alive
trees, which were omitted for our reported scores. When including
alive trees (background class), our models would achieve accu-
racies of 99%. Testing four model configurations, with varying
spectral bands (RGB, RGBN) and classification targets (binary,
multi), we found that distinguishing between dead conifer and
broadleaf canopies led to slightly lower F1-scores of the model.
This can be mostly attributed to the model’s lower F1-score for
dead broadleaf canopy area (0.47), compared with dead conifer
area (0.76). The lower F1-score was likely caused by the relative
scarcity of dead broadleaf canopies in the training data (class
imbalance) and the more diverse appearance of dead broadleaf
trees: while dead conifer trees were observed to be relatively
uniform in size, they also commonly feature a radial/spoke-like
branch structure, appearing brown or bleached in the visible spec-
trum. Leafless broadleaf canopies do not exhibit a well-defined
spectral signal or texture in our data set. At the same time branch
thickness and canopy density may vary between broadleaf tree
species. Additionally, dead conifers often appeared in groups of
well distinguishable individuals, whereas dead broadleaf trees
were generally sparse and loosely scattered within our study area
(Fig. 5). It is unlikely that the difference in mortality patterns
between conifers and broadleaf trees was caused by general
spatial patterns of trees, as most forest stands in Luxembourg
are homogeneous with 71% of all forests overall being described
as pure broadleaf stands in the LIS-L land cover data set. We
observed that the CNN would classify fewer pixels on the edges
of the tree crowns as dead compared with the reference data.
Consequently, the larger size and more scattered nature and
therefore the greater border area of broadleaf trees can also be
the cause of lower F1-scores.

We report the F1-scores in this study with caution, as they
could be affected by spatial auto correlation between training
and testing data sets. In our study this might be the case as
both originated from the same sampling regions. Therefore the
training and testing data might reflect similar site and image
conditions, leading to a higher likelihood of correct classifica-
tion of dead canopies closer to the training data. This problem
has been discussed in the literature and might potentially be
overcome by k-fold cross-validation, or spatial blocking (Ploton
et al. 2020, Meyer & Pebesma 2021, Kattenborn et al. 2022). We
did not implement these approaches in our study design. Instead
we focused on the proportional distribution of the available dead
canopy data into training, validation, and testing data sets, due
to the prevalence of the non-dead canopy class. Another known
issue is temporal pseudoreplication, but even though the testing
data for 2018 and 2020 was mapped in a subset of the original
reference data, we do not expect this to be problematic, because
the aerial images acquired across the 4 years do not align perfectly
due to differences in acquisition angles and shading.
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Figure 7. Map of annual canopy mortality in Luxembourg (2017–2020) derived from the U-Net model. The maps show percentage of canopy mortality
for the years 2017 (A), 2018 (B), 2019 (C), and 2020 (D). Canopy mortality was calculated in percent of forest cover per grid cell (c. 4 ha; i.e. 1024 × 1024
px). Note that in 2020 some patches reached canopy mortality >50%.

Inclusion of NIR data did not consistently improve the classifi-
cation performance. This is in contrast to Sylvain et al. (2019) who
found slight improvements to model predictions when adding
near-infrared data. Other studies reported improvements when

jointly using hyperspectral and structural data [i.e. Fricker et al.
2019, Mäyrä et al. 2021, Hell et al. 2022). In our case, we restrained
from integrating additional information from other sensor types,
mostly because in an operational monitoring setting, it is less
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Figure 8. Map of annual differences in canopy mortality in Luxembourg. The maps provide differences in the percentage of canopy mortality between
2017 and 2018 (A), 2018 and 2019 (B), and 2019 and 2020 (C). The annual differences were calculated based on the results of Fig. 7 and provide the
annual difference of percentage of dead canopy area at a grid cell size of c. 4 ha (i.e. 1024 × 1024 px). Underestimation of canopy mortality in the
Northwest of Luxembourg is caused by poor illumination conditions. The blue colours denote a decrease in canopy mortality between years, while the
red colours symbolize an increase in canopy mortality. Forested grid cells with no change in canopy mortality and areas without forest cover are given
in white. Note that the apparent decrease in canopy mortality in the Northwest of Luxembourg was caused by shading of the orthoimages from clouds.

realistic that multi-sensor data are regularly available. At the
same time, the RGB data appeared to be sufficient in our study and
allowed us to capture the vast majority of dead trees with a good
accuracy. The separation into broadleaf and coniferous trees may
benefit from additional integration of airborne laser scanning
data, since these may help to further improve the signal related
to the different branching structures of broadleaf and coniferous
trees. Airborne laser scanning data are also available for Luxem-
bourg and their potential to further increase the performance of
the CNN classification could be examined in future studies.

Image Quality and Spatial Resolution
We explored if our trained model could be applied to data from
subsequent years. Our results indicated that we can trust predic-
tions from aerial images for years not included during training.
One problem with respect to image quality was canopy and cast
shadows of trees, which varied from year to year and across the
map (likely due to difference in solar inclination as a result of
varying acquisition times over the years). This is in line with Kat-
tenborn et al. (2019) and Lopatin et al. (2019) who found shadows
to negatively affect machine learning classification accuracy in
UAV images. The difference in cast shadows caused systematic
shifts in the appearance of individual trees over years, as well as
an underestimation of the crown size, due to the edges of the trees
being obscured. Differences between cast shadows in different
years also caused the canopy mortality features to not align
perfectly, which impeded the direct overlay of the different years.
We also found that illumination conditions in general affected
model performance, when no additional data were acquired. In
2020, we observed a large patch of area shadowed by clouds in
the northwest of the country that corresponded with the area of
decreased canopy mortality (Fig. 8C). The shade caused the model

to omit a majority of dead canopy in that area, and hence resulted
in an underestimation and leading to an apparent decrease in
dead canopy for that area in 2020. The problem could potentially
be solved by acquiring additional reference data which adequately
capture the appearance of dead canopy areas in shaded image
acquisitions.

A limiting factor of remote sensing studies looking at individual
trees and tree species is the resolution of images. At a ground
resolution of 20 cm our observations were mostly limited to coarse
forest classes, that is, conifers and broadleaf trees, as structures
like branches are visible but species-specific features were hard to
detect. However, higher resolution images (<10 cm) from drones
have been proven to be suitable to classify dead trees and even
tree species (Safonova et al. 2019, Schiefer et al. 2020). Over the last
years the spatial grain of Luxembourg’s aerial images has become
finer (from 25 to 10 cm). Hence it can be assumed that even higher
spatial resolution annual images will become increasingly avail-
able and are likely to result in even better model predictions to
enable a continuous mapping of canopy mortality and potentially
tree species at individual tree scales.

Recently, Schiefer et al. (2023) presented an approach in which
results of a high-resolution classification were extrapolated to
satellite images. The application of this approach on our results
opens the opportunity to map dead canopies over a far larger
extent than Luxembourg and overcomes the temporal limita-
tions of our data with satellite data that offer more frequent
observations.

Reference Data
Our reference data were derived by manually delineating features
from aerial images. While dead conifers were usually clearly
identifiable for the human eye, it was more difficult to
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identify dead broadleaf trees, as they are heterogeneous in
appearance and the small branch structures often become blurry
at the spatial resolution of the available imagery. In our study,
all delineations were cross-checked by at least one additional
person to improve the accuracy of the reference data. We further
accounted for imperfect and limited training data by choosing a
U-Net architecture, which is known to produce comparably more
robust results with a limited amount of reference data than other
architectures (Silva et al. 2021).

The quality of reference data is a key challenge in machine
and deep learning research [i.e. Geiger et al. 2021). In our study,
a small experiment conducted during the reference data acqui-
sition showed that features mapped by two people diverged in
48% of the mapped area, even though largely the same trees were
delineated (Fig. S3). The large discrepancies between the two data
sets was mostly the result of feature delineation. This discrepancy
is highly relevant for interpreting the reported accuracy measured
which base on these reference data. The effect of reference data
delineation on model performance could be further examined in
future studies.

At the same time, we assume that this effect is unlikely to have
a notable influence on the model’s ability to identify the target
class, in our case dead trees. U-Nets have been shown to be some-
what robust when it comes to inaccurate reference data and in
many cases they were quite successful in correctly mapping areas
with partly wrong or missing reference data (Hamdi et al. 2019,
Kattenborn et al. 2020). We found the same trend in our study. The
U-Net model was able to map dead trees with missing reference
data, even in the training stage (Fig. 3). Additionally, the model
classified fewer pixels on the edge of dead canopies as dead than
was visually determined during labelling. All these differences
result in lower F1-scores of the model reported here. Based on our
visual assessments, the identification and delineation results of
the U-Net model looked slightly better than we would expect from
the reported F1-scores. The ability of the model to predict canopy
mortality in years with no reference data opens up the possibility
to automatically map additional reference data for subsequent
years. These additional data could be quality checked by the
model user and used as additional reference data to constantly
improve the model, similarly to active or semi-supervised learning
methods (Settles 2009, Hady et al. 2013). The continuous annual
classification of dead trees over a whole country might help forest
management to identify areas for logging, for example after bark
beetle outbreaks. It may also help to identify particular vulnerable
areas for forest conversion. Further, the created maps may serve
as inputs to ecological studies examining the drivers of tree
mortality on a fine spatial scale.

The drought summers 2018–2020
Our study was conducted in the context of a severe drought in
Central Europe which occurred in the years 2018 to 2020 (Schuldt
et al. 2020). Our results show a steep increase in standing dead
canopy area following the summer droughts. The true number of
dead trees is likely to be even higher than what we have observed
as many areas were harvested in between acquisition dates of the
imagery. We overlaid an merged canopy mortality areas over the
years in QGIS to assess cumulative canopy mortality, but this is
likely an overestimation, as the aerial images did not fully overlap.
This misalignment was also the reason why we were not able to
calculate dead canopy areas that had been harvested between
years. Nevertheless, our results clearly showed that tree mortality
increased from 2017 to 2020. In future studies, the additional
detection of removed trees could be implemented for example
using a CNN suitable for change-detection.

Having a closer look at our mortality data set, we observed
that coniferous stands were affected disproportionately more
than broadleaf stands. While in 2017 70% of the mapped canopy
mortality area were conifers, in 2019 the percentage of dead
conifers was 83.5%. These percentages stand in strong contrast
to the overall share of broadleaf and coniferous trees which
amount to 71% and 23%, respectively (Korzeniowska 2020). In
2020 the proportion of dead broadleaf trees increased slightly
compared with conifers, making up 20.5% of all canopy mortality.
While apparent canopy mortality of broadleaf trees was sparse
and usually occurred in the form of as single dead individuals,
conifers tended to die in clusters of several trees, which often
encompassed an entire group of conifers standing next-to-each
other. This pattern is also typical for bark beetle (Ips typographus
L.) infestations (Fassnacht et al. 2014), which is the most common
biotic damage agent for Norway spruce in Europe and causes large
dieback events (Schelhaas et al. 2003). The drought conditions
in 2018 and 2019 likely weakened the trees, causing reduced
carbon uptake, leaf loss, and reduced sap production, due to
water deficit (Adams et al. 2017). As a result of the weakened
defence, trees likely became more prone to bark beetle infestation
(Kolb et al. 2019, Netherer et al. 2019, Obladen et al. 2021). Dis-
turbance regimes, such as drought, disease, fire, and windthrow
are typically not stand-alone events, because they increase the
likelihood of other disturbance types to occur. As such they must
be seen as interlinked (Seidl et al. 2017). Consequently, while the
dead conifers detected here have most likely been finally killed
by widespread bark beetle outbreaks, it is not unreasonable to
conclude that the drought conditions in the previous years have
played a key role. Widespread Norway spruce mortality which has
been reported for large parts of Central Europe as a consequence
of the 2018 and 2019 droughts (Senf & Seidl, 2021b] supports our
observations.

Interestingly, mortality of broadleaf trees, while increasing
after 2018, rose even more after 2019. This suggests a lag effect,
which has also been reported in some other studies [i.e. Bigler
et al. 2007). This lag effect may relate to delayed dieback due to
weakening of the trees or may also simply relate to the cumulative
effect of the three subsequent drought years.

Conclusions
Overall, based on our results, we found that the quality of the
aerial imagery tested in this study is suitable to map and mon-
itor canopy mortality of broadleaf and coniferous stands. This
study therefore highlights the potential of already available aerial
images for national forest monitoring. The results can likely be
improved in the future by adding additional reference data to the
model and by exploiting the benefits of additional image quality
improvements.

The data we used in this study are collected annually by the
government of Luxembourg and are openly available. Many states
and regional governments collect similar data sets, but the access
is often restricted to government agencies or behind a paywall.
We advocate for the release of this kind of data for research
purposes, as it has the potential to become a valuable tool for
forest monitoring.
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