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Abstract
Docking is a fundamental problem in computational biology and drug discovery that
seeks to predict a ligand’s binding mode and affinity to a target protein. However,
the large search space size and the complexity of the underlying physical interac-
tions make docking a challenging task. Here, we review a docking method, based on
the ant colony optimization algorithm, that ranks a set of candidate ligands by solv-
ing a minimization problem for each ligand individually. In addition, we propose an
augmented version that takes into account all energy functions collectively, allowing
only one minimization problem to be solved. The results show that our modification
outperforms in accuracy and efficiency.

Keywords Docking problem · Ligand · Receptor · Global optimization · Ant colony
algorithm

1 Introduction

Amajor challenge in computational chemistry and drug discovery is the search for new
molecules that bind with specific receptors in order to activate beneficial biochemical
mechanisms minimising side effects [1–4]. However, the search for new molecules,
commonly referred to as virtual screening, is limited by the huge number of possible
candidates that exist, as well as by a limited knowledge of the receptors of interest.
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Various strategies have been developed over the years. Receptor-ligand docking meth-
ods identify the optimal binding orientation and position between ligand and receptor,
as well as rank the ligands of a database according to their binding affinity [5–7].
However, docking requires complete knowledge of the receptor’s molecular structure.
Alternative methods are based onmolecular similarity, i.e. on the search for molecules
with a molecular shape similar to that of a molecule already known to bind with a
receptor [8–12]. The principle behind this strategy is that the chemical and physical
properties of a ligand-receptor system are contained in the electronic distribution, so
ligands with a similar electronic density cloud shape have approximately the same
probability of binding to a receptor [13–17]. The advantage of this approach is that
complete knowledge of the receptor is not required. Both strategies attempt to solve
an optimization problem, however, in this work, we focus on docking, whose objective
is to minimize an energy function that describes the strength of the binding between
the ligand and the receptor [18].

In docking, finding the global minimum of the energy function is hampered by
the presence of local minima and energy barriers that prevent the exploration of the
function (trapping problem). A second obstacle is the high dimensionality of the
energy functions due to the degrees of freedom of the system, and thus the vast size
of the space in which the solution resides.

In a nutshell, finding the global minimum is a hard computational task that requires
advanced algorithms and techniques to optimize computational resources without
losing accuracy.Ongoing research in this field has proposed a vast spectrumofmethods
and strategies to improve the accuracy and efficiency of docking algorithms. For
instance, the programs GOLD [19] and AutoDock [20] use genetic algorithms, ICM
[21] and QXP [22] use Monte Carlo minimization, PRO_LEADS [23] implements
simulated annealing, evolutionary programming, and tabu search, and FlexX [24] and
DOCK [25] use fragments algorithms.

In this article, we review the stochastic optimization method PLANTS (Protein-
Ligand ANT System) [26] implemented in the software platform VirtualFlow [27, 28]
for virtual screening and ligand preparation, and propose an augmented version of
PLANTS, which we will refer to as PLANTS+. PLANTS is an Ant Colony Optimiza-
tion algorithm [29], i.e. an algorithm inspired by the behavior of ants that search for
short paths between the anthill and food sources, guided by pheromone trails. This
kind of algorithm was first designed for discrete optimization problems that can be
represented by a graph made of nodes and edges. A typical example is the traveling
salesman problem, where the shortest path connecting two network nodes is sought.
The application to continuous functionminimization problems is possible by discretiz-
ing the domain of the function in disjoint subsets that are analogous to the network
nodes in the traveling salesman problem. The artificial ants, however, do not search
for the shortest path between two subsets, but rather search the subset of the domain
that contains the global minimum, and then deposit the pheromone in areas with low
energy values.

Given a set of ligand candidates for a specific receptor, PLANTS is used to deter-
mine the globalminimumof each binding energy function. The ligands are then ranked
according to their energy values when they are in their optimal position and orienta-
tion, and the best ligand for the receptor is the one that takes the lowest energy value.
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Fig. 1 Overview of the workflow of the algorithm PLANTS a and PLANTS+ b

PLANTS+ extends the search for the global minimum from the space of degrees
of freedom to the space of binding energy functions by analyzing all energy func-
tions simultaneously, rather than individually. Indeed, the artificial ants deposit the
pheromone in the regions of the space of degrees of freedomwhere the energy value is
lowest among all energy functions, and the algorithm returns not only the coordinates
of the global minimum but also the energy function that takes the lowest value from
those coordinates. Then, the main difference between PLANTS and PLANTS+ is that
the former solves as many minimization problems as the number of ligands under
consideration, whereas the latter solves a single minimization problem, as illustrated
by the workflows in Fig. 1.

In order to test the new algorithm, we studied sets of artificial potentials where the
ligand and the receptor are assumed to be rigid and only translational and rotational
degrees of freedom are taken into account. This is actually a simplification. Indeed,
both the receptor and the ligand are flexible, and how the electron density clouds inter-
act determines the chemical and physical properties of the system [30, 31]. However,
the scope of this paper is to show how to improve the ligands classification process by
optimizing the use of available information, regardless of how the binding free energy
is calculated.

The article is outlined as follows.We review PLANTS and describe the new version
PLANTS+ in Sect. 2.We present an illustrative example that highlights the differences
between the two methods and present the results of a comparative analysis 3 that show
under which conditions PLANTS+ is more accurate and more efficient than PLANTS.
Section 4 concludes the article with a short summary of our findings as well as an
outlook for future research.

2 Methods

Consider a ligand-receptor system, where the receptor is kept fixed in the Euclidean
space, while the ligand can rotate or translate with respect to the receptor determining
3 rotational degrees of freedom and 3 translational degrees of freedom. Additionally,
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there are nt torsional degrees of freedom due to molecules’ bonds that are not associ-
ated with a ring-chain. The system is therefore characterized by a (6+nt )-dimensional
binding energy surface

E(�1, �2, �3, �n1 , . . . , �nt , r1, r2, r3) : � ⊂ [−π, π ]3+nt × R
3≥0 → R , (1)

where � denotes the space of all possible positions and orientations of the ligand with
respect to the receptor,� denotes the 3 rotational and nt torsional degrees of freedom,
and r denotes the 3 translational degrees of freedom. Note that, in order to shorten
the notation in eq. 1, from this point onwards we denote the energy function with
E(�i , r j ) with i = 1, 2, . . . , 3 + nt and j = 1, 2, 3.

Consider now a set of Nligands ligands, each with an energy function

Eα(�α,i , rα, j ), ∀i = 1, 2, . . . , 3 + nt ; ∀ j = 1, 2, 3 , (2)

where the index α = 1, 2, . . . , Nligands denotes the αth ligand of the set, to solve the
docking problem means finding the energy function Eα that takes the lowest value in
its global minimum.

2.1 PLANTS

In PLANTS, the global minimum of a binding energy function E is determined using
the Ant Colony Optimization algorithm, which was originally developed for dis-
crete problems. Then, for a docking problem, the rotational and torsional degrees
of freedom �i , and the translational degrees of freedom r j need to be discretized
∀i = 1, 2, . . . , 3 + nt and ∀ j = 1, 2, 3. Various discretizations are possible and
affect the efficiency and accuracy of the algorithm. However, when no a priori knowl-
edge of the system is available, it is recommended that each degree of freedom is
discretized into equal intervals. For example, a rotational degree of freedom � with
�(0) = −π and �(N�) = π can be discretized into N� equal disjoint subsets such
that

[−π, π ] =
N�⋃

l=1

[�(l − 1), �(l)] , (3)

while a translational degree of freedom r with r(0) = 0 and r(Nr ) = rmax can be
discretized into Nr disjoint subsets such that

[0, rmax] =
Nr⋃

k=1

[r(k − 1), r(k)] , (4)

where rmax ∈ R≥0 is themaximumdistance between ligand and receptor appropriately
chosen. This gives rise to a discretization of the space� into N = N 3+nt

� ×N 3
r subsets
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A1, A2, . . . , AN ∈ � with

Am =
3+nt∏

i=1

[�i (l − 1), �i (l)] ×
3∏

j=1

[
r j (k − 1), r j (k)

]
, ∀m = 1, 2, . . . , N , (5)

where l = 1, 2, . . . , N� and k = 1, 2, . . . , Nr . The discretization subsets of the space
� of the degrees of freedom are analogs to the network nodes in the traveling salesman
problem, and the artificial ants move from one subset to another one looking for the
subset A∗ ∈ � that contains the coordinates �∗

i , r∗
j , such that the energy function is

minimized:

E(�∗
i , r∗

j ) ≤ E(�i , r j ) ∀�i , r j ∈ � . (6)

Consequently, an artificial ant, solution to the docking problem, is a specific combi-
nation of degrees of freedom that minimizes the energy function. In a nutshell, the
algorithm works by generating certain pheromone vectors τ�i and τr j for each degree
of freedom, which normalized give rise to probability vectors p�i and pr j that are
used by artificial ants to move around the domain of possible solutions.

2.1.1 Pheromone update rule

Initially, all pheromone vector entries are equal to one, then the probability vectors
approximate uniform distributions and the initial Nants solutions �a

i , raj are generated
with equal probability. Here the index a denotes one of Nants possible solutions. These
solutions are then locally minimized:

⎧
⎨

⎩
�a

i = argmin�i

(
E

(
�a

i , raj

))

raj = argminr j

(
E

(
�a

i , raj

)) ,

∀a = 1, 2, . . . , Nants, ∀i = 1, 2, . . . , 3 + nt , ∀ j = 1, 2, 3 . (7)

Localminimization can be achieved bymeans of several algorithms. PLANTSuses the
Nelder-Mead algorithm [32], a simplex algorithm that does not need the calculation of
derivatives, but other choices are available. Afterwards, the best artificial ant, i.e. the
solution with coordinates �∗

i and r∗
j that gives the lowest energy value, is identified

and used to update the vectors τ� and τr . This ensures that the global minimum is
approached step by step by generating new solutions in accordance with the new
probability vectors.

The rule for updating the pheromone vectors τ� and τr is the same as described
in [28]. Given the best solutions �∗ and r∗, the lth and kth entries of the pheromone
vectors respectively associated with the rotational degree of freedom �i and the
translational degree of freedom r j , are updated as

τ�i (l) = (1 − ρ)τ�i (l) + 1�i (l)

τr j (k) = (1 − ρ)τr j (k) + 1r j (k) , (8)
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where the functions 1�i (l) and 1r j (k) are given by

1�i (l) =
{
1 if �∗

i ∈ [�i (l − 3),�i (l + 2)]

0 else
,

1r j (k) =
{
1 if r∗

j ∈ [
r j (k − 2), r j (k + 1)

]

0 else
. (9)

In Eq. 8, ρ is an input parameter between 0 and 1 called evaporation rate. The function
of the evaporation rate is to partially reset the pheromone vector to prevent the algo-
rithm from being trapped in a local minimum. Finally, the corresponding probability
vectors are obtained by normalization:

p�i (l) = τ�i (l)
∑N�i

l=1 τ�i (l)
,

pr j (k) = τr j (k)∑Nr
k=1 τr j (k)

.

(10)

The procedure runs for Nsteps iterative steps by generating new solutions which con-
verge to the globalminimum. The algorithm is finally applied to all of the ligands under
consideration, which are ranked based on their globalminimumenergy value. Depend-
ing on the infrastructure, this can be implemented using a for loop or by parallelizing
the process. The complete algorithm is described in alg. 1.

Algorithm 1 PLANTS algorithm
Require: Nants, ρ, Nsteps, N� , Nr
1: Initialize the pheromone vectors: τ� [N� ], τr [Nr ]
2: Initialize the probability vectors:
3: p� ← normalize(τ� );
4: pr ← normalize(τr )
5: Initialize the vector Energy[Nligands]
6: // The outermost for loop can be parallelized
7: for i = 1 to Nligands do
8: for t = 1 to Nsteps do
9: � ← Generate Nants coordinates � with probability p�

10: r ← Generate Nants coordinates r with probability pr
11: for a = 1 to Nants do
12: �[a] ← local_minimization(�[a], energy ith ligand)
13: r [a] ← local_minimization(r [a], energy ith ligand)
14: end for
15: �∗, r∗ ← get_best_solution(�, r , energy ith ligand)
16: τ�, τr ← update_pheromone(τ�, τr , �

∗, r∗; ρ)
17: p� ← normalize(τ� );
18: pr ← normalize(τr )
19: Energy[i] = calculate_energy(�∗, r∗, ith ligand)

20: end for
21: end for
22: return ligand with the lowest energy in its global minimum.
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2.2 PLANTS+

The PLANTS algorithm searches for the optimal position and orientation of each
candidate ligand by analyzing each energy function individually. The best candidate
is finally determined by evaluating the energy value of each ligand in its global min-
imum. This corresponds to solving Nligands optimization problems, i.e. the number
of ligands considered, where each optimization problem consists of minimizing an
energy function E(�i , r j ) with 6 + nt degrees of freedom.

Alternatively, here we propose to solve a single optimization problem in which the
function to be minimized is constructed as the sum of all energy functions defined in
eq. 2:

E(�, r) =
Nligands∑

α=1

Eα(�α,i , rα, j )

= E1(�1,i , r1, j ) + E2(�2,i , r2, j ) + . . .

+ENligands(�Nligands,i , rNligands, j ) . (11)

This function, which we will refer to as the global energy function, has (6 + nt ) ×
Nligands degrees of freedom, so the new problem consists of minimizing a (6 + nt ) ×
Nligands-dimensional function.

To solve this problem, we propose an augmented version of the original PLANTS
algorithm, which we will refer to as PLANTS+. In practice, PLANTS is modified
as follows. The outermost for-loop, over the candidate ligands, is removed, and the
simplex algorithm is applied to the global energy function defined in Eq. 11. Then,
the pheromone and probability vectors are updated according to the rule defined in
Eq. 8. The crucial difference from the original algorithm is that the solutions (artificial
ants) are minimized with respect to the global energy function. This entails that the
pheromone and probability vectors contain information on all ligands taken together,
and not individually as in the original PLANTS. The algorithm is fully illustrated in
alg. 2, where we denote in line 15 the best solution as �∗

L and r∗
L in Alg. 2 since it is

calculated with respect to all ligands.
The limitation of this approach is the high number of dimensions of the energy

function defined in Eq. 11, which grows with the number of ligands examined. It is
in fact well known that the simplex algorithm loses accuracy with the dimensionality
of the function to be minimized [33]. On the other hand, because the ligands’ energy
functions (Eq. 1) are independent of each other, there is no need to apply the simplex
algorithm to the global energy function (Eq. 11). Instead, it is more convenient to apply
the local minimization algorithm to the individual energy functions either within a for
loop, as in Alg. 2, or by paralleling the calculation.
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Algorithm 2 PLANTS+ algorithm
Require: Nants, ρ, Nsteps, N� , Nr
1: Initialize the pheromone vectors: τ� [N� ], τr [Nr ]
2: Initialize the probability vectors:
3: p� ← normalize(τ� );
4: pr ← normalize(τr )
5: for t = 1 to Nsteps do
6: � ← Generate Nligands × Nants coordinates � with probability p�

7: r ← Generate Nligands × Nants coordinates r with probability pr
8: // The following double for loop can be parallelized
9: for i = 1 to Nligands do
10: for a = 1 to Nants do
11: �[a, i] ← local_minimization(�[a, i], energy ith ligand)
12: r [a, i] ← local_minimization(r [a, i], energy ith ligand)
13: end for
14: end for
15: �∗

L , r∗
L ← get_best_solution(�, r , energy all ligands)

16: τ�, τr ← update_pheromone(τ�, τr , �
∗
L , r∗

L ; ρ)
17: p� ← normalize(τ� );
18: pr ← normalize(τr )
19: end for
20: return ligand with the lowest energy in its global minimum.

3 Results

3.1 Illustrative example

To present the main differences between PLANTS and PLANTS+, we have studied
sets of two-dimensional energy functions with one rotational and one translational
degree of freedom, representing the binding energy functions of five ligands interact-
ing with a receptor. This is a simplification, as realistic models should also include
torsional degrees of freedom describing ligand and receptor flexibility. However, the
purpose of the following numerical tests is to demonstrate the potential of PLANTS+
independently of how the energy functions are defined.

For each ligand, the energy function is written as

E(�, r) = E�(�) + Er (r)

= cos(μ1�) + μ2 cos(�) +
+μ3 sin(μ4π�) + μ5 cos(μ6π�) +
+1

2

(
r − 7

2

)2

+ ε

[(r0
r

)12 − 2
(r0
r

)6] +
+ν1 sin(ν2πr) + ν3 cos(ν4πr) , (12)

whereμ1, μ2, μ3, μ4, μ5, μ6; ε, r0, ν1, ν2, ν3, ν4 are parameters randomly generated
from a uniform distribution (see supplementary information for details). The function
E(�, r) can be decoupled into two components E�(�) and Er (r) which depend on
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Fig. 2 Binding energy functions of the illustrative example: E�(�) component a, Er (r) component b.
The green dots mark the global minima

two degrees of freedom corresponding to a rotational and a translational degree of
freedom. The pairs of five functions E�(�) and Er (r) are illustrated respectively on
the left and the right column of Fig. 2 and are characterized by irregular sequences
of valleys and ridges to make the search for the global minimum more difficult. In
particular, the functions E�(�) of the rotational degree of freedomare periodic and are
realized by superposing sinusoidal functions with low and high frequencies. Similarly,
the translational degree of freedom functions Er (r) are realized by means of the
Lennard–Jones potential, which well describes the interaction between non-bonding
molecules, perturbed by sinusoidal functions to generate local minima. The functions
greatly differ from each other due to the randomness of the parameters and the global
minima, marked by the green dots, are located in different positions. We also mark
that the height of the barriers of the functions E�(�) are considerably higher than the
barriers of the function Er (r): approximately 3 kJmol−1 versus 10 kJmol−1.

PLANTS and PLANTS+were appliedwith the same input parameters: the evapora-
tion rate was ρ = 0.1, the number of solutions, i.e. the artificial ants generated at each
iteration was Nants = 5, and the total number of iteration was Nsteps = 80. The range
[−π, π ] rad of the rotational degree of freedom and the range [0, 10] nm of the trans-
lational degree of freedom were both discretized into 200 equal subsets. In order to
validate the results, we used the brute force algorithm scipy.optimize.brute,
included in the SciPy library [34], to find the exact global minima of all the functions.
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Fig. 3 PLANTS. Time evolution of the coordinates (black lines) for each potential: �-coordinate a, r -
coordinate b; one ligand per row. The blue line marks the evolution of the best solution at each iteration.
The red dots mark the initial solutions, the green dots mark the global minima. c Evolution of the energy
of the best solution for each ligand

3.1.1 PLANTS

We applied PLANTS, in its original form, seeking the global minimum of all five
functions. For each energy function, we generated Nants = 5 artificial ants, i.e. five
solutions � and r uniformly distributed respectively in the range [−π, π ] rad and
[0, 10] nm. The initial solutions are marked with red dots in Fig. 3a, where we also plot
the solutions generated at each generation (black lines) and the coordinates of the best
solutions �∗ and r∗ (blue lines), i.e. the solutions which take the lowest energy value
after being minimized. The green dots denote the global minima. Correspondingly,
Fig. 3b shows the time evolution of the energy E(�∗, r∗) of the best solutions.
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Fig. 4 PLANTS. Time evolution of the probability vectors p�(�; t) a and pr (r; t) b of the second energy
function of the illustrative example. Dark and light blue are associated respectively with a low and high
probability

Analyzing the results, we observe that the algorithm converges slower with rota-
tional than translational degree-of-freedom functions. Indeed, the coordinates �∗
stabilize after approximately 30 iterations, while the coordinates r∗ need approxi-
mately 10–20 iterations. The different behavior is due to how the probability vectors
p�(�) and pr (r), associated with the pheromone vectors, update during the search for
minima. In the beginning, the probability vectors describe a uniform distribution, and
ideally, they converge over time to a delta function, with the peak located in a neigh-
borhood of the global minimum. Thus, solutions generated subsequently have a higher
probability of belonging to a subset that contains the global minimum. However, if the
function under consideration has several local minima that assume almost the same
energy value as the global minimum, then the pheromone will be distributed over a
wider spectrum and new solutions will be generated accordingly. This is what happens
with the energy functions E�(�) under consideration. As an example, we report in
Fig. 4 the time evolution of the probability vectors p�(�; t) (left side) and pr (r; t)
(right side) related to the second energy function, where the index t denotes a specific
iteration step. We observe that for the rotational degree of freedom, the convergence
of the probability vector takes more time despite the average height of the barriers of
E�(�) being greater than Er (r). What makes the determination of the global mini-
mum of E�(�) difficult is the presence of four local minima at� ≈ −2.2,−0.5, 0.7,
and 2.5 rad that take approximately the same energy value. Only after 40 iterations
does the probability associated with the exact global minimum at � ≈ −0.5 rad dom-
inate the rest. In contrast, the global minimum of the function Er (r) is less ambiguous,
and the probability pr (r) converges with less than 10 iterations, identifying the global
minimum in the range r ∈ [2, 4] nm. Taking a closer look, we identify three close
peaks in this interval due to the serrated pattern that characterizes the second function
Er (r), but, after a further 30 iterations, only the peak associated with the exact global
minimum survives.
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Fig. 5 PLANTS+. Evolution of the �-coordinate a and r -coordinate b of the best solution with respect to
all energy functions. The color denotes the energy function which takes the lowest value during a specific
iteration step. c Time evolution of the energy of the best solution

In this example, after about 40 iterations, the global minimum for each function
is identified and the functions can be ranked according to their energy value shown
in Fig. 3b. Thus, we conclude that the second ligand, represented by a red line in the
figure, is the most suitable for the receptor in consideration.

3.1.2 PLANTS+

We applied PLANTS+ to the same five functions E(�, r) examined in the previous
section. However, unlike PLANTS, we did not use PLANTS+ for finding the global
minimum of each energy function individually, but for the global minimum of the
global energy function defined in Eq. 11. For this, we defined only one probability
vector p�(�) for the rotational degree of freedom, and one probability vector pr (r) for
the translational degree of freedom, which were updated at each iteration accordingly
to the best solution (�∗

L , r∗
L )with respect to the orientation, the position, and the energy

function. The probability vectors were used to generate 5 solutions (�, r) over the
range [−π, π ] rad and [0, 10] nm, that converge to the global minimum.

In Fig. 5a, we show the time evolution of the coordinate �∗
L of the best solution on

the left side, and of the coordinate r∗
L on the right side. During each iteration, the lines

change color to emphasize which energy function assumes the lowest energy value.
In this example, initially, the lines are colored blue since the first ligand takes the least
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Fig. 6 Global minima of each energy function composing the benchmark dataset: �-coordinate a, r -
coordinate b

value, then the color becomes red between steps 2 and 7, then it turns blue again. After
the 25th iteration step, the color remains red, as the second energy function takes the
lowest value.

Fig. 5b shows the time evolution of the energy. Precisely, this graph shows the
energy value taken by the best solution (�∗

L , r∗
L ), at a given iteration step, using the

energy function that returns the lowest value. In accordance with the graph depicting
the evolution of the solution, the best energy function is used to color the line. At
first, the algorithm identifies the first ligand as optimal for the receptor, but at the end
of the execution, the algorithm returns the second ligand, in accordance with results
obtained by PLANTS.

We also observe that between steps 0 and 25, the competition between energy
functions involves ligands 2, 4, and 5. Similarly, we observed the same competition
with PLANTS in Fig. 3. This is due to the fact that the global minima of each of these
ligands assume approximately the same value, as shown in Fig. 2.

3.2 Comparative analysis

With the next numerical experiment, we investigate how PLANTS and PLANTS+
depend on the input parameters, and we seek under which settings PLANTS+ is more
accurate and more efficient than PLANTS. For this purpose, we randomly generated
a set of 100 energy functions E(�, r) using Eq. 12 and we searched for the energy
function which takes the least energy value at its global minimum. The choice of the
energy functions was made in order to make difficult the optimization problem, not
only generating random sequences of local minima and barriers but distributing the
global minima over a large range, as illustrated in Fig. 6. We studied 64 different sets
of parameters defined by the combination of the following input parameters:

Nants = 1, 5, 10, 15 ,

ρ = 0.1, 0.2, 0.3, 0.4 ,

Nsteps = 20, 30, 40, 50.
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A total of 20 runs of each algorithmwere performed on each set of parameters in order
to produce meaningful statistical results. For each set of parameters we measured and
compared the execution time and the success rate. The execution time is the real-time
in seconds, averaged over all 20 repetitions, required to complete the instructions
described in Algs. 1 and 2. To evaluate the success rate, we first applied the brute force
algorithm scipy.optimize.brute to each energy function to find the exact
global minima. Then we defined a prediction, realized by PLANTS or PLANTS+, as
“successful” if the relative error was smaller than 5%, and the success rate of a specific
set of parameters as the percentage of successful predictions over all 20 repetitions.

3.2.1 PLANTS

Figure 7a reports the results for the algorithm PLANTS. The leftmost panel shows 64
points representing the execution time (horizontal axis) versus the success rate (vertical
axis) of each set of parameters. The points have been colored according to the number
of generated solutions Nants, thus we identify four clusters: using Nants = 1, PLANTS
never converges, with Nants = 5 the success rate varies between 40% and 80%, with
Nants = 10 the success rate is between 80% and 90%, and with Nants = 20 is between
85% and 95%. Correspondingly the execution time increases from approximately
10s to 150s. This result is explained by the fact that more solutions require more
calculations, especially during the execution of the simplex algorithm. However, a
large number of solutions also facilitates the exploration of the domain and the search
for the global minimum.

Likewise, we could color the points to highlight the dependence on the parameters
ρ and Nsteps, but for these two parameters, the figures would be unreadable. Thus, we
decided to consider only the set of 16 algorithm executions realized with Nants = 5
solutions, and we plot in the middle and rightmost panel respectively the dependence
on the evaporation rate ρ and on the iteration steps Nsteps. We observe that ρ = 0.4
(green) and ρ = 0.3 (red) have no impact on execution time, while the success rate is
approximately 60% and 70%. This suggests that small evaporation rate values favor
accuracy. Intuitively, the reason for this is that if the evaporation rate is too high, the
pheromone and probability vectors are reset too quickly, and the information acquired
during the first few iterations is lost. By further decreasing the evaporation rate to
ρ = 0.2, the success rate is improved to 80% only if Nsteps = 30, 40, 50. With
ρ = 0.1, the dependence on Nsteps is further emphasized, and the success rate reaches
85% only if Nsteps is equal to 50. Thus, low evaporation rate values require longer
algorithm runs to get out of any local minima in which the system could be trapped.
Analyzing the rightmost panel, we deduce that the number of iteration steps mainly
impacts the execution time and the difference in success rate is due to the parameter
ρ.

In essence, we conclude the following:

• Increasing the number of solutions improves accuracy, but the required execution
time exponentially increases.

• Small evaporation rates improve the accuracy, but only if the number of iteration
steps is large enough.
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Fig. 7 aSuccess rate (vertical axis) and execution time (horizontal axis) of PLANTS;bSuccess rate (vertical
axis) and execution time (horizontal axis) of PLANTS+; c Difference in execution time and success rate
between PLANTS+ and PLANTS. The points falling within the rectangle with dashed edges indicate that
PLANTS+ is more accurate and more efficient than PLANTS using the same input parameters. The legend
box of figure a applies also to figures b and c

• The number of iteration steps affects the execution time, but it improves the
accuracy only in combination with a small evaporation rate.

3.2.2 PLANTS+

Wecarried out the same analysis with PLANTS+,whose results are reported in Fig. 7b.
The color of the points in the graphs highlights how success rate and execution time
depend on the parameter Nants (left panel), ρ (middle panel), and Nsteps (right panel).
As for PLANTS, we fixed the number of solutions Nants = 5 to better illustrate the
dependence on ρ and Nsteps.
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With regard to the number of generated solutions Nants, we observe the same behav-
ior as PLANTS: accuracy increases with Nants, but at the expense of an exponentially
increased execution time. Despite the difficulty of reading the second panel, we can
still discern a cluster associated with ρ = 0.3 (red) above ρ = 0.4 (green). Thus,
reducing the evaporation rate increases accuracy, but execution time depends on the
other parameters. Lastly, the number of iterations Nsteps affects execution time pri-
marily. Then, we conclude that PLANTS and PLANTS+ are dependent on the input
parameters in the same manner.

In Fig. 7c, we compare the success rate and execution time of the two algorithms, in
order to determine which algorithm is more efficient and accurate. The graph reports
the difference

(success rate of PLANTS+) − (success rate of PLANTS) ,

on the vertical axis, and

(execution time of PLANTS+) − (execution time of PLANTS) ,

on the horizontal axis. Hence, a positive value on the vertical axis and a negative value
on the horizontal axis indicate that PLANTS+ is respectively more accurate and more
efficient than PLANTS using the same parameters Nants, ρ and Nsteps. In all cases,
PLANTS+ executions were more efficient than PLANTS: the gain varies from 5s
with Nants = 5 (black dots) to 20s Nants = 15 (green dots). Accuracy worsened in 16
cases, those below the dashed line, but improved in all the other 48 cases. In particular,
we observe that in 5 cases with Nants = 1, in 12 cases with Nants = 5, in 15 cases
with Nants = 10, and in all cases with Nants = 15, the success rate improves. Then,
PLANTS+ benefits from increasing the number of solutions Nants both in accuracy
and efficiency. The rightmost panel reveals another important result. With the same
settings, PLANTS+ is more efficient when the number of iteration steps is increased,
and the gain in efficiency is proportional to Nsteps. In other words, with PLANTS+ the
Nsteps parameter has less impact on execution time than with PLANTS.

4 Conclusion and outlook

In this article, we reviewed the optimization method PLANTS and proposed an aug-
mented version, referred to as PLANTS+ in the text, for finding the optimal orientation
and position of a ligand at the receptor’s binding site. The main difference between the
two methods is that PLANTS examines the binding energy functions of ligands indi-
vidually and determines the best ligand for a given receptor by comparing the energy
that each ligand takes at its optimal pose, while PLANTS+ solves a single optimiza-
tion problem and searches for the optimal position and orientation by comparing the
energy functions of the ligands at each iteration step. This modification permits better
use of computational resources because the probability vector used to generate new
possible solutions in PLANTS+ embeds more information than PLANTS. In fact, the
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probability vector is not updated by taking into account only the degrees of freedom
of a single ligand, but of a set of ligands under investigation.

We studied how the input parameters affect the results and our analysis shows
that PLANTS+ is always more efficient than PLANTS. The accuracy also improves
in most of the cases, in particular when the number of solutions generated for each
ligand-receptor system, i.e., the input parameter Nants, is sufficiently high.

However, we emphasize that in our numerical experiments we have considered the
ligand and the receptor as static systems. This approximation is not justified from a
chemical point of view, but the primary objective of this work is to show how the
Ant Colony Optimisation algorithm can improve its performance with a different
use of the available information. In further development of the algorithm, we will
take into account also the flexibility of the ligand and receptor and how the electron
density clouds interact. Additionally, we plan to take into account the inclusion of
kinetic observables, e.g., transition rates, as a criterion for classifying ligands. This
will provide a more accurate screening of ligands [35] and will make it possible to
study the dependence of docking on external variables [36], e.g. the acidity of the
cell membrane, a variable that is considered crucial in the development of undesirable
effects [37, 38]. In this work, we have addressed the docking problem. However, as
mentioned in the introduction, another important strategy in drug design is based on
molecular similarity, i.e., the search for molecules with similar molecular structure. As
this is also an optimisation problem that can be solved by heuristic algorithms, a further
line of development of PLANTS+ is its application to virtual screening methods based
on molecular similarity.
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