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Abstract

Many geoscientific measurements exhibit significant variability induced by ocean tides
that can, if uncorrected, degrade the quality of observations. Thus, tidal variability is
usually reduced on the observation level with the help of background models.
The barotropic ocean tide model TiME has been refined to improve this correction process.
Major upgrades include updating the bathymetric data, improving the energy dissipation
mechanisms, and including the effect of self-attraction of the ocean water and its loading
on the solid Earth. These refinements allowed reducing the open ocean root-mean-square
deviation from geodetic data by over 70% for the main lunar M2 tide, corresponding
to an accuracy on the 80%-level with respect to the mean signal. The model operates
independently of empirical satellite altimetry data, so this high relative accuracy also
extends to partial tides with minor amplitude, where altimetry-constrained models are
less accurate. TiME’s forcing module was augmented by degree-3 spherical harmonic
functions and barometric and wind stress acceleration induced by the atmosphere, which
enabled the simulation of additional tidal subgroups at the same accuracy level. For
degree-3 tides, it could be shown that their gravimetric fingerprints on the level of only
100pm

s2 can be identified in superconducting gravimeters and agree with the modelling
results. This level is close to the threshold of gravimetric detectability and emphasizes
TiME’s accuracy for the smallest tidal signals.
As a result of these simulations, the TiME22 ocean tide atlas, which comprises 57 partial
ocean tides, has been compiled and is provided in Stokes coefficients for terrestrial and
satellite gravimetric applications. Many minor ocean tides from this collection are not
included in data-constrained ocean tide atlases. Therefore, they are usually only linearly
estimated or completely neglected for gravimetric applications. It is shown for several
cases that TiME22 minor tide solutions can improve the accuracy of the tidal correction
for geodetic techniques, including satellite and terrestrial gravimetry. More precisely,
the model validation conducted within this thesis recommends the utilization of hybrid
tidal atlases comprised of altimetry data-constrained ocean tide models for large-signal
tides and unconstrained solutions, such as TiME22, for minor tides. The results confirm
that purely hydrodynamic ocean tide models can reliably predict tidal variability in cases
where empirical data is so sparse or of such low precision that tidal solutions cannot be
adequately constrained.
This line of argumentation extends to paleo-ocean tides, where direct observations are
impossible, and information can only be extracted by archeological or geological sea-level
markers. Within this thesis, TiME is employed to predict paleo tide levels, which indicate
the possible height deviation of sea-level markers from the mean sea level at that time.
Tidal levels are simulated with dense temporal sampling since the Last Glacial Maximum.
The predicted levels (e.g., the mean high water) compare well to available observations
and other paleo tidal simulations and represent the first data set with truly-global coverage
that allows for interpretation of paleo sea level data.
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Kurzfassung

Viele geowissenschaftliche Messungen weisen erhebliche gezeitenbedingte Schwankungen
auf, die, wenn sie nicht korrigiert werden, die Qualität der Beobachtungen beeinträchtigen
können. Daher wird die Gezeitenvariabilität in der Regel auf der Beobachtungsebene mit
Hilfe von Hintergrundmodellen korrigiert.
Das barotrope Gezeitenmodell TiME wurde weiterentwickelt, um diesen Korrekturprozess
zu verbessern. Die wichtigsten Verbesserungen beinhalten verfeinerte Energiedissipations-
mechanismen, die Aktualisierung der Bathymetrie und die Einbeziehung des Effekts der
Selbstanziehung des Ozeans und dessen Auflast auf die feste Erde. Durch diese Neue-
rungen war es möglich, die mittlere quadratische Abweichung der gezeiteninduzierten
Meeresspiegelanomalie im offenen Ozean von geodätischen Daten um über 70% für die
wichtigste Mondgezeit M2 zu verringern. Dies entspricht einer Genauigkeit von 80% in
Bezug auf das mittlere Gezeitensignal. Das Modell arbeitet unabhängig von empirischen
Satellitenaltimetriedaten, so dass sich diese hohe relative Genauigkeit auch auf partielle
Gezeiten mit geringerer Amplitude erstreckt. Das Antriebsmodul von TiME wurde durch
Grad-3 Kugelflächenfunktionen und atmosphärisch induzierte Beschleunigungen ergänzt.
Dadurch ist die Simulation von zusätzlichen Partialtiden mit konstanter relativer Ge-
nauigkeit möglich. Für Grad-3 Gezeiten konnte gezeigt werden, dass ihre gravimetrischen
Signaturen mit einer Amplitude von nur 100pm

s2 in supraleitenden Gravimetern identifiziert
werden können und mit den Modellierungsergebnissen übereinstimmen. Dieses Signallevel
liegt nahe an der Schwelle der gravimetrischen Nachweisbarkeit und stellt die Genauigkeit
von TiME für die kleinsten Gezeitensignale heraus.
Als Ergebnis dieser Simulationen wurde der TiME22 Gezeitenatlas erstellt, der 57 Par-
tialtiden enthält. Dieser Atlas enthält viele kleinere Ozeangezeiten, die in datengestütz-
ten Ozeangezeitenatlanten nicht enthalten sind. Es wird für mehrere Fälle gezeigt, dass
TiME22-Lösungen für kleinere Gezeiten die Gezeitenkorrektur geodätischer Prozesse, ein-
schließlich Satelliten- und terrestrischer Gravimetrie, verbessern können. Insgesamt bestä-
tigen die Ergebnisse, dass rein hydrodynamische Gezeitenmodelle die Gezeitenvariabilität
in Fällen zuverlässig vorhersagen können, in denen Beobachtungen so rar oder von so
geringer Genauigkeit sind, dass keine präzise empirische Vorhersage möglich ist.
Diese Argumentation erstreckt sich auch auf die Gezeiten im Paläo-Ozean, wo direkte
Beobachtungen unmöglich sind und Informationen nur durch archäologische oder geolo-
gische Meeresspiegelmarker gewonnen werden können. TiME wird im Rahmen dieser Ar-
beit zur Vorhersage von Paläo-Gezeitenpegeln eingesetzt, die die Höhenabweichung von
Meeresspiegelmarkern vom damaligen mittleren Meeresspiegel angeben. Die Gezeitenpe-
gel wurden in engem zeitlichen Raster seit dem letzten glazialen Maximum simuliert.
Die Ergebnisse stimmen gut mit den verfügbaren Beobachtungen und anderen Paläo-
Gezeitensimulationen überein und liefern den ersten derartigen Datensatz mit globaler
Abdeckung. Dieser ermöglicht die Interpretation von Meeresspiegelmarkern und kann für
Paläo-Meeresspiegelstudien verwendet werden.
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Résumé

De nombreuses mesures géoscientifiques révèlent une variabilité significative induite par
les marées océaniques qui, si elle n’est pas corrigée, peut dégrader la qualité des observa-
tions. Ainsi, la variabilité des marées est généralement corrigée au niveau de l’observation
à l’aide de modèles numériques.
Le modèle de marée océanique barotrope TiME a été affiné pour améliorer ce proces-
sus de correction. Les principales améliorations portent sur les mécanismes de dissipation
de l’énergie, la mise à jour des données bathymétriques et la prise en compte de l’effet
d’auto-attraction de l’eau de mer et de sa chargement sur la Terre solide. Ces amélio-
rations ont permis de réduire l’écart quadratique moyen en haute mer par rapport aux
données géodésiques de plus de 70% pour la marée lunaire principale, ce qui correspond à
une précision de 80% par rapport au signal moyen. Le modèle fonctionne indépendamment
des données altimétriques empiriques des satellites, de sorte que cette grande précision
relative s’étend également aux marées partielles de faible amplitude. Le module de forçage
de TiME a été complété par des fonctions harmoniques sphériques de degré 3 et des accé-
lérations barométriques et éoliennes induites par l’atmosphère, ce qui a permis de simuler
des sous-groupes de marées supplémentaires au même niveau de précision. Pour les marées
de degré 3, on a pu montrer que leurs empreintes gravimétriques à 100pm

s2 près peuvent
être identifiées dans des gravimètres supraconducteurs et qu’elles sont en accord avec les
résultats de la modélisation. Ce résultat est proche du seuil de détectabilité gravimétrique
et favorise la précision de TiME pour les signaux de marée les plus faibles.
Ces simulations ont permis de compiler l’atlas des marées océaniques TiME22, qui com-
prend 57 marées océaniques partielles. Nous montrons pour plusieurs cas que les solutions
de marée mineure de TiME22 peuvent améliorer la précision des processus géodésiques,
y compris la gravimétrie satellitaire et terrestre. Les résultats confirment que les modèles
purement hydrodynamiques de marée océanique peuvent prédire de manière fiable la va-
riabilité de la marée dans les cas où les données empiriques sont si rares ou si peu précises
que les solutions de marée ne peuvent pas être contraintes de manière adéquate.
Cette argumentation s’applique également aux paléo-marées océaniques, où les obser-
vations directes sont impossibles et où l’information ne peut être extraite que par des
marqueurs archéologiques ou géologiques du niveau de la mer. Dans le cadre de cette
thèse TiME est utilisé pour prédire les niveaux de marée paléo, qui indiquent l’écart de
hauteur possible des marqueurs du niveau de la mer par rapport au niveau moyen de
la mer de cette époque. Les niveaux de marée sont simulés en continu depuis le Dernier
Maximum Glaciaire. Les résultats correspondent bien aux observations disponibles et à
d’autres études et fournissent le premier ensemble de données avec une couverture véri-
tablement mondiale. Celui-ci permet d’interpréter les marqueurs du niveau de la mer et
peut être utilisé pour des études paléo du niveau de la mer.
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1
Introduction

How are tides distinguished from other planetary phenomena? The words that are used
to describe the phenomenon in different languages hint at its fundamental characterist-
ics. For example, tide and the German equivalent Gezeit originate from the word time
(German: Zeit) and point to the strictly periodic nature of tidal phenomena (Cartwright,
1999). On the other hand, the French counterpart marrée (Italian and Spanish: marea)
stems from mer, meaning sea, and reflects that tides were first observed in the ocean.
However, the modern definition of tidal phenomena is not restricted to oceans. Still, it
signifies small, periodic disturbances over the entire Earth system (i.e., the geosphere1,
hydrosphere, magnetosphere, and atmosphere) excited by forces originating from celes-
tial bodies, especially Sun and Moon2 (Simon, 2007). Therefore, tidal periodicities are
determined by the ephemeris3 of the solar system, which is the primary characteristic
distinguishing them from non-tidal phenomena (e.g., the general circulation of ocean and
atmosphere).
The observation of tides in the oceans is straightforward as their effects, e.g., the changing
water level, are evident to the naked eye of a coastal observer. Also, they are relatively
easy to quantify through tide gauge measurements, which in their basic form can be real-
ized by a vertical leveling staff attached to the sea floor. Moreover, a basic understanding
of local ocean tidal regimes was of core importance for coastal communities, as the ap-
parent diurnal or semidiurnal frequency of ocean tides imposes a natural rhythm onto
everyday coastal life. This necessity explains the early formation of the first ideas about
ocean tides in prehistoric civilizations and the close etymological relation to the word for
the sea in many languages. Since then, tidal research has sustained its significance in
science but repeatedly shifted its foci (e.g., Cartwright, 1999).

1Within this thesis, the term is used to describe the entity of the solid Earth - from the Earth’s surface
to the Core.

2This definition allows for the inclusion of periodically exerted solar radiation as the origin of tides.
3The word ephemeris (pl. ephemerides; from Latin: diary) describes the knowledge of the trajectory

of natural astronomical bodies or artificial satellites in the sky over time.
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2 Introduction

1.1 Tides of the Earth System
Observation of tidal movements in the atmosphere and solid Earth, but also in the deep
ocean, is more complicated than for the rise and fall of ocean waters at the coast due
to the absence of horizontal discontinuities of the observed media. More advanced in-
strumentation was needed to detect these phenomena. For example, the detection of
tidal periodicity in the air pressure in the 18th century benefited from the invention of
the mercury barometer roughly 100 years earlier (e.g., Cartwright, 1997). Analogously,
detecting tidal signatures in the Earth’s magnetic field, primarily induced by ionospheric
currents due to the atmospheric tides but also induced by the flow of conducting ocean
water through the ambient magnetic field, required precise magnetic field measurements
(e.g., Gauss, 1877; Schuster, 1908; Longuet-Higgins, 1949).
Furthermore, the tides of the solid Earth (further called Earth tides) were even harder
to observe. Hence, scientists anticipated their existence before they could be established
empirically. The high interest in Earth tides hints at two aspects of tides in general.
First, the observation of tidal oscillations can be used to study large-scale Earth system
properties that are otherwise hard or impossible to assess (in this case, the solid Earth’s
rigidity). Second, various tidal phenomena in the Earth’s subsystems are generally not
independent. Especially Earth and ocean tides are intimately interlaced. Thus, the first
investigation of the Earth tides and the Earth’s rigidity was based on the observations of
long-period (fortnightly and longer) ocean tides (Darwin, 1907), as the back-action of the
solid Earth reduces their amplitude by about 30%. Later, Earth tides could be detected
with more direct approaches, e.g., by measuring their induced tilt and strain, horizontal
and vertical displacements, and gravity variations (e.g., Melchior, 1981; Zürn, 1997a).
This thesis deals with the tides of the world ocean. Nevertheless, the latter example of
solid Earth tides impacting ocean tidal dynamics implies that tidal models must consider
interactions between different terrestrial subsystems to arrive at a sound understanding
of the involved phenomena. Another example of coupled tidal processes is the excitation
of Earth and ocean tides due to atmospheric pressure loading, thus entangling tides in
the atmosphere, hydrosphere, and geosphere. On the other hand, ocean tidal dynamics
(OTD) also impacts the atmosphere (e.g., Renault and Marchesiello, 2022) and, most
notably, the solid Earth, forming a strong feedback loop to OTD itself (Henderschott,
1972; Ray, 1998a).
Subsequently, signatures of ocean tides are not limited to the world oceans. Ocean tides
induce periodic variations in atmospheric pressure, displace the Earth’s crust vertically
and horizontally, and alter the gravity field. Due to the all-encompassing presence of ocean
tide signatures over the Earth system, many geodetic observing systems are impacted by
OTD, which, in many cases, explains large parts of the observed signal variability.

1.2 Ocean Tide Signatures in Geodetic Measurements
Ocean tides induce periodic sea surface height (SSH) disturbances, denoted ζ, accom-

panied by ocean currents, characterized by their velocity, denoted v, and their associated
transport, i.e., depth-integrated velocity, V. These variables will be labeled as primary
observables in the following, as they are the dynamic core variables of the prognostic
partial differential equations (PDEs) that govern OTD. Within this thesis, they are dis-
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Figure 1.1: Definition of the prognostic ocean state variables of the tidal equations, ζ and v
(blue), the geoid (red, dashed) and the surface loading displaced mean sea level (red, solid),
the undisturbed topography, denoted H (black, dashed), and the ocean loading displaced
topography (black, solid). Within, ζb signifies vertical ocean loading displacement of the
Earth’s crust. Additionally, several instrumentation techniques sensitive to ocean tidal
signatures are illustrated, with the sensitive quantity noted in magenta (cf. Table 1.1).
All listed abbreviations and symbols are introduced within this chapter.

tinguished from secondary observables derived from primary observables via diagnostic
equations (cf. Table 1.1). Consider Figures 1.1 and 1.2 for the following discussion, illus-
trating geodetic techniques sensitive to OTD-derived observables.
Two instrumentation techniques are commonly used to investigate the primary observ-
ables. First, moored current meters can measure ocean tidal currents (e.g., Luyten and
Stommel, 1991). They usually sample the ocean current at different depths and allow
investigation of the vertical profile of the current (e.g., Gould and McKee, 1973). On
the other hand, observations of the sea surface height by tide gauge (TG) measurements
are much less costly and, therefore, routinely performed in most harbors, spanning a
dense observation network over the globe, which is a powerful tool to investigate OTD
(e.g., TICON-3, Hart-Davis et al., 2022). A weakness of this type of observation is its
restricted coverage of the ocean surface to inshore areas. They concentrate on the contin-
ental coasts, with only a few stations in the open ocean at small islands (cf. Figure 1.2).
Naturally, tidal researchers were interested in closing the data gap in the open ocean.
As the measurement of tidal sea surface elevations in the deep ocean required a more
advanced measurement technique, it took until the 1960s to obtain reliable estimates by
ocean bottom pressure (OBP) recorders (e.g., Filloux, 1970; Ray, 2013). OBP records are
invaluable in broadening the empirical data basis for tidal research. On the other hand,
OBP recorders are also sensitive to atmospheric pressure variations (i.e., atmospheric
tides), which complicates evaluation for some tidal frequencies. Moreover, OBP recorders
are expensive and only sparsely deployed in the open ocean.
Another extraordinarily successful approach in detecting open ocean tides is the operation
of satellite altimeters. Especially the altimetry missions Topex/Poseidon (T/P) and their
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Figure 1.2: Terrestrial geodetic observation systems sensitive to ocean tide-induced sig-
nals, including TG stations, OBP recorders (Ray, 2013), GNSS and VLBI stations used
as ITRF2020 geodetic markers, as well as terrestrial gravimeters from IGETS (and more
locations, see full text). The Earth surface coverage by the satellite missions SWARM,
GRACE(-FO), and the altimetry mission T/P and its successors is also indicated

successors (e.g., Fu et al., 1994; Schrama and Ray, 1994; Fu and Cazenave, 2000) led to
a revolution in ocean tidal research by providing a robust and spatially continuous data
basis for open ocean tidal dynamics. With some years of satellite altimetry data available,
it was possible to produce data-constrained tidal atlases (e.g., Andersen, 1995; Ray, 1999)
that nowadays are accurate to the centimeter level in the open ocean and somewhat less
accurate in coastal areas (cf. Stammer et al., 2014 for an overview).
Precisely speaking, satellite altimetry does not directly observe the sea surface anomaly
ζ but the geocentric tide, i.e., the combination of ζ + ζb, where ζb is the deformation
of the solid Earth in the vertical direction by the ocean load4. This process is known
as ocean tidal loading and can be observed with space geodetic techniques, for example,
VLBI (Very-Long-Baseline Interferometry, e.g., Schuh and Moehlmann, 1989; Scherneck,
1991), or GNSS5 (Global Navigation Satellite System, e.g., Bos et al., 2015). As sea
surface loads represent large-scale mass anomalies, ocean tides also produce a fingerprint
in the Earth’s gravity field, g, that is detectable by terrestrial gravimetry (vertical sur-
face gravity g⊥, e.g., Boy et al., 2003, 2004, 2006, cf. IGETS database Boy et al., 2020)
and satellite gravimetry, most notably the Gravity Recovery and Climate Experiment
(GRACE) and GRACE Follow-on (GRACE-FO) (e.g., Wiese et al., 2016; Tapley et al.,
2019). The global distribution of the described techniques is visualized in Figure 1.2 and
achieves a near-global coverage, emphasizing the ubiquitous presence of OTD-induced
signals.
Variables related to ocean tidal loading are secondary observables in the sense that they
are derived from the interaction of primary variables (here ζ) with other subsystems of the

4There is also a horizontal deformation component ζh with impact on geodetic measurements.
5The GNSS station locations shown in Figure 1.2 were obtained from https://itrf.ign.fr/en/

solutions/itrf2020, while the gravimeter coordinates originate from http://loading.u-strasbg.
fr/surface_gravity.php.

https://itrf.ign.fr/en/solutions/itrf2020
https://itrf.ign.fr/en/solutions/itrf2020
http://loading.u-strasbg.fr/surface_gravity.php
http://loading.u-strasbg.fr/surface_gravity.php
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(a) (b)

Figure 1.3: Mean amplitude (a) and standard deviation (b) for the main lunar tide (M2)
for an ensemble of 5 satellite altimetry data-constrained models (Abrykosov et al., 2021).
The logarithmic scale highlights the polar-dominated uncertainty structure. The scale of
both plots is in cm.

Earth via diagnostic equations. In the same way, ocean tide-induced magnetic fields, de-
noted B, are secondary variables. They can be measured with terrestrial magnetometers
or satellite missions such as CHAMP (e.g., Tyler et al., 2003) or SWARM (e.g., Friis-
Christensen et al., 2006) and originate from the interaction of tidal currents with the
magnetosphere.

As a last example, it is remarked that ocean tides also have a notable impact on
the Earth’s rotation by periodically modifiying its momentum budget and inertia tensor
(e.g., Weis, 2006). Therefore, secondary tidal signatures are also present in the Earth’s
angular velocity Ωe and the length of day (LOD). One way to observe them is with space
geodetic techniques. Further, refined gravity and optical clock measurements (e.g., by ap-
proaches based on quantum technology, cf. Puetzfeld and Lämmerzahl, 2019) might enable
the observation of gravity field components described by relativistic geodesy, e.g., the
gravitomagnetic field, which contains signatures of the Earth rotation (Hackmann and
Lämmerzahl, 2014).

1.3 Relevance of Primary and Secondary Observables
Observation systems that directly measure primary observables (e.g., TG stations, OBP
recorders, and satellite altimetry) are usually employed to extract localized, empirical
estimates of OTD. These empirical estimates are then used to validate ocean tide models
(e.g., Ray, 2013) or serve as observational constraints resulting in data-constrained ocean
tide atlases (e.g., Lyard et al., 2021; Hart-Davis et al., 2021b; Egbert and Erofeeva, 2002).
Using empirical data constraints is an important distinction for classifying ocean tidal
models. One distinguishes between unconstrained (exclusively based on the laws of tidal
hydrodynamics) models and data-constrained models that employ observations for correc-
tion or via data assimilation. As mentioned, modern data-constrained ocean tide models
achieve excellent accuracy (Stammer et al., 2014).
At the same time, a typical disadvantage of satellite altimetry data-constrained mod-
els is their reliance on data quality and availability. While data availability is typic-
ally very good at latitudes smaller than 66◦ corresponding to the orbit inclination of
Topex/Poseidon, polar areas can be less consistently observed. Therefore, the uncer-
tainty for those models is highest in polar regions, where yet large ocean tide amplitudes
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Table 1.1: Primary (prognostic) and secondary (diagnostic) observables of OTD that are
considered or mentioned within this thesis. Additionally, possible observation systems
and several sensitive quantities for diagnostic observables are listed.

Primary observables
Quantity Symbol Observation by

SSH anomaly ζ TG, OBP, altimetry, ...
Tidal flow velocity v Moored current meter, ...
Tidal transport V=

∫H
0 vdh Barotropic: V= Hv

Secondary observables Derived from

Gravity field g⊥, g ζ, SE-structure, ... Terr. & sat. gravimetry
Surface displacement ζb, ζh ζ, SE-structure, ... GNSS, VLBI, SLR, ...
Tidal mean dissipation W ζ, v, ephemeris, ... LLR, SLR, hist. eclipses, ...
Ocean tide levels MHW, ... ζ TG, altimetry, SLIPs, ...
Magnetic field B V, OC-salinity, ... Terr. & sat. magnetometers
Earth Rotation Ωe, ... ζ, SE-inertia, ... VLBI, rel. gravimetry, ...
SE=solid Earth, OC=ocean

are present (cf. Figure 1.3).
On the other hand, the observation of secondary observables (e.g., GNSS stations, gra-
vimetric, or magnetic observations) offers two options if their spatiotemporal resolution
is sufficiently high. Either the measurement can be inverted to yield primary observables
(e.g., Boy et al., 2003), or prior knowledge of presumed primary variables can be used
to study properties of the Earth system (e.g., Darwin, 1908; Petereit et al., 2019; Huang
et al., 2022; Arnoso et al., 2023).
However, the spatiotemporal coverage of many observation systems is insufficient to ex-

tract tidal signals coherently. Depending on the noise level (Munk and Hasselmann, 1964)
and the observation systematic, tidal oscillations are often unidentifiable and alias into
the observed signal. A famous example is the spatiotemporal aliasing of ocean tidal sig-
nals into GRACE-(FO) solutions, which are known to significantly limit the observation
resolution and quality (Flechtner et al., 2016; Ray et al., 2003; Han et al., 2004). Thus,
modelers usually subtract independently modeled ocean tide signals on the observation
equation level. This correction step is essential and requires the availability of accurate
global ocean tide models that can predict the secondary tidal observables at a sufficiently
high accuracy.
Figures 1.2 and 1.3 illustrate the weak point that arises from relying solely on modern
satellite data-constrained models. On the one hand, terrestrial geodetic observations are
performed over the entire globe and require precise knowledge of global OTD. Contrari-
wise, altimetry data is not available with a constant high accuracy everywhere and for
the whole tidal spectrum. Limited by the signal-to-noise ratio (SNR) of the observations,
tidal solutions of small amplitude are often not included in tidal atlases, both in the
spatial domain (i.e., polar and near-costal areas) and the spectral domain (for so-called
minor ocean tides). In these cases, data-unconstrained tidal models can provide valuable
constraints for improving tidal corrections.
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This argumentation also applies to paleotidal dynamics, where direct observation of
primary observables is impossible, and only imprecise secondary observations can be
considered. One aspect of paleo-ocean tides, which was at the center of ocean tidal
research for quite a long time, is the evolution of the global mean dissipation rate by
ocean tides, denoted W (Cartwright, 1999). Implications of the temporal dynamics of W
are widespread. They include the long-term development of the Earth-Moon-Sun system
(e.g., Daher et al., 2021; Farhat et al., 2022) and the changes in the thermohaline circu-
lation (e.g., Schmittner et al., 2015) with a substantial impact on global climates.
Another aspect is the evolution of ocean tide levels, which define the conditions under
which geological and biological sea-level index points (SLIPs) are deposited. Ocean tide
levels are classified by reference heights like the Mean High Water (MHW) or Mean Low
Water (MLW), structuring the apparent tidal regime around the local mean sea level.
SLIPs represent observations of the local mean sea and ocean tide levels, which can be
seen as a secondary observable of OTD, depending on ζ (cf. Table 1.1). The apparent tidal
regime systematically affects the interpretation of SLIPs and, thus, the reconstruction of
the paleo mean sea level and its uncertainty, the so-called indicative range. As tidal levels
changed by several meters over time (e.g., Wilmes et al., 2019), reliable paleo tide models
are essential for coherently reconstructing the sea level history (e.g., Horton et al., 2013).
While geodetic measurements precisely constrain the present-day tidal dynamics and dis-
sipations rates (e.g., Lunar Laser Ranging, LLR, e.g., Dickey et al., 1994, cf. Figure 1.1,
or Satellite Laser Ranging, SLR), this is impossible for paleo tides.
Thus, the availability of versatile, accurate, data-unconstrained ocean tide models, ad-
aptable to a wide range of (paleo) conditions, is an important tool for paleo studies of the
Earth system.

1.4 Objectives and Outline of this Thesis
Ocean tide variability is a ubiquitous feature of modern space geodetic measurements,
which allows data-constrained ocean tide atlases to reach impressive accuracy. At the
same time, it poses the need for independent tidal background models to correct the
obtained time series on the observation level.
This statement forms the basis of our research hypothesis: Eventually, the quality of the
applied tidal correction limits the accuracy of geodetic products and the understanding
of the Earth system in general. It is thus required to improve the quality of ocean tidal
atlases, especially in sparsely observed geographical regions, for insufficiently-constrained
partial tides and past epochs inaccessible from precise modern geodetic methods.
Based on this assumption, three main objectives for this thesis are formulated:

(O1) Development of an accurate ocean tide model which can resolve a large spectrum
of partial tides on a truly-global domain

(O2) Accurate prediction of formerly unmodeled minor tides, which will contribute to
tidal corrections of improved quality, especially for satellite gravimetry

(O3) Precise simulation of paleotidal dynamics between the Last Glacial Maximum (21,000
years ago) and the present-day and extraction of secondary observables for sea level
reconstruction with dense temporal sampling
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O1 forms the foundation for O2 and O3, which in turn define constraints for implementing
O1. The principal framework on which the model must operate is set by the sparsity
and relatively low quality of observations available for minor tides and the complicated
accessibility of paleotidal fingerprints. Hence, the model must be independent of empirical
observations, i.e., data-unconstrained. To enable accurate tidal simulations, the model
should thus transcribe a solid understanding of ocean tide physics, which is the only
way to produce credible and plausible modelling results if validation data is sparse or
absent. Special emphasis will be put on the representation of tidal energy dissipation
mechanisms, the interaction of ocean tides with solid Earth tides, and the representation of
bathymetry, which are all known to be critical aspects for high model accuracy (e.g., Arbic
et al., 2009; Schindelegger et al., 2018; Barton et al., 2022). Further, O2 and O3 pose
the need for a high versatility of the model because they require high flexibility of the
boundary conditions under which the model has to operate, both for astronomical forces
and oceanographic conditions.
Setting the stage for this thesis and O1, the modern understanding of OTD is reviewed in
Chapter 2. The detailed discussion of the tidal spectrum further allows us to denominate
four groups of partial tides, which are of particular interest to be addressed in the frame
of O2. Based on the introduced fundamentals of ocean tide theory, Chapter 3 discusses
their numerical implementation into the ocean tide model TiME.
The model validation utilizing geodetic data for major tides follows in Chapter 4. Further,
this chapter discusses the performance of TiME in polar regions and in simulating the first
tidal subgroup introduced in Chapter 2. In Chapter 5, the discussion advances towards
O2, focussing on the subgroup of degree-3 tides. In the final part of this chapter, additional
simulations of minor tides are presented, which together comprise the TiME22 atlas. This
data set is further used to provide secondary observables (gravity and displacements),
which can be used to perform tidal corrections.
Eventually, an approach to O3 is presented in Chapter 6. The discussion focuses on two
aspects of paleo OTD: First, the temporal development of tidal dissipation, which has
implications on ocean stratification and circulation (Munk and Wunsch, 1998; Wilmes
et al., 2019), and second, tidal levels as secondary observables. A résumé of this thesis is
provided in the final Chapter 7.



2
Global Ocean Tidal Dynamics

Deriving the equations governing the dynamics of the global ocean tides is an exercise
that some of the most influential scientists have set forth. The first formulation of the
tide-raising forces and the respective Tide-Generating Potential (TGP) is counted as a
major achievement of Sir Isaac Newton. It can be seen as the first essential step towards
deriving said equations. Knowledge of the TGP allows for the concept of equilibrium
tides, associated with Newton and Daniel Bernoulli (cf. Cartwright, 1999, and references
therein).
However, the second indispensable component is the principles of hydrodynamics, which
describe the dynamics of the oceans themselves. Both components were first combined
into a set of PDEs by the French scientist Pierre-Simon de Laplace, henceforth known
as Laplace Tidal Equations (LTE) (Laplace et al., 1798). While the LTE have been
proven to depict the characteristics of ocean tides correctly, they possess a well-arranged
and minimalistic form that employs several assumptions and approximations. Thus, the
reproduction of this established set of equations from more general principles with a
detailed and precise description of the applied assumptions was conducted by scientists in
the 19th century (e.g., Hough, 1897) and 20th century (e.g., Pekeris, 1974; Schwiderski,
1980), which is briefly reproduced in the following.
Due to the huge horizontal length scale of the world oceans, their hydrodynamic tidal
flow must be considered turbulent. Thus, a modern approach to deriving the equations
that govern ocean tidal dynamics should start with the general, nonlinear Navier-Stokes
Equations (NSE) of a viscous, incompressible fluid (e.g., Schlichting and Gersten, 2017)
that express the conservation of momentum and mass in the oceans. The derivation leads
to equations for the turbulent ‘mean’ motion by a formal time-averaging procedure applied
to the NSE (e.g., Schwiderski, 1980). In addition, several approximations that have been
carefully tested to be robust for ocean tidal dynamics are applied. They include:

• The assumption of the Earth to be a perfect sphere with radius Re = 6371 km1

• Elastic response of the solid Earth to body forces and surface forces
1The presented numerical values are not essential for the derivation of the PDEs but later considered

for tidal modelling.

9
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• Steady Earth rotation with angular velocity Ωe = 2π
1d (d is 1 sidereal day)

• Incompressibility and homogenous density ρsw = 1024 kg
m3 of the seawater

• Smallness of tidal variations compared to other relevant scales

• The assumption H ≪ Re for bathymetric depth H and Earth radius Re

Especially the latter two points are strong approximations that allow the formulation
of ocean tidal dynamics in a single-layer ocean while fulfilling the hydrostatic pressure
assumption, i.e., in the form of Shallow-Water Equations (SWE). In this description, the
ocean state at a given location is completely defined by the depth-averaged flow velocity
v = (u, v) (u and v point in the direction of the local orthogonal coordinate system,
later identified with east and north) and the local sea surface anomaly ζ (cf. Figure 1.1).
Altogether, the nonlinear, inhomogeneous PDEs

∇ · (ζ v)
(v · ∇) v

+
+
{
∂tζ + ∇ · (H v)
∂tv + f × v

=
=

0
−g0∇{ζ − ζeq − ζSAL}seqt

}
LTE

−Dv + aatm (2.1)

are retained, which describe the temporal evolution of ζ and v comprised in an ocean state
vector ζ(x, t) = (v, ζ) ∈ R3 within this thesis. The spatial coordinates are later identified
with x = (ϕ, λ), being latitude and longitude. Here, the second equation describes the law
of mass conservation for a barotropic flow over the undisturbed bathymetry H(x), with
∂t being the partial derivative in time and ∇ designating the horizontal nabla operator.
The first vectorial equation expresses the law of momentum conservation for a geofluid
on the rotating sphere, where f = 2Ωe sinϕ evert is the vertical Coriolis vector, and
g0 = 9.80665 m

s2 is the surface gravity. On the right-hand side, the equation is balanced by
gradient forces of the sea surface anomaly (pressure gradient), the Tide-Raising Potential,
given by Vtid = g0ζeq, the Self-attraction and Loading potential, VSAL = g0ζSAL, and
accelerations exerted by the atmosphere, aatm. While the part of Equations (2.1) in curly
brackets indicates the original form of the LTE, several additional terms are considered
in the equations.
This chapter is structured in such way that the individual contributions to Equations (2.1)
are consecutively discussed in the following sections forming an extensive overview of
OTD. First, gravitational, atmospheric, and secondary tide-generating forces are discussed
in Sections 2.1.1 to 2.1.3. Suppose the ocean bottom pressure gradient entirely balances
these gradient forces. In that case, the definition of the equilibrium tide is obtained
(cf. Section 2.1.4), which is indicated above by setting the gradient of the curly brackets,
labeled seqt, equal to zero.
Transitioning to Laplace’s dynamical theory of ocean tides (Section 2.2), the problem of
understanding and describing frictional processes, here expressed in the general form
−Dv, became the key challenge for tidal modelers and is discussed in Section 2.2.1.
Further, the rigorous derivation from the NSE adds the nonlinear effects of wave drift
and advection to the PDE (left-hand side of Equations 2.1). Together with nonlinear
frictional terms, they hamper the validity of the superposition principle for OTD. While
linearization of Equations 2.1 grants in-depth insight into the characteristics of ocean tide
physics (Section 2.2.2), the more general, nonlinear form (Section 2.2.3) is necessary to
understand OTD in all aspects. The chapter closes by discussing the relationship between
primary (prognostic) to secondary (diagnostic) tidal observables.
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Figure 2.1: Primary excitation mechanisms of tides in the solid Earth, atmosphere, and
world oceans. Effects of radiational origin are marked in red, effects of gravitational origin
in black, and the oceanic Self-attraction and Loading (SAL) feedback appears in blue.
This chart is designed to display interactions for understanding OTD and does not give
a comprehensive overview of all tidal phenomena on Earth. Inspired by Agnew (2012).

2.1 Tide-Generating Forces

Chapter 1 introduced a rather general definition of the word tide: a minor periodic
disturbance of the Earth system related to the ephemeris of celestial bodies. This general
viewpoint is necessary to examine OTD, as the interaction between tides in the Earth’s
subsystems is crucial for its correct description. Thus in this section, the tide-generating
forces that drive the dynamics of the ocean tides are introduced under consideration of
interactions between individual tidal phenomena in the geosphere. The following discus-
sion relates to Figure 2.1.
Under the influence of the Earth’s rotation and the evolution of the solar system, tide-
generating forces originate from the time-variable gravitational acceleration exerted by
celestial bodies, mainly the Sun and the Moon, onto Earth. Gravitational forces impact
all subsystems of the Earth, with a substantial effect on the solid Earth, inducing so-called
body tides. The body tidal response is virtually in-phase with its generating forces and
influences OTD by a linear modification of the TGP. This fact allows for the concept of
the Tide-Raising Potential (TRP) as the primary generator of ocean tides (Section 2.1.1).
On the other hand, atmospheric tides are dominantly excited by the absorption of solar
radiation, which induces periodic tidal winds and pressure variations that interact with
the ocean. Suchlike evoked ocean tides are called radiational tides in recognition of their
root origin in solar radiation. The respective exciting forces are discussed in Section 2.1.2.
Both introduced excitation mechanisms of OTD originate from external forces mediated
by gravity, the solid Earth, and the atmosphere. Vice versa, ocean tides excite tidal os-
cillations in the solid Earth by surface loading (the load tide) and in the atmosphere by
barometric forcing at the atmosphere-ocean boundary. On the other hand, this induces
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secondary potentials that depend self-consistently on the OTD itself and are discussed in
Section 2.1.3. This section concludes with a presentation of the concept of the equilibrium
tide.

2.1.1 Tide-Raising Potential
The following discussion relates to the black (gravitational) excitation pathway of Fig-

ure 2.1. The gravitational TGP, denoted Vgrav, at a location x is composed of the indi-
vidual potentials exerted by massive objects (celestial bodies) with masses M j

ext at time
variable positions xj(t) (cf. Figure 2.2). Following the Newtonian law for gravitation, the
total potential reads

Vgrav(x, t) =
∑
j

GM j
ext

|xj(t) − x|
=
∑
j

GM j
ext

|xj(t)|
1√

1 +
(

Re
|xj(t)|

)2
− 2 Re

|xj(t)| cosαext
j (xj(t),x)

.

(2.2)
Here, G is the universal gravitational constant, and we assume a rotating, Earth-fixed
reference system, i.e., x is constant while xj(t) changes with time. In the second step,
the trigonometric cosine rule was exercised onto the expression in the denominator, where
|xj(t)| is the distance between Earth’s gravitational center and the external mass, and
αext
j is the angle between the x and xj(t) (Agnew, 2007).

Expression (2.2) is transformed by developing spatial dependencies into real-valued, fully-
normalized spherical harmonic functions Ylm(ϕ, λ), where ϕ and λ are the geographical
latitude and longitude, and l and m are the degree and order of Ylm, respectively. They
are defined by

Yl,m≥0(ϕ, λ) ≡ P lm(sinϕ) cos(mλ) and Yl,m<0(ϕ, λ) ≡ P l|m|(sinϕ) sin(mλ) , (2.3)

where P lm(sinϕ) are fully-normalized, associated Legendre Polynomials2 (cf. Appendix A).
Further, temporal dependencies are developed into the harmonic constituents of the eph-
emeris of the solar system, and degrees l = 0, 1 are discarded as they do not induce tidal
forces. Considering this, one obtains

Vgrav(ϕ, λ, t) =
∞∑
l=2

l∑
m=0

P lm(sinϕ)
∑
i

(
C lm
i cos(mλ+ χ′

i[t]) + Slmi sin(mλ+ χ′
i[t])

)
. (2.4)

This is the typical notation for the harmonic development of the TGP, where C lm
i and

Slmi are the temporal harmonic coefficients for a constituent labeled i, and χ′
i(t) is the

time-dependent phase of said constituent (e.g., Hartmann and Wenzel, 1994, 1995b).
For ocean tide modelling, the effective TRP differs from the TGP, as the linear (in-phase)

back-action of the solid Earth body tides on the ocean is included by multiplication with
the frequency-dependent factor ab

l (ωi).
The reason for this frequency dependence takes its foundation in the solid Earth response
to the TGP that possesses a significant resonance in the diurnal frequency band, the
near-diurnal free wobble (NDFW) (e.g., Zürn, 1997b), with observed resonance frequency

2The √-expression in Equation (2.2) can be directly developed into a series of Legendre Polynomials
Pl(sin ϕ).
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Table 2.1: Love number taken from Spiridonov (2018) for the diurnal partial tide spectrum
(degree 2) and for semidiurnal and terdiurnal partial tides of degree l=2 (d2) and degree
l=3 (d3). Coupling with Earth’s NDFW-resonance renders Love numbers in the diurnal
band frequency-dependent. Strong deviations from d2 are indicated in bold.

tide 2Q1 Q1 ρ1 O1 P1 K1 Ψ1 ϕ1 OO1 d2 d3

hb
l 0.602 0.601 0.601 0.600 0.578 0.519 1.079 0.666 0.606 0.606 0.290

kb
l 0.296 0.296 0.296 0.296 0.284 0.255 0.536 0.329 0.299 0.299 0.091

ab
l 0.694 0.695 0.695 0.696 0.706 0.736 0.457 0.663 0.693 0.693 0.801

f−1
NDFW ≈ (1 − 430−1)d (Wahr and Sasao, 1980; Wahr, 1981; Rosat, S. and Lambert, S.

B., 2009), that is related to the Earth’s Free Core Nutation (FCN). The factor ab
l (ωi) =

1 + kb
l (ωi) − hb

l (ωi) is a combination of Love numbers (Love, 1909) that encrypts the
back-action of elastic body tides on oceanic tides. The NDFW-resonance significantly
impacts tides in the K1 tidal group, compare Table 2.1 (Ray, 2017).
In summary, the TRP can be noted as

Vtid(ϕ, λ, t) =
∞∑
l=2

l∑
m=0

∑
i

ab
l (ωi) Ai Ylm(ϕ, λ+ χi(t)

m
) , (2.5)

with3 Ai =
√

(C lm
i )2 + (Slmi )2. The time-dependent phase argument

χi(t) =
7∑
j

qij D
astro
j (t) = qi1τ + qi2s+ qi3h+ qi4p+ qi5N

′ + qi6ps + qi7
π

2 (2.6)

is given following Doodson (1921) and Pugh and Woodworth (2014b). This notation
depends on six astronomical arguments that progress quasi-linearly in time, i.e., with
nonlinear deviations on the scale of millennia (e.g., Simon, 2007). The respective partial
tide frequency can be obtained by ωi = ∂tχi(t)|J2000, where J2000 signifies the currently
used standard epoch (Julian date: 2451545.0 TT [Terrestrial Time]).
Here, τ(t) is the mean lunar time (period: Tτ = 24h 50m 28.3s =1 lunar day), s(t) is
the mean longitude of the Moon (Ts = 27.3216 d), h(t) is the mean longitude of the Sun
(Th = 365.2422 d), p(t) is the mean longitude of the lunar perigee (Tp = 8.847 yr), N ′(t)
is the negative of the longitude of the Moon’s mean ascending node (TN ′ = 18.613 yr) on
the ecliptic, and ps(t) is the mean longitude of the solar perigee (Tps = 20941 yr) (Agnew,
2007). These arguments are multiplied with the integer values, qi1 to qi6, characteristic of
each tidal constituent and define the phase progression. Within, the frequency band of
the tide is determined by qi1, which is always identical to the spherical harmonic order m.
The presented temporal harmonic decomposition of the TRP into a series of constituents
allows an undisturbed view of its spectral composition. Individual constituents are called
partial tides and are referred to by the multipliers q1 to q6 that are usually presented in
the form of Doodson codes that are noted as ‘q1(5+q2)(5+q3).(5+q4)(5+q5)(5+q6)’.
Doodson designed this notation to be handy and robust, as for all but the lowest amplitude

3The indices l, m are dropped in the following, as the index i unambiguously defines the tidal con-
stituent.
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Figure 2.2: The TGP exerted by an external mass M j
ext, denoted V j

grav, for maximum
spherical harmonic degrees l = 2 (red) and l = 3 (blue) at radius |x| = Re (left). Temporal
and spherical harmonic development of the TGP leads to the description of the TGP by
tidal constituents that are proportional to the spherical harmonic functions Ylm (right).
The plots show the amplitude of the spherical harmonic functions ∼ P lm(sinϕ) color coded
for l = 2 (red) and l = 3 (blue). Overlain, the phase-shift with respect to Greenwich-zero
ϕmi + λlmG (magenta) is plotted in increments of 60◦ (negative values are dashed).

partial tides q1 = 0, 1, 2, 3 and −5 < q2...6 < 5, which allows codes with throughout positive
digits (no need to write down ±, which can induce confusion). Further, the characteristic
frequencies associated with each multiplier are chosen to be widely separated in frequency
space. Hence, Doodson codes sort constituents effectively after their frequencies. Partial
tides are assigned a tidal species referring to their first multiplier q1, as it defines the
character (long-period, diurnal, semidiurnal, ...). The first two multipliers define a tidal
group, as tides with identical q1 and q2 only differ in frequency on the order of a few cycles
per year (cpy).

For example, the principal semidiurnal lunar tide4, M2, is assigned the Doodson
code 255.555, while the main solar semidiurnal tide, S2, is referred to as 273.555. The
employed notation allows the immediate insight that the frequency of S2 is larger than
that of M2. The here ad-hoc introduced labels M2 and S2 are historic notations for the
larger partial tides and implicitly refer to a defined Doodson code5. An overview of the
tidal constituents with the largest amplitude is presented in Table E.1 alongside historical
labels and Doodson codes.

4M2 is the ocean tide with the strongest global mean signal. Therefore, it appears at the center of
most discussions.

5The letters initially refer to ’fictional stars’ on simplified orbits, which can be thought of as generating
the respective tidal frequencies.
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So far, the seventh argument, q7, was spared from the discussion. This last multiplier
only takes integer values that induce an additional phase shift in increments of π

2 and is
referred to as the Doodson-Warburg phase convention (cf. Petit and Luzum, 2010). A
detailed formula for tides up to degree l = 3 is given by6

qilm7 = 2 tan−1
(
Slmi , C lm

i

)
π−1 + 2δm0 + 2δm1δl3 , (2.7)

where the Kronecker-δ as the discrete formulation of the Dirac-δ-function was introduced.
It is defined by δnm = {1, if n=m; 0, else}.
We recall that χi(t) = χ′

i(t) + qilm7
π
2 . While the first term of Equation (2.7) is just

the phase of the partial TGP for χ′(t) = 0 (cf. Equation 2.4), λlmG = −2δm0 − 2δm1δl3
represents an additional phase shift that was historically introduced to ensure positive
values of the partial TRP for λ = 0 (The Greenwich-zero) at the equator, or just north
of the equator for χ′(t) = 0. While this phase convention might appear to introduce
unnecessary complications, it simplifies local comparisons of tidal regimes from different
partial tides, as phases are measured with respect to a fixed phase of the TGP, which is
an advantage to understanding ocean resonances.
Additionally, the alternate form for the individual partial TRPs (2.5)7

V ilm
tid (ϕ, λ, t) = ab

l (ωi) Ai (Ylm(ϕ, λ) cosχi(t) − Yl−m(ϕ, λ) sinχi[t]) , (2.8)

is presented, which separates the temporal and spatial variables. Further, the in-phase
and quadrature components of the partial potential, clmi (x) = ab

l (ωi)AiYlm(ϕ, λ) and
slmi (x) = −ab

l (ωi)AiYl−m(ϕ, λ) are introduced, as well as the amplitude almi (sinϕ) =
ab
l (ωi)AiP lm(sinϕ) and the phase shift ϕmi (λ) = mλ, which allows reformulating Equa-

tion (2.8) as

V ilm
tid (ϕ, λ, t) = almi (sinϕ) cos (χi(t) − ϕmi [λ]) = clmi (x) cosχi(t) + slmi (x) sinχi(t) . (2.9)

Equation (2.9) summarizes the complementary amplitude/phase vs. in-phase/quadrature
notations used to describe tidal oscillations. While the in-phase/quadrature notation de-
picts real physical fields obtained at χi = 0 and χi = π

2 , respectively, the amplitude/phase-
notation facilitates the perception of large-scale oscillation patterns. It is used for repres-
entation within this thesis. Figure 2.2 shows the partial TRPs for different species (order
m) and degrees l of the spherical harmonic functions, with the zero meridians in magenta
colors. The following discussion refers to this figure.
The spherical harmonic development of the TRP (2.5) is typically truncated at a cer-
tain maximum degree lmax, as the magnitude of individual constituents decreases with(
Re

|xj |

)l−2
, when compared to l = 2. Nonetheless, geodetic observations show that lunar

contributions up to order l = 3 are evident for ocean tides (and even up to higher degrees
for solid Earth tides). Therefore, the TRP up to lmax = 3 is considered within this thesis.
Equation (2.5) highlights that for m>0, the TRP is composed of a series of westwards
propagating partial waves, with individual frequencies but spatial patterns that follow the
spherical harmonic functions.
On the other hand, the long-period species (for m = 0) are zonally uniform, only exhibit-

6tan−1 has to be evaluated by means of the atan2 -function that was first introduced in Fortran.
7The identity is easily obtained by considering cos(a + b) = cos a cos b − sin a sin b.
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ing gradients in the meridional direction. For a partial tide of a given degree l and order
m, there is but one characteristic spatial pattern, i.e., ψlm = ∇Ylm, in which barotropic
(depth-independent) acceleration is applied to the water masses. As, for example, the
previously mentioned gravitational partial tides M2 and S2 stem from the same species of
degree-2 tides, they are forced with the same pattern. Differences in the ocean response
will only arise from the sensitivity of OTD to the respective forcing frequencies.

2.1.2 Radiational Excitation
While studying tides in the atmosphere is an independent research field with a rich

history and important implications for geosciences, it is only touched superficially within
this thesis concerning its relevance for OTD. For deeper insight into the topic, it is referred
to, e.g., Schindelegger et al. (2023) and Chapman and Lindzen (1970).
It is primarily the periodically-modulated absorption of solar UV radiation by ozone and
infrared radiation by water vapor that which excites atmospheric tides (Chapman and
Lindzen, 1970; Dieminger et al., 1996). However, secondary excitation mechanisms that
include gravitational forces (cf. the previous subsection) and interaction with the ocean
and solid Earth tide induce atmospheric tidal dynamics. Especially the interaction with
the ocean tide displaces the lower boundary of the atmospheric layer, induces tidal winds
over broad shelf regions, and disturbs the atmosphere by secondary gravitational poten-
tials (e.g., Renault and Marchesiello, 2022; Platzman, 1991). These contributions are
of high significance for the atmospheric lunar M2 tide (e.g., Schindelegger and Dobslaw,
2016; Schindelegger et al., 2023), as already noted by (Laplace et al., 1798).
Because the discussion focuses on the effects of atmospheric tides on the ocean, the atmo-
spheric tides are assumed to be independent of OTD. Thus, the gray-colored feedback loop
in Figure 2.1 is not self-consistently considered in contrast to fully-coupled atmosphere-
ocean models (e.g., Hollingsworth, 1971). Instead, accelerations of atmospheric origin are
treated as invariant concerning OTD.
In general, atmospheric dynamics contain signatures with a broad frequency range. How-
ever, a significant part of the variability oscillates with tidal frequencies, especially in
the tropics (Ray, 1998b). The dominant atmospheric variable excites tide-like signals in
the ocean is the atmospheric surface pressure anomaly patm, which induces a barotropic,
i.e., depth-independent acceleration of the ocean. Thus, the forces exerted by atmo-
spheric pressure variations are gradient forces to be derived from the respective potential
Vp = −patmρ

−1
sw . Further, tidal winds periodically apply a wind stress acceleration W to

the ocean surface. This acceleration is concentrated on the ocean surface, with weakened
drag accelerations acting on deeper ocean layers and thus depth-dependent. Therefore,
a barotropic response is not to be expected ex-ante. Even more, ocean mixing and ex-
citation of internal ocean dynamics that cannot be resolved within the framework of the
barotropic SWE are known to be driven by wind stress (e.g., Pollmann, 2020).
Nonetheless, a reasonable parameterization can include the mean effect of wind stress
excitation on the barotropic momentum balance in the SWE (2.1), which is done follow-
ing Gill (1982), reading

aatm = ∇ (Vp + Vl + Vo) + W . (2.10)
In addition to the atmospheric pressure potential and the wind stress accelerations, the
secondary potentials Vo and Vl were added, which comprise two effects. First, the grav-
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LANDOCEAN
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OAAL and SAL at sea floor

atmospheric surface pressure anomaly

LAAL at land surface

Figure 2.3: Primary and secondary barotropic potentials generated by the atmospheric
surface pressure anomaly patm (red), acting on the ocean surface (Vp, ⊖), the seafloor by
OAAL (Vo, triangle, ⊕), and the land surface by LAAL (Vl, arrow, ⊕). Further, the SAL
potential induced by the sea surface anomaly ζ (blue) is depicted (VSAL, ⊕). The signs
⊕/⊖, signify whether a positive anomaly induces an attractive or repulsive potential.

itational potential that the atmosphere exerts on the ocean masses, i.e., atmospheric
attraction, and second, the gravitational potential induced due to the deformation of the
solid Earth by atmospheric loading. Here, both effects are discriminated into a part that
originates from atmospheric pressure on the ocean floor (denoted o) or the land-covered
areas (denoted l) and consequently called ocean-bound/land-bound atmospheric attrac-
tion and loading (OAAL and LAAL, cf. Figure 2.3). The same effect arises from ocean
bottom pressure anomalies δp = g0ρswζ due to the propagation of ocean tidal waves
and is called Self-attraction and Loading (SAL) (Farrell, 1972; Kuhlmann et al., 2011;
Schindelegger et al., 2018), which will be discussed in the next section.
Atmospheric secondary potentials are calculated by

Vl/o(x) = −3ρsw

ρse

∑
l,|m|≤l

αl
2l + 1V

lm
l/o Ylm(x) , (2.11)

where ρse = 5510 kg
m3 is the mean density of the solid Earth, and ∑

l,|m|<l V
lm

l/o Ylm(x) is
the decomposition of VpMl/o into a set of real-valued spherical harmonic functions, with
Ml/o being the mask comprising wet (for o), or dry (for l) grid cells. Here, and in the
following, a spherical, non-rotating, elastic, and isotropic (SNREI) Earth (e.g., Agnew,
2012) is assumed.
Factor αl = 1 + kl − hl describes the effect per spherical harmonic degree l, where the
direct gravitational attraction by the atmosphere is proportional to 1. Further, kl and
hl are load Love numbers (LLNs, e.g., Munk and MacDonald, 1960) that describe the
loading potentials, that is, the gravity potential induced by the Earth’s deformation and
the Earth’s surface deformation in its static gravity field, respectively. Depending on the
selected solid Earth model, αl converges to approximately α∞ ≈ 6.4. Thus, the atmo-
spheric loading components dominate the attraction aspect for large degrees.
While a positive atmospheric pressure anomaly leads to a repulsive, direct potential for
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Figure 2.4: Amplitude aatm
i /g0 of the atmospheric surface pressure potential (in cm) for

tides S1 (top, left), S2 (top, right), and the terdiurnal triplet (R3-S3-T3, bottom), i.e., tidal
periods of 1, 1

2 , and 1
3 solar days, respectively. The lines R3 and T3 are shifted by ±1yr−1

compared to the S3 frequency and induce a seasonal modulation of the terdiurnal solar
tide. Phase lags ϕatm

i are plotted in increments of 60◦ (magenta: ϕ = 0◦; dashed: ϕ < 0◦).
Reproduced from Balidakis et al. (2022).

the ocean masses, the secondary potentials Vo and Vl exert attractive forces dominated by
Ylm of low degree l, as high degrees lead to smaller contributions in Equation (2.11). This
long-wavelength character is visible as a smoothing of the respective secondary potentials
(cf. Figure 2.3) and causes the potential Vl to be evanescent towards the ocean’s interior8.
An in-depth discussion of the four unique atmospheric excitation mechanisms (pressure

forcing, LAAL, OAAL, and wind stress) for the S1-tide can be found in Balidakis et al.
(2022). They find that including secondary effects impacts the ocean tide simulations
at the 10%-level of the ocean tide signal. A straightforward approach to estimate tidal
atmospheric forcing potentials is to analyze long time series of the variables of interest
(surface pressure and wind stress) for tidal frequency components, i.e., conducting a tidal
analysis. The method of tidal analysis has a potent advantage over analyzing the time
series through a Fourier transform: The a-priori-knowledge of the tidal frequencies de-
scribed by the Doodson-formalism (cf. Equation 2.6) reduces the unknown variables and
allows the Super-resolution of tides (Munk and Hasselmann, 1964). Thus, when conduct-
ing a tidal analysis, the resolvability of 2 tidal constituents depends not only on their
frequency difference δf and the time series length but also on the noise level and noise
color of the time series. This often implies a better resolvability than predicted by the
Rayleigh criterion.
Given the availability of multiple decades of high-accuracy atmospheric reanalysis products

8The same ‘leakage-effect’ of ocean-bound potentials into the continental interior is the reason for the
detectability of ocean tides by terrestrial observation, e.g., with GNSS-stations or gravimeters.
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Figure 2.5: Equilibrium potential height aSAL
i (x) of the SAL potential ζSAL =

aSAL
i (x) cos

(
χi(t) − ϕSAL

i [x]
)

in cm, constructed by spherical harmonic evaluation up to
degree lmax = 1024 for the S2-tide of the FES14 ocean tide atlas (a). The difference poten-
tial between (a) and the scalar-approximated SAL potential, ζSAL = 0.1ζ is presented in
(b). Phase lags ϕSAL

i are plotted in increments of 60◦ (magenta: ϕ = 0◦; dashed: ϕ < 0◦).

(e.g., ERA5: Hersbach et al., 2020), it is possible to extract harmonic constituents

Vp(x, t) =
∑
i

aatm
i (x) cos

(
χi(t) − ϕatm

i [x]
)

=
∑
i

catm
i (x) cosχi(t) + satm

i (x) sinχi(t) ,

(2.12)
where aatm

i =
√

(catm
i )2 + (satm

i )2 is the amplitude, ϕatm
i (x) is the phase lag, while catm

i (x)
and satm

i (x) are the in-phase and quadrature components of the partial potential, re-
spectively. This representation relates directly to Equation (2.9), with amplitude and
phase-lags represented in Figure 2.4 after Balidakis et al. (2022), who identified 16 at-
mospheric partial tides with relevant effects on ocean tide excitation and satellite gravi-
metry. Within, the strongest pressure variations occur at the semidiurnal S2-frequency
(TS2 = 12 h), showing a pattern that resembles the gravitational excitation proportional
to P 22 with minor deviations. More pronounced differences are obtained for the S1 poten-
tial (TS1 = 24 h), which is in contrast to its gravitational counterpart mainly of equatorial
character. As the solar excitation has the shape of a smoothed box function (Schindelegger
et al., 2023), semidiurnal, terdiurnal (TS3 = 8 h), and also higher-frequency atmospheric
tides generate overtones of the S1 ocean tide.
This section is closed by comparing the ocean tide-generating forces originating from the
atmosphere to the direct gravitational excitation, exemplarily for S2. The maximum value
for the S2 gravitational equilibrium height (cf. Figure 2.2) is obtained at the equator and
amounts to 7.8 cm. The maximum atmospheric potential is smaller than 2 cm (cf. Fig-
ure 2.4). Thus gravitational excitation dominates, while the atmospheric potential rep-
resents a significant correction (Arbic, 2005). On the other hand, the SAL potential
introduced along the way in Figure 2.3 exhibits maximum equilibrium values of approx-
imately 4 cm for S2, thus representing a major modification of the exciting potential.
Therefore, it is an essential process for OTD and the subject of the next section.

2.1.3 Secondary Forces: Self-Attraction and Loading
Already Pierre-Simon de Laplace was aware of the significance of the secondary gravit-
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ational potential induced by the redistribution of ocean mass itself (Laplace et al., 1798).
On the other hand, the theory of solid Earth tides that is essential to formulate the solid
Earth response to variations of ocean bottom pressure needed to be further advanced.
Thus, Laplace’s formulation only expressed the gravitational self-attraction of ocean wa-
ter. With the development of geoscientific disciplines in the 19th and 20th centuries,
understanding of the phenomenon of solid Earth tides, which allows for the correct for-
mulation of the TRP and the accurate prediction of long-period (equilibrium) tides, was
accumulated (e.g., Thomson, 1863; Lau and Schindelegger, 2023). At the same time, in-
sight into the deformation of the solid Earth under surface loads grew persistently (Hende-
rschott, 1972). The inauguration of the first automatic computers that could solve the
LTE for realistic basin geometries enabled comparisons of modelling results to geodetic
data. Thereby, it was recognized that this effect, called ocean loading, had a profound
impact on OTD (Cartwright, 1999).
Today it is well established that the SAL potential height

ζSAL(x) = 3ρsw

ρse

∑
l,|m|≤l

αl
2l + 1 ζlmYlm(x) , (2.13)

must be rigorously considered in order to render the most accurate depiction of ocean tide
physics possible (Ray, 1998a). The formulation is structurally identical to Equation (2.11),
where the atmospheric attraction and loading potential were introduced. Technically, the
formulation considers the decomposition of the sea surface anomaly function into spherical
harmonic functions (the eigenfunctions of the gravity field), i.e., ζ(x) = ∑

l,|m|<l ζlmYlm(x).
As for atmospheric attraction and loading, factor αl = 1+kl −hl is a combination of load
Love numbers.
In contrast to the TGP introduced in Equation (2.2), series (2.13) cannot be terminated at
a low spherical harmonic degree lmax without inducing significant errors for two reasons.
First, individual contributions are only weakly dampened with (2l+1)−1, and second, the
degree-wise sea surface height elements ζlm possess relevant amplitudes at large degrees
due to the scale of tidal oscillation systems and the occurrence of Gibb’s Phenomenon at
coastal margins.
The root cause for Gibb’s phenomenon is the typically large ocean tide amplitude in
coastal regions and the obvious absence of OTD on the land, which translates to a discon-
tinuous ocean load function. However, discontinuities are known to be non-representable
by (spherical) harmonic functions, retaining at least a 9% deviation in its vicinity regard-
less of the maximum degree lmax.
Conveniently, αl/(2l + 1) decreases with rising degree l, ensuring slow but steady con-
vergence, thus counteracting Gibbs Phenomenon at coastal load discontinuities (Agnew,
2007; Hewitt and Hewitt, 1979).
The inclusion of Equation (2.13) converts the LTE into an integrodifferential equation, as
the spherical harmonic coefficients

ζlm =
∫
O
dA′ ζ(x′) Ylm(x′) (2.14)

have to be calculated at each time step (in contrast to the atmospheric attraction at
loading) by solving respective global integrals over the entire ocean domain O. In other
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words, SAL induces the interaction of OTD at an arbitrary location with each point on
the globe, which renders the PDE non-local. In a numerical sense, the matrices describing
OTD become non-sparse (even fully populated), drastically complicating their inversion.
While numerical aspects of the LTE are discussed in the next chapter, the computational
complications due to SAL potential are already pointed out here because they gave rise to
the introduction of several approximations of Equation (2.13), which are still important
for modern numerical models.
While the weighting of individual contributions in Equation (2.13) is performed with a
factor depending on the spherical harmonic degree l, a straightforward approach is to
introduce a general factor ϵ, which is independent of l, but chosen to approximate the
function optimally. The potential height is then formulated as ζSAL ≈ ϵζ for typical val-
ues of 0.08 < ϵ < 0.12 (e.g., Accad and Pekeris, 1978; Weis et al., 2008; Velay-Vitow
et al., 2020). This approximation implicitly assumes a dominant spatial scale of tidal
oscillation systems, which can be a powerful approximation for tides in basins of com-
parable depths. As ϵ is usually chosen to accurately depict tides in the deep ocean,
the ϵ-approximation introduces larger errors in shallow shelf regions, where tidal waves
have shorter wavelengths (cf. Figure 2.5b). Possible ways to improve the approach are
to include depth or latitude-dependent parametrizations (e.g., Ray, 1998a; Stepanov and
Hughes, 2004; Müller, 2007).
A second feasible approach is to compute ζSAL from an external, reasonably accurate
tidal solution prior to solving the PDEs (e.g., Lyard et al., 2021; Blakely et al., 2022).
This means treating SAL in the same way as the atmospheric excitation (Section 2.1.2).
This only imposes the need to evaluate Equation (2.13) once per model run instead of
once per time step. On the other hand, this approach heavily constrains the obtained
ocean tide solution to the adapted SAL potential: The simulation results can not be con-
sidered independent of prior assumptions, a central requirement of O1. Figure 2.5 shows
ζSAL computed from the satellite data-constrained ocean tide atlas FES14 for S2, i.e., an
altimetry-constrained estimate, and the deviations to the ϵ-approximation also computed
from FES.
To retain the independence of simulation results from prior assumptions, one can con-
struct ζSAL from prior solutions of the employed model. This implies iteratively simulating
sea surface height anomalies ζ, and SAL potential heights ζSAL, i.e., self-consistently solv-
ing for ζSAL (e.g., Ray, 1998a; Accad and Pekeris, 1978). As ζ and ζSAL depend linearly
on each other, the solution is unique, and the procedure converges within a few itera-
tions (Egbert et al., 2004).
While the described approximations work well within their inherent restrictions, the most
exact approach remains to repeatedly recompute Equations (2.13) and (2.14). With recent
software developments (e.g., Schaeffer, 2013), this more comprehensive SAL approach be-
came computationally feasible (Schindelegger et al., 2018) and will be discussed in more
detail later.

2.1.4 Equilibrium Tides

The discussion of the individual tide-generating forces is concluded by introducing the
previously mentioned equilibrium tide solutions. Except for the wind stress acceleration
W , which only faintly affects OTD (Ray and Egbert, 2004; Balidakis et al., 2022), all
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excitation mechanisms in Equation (2.1) are gradient forces9. In the limit v → 0, the
PDEs reduce to

g0∇ (ζseqt − ζSAL − ζeq − ζatm) = 0 , (2.15)

and
∫
O
dA ζ(t) = 0 .

Here, ζatm = (Vp + Vl + Vo)/g0 is set. A solution is obtained by setting

ζseqt(x, t) = ζeq(x, t) + ζatm(x, t) + ζSAL(ζseqt[x, t]) + cm(t) . (2.16)

The time-dependent but spatially-uniform parameter cm(t) is called Darwin’s correction
and must be included to ensure mass conservation (e.g., Marchuk and Kagan, 1983).
The integrodifferential character of SAL remains the major complication in evaluating
Equation (2.16), as the solution ζseqt must be solved self-consistently with the induced
SAL potential ζSAL(ζseqt). Therefore, the solution is called Self-Consistent Equilibrium
Tide (SEQT). Finding the SEQT for a given potential is possible by iterative evaluation
of Equation 2.16 under consideration of mass conservation.
Due to frictional forces in the ocean, the assumption v → 0 is reasonable if the tidal
period is sufficiently long, allowing the described balance between generating potential
and ∇(g0ζseqt) to adjust. The typical ocean response timescale to tidal forcing is in
the order of hours to days (e.g., Müller, 2007). Ocean tides are close to equilibrium for
long-period tides with timescales on the order of weeks and longer. Hence, the SEQT
description is often employed for those tides, especially for solar long-period tides (Sta,
Ssa, Sa) and longer-periods (e.g., Ω1, cf. Table E.1). Following Equation (2.16), the SEQT
is proportional to its generating potential with a minor modification by SAL. Therefore,
gravitational SEQTs strongly resemble the patterns displayed in Figure 2.2. Significant
deviations exist for the fortnightly tide Mf, for which the ocean response exhibits devi-
ations from equilibrium, presumably due to the excitation of ocean oscillations driven by
the conservation of vorticity (Wunsch, 1967; Cartwright and Ray, 1990).
While the deviations observed for Mf point to the importance of dynamic effects in the
ocean’s response to tidal forcing, the equilibrium description breaks down in predicting
the ocean response for diurnal, semidiurnal, and higher-frequency tides. Here the ocean
response does not resemble the patterns of its generating potential (cf. Figure 2.2). De-
scription by the dynamic theory, i.e., for non-vanishing velocity v, is required, which is
reviewed in the following section.

2.2 Dynamical Ocean Tides
Since the dynamics of the ocean itself are not sufficiently considered in equilibrium

tide theory, its predictions of diurnal and semidiurnal tidal species are rather impre-
cise. Laplace then recognized the absence of hydrodynamic principles, hence founding
the LTE. In their original form, the LTE (cf. Equation 2.1) describe the acceleration of
a shallow geofluid by tide-generating forces. Also, the LTE consider Coriolis accelera-

9Effectively, the wind stress can be decomposed into a curl-free (gradient) and a divergence-free
(rotational) component employing a Helmholtz decomposition.
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tion while ensuring the conservation of ocean mass in terms of the continuity equation.
Analytical solutions of the LTE are only possible for simplified bathymetric functions
(e.g., water planets and cylindrical basins). While the realistic ocean depth and coast-
line are much more complicated, analytical solutions are invaluable to understanding the
fundamental characteristics of tidal waves. Thus, the field of theoretical hydrodynamics
has benefited from the work of many scientists, starting with Laplace himself, but also
by William Thomson, known as Lord Kelvin (Thomson, 1879), Sir Horace Lamb, Sydney
Samuel Hough, and many others (Cartwright, 1999). A short review of the theory of
ocean normal modes as the result of a more analytical approach to OTD is presented in
Section 2.2.2.
In their initial form, the LTE lack frictional forces, i.e., forces that inherently remove
mechanical energy from the hydrodynamic system. While friction is a realistic assump-
tion for any natural system, it also has important implications for the stability of the LTE.
Laplace further realized that due to friction, any information about the initial state van-
ishes from the system over a long time, i.e., the periodically forced dynamics of the world
oceans converge to the same periodicity as the forces that drive it. While this fact seems
straightforward from a modern point of view, it is the basis for the procedure of har-
monic tidal analysis. On the other hand, the correct formulation of dissipative terms of
OTD is complicated and has been one of the main challenges for tidal scientists in the
last two centuries. Section 2.2.1 discussed frictional forces, where nonlinear contributions
are included. Together with other nonlinear terms retained when rigorously deriving the
LTE, the dynamic theory of ocean tides is rendered weakly nonlinear, which causes the
interaction of individual partial tides (Section 2.2.3).

2.2.1 Tidal Friction

It can be verified with the help of modern numerical ocean tide models that the realistic
representation of tidal friction, and thus tidal dissipation rates, is critical to accurately
reproduce geodetic observations of ocean tides (similar to the impact of SAL).
However, long before the advent of the first global ocean tide models, the historical
interest in tidal dissipation rates was more strongly motivated due to its influence on
the evolution of Earth-Moon-Sun system. Especially the lunar orbit is not only impacted
by Newtonian orbital mechanics (Laplace, 1788), but also by tidal friction that transfers
angular momentum from the Earth’s rotation to the lunar orbit (e.g., Darwin, 1908).
Thus, ancient observations of eclipses and modern measurements of, e.g., the length of
the day and month and the lunar distance allow for estimating the system’s long-term
evolution (Cartwright, 1999).
While quantifying the orbital (non-tidal) influences on the Earth-Moon history was subject
to intense scientific debates (Kushner, 1989), these estimates translate to the magnitude of
tidal dissipation necessary to sustain the observed orbital evolution. The tidal dissipation
estimates converged during the 20th century. Thus, the question of how and where the
energy is dissipated came to the center of attention. The understanding of tidal friction
and dissipation is one of the most persistent enigmas of ocean tide research as discussed,
e.g., successively by Jeffreys (1920), Munk (1968), and Munk (1997). In the following,
the dominant dissipation mechanisms are introduced.
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Figure 2.6: The mean buoyancy frequency N (a) and bottom buoyancy frequency Nb (b)
represent a measure of the ocean stratification. Subplot (c) shows the bathymetric map
constructed from the RTopo-2 data set (Schaffer et al., 2016).

Turbulent Bottom Friction A modern estimate for the mean ocean tidal dissipation
carried out by the lunar M2 tide is 2.45 TW (Egbert and Ray, 2000), excluding tidal
dissipation in the solid Earth (Ray et al., 2001) and atmosphere, that is much smaller.
Governed by the laws of hydrodynamics, tidal flow velocities are small, on the order of
1 cm

s , in the deep ocean, and large, on the order of 50 − 150 cm
s , in shallow seas. Thus,

the frictional interaction of tidal flows with the sea floor was the first energy sink that
was investigated. The first studies that considered linear frictional accelerations in the
Irish Sea, an area with well-documented surface currents, resulted in estimated global
dissipation estimates far smaller than the astronomically observed value (Street, 1917).
The turbulent nature of the tidal flow over the ocean bottom is better described by a
quadratic friction law that induces a braking acceleration of the form

abf = r

H
|v| v , (2.17)

and thus leads to dissipation densities that scale with |v|3, resulting in two orders of mag-
nitude higher dissipation rates in shallow seas, e.g., the Irish Sea (Taylor, 1920). Here r
is the bottom friction coefficient.
The quadratic bottom friction law leads to the concentration of ocean tide dissipation
in only a few shelf regions and amounts to approximately 2

3 of the M2 dissipation under
present-day conditions. It has become a routinely employed parametrization of for global,
barotropic ocean tide models.
On the other hand, the nonlinear dependence on the state variables u and v contradicts
the superposition principle of individual solutions that only holds for linear PDEs (Sec-
tion 2.2.3). With proper tuning of the friction coefficient r, linearized parametrizations
can realistically reproduce OTD, and linear friction laws are routinely employed to study
selected aspects of the ocean tide (Section 2.2.2). Despite the improvements in estimating
global dissipation by bottom friction, it was not possible to satisfactorily close the tidal
energy budget by exclusively considering this single effect.

Topographic Wave Drag Historically, ocean tidal energy dissipation was believed to
be dominated by turbulent bottom friction in shallow waters, i.e., by the process described
in the preceding paragraph. However, the development of precise, data-constrained ocean
tide models enabled by several years of ocean observation by satellite altimetry made it
possible to spatially resolve the ocean tide energy budget. This analysis showed that a
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significant fraction of energy dissipation (approximately 30 % for M2, but only 12% for
diurnal tides) was carried out in the deep ocean (Egbert and Ray, 2000, 2001, 2003).
Although these inversion techniques can only track the area where dissipation happens
and not the responsible hydrodynamic process, it was assumed that the generation of
internal waves by tides, i.e., internal tides, was the dominant contributor.
Internal waves are oscillations of a stratified fluid with only a minor imprint on the free
surface (e.g., Wunsch, 1975), which nevertheless can be detected with modern altimetric
techniques (e.g., Zhao et al., 2011; Zaron, 2017). Significant conversion of barotropic
wave energy to internal tides is achieved at prominent bathymetric features. At these
locations, the barotropic current is partially diverted into the vertical direction. which
excites internal waves – a prominent example is, e.g., the Hawaiian Ridge (Zaron and
Egbert, 2006). The feedback to the barotropic flow is of dampening nature and therefore
described as topographic wave drag. However, the exact representation of this effect in
barotropic ocean tide models is impossible: A baroclinic, depth-resolving approach is
required to allow for the propagation of internal waves (e.g., Arbic et al., 2012). Hence,
the preferred approach is to include the mean effect of this process on barotropic motion
in terms of a parametrization.
A general, linear representation of this dampening acceleration is

awd = − 1
H

C · v , (2.18)

a second-order wave drag tensor, denoted C, with possible off-diagonal elements multiplied
by the flow velocity. Multiple wave drag formulations have been developed and successfully
implemented in ocean tide models (e.g., Green and Nycander, 2013). These formulations
are derived from different approaches. Several formulations are scalar, i.e., not-requiring
four tensor elements, and some include an independent tuning parameter.
A common feature of all parametrizations is their dependency on the Brunt–Väisälä fre-
quency (or buoyancy frequency), denoted N , and the ocean bathymetry. Figure 2.6
illustrates that optimum conditions for wave drag dissipation are found in the deep ocean
in the vicinity of ridges. For this thesis, calculations with data from the world ocean atlas
for salinity (Zweng et al., 2018) and temperature (Locarnini et al., 2019).

Parameterized Horizontal Eddy-Viscosity Sensitivity studies with modern ocean
tide models propose that the previously mentioned processes dominate the ocean tidal
energy budget and are sufficient to accurately represent OTD at levels of 80 − 90% in the
open ocean. As ocean dynamics are known to be turbulent, most tidal models considered
dissipation by parametrized horizontal turbulence, a free parameter often used to optim-
ize the model’s agreement with geodetic data sets (e.g., Weis et al., 2008).
The central reason to include the so-called eddy-viscosity term is the numerical stabil-
ity of the model, which sets a lower limit for this effect depending on the grid resolu-
tion (e.g., Egbert et al., 2004; Schindelegger et al., 2018). It is possible to formulate the
term in different ways. The simplest might be a relaxation proportional to ∆v. Here, the
more involved formulation

aed = R̂v = Ah

R2
e

(
∂2
λ

cosϕ + ∂2
ϕ − tanϕ ∂ϕ − (1 + tan2 ϕ)

)(
u
v

)
2 tanϕ ∂λ

(
v
u

)
, (2.19)
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utilized by Weis et al. (2008), is employed. It can be argued that the specific structure is
not crucial when the eddy-viscosity coefficient Ah is minimized.
However, the exact formulation of this term will be more critical if this effect carries out
a larger amount of dissipation.

Turbulent Ice Friction While the tropical and mid-latitudes are effectively free of sea
ice, the polar seas are covered by floating ice masses that vary in their extent seasonally
and over longer time scales. Further, the ice cover is only partially landfast (glaciers and
shelf ice). Sea ice is adrift, i.e., it possesses a relative velocity with respect to solid Earth
and ocean, a process that was famously used by historical (Nansen, 1897) and modern-day
expeditions across the Arctic Ocean (Nicolaus et al., 2022).
In a similar way as the ocean currents dissipate energy while streaking over the ocean
bottom (Equation 2.17), a frictional interaction with floating ice masses occurs. Further,
one should replace the barotropic flow velocity v with the relative velocity between ice
and ocean flow vrel = vice − v. Thus, the introduced acceleration reads

aice = rice fice

H
|vrel| (vice − v) (2.20)

The most basic approach to parameterize this effect is assuming doubled bottom friction,
rice = r, in ice-covered regions (ice cover: 0 < fice < 1). It should be noted that
Equation (2.20) does not only introduce a dissipative acceleration proportional to −v but
also a residual acceleration proportional to vice.
While the impact of turbulent ice friction is small on a global scale, regional effects can be
much more substantial, which will be of interest for paleo tides under glacial conditions.
Further, the periodic variation of the ice cover, especially in the Arctic region, leads to
seasonal variations in frictional forces. Seasonal variations are also known to affect other
dissipative forces and lead to the modification of tidal constituents by seasonal modifier
(also called satellite) lines (e.g., Müller et al., 2014; Schindelegger et al., 2022). Here,
energy is transferred to tidal frequencies, separated by 1 cpy from M2.
The presented dissipation mechanisms will be revisited when introducing the ocean tide
model in the next chapter. However, analytical solutions of the tidal PDEs are of interest
to understand the mechanisms that control OTD. To fathom these principles, a linear
approximation of Equations (2.1) is discussed in the following section.

2.2.2 Linearized Ocean Tidal Dynamics
Consider the linear set of equations (Müller, 2008; Zahel, 1980)

∂tv + f × v + g0∇ (ζ − ζSAL) + Dlinv = F ω , (2.21)
∂tζ + ∇ · (H v) = 0 , (2.22)

where the linearized frictional accelerations discussed in the preceding chapter are com-
prised in the terms −D̂linv, while F ω = F0 eiωt comprises periodic external forces of
frequency ω. As the PDE is linear in ζ = (ζ, u, v), it is possible to derive free solutions
(i.e., for F ω = 0), the eigenmodes of the system, denoted ζ̃k =

(
ζ̃k, ũk, ṽk

)
∈ C3, by fac-

torization of spatial and temporal dependencies as ζk(x, t) = ζ̃k(x) eiωkt, where ωeig
k ∈ C is
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Figure 2.7: Selected ocean normal modes (SSH component ζ̃k), including three eigen-
modes that are important for the synthesis of semidiurnal degree-2 tides (e.g., M2). The
modes are labeled by their period lengths Tk = Re(2π[ωeig

k ]−1), where the (T = 26.19 h)-
mode dominates the evolution of diurnal degree-2 tides (e.g., K1). Amplitudes are given
in arbitrary units, with phase lags (i.e., cotidal lines) are plotted in increments of 60◦

(magenta: ϕeig
k = 0◦; dashed: ϕeig

k < 0◦). The red frame indicates the region depicted in
Figure 2.9, where tidal dynamics show the depicted Kelvin wave pattern.

the so-called eigenfrequency of the respective eigenmode. With the help of the eigenmodes
of the adjoint problem ζ̃adk , the temporal evolution of the forced system is a superposition
of said eigenmodes, reading

ζω(x, ωt) = Re
(∑

k

1
i(ωeig

k − ω)
< F0, ζ̃

ad
k > ζ̃k(x) eiωt

)
, (2.23)

where the summation is carried out over all eigenmodes, and < ·, · > is a suitable scalar
product, e.g., the global energy functional (Marchuk and Kagan, 1983). Equation (2.23)
is used to illustrate the nature of OTD in the following.

Resonance The relative weights attributed to the individual eigenmodes are determ-
ined by two factors. The first is the shape factor, Ck =< F0, ζ̃

ad
k >, and the second is

the resonance depth, Rk(ω) = −i(ωeig
k − ω)−1 (Müller, 2008; Marchuk and Kagan, 1983;

Platzman, 1991). The shape factor is identical for all gravitational tides of a given degree
and order as F0 ∼ ∇Ylm (cf. Equation 2.8). Only the resonance depth depends on the
frequency ω of the exciting acceleration. It is maximum for ω = Re(ωeig

k ), in which case
Rk = Im(ωeig

k )−1 indicates that the system is on resonance.
The linearized equations allow one to precisely distinguish the description of tidal res-
onance from the respective eigenmodes, which are independent of the amplitude and
frequency of the exciting force.
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Ocean Normal Modes and Tidal Waves The eigenmodes of the world oceans are
called ocean normal modes and, together with their eigenfrequencies ωeig

k , define the re-
sponse characteristics of the ocean to barotropic forcing.
Following Equation (2.21), these solutions crucially depend on a set of parameters of which
some are constant (e.g., g0) or vary in a precisely known way (e.g., f [ϕ]). However, at least
two parameters are strongly variable on a global scale: The parametrization of friction
and the bathymetric function H (including coastlines that appear as no-flow boundary
conditions). Especially the latter exerts a sensitive influence on the eigenmodes and the
resonance frequencies of the ocean, being the controlling parameter of the shallow-water
wave speed csw =

√
g0 H.

Due to the high variability ofH, analytical solutions only exist for simplified ocean geomet-
ries, e.g., water planets, cylindrical, or other symmetrical basins (e.g., Pnueli and Pekeris,
1968; Thomson, 1879). Ocean normal modes are calculated with the help of numerical
procedures (e.g., Platzman, 1984a) and are presented in Figure 2.7 for the computation
of Müller (2008). For the world oceans, several eigenmodes possess resonance frequencies
ωeig
k close to diurnal and semidiurnal ocean tide frequencies with relatively large scale

factors Ck. Consequently, only a few eigenmodes dominate the tidal ocean response.
Generally, eigenmodes are grouped in Kelvin (gravity) and Rossby (vorticity) waves, de-
pending on the physical principles that dominate their propagation. Concerning the later
presented ocean tide solutions, we want to focus on the essential characteristics of normal
modes. These include the occurrence of amphidromic points (points where the tidal amp-
litude |ζ| is zero) and the description by cotidal lines (connecting points that experience
high water simultaneously). Cotidal lines converge towards amphidromic points (cf. Fig-
ure 2.7 and later figures). Thus, tidal surface waves encircle these points in the direction
described by the succession of high waters. One should remember that ocean normal
modes consist of tidal flow and elevation components. The relation of tidal flow to tidal
elevation is briefly discussed in Section 2.3.

Linear Admittance Theory Due to the near-resonant nature of the ocean normal
modes to tidal frequencies, the mean ocean response to tidal forcing is typically much
stronger than predicted by equilibrium theory. A dimensionless measure for the ocean
resonance strength can be constructed by dividing the first component (ζ-component)
of Equation (2.23) by the amplitude of the partial tide generating potential ab

l Ai/g0,
i.e., normalizing the forcing strength to a unit value10 f lm0 . The degree and order of the
TRP were reapplied to the unit forcing to highlight their importance for the shape factor.
The dimensionless, complex admittance function

Zlm(x, ωi) = g0
ζ̃ωi(x)
ab
l Ai

=
∑
k

1
i(ωeig

k − ωi)
< f lm0 , ζ̃adk > ζ̃k(x) , (2.24)

which can be evaluated for individual partial tides, labeled i, is obtained. The admittance
function can be seen to yield a perfect description of barotropic ocean tide physics and
predict the ocean response when forced at an arbitrary frequency, e.g., for any selected

10Partial tides with significant radiational forcing should be treated individually, as their shape factors
differ from purely gravitationally excited tides.
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partial tide i, by evaluating

ζωi(x, ωit) = Re
(
ab
l Ai
g0

Zlm(x, ωi)eiωit

)
. (2.25)

While Equation (2.24) motivates that Zlm is a continuously-differentiable function in ωi,
with multiple resonances, it is a practical matter of fact that Zlm varies only weakly within
the width of the tidal bands δω ≈ 3 ◦

h .
This observation founds the basis for tidal inference (e.g., Ray, 2017), for which the
most prominent example is linear admittance theory. Here one assumes that Zlm varies
only linearly in a specific frequency range bounded by major-amplitude tides that can be
precisely measured with geodetic techniques. The linear approximation is then employed
to evaluate Zlm for other partial tides that can be measured less precisely, typically minor
tides. Linear admittance theory is, with some success, routinely applied to increase the
number of partial tides provided by data-constrained tidal atlases (e.g., Petit and Luzum,
2010).
On the other hand, there are cases where the theory is non-applicable. First, Zlm is only
a smooth function of frequency for tides with identical unit forcing f lm0 , i.e., it is unsteady
for tides originating from higher degree forcing (e.g., l = 3) or radiational tides. Further,
It is evident from Equation (2.24) that the linear approximation is not exact, especially
close to resonance or for larger interpolation spans. Additionally, realistic OTD is (weakly)
nonlinear, which results in a nonlinear generalization of Equation (2.24). In summary,
the resonant nature of OTD that is best traceable within the linearized approximation
motivates some aspects of linear admittance but shows the limits of its applicability.

Tidal Synthesis Equation (2.23) formulates the ocean response to forcing of a fixed
frequency will be a superposition of independent ocean normal modes oscillating at the
same frequency, i.e., as a linear, frequency-dependent operator. This description implies
that the ocean response to accelerations which are composed of a multitude of individual
frequency components (e.g., Platzman, 2002), can be described individually for each fre-
quency without having to consider the interaction between individual components (su-
perposition). While nonlinear operators in the PDE contradict this expectation, OTD is
empirically observed to be close to linear, with small yet significant nonlinear corrections
that will be discussed in more detail in the following section.

2.2.3 Nonlinear Ocean Tidal Dynamics and Tidal Spectrum

Drawing on the material the previous sections, the momentum conservation component
of Equations (2.1) is reformulated, reading

∂tv + f × v + (v · ∇) v = −g0∇ (ζ − ζSAL) − Dv + F , (2.26)

with Dv = r

H
|v|v − R̂v + 1

H
Cv + ricefice

H
|v − vice| v ,

and F = ∇ (Vtid + Vp + Vl + Vo) + W + ricefice

H
|v − vice| vice .
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Figure 2.8: Tidal spectrum at the small offshore island of Helgoland (location: ‘Binnen-
hafen’, ϕh = 54.179◦N, λh = 7.890◦E) presented for diurnal to 1/4-diurnal frequencies.
The tidal sea surface height constituents are plotted in black, with the equilibrium tidal
heights of the TGP added in red. The relation from black to red markers indicates insig-
nificant resonance for diurnal and terdiurnal tides, strong resonance for semidiurnal tides,
and significant shallow-water tides of terdiurnal and higher frequencies that do not have
a notable counterpart in the TGP.

The equations are nonlinear in ζ. Turbulent ice friction, advection (i.e., [v · ∇]v), wave
drift (i.e., −∇ · [ζv]), and, most notably, turbulent bottom friction lead to the interac-
tion of individual partial tides. Among other effects, these interactions trigger second-
harmonic generation (e.g., ω+ω = 2ω), forming overtides, and sum-frequency generation
(e.g., ω1 +ω2 = ω3), forming compound tides. They are often summarized under the term
shallow-water tides, as nonlinear effects are strongest in shallow-water areas, where the
tidal velocity v is much higher, hence inducing more vital interaction.
Shallow-water tides are generated independently from external tide-generating forces and
often do not possess a notable counterpart in the TRP (cf. Figure 2.8 for terdiurnal and
higher frequencies). The TG in Figure 2.8 is placed in a shallow-water environment in-
dicating that nonlinear tides can reach considerable amplitude (most notably 1/4-diurnal
components, as M4, the principal overtide of M2). Nevertheless, they are not restricted
to shallow seas but also propagate into the deep ocean. While the TRP for diurnal tides
has even higher equilibrium values than for semidiurnal tides at this latitude, the ocean
tide response is feeble. Insignificant diurnal tides also motivate the small amplitude of
terdiurnal compound tides that originate from interaction between a diurnal and semidi-
urnal partial tide (e.g., K1 + M2 → MK3).
Out of the example tidal spectrum in Figure 2.8, data-constrained ocean tide models only
provide a reduced sample size, e.g., 34 tides for FES14 (Lyard et al., 2021) or 17 tides for
EOT20 (Hart-Davis et al., 2021b). Residual partial tides are estimated using the linear
admittance theory (Section 2.2.2). We want to distinguish several partial tides where
this approach is imprecise or non-applicable. For these partial tides, data-unconstrained
solutions are beneficial and valuable. Thus, they will be targeted in this thesis. These
groups include (cf. Figure 2.8):

• Degree-2 partial tides that are located at the edges of the tidal bands (e.g., 2Q1 and
OO1) to reduce the extrapolation distance of the admittance function
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Figure 2.9: Ocean tidal dynamics evoked by the M2 partial tide around New Zealand and
South Australia taken from the FES14 tidal atlas. The tidal sea surface anomaly ζ is
depicted in the amplitude-phase notation, where tidal phase lags ϕζ (i.e., cotidal lines)
appear in increments of 60◦ (magenta: ϕζ = 0◦; dashed: ϕζ < 0◦). Tidal transports V
are integrated as ellipses, where the color coding refers to the maximum tidal transport
(i.e., the semi-major axis V+). Transport phase lags are plotted relative to ϕζ , where black
arrows symbolize the transport that is in-phase with the local sea surface anomaly, and
red arrows refer to the out-of-phase component (for ζ[x, t] = 0). The plot is augmented
by TG stations (red, ◦) and OBP recorders (black, ⬢) as in Figure 1.2.

• Degree-3 partial tides like 3M3, where excitation functions follow spherical harmonic
functions Y3m, and cannot be related to major tides which are of degree-2

• Tides that are partially or entirely excited by atmospheric effects as S1, S2, and S3
(e.g., Balidakis et al., 2022) and thus possess unique excitation patterns and thereby
shape factors Ck

• Nonlinear, shallow-water tides that are unrelated to external forcing potentials
(e.g., M4, MK3, or MS4)

• Seasonal variation tides as Mα,β
2 , that originate from periodic variations in ice cover,

ocean stratification (Müller et al., 2014), and other time-variable components of the
PDE given in Equation (2.26)

This chapter is concluded by introducing partial ocean tide solutions in analogy to the
partial potentials of Equation (2.8). Additionally, diagnostic equations that can be used
to derive selected secondary observables are discussed.

2.3 Primary and Secondary Ocean Tide Observables
Tide-generating forces (Section 2.1) induce periodic disturbances in the world oceans.

Equations (2.26) describe the underlying dynamics, including nonlinear contributions.
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Thus, the tidal state of the world ocean, ζ = (ζ, u, v), can be described by

ζ(x, t) =
∑

all tides
ζicos(x) cosχi(t) + ζisin(x) sinχi(t) =

∑
all tides

|ζi|(x) cos (χi(t) − ϕi[x]) ,

(2.27)
where |ζi| = (|ζ|, |u|, |v|)i comprises SSH and flow amplitudes, and ϕi = (ϕζ , ϕu, ϕv)i is
the corresponding phase vector (cf. Equation 2.9).
We refer to ζ as primary ocean tide observables. The label ‘all tides’ in series (2.27), refers
to all partial tide frequencies of the tide-generating forces and all frequencies originating
from nonlinear tidal interaction, as described in the previous section. In principle, this
is an indefinitely large number. However, only partial tides that induce significant signal
variability are empirically resolvable. The vectors ζicos and ζisin are the in-phase and quad-
rature part of the individual partial tides equivalent to the amplitude/phase notation as
in Equation (2.12), i.e., |ζ|i and ϕi. For convenience, they are comprised in the complex
vector field ζi = ζicos+ im ζisin, where im = i =

√
−1, is the imaginary unit. ζi extensively

defines the OTD evoked by a certain partial tide i11.
OTD for each partial tide comprise oscillations of the sea surface anomaly ζ i and the
ocean flow, described by the velocity vector vi, or the transport vector Vi = Hvi. The
relation of the tidal velocity to the tidal elevation is non-trivial12. While ζ i is a scalar, Vi

is a vector whose east and north components, Ui and Vi, both possess individual amp-
litudes and phases. Thus, the tidal transport vector generally changes its direction and
absolute value, encircling a tidal ellipse. Consider the Appendix of Pugh and Woodworth
(2014a) for a detailed description of the tidal ellipses.
This thesis focuses, above all, on tidal elevations ζ. To nonetheless get a picture of the
relationship between tidal elevation and tidal transport, tidal ellipses for the M2 partial
tide are presented in Figure 2.9 for a designated region. The ellipses are augmented with
vectors depicting the tidal flow’s direction and relative strength. Black arrows indicate
transport vectors in phase with the sea surface height anomaly, while out-of-phase trans-
ports are shown as red arrows. Ellipses dominated by black arrows point to progressing
waveforms (e.g., the Kelvin wave around New Zealand), which means that the tidal flow
is at it’s maximum at high and low water. In contrast, a dominant red arrow component
points to a standing wave character (e.g., in the Great Australian Bight), which means
that the tidal flow is strongest in between ebb and flood. The rotational sense of the
ellipse can be tracked by rotating the black arrow on the shortest way to the position of
the red arrow.
In addition to the introduced primary observables, this thesis is concerned with the pre-
diction of secondary observables of OTD (cf. Table 1.1). The discussion concentrates
on signatures of ocean tidal loading and ocean tide levels, which are both derived from
the tidal sea surface height displacement ζ i. In the following, the diagnostic equations
describing said secondary observables are introduced.

Ocean Tidal Loading Ocean partial tides periodically impose a load onto the solid
Earth that is proportional to the induced sea surface height anomaly and expressed by
ρsw g0 ζ

i. The imposed load induces a vertical displacement of the solid Earth’s surface,
11In this thesis tides are labeled with i, ω, and ωi, which implicitly refer to the same partial tide.
12It is possible to indirectly observe tidal transports by their induced magnetic field, which is another

secondary observable (e.g., Saynisch-Wagner et al., 2020).
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Figure 2.10: Ocean loading displacements evoked by the M2 partial tide around New
Zealand and South Australia taken from FES14. The vertical displacement ζb is depicted
in the amplitude-phase notation, where tidal phase lags ϕb (i.e., cotidal lines) appear
in increments of 60◦ (magenta: ϕb = 0◦; dashed: ϕM2 < 0◦). Horizontal (east/north)
displacements ζh are integrated as ellipses, where the color coding refers to the maximum
horizontal displacement (i.e., the semi-major axis ζ+

h ). Horizontal displacement phase lags
are plotted relative to ϕb, where black arrows symbolize the displacement that is in-phase
with the local vertical deformation, and red arrows refer to the out-of-phase component
(for ζb(x, t) = 0). The plot is augmented by GNSS (gray, ◁) and VLBI (magenta, ▷)
stations and gravimeteric observatories (blue, ◦) as in Figure 1.2.

denoted
ζ ib(x) = 3ρsw

ρse

∑
l,|m|≤l

hl
2l + 1 ζ ilmYlm(x) . (2.28)

Additionally, horizontal loading displacements are obtained by evaluating

ζih(x) = 3ρsw

ρse

∑
l,|m|≤l

ll
2l + 1 ζ ilm∇Ylm(x) . (2.29)

Here ll is the Shida number of degree l, which is used to describe horizontal displacements
(e.g., Agnew (1997)). These displacements are accompanied by gravity anomalies on the
Earth’s surface13 (Merriam, 1980), reading

g⊥(x) = −g0
3ρsw

ρse

∑
l,|m|≤l

l − (l + 1)kl + 2hl
2l + 1 ζlmYlm(x) , (2.30)

and generally in the gravity potential at constant height z, reading

V [ζ i](x, z) = 3ρsw

ρse

∑
l,|m|≤l

1 + kl
2l + 1

(
Re

Re + z

)l+1
ζ ilmYlm(x) . (2.31)

13This formulation ignores possible short-ranged Newtonian attraction components (cf. Voigt et al.,
2023) from close-by water masses.
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Figure 2.11: The tidal temporal variations of the sea level ζ(t) around the RSL define tidal
marshes that are the basis for the occurrence of biological species, or geological tracers,
which then can become SLIPs. The tidal marshes are limited by ocean tide levels, which
are statistical measures of ζ(t).

These quantities are detectable with geodetic techniques described in Section 1.2. Like the
SAL potential, these observables are expressed as a spherical harmonic series (e.g., Agnew,
2012) of the tidal sea surface height anomaly ζ i. We recall that ζ i = ζ icos + im ζ isin ∈
C. Hence, the discussed quantities follow was complex vectors of identical structure.
Differences between the latter four equations reside in the combinations of the load Love
and load Shida number hl, kl, and ll that define the degree-wise weighting of spherical
harmonic contributions. Like the SAL potential, contributions are dampened degree-wise
by (2l + 1)−1, which leads to the dominance of long wavelengths.
Further, the definition of the tidally-induced gravity potential (Equation 2.31) shows that
individual contributions to the potential are dampened depending on the evaluation height
z and the spherical harmonic degree l. Therefore, information about the gravity field is
usually stored in Stokes Coefficients for each base function Ylm and z = 0 (e.g., Chao,
2004; Heiskanen and Moritz, 1967), which allows a straightforward evaluation of V [ζ i] at
arbitrary heights.
The relation between ζ i and the derived quantity ζ ib is depicted in Figs. 2.9 and 2.10, where
the latter is obtained by inserting ζ i into Equation (2.28). The oscillation systems are not
identical, but ζb appears smoothed and shifted by approximately 180◦, as positive loads
lead to negative surface displacements. Further, the displacement field ζb extends to the
inland, i.e., load tide signatures appear in GNSS, VLBI, and gravimeter measurements.
The same convention is adapted to depict the horizontal tidal displacement vectors ζih
with respect to the horizontal displacement ζ ib, that, in the same manner, describe elliptic
orbits. On the other hand, the causal relation is fundamentally different, as the divergence
of tidal transports ∇ · Vi induces temporal changes in ζ i. At the same time, vertical and
horizontal displacements are both derived from ζ i. Consequently, ζih and Vi, do not
resemble each other, as was the case for ζ ib and ζ i.

Ocean Tide Levels Further, the interpretation of sea-level index points (SLIPs) is
in the focus of this thesis. SLIPs are related the local relative sea level RSL(t) under
consideration of ocean tide levels.
For this, the approach is to derive statistical measures of the tidal sea surface height
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dynamics, i.e., the ζ-component of Equation (2.27)

ζ(x, t) = Re
(∑

i

ζ i(x) ei χi(t)
)
. (2.32)

Ocean tide levels are derived from time series of sea surface height elevations. Levels of
interest are, for example, the mean high water (MHW), and the mean low water (MLW),
which are defined as the mean of all high (low) waters identified within the time series.
Also, the highest astronomical tide (HAT), which is just the highest tidal elevation ob-
tained over the whole time series, represents a reference tide level with respect to the RSL
(cf. Figure 2.11).
Hence, in contrast to ocean tidal loading-derived observables, tidal levels (and marsh
environments) are functions of the entire tidal spectrum and cannot be derived for in-
dividual partial tides. The derivation and interpretation of tidal levels will be specified
more precisely within Chapter 6.
The mathematical equations that define other diagnostic observables of Table 1.1 are
omitted, as they were not employed to study geodetic data within this thesis. Thus, the
review of the theory of global ocean tides is closed, depicting all aspects that are needed
to motivate the development of the employed ocean tide model and its applications in the
following chapters.
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3
Ocean Tide Modelling

In developing an ocean tide model to fulfill O1, the presented efforts are built on decade-
long work to simulate global ocean tides in Hamburg, Germany. Starting from the fun-
damental work of W. Zahel (Zahel, 1977, 1978), unconstrained hydrodynamic models
were used to quantify the contributions of ocean tides to Earth’s rotation (Seiler, 1991),
the evolution of tides since the Last Glacial Maximum and its consequences for oceanic
torques acting on the solid Earth (Thomas and Sündermann, 1999), interactions among
ocean tides and the general circulation (Thomas et al., 2001), and the identification of
free barotropic normal modes in the world ocean under the influence of friction and sea-
bottom deformations caused by surface loading (Zahel and Müller, 2005).
This Chapter is dedicated to describing the numerical ocean tide modeling conducted
within this thesis. First, the ocean tide model TiME that is employed for this PhD thesis
is introduced in Section 3.1. Subsequently, Section 3.2 discusses upgrades to the initial
model configuration, intending to depict advanced tidal hydrodynamics as introduced in
Chapter 2. Afterward, in Section 3.3, the numerical implementation of the novel charac-
teristics into TiME is outlined, and its general mode of operation is discussed1.

3.1 Tidal Model Forced by Ephemerides
The starting point is the Tidal Model forced by Ephemerides (TiME) as described by Weis
(2006), which simulates global barotropic tidal dynamics by solving the nonlinear, inhomo-
geneous shallow-water equations (e.g., Pekeris, 1974)

∂tv + f × v + (v · ∇) v = −g0∇ (ζ − ζSAL − ζeq) − r

H
|v|v + R̂v (3.1)

∂tζ = −∇ ([H + ζ] v) .

determining ζ = (v, ζ) = (u, v, ζ) ∈ R3. All elements of Equation (3.1) were introduced
in the last chapter, while the equation itself is a reduced form of Equation (2.26).
Tidal dissipation (Section 2.2.1) is carried out by quadratic bottom friction and paramet-

1This chapter partially addresses contents that were originally published in Sulzbach et al. (2021a).
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rized horizontal eddy viscosity R̂v (cf. Equation 2.19), while dissipation by wave drag or
ice friction was not considered.
The principal forcing term g0∇ζeq = ∇Vtid is an individual partial tide excitation (re-
stricted to degree-2), i.e., V ilm

tid (Equation 2.8). Alternatively, forcing by the full lunisolar
tidal potential as quantified by the ephemerides of the Sun and the Moon (Bartels, 1957)
could be invoked, which implies simultaneously forcing the model with all partial tide
potentials at once.
Since TiME considers nonlinear accelerations, ephemeridic forcing enables interactions
between individual partial tides. While forcing by atmospheric effects was not considered,
the SAL potential was included in parameterized from, i.e., setting ζSAL = ϵζ (cf. Sec-
tion 2.1.3). TiME solves Equations (3.1) on a regular longitude/latitude (λ/ϕ) grid at
a resolution of 1

12
◦ employing a semi-implicit finite-difference algorithm as described by

Backhaus (1982, 1985).
Since the smallest zonal grid cell size limits the time step size, the zonal resolution is
reduced at two latitude circles towards the North pole and finalized by a spherical cap
to avoid the polar coordinate singularity. Numerical experiments are based on global
GEBCO (GEBCO Compilation Group, 2019) and ETOPO1 (Amante and Eakins, 2009)
bathymetries. It is noteworthy that the bathymetric data set implicitly impacts the tidal
wave propagation by defining the boundary conditions, which is the vanishing of tidal
flow through the coastal margins.
In the following sections, upgrades to the described model configuration and their numer-
ical implementation will be presented. Later, results from both model stages (initial and
upgraded) will be compared.

3.2 Model Characteristics
First, the numerical domain that, in the configuration of Weis (2006), relies on a pole

cap (a large grid cell) at the North Pole is discussed. While this implementation proved
robust, it introduces numerical artifacts that are hard to quantify and limit the model’s
plausibility in the Arctic region. An updated numerical grid that does not necessitate the
pole cap formulation (Section 3.2.1) is introduced to eliminate this source of uncertainty.
This updated numerical grid has implications for the ocean tide model as a whole.
Therefore, Sections 3.2.2 to 3.2.7 summarize changes to the implementation of the Coriolis
acceleration, the formulation of tidal dissipation, the TRP, and tide-generating forces by
atmospheric effects and SAL with respect to the novel grid. Especially in Sections 3.2.3
to 3.2.5, model upgrades are on purpose discussed together with changes due to the new
numerical grid, as both aspects cannot be distinctly separated. The model upgrades are
introduced to improve the model accuracy, which is discussed in Chapter 4.

3.2.1 Numerical Domain: The Rotated-Pole Grid
The numerical core of TiME is based on a temporal finite-difference solver that operates

on a regular (λ/ϕ)-grid on a spherical Earth of radius Re, which is reintroduced later in
Section 3.3. For numerical stability, the discretization is performed in a staggered scheme
that evaluates the tidal flow velocities (u, v) spatially in between the evaluation points of
the sea surface height anomaly ζ (Zahel, 1977).
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Figure 3.1: Selected numerical grid orientations (numerical poles: black circles) on the
world map (geographical poles: red circles), for the Northern (top) and the Southern
hemisphere (bottom). The geographical latitude circles (0◦,±45◦) are indicated (red,
dashed), as well as the boundaries of the reduced resolution zones of the numerical grid
(black, shaded) at ±60◦,±75◦. The selected orientations of the rotated poles are ϕp, λp =
(90◦N, 0◦E) for grid arc (a), (90◦N, 114.5◦E) for (b), (28.5◦N, 114.5◦E) for grid chi (c) and
(75◦N, 40◦W) for grid gre (d).

Due to Earth’s curvature, the zonal distance between two meridian circles is latitude de-
pendent, proportional to ∆x = Reδϕ cosϕ, where δϕ is the constant meridional resolution.
The zonal resolution halves at ϕ = ±60◦ and also at ϕ = ±75◦, which implies a zonal
resolution transition from ∆x = 1

2δϕRe to Reδϕ and from ∆x = 0.52 δϕRe to 1.04 δϕRe,
respectively2 (cf. Figure 3.3). Polewards of 75◦, the zonal resolution increases further,
which results in progressively asymmetrical grid cell boundaries in high latitudes.
While this asymmetrical shape is undesirable in itself, it further limits the model’s time
step size ∆t, as the Courant–Friedrichs–Lewy (CFL) condition qualitatively limits the sta-
bility of the solver, i.e., ∆t/∆xmin csw ≤ Cmax. Thus, keeping the minimum zonal distance
∆xmin as large as possible is invaluable to allow larger time steps ∆t. While pinching out
half of the remaining meridians polewards of two fixed latitude circles allows quadrupling
the time step size (formulation after Zahel, 1970), the zonal resolution converges to 0
while approaching the numerical singularity at the poles.
The geographical South Pole is land-covered (approximate dry radius ∆ϕSP = 5◦), so the
numerical singularity was elegantly avoided. However, the North Pole is centered in the
Arctic Ocean. This problem was treated in the implementation of Weis (2006) by a pole
cap formulation, which is a large grid cell of radius ∆ϕNP that closes the numerical domain
for the northernmost latitudes. Thus, effectively, the zonal resolution can be limited to
∆xmin = 4δϕ cos

(
π
2 − min[∆ϕNP,∆ϕSP]

)
Re. The default resolution of TiME is δϕ = 1

12
◦

(implying δλ = 1
6

◦ and δλ = 1
3

◦ in reduced resolution zones) and ∆ϕNP = 4◦, resulting in a
minimum zonal increment of ∆xmin = 2.59 km, which is 28% of the meridional increment

2Originally, the formulation of Weis (2006) only existed for the Northern Hemisphere but was extended
to the southern latitudes.
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Figure 3.2: Selected numerical grids used for experiments with TiME, defined by their
numerical North Pole position on the standard grid. The poles of grid (a), labeled aus,
are positioned in Australia (dry pole) and the North Atlantic (wet pole) at ϕp, λp= (24◦N,
45◦W). Subplot (b) shows grid gre with poles at (75◦N, 40◦W), and (c) introduces grid
chi (28.5◦N, 114.5◦E). The polar reduced resolution zones are introduced as gray-shaded
regions, as in Figure 3.1.

of 9.3 km. This numerical implementation is labeled as arc grid (cf. Figure 3.1a).
The occurrence of coordinate singularities in the numerical domain is a common challenge
in Earth system modeling. Possible solutions include reformulation of the PDE, e.g., on
a spherical harmonic basis (e.g., Stevens et al., 2013), unstructured numerical meshes
(e.g., Carrère and Lyard, 2003; Korn, 2017), or regular grids that position numerical
poles outside of the computational domain (e.g., by using a tripolar grid, e.g., Jungclaus
et al., 2013). The numerical core of TiME is kept largely unmodified and positions the
numerical poles on land-covered antipodes. This modification does not impact the solving
algorithm. Changes due to this pole rotation are confined to modifying physical effects
depending on the geographical location.
Two pole orientations were selected to allow a minimum ‘dry-radius’ min(∆ϕNP,∆ϕSP) =
4◦ around the numerical pole, which is the maximum under present-day conditions. These
are configurations with numerical poles in East Asia/South America (configuration chi,
Figure 3.1c), and in Greenland/Antarctica (configuration gre, Figure 3.1d)3. The min-
imum dry radius determines the largest zonal resolution. Thus, the maximum time step is
comparable to the standard configuration (arc). Additionally, another configuration is em-
ployed for testing purposes. This configuration (aus) positions the numerical pole cap in
the North Atlantic (South Pole: Australia), i.e., in a region with pronounced OTD, to
estimate the impact of the pole cap formulation. The three numerical grids are presented
in their unfolded form in Figure 3.2.

3.2.2 Coordinate Transform and Coriolis Acceleration
In principle, the pole rotation affects all components of PDEs (2.26) and (3.1), which

exhibit an explicit coordinate dependence. We denote the initial geographical coordinate
system as (λ, ϕ) and the new, rotated system as (λ′, ϕ′), where the numerical poles of
the rotated coordinate system (λ′

p = 0◦, ϕ′
p = 90◦) are positioned at the geographical

coordinates (λp, ϕp) on the unrotated grid. The two reference systems can be transferred
to each other by successive rotations parameterized with Euler angles. Here, the right-

3A third configuration in South America/Kalimantan (kal) was considered but discarded it due to its
reduced dry radius.
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Figure 3.3: Convergence of the meridians on the Northern Hemisphere, and zonal resol-
ution reduction (δλ) at |ϕ| = 60◦ (blue) and |ϕ| = 75◦ (magenta) of TiME’s numerical
domain. The depicted aspect ratio of the grid cells changes between approximately 1:1
(light gray) and 1:2 (dark gray) at the indicated latitude circles (cf. Figures 3.2 and 3.1).

handed coordinate system is chosen so that, in the unrotated system, the z-axis is the
Earth rotation axis, and x and y point from the Earth center into the directions λx =
0◦, ϕx = 0◦ and λy = 90◦, ϕy = 0◦, respectively. The rotations are:

• First, a rotation around the z-axis (Earth axis) by angle αe = λp

• Second, a rotation around the new y-axis by angle βe = 90° − ϕp

• The third Euler angle is γe = 0.

Figures 3.1a-c illustrate the transformation from arc to chi by successive Euler rotations.
Evaluating the rotation matrices results in the coordinate transformation

sinϕ = cosϕ′ cosϕp cosλ′ + sinϕp sinϕ′ , (3.2)

and tan(λ− λp) = sin(λ′)
sinϕp cosλ′ − cosϕp tanϕ′ ,

that specify the old coordinates in the new coordinate system depending on the location
of the rotated poles. Equations (3.2) can be used to transfer scalar quantities of the PDE
to the new coordinate system, which applies to the Coriolis factor f(ϕ) = 2Ωe sinϕ. As
an example, Figure 3.4b displays the Coriolis factor of the rotated chi grid, where the
maximum absolute value of f(ϕ) at the geographical poles is visible.
On the other hand, the transfer of vectors between both reference systems is more com-
plicated due to the locally different definitions of north and east on both grids. In general,
the reference directions of both coordinate systems, i.e., eN and e′

N, are misaligned by a
certain angle α = eN ·e′

N. The respective local unit vectors in both reference systems can
be derived by differentiation of the coordinate vector er = (cosϕ cosλ, cosϕ sin λ, sinϕ)
after ϕ, ϕ′ (north) and λ, λ′ (east). Utilizing Equations (3.2), the rotation angle is given
by

tanα = − cosϕ′ cosϕp sin λ′

cosϕp sinϕ′ cosλ′ − sinϕp cosϕ′ . (3.3)
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Figure 3.4: Rotation angle α, as obtained by evaluation of Equation (3.3) (a), and Coriolis-
factor f(λ′, ϕ′) on rotated chi grid (b).

It is possible to invert this equation using the atan2 -function, where the rotation angle α is
marked in Figure 3.4a. When transferring vectorial quantities (as, for example, barotropic
transports V, or velocities v) back from the rotated to the unrotated grid, it is necessary
to reverse the misalignment by applying the rotation matrix

Tα =
(

cosα sinα
− sinα cosα

)
, (3.4)

in evaluating v = Tαv′. All quantities presented on standard grids within this thesis
are obtained by first-order conservative remapping (e.g., Jones, 1999) with the help of
the Climate Data Operators software (CDO) (Schulzweida, 2022). Vectorial quantities
(e.g., transport ellipses as in Figure 2.9) are rectified by applying the rotation matrix (3.4).
An example of the local rotation angle is attached to Figure 3.5c and 3.5f , which integrates
the definitions of north and east on both grids. In the following sections, the impact of
introducing the described rotated-pole grid on other aspects of the model is revisited.

3.2.3 Bathymetric Map
The most prominent component of the ocean tide model affected by the rotated-pole

setup is the bathymetric function H(λ, ϕ). In the following, the discussion focuses on the
selection and creation of the bathymetric map.
In its initial configuration, TiME employed GEBCO and ETOPO1 bathymetries. More
recently, the high-resolution RTopo-2 data set (Schaffer et al., 2016) also became available
(cf. Figure 2.6c). Based on GEBCO data, RTopo-2 uses additional data sources in polar
latitudes to accurately represent sub-ice-shelf cavities. These areas are given considera-
tion by computing the difference between the ice base and bedrock depth as bathymetric
depth, i.e., the free water column (cf. Schaffer et al., 2016, page 545). Compared to the
original GEBCO data set, this modification implies a substantial extension of the ocean
domain towards the south (the southernmost ocean point moves from approximately 78◦S
to 86◦S). This extension is expected to strongly impact the tidal resonance strength, as
the bathymetric function is known to exert substantial control over the ocean normal
modes (Section 2.2.2) and OTD in general (Wilmes and Green, 2014; Arbic et al., 2009).
Since the resolution of TiME ( 1

12
◦ = 5 arc minutes) is well below the resolution of the
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Figure 3.5: Derivation of the bathymetric map for two example locations: The Straight
of Gibraltar (top) and the Hawaiian Archipelago (bottom). The high-resolution RTopo-
2 bathymetry (a, d) is interpolated to the rotated grid chi at 1

12
◦ (b, e), employing the

approach described in the text. Subplots (c, f) show the tenfold magnified differences
induced by inv-con remapping with respect to con remapping. Differences in the ocean
domain between both interpolation strategies are highlighted (magenta), and the rotation
angle α (cf. Equation 3.3) is indicated. (Un)rotated coordinates appear in black (red).

RTopo-2 bathymetry (30 arc seconds), special attention is paid to how to perform the
necessary resolution reduction.
The employed interpolation strategy is motivated by the perturbation theory of Equa-
tions (2.26) (cf. Appendix B). The interpolation algorithm is implemented using CDO. It
creates the bathymetric map in the rotated-pole orientations (arc/chi/gre/aus). Within,
the remapping was performed individually for 10 × 5 subdomains of the final bathymet-
ric map to limit the necessary amount of memory. The algorithm mainly relies on the
first-order conservative interpolation (e.g., Jones, 1999) of inverse depth (inv-con), i.e., 1

H
,

which assigns the highest weights to the most shallow depths. Thus, this approach pre-
serves ridges and seamounts.
As a secondary effect, inverse-conservative interpolation maximizes the land domain,
i.e., evaluating all grid cells as land, which contain at least one dry grid cell. This
side effect is often undesirable, as it can induce the closing of straights (e.g., the Straight
of Gibraltar), which alters the character of the ocean domain unrealistically. Therefore,
the algorithm relies on conservative interpolation of ocean depth H for grid cells on the
boundary between land and ocean (con). As the depth H = 0 is assigned to dry grid
cells, this approach maximizes the ocean domain and conserves the mean depth of the
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respective grid cell, a property that is important for narrow straights. This approach thus
aims at being ‘ridge and straight conserving’. The subdomain-wise interpolation approach
is illustrated in Figure 3.5, where the Straight-conserving character is presented on top
(a-c). At the same time, an example of ridge conservation is shown below (d-f). When
employing this algorithm, the final bathymetry should be tested for the correct represent-
ation of isthmuses that function as hydrodynamic barriers, e.g., the Isthmus of Panama.
Following this interpolation procedure, the minimum water depth is set to 15 m, while
alternative minima of 10 or even 5 m have a negligibly small influence on tidal dynamics.
In addition, the Caspian Sea Level (CSL) is subject to rapid climatic changes compared
to the open ocean (Beni et al., 2013; Chen et al., 2017) and has been fixed to −26.5 m.
The finally obtained bathymetric map is thus fit to simulate tides in the global world
oceans, as well as in marginal seas and the world’s largest endorheic basin, the Caspian
Sea (e.g., Medvedev et al., 2016, 2017).

3.2.4 Tide-Raising Potential
This section discusses the upgraded implementation of the TRP, which pursues two goals.
First, the adaptation of the TRP to the rotated-pole grid and, second, the consideration
of degree-3 spherical harmonic functions that allows the simulation of degree-3 tides.
In Section 2.1.1, the partial TRP (2.8) was derived in the form

V ilm
tid (ϕ, λ, t) = abl (ωi) Ai (Ylm(ϕ, λ) cosχi(t) − Yl−m(ϕ, λ) sinχi[t]) , (3.5)

that allows separating spatial variables (ϕ, λ) from the temporal dependency encoded in
the phase argument χi(t). It is aimed to rewrite V ilm

tid (ϕ, λ, t) as V ilm
tid (ϕ[ϕ′, λ′], λ[ϕ′, λ′], t)

to represent the tide-raising forces on the rotated grid correctly. In principle, achieving
this rotation by inverting Equations (3.2) is possible. However, an alternative approach
is preferred because rotations must only be applied to spherical harmonic functions Ylm
and Yl−m.
This approach employs Wigner D-functions that have their origin in the theory of rep-
resentations of the three-dimensional rotation group, O(3), and the special unitary trans-
formation group, SU(2) (Risbo, 1996). Their main applications are in the theory of
angular momentum in quantum mechanics (e.g., Varshalovich et al., 1988). Nevertheless,
the possible field of applications is much broader. We refer to the latter two publications
and references therein for an in-depth discussion of Wigner-D matrices and related topics.
This thesis is concerned with the specialized application of rotating real-valued spherical
harmonic functions with the help of D-functions and derived quantities, which is also
necessary for several other geoscientific problems, e.g., the perturbation of satellite orbits
(e.g., Gooding and Wagner, 2008).
When parameterizing the rotation as outlined in Section 3.2.2 by two non-zero Euler
angles, the transformation reduces to

Ylm(ϕ, λ) =
l∑

µ=−l
rlmµ(ϕp, λp) Ylµ(ϕ′, λ′) . (3.6)

Within, the tensor rlmµ(ϕp, λp) encrypts the projection of the ‘input’ spherical harmonic
function Ylm(ϕ, λ), on the ‘output’ function Ylµ(ϕ′, λ′) in the rotated system (with its
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Figure 3.6: Rotation Matrices r2mµ that performs rotations of the degree-2 TRP for
different pole locations: (a) the arc grid at ϕp, λp = (90°N, 0°E), (b) the arc grid rotated
in an east-west direction to (90°N, 114.5°E), (c) the chi grid at (28.5°N, 114.5°E), and (d)
the gre grid at (75°N, 40°W).

North Pole located at ϕp, λp). To obtain the entire transformation, projections within
the indicated spherical harmonic degree l are added, which is 2l + 1 contributions in
total. While this approach allows quick rotations of spherical harmonic coefficients up to
a high degree (Risbo, 1996), it also has the practical advantage that spherical harmonic
functions of degrees 2 and 3 (as in the TRP) can be described by a 5 × 5 and a 7 × 7
matrix, respectively4. For example, r2mµ(ϕp, λp) is presented in Figure 3.6 for several grid
configurations (identical to Figure 3.1).
The respective matrices have to be only calculated once per pole orientation. TiME em-
ploys the rotation algorithm provided by (Gooding and Wagner, 2010), which is applied
to spherical functions of degree l. The astronomical Tide-Generating Potential is adapted
from the HW95 tidal development of Hartmann and Wenzel (1994, 1995b).
Mathematically, tide-raising accelerations are proportional to ∇Ylm. As the analytical
differentiation of spherical harmonic functions is straightforward, accelerations are calcu-
lated directly on the staggered numerical grid by evaluating the differentiated versions of
Ylm in the east and north directions (cf. Appendix A).

3.2.5 Energy Dissipation
Out of the dissipative mechanisms introduced in Section 2.2.1, the initial TiME imple-

mentation did not include topographic wave drag and sea-ice friction. Therefore, they
are included in the conducted upgrade. The latter has a minimal impact on the model
performance, as quantified by geodetic data sets, but allows investigating the influence
of glacial, paleoclimatic conditions on tidal dynamics. Paleo simulations are the subject
of Chapter 6, where the ice friction parameterization is briefly introduced as modified
bottom friction. As it is not significant for the TiME’s core characteristics, the effect is
ignored here, and focus is given to the newly implemented topographic wave drag para-
metrization, which has been shown to exert a critical influence on the model accuracy

4The vertical Coriolis vector f is proportional to sin ϕ = P10(sin[ϕ]) and can be rotated with the
procedure discussed in this Section, i.e., employing the matrix r1mµ.
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(e.g., Buijsman et al., 2015).
Barotropic parameterizations of baroclinic dissipative processes have been shown to ac-
curately capture spatial dissipation patterns (e.g., Green and Nycander, 2013; Buijsman
et al., 2015). A parameterization introduced by Nycander (2005) is employed that is built
on prior considerations of Bell (1975) and Llewellyn Smith and Young (2003). The wave
drag formulation is described by the fully-populated second rank tensor

C = Nb

4π

√
1 − f 2

ω2 ΘH(|f | − ω)
(

2 (∂x1H ∂x1j) ∂x1H ∂x2j + ∂x2H ∂x1j
∂x1H ∂x2j + ∂x2H ∂x1j 2 (∂x2H ∂x2j)

)
.

(3.7)
Here Nb is buoyancy frequency evaluated at the sea floor, and xi are local orthogonal
coordinates that we identify with east and north directions on the rotated-pole grids (λ′

and ϕ′). Please note that the explicit dependence on ω renders C non-local in time.
Further, the tensor implicitly depends on the geographical latitude, encoded in f =
2Ωe sinϕ, and is set to zero polewards of the critical latitude, defined by |f | − ω = 0.
Within Equation (3.7) the Heaviside-Function ΘH(ω), which is equal to 1 for ω > 0, and
0 for ω ≤ 0, ensures the consideration of the critical latitude.
The function

∂xij(x) =
∫
dA′gσ(|x − x′|)∂xiH(x′) (3.8)

is calculated by a bathymetric convolution integral with the non-homogeneous Green’s
function gσ(r) = 1

σ
Gσ( r

σ
). Within, the kernel function Gσ(r′) is defined as

Gσ(r′) = 1
r′ −

√
π

2 e−r′2/8I0(
r′2

8 ) , (3.9)

where I0, the modified Bessel function of the first kind, serves as a wave filter. The expli-
cit space dependence of gσ originates from the length scale σ(x) = 1.45NH/(π

√
ω2 − f 2),

which contains information about bathymetry H(x), the depth-averaged buoyancy fre-
quency N(x), and the tidal frequency ω. C is calculated separately for each rotated grid,
following the improved numerical scheme described by Green and Nycander (2013) at a
resolution of 1/30◦. It is then interpolated conservatively with CDO to the coarser 1/12◦-
resolution (also 1/6◦ and 1/3◦) of TiME. The convolution integral (3.8) is truncated at
r = 5σ for each integration point to reduce the computational load.

This parameterization is rigorously inferred from linear wave theory, which allows de-
riving the tensor C from the physical fields H(x), N(x), and Nb(x) without the need
to introduce a free ‘tuning’ parameter that has to be adapted to the ocean tide model
(cf. Figure 2.6). This feature distinguishes the presented approach from several altern-
ative formulations of C, which often implicitly simplify the kernel function Gσ to be
proportional to the Dirac-δ-function. Provided adequate model tuning, the mentioned
alternative formulations result in accurate ocean tide solutions. However, the here pur-
sued formulation has the clear advantage of being directly applicable in situations where
rigorous tuning is impossible (e.g., for objective O3).
To derive the tensor for present-day conditions, depth-resolved hydrographic data from
the World Ocean Atlas (WOA) for salinity (Zweng et al., 2018) and temperature (Locar-
nini et al., 2019) is used in combination with the TEOS-10 equation of state (McDougall
and Barker, 2011) to compute a global map of the buoyancy-frequency N(ϕ, λ, z), where
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Figure 3.7: Amplitude of the diagonal tensor elements of C, i.e.,
√

C2
11 + C2

22, for diurnal
tides (left) and semidiurnal tides (right). The plots are presented in arbitrary units to
highlight the spatial structure of the strongly frequency-dependent dissipation process.

z is a depth coordinate (cf. Figure 2.6). The excitation of internal waves is a strongly
frequency-dependent process that differs for diurnal (ωd = Ωe), semidiurnal (ωsd = Ωe/2),
and terdiurnal (ωtd = Ωe/3) tidal species resulting in different wave drag tensors for each
species (Cd/sd/td)5. The frequency-dependent character of C is especially evident for di-
urnal tidal species, where the tensor is 0 polewards of the critical latitude ±30◦, while for
semidiurnal tides the tensor extends towards the poles (cf. Figure 3.7).
As Buijsman et al. (2015), we follow the approach introduced and developed by Nikuras-
hin and Ferrari (2011); Melet et al. (2013). and Scott et al. (2011) to reduce potentially
overestimated wave drag strength at supercritical slopes. To these means, the drag tensor
is normalized at supercritical slopes to compensate for overestimated dissipation. Fur-
ther, a cutoff depth of 150 m is introduced by assuming shallower seas to be well-mixed
(e.g., Schindelegger et al., 2018).
For the implementation in TiME, a tuning parameter for the wave drag tensor, κw is
added, i.e., C → κwC. While the formulation of the effect proposes κw = 100%, narrow-
bounded variations of κw are allowed. Yet, several factors can influence the accuracy of
the derived tensor. These include the precise numerical formulation (Nycander, 2005),
the accuracy and resolution of the stratification and bathymetric data, and necessary ap-
proximations, e.g., for supercritical slopes. As the uncertainties arising from these factors
cannot be precisely quantified, deviations from κw = 1 are possible. Therefore, they are
considered to optimize the modelling agreement with geodetic data.

3.2.6 Self-Attraction and Loading

The linear parameterization of SAL, ζSAL = ϵζ, is often implemented as a computationally
lightweight solution that can capture the mean effect for selected partial tides. A more
elaborate approach is required for high-accuracy simulations (Ray, 1998a). Here, we
follow an approach reintroduced by Schindelegger et al. (2018) that relies on truncated
spherical harmonic analysis of the SAL potential, i.e., constraining sum (2.13) to a certain

5As long-period tides are very close to the SEQT description, wave drag dissipation has an insignificant
effect on them and is neglected.
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maximum degree and order lmax, i.e.,

ζSAL(x) = 3ρsw

ρse

lmax∑
l,|m|≤l

αl
2l + 1 ζlmYlm(x) . (3.10)

For the computation, the constants ρsw = 1024 kg m−3 (mean density of seawater) and
ρse = 5510 kg m−3 (mean density of the solid Earth) are assumed, while load Love num-
bers (LLNs) stem from Wang et al. (2012) (based on the Preliminary Reference Earth
Model, short: PREM) with a correction to represent low degree LLNs in the frame of
figure (Blewitt, 2003) for evaluation of αl.
On the one hand, the numerical cost for the degree-wise algebraic evaluations in Equa-
tion (3.10) is negligibly small. On the other hand, the computational burden is shifted to
repeated transformations between the spectral and the spatial domain for each time step.
These transformations are efficiently handled with the highly optimized SHTns-package
(Schaeffer, 2013). The high efficiency of this SAL implementation utilizing SHTns has
rendered it a frequently used solution in ocean tide modelling (e.g., Shihora et al., 2021;
Barton et al., 2022; Brus et al., 2023).
The decisive parameter within this implementation is the maximum spherical harmonic
degree lmax, which defines the degree of approximation of this approach. We set lmax =
10...1024 for later simulations to estimate the impact on the model’s accuracy.

3.2.7 Atmospheric Forcing
TiME includes atmospheric forcing for 16 partial tides provided by Balidakis et al. (2022).
The periodic pressure potential Vp for each atmospheric partial tide is first transformed
to the rotated-pole grid using conservative interpolation with CDO. Then, the LAAL and
OAAL potentials (Equation 2.11) are derived from Vp with the help of the SHTns package
(lmax = 1024, other parameters as for Equation 3.10).
Afterward, the atmospheric potentials Vp, Vl, and Vo are combined to calculate barotropic
accelerations on the staggered grid employing finite differences. Similarly, wind stress
accelerationsW for each partial tide are transferred to the rotated-pole grid. Rectification
of the respective vector direction employing matrix (3.4) is necessary before adding them
to the accelerations induced by atmospheric surface pressure anomalies.

3.3 Numerical Solver
The equations of Seiler (1991) were reformulated after the numerical scheme of Backhaus
(1985) by Weis (2006). The resulting semi-implicit numerical scheme has the general form

(
u
v

)p+1

= R1 ·
(

u
v

)p
− g0 R2 ·

(
∂xζ
∂yζ

)p+ 1
2

+ ∆t ·
(
X
Y

)
, (3.11)

with the Coriolis rotation matrices R1 and R2, defined as

R1 =
(
αc βc

−βc αc

)
, and R2 = 1

f

(
βc γc

−γc βc

)
. (3.12)
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Here, the temporal index p and p+ 1 refer to the former and following time step, tp and
tp+1, respectively. The index p+ 1

2 signifies the intermediate time step of the semi-implicit
solver. The rotation matrices R1,2 are populated by the expressions αc = cos(f∆t),
βc = sin(f∆t), and γc = 1 − αc, which result in improved stability of the numerical
scheme (Weis, 2006). Further, ∆t = tp+1 − tp is the time step size of the solver, and X
and Y represent the residual terms, i.e., accelerations, of Equations (3.1).
The semi-implicit algorithm is formulated as an iterative scheme (iteration index: n) by
successive over-relaxation (SOR, e.g., Press et al., 2007). The iterative equation for the
sea surface height difference ∆ζij = ζij(tp+1) − ζij(tp), reads

(∆ζij)n+1 = (1 − ωr)(∆ζij)n + ωr

1 + c5

 ∑
k∈⊕(ij)

ck ∆(ζij,k)n+1 +Bij + Cij

 , (3.13)

where ⊕(ij) signifies all eight neighboring grid cells of (ij), running clockwise from the
northwest in a ‘compass stencil’. Further, ωr is the scheme’s relaxation parameter that
controls the convergence speed. Weis (2006) selected ωr = 1.3 as an optimal value. The
coefficients ck, Cij, and Bij are explicitly evaluated functions of the ocean state (u, v),
predicted by Equations (3.11). The SOR problem is formulated on a so-called ‘chess-
board-scheme’, as the updated values (∆ζij)n+1 only depend on prior values of neighbor-
ing grid cells on the compass stencil.
The discretized sea surface elevation array (ζij) is divided into four subgroups. Each
subgroup contains all elements with a spacing6 ∆i = ∆j = 2. Therefore, iterations all
four subgroups are independent. Successive evaluation of Equation (3.13) within each
subgroup results in updating the entire set of grid cells. This procedure is repeated iter-
atively until the residuum, Rn = ∑

ij |(∆ζij)n−1 −(∆ζij)n|, drops below a certain threshold
that is set to Rcrit = 10−7cm. A first guess to start the iteration scheme is linearly in-
terpolated from the last two time steps, (∆ζij)n=0 = 2∆ζij(tp−1) − ∆ζij(tp−2). As partial
tides typically have much longer periods than the time step size of the model, this linear
prediction is close to the final result and, therefore, causes a significant reduction of the
required number of iterations (Weis, 2006).
Additionally, the solver considers boundary conditions of two kinds. First, no-flow con-
ditions are implemented at the coasts by enforcing orthogonal flow velocities to vanish
(cf. Figure 1.2). Second, periodic boundary conditions are considered for the westernmost
and easternmost grid cells. They are realized by extending the grid in the zonal direc-
tion by two recurring elements, which TiME synchronizes after each iteration of Equa-
tion (3.13). For the explicit formulation of the finite-difference algorithm, the boundary
conditions to the reduced resolution zones, and the pole cap formulation, we refer to the
Appendix of Weis (2006) and Backhaus (1985).

3.3.1 Introduction of the Rotated-Pole Grid
The numerical solver is virtually unaffected by the newly introduced rotated-pole grids.
In most cases, the rotation is applied to physical fields before loading them into the
model (bathymetry, atmospheric forcing, wave drag formulation, sea ice cover). The data

6The term ‘chess-board scheme’ is slightly misleading here, as the iteration scheme relies on four
different subgroups of elements, whereas a chess-board has only two subgroups of fields, black and white.
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Table 3.1: Overview of the data sets, algorithms, and the respective reference publications
used by the updated ocean tide model TiME within this thesis.

Model component Label References
Bathymetric map H Schaffer et al. (2016)
Eddy viscosity scheme R̂v Weis (2006)
Love numbers (PREM) kl, ll, hl Wang et al. (2012); Blewitt (2003)

hb
l , k

b
l Spiridonov (2018)

Numerical solver SOR Backhaus (1982, 1985)
Ocean stratification Nb, N Zweng et al. (2018); Locarnini et al. (2019)

McDougall and Barker (2011)
Pole rotation algorithm rlmµ, ... Gooding and Wagner (2010); Risbo (1996)
Pole rotation transform Tα, ... Schulzweida (2022)
Atmospheric Excitation Vp, W , ... Balidakis et al. (2022); Gill (1982)
Tide-Generating Potential Vgrav Hartmann and Wenzel (1994, 1995b)
Self-attraction and loading ζSAL Schaeffer (2013); Schindelegger et al. (2018)
Wave drag tensor C Nycander (2005); Green and Nycander (2013)

input/output of time was modernized to operate with NetCDF files (Unidata, 2012),
which allows platform-independent handling and evaluation of employed data sets. Slight
changes in the code must only be implemented for few mechanisms.
These changes comprise the rotation of the Coriolis acceleration by replacing f(ϕ) by
f(λ′, ϕ′) (cf. Equation 3.2). Further, the spherical harmonic functions of degree-3 (cf. Ap-
pendix A) were added, as well as their spatial derivatives. TiME also employs the rotation
routines of Gooding and Wagner (2010), which allows for evaluating Equation (3.6), for
both degree-2 and degree-3 partial tides. To accommodate the influence of the NDFW-
resonance on the TRP (Section 2.1.1), the last row of Table 2.1 is used to evaluate αbl (ωi).
While αbl is constant for tides outside the diurnal spectrum of Table 2.1, modifications are
also significant for degree-3 tides. With the updated implementation of the TRP, TiME
can evaluate tide-raising forces for arbitrarily rotated-pole locations λp, ϕp and variable
partial tides up to degree-3.
The most important consequence of the pole rotation is the closed land cover at the nu-
merical poles. Thus, the no-flow boundary conditions within the TiME code form an
impenetrable barrier around the poles, which isolates the pole cap from OTD. Therefore,
the updated model no longer employs the pole cap formulation. Another change was made
to the latitude circles at which resolution changes become effective. While they resided
at ±76.5◦ and ±82.5◦ in the initial TiME version, they were moved to ±60◦ and ±75◦ in
the updated setup. Weis (2006) found negligibly slight differences between simulations
performed with both configurations. The latter was preferred because the aspect ratio of
most grid cells is kept closer to 1 while reducing the overall computational load.

3.3.2 Implementation of Additional Accelerations
Another significant change to the model concentrates on the modification in the mo-
mentum balance Equation from (3.1) into (2.26) by introducing additional tide-generating



3.3 Numerical Solver 51

(atmospheric forcing, SAL acceleration) and dissipative (wave drag) accelerations. This
was possible in the framework of the numerical solver by a simple expansion of the ac-
celeration terms X and Y in Equation (3.11), which propagates to Bij and Cij in Equa-
tion (3.13).
In this manner, the solver explicitly considers accelerations induced by SAL, which read
g0∇(ζSAL)p and are in sync with ζp (Figure 3.8, center). Therefore, the SHTns pack-
age (Schaeffer, 2013) was compiled with the TiME source code for repeated evaluation of
Equations (3.10) and the spherical harmonic transformation (2.14). SHTns was configured
with regular nodes and poles included, which rendered an intermediate, lightweight inter-
polation of the TiME grid necessary, as it is shifted by 1

2δϕ and did not include the poles.
Additionally, atmospheric accelerations are evaluated for each time step. While wind
stress accelerations are loaded directly into the model, accelerations induced by the com-
bined atmospheric potential Vatm = Vp + Vl + Vo are calculated within TiME by differen-
tiation onto the staggered grid. Together, the updated TiME implementation allows the
specification of arbitrary external barotropic accelerations in terms of a gradient potential
(as for Vatm) or direct accelerations (as for W ). While this is initially tailored for atmo-
spheric forcing, the functionality is by no means restricted to studying atmospheric tides.
Other applications include, for example, investigating the ocean response to the partial
TRP of degree-4 and higher or the impact of a laterally inhomogeneous Earth structure
on SAL (Huang et al., 2021, 2022).
Similarly, the wave drag (Equation 2.18) enters the momentum equation by modifying
expressions X and Y . On top, the wave drag accelerations are stored in the memory
individually. This effect-wise storage is performed for all dissipative mechanisms (bottom
friction, eddy viscosity, ice friction) and allows discrimination of individual energy sinks
of the ocean tide energy balance.
In summary, the framework of the numerical solver remains unaltered by the conducted
changes, which are combined in Table 3.1. On the other hand, the individual weights
within the scheme are changed. As this could cause changes in the optimized numerical
setup, we consider readjusting the parameters with respect to the choices of Weis (2006)
in the following section.

3.3.3 Tidal Modelling Approach
The updated TiME model represents an implementation of the scheme in Figure 2.1.

For simulations presented in this thesis, the model is run in partial tide forcing mode,
i.e., considering a single partial component of the TRP and atmospheric forcing (cf. Fig-
ure 3.8), whose phase χi(t) progresses with ωit. The model is initialized in a zero-state,
i.e., ζ(t0 = 0) = 0. Due to the action of frictional forces, the model dynamics converge
towards

ζ(x, t) = Re
(∑
n=0
ζnωi(x) einχi(t)

)
(3.14)

= ζωi
cos cosχi(t) + ζωi

sin sinχi(t) +
(
ζωi

const + ζ2ωi
cos cos 2χi(t) + ζ2ωi

sin sin 2χi(t) + ...
)
,

which is a small subset of the partial tides considered in Equation (2.27). Here, ζnω(x) ∈
C3 describes the part of the field oscillating at frequency nω, comprised of in-phase ζnωcos
and quadrature component ζnωsin , as ζnω = ζnωcos + im ζnωsin (cf. Section 2.3). The following
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Figure 3.8: Partial tide forcing mode of TiME, exemplary for S2. Temporal harmonic
(frequency ω), and external accelerations (IN) are fed into the SOR-solver of TiME22,
which iterates the ocean state variables (ζ,v), for consecutive time steps tp, tp+1, .... The
instantaneous sea surface height anomaly ζp is used to predict acceleration by SAL which
is fed back into the solver. After an initialization period, OTD converges to temporal
harmonic oscillations. The last complete tidal period is used to harmonically analyze for
partial tides of frequency 0, ω, 2ω (OUT). Temporal harmonic input forcing and model
output are represented in the amplitude/phase notation, i.e., |ζ|i and ϕζ .

discussion focuses on the first (SSH) component of ζnω. Thus, we recall the equivalent
description by amplitude |ζ| and phase ϕζ . The vast majority of tidal variability arises
from the linear field component oscillating at frequency ω. The residual tidal circulation
ζωconst, a consequence of tidal rectification (e.g., Pérenne and Pichon, 1999), as well as the
overtides with n ≥ 2, are a result of nonlinear interaction, and represent minor contribu-
tions to the tidal flow field.
The time step of the model is chosen to be close to 180 seconds. More precisely, TiME

selects the time step as an integer fraction of the tidal period Ti = 2πω−1
i . Thus, ∆t is set

to Tdiu
480 for diurnal, Tsemi

240 , and for semidiurnal Tter
160 for terdiurnal partial tide forcing. The

model spins up for at least 30 days, which is (30, 60, 90) tidal cycles for diurnal to terdi-
urnal species. The next full oscillation cycle forms the basis to extract the primary tidal
constituent, ζωcos and ζωsin, as well as the temporally constant and the double frequency
component. The choice of a 30-day spin-up can be motivated by the much shorter half-life
of dominant diurnal to terdiurnal eigenmodes in the order of approximately three days
and shorter (e.g., Müller, 2007), and similar choices by comparable ocean tide models
(e.g., Schindelegger et al., 2018).
Further, the maximum global differences between the complex sea surface elevation vec-

tor ζω for M2, extracted after longer spin-up periods of up to 60 days, are estimated.
The maximum deviation reaches values of 0.003 cm only in several marginal seas. This
uncertainty is far below the average accuracy of the model with respect to geodetic data
sets, which is on the order of 3 − 5 cm for M2, and also far below the precision of satellite
altimetry constrained ocean tide models and satellite gravimetry. Thus the operation
mode does not pose constraints on the avised model applications.
Numerical tests in the new model configuration show that the performance improves
slightly by setting the relaxation parameter to ωr = 1.7. The finally obtained computa-
tional speed was 20 node hours to simulate 30 model days with the computer HLRE-3



3.3 Numerical Solver 53

Figure 3.9: Ocean tidal dynamics evoked by the M2 partial tide around New Zealand
and South Australia modeled with TiME. The tidal sea surface anomaly ζ is depicted
in the amplitude-phase notation, where tidal phase lags ϕζ (i.e., cotidal lines) appear in
increments of 60◦ (magenta: ϕζ = 0◦; dashed: ϕζ < 0◦). Tidal transports V are integrated
as ellipses, where the color coding refers to the maximum tidal transport (i.e., the semi-
major axis V+). Transport phase lags are plotted relative to ϕζ , where black arrows
symbolize the transport in phase with the local sea surface anomaly, and red arrows refer
to the out-of-phase component (for ζ[x, t] = 0). The plot is augmented by TICON-3 tide
gauge stations (red, ◦) and OBP recorders (black, ⬢) as in Figure 1.2.

‘Mistral’ at Deutsches Klimarechenzentrum (DKRZ), comparable to the results of Weis
(2006) with the predecessor computer. Within, the algorithm spends roughly 10% of the
time on SAL calculations in the newly implemented scheme, rendering it relatively light-
weight. A significant speedup can is achievable by reducing the model resolution. For
example, halving the resolution to δϕ = 1

6
◦ can reduce the runtime by a factor of up to

23 = 8, as it additionally allows doubling the minimum time step size (CFL-criterion).
The main disadvantage of the partial tide forcing mode is the neglect of nonlinear in-
teractions between different tidal species, which is most notable in shallow water. This
interaction gives rise to higher harmonics (compound- and overtides) and acts back on
the generating main tides, inducing deviations in shallow waters. The induced deviations
between partial tides extracted from partial vs. full-ephemeris forcing (all partial tide-
generating forces at once) are discussed by Weis (2006). It is found that the observed
small deviations are concentrated in shallow shelf areas and are even smaller in the deep
ocean. Moreover, allowing for nonlinear interactions did not significantly affect the valid-
ation with geodetic measurements (at that time, the pelagic ST103 data set of Le Provost,
1995). Hence, the interaction effect induced by the nonlinear operators in TiME is com-
parably small.
Further, the results show that the agreement of the principal lunar, nonlinear tide M4 with
geodetic data sets is much worse than linear tides simulated with TiME. This observa-
tion is with a high probability related to the representation of nonlinear effects in TiME,
which should be optimized. Another objection to utilizing the full-ephemeris simulation
mode resides in the effect of topographic wave drag, which is frequency dependent and
thus differs for diurnal and semidiurnal tides. It can not correctly be depicted for partial
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Figure 3.10: Globally integrated dissipation Di and power consumption W , when forcing
TiME with the M2 partial TRP. The simulation is run for 120 tidal periods (approximately
60 days) and discriminates between dissipation by wave drag (wd), bottom friction (bf),
and parameterized eddy viscosity (ed). Dissipation rates are sampled eight times per
tidal period. Parameters are chosen for experiments RE as in Figure 3.9. The mean lunar
dissipation rate can be observed by Lunar Laser Ranging (cf. Figure 1.1).

tides of both species and thus their compound tides at the same time with the current
approach.
The partial tide mode has further advantages. It allows directly targeting an arbitrary
partial tide and thus explicitly predicting geophysical signals with a specific frequency.
This feature suits the aims of this thesis, which are the simulation of minor tides and the
prediction of hard-to-observe tidal signals. Currently, TiME is employed as an operator
of the form

TiME(INω) = OUTω , (3.15)
as displayed in Figure 3.8, where INω and OUTω refer to partial tide forcing of a certain
frequency and the ocean response at the same frequency. The output can be identified
with the complex sea surface elevation ζω and the input with the respective TRP of degree
l, order m of frequency ωi. In this case, TiME(INω) divided by the equilibrium tidal height
is equal to the admittance function Zlm (cf. Equation 2.24). Hence, TiME simulations
are numerical approximations of the admittance function.

3.3.4 Important Model Diagnostics

TiME predicts the barotropic ocean state variables ζ and v (also the depth-integrated
transport, V), which are the primary model observables. Harmonic constituents are ex-
tracted after the spin-up in the employed partial tide forcing mode and provided as a
single NetCDF file. Exemplary, a local simulation result from TiME is displayed in Fig-
ure 3.9 (cf. Figure 2.9). Comparing both figures reveals only small differences that are
more pronounced for tidal transports than for sea surface elevations. It can be concluded
that deviations between TiME and FES14 are much smaller than the mean tidal signal
amplitude. Thus, quantifying the model’s accuracy requires a precise investigation with
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respect to independent geodetic data which will be the subject of the next chapter.
Additionally, TiME can predict dissipation and power consumption densities (unit: W/m2),
which is the energy intake of the model through astronomical and atmospheric acceler-
ations versus energy dissipation differentiated by the individual processes. Densities are
obtained by evaluation di = ρswai · V (di = ρswai · V) and yield global rates Di after
integration over the whole ocean domain. Here, ai are the individual accelerations acting
on the ocean. While the model’s energy balance is the topic of the next section, Fig-
ure 3.10 displays integrated M2 dissipation rates for a simulation of 120 tidal periods.
The secondary observables, ζb (Equation 2.28), ζh (Equation 2.29), ζ⊥ (Equation 2.30),
and V (ζ i) (Equation 2.31), are derived by evaluating the respective equation separately
for in-phase and quadrature components, with the help of the SHTns package. Here, ζ is
interpolated in an intermediate step to a 1

30
◦ regular grid, with land-sea masks construc-

ted from RTopo-2. The maximum spherical harmonic degree is lmax = 2599, with other
parameters identical to the evaluation of the SAL potential in Equation (3.10).
The calculation of ocean tide levels will be presented separately in Chapter 6.
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4
High-Resolution Numerical Modelling of

Barotropic Global Ocean Tides for Satellite
Gravimetry

This chapter is based on the publication by Sulzbach et al. (2021a), which has a twofold
structure. The first part addresses the model development of TiME, which we discussed
more elaborately in the previous Chapter 3. Thus, the first part of the article, i.e., its
Sections 2-5, is omitted in the chapter at hand.
Benefiting from the model development, the second part of the article discusses improve-
ments in TiME ocean tide solutions quantified by geodetic data sets. The discussion
focuses on two key points. First, the sensitivity of the ocean tide solutions on the indi-
vidual model upgrades, using the example of the main lunar M2 tide. Then, we extend
the analysis to other semidiurnal tides of smaller amplitude and diurnal partial tides.
The chapter is concluded with a discussion of the relevance of the presented ocean tide
solutions for the dealiasing process of satellite gravimetry. The article’s abstract and
Sections 1 and 6-9 follow in their original form.

Chapter abstract1

The recently upgraded barotropic tidal model TiME is employed to study the influence
of fundamental tidal processes, the chosen model resolution, and the bathymetric map
on the achievable model accuracy, exemplary for the M2 tide. Additionally, the newly
introduced pole-rotation scheme allows to estimate the model’s inherent precision (open
ocean rms: 0.90 cm) and enables studies of the Arctic domain without numerical devi-
ations originating from pole cap handling. We find that the smallest open ocean rms with
respect to the FES14-atlas (3.39 cm) is obtained when tidal dissipation is carried out to
similar parts by quadratic bottom friction, wave drag, and parametrized eddy-viscosity.
This setting proves versatile to obtaining high accuracy values for a diverse ensemble of

1Some symbols and references in this chapter were harmonized with previous chapters.
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additional partial tides. Using the preferred model settings, we show that for certain
minor tides it is possible to produce solutions that are more accurate than results derived
with admittance assumptions from data-constrained tidal atlases. As linear admittance-
derived minor tides are routinely used for dealiasing of satellite gravimetric data, this
opens the potential for improving gravity field products by employing the solutions from
TiME.
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4.1 Introduction

Signatures of ocean tidal dynamics are omnipresent in oceanographic and geodetic ob-
servations taken either on the ground or from space. This includes periodic variations
in ocean currents registered by moored instruments or acoustic tomography (Luyten and
Stommel, 1991; Dushaw et al., 1997; Ray, 2001) as well as by induced secondary magnetic
fields (Maus and Kuvshinov, 2004; Saynisch et al., 2018), sea surface height changes meas-
ured from tide gauges and satellite altimetry, (Doodson, 1928; Schrama and Ray, 1994)
and global bottom pressure variations from pelagic pressure recorders and gravimetric
satellite missions (Wiese et al., 2016). More recently, even tiny variations in sea sur-
face temperature (Hsu et al., 2020) and tropical precipitation observations (Kohyama and
Wallace, 2016) were related to ocean tidal dynamics.
Separating tidal and transient signals in satellite records is not trivial due to the complic-
ated spatiotemporal sampling of observations taken from satellites in non-geostationary
orbits. The repeat orbit of the Topex/Poseidon (T/P) satellite altimetry mission (Fu
and Cazenave, 2000) has been carefully selected in a way that aliases the major ocean
tidal constituents into periods that are well distinct from naturally occurring periodicit-
ies, thereby providing tidal charts based on observations that cover the open ocean in a
regular spatial pattern (Shum et al., 1997). After assimilating tidal elevations from T/P
and other altimetry missions into hydrodynamic models (Carrere et al., 2015; Egbert and
Erofeeva, 2002; Taguchi et al., 2014) or using these data to construct empirical corrections
to an adopted model (Savcenko et al., 2012; Cheng and Andersen, 2011; Fok, 2012; Ray,
1999), those models are extensively used for the processing of un-related observations, as
e.g., satellite gravimetry missions. Presently, all 34 tidal constituents given by the FES14
tidal atlas (Carrere et al., 2015; Lyard et al., 2006) are directly removed from Gravity Re-
covery And Climate Experiment (GRACE) and GRACE Follow-on (GRACE-FO) data,
and more than 300 additional minor constituents inferred by admittance methods are
also subtracted (Kvas et al., 2019). The existing weaknesses in present-day admittance
methods, however, have been discussed extensively in the past (Ray, 2017), so that expli-
cit tidal simulations with unconstrained numerical ocean tide models provide potentially
valuable information on tidal lines less well constrained by satellite altimetry.
The sensitivity of satellite gravimetry to periodic mass re-distributions in the Earth sys-
tem is expected to increase even further when the full potential of the satellite-to-satellite
tracking by means of laser ranging interferometry (Ghobadi-Far et al., 2020) is also used
for gravity field processing. Employing end-to-end satellite simulations, Flechtner et al.
(2016) found that ocean tide errors are among the top three factors that limit the accur-
acy of global mass distribution estimates from GRACE-FO. Various concepts of multi-
satellite constellations are currently being evaluated by space agencies in Europe, the U.S.,
and China for possible implementation as a next-generation gravity mission (e.g., Hauk
and Wiese, 2020). Scientific requirements and user demands for such new missions al-
most always request higher spatial resolution and greater accuracy (cf. Pail et al., 2015).
Equivalently, in order to re-process the already existing data record from GRACE and
GRACE-FO into more precise time series of terrestrial water storage and ocean bottom
pressure suited for climate monitoring (Tapley et al., 2019), better ocean tide models are
critically important.
While data-constrained tidal models provide highly accurate estimates of tidal constitu-



60 High-Resolution Numerical Modelling of Barotropic Global Ocean Tides ...

ents in regions where altimetry data is dense (open ocean residuals below 1cm), model
accuracy decreases as the data quality decreases (minor tides, polar, and shelf areas). In
effect, the ratio of model uncertainty to signal typically increases considerably for tidal
excitations with smaller amplitudes (Stammer et al., 2014). Even more, additional errors
can be introduced when estimating minor tidal excitations with admittance methods.
These deviations might be reduced by the explicit numerical modelling of minor tides.
In this contribution, we present efforts towards extending a hydrodynamic model of ocean
tidal dynamics particularly suited to study minor and compound tides. Our work is based
on the Tidal Model forced by Ephemerides (TiME; Weis et al., 2008) introduced in the
previous chapter2. We describe various improvements to the numerics of the model, in-
cluding the rotation of the poles (Section 3.2.1), an extension of the physical model by
implementing the effects of Self-Attraction and Loading (Section 3.2.6) and the incorpora-
tion of topographic wave drag as a new dissipation mechanism (Section 3.2.5). Exemplary
for the principal semidiurnal lunar tide M2, we will report about the accuracy of the sim-
ulated tidal heights both with respect to OBP data and the state-of-the-art global tide
solution FES14 that is constrained by observations. Various sensitivity experiments are
presented, documenting the individual contributions of the various changes made to TiME
in terms of achieved accuracy (Section 4.2).
The chapter is augmented with an assessment of energy dissipation patterns of the model
and additional simulations of partial tides in the diurnal and semidiurnal tidal bands (Sec-
tion 4.3). Building on the results of previous sections, we focus in Section 4.4 on selected
minor tides that can be simulated with higher accuracy than solutions constructed from
linear admittance estimates on data-constrained models. Finally, the chapter is closed
with a summary (Section 4.5).

4.2 Tidal Elevations for M2 from TiME
In order to highlight the importance of individual model changes to TiME as given

in the previous chapter, we now report results from a number of sensitivity experiments
for the principal lunar tide M2 as outlined in Table 4.1. The model performance will be
benchmarked against a data set comprised of 151 OBP stations compiled by Ray (2013)
as well as the global state-of-the-art tidal atlas FES2014 (Carrere et al., 2015; Lyard et al.,
2006), that was produced by Noveltis, Legos, and CLS and distributed by Aviso+, with
support from CNES. Misfits will be reported in terms of time-averaged rms

rmsζω
1 ,ζ

ω
2
(x) =

√
1
T

∫ T

0
dt (Re (ζω1 (x, t) − ζω2 [x, t]))2 =

√
1
2 |ζω1 (x) − ζω2 (x)|2 , (4.1)

that can be further averaged over a certain ocean domain Do with area Ao yielding the
space-averaged rmsζω
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(
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ω
2
[xij]

)2
. We calculate averages for

shallow water if the ocean depth is smaller than H = 1000 m (10.4 % ocean surface) or
open ocean if the depth exceeds this limit (83.0 % ocean surface). Both areas are restricted
to latitudes with |ϕ| < 66◦ as altimetry data in these regions is dense and guarantees a

2The references to the original sections, Figures, and equations of Sulzbach et al. (2021a) were changed
to the respective objects of Chapter 3 and the remaining sections of this article.
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Figure 4.1: Mean tidal power consumption field w overlayed with the tidal energy flux
vector field p (a) and corresponding wave drag dissipation field dwd in mW

m2 (b). Red
areas in subfigure (a) indicate regions where water masses experience a net slowdown
by tidal forces. While energy fluxes are similar to those obtained by assimilating mod-
els (cf. e.g., Egbert and Ray, 2001), deep ocean dissipation is concentrated at strong
bathymetric slopes. Note that the scale was truncated at +60mW

m2 and extended pseudo-
logarithmically for values smaller than −0.001mW

m2 to emphasize the underlying fine struc-
tured dissipation patterns.

high quality of derived tidal atlases. When mentioned in the following sections, the results
for rms = (a, b) are related to validations with FES2014 (a) and pelagic OBP stations
(b), where TG-results for Equation (4.1) are quadratically averaged over all stations.
As an additional benchmark for our model, we monitor planetary dissipation conducted
by the M2 tide. Being laid out by Platzman (1984a), the theory of planetary dissipation
was employed by Egbert and Ray (2000, 2001) to derive estimates of M2-tidal dissipation
utilizing altimetry data-constrained tidal models. Herein, the planetary dissipation field
d was derived by evaluating the relation

d = w − ∇p, (4.2)

that uses the mean tidal energy consumption field w = ρswac · V (work done by tidal
forces) and the energy flux field ∇p = ρswg0∇(ζV). These studies revealed that 25 − 30
% of global M2 dissipation DM2 =

∫
O dA d ≈ 2.45 TW is located in the deep ocean3. Mon-

itoring these properties can give further insight into the quality of a numerical model.
Within this study, individual contributions to the planetary dissipation field d = ∑

i di
can be directly computed from the model, with di = ρswai · V ([di]=W/m2), where ai are
individual dissipation accelerations mentioned in Equation (2.26). Globally integrating
the individual fields di yields the corresponding planetary dissipation rates Di ([Di]=W).
Since temporal averages of dissipation terms originating from linear forces can be calcu-
lated easily (sinωt2 = 0.5) we calculate the nonlinear dissipation by bottom friction as
the residual dissipation evaluating Dbf = (W − Dwd − Ded), where W is the tidal power
consumption

∫
O dA w caused by ac = −g∇⃗(ζSAL + ζeq). This does not introduce a bias

into the estimates as the imbalance between tidal energy consumption, and dissipation is

3The notation was harmonized with Chapter 3 by adding temporal averages (cf. Figure 3.10).



62 High-Resolution Numerical Modelling of Barotropic Global Ocean Tides ...

Table 4.1: Open ocean rms and tidal dissipation for an ensemble of M2 tidal simulations.
The individual experiments highlight the impact of several updated tidal processes and
parameters on the achieved accuracy (P: pole position, B: bathymetric map, S: SAL
scheme, W: topographic wave drag, R: resolution). Balances sometimes do not check out
due to individual rounding.

ID Grid Pole Bath. SAL κw[%] Ah [ m2

s ] rms2 [cm] Dissipation3 [TW]

RE 1/12◦ chi RTopo-2 lmax=1024 125 2 · 104 3.39/4.83 2.70 (0.90/0.91/0.88)
P1 1/12◦ arc RTopo-2 lmax=1024 125 2 · 104 4.08/5.19 2.61 (0.88/0.82/0.91)
P2 1/12◦ gre RTopo-2 lmax=1024 125 2 · 104 3.6/5.21 2.76 (0.95/0.87/0.94)
P2b 1/12◦ gre RTopo-2 lmax=1024 160 1.6 · 104 3.63/5.00 2.69 (0.88/1.00/0.78)
P3 1/12◦ aus RTopo-2 lmax=1024 125 2 · 104 4.75/5.57 2.59 (0.70/1.01/0.82)4

B1 1/12◦ chi GEBCO1 lmax=1024 125 2 · 104 6.49/7.35 2.84 (0.95/0.94/0.95)
B2 1/12◦ chi ETOPO11 lmax=1024 125 2 · 104 7.86/9.75 3.06 (1.07/1.03/0.97)
S1 1/12◦ chi RTopo-2 lmax=100 125 2 · 104 3.38/4.82 2.69 (0.90/0.91/0.89)
S2 1/12◦ chi RTopo-2 lmax=10 125 2 · 104 3.99/5.63 2.69 (0.90/0.90/0.89)
S3 1/12◦ chi RTopo-2 ϵ = 0.1 125 2 · 104 5.41/6.69 2.94 (0.96/1.03/0.95)
S4 1/12◦ chi RTopo-2 none 125 2 · 104 22.91/27.02 3.30 (1.22/1.09/0.99)
W0 1/12◦ chi RTopo-2 lmax=1024 150 5 · 102 4.03/6.54 2.57 (1.57/0.94/0.06)
W1 1/12◦ chi RTopo-2 lmax=1024 100 2.5 · 104 3.75/5.03 2.75 (0.91/0.79/1.04)
W2 1/12◦ chi RTopo-2 lmax=1024 175 1 · 104 4.18/5.39 2.58 (0.92/1.09/0.56)
W3 1/12◦ chi RTopo-2 lmax=1024 none 4.5 · 104 8.03/9.74 2.96 (1.14/0/1.82)
R1 1/3◦ chi RTopo-2 lmax=256 100 5.5 · 104 7.95/8.07 2.52 (0.80/0.95/0.77)
R2 1/6◦ chi RTopo-2 lmax=512 100 3 · 104 5.21/5.95 2.58 (1.00/0.85/0.72)
WE 1/12◦ arc GEBCO ϵ = 0.1 none 4.5 · 104 15.39/17.85 3.50 (1.26/0/2.24)
1: First order conservative remapping (con), 2: open ocean/OBP rms
3: Mean Tidal power consumption W and dissipation by sinks (Dbf/Dwd/Ded, after Section 4.2)
4: Dissipation might be diminished as dissipative processes in the pole cap remain unresolved

far below 1 %DM2 after initializing the simulation4. The following subsections present the
results obtained from tuning and sensitivity experiments and relate to the experiments
summarized in Table 4.1.

4.2.1 Model Tuning
The original experiments conducted by Weis et al. (2008) (experiment WE in Table 4.1)

led to an open ocean rms of 15.39 cm. The dissipation rate was overestimated by 43%
(1050 GW), and a strong concentration of dissipation in shallow waters indicated missing
or not optimally-represented dissipation mechanisms.
Primarily the introduction of topographic wave drag and an improved bathymetric map
allowed to reduce of the global M2 amplitudes and dissipation rates. Tuning experi-
ments concentrated on finding an optimal ratio between damping by eddy viscosity and
topographic wave drag, while the bottom friction was left constant at r = 0.003. Even
though the original Nycander scheme does not contain a free, tunable parameter, experi-
ments with κw = 100% showed that additional dissipation is necessary to obtain optimum
results, as was also found by Buijsman et al. (2015). This can either be provided by in-
creasing Ah or κw (altering r worsened the accuracy). Several tuning experiments with
κw = 100...225 % and Ah = 5...350 · 102 m2

s
led to a minimum open ocean rms of 3.39 cm

4Compare also Figure 3.10.
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Figure 4.2: (a): TiME M2 cotidal chart in cm (experiment RE) augmented with tidal
amplitudes at OBP stations (151 stations, small circles), where lines indicate the tidal
phases in increments of 60◦ (Thick : 0◦, Thick, Dashed : 60◦). Further, validation results,
expressed as rms (cm) between TiME and tidal constituents at OBP stations and FES2014
data are shown (b).

(experiment RE, OBP rms: 4.83 cm, shallow-water rms: 17.95 cm) with similar com-
binations of κw and Ah leading only to slightly higher rms values (experiments W1,W2).
While wave drag dissipation amounts to 34 % (910 GW) of the overall dissipation, the
planetary dissipation rate decreased to 2.70 TW, which is still 10 % (250 GW) too large
compared to the expected result of 2.45 TW. The resulting mean tidal power consumption
field w as well as the energy dissipation field by wave drag-acceleration dwd (cf. Figure 4.1)
match the results derived with altimetric data (cf. Egbert and Ray, 2001).
While the achieved accuracy of experiment RE was the highest in our ensemble, this
model setup lacks a solid physical foundation due to the excessive dissipation mediated
by parameterized eddy viscosity. A physically more reasonable setting can be obtained
when minimizing the dissipation by eddy-viscosity as pursued by most modern barotropic
models (e.g., Schindelegger et al., 2018; Egbert et al., 2004). The obtained open ocean rms
values of 4.03/6.54 cm for W0 increase with respect to setting RE, while the dissipation-
overshoot is reduced to 120 GW (5 %). On the other hand, the shallow-water accuracy is
not altered considerably to 17.86 cm. This can be seen as a trade-off between maximized
model accuracy and well-founded model physics that will be beneficial with respect to
sensitivity studies (e.g., paleo simulations, climatic impacts). On the other hand, this
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Figure 4.3: rms values obtained by intercomparing experiment RE to P2 (a), an experi-
ment run with identical parameters on a different grid, versus a comparison between RE
and P2b (b), where parameters have been readjusted. The open ocean rms amounts to
1.18/0.9 cm (a/b), while the shallow-water rms is 5.46/5.35 cm. Note the different struc-
tures of shallow-water residuals in comparison to Figure 4.2b, and the reduced scale.

trade-off is undesirable for high-precision applications such as satellite gravimetry. As
the accuracy that has to be sacrificed with setting W0 increases for minor tides (cf. Sec-
tion 4.3), we decide to favor setting RE for the present study.
The amphidromic system and global rms data for experiment RE is shown in Figure 4.2.
In comparison to FES2014 data, M2 oscillation systems are predicted precisely with the
exception of some features around Antarctica (cf. Figure 4.4, top). It is worth noting that
the reproduction of large-scale features (e.g., tidal phases defining amphidromic systems)
was also possible on a similar level of detail by experiment WE. Exceptions were mainly
constituted of bathymetry-induced aberrations around Antarctica (cf. Section 4.2.3). The
principal accuracy gain is attributed to a more realistic representation of dissipation, ba-
thymetry, and SAL effects. The remaining critical regions are shelf and coastal areas and
are especially concentrated around Antarctica and in the North Atlantic shelf areas. This
suggests possible origins for these discrepancies in tide-ice interaction as well as in pos-
sible bathymetric inaccuracies or insufficient representation of (nonlinear) shallow-water
effects. With respect to similar modern barotropic tidal models, TiME produces solutions
on the same level of accuracy, while the shallow-water accuracy is moderately decreased
(e.g., +4.4 cm to Schindelegger et al., 2018).

4.2.2 Impact of Pole Location

As a first finding, we note similarly accurate results when performing experiments on
alternative grids with land-covered poles (cf. experiment P2 in Table 4.1). The accuracy
obtained on the gre grid could be increased further to 3.63/5.00 cm open ocean rms,
when additional tuning was applied (experiment P2b). Since the zonal model resolu-
tion increases towards the numerical poles, the bathymetric information contained in two
differently oriented grids differs slightly. This also impacts the wave drag tensor that
depends on H(ϕ, λ). Together, this induces deviations between otherwise identical ex-
periments performed on different grids (P2 vs. RE) that become more prominent when
choosing coarser resolutions. Directly comparing the tidal elevations obtained by experi-



4.2 Tidal Elevations for M2 from TiME 65

ments RE and P2b (land-covered poles), yields an open ocean rms of 0.90 cm, while only
5.35 cm are obtained in shallow waters (entire ocean: 1.97 cm, cf. Figure 4.3). These
values estimate the effective precision level that can be obtained when running experi-
ments at the present resolution of 1

12
◦. We conclude that optimized parameters vary for

experiments on differently oriented grids, but similar accuracy is achievable.
Overall, the rotated-pole scheme did not improve the global accuracy level of present-
day tides significantly since tidal elevations in the Arctic (near the former pole cap) are
diminutive (experiment P1). Nevertheless, deviations induced by a pole cap situated in
an area of presumably high tidal elevation are a source of imprecision (P3) and should
be avoided. The non-optimally placed pole cap on the aus-grid resulted in altered and
diminished dissipation as well as in an increased rms = 4.75/5.57 cm.
An additional benefit of the implemented pole-rotation scheme lies in its versatility: The
mitigation of the large pole-cap grid cell allows the unbiased study of historical situ-
ations in which tidal elevations in the Arctic might have been significant, as proposed
by Griffiths and Peltier (2008) and more recently by Velay-Vitow and Peltier (2020) for
the Last Glacial Maximum. Additionally, alternative grid orientations can be used to
guarantee approximately equal aspect ratios for grid cells in the Arctic (e.g., when using
the chi grid), further recommending TiME to be used for studies of Arctic tides.

4.2.3 Impact of Bathymetry

Additional experiments were performed with bathymetries constructed from ETOPO1
(Amante and Eakins, 2009) and GEBCO data (GEBCO Compilation Group, 2019), treat-
ing sub-ice-shelf cavities as dry grid cells. This configuration resembles the bathymetric
maps used in Weis et al. (2008). Interpolation to the model’s resolution was done using
first-order conservative interpolation.
The results (experiment B1, B2) show that ignoring the effects of Antarctic sub-shelf cav-
ities on ocean tide resonances leads to large-scale deviations of the displayed amphidromic
systems, especially in the Southern Ocean (Wilmes and Green, 2014) (cf. Figure 4.4). The
most striking deviation hereby occurs in the Weddell Sea. As the RTopo-2 bathymetry
is mainly based on GEBCO data, the model setup for experiment B1 can be seen as
a blocking experiment for the Antarctic shelf regions. Blocking experiments are useful
to investigate the back-action of shelf tides on open ocean tides. Arbic et al. (2009)
conducted such simulations for a number of shelf areas (e.g., Patagonian Shelf, Hudson
Bay) and also considered analytical solutions. Both approaches predict that blocking a
near-resonant shelf region enhances the amplitude of the open ocean tide, as it is shown
in Figure 4.4a,c for the Southern Ocean.
As the shelf-blocking increases the open ocean amplitudes, tidal dissipation is also in-
creased and contributes to the overestimated dissipation in experiment WE (B1: + 150
GW, B2: +350 GW). It is possible to reduce this overestimation slightly by enhancing the
dampening forces. However, this only leads to minor improvements and cannot rectify
the imprecisely represented oscillation systems as depicted in Figure 4.4. It is, therefore,
not further investigated.
In summary, the conducted experiments highlight the irreplaceability of constructing a
realistic bathymetric map. Further, the results point out that poorly represented areas
can have strong near- and far-field effects on tidal dynamics, even if they have only a
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Figure 4.4: M2-Tidal elevations (cm) around Antarctica obtained from TiME-simulations
with different bathymetric charts: (a) RTopo-2 (experiment RE), (c) GEBCO (experiment
B1) and (d) (experiment B2). As a reference, (b) shows FES2014 tidal elevations. Note
the hydrodynamically blocked sub-shelf cavities for the bottom experiments.

small spatial extent.

4.2.4 Impact of Self-Attraction and Loading
In this section, we discuss the impact of a number of SAL representations on the simu-

lation results. When evaluating Equation (3.10) up to lmax = 100 we find that the open
ocean rms does not increase, indicating sufficient handling of this effect with regard to
open ocean tidal dynamics (experiment S1). The shallow-water rms is also not altered
considerably, which might be due to generally less precise model performance in shal-
low waters. When further decreasing the maximum degree to lmax = 10 the open ocean
rms increases to 3.99/5.63 cm (S2), which is still a significantly more precise result than
S3, which was obtained by the local SAL-parametrization by Accad and Pekeris (1978)
(5.41/6.69 cm). However, this result can be seen as a valuable improvement when com-
paring it to completely neglecting the effect (experiment S4). This leads to a profound
misrepresentation of tidal phases and a strongly increased misfit. Overall, the estimated
planetary dissipation increases with a less precise SAL representation (S3: +240 GW, S4:
+500 GW). Thus, the local SAL-parametrization contributes significantly to the overes-
timated dissipation in experiment WE.
As discussed by Müller (2007) the inclusion of SAL primarily leads to a phase-shift of os-
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cillation systems by altering properties of the underlying normal modes. This phase shift
is well approximated in the first order by applying an effectively reduced gravity factor
(S3). However, to represent the precise far-field effects of the SAL, a treatment in terms
of spherical harmonics with lmax ≥ 100 is necessary. To precisely represent near-field
effects, the maximum degree l has to be extended to higher values (Schindelegger et al.,
2018). Since the efficient handling of SAL transformation by the SHTns-package (Schaef-
fer, 2013) does not considerably increase computation time, we treat the SAL effect up
to degree lmax = 1024 in our experiments.

4.2.5 Impact of Topographic Wave Drag
The only dissipation agent that leads to considerable deep ocean dissipation included

in the model is the excitation of internal tides by topographic effects. Since deep ocean
dissipation is an experimental matter of fact, it does not surprise that complete neglection
of this effect has severe impacts on the achievable accuracy (experiment W3), causing an
rms increase of +4.64/ + 4.91 cm and a surplus dissipation of an additional 260 GW.
Finding an optimum interplay between the present dissipation agents, on the other hand,
is more complicated. When abstaining from tuning wave drag-strength, e.g., setting
κw = 100 %, best results are achieved by allowing significant dissipation by eddy-viscosity
(W1). If one instead decides to increase wave drag substantially (W2), as e.g., done
by Buijsman et al. (2015), the open ocean results slightly worsened in comparison to
experiment RE, without improving shallow-water rms. As discussed in Section 4.2.1 a
minimization of the obtained wave drag dissipation leads to the physically well-founded
model setting W0 while the open ocean accuracy moderately deteriorates (+0.64/1.71
cm). This setting should always be favorable with respect to sensitivity experiments that
benefit from realistically represented tidal physics.
Overall the tuning of the dissipation agents suggested that the best results are obtained
when wave drag dissipation contributes about 900 GW to planetary dissipation, which is
close to the expected value. The slight tuning of the wave drag tensor (factor 1.25 to the
original Nycander-tensor) stresses that it is based on a sound theory and can be expected
to provide ad-hoc precise results. This is a valuable result when it comes to adapting the
model to other tidal groups or paleo settings.

4.2.6 Impact of Spatial Resolution
Experiments R1 (at 1

3
◦) and R2 (at 1

6
◦) were designed to represent a similar physical situ-

ation as chosen for experiment RE. Therefore, dissipation agents were tuned to achieve
comparable dissipation ratios leading to an effective increase in Ah. We emphasize that
altering the model resolution renders repeated model tuning necessary. Parameters can
not be transferred directly without altering tidal dynamics.
We observe that, while overall dissipation decreases, open ocean rms-values are consid-
erably increased to 5.21/7.95 cm for R2/R1 (cf. Egbert et al., 2004). The cause for this
might originate from the model-inherent resonant behavior of oceanic tides. With reduced
spatial resolution, the geometry of the ocean basins determining oceanic normal modes
can not be properly represented. The resulting slight shifts in resonance frequencies then
strongly impact tidal dynamics, especially in shallow waters, where oscillation systems



68 High-Resolution Numerical Modelling of Barotropic Global Ocean Tides ...

reside on smaller spatial scales. Thus, to further increase the precision and accuracy of
TiME, an increased resolution beyond 1

12
◦ should be considered.

4.3 Additional Tidal Excitations
In this section, we present simulation results for additional partial tides. We selected

partial tides that differ in excitation amplitude, and frequency as well as in excitation
pattern from M2 to test the sensitivity of the preferred model settings RE. The overall
aim is to demonstrate model setting RE as robust for simulating partial tides of differing
characters on a comparable level of accuracy.
As discussed in Section 2.2.2, excitation patterns relate to the spatial dependence of the
partial tide forcing that is proportional to the spherical harmonic functions Ylm. Within,
l defines the degree, m the order of the spherical harmonic, where m = 0, 1, 2, 3 further
enumerates the tidal species (0: long period, 1: diurnal, 2: semidiurnal, 3: terdiurnal,
cf. Appendix E). Since the tidal forcing strength spans several scales for different partial
tides, the level of accuracy obtained for different partial tides cannot be compared dir-
ectly to each other without considering the overall signal amplitude. To facilitate this
comparison we introduce the admittance function5

Zlm(x, ωi) = g0
ζωi(x)
Ai

, (4.3)

that relates the tidal response, expressed by its elevation ζωi , to its g-normalized forcing
amplitude Ai =

√
(Slmi )2 + (C lm

i )2 (cf. Appendix E). Hereby, Zlm is only evaluated at
discrete tidal frequencies for partial tides with forcing pattern Ylm. Since the tidal PDEs
are only weakly nonlinear and tidal frequencies within one tidal band only differ slightly,
Zlm takes a related shape for each partial tide. Hence, it can be used to compare the
response strength and especially the relative level of accuracy compared to the excitation
strength for individual excitations by considering rmsZω

TiME,Z
ω
FES

(x) (cf. Equation 4.1).
Please refer to the supporting information where the tidal potential catalog used for this
study can be obtained6.

4.3.1 Semidiurnal Tides

The K2-excitation is a semidiurnal partial tide of second-degree origin (l = 2), thus rep-
resenting another evaluation point of admittance function Z22. However, its respective
forcing strength is only 13 % compared to M2. Since additionally, its frequency differs
from M2 by 1.10 ◦

h , admittance patterns are altered in comparison to M2. The open ocean
validation for K2 results in an rms of 0.39/0.43 cm. Compared to K2 signal strength, the
obtained accuracy is on the same level of accuracy as the results for M2. In other words,
the uncertainty in Z22 is similar for both partial tides.
Further, we considered the tidal response to ν2 tide (3.7 % M2-forcing) as a third evaluation

5In this formulation, the factor ab
l is not included as in the original formulation (Equation 2.24), with

minor deviations for the K1 tide and implications for the plotted admittance functions.
6The respective catalog can be found in Table E.1 in Appendix E in modified version.
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Figure 4.5: Dimensionless admittance-function Z22 for K2 (a) and ν2 tide (b) and corres-
ponding rms values for Z22 (c + d). Note that the scales of the colorbars correspond to
Figure 4.2, saying that Figure 4.2 can be read as Z22(M2). Rescaling Z22-amplitudes to
real ocean elevation amounts to 19.10/5.50 cm for K2/ν2.

point of Z22. Here, nonlinear effects will play an even more important role due to the di-
minished excitation amplitude, while frequency difference to M2 is reduced (δω = 0.47 ◦

h).
The validation of ν2 resulted in a rms of 0.19/0.18 cm, revealing a moderately enhanced
level of inaccuracy compared to K2-results. The reason for this could be found in an
imperfect representation of nonlinearities in tidal dynamics. Nonetheless, the results
demonstrate that TiME is able to perform simulations on a similar scale of accuracy
within one tidal band (in this case, Z22) without the need to adapt model parameters for
each simulation. Results for these partial tides are shown in Figure 4.5.
On the other hand, monitoring tidal dissipation reveals increasingly altered weights for in-
dividual dissipation agents. While K2 dissipates 34.7 GW, partitioning as (Dbf, Dwd, Ded =
4.9/13.6/16.3 GW) the distribution for ν2 (Dbf, Dwd, Ded = 0.34/1.33/2.21 GW) is, even
more, shifted towards a dominant eddy-dissipation. Not surprisingly, the dissipation by
quadratic bottom friction ∼ |v|3 is strongly reduced compared to dissipation by linear
forces ∼ |v|2. Remarkably, the overall dissipation lost by reduced bottom friction is
transferred to Ded, while deep ocean dissipation by Dwd amounts to a comparable frac-
tion (33.6/38.4/34.2 % for M2/K2/ν2) of dissipation.
On the other hand, simulation results obtained with model setting W0 (cf. Table 4.2) re-
veal decreasingly accurate results for minor tides. While for M2 the decrease of open ocean
accuracy was at a moderate level of 19% the toll for implementing setting W0 increases
by 54 (84) % for the K2 (ν2) excitation. The reason for this could reside in a possible
overestimation of quadratic (nonlinear) shelf-dissipation mechanisms when adapting the
setting W0 for the M2 tide. The importance of a nonlinear dissipation agent (quadratic
bottom friction) reduces strongly for minor tides, which could result in distorted ratios
between the deep ocean and shelf-dissipation. As the accentuation of an alternative linear
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Table 4.2: Model accuracy as measured by open ocean/OBP rms (cf. Section 4.2) for the
discussed ensemble for semidiurnal tides (M2, K2, ν2) as obtained by the default setting
RE and setting W0, where eddy-viscosity dissipation has been minimized (cf. Table 4.1).

Partial tide M2 K2 ν2

rms (cm), RE 3.39/4.83 0.39/0.43 0.19/0.18
rms (cm), W0 4.03/6.54 0.60/0.64 0.35/0.40

dissipation mechanism (eddy-viscosity) in model setting RE improves the results for minor
tides drastically, it could be beneficial to consider novel linear shelf-dissipation mechan-
isms for the precise prediction of minor tides. In spite of the poor physical justification of
dominant eddy-dissipation, it might thus be its linear nature that benefits the accuracy
of hydrodynamic tidal simulations.

4.3.2 Diurnal Tides
The K1 tide is the principal excitation in the diurnal band with a magnitude of 58 %
M2-forcing strength. It is important to note that the resulting forcing applied on ocean
masses is enhanced by 6.2%, compared to an equivalent forcing at semidiurnal frequen-
cies due to the NDFW-resonance (cf. Table 2.1). In contrast to Z22, the tidal excitation
pattern is proportional to Y21 and the strongly dispersive wave drag-parametrization is
further limited to low latitudes with |ϕ| < 30◦. This causes the admittance function
Z21 to take a different shape compared to Z22. Tidal elevations are now concentrated in
the North Pacific, Indian, and Southern Ocean. Validation performance yields an rms
of 0.90/1.32 cm (cf. Figure 4.6). A possible explanation for the overall higher accuracy
might be the larger scales of diurnal oscillations systems that are less sensitive to de-
tailed bathymetric information. Moreover, the overall smaller admittance in the diurnal
tidal band (Z21) indicates less resonant tidal behavior and thus, less sensitivity to slight
changes. We further display a second diurnal oscillation system (Q1) to demonstrate the
achieved accuracy over multiple scales of excitation amplitude. While the forcing strength
is reduced by 86.4% compared to K1, validation accuracy is on a similar level, yielding
0.19/0.25 cm open ocean rms. Due to the shift in excitation frequency by 1.70 ◦

h , the
admittance function Z21 changes notably. This also leads to an altered concentration of
uncertainty in (shelf)-regions.
Concluding this section, we want to stress that the achieved high accuracy for five partial
tides of diverse character proves the model setting RE as suitable and favorable over other
settings for high-accuracy applications.

4.4 Tidal Solutions for Satellite Gravimetry
In the previous section, it was shown that with model setting RE, it is possible to simu-

late minor tides at a similar level of relative accuracy for a wide range of tidal frequencies,
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Figure 4.6: Dimensionless admittance-function Z21 for K1 (a) and Q1 tide (b) and cor-
responding rms values for Z21 (c + d). Rescaling Z21 to real ocean elevations amounts
to 88.14/12.00 cm for K1/Q1. Note the overall lower response level compared to Z22
(Figures 4.2 and 4.5).

excitation amplitudes, and excitation patterns. On the other hand, the precision of satel-
lite data-constrained partial tide solutions depends on the available data quality. This
quality varies with the respective frequency and domain of tidal observations. Typically,
polar tides are less accurately known since many satellite orbits are limited to |ϕ| < 66◦.
This leads to prominent GRACE residuals (Ray et al., 2009; Wiese et al., 2016) in po-
lar seas. The same is true for minor tidal constituents that are routinely considered for
gravity field de-aliasing (Savcenko et al., 2012) but are often not provided explicitly by
data-constrained tidal atlases as the data quality is poor. As this might change at some
time with continuously extended altimeter time series (Ray, 2020), minor tides are cur-
rently routinely derived by admittance assumptions (Petit and Luzum, 2010), which are
prone to reduced accuracy, especially in shallow waters and ice shelf regions (e.g., Pedley
et al., 1986) that are governed by nonlinear processes. In this framework, it is natural to
ask if purely hydrodynamic solutions can perform more accurately than data-constrained
solutions. While this is certainly not true for major constituents (M2, K1, ...) we want
to take a closer look at minor tidal constituents that are yet relevant for gravity field
de-aliasing.
Most promising results can be expected by tides at the edges of tidal bands, as these
contain the potentially largest errors when utilizing linear admittance theory (Ray et al.,
2009). Thus, we choose the diurnal 2Q1 and OO1 tides (1.0%/1.8% M2-forcing strength)
as first test cases. The validation is performed with a set of tide gauges stations of pre-
dominantly coastal character (TICON, Piccioni et al., 2019). Additionally, we probe
Q1-results in the Antarctic region by validation with a data set of Antarctic tide gauges
stations (Howard et al., 2020). The respective solutions are either directly included in the
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Figure 4.7: Respective rms distributions for the Q1 tide (Antarctic TGs, a), the 2Q1 tide
(TICON, b) and the OO1 tide (TICON, c).

FES2014-atlas (Q1), or derived via linear admittance supported by Q1, O1- and K1 tide,
where we consider perturbations in the tidal potential height by the NDFW-resonance
(cf. Table 2.1). Hereby we assume ∂ωZlm = c1 + c2ω (cf. Equation 4.3), evaluate the
constants c1, c2 by the two closest supporting points and use the result to extrapolate the
results linearly to 2Q1 (support Q1, O1) and OO1 (support O1, K1).
As the distribution of the respective rms values is considerably askew, especially for the
TICON data set (cf. Figure 4.7), we decided to utilize the distribution median as an effect-
ive validation metric. The median will be listed in the following for the (TiME/FES2014)-
distributions. TiME performs on a similar level of accuracy as FES2014 for Q1 in the Ant-
arctic domain (1.04/0.83 cm). While this is already quite remarkable for an unconstrained
model, it proposes that the local, nonlinear particularities of tides below ice shelves must
be considered explicitly to obtain more accurate results. On the other hand, the accuracy
for 2Q1 (0.07/0.11 cm) and even more for OO1 (0.17/0.34 cm) is clearly increased when
TiME solutions are employed. From this improvement of validation accuracy with re-
spect to linear admittance solutions, we draw the conclusion that the utilization of TiME
solutions for certain partial tides will result in a reduction of the aliased tidal signal in
GRACE data. This de-aliasing potential for GRACE data exhibited by our minor tide
solutions emerges from the integrated improvement of the model and its high accuracy
over a wide range of partial tides.

4.5 Conclusions
In this chapter, we introduced several modifications to the barotropic tidal model

TiME (Weis et al., 2008), which resulted in a considerable increase of the open ocean
accuracy.
First, we showed that the introduction of a comprehensive pole rotation scheme allows us
for removal of numerical artifacts potentially induced by the former pole cap handling.
The realization of two pari passu grid orientations with land-covered numerical poles fur-
ther allowed estimating resolution-connected model uncertainties.
Secondly, the introduction of a non-local online treatment of the effect of SAL (Ray,
1998a) and the implementation of a wave drag-parametrization (Nycander, 2005) allowed
for a substantial increase in the model accuracy. We further discussed the relevance of
constructing optimized bathymetric maps from different available global data sets. The
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Table 4.3: rms-increase, i.e., ∆rms, measured by the open ocean and TG metrics, when
diverging from the default setting (experiment RE).

Setting no wave drag bathymetry1 param. SAL bad pole cap
experiment W3 B1 S3 P3
∆rms [cm] +4.64/4.91 +3.10/2.52 +2.02/1.86 +1.36/0.74
1: Deviations mainly due to blocked ice-shelf cavities.

resulting update on TiME’s bathymetry evoked another significant increase in model
accuracy, especially due to the inclusion of sub-ice-shelf cavities (Wilmes and Green,
2014). The individual contributions of these updates to model accuracy are summarized
in Table 4.3.
Due to the removal of the numerical pole cap, TiME proved to be highly versatile in
simulating arbitrary oceanic regions with the same level of accuracy. An open question is
the correct representation of (nonlinear) processes in shallow water, beneath ice shelves,
and in coastal areas, where the model accuracy considerably drops. Though dissipation
by eddy-viscosity (a linear dissipative force) increased the overall model accuracy consid-
erably, the obtained high values for Ah are hard to justify. The question of shallow-water
dissipation should be readdressed, also given the persistently overestimated M2-tidal dis-
sipation.
Tuning experiments of the updated model resulted in a set of model parameters that
equally distribute M2 tidal dissipation to friction by wave drag, bottom-friction, and
parametrized eddy-viscosity. The set of model parameters proved robust towards the
simulation of diurnal tides and minor tidal excitations, where results with comparable re-
lative accuracy were obtained. On the other hand, parameters had to be adjusted slightly
when changing the model’s resolution. While the discussed setting is favorable for the
gravimetric applications we are envisioning, a second, physically better-founded setting
was derived that is favorable for sensitivity studies or paleo experiments.
The achieved model performance qualifies TiME as a purely hydrodynamic tidal model
for the simulation of present-day tides. While absolute model deviations from tide gauge
data are considerably bigger than results obtained by data-constrained tidal models for
major tides, we could show that the accuracy for minor tides can be improved. The same
might be possible for polar tides of major origin if crucial polar tidal processes such as sea
ice friction are considered. This potential arises from TiME’s independence from satellite
data and allows for an almost constant relative model accuracy over multiple scales in tidal
forcing strength. This fact allows us to aim for explicit studies of small amplitude tidal
excitations with TiME, which can result in valuable data constraints. The incorporated
nonlinear effects further enable the envisaged small-amplitude studies even for compound
and over-tides. To fully benefit from the de-aliasing potential of the obtained solution, a
comprehensive study focusing on the accuracy improvement of all relevant minor tides by
unconstrained simulations should be conducted and augmented with direct estimates of
GRACE-gravity field solutions.
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Figure 4.8: Mean captured signal fraction c for TiME (blue) and FES14 (red) with respect
to the OBP recorder data set of Ray (2013) for diurnal (x), and semidiurnal tidal species
(o) and the 1/4-diurnal M4 (⬢) partial tide. c is plotted relative to the mean signal s.
The red-dashed connected points symbolizes FES14 tides estimated by linear admittance
(2Q1 and OO1, cf. Section 4.4). The gray area shows the mean signal for degree-3 tides
predicted by TiME (blue, dashed).

Above all, Chapter 4 is concerned with objective O1, the development of an accurate
data-unconstrained ocean tide model. Benefiting from the model upgrades outlined in Sec-
tion 3.2, it was possible to reduce the model rms for the M2 tide by 78% (from 15.39 cm)
in the non-polar open ocean compared to the altimetry-constrained model FES14, and
by 73% (from 17.85 cm) with respect of the OBP recorder data set of Ray (2013). The
lowest achieved rms (3.39 cm with respect to FES14 and 4.83 cm with respect to OBP
recorders) must be assessed in the context of three other quantities, which are discussed
in the following.
First, experiments performed on differently oriented numerical grids with identical phys-
ical parameters (cf. Section 4.2.2) deviate from each other on the level of 1 cm (cf. Fig-
ure 4.3) in the open ocean. This quantity defines an adequate scale for the model’s internal
precision, which is primarily related to the model resolution. It is a factor of 4-5 smaller
than the open ocean rms with respect to geodetic data. Hence, it is argued that TiME is
sufficiently precise to predict OTD.
Second, the rms deviation between the FES14 M2 tide and the OBP recorders is on the
level of 0.3 cm (Stammer et al., 2014), i.e., one order of magnitude smaller than for TiME.
This is a typical result for a major partial tide, where satellite altimetry data is of high
quality, and thus data assimilation can improve the model accuracy enormously. While
this result seems discouraging to pursuing data-unconstrained ocean tide modelling, a
third quantity is needed to correctly classify the results.
This third scale is the mean signal of the respective tide s, which results from calculat-
ing the mean quadratic amplitude over a certain domain or data set, i.e., by evaluating
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Figure 4.9: Amplitude of the principle 1/4-diurnal overtide M4 (in cm) from FES14 (a)
and TiME (b). The plot is augmented with amplitudes obtained at OBP stations.

Equation (4.1) for ζω1 = 0. The comparison between s and the rms reveals which fraction
of the signal the model can capture correctly. This is done by calculating c = 1 − rms

s
,

which is equal to 87% in the open ocean and 64% in the shallower seas when comparing
TiME to FES14 solutions (for M2). For the following discussion, TiME and FES14 are
compared to the OBP data set of Ray (2013), resulting in c = 84% for TiME and c = 99%
for the FES14 M2 tide.
It could be shown that c only decreases slightly when constituents of different frequencies
and amplitudes are considered. In fact, c does not drop below 68%, even for the minor
ν2-tide, and remains above 80% in most cases (cf. Figure 4.8). While FES14 is still de-
cisively more accurate for ν2 (e.g., Hart-Davis et al., 2021a), the fraction c drops related
to s for data-constrained models. Thus, c depends on the SNR, which decreases with
s. The SNR decreases so strongly that data-constrained atlases do not routinely provide
tides with tiny signals (cf. Section 4.4) but rely on linear admittance approaches instead
(cf. Section 2.2.2). Benefiting from the robust TiME implementation, Chapter 4 shows
that several of these tides can be predicted more accurately with a data-unconstrained
model (red dashed line in Figure 4.8). Thus, this chapter also contributes towards object-
ive O2 by showing that minor tidal solutions from TiME can improve tidal prediction, as
they can be superior to linear admittance estimates in some cases.
On the other hand, linear admittance approaches can’t either predict nonlinear shallow-

water tides. Thus, the TiME M4 solution, the principle overtide extracted from experi-
ment RE, is briefly discussed in Figure 4.9. The figure compares both, TiME and FES14
solutions to OBP stations. The mean captured OBP signal fraction equals c = 73% for
FES14, while it is only 18% for TiME. The comparably poor performance of TiME ori-
ginates from the representation of nonlinearity in PDE (2.26) and its implementation in
TiME. As they do not capture a sufficiently large portion of the tidal signal, nonlinear
tides are not further discussed in this thesis.
While this statement applies to nonlinear tides, linear admittance is also non-applicable
for other groups of minor partial tides comprising degree-3 tides and atmospherically ex-
cited tides. They will be the subject of the next chapter7, which is exclusively dedicated
to O2, intensely benefiting from the model developments, i.e., results of O1, outlined in
Chapter 3 and validated in this chapter.

7Figure 4.8 indicates the signal strength of degree-3 tides and displays the partially atmospherically
excited tides S2 and T2.
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Modelling Gravimetric Signatures of
Third-Degree Ocean Tides and their

Detection in Superconducting Gravimeter
Records

Chapter abstract1

We employ the barotropic, data-unconstrained ocean tide model TiME to derive an atlas
for degree-3 tidal constituents, including monthly to terdiurnal tidal species. The model
is optimized with respect to the tide gauge data set TICON-td, that is extended to in-
clude the respective tidal constituents of diurnal and higher frequencies. The tide gauge
validation shows a root-mean-square (RMS) deviation of 0.9 − 1.3 mm for the individual
species. We further model the load tide-induced gravimetric signals by two means (1)
a global load Love number approach and (2) evaluating Greens-integrals at 16 selected
locations of superconducting gravimeters. The RMS deviation between the amplitudes
derived using both methods is below 0.5 nGal2 when excluding near-coastal gravimet-
ers. Utilizing ETERNA-x, a recently upgraded and reworked tidal analysis software, we
additionally derive degree-3 gravimetric tidal constituents for these stations based on a
hypothesis-free wave grouping approach. We demonstrate that this analysis is feasible,
yielding amplitude predictions of only a few 10 nGal and that it agrees with the modeled
constituents on a level of 63% − 80% of the mean signal amplitude. Larger deviations are
only found for lowest amplitude signals, near-coastal stations, or shorter and noisier data
sets.

1Some symbols and references in this chapter were harmonized with previous chapters.
21 nGal = 0.01 nm

s2
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5.1 Introduction

When recapitulating the theory of tides, one finds that the gravitational potential of a
celestial body is not symmetric but radially asymmetric at any given distance, d, from
its center of mass as it decreases proportionally to 1

d
, thus changing its rate of abatement

continuously. However, given the vastness of the distances of these objects relative to
the Earth radius, Re, the lunisolar tide generating potential (TGP) can be approxim-
ated to first order by a set of symmetrical degree-2 spherical harmonic functions. The
asymmetrical part of the TGP is encoded in harmonic contributions of higher degree
(l ≥ 3), while their magnitudes are reduced by the factor

(
Re
d

)l−2
with respect to degree-2

tides. For solar degree-3 tides this factor is as small as 1
23000 , while for the Moon it is

close to 1
60 (e.g., Agnew, 2007). Furthermore, there are planet-moon constellations in

the solar system, for which this ratio is even more elevated, e.g., 3
10 for the Mars–Phobos

dyad (Rosenblatt, 2011) augmenting the relative weight of the respective l > 2 tides so far
that they contribute a significant fraction to tidal dissipation by body tides (Bills et al.,
2005).
Although the third-degree TGP can be seen as a small correction to the degree-2 ap-
proximation for terrestrial tides, the effect of the respective tide-generating forces on the
Earth system is strong enough to be detected with geodetic techniques. This detection is
easiest for the terdiurnal 3M3 wave as it does not neighbor degree-2 excitations, appear-
ing in a practically isolated position of the frequency domain (Melchior and Venedikov,
1968). The detection of degree-3 tides with semidiurnal or even longer periods is more
complicated due to significantly stronger degree-2 excitations at nearby frequencies, being
only separated by one complete cycle during the precession period of the lunar perigee
of 8.85 yr. In addition, some degree-3 partial tides are significantly modulated with the
regression period of the lunar nodes of 18.6 yr (Ray, 2020). This dense overlap of closely
neighboring partial tides together with their small signal-to-noise ratio implies the need
for long-term time series to identify lunar degree-3 tidal constituents (Munk and Has-
selmann, 1964). Relying on such long term records, degree-3 signatures were detected
in pioneering studies based on tide gauge (Cartwright, 1975; Ray, 2001) and gravimetric
records (Dittfeld, 1991; Melchior et al., 1996; Ducarme, 2012) . In particular, records from
superconducting gravimeters (Prothero and Goodkind, 1968; Goodkind, 1999; Hinderer
et al., 2015) are of very low-noise and high resolution, rendering them well suited for the
detection of low amplitude signals (Van Camp et al., 2017).
The derived degree-3 gravimetric factors can be compared to predictions by theoretical
Earth models, which were progressively refined (e.g., Wahr, 1981; Dehant et al., 1999;
Mathews, 2001). However, body tide gravimetric signatures are superimposed by load
tide signals arising from mass redistribution due to ocean tides (e.g., Baker et al., 1996;
Jentzsch, 1997; Bos et al., 2000), also for degree-3 tides (Ducarme, 2012; Meurers et al.,
2016). The gravitational ocean loading effect comprises both gravity perturbations stem-
ming from the yielding of the solid Earth under the ocean masses and direct Newtonian
attraction from the redistributed seawater. This loading effect can be predicted and thus
removed by combining ocean tide models with information about the structure of the solid
Earth. Possible techniques include global Green’s function convolution integrals or spec-
tral approaches constrained by load Love numbers (e.g., Longman, 1963; Farrell, 1972;
Boy et al., 2003).
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As the induced load tides provoke a significant back-action on ocean tidal dynamics in
terms of the induced Self-Attraction and Loading (SAL) potential (e.g., Henderschott,
1972; Ray, 1998a), its precise representation is a vital issue for purely hydrodynamic tidal
modeling (e.g., Zahel, 1991; Schindelegger et al., 2018). On the other hand, altimetry-
constrained tidal models have reached impressive levels of accuracy (e.g., Egbert and
Erofeeva, 2002, updated; Ray, 1999, updated; Lyard et al., 2021; Hart-Davis et al., 2021b)
and can provide precise estimates of load tide induced gravimetric fluctuations. As those
modern models rely on the quality of available altimetry data, their relative accuracy
decreases with the amplitude of the respective tidal constituents and towards the polar
regions, where altimetry data coverage is sparse due to the inclination of those satellites
and the presence of sea ice. Subsequently, the accuracy of data-constrained ocean tide
models is lowest for small amplitude tides (minor tides) and can only increase by prolong-
ing altimetric time series length. As the first tide-dedicated satellite altimetry mission was
launched only in 1992, the data basis was not sufficient to extract estimates for degree-3
ocean tides for many years. However, with the continued accumulation of satellite alti-
metry data, this situation has changed, as the late-breaking study by Ray (2020) shows.
For purely hydrodynamic tide models, the limitations of available empirical data are
irrelevant as they are not incorporated into the modeling process. While there were
a number of articles that provided data-unconstrained solutions for individual degree-3
tides (Platzman, 1984b; Woodworth, 2019) a full catalog comprising purely hydrodynamic
degree-3 tides of all possible orders (0, 1, 2, and 3) has to our knowledge not been pub-
lished, yet. Clearly, the lack of satisfactory means for identifying tidal loading vectors
in degree-3 gravimetric constituents calls for accurate and complete degree-3 ocean tide
models (Ducarme, 2012). In turn, such models will enable the correction of gravimetric
time series to better assess solid Earth models.
Further, the process of de-aliasing satellite gravimetric data begins to pose the need for
degree-3 tidal solutions. In fact, the expected signal strength of minor tides amounts to a
relevant fraction of the currently unresolved aliased tidal oscillation. This signal is among
the three most prominent sources of uncertainty in Gravity Recovery And Climate Ex-
periment data (GRACE and the successor GRACE-FO) (Tapley et al., 2019; Flechtner
et al., 2016).
Here, we complement novel empirical degree-3 solutions (Ray, 2020) by presenting an
integrated, data-unconstrained atlas of degree-3 partial tides. These hydrodynamic solu-
tions benefit from several recent advances made with the barotropic model TiME (Sulzbach
et al., 2021a). In contrast to the aforementioned empirical solutions, which are confined
to latitudes |ϕ| < 66◦, our global results allow for the determination of global load tide
solutions. The comparison of those degree-3 solutions to empirical results allows for the
validation of the state-of-the-art barotropic modeling approaches. The obtained tidal
solutions are subsequently used to derive gravimetric load tide constituents that are com-
pared to the empirically estimated load tide vector at 16 superconducting gravimeter (SG)
stations distributed over all continents. The highly sensitive SG instruments offer both
an independent way to validate the expected small-amplitude degree-3 tidal solutions and
the possibility of verifying the consistency of solid Earth models.
Sections 5.2 and 5.3 describe the employed tidal model and the specification of the tide-
raising potential of third degree3. Section 5.4 explains the optimization of modeling para-

3References were updated to the nomenclature of this thesis.
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meters and discusses the performance of the tidal model before we present and discuss the
obtained tidal solutions in Section 5.5. The derivation and extraction of gravimetric tidal
parameters are outlined in Section 5.6, along with a detailed comparison to the obtained
modeling results. We summarize our results and draw conclusions in the final Section 5.7.

5.2 Hydrodynamic Tidal Modeling

To model barotropic tidal dynamics, we employ the purely hydrodynamic (unconstrained
by data) computer model TiME that was introduced by Weis et al. (2008) and upgraded
by Sulzbach et al. (2021a). TiME integrates the shallow-water equations (e.g., Pekeris,
1974)

∂tv + f × v + (v · ∇) v = −g0∇ (ζ − ζSAL(ζ) − ζeq) − Dv, (5.1)
∂tζ = −∇ ([H + ζ] v) ,

in time employing the semi-implicit algorithm developed by Backhaus (1982, 1985). The
model is run with partial tide forcing ζeq = Vtid(x, t)/g0, where Vtid is proportional to
the fully-normalized, real-valued spherical harmonic function of degree l and order m,
noted Ylm (cf. Section 5.3). Further, f = 2Ωe sinϕ evert is the vertical Coriolis vector at
latitude ϕ, Ωe = 2π

1d is the Earth rotation angular frequency, and g0 = 9.80665 m
s2 (World

Meteorological Organisation, 2008) is a conventional, constant value of surface gravity
acceleration.
The effect of SAL-potential, VSAL = g0 ζSAL(ζ) (Henderschott, 1972; Ray, 1998a), de-
scribes dynamic, gravitational forces induced self-consistently by the redistribution of wa-
ter mass and the yielding of the Earth. It is calculated by employing a spectral approach,
reintroduced by Schindelegger et al. (2018) that is constrained by load Love Numbers
(LLNs taken from Wang et al. (2012); PREM), where the spectral decomposition is trun-
cated at maximum degree and order lmax = 1024. Further, a local, scalar approximation
of the effect, ζSAL = ϵζ, can be employed (Accad and Pekeris, 1978).
H(x) is the bathymetric function that is constructed from the RTopo-2 data set (Schaffer
et al., 2016) and includes the water column below the lower Antarctic ice shelf boundary.
Dissipative forces are comprised in the expression Dv that includes dissipation by quad-
ratic bottom friction, parameterized eddy viscosity (∼Ah: horizontal eddy viscosity coef-
ficient), and topographic wave drag dissipation (∼κw: wave drag coefficient) (Nycander,
2005). It is important to note that wave drag is a frequency-dependent effect (Green and
Nycander, 2013). While drag is quasi-absent for long-period tides, the individual wave
drag tensor differs for diurnal, semidiurnal, and terdiurnal species.
Simulations are performed on a rotated, spherical lat/lon-grid with poles located on dry
grid cells at (114.5◦E, 28.5◦N) in east Asia and the Antipodic point in South America at
a resolution of 1

12
◦. The zonal resolution is halved at two latitude circles (60◦ and 75◦)

towards the poles. This allows for simulations to be performed with time step lengths of
1

14400/ 1
480/ 1

240/ 1
160 of the respective tidal period for monthly/ diurnal/semidiurnal/ terdi-

urnal tides yielding numerical values close to 180 seconds.
The initially transient solution is ζ(x, t) = (v, ζ) (x, t), where v is the tidal flow velocity
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and ζ the sea surface elevation. It converges to the harmonic time series, reading

ζ(x, ωt) = ζωcos cosωt+ ζωsin sinωt+ (N) , (5.2)

for the sea surface elevation. In the following, nonlinear contributions N4 are neglected
as they are generally much smaller than the linear component.
From Equation (5.2) the tidal amplitude |ζω| =

√
(ζωcos)2 + (ζωsin)2 and Greenwich-phase-

lag ϕω5 can be derived and will be used to present the obtained tidal solutions. We want
to stress that ϕω = 0 usually refers to the TGP having its maximum value at the equator
on Greenwich-longitude λ = 0 (or slightly north of the equator if it is zero at ϕ = 0).
This situation is not reflected at t = 0 for all spherical harmonic functions constituting
the TGP as later defined in Equation (5.3). For certain combinations of (l,m), including
(2, 0), (3, 0) and (3, 1), an additional phase-shift of 180◦ has to be introduced to obtain
the correct phase-convention for ϕω = 0 at t = 0 (cf. Equation 2.7).
We recall that the tidal simulations are run in partial tide forcing mode. This means that
only tide-raising forces of a certain frequency are considered, which disables the nonlinear
generation of compound tides by the interaction of different partial tides. The nonlinear
interactions of certain minor tides can, in principle, generate oscillations at the considered
degree-3 frequencies, e.g., N(2M2, 3M1) → M3, and would contribute to the modeled tidal
solutions. On the other hand, these contributions are expected to be negligible as they
can only be produced by the interaction of at least one of the presented minor amplitude,
degree-3 tides, with another partial tide. Therefore, these compound tides are smaller
by a factor of 60 compared to compound and overtides tides of degree-2 origin. Here,
M4 (cf. e.g., FES14-model: Lyard et al., 2021) is the most prominent example with sub-
cm amplitudes in the open ocean. Nonetheless, we acknowledge that those contributions
could produce minor modifications of the results.

5.3 Tide-Raising Potential of Second and Third De-
gree

The TGP allows describing the tidal forces generated by celestial bodies. The astronom-
ical gravity potential exerted by these objects can be decomposed into temporal harmonic
functions (Wenzel, 1997b) that excite partial tides in the atmosphere, solid Earth, and
ocean. We use the expansion of Hartmann and Wenzel (1994, 1995b) (HW95). The res-
ulting ocean tide-raising potential for a partial tide with frequency ω, degree l and order
m can be expressed as6

V ωlm
tid (x, ωt) = ab

l Aω (Ylm(ϕ, λ) cosωt− Yl−m(ϕ, λ) sinωt) , (5.3)

where Aω = |Aω|7 is the excitation amplitude for a partial tide of frequency ω, abl = 1+kbl −
hbl is a combination of body tide Love numbers that evaluates to ab3 = 0.801 (Spiridonov

4Compare Section 3.3.3.
5The notation for the phase lag has been harmonized with Chapter 2.
6The notation was harmonized with the TRP as introduced in Chapter 2, cf. Equation (2.8).
7In this chapter, partial tide related quantities are labeled by the frequency ω of a given partial tide

i, which is equivalent to the definition in Equation (2.8).



5.3 Tide-Raising Potential of Second and Third Degree 83

M1

M1

S1

S1

(a) (b)
chi arc

3M1

∗S1

∗S1

3M1

Figure 5.1: Diurnal tide gauge data (TICON-td, cf. Section 5.4.1) for 2 example stations
in the Atlantic (left, green •) and southern Pacific Ocean (right, red •). The real (in-
phase) part of the admittance function Re(Z) (blue, dot) and the imaginary (quadrature)
counterpart Im(Z) (blue, x) are approximated by a linear admittance approach sustained
by 2Q1, 2O1, 2K1 (black line). Overlaid the TiME-native chi- and the arc-grid are shown
with the respective TG-positions.

(2018): model 9) and Yl,m≥0 ≡ P lm(sinϕ) cos(mλ), Yl,m<0 ≡ P lm(sinϕ) sin(mλ) are real-
valued spherical harmonic functions, where the normalized associated, Legendre functions
P lm are defined as in Heiskanen and Moritz (1967) or the Appendix of Hartmann and
Wenzel (1995a).
Within this thesis, we use the term ‘Tide-Raising Potential’ (TRP), which is the generator
of ocean tides and includes the back-action of solid Earth body tides upon water masses
included in ab3 to demarcate its difference to the concept of the TGP solely including
gravitational forces originating from celestial bodies. Our definition of the TRP does not
comprise the SAL forces that are induced by the ocean tides themselves but only the
forcing potentials that are not influenced by ocean tidal dynamics.
Forces exerted by V ωlm

tid (x, ωt) induce tidal surface oscillations that can be described by
the complex-valued solution vector ζω = ζωcos + iζωsin. This quantity will be employed for
model validation (cf. Equation 5.2). Normalization by the equilibrium tide length scale,
Aωab

l

g0
, yields the admittance function that we define as8

Zlm(x, ω) = ζω,lm

Aωab
l

g0. (5.4)

Here we restored l,m to the superscript of ζω,lm to recall the degree and order of the
respective partial TRP, the generator of ζω,lm. As ∂ωZlm varies only weakly with ω for
modern-day tides, the admittance function Zlm(ω) is often interpolated (and extrapol-
ated) by assuming linear admittance (Munk and Cartwright, 1966; Petit and Luzum,
2010; Rieser et al., 2012) (cf. Figure 5.1 and D.1). As those assumptions are feasible for
most tides, this approach is employed to improve tidal predictions substantially, as direct
estimation of tides by satellite-data-constrained tidal models shows reduced precision for
small tidal amplitudes (Hart-Davis et al., 2021a).

8This definition is equivalent to the definition in Chapter 2.
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Table 5.1: Third-degree tides and neighboring second-degree tides in the same tidal group
as appearing in HW95-TGP of Hartmann and Wenzel (1995b) after the nomenclature
of Ray (2020). The Table shows the Doodson-Coefficients, the tidal frequency f , excit-
ation amplitude, as well as degree l and order m of the generating spherical harmonic
functions Ylm. Additionally, naming conventions employed in recent publications are lis-
ted.

Doodson f [
◦

h ] l m Aω [ mm2

s2 ] Ray (2020)1 Ducarme (2012)2 Woodworth (2019)
065.555 0.54902 3 0 1.0424e+04 3Mm∗ 3MO0

155.455 14.48741 2 1 1.449e+04 2M1 LK1 M′
1(2)

155.555 14.49205 3 1 7.833e+03 3M1 M1 M1
155.655 14.49669 2 1 4.029e+04 2M1 NO1 M′

1(7)
245.555 28.43509 3 2 7.604e+03 3N2 3MK2
245.655 28.43973 2 2 2.366e+05 2N2 N2

265.455 29.52848 2 2 3.493e+04 2L2 L2
265.555 29.53312 3 2 7.014e+03 3L2 3MO2

355.555 43.47616 3 3 1.497e+04 3M3 M3
1: Notation employed in this chapter.
2: also used in the HW95 catalog supplemented to ETERNA-x.
∗: Not mentioned by Ray (2020) but proposed in personal communication.

On the other hand, this technique can only be employed for tides with identical degrees
and orders. For degree-3 tides, the admittance assumptions sustained by degree-2 tides
are generally invalid, as is easily verified with tide gauge data-derived admittance func-
tions. From Figure 5.1 it becomes clear that the degree-3 tide 3M1 as well as the primarily
radiational tide ∗S1 cannot be estimated by linear admittance assumptions and must be
estimated, or simulated, explicitly. Here, ∗ signifies the atmospherically influenced excit-
ation pattern that differs from pure degree-2 excitation.
As degree-3 partial tides are reduced by the factor of approximately 1

60 , they are difficult
to detect in observational records. Thus, we only consider the most prominent excitations
for the possible tidal bands (m = 0, 1, 2, 3) of third-degree origin even though additional
excitations can be detected in gravimetric meassurements (Ducarme, 2012) and in several
tide gauge records (Ray, 2001). Since the nomenclature for those tides has never been
unified (Ray, 2020) and differs in geodetic (Ducarme, 2012) and oceanographic literat-
ure (Woodworth, 2019), they are listed in Table 5.1 with respect to their mentioning in
recent publications along with neighboring tides of second-degree origin.
Within this chapter, we will utilize the naming convention introduced by Ray (2020),
presented in bold font, as it considers historical developments in the oceanographic no-
menclature, incorporates a direct reference to the degree of the exciting potential, and
excludes confusion with oceanographic compound and overtides. Further, the utilized
leading superscript has been extended to all second-degree partial tides (e.g., 2M2, 2O1)
mentioned in this chapter for means of continuity.
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5.4 Model Setup and Validation
Since TiME is data-unconstrained, simulation errors cannot be rectified by assimilating

satellite altimetry data. Therefore, the influence of the model parameters on the sim-
ulation results is critical. To optimize the accuracy of the obtained tidal solutions, an
ensemble of simulations is prepared where the relative weights of the implemented dissip-
ation mechanisms are tuned. The results are then validated with a reference tide gauge
data set.

5.4.1 Tide Gauge Data Set
TICON is a global tide gauge (TG) data set that provides tidal constants of 40 tidal

constituents (Piccioni et al., 2019). These constants are estimated by least-squares har-
monic analysis on individual tide gauge time series obtained from the Global Extreme
Sea Level Analysis (GESLA: Woodworth et al., 2017) project. In this study, the num-
ber of tidal constituents is increased to include the 3M1, 3M3, 3N2 and 3L2 tides, and
the data set is henceforth called TICON-td. As stated by Ray (2020), these degree-3
tides have frequencies similar to those of larger degree-2 tides and are significantly mod-
ulated during the 18.61 yr cycle of the lunar node regression and, therefore, require a
long time series of observations to properly separate these tides. The required time series
length is hereby related to the noise apparent in the tidal record (Munk and Hasselmann,
1964). The extension of TICON-td was designed to only include tide gauges that exceed
10 years of continuous sampling and include the nodal corrections as presented by Ray
(2020). Furthermore, we only include stations that are placed in an open ocean environ-
ment (mean surrounding depth > 500 m in a 2◦ radius), ending up with an ensemble of
NT = 134 stations. We further remove closely neighboring stations by only allowing one
station in a 0.2◦ radius. Formal uncertainties of these tidal estimations are also provided
in order to evaluate the comparisons between the model and these data. For these four
tidal constituents, the average standard deviation of the individual tide gauge estima-
tions was < 0.01 mm and, therefore, should not influence the comparisons with the model
estimations.

Further, we employ NR = 130 selected OBP stations that were analyzed by (Ray,
2013). This data set provides constituents for a large number of partial tides, including
3M3, which allows the comparison to TICON-td for this specific partial tide. The spatial
distribution of the data sets is non-uniform, where a concentration of stations around
Japan for TICON-td is the most striking feature.
The employed metric is the root-mean-square (RMS) deviation with respect to the data

RMS(ζω) =

√√√√ 1
2N

N∑
i=1

|ζω(xi) − ζωTG(xi)|2 , (5.5)

where the summation is performed for all N = NR, NT stations. This deviation can be
compared to the respective mean signal s ≡ RMS(ζω = 0), depicting the captured signal
fraction

c = 1 − RMS

s
, (5.6)

that we will employ as an effective score metric.
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Table 5.2: Tuning experiments for dynamical degree-3 tides. RMS(3M3) comprises the
evaluation for both data sets (TICON-td/ Ray, 2013). All RMS values are given in mm.

ID SAL κw [%] Ah [m2

s
] RMS(3M1) RMS(3L2) RMS(3N2) RMS(3M3)

Mean Signal at TG-stations s [mm]: 1.5 2.5 2.0 2.9/2.3
S1 ϵ = 0.1 125 2 · 104 1.4 1.2 1.2 2.0/1.6
W0 d/o=1024 125 5 · 102 1.2 1.2 1.4 2.2/1.9
W1 d/o=1024 0 4 · 104 1.0 1.3 1.2 1.6/1.1
RE d/o=1024 125 2 · 104 1.0 0.9 0.9 1.3/0.9
RE-Dissipation by wave drag [%]: 14 39 34 29
c = 1 − RMS

s
(experiment RE) [%]: 33 64 55 61/55

5.4.2 Model Tuning

Employing the previously introduced tide gauge metric, an ensemble of tidal simulations
was prepared to find an optimum interplay between the implemented dissipation mechan-
isms (wave drag, bottom friction, eddy viscosity). The results are displayed in Table 5.2.
For all partial tides, we obtain the highest accuracy with setting RE, which was initially
derived as an optimized setting for the main lunar tide 2M2 (Sulzbach et al., 2021a).
The parameterized eddy viscosity of Ah = 2 · 104 m2

s implies a large lateral momentum
transfer which we find hard to justify hydrodynamically (Egbert et al., 2004). Therefore,
we further conducted experiments with Ah minimized (W0), which confirmed the results
of Sulzbach et al. (2021a), where RE is favorable for enhanced accuracy. Similar to this
finding, reduced accuracy is observed when employing setting W1, where wave drag dis-
sipation is completely suppressed. This confirms that terdiurnal and semidiurnal tides
are strongly controlled by wave drag dissipation and thus require a precise representation
of this effect for accurate modelling results.
The influence on 3M1 on the other hand, is smaller, while 3Mm is simulated with setting
W1 as is not expected to dissipate energy by wave drag mechanisms (cf. Table 5.2). In
comparison to neighboring degree-2 tides tabulated in Table 5.1, the wave drag dissipa-
tion fraction is almost identical (2N2: 34 %; 2L2: 38 %; 2M1: 16 %) in spite of gravely
altered admittance patterns. The overall dissipation is well below 1 GW, with the most
prominent contribution of 240 MW coming from the 3M3 tide.
In agreement with results obtained for major tides (Sulzbach et al., 2021a), we find that
the full consideration of the effect of SAL is crucial to obtain high-precision results. The
locally approximated SAL-effect utilized for experiment S1 showed a substantial RMS
increase, especially for the small-scale oscillation systems of 3M3, where the increase was
close to 1 mm. A possible explanation is the smoothing effect of the SAL-convolution
integral, which is highly important for short-scale oscillation systems such as those of
3M3. The captured signal fraction c (cf. Equation 5.6) exhibits values between 55% and
65%, where the agreement for 3M1 is particularly low (33%). We find that the amount of
captured signal for 3M3 by both data sets is similar.
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5.5 Global Solutions for Ocean Tides and Loading-
Induced Gravity Signals

Ocean tidal loading induces terrestrial gravity variations that can be measured with
gravimeters on solid ground, even far away from the coast. In analogy to Equation (5.2),
the induced ocean loading induced gravity signal can be described by

g(x, ωt) = gωcos cosωt+ gωsin sinωt+ (N) . (5.7)

Global solutions gω = gωcos + igωsin for the induced gravity at sea level height can be derived
by a spectral approach, constrained by load Love numbers that translate ζωcos → gωcos and
analogously for the sine-coefficients (Agnew, 1997; Merriam, 1980).
Therefore we evaluate

gωcos(x) = −g0
3ρsw

2Reρse

lmax∑
l,|m|≤l

4hl − 2kl(l + 1) − 1
2l + 1 ζωlm,cosYlm(ϕ, λ) . (5.8)

Here ζωcos = ∑
l,m ζ

ω
lm,cosYlm(ϕ, λ), kl and hl are LLNs describe the effect of the yielding of

the solid Earth on gravity, ρsw = 1024 kg
m3 and ρse = 5510 kg

m3 are the mean density of seawa-
ter and the solid Earth, respectively. This sum converges uniformly as kll → (kl · l)∞ and
hl → h∞. We take lmax = 2599, where the ocean load input is interpolated conservatively
to a resolution of 1

30
◦, with coastlines derived from the RTopo-2 bathymetry (Schaffer

et al., 2016). In line with the definition of the tide-raising forces in Equation (5.1), the
gravity acceleration in Equation (5.8) acts towards potential maxima: Positive vectors
point to the Earth’s core. This evaluation is strictly valid only at sea level height (H = 0)
because otherwise, the spectral decomposition does not converge sufficiently fast with
increasing lmax (Merriam, 1980).
This formula solely encompasses the far-field or large-scale effect of the induced gravity
variations. In this approximation, mass variations are treated as a layer of depth zero on
the ocean surface. The Newtonian attraction of close-by wet grid cells is thus ignored, as
they are assumed to be at the same height as the evaluation point (at sea level)9.
Therefore, this approximation is only valid at locations with a distance from the ocean r0
and height H forming a ratio tan(β) = H

r0
→ 0. While this is true for most SG stations

treated in this chapter, deviations are to be expected for near-coastal stations, which we
will define within this chapter as stations with βmax > 1◦ comprising the OS (rmin

0 ≈ 250 m
→ βmax ≈ 1.6◦) and NY station (SG Kongepunktet: rmin

0 ≈ 120 m → βmax ≈ 20.0◦, Breili
et al., 2017). Other gravimeters in coastal regions (e.g., TC, LP) are situated at distances
r0 > 10 km from the ocean and violate the defined criterion for near coastal stations.
However, the restriction to sea level height is only relevant for the introduced spectral
approach. The here neglected local attraction effect can be easily incorporated with a
Greens-function approach (e.g., Olsson et al., 2009).
In the following subsections, the modeled results for ocean and induced gravity signatures
appearing in Table 5.1 are discussed and refer to Figures 5.2 to 5.5.

9The identification of the effect of local Newtonian attraction is debated by Voigt et al. (2023).
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Figure 5.2: 3M1-tide; (a) Greenwich-phase lag ϕω of the modeled ocean tide (degree) with
cotidal lines in increments of 60◦ (Thick: 0◦) ; (b) ocean tide amplitude |ζω| (right, mm)
and ocean loading induced gravity amplitude |gω| (left, nGal). The plots are overlayed
with Greenwich phases and amplitudes measured at TICON-td tide gauge stations (tri-
angles) and phases modeled with SPOTL (inner circle) and analyzed (outer circle) for the
SG stations. The displayed gravity signal partially exceeds the presented scale by far in
near-coastal regions but is cropped at 28 nGal for a better depiction of smaller signals.

5.5.1 Diurnal Species

In close agreement with the results of (Ray, 2020) and (Woodworth, 2019), the displayed
3M1-oscillation patterns have a typically diurnal character with tidal amplitudes that are
elevated at coastlines (cf. Figure 5.2). Yet the observed cotidal chart completely contra-
dicts the well-known degree-2 patterns (cf. also Appendix D and Figure D.1 therein). Tidal
amplitudes are enhanced in the North Atlantic (in accordance with Cartwright, 1975) and
even more pronounced in the Indian Ocean. On the other hand, 3M1-oscillation in the
Pacific is strongly suppressed. As TiME is data-unconstrained and includes polar latit-
udes, we further report large-scale elevations of up to 5 mm in the Southern Ocean around
Antarctica as well as high amplitudes in Baffin Bay (max: 14 mm) and the Barents Sea
(max: 19 mm east of the Kanin Peninsula), while Arctic 3M1-amplitudes are small but
reach up to 3 mm in some places. We further report a number of local maxima, including
the Sea of Okhotsk (max: 33 mm), the Patagonian Shelf (max: 12 mm), and south of New
Guinea (max: 42 mm).
While the comparison to TICON-td shows a convincing agreement in tidal phases, the

amplitudes are depicted less precisely, resulting in an RMS of 10 mm while capturing
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Figure 5.3: 3N2/3L2-tide; (a, c) Greenwich-phase lag ϕω of the modeled ocean tide (degree)
with cotidal lines in increments of 60◦ (Thick: 0◦) ; (b, d) ocean tide amplitude |ζω|
(right, mm) and ocean loading induced gravity amplitude |gω| (left, nGal). The plots
are overlayed with Greenwich-phases and amplitudes measured at TICON-td tide gauge
stations (triangles) and phases modeled with SPOTL (inner circle) and analyzed (outer
circle) for the SGs.
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c = 33% of the signal (Table 5.2). Besides possible shortcomings of the tidal model for
the 3M1 (e.g., underestimated bottom friction, shallow-water processes), a possible reason
for this low agreement might be the generally small 3M1-signal with especially high con-
centrations of TG-stations in low amplitude regions (e.g., The Pacific Ocean). In spite
of the small 3M1 ocean tide signal, the modeled ocean loading induced gravity signal fea-
tures high amplitudes in coastal proximity, partially exceeding 100 nGal (e.g., The Horn
of Africa) that only slowly decay towards the continental interior. Reasonably high signals
are to be expected for gravimeters situated in Europe, South America, and Australia.

5.5.2 Semidiurnal Species
Being members of the same admittance band described by Z32, the 3N2 and 3L2 tides
exhibit quite similar oscillation patterns. In agreement with the findings of Ray (2020),
TiME predicts the semidiurnal degree-3 response to be strongest in the Pacific Ocean
with smaller amplitudes in the southern Atlantic Ocean (cf. Figure 5.3). In contrast to
the diurnal results, amplitude maxima of up to 10 mm height appear in the open ocean.
The strong semidiurnal response in the Southern Ocean, especially the Weddell Sea, is
fully depicted on TiME’s global domain with large-scale amplitudes reaching over 10 mm.
On the other hand, semidiurnal responses in the Arctic region are found to be negligible.
As discussed by Ray (2020), the 3L2-response is observed to be considerably stronger,
despite its smaller equilibrium tidal height (−8% to 3N2), which can be related to a more
resonant coupling to oceanic normal modes (cf. Müller, 2007).
We report a number of local maxima that reach the highest values north-east of Australia
(94 mm), Bristol Bay (Alaska, 77 mm), Western Australia (41 mm), and the Weddell Sea
(38 mm) for 3L2.
The validation with TICON-td shows a good agreement in tidal phases and amplitudes
that is substantially higher than the results obtained for 3M1 (55%/64%) and comparable
to the results obtained by Ray (2020). Relevant gravimetric amplitudes are predicted close
to large-scale oceanic signals, with dominant amplitudes in North/South America, South
Africa, and Australia. Due to their shorter tidal period, the semidiurnal amphidromic
systems have a shorter spatial length scale compared to 3M1. Their respective gravimetric
amplitudes decay faster towards the continental centers. For a comparison with degree-2
tidal solutions please consider Appendix D and Figure D.2 therein.

5.5.3 Terdiurnal Species
3M3 displays the most fine-structured response patterns due to its higher terdiurnal fre-
quency. More than for the semidiurnal species, open ocean amplitude maxima appear in
each major basin with amplitudes reaching > 5 mm and even higher in the north-east of
Brazil (cf. Figure 5.4). The most prominent large-scale amplitudes are yet again confined
to shelf areas and marginal seas (Ray, 2020).
The largest signals are obtained in the Mozambique Channel and Western Europe. Amp-
litudes up to 5 mm are predicted at Antarctic coasts, while Panarctic 3M3 amplitudes are
close to zero. In contrast, small-scale 3M3 shelf resonances can reach considerable heights.
Here we only mention the largest predicted amplitudes near Beira (Mozambique Channel:
151 mm), the Suriname river mouth (131 mm), Southern Australia (88 mm), and Bristol
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Figure 5.4: 3M3-tide; (a) Greenwich-phase lag ϕω of the modeled ocean tide (degree) with
cotidal lines in increments of 60◦ (Thick: 0◦) ; (b) ocean tide amplitude |ζω| (right, mm)
and ocean loading induced gravity amplitude |gω| (left, nGal). The plots are overlayed
with Greenwich-phases and amplitudes measured at TICON-td tide gauge stations (tri-
angles) OBP stations of Ray (2013) (hexagons) and phases modeled with SPOTL (inner
circle) and analyzed (outer circle) for the SG stations.

Channel (UK: 69 mm).
As for the semidiurnal tidal species, the comparison to TG data shows a good agreement
with both data sets at levels of around c = 60%. Combining both data sets, dense cov-
erage of TG data is achieved. Providing an interesting result for satellite gravimetry, the
predicted open ocean amplitude maxima are recorded and confirmed by the TG stations
for both terdiurnal and semidiurnal tidal species. As 3M3 oscillation systems are of small
scale and often confined to coasts, the resulting ocean loading induced gravity signal
reaches high amplitudes in coastal environments while quickly decaying with increasing
distance from the coast. The loading-induced gravity signature on the South American
continent represents an interesting case: As the coastal terdiurnal ocean tides mainly ex-
hibit phase lags between 240◦ and 360◦, the continent is pushed down in a synchronized
way yielding high gravimetric amplitudes that depict relevant magnitudes over the larger
part of the continent. As the gravimetric amplitude rapidly changes in coastal margins,
the detectability of 3M3 in e.g., European and Japanese stations primarily depends on
the exact position of the gravimeter station.
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Figure 5.5: Long-period 3Mm-tide (a) and complex deviation |ζω − ζseqt(3Mm)| to self-
consistent equilibrium tide (b). Elevations are given in mm.

5.5.4 Long-Period Species

As the 3Mm oscillation period is close to 1 month, dynamic forces are strongly suppressed,
resulting in an ocean tide amplitude generally below 3 mm. The results can directly be
compared to the self-consistent equilibrium tide ζseqt resulting from Equation (5.1) with
dynamic forces eliminated,

ζseqt − ζeq − ζSAL(ζseqt) = const. , (5.9)

that depends on the degree and order of the selected partial tide forcing expressed by ζeq.
The constant value has to be chosen to ensure mass conservation10. The deviation between
3Mm and ζseqt(3Mm) that is displayed in Figure 5.5 (b) confirms the non-dynamic char-
acter of 3Mm. Aberrations from the equilibrium solution only reach relevant magnitudes
in the Panarctic region, especially on the Siberian Shelf, where deviation amplitudes over
2 mm are obtained. Some marginal seas (Baltic Sea, Mediterranean Sea) also exhibit
small deviations from equilibrium.
As the 3Mm-constituent is not contained in TICON-td, the results displayed in Figure 5.5
(a) cannot be validated directly in this study. Further, The 3Mm-amplitudes are small
compared to the effects of local water storage changes, which appear in the same tem-
poral range (weeks to months). Therefore, it turned out to be difficult to find evidence in
the gravimetric time series, but the results may contribute to isolating those hydrological
signals.

5.6 Gravimetric Data and Modelling

Long records from superconducting gravimeters (SG) (Goodkind, 1999; Hinderer et al.,
2015) provide temporal gravity variations with the highest sensitivity and long-term stabil-
ity. The excellent signal-to-noise ratio of these instruments, together with recent advances
in tidal analysis, enables a separate parameter estimation of degree-3 tidal constituents.

10Compare Section 2.1.4, where the constant value is introduced as cm(t).
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Figure 5.6: Locations of the discussed SG stations over the globe with Station-ID, Site,
and Country-ID.

5.6.1 Gravity Time Series
Records from 16 SG stations worldwide (Figure 5.6) contributing to the International
Geodynamics and Earth Tide Service (IGETS, Boy et al., 2020) were analyzed. The time
series covering periods from 5 to 23 years were selected based on a global simulation of
the tidal constituents (Table 5.2, Figures 5.2 to 5.5). Stations having a signal of at least
10 nGal for one component were included. This covers, in particular, the Atlantic coast
of Europe, the west coast of North America, southern Australia, and Japan, and includes
stations in South Africa and South America.

The data were provided either by the station operators or obtained from the IGETS
data base (Voigt et al., 2016). Raw data sets (IGETS Level-1) were pre-processed in a
remove-restore procedure by applying preliminary tidal models and atmospheric correc-
tions only to remove spikes and disturbances and correct instrumental steps. Also, IGETS
Level-2 data sets were partially post-processed in this way. In data sets provided by the
operators and IGETS Level-3, the instrumental drift was already reduced. In some cases,
a second-degree polynomial function was applied, while for station OS, a more complex
nonlinear drift function was necessary (Scherneck and Rajner, 2019). Only minor revi-
sions of specific Sectionswere found to be necessary. All applied gravity reductions were
restored before analysis.

5.6.2 Tidal Analysis
Within the tidal analysis, the complex transfer function of the measured Earth’s response
to tidal forcing (Wang, 1997) relative to an Earth model is determined from observa-
tions. Because it is impossible to resolve a large number of individual frequencies of the
TGP (Wenzel (1997b), Section 5.3) even with the longest records, wave groups are in-
troduced. Besides a Bayesian approach (Tamura et al., 1991), parameters for each wave
group are usually determined by a least square adjustment (Wenzel, 1997a), including a
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trend and regression channels, mostly used to determine an air pressure admittance to
correct for atmospheric pressure effects. Following (Schüller, 2015), the basic observation
equations (without regression channels) are for a number of wave groups q

yET (t) =
q∑
i=1

δ⋆i

bi∑
j=ai

AEMij cos(ωijt+ φij + κi) , (5.10)

where AEMij = δEMij × Aij are the amplitudes, scaled by the admittance factor δEM of
the Earth model EM , while φij are phases, both for the respective frequency ωij and
harmonic degree and order within the index range [ai, bi] of the tidal potential catalogue.
This model fits the observations by the relative amplitude factor δ⋆ and the phase shift
κ. Equation(5.10) is transformed into the linear problem

yET (t) =
q∑
i=1

xci
ei(t) − xsi

fi(t) , (5.11)

with the unknown parameters xci
= δ⋆i cos(κi), xsi

= δ⋆i sin(κi) for each tidal wave group
i, relative to the contribution of the partial waves

ei(t) =
bi∑

j=ai

AEMij cos(ωijt+ φij), fi(t) =
bi∑

j=ai

AEMij sin(ωijt+ φij) .

In order to separate the contributions of different degrees of the harmonic potential de-
velopment within each wave group, Equation(5.10) can be reordered depending on degree
l and order m of the harmonic potential Ylm (Schueller, 2020), reading

yET (t) =
lmax∑
l=1

l∑
m=0

qlm∑
i=1

δ⋆lmi

bi∑
j=ai

AEMlmij cos(ωlmij + φlmij + κlmi) . (5.12)

This allows a hypothesis-free wave grouping because a pre-scaling of the response of the
Earth to tidal forcing of different harmonic degrees is not required anymore. However,
the resolution of this approach is limited by the length and signal-to-noise ratio of the
observed time series. Actually, ETERNA-x allows for three different grouping schemes:
a) separate groups for selected reference wave groups and a specific degree, b) grouping
of selected constituents of a specific degree and order into one group, and c) collecting all
selected waves of a specific degree into one group. Here, we include the degree-3 waves
under test as separate groups by scheme a), the so-called satellite wave groups. The
schemes R04 and R18 from Ducarme and Schüller (2019) were modified, resulting in 76
to 125 wave groups. High correlations between tidal parameters of different degrees need
to be avoided. We followed the correlation analysis as proposed by Ducarme and Schüller
(2019) and used the ratio between error estimates propagated from the full covariances
matrix and the uncorrelated case (Correlation RMSE Amplifier, CRA). A ratio of 1 stands
for no correlation, while large values indicate a high dependency between parameters. In
this way, it was decided if the more detailed scheme R18 or, the more robust scheme R04
is applied. The majority of parameters showed a CRA close to 1, only for stations BO,
AP, LP and TC this indicator was around 2 for 3M1 and 3L2, most likely related to a
higher noise level in these registrations.
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Table 5.3: Statistical properties of the SG times series used in this study. The instrument
names include an abbreviation indicating the generation: T - tidal, C - compact, O -
observatory, R - first remote controlled and sensor coils in series, DS - dual sphere. The
last column indicates whether the times series was high-pass filtered to suppress signals
with periods longer than diurnal tides.

Station Meter Source Period No. of No. of No. of Scheme No. of Filter
From To days Blocks Obs. Waves

NY (EU) C-039 Kartverket Sep-1999 Jun-2012 4.667 1 112.014 R18 123 no
OS (EU) O-054 OSO Jun-2009 Jan-2021 4.242 1 101.816 R04 76 yes
MB (EU) C-021 ROB Jun-1998 Aug-2020 8.088 25 192.811 R18 125 no
BH (EU) O-044 BKG Feb-2007 Mar-2017 3.679 9 87.993 R18 125 no
WE (EU) DS030-1 BKG Jun-2010 Mar-2020 3.567 7 85.552 R04 88 no
MC (EU) C-023 BKG Aug-1997 Dec-2020 8.552 2 205.208 R18 125 no
YS (EU) O-064 IGETS-L3 Jan-2012 Apr-2020 3.042 1 73.028 R04 103 yes
SU (AF) DS037-1 GFZ Jan-2011 Dec-2020 3.652 1 87.665 R04 76 yes
CA (NA) T-012 IGETS-L3 Jul-1997 Mar-2019 7.942 3 176.070 R18 125 no
BO (NA) C-024 IGETS-L1 Jun-1996 Oct-2003 2.708 8 63.745 R18 103 yes
AP (NA) O-046 IGETS-L3 Sep-2013 Sep-2018 1.822 1 43.744 R04 91 no
LP (SA) R-038 UNLP Jan-2016 Feb-2021 1.883 1 45.209 R04 76 yes
TC (SA) R-038 BKG Mar-2010 Feb-2015 1.802 6 42.214 R04 76 yes
ES (AS) T-007 IGETS-L2 Jul-1997 Oct-2002 1.932 14 54.579 R04 91 yes
KA (AS) T-016 IGETS-L3 Oct-2004 Jul-2013 3.204 1 76.899 R04 76 no
CB (OC) C-031 IGETS-L3 Jul-1997 Dec-2018 7.853 1 188.487 R18 123 no

The parameters relative to those of an ellipsoidal Earth model with an inelastic mantle
and a non-hydrostatic initial state (DDW-NHi, Dehant et al., 1999) and the TGP from
Hartmann and Wenzel (1995b) were estimated with software ETERNA-x11 . Shorter time
series or records with strong non-tidal effects in the long-period tidal range were high-
pass filtered. Whether a filter was applied is documented in the last column of Table 5.3.
Otherwise, only an overall linear trend was reduced. Table 5.3 provides an overview of the
time span, number of continuous blocks, the applied wave grouping scheme, and filtering,
while further properties of the gravity residuals are discussed in Appendix C.

The effects of Earth rotation (polar motion, length-of-day variations) were reduced by
a predefined amplitude factor of 1.16 (Wahr, 1985). Atmospheric effects were corrected
by a simple regression factor for local air pressure variations. More advanced atmospheric
corrections based on numerical weather models from the service Atmacs (Klügel and
Wziontek, 2009) or applied in IGETS Level-3 were tested but gave not the same level of
agreement - a surprising result that needs further investigation.

5.6.3 Comparison with Simulated Loading Signals
The tidal loading signal from TiME was predicted for the 16 SG stations by two ap-
proaches: (1) employing the program NLOADF (Agnew, 1997) from the package SPOTL
(Agnew, 2012) that was run with the respective partial tide solutions, and (2) the global
solution as described in Section 5.5 based on LLNs. To discuss the agreement between
the simulated and analyzed data set, we employ the metrics introduced in Equations 5.5
and 5.6, where we replace ζω → gω and evaluate at the 16 SG stations. We addi-

11version v81 available at (Schüller, 2015) http://ggp.bkg.bund.de/eterna

http://ggp.bkg.bund.de/eterna
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Figure 5.7: Measured amplitudes (black •), modeled amplitudes (SPOTL: red ◀; LLN-
approach; blue ▶), phase-difference between SGs and model |∆Φ| = |ΦSG − Φm| (red x),
and captured signal fraction cs (cyan columns) evaluated at the considered ensemble of
16 SG stations for 3M1, 3M3, 3N2 and 3L2 (top to bottom). The error bars represent the
formal uncertainties ∆amp and ∆ΦSG stemming from the tidal analysis. The vertical
dashed lines divide the SG stations into global domains (Europe, Africa, North America,
South America, Asia, and Oceania).

tionally calculate the captured signal fraction for individual stations, defined as cs =
1 −

√
|gω(xSG) − gωSG|2/|gωSG|2), with gω(xSG) and gωSG being the result obtained with

SPOTL and ETERNA-x at the SG-location xSG, respectively.
Amplitudes and phases of the obtained loading vectors are displayed together with the res-
ults of the tidal analysis in Figure 5.7. Both simulations, SPOTL and LLN, agree remark-
ably well, except for stations OS and NY, which are located close to the coast at a finite
height above sea level. As described in Section 5.5, these stations exhibit a nonzero angle
β, and Newtonian attraction of local ocean mass will affect the gravimeter. This effect is
not included in the LLN approach and only to a certain resolution in SPOTL. When ex-
cluding the near coastal stations NY and OS, the RMS of the modeled gravity amplitudes
between both approaches amounts to 0.28/0.4/0.41/0.45 nGal for 3N2/3M3/3L2/3M1. In
the case of 3M1 at OS, the agreement of SPOTL with the observed parameters is much
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better, as the distance between SG and coast is larger (approx. 350 m) which means that
a coarser representation of the coastline for OS will be sufficient. On the other hand,
the effect at NY will require a much finer resolved coastline (distance to coast approx.
150 m; Breili et al., 2017).
For most of the stations and waves, the agreement between simulated and analyzed load-
ing effects is high, where the mean captured signal, Equation (5.6), for all stations ranges
between 65% und 79% (Table 5.4). For 3M1, an excellent agreement is found for stations
MB, MC, YS, SU, and CB, as indicated by cyan bars, while for stations CA and BO, the
modeled signal is close to zero, confirming the result of the analysis. In these cases, large
phase deviations may appear because the phase is not well resolved for non-significant
amplitudes. Nonetheless, a correctly predicted zero signal is a confirmation of a high
agreement between the model and tidal analysis. Therefore, in cases of non-significant
amplitudes, the formally low agreement cs should not be regarded as poorly modeled
stations.
The agreement for station TC and LP in South America is good as well, although with
higher uncertainties. The latter is close to the Río de La Plata estuary and is affected by
shallow-water tides and storm surge effects (Oreiro et al., 2018). A correction for storm
surge effects has not yet been applied because they included small tidal constituents
(mainly related to 2M2) and were not available for the whole analysis period. However,
the impact of the estuary should be studied in more detail at a later stage.
In the case of 3N2, large signals are confirmed for the Japanese SG stations ES and KA,
CB in Australia, and for AP, CA, and BO in North America. The results for BO agree
well but exhibit large uncertainties, eventually related to the quality of the data set. A
zero signal was confirmed by all European stations; the small amplitudes in the range of
a few nGal are even significant with 95% confidence but show large phase deviations for
the same reasons as explained above.
The results for 3L2 show the best agreement for almost all stations. The zero signal is
confirmed for NY and OS, documenting the high quality of both records and that devi-
ations for the other waves are most certainly not observational artifacts but should be
subject to further interpretation. Even the small signal at several European stations is
well confirmed and in phase. The only larger deviation is found at AP and TC, located
close to the Pacific coast in South America, where the amplitude is significantly underes-
timated by TiME compared to the tidal analysis result.
The 3M3 wave’s large amplitudes in Japan are well matched by TiME. Also, for YS and
SU, larger signals close to 20 nGal are predicted, showing more than 50 % agreement with
the TiME solutions. Also, here, the zero signal was well-confirmed by most European and
North American stations.
Altogether, there is an agreement of more than 50 % for all the stations having an amp-
litude of at least 20 nGal, cf. Figure 5.8. This shows not only that TiME is able to predict
degree-3 gravimetric signals at a mean level of 63 % to 80 % depending on the respective
tidal constituent but also the high resolution of SG records from IGETS in the range
of a few nGal and the capabilities of ETERNA-x to resolve independent estimates for
constituents of higher degree.
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Table 5.4: Degree-3 ocean tide induced gravity validation metrics at 16 SG stations
tide 3M1

3L2
3N2

3M3

sω [nGal] 21.7 15.8 12.4 14.1
RMSω [nGal] 4.4 3.3 4.6 4.1
c [%] 80 79 63 71

5.7 Conclusions
In this study, we presented the first data-unconstrained global atlas for degree-3 ocean

tides encompassing at least one partial tide of each tidal band. The validation with a
set of tide gauge stations gave an RMS deviation of 1 mm for each partial tide solution
and confirmed a good agreement with our solutions. We also made a first assessment of
the respective degree-3 signal in a globally distributed set of superconducting gravimet-
ers. The extraction of the respective tidal constituents with nGal-amplitudes proved to be
feasible and yielded a tight agreement with the modeled gravimetric signals. The modeled
signal was obtained with two different approaches that showed to be equally reliable at
altitudes close to mean sea level and far away from coasts. For near-coastal gravimeters
at finite height, we found a significantly reduced agreement, presumably due to rather
strong gravitational attraction effects by local mass variations.
The presented comparison of ocean tide solution with its associated gravimetric signals
bears mutual benefits for geodesy and oceanography. On the one hand, the comparison
of modeled vs. observed loading vectors represents an independent approach to valid-
ate ocean tides models as e.g., persued by Llubes and Mazzega (1996, 1997); Boy et al.
(2003). The potential is also seen in inverting observed loading vectors to obtain inform-
ation about ocean tidal dynamics (Jourdin et al., 1991). This consideration could be
valuable for tidal constituents that cannot yet be resolved by satellite altimetry (e.g., due
to small ocean tide amplitudes), as for additional diurnal degree-3 constituents like 3J1,
3O1, 3O1 and 32Q1 that were detected in a number of tide gauge records which were
longer than 35 years (Ray, 2001). Complementary to the routinely applied validation
with tide gauge data that represents a discrete set of local measurements of tidal heights,
each SG constituent contains information about the global ocean mass distribution (via
the integrative characteristics of gravity measurements) and is thus sensitive to changes
in the tidal solution at much larger spatial scales. In particular, this could be handy for
assessing the expected de-aliasing performance for satellite gravimetric solutions as those
are sensitive to long-wavelength characteristics of the terrestrial mass distribution. The
complementary characteristics of using TG and SG data sets for validating ocean tide
models also reflect on their mean signals: While for 3M1 the TG signal was the smallest
in the ensemble (1.5 mm vs. 2.9 mm for 3M3), the induced mean SG signal was the most
prominent (21.7 nGal vs. 14.1 nGal for 3M3). While this partially reflects on the dense SG
concentration in Europe, a second reason is the long spatial wavelength of diurnal tides
that leads to higher gravimetric amplitudes in the interior of the continents. As this is also
the case for 3Mm, SG data could be a valuable metric for validating small amplitude tides
with long periods. Therefore, SG results, as presented here, should serve as additional
benchmarks for ocean tide model development that will (in the case of TiME) focus in
the near future on the representation of nonlinear effects that are particularly important
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Figure 5.8: Relationship between signal amplitude and captured signal fraction for 3M1
(blue circles), 3N2 (green triangle), 3L2 (red triangle) and 3M3 (black triangle). Negative
agreement c < 0 is displayed as 0%.

in shallow marginal seas.
Moreover, the high level of agreement between the predictions from the numerical

ocean model and the tidal analysis results confirms the advanced methods introduced
in ETERNA-x. Potentially, such comparisons may contribute to identifying deficiencies
in reductions of non-tidal loading or local mass attraction effects. In principle, the separ-
ation of body and load tide component in the gravimetric degree-3 signals is now possible
by employing the modeled SG signals enabling further tests of the routinely applied solid
Earth models. As discussed by Ray (2020) 3M3, ocean tide signatures correlate with
GRACE/GRACE-FO acceleration residuals. Therefore, GRACE-reprocessing is likely
to benefit from the inclusion of degree-3 tides, as imperfect tidal background modelling
represents a prominent de-aliasing error (Flechtner et al., 2016). Motivated by this find-
ing, unconstrained TiME solutions might be of interest to satellite gravimetry and other
geodetic techniques such as GNSS surface loading (Penna et al., 2015), particularly for
partial tides that are not readily available from data-constrained atlases.
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Figure 5.9: Partial tide amplitude (top) of the empirical degree-3 ocean tide solutions
of Ray (2020) and RMS with respect to hydrodynamic TiME22 solutions (bottom) from
left to right for 3M1, 3L2, and 3M3. Areas shallower than H = 1000 m are gray, and areas
polewards of |ϕ| = 66◦ are plotted in light blue. All units are in cm.

This chapter represents the principal contribution towards objective O2. While Chapter 4
concentrated on degree-2 minor tides, usually derived with linear admittance estimation,
here, the subgroup of degree-3 tides is the focus.
On the one hand, the mean signals of degree-3 tides are comparably small (in the OBP-
metric of Figure 4.8 below 0.2 cm). On the other hand, they are inaccessible by degree-2
admittance estimates (cf. Figure 5.1). TiME could capture signal fractions of up to
c = 80%, depending on the reference data set. In addition to TG and SG data validation
in Chapter 5, it was possible to compare the described TiME solutions to the partial
tides of Ray (2020), derived from satellite altimetry. These empirical solutions represent
the current maximum precision achievable with satellite altimetry. Comparison to TiME
solutions in the deep (H > 1000 m), non-polar ocean results in c-values between 60% (for
3M3) and 72% (for 3M1, cf. Figure 5.9).
Thus, three independent data sets originating from tide gauge, terrestrial gravimetry, and
satellite altimetry successfully validate the data-unconstrained TiME simulations, which
predict signals on the nGal/mm-level. All simulations were conducted with identical
model parameters initially optimized for the M2 tide (cf. Section 4.2). In particular, ad-
apting them to the specific partial tide simulations was not necessary to achieve optimized
accuracy (cf. Table 5.2).
Further investigating the lower signal boundary of detectable tidal signatures, the en-
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Figure 5.10: Gravimetric amplitude (left) obtained from the tidal analysis of gravity time
series registered by 16 superconducting gravimeters (cf. Figure 5.6 and Table 5.3) for nine
individual degree-3 tides and respective captured signal fraction cs (cf. Equation 5.6),
when compared to simulated constituents obtained from TiME ocean tide simulation
(right). The Figure is modified after Wziontek et al. (2022).

semble of considered degree-3 partial tides was expanded to nine constituents (Wziontek
et al., 2022). Their respective equilibrium tidal heights are a factor of 3 − 8 smaller than
for the tides discussed in Chapter 5 (cf. Table E.1). Despite the smaller signal, the mean
captured signal fraction c does not drop below 36% (for 3J1) but decreases with the mean
signal amplitude as indicated in Figure 5.8, which drops to 4 nGal12 for 32N2 (cf. Fig-
ure 5.10). The results do not indicate a sudden breakdown of TiME’s accuracy, even for
the constituents with the smallest amplitudes. Differently phrased, TiME maintains a
high accuracy, even for signals on the edge of and below the detectability level.
While the data-constrained solutions of Ray (2020) represent an impressive demonstra-
tion of the modern capability of satellite altimetry, Figure 5.9 reinforces their limitations,
as they can only be constructed for non-polar latitudes (cf. Figure 1.2). Polewards of
|ϕ| = 66◦, TiME is, for now, the only ocean tide model that provides a consistent continu-
ation in polar regions for every degree-3 species (long-period to terdiurnal). Providing
solutions with a closed mass budget is especially important for GRACE(-FO) dealiasing,
as gravitational attraction is non-local, i.e., satellite orbits are impacted by the global
mass distribution and not only by the local mass anomaly directly below. Degree-3 tides
were previously not considered for GRACE(-FO) processing. To enable their considera-
tion for gravity field processing, an increased number of degree-3 solutions13 was included
TiME22 tidal atlas (cf. Appendix E), which is intended for gravimetric applications.
While the impact of degree-3 tides on gravity field processing could not yet be extens-

ively investigated, it is likely to be very small due to the minute amplitude of the tides.
To provide an example with a proven impact on the gravity field solutions, it is referred
to the previously mentioned group of atmospherically excited tides (radiational tides).
The respective TiME simulations are comprehensively discussed by Balidakis et al. (2022,
2023). Here, the principal diurnal radiational tide, S1, was found to exhibit a somewhat
increased agreement with the OBP data of Ray (2013), compared to the FES14 solu-

12The low-noise character of SGs allows the detection of such small signals. They are much harder to
detect in TG records (Ray, 2001).

13The final degree-3 ensemble comprises 12 constituents.
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Figure 5.11: Degree-4 admittance functions Z43 and Z44 for sea surface height elevation
(right scale) and for vertical surface gravity (cf. Equation D.2, left scale). The scale
factor is 10µm (left) and 17µm (right) for the sea surface elevation and 0.43 nGal (left)
and 0.73 nGal (right).

tion. The first simulations found a reduction GRACE gravity residuals when considering
TiME’s S1 tide (Balidakis et al., 2022). Also, the annual modulation lines of S2 (±1 cpy),
i.e., R2 and T2, exhibited slightly increased accuracy when compared to FES14. Further,
investigating the minor, terdiurnal radiational tides, R3-S3-T3 (e.g., Ray et al., 2023),
resulted in convincing results (cf. Figure 2.4). Hence, it is argued that TiME can also
predict minor radiational tides with good accuracy. Thus, the 16 tides of Balidakis et al.
(2022) are included in the TiME22 atlas, which should be seen as the principal result of
O2 (cf. Appendix E).
While this thesis’ primary goal is improving ocean partial tide solutions for tidal pre-

diction and dealiasing, the results of Chapter 5 open a second interesting path of invest-
igation. Because it was possible to predict exiguously small secondary tidal observables
(nGal-level) with convincing accuracy (cf. Chapter 1 and Section 2.3), SG observations
can, in principle, be inverted to recuperate measurements of the solid Earth properties.
The data-unconstrained operation mode of TiME allows doing so for frequency bands
(e.g., terdiurnal) and harmonic forcing patterns (degree-3), where global data-constrained
solutions are unavailable. Ultimately, the high agreement levels indicate that employed
solid Earth models (here, DDW-NHi) work reliably for degree-3 tides. Consequently, the
straightforward question is if, given the high accuracy of SG measurements, even the de-
tection of degree-4 ocean tides is possible14, which would allow investigating solid Earth
models up to 1/4-diurnal tidal frequencies.
The degree-4 TRP is diminished by another factor of Re

d
= 60−1 with regard to degree-3,

while ab4 = 0.87 is slightly larger compared to ab3 = 0.80. The most prominent partial
components of the orders m = 1 and m = 2 happen to have identical frequencies to
(d/Re)2 = 3600-times stronger tides of degree-2 (e.g., 4M2 and 2M2). Thus, the focus is
on the terdiurnal and 1/4-diurnal band of degree-4, with the most prominent constitu-
ents 4M4 (455.555) and 4MO3 (345.555). For these partial tides, TiME simulations with

14The most significant degree-4 component of the TRP (4M4) is still approximately 40 times stronger
than the most pronounced partial tide induced by a non-lunisolar body - a Venusian partial tide. This
tide has the Doodson code 277.055 and the multiplier ‘3’ as the ninth argument of the HW95 TGP (mean
longitude of Venus). Even for the closest approach of Venus and Earth (approximately 38 · 106 km),
Venusian degree-2 tides are still a factor of 5 less significant than lunar degree-4 tides.
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barotropic forcing of degree-4 (cf. Appendix A) are performed. The model parameters are
chosen according to the formerly introduced policy, with the 1/4-diurnal time step set to
∆t = T1/4

120 ≈ 180 s.
The 4M4 tide is much smaller in amplitude compared to the M4 shallow-water tide (cf. Fig-
ure 4.9) and has a very weakly pronounced resonance strength, which is revealed by the
small values of Z44 compared to other Zlm up to l = 4 (cf. Figures 5.11, and D.2 and D.1).
A possible detection of 4M4 would require both the SG instrument precision and the
M4 model accuracy to be better than 0.1 nGal, which is not possible with the currently
achieved accuracy. On the other hand, detection of 4MO3 would require the precision of
approximately 0.5−1.0 nGal for the gravimetric measurement and the modeled nonlinear
MO3-tide (M2 + O1 → MO3) if the SG position is carefully selected (e.g., on the Japanese
archipelago). Given the agreement of TiME and the SG constituents on the few-nGal-level
(Figure 5.10), this seems to be a promising exercise in the future. However, improvements
in TiME’s shallow-water tides are required to provide compound tides on the necessary
accuracy level (cf. Context Section of Chapter 4).
Chapter 5 thus fully supports the hypothesis that the TiME implementation and setup of
Chapter 4, even though optimized for the present-day M2 tide, realistically depicts OTD
for a large variety of partial tides (minor amplitude, degree-3, radiational forcing). Hence,
the implementation has proven a certain versatility proposing a realistic representation
of ocean tide physics. This characteristic lays the groundwork for investigating O3 in the
next chapter, where no geodetic data sets are available to validate the modelling results
precisely.
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Evolution of Global Ocean Tide Levels Since

the Last Glacial Maximum

Chapter Abstract
This chapter addresses the evolution of global tidal dynamics since the Last Glacial Max-
imum focusing on the extraction of tidal levels that are vital for the interpretation of
sea level index points. For this purpose, we employ a truly-global barotropic ocean tide
mode which considers the non-local (non-sparse) effect of Self-Attraction and Loading. A
comparison to a global tide gauge data set for modern conditions yields agreement levels
of 65 − 70%. As the chosen model is data-unconstrained, and the considered dissipation
mechanisms are well understood, it does not have to be re-tuned for altered paleoceano-
graphic conditions. In agreement with prior studies, we find that changes in bathymetry
during glaciation and deglaciation do exert critical control over the modelling results with
minor impacts by ocean stratification and sea ice friction. Simulations of 4 major partial
tides are repeated in time steps of 0.5 to 1 ka and augmented by 4 additional partial tides
estimated by linear admittance. These are then used to derive time series from which the
tidal levels are determined and provided as a global data set confirming the HOLSEA
format. The modelling results indicate a strengthened tidal resonance by M2, but also by
O1, under glacial conditions. Especially a number of local resonances are identified that
impact the tidal levels up to several meters difference. Among other regions, resonant
features are predicted for the North Atlantic, the South China Sea, and the Arctic Ocean1.

1The article follows in a modified form (submitted version), where parts of the content are transferred
to the Context section. However, the content of the original published article is not modified. Additionally,
the nomenclature has been harmonized with the previous chapters.
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6.1 Introduction
Global mean sea level (GMSL) has been rising at a speed of 3.25 mm yr−1 during the

last three decades due to the increased rate of ice loss of the Greenland and Antarctic
ice sheets, as well as thermal expansion of the ocean water and glacial mass loss (IPCC,
2022). This observation is fundamentally important for protecting low-elevation coastal
areas, which are often densely populated, as the risk of flooding increases with GMSL
rise.
The relative sea level (RSL), which measures the observed sea level with respect to the
coast, is more complex and depends on many factors, including changes in the GMSL,
the Geoid or vertical motion of the Earth’s surface, for instance, caused by tectonics,
local subsidence or glacial isostatic adjustment (GIA). Changes in the RSL generate the
main threat to coastal communities and ecosystems. In addition to RSL variations which
typically act over centuries, or even millennia, changes in frequency and probability of
extreme sea level events can have profound consequences for human or marine coastal
life. Thus, the local sea level variability on short time scales is the second important
factor in understanding the development of coastal regions besides the RSL, as well as
quantifying its impact. For example, storm surges have a much more significant impact
during high astronomical tides (storm tides). As they represent a huge part of the sea-
surface variability at diurnal and semidiurnal time-scales, the tidal levels are of high
importance to understand the frequency of said extreme events. Similarly, tide levels can
change with the rising sea level (e.g., Idier et al., 2017; Schindelegger et al., 2018) or be
subjected to long-period cycles of the lunar tides (Ray and Merrifield, 2019; Peng et al.,
2019).

6.1.1 Tidal Levels and Sea Level Reconstruction
A further aspect of tidal levels is their relevance for the interpretation of sea-level data
like sea-level index points (SLIPs) or terrestrial as marine limiting points. Such geological
or archeological samples do not represent the actual sea level height at the time of their
deposition but the environmental conditions at which the specific specimen lived or was
deposited, or a specific structure was built up. For instance, typical shore facies can be
separated into a sequence of different marsh environments like high tidal marsh (MHW
[Mean High Water] to HAT [Highest Astronomical Tide]) or low tidal marsh (MLW [Mean
Low Water] to MHW). Also, specific coastal sediments like coquina are found only below
HAT (Garrett et al., 2020), or beach rock is usually formed between MLW and HAT (Stat-
tegger et al., 2013; Mauz et al., 2015 in Khan et al., 2017). Considering such a catalog of
sea-level data types, tidal levels have to be considered to define a mean deviation of an
indicator’s height with respect to MSL and a corresponding uncertainty due to its specific
indicative range (IR) (Hijma et al., 2015). Accordingly, the authors suggested providing
estimates of relevant tidal levels together with further information when publishing sea
level data in a unified way, and international initiatives usually follow these suggestions.
In the so-called HOLSEA format for providing sea level data (Khan et al., 2019), a list
of tidal levels is required for correcting the indicative meaning of respective data types:
MLWS, MLWN, MLLW, MLW, MTL, MHHW, MHWN, MHWS, HAT2.

2For details see the Workbook instructions at https://www.holsea.org/archive-your-data.

https://www.holsea.org/archive-your-data
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Because it is a well-established fact that ocean tidal dynamics have significantly changed
with time, the precise knowledge of the present-day tidal regime which relies on empir-
ical observations (e.g., Schrama and Ray, 1994; Cartwright, 1999; Stammer et al., 2014)
only brings a limited return when trying to interpret paleo-sea level markers. Data-
unconstrained ocean tide models can provide the required data (e.g., Wang et al., 2021),
which depend directly on (paleo)oceanographic conditions, changes of GMSL and RSL,
tide generating forces, and the configuration of the continental plates.
The latter effects are most important on geological times of 106 to 108 a and must be
considered for deep-time simulations (e.g., Green et al., 2017; Haigh et al., 2020; Davies
et al., 2020), where the primary interest usually focuses on tidal dissipation and the evol-
ution of the Earth-Moon-Sun system (e.g., Kagan and Sündermann, 1996; Daher et al.,
2021).
On shorter time-scales, the continental configuration can be considered static, particu-
larly on the temporal scale of the repeated glacial cycles during the Pleistocene. During
this epoch, tidal dynamics are most considerably influenced by GMSL and RSL, which
varied during the last million years globally by more than 100 m (Berends et al., 2021).
SLIPs are abundant only after the Last Glacial Maximum (LGM), granting the sea level
reconstruction an increased amount of accuracy and allowing comparisons to modelling
results. Accordingly, many paleotidal studies target this epoch.

6.1.2 Paleotidal Studies Since the Last Glacial Maximum

With the compilation of global paleo topographies (e.g., Peltier, 1994), i.e., reconstruc-
tions of the RSL history since the LGM (e.g., Tushingham and Peltier, 1992), global
studies of the respective tidal regime could be conducted (e.g., Thomas and Sündermann,
1999). A common feature of most studies is the strengthening of the North Atlantic
M2 oscillation and, related to this, the semidiurnal tidal dissipation (e.g., Egbert et al.,
2004). This can be explained by the reduced sea level, that drastically reduces the extent
of shelf areas, which serve as an energy sink by turbulent bottom friction dissipation (e.g.,
Wilmes and Green, 2014) and enhances tidal resonance (e.g., Green, 2010). The energy
dissipation diverts to the deep ocean, where barotropic tidal energy transitions into the
internal tide, which ultimately induces diapycnal tidal mixing (e.g., Wunsch, 2003; Green
et al., 2009), a process that is important for the general circulation and climate. When
considering the increased tidal dissipation under glacial conditions in a climate model, a
significant impact, i.e., strengthing, on the Atlantic Meridional Overturning Circulation
(AMOC) is proposed by Schmittner et al. (2015) and Wilmes et al. (2019), who report
special sensitivity to the poorly constrained position of the Antarctic ice sheet ground-
ing line (e.g., Hillenbrand et al., 2014) in line with Wilmes and Green (2014). Another
repeatedly observed feature is the transition of the Arctic M2 to a megatidal regime (Grif-
fiths and Peltier, 2008, 2009), a possible trigger of Heinrich events (Arbic et al., 2004b;
Velay-Vitow et al., 2020).
While the mentioned global studies did not focus on extracting tidal levels, it is, in prin-
ciple, possible to derive charts of tidal levels from paleotidal simulations, which can be
applied to interpret SLIPs. However, reversely, the reconstruction of the sea level history
is typically constrained by SLIPs (and present-day geodetic data for GIA rates). GMSL
changes during a glacial cycle are on a scale of tens to hundreds of meters (Clark et al.,
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2016), while changes in tidal levels are expected only on a few-meter scale. Therefore,
the feedback-loop tidal level → sea level reconstruction → tidal level is feeble, and global
tidal reconstructions are reckoned as robust (Neill et al., 2010).
While the sea level interpretation bias which arises from ignoring changes of the paleotidal
regime is usually the order of a few percent of the sea level change, it is of more relevance
in the region surrounding formerly glaciated areas, where land surface uplift and sea level
rise can partially compensate each other (Hijma et al., 2015).
Despite the outlined relevance, paleotidal changes are only discussed in a limited number
of paleo sea level studies on SLIP-driven sea level reconstructions since the LGM. Horton
et al. (2013) recommended combining a regional with a global tidal model when recon-
structing paleo-tides and interpolating in time from sufficiently high resolved time-slices,
e.g., all 1-ka intervals, as was done in Ward et al. (2016). Such a model combination
was motivated by Uehara et al. (2006), who had found a significant increase of MHWS
before 10 ka BP (before present) by 25 – 50%, whereas the modification after 8 ka BP
was reduced. Nevertheless, the modelling effort is great, and the numerical expense of
regional densification likely exceeds that of the considered global model (Griffiths and
Hill, 2015). Such a model setup was applied mainly for the North Atlantic: Northwest
European shelf seas (Uehara et al., 2006; Ward et al., 2016) and the North Atlantic west
coast from the Artic to the Caribbean (Hill et al., 2011). The model of Hill et al. (2011)
was applied by Horton et al. (2013) to the US Atlantic Coast, by Khan et al. (2017) to
the Caribbean, and by Vacchi et al. (2018) to those sites of the Canadian Atlantic. The
model of Ward et al. (2016) was applied, for instance, by Barnett et al. (2020) for the
evolution of Scilly Island and by Vasskog et al. (2019) for the Norwegian coast.
Different approximations are considered to estimate regional paleotidal changes to over-
come numerical modelling of regional tides. For instance, Cooper et al. (2018) suggested
using modern tidal levels in South Africa, where he applied tides of nearby lagoons of
similar shape to those reconstructed from paleo shorelines. Hijma and Cohen (2019) con-
sidered the evolution of the flood basin in the Rhine-Meuse delta during the Holocene
sea level rise by increasing the tidal amplitude as a function of the estimated evolution
of the flooded basin. A similar approach was discussed by Uehara and Saito (2019) for
Tokyo Bay, where in addition, a numerical tidal model was applied. Another solution is
to increase the uncertainties of the considered tidal levels and, accordingly, the indicative
range (e.g., Briggs and Tarasov, 2013; Hijma et al., 2015).

6.1.3 Objective and Outline of this Study

In this study, we present a global reconstruction of tidal levels since the LGM (21 ka BP)
with a temporal resolution of 0.5 to 1 ka, that allows for tracking the temporal evolution
of IRs for each arbitrary coastal location on the globe. To achieve this, we employ a mod-
ern, data-unconstrained ocean tide model, which is validated for present-day conditions
by geodetic data sets (Sulzbach et al., 2021a). The employed model combines several key
characteristics, which have to our knowledge, not yet been considered in combination for
paleo studies, (C1) a ’full’ (non-local) implementation of the Self-Attraction and Loading
effect (SAL), (C2) a ’truly-global’ domain (i.e., no open boundaries), (C3) the simulation
of 4 major partial tides for each epoch, and (C4) a paleo bathymetry derived from the
RTopo-2 bathymetry (Schaffer et al., 2016) and the ICE-7G reconstruction. In addition,
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Figure 6.1: Climatological sea ice coverage and ice drift velocity vice (1995-2019) for winter
(FMA, b) and summer (ASO, c) conditions, where arrows indicate drift directions. Ice
friction is proportional to the relative velocity vrel as indicated by (a), containing a purely
dissipative part proportional to −v and a second part proportional to vice that excites a
barotropic background circulation.

we found the extraction of tidal levels on a preferably broad data basis by augmenting
the tidal ensemble to eight major tides by linear admittance theory (C5). The so-created
paleotidal data is used to create time series and rigorously extract a set of 9 tidal levels
conforming to the HOLSEA format to interpret SLIPs. As a result, an easy-to-use, global
data set of dense temporal resolution is provided. The spatial resolution of 1

6
◦ is fit to pre-

cisely capture the evolution of large-scale tidal resonances that govern the apparent tidal
regime while increased uncertainties remain in extended shelf seas. To further facilitate
the derivation of regional paleotidal models, we also provide tidal transports and eleva-
tions for selected partial tides, which are necessary to derive realistic boundary conditions
for those models. This comprehensive analysis of paleotidal levels is complemented by
assessing the global tidal dissipation. This can provide valuable constraints for paleocli-
mate modelling and corroborates our findings by allowing comparisons to other formerly
conducted paleotidal studies.
After this introduction, the chapter is structured as follows: In Section 6.2, we introduce
the numerical model, discuss the methods employed to extract the selected observables
(tidal levels and dissipation), and validate the model. Afterward, we recapitulate the
construction of paleo-oceanographic conditions in Section 6.3, which is the basis for the
simulations presented thereupon in Section 6.4. Here, observed tidal resonances are dis-
cussed, which are characteristic of individual partial tides and often affect global dissip-
ation. Separately, results for global tidal levels are presented at the center of this study.
We close this study with Section 6.5, presenting a summary, conclusions, and an outlook
toward possible future research directions.

6.2 Barotropic Ocean Tide Modelling
To obtain estimates of tidal dynamics and tidal levels during the last 21 ka BP, we employ
an observational data-unconstrained ocean tidal model that we optimize for the accurate
prediction of present-day tides on a global scale. In the following subsections, this model
is introduced and discussed with respect to its performance at present-day conditions, the
extraction of tidal levels, and tidal dissipation.
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6.2.1 Numerical Model

We employ the barotropic ocean tidal model TiME, described by Sulzbach et al. (2021a),
which is unconstrained by empirical data (e.g., tide gauge, satellite altimetry, satellite
gravimetry). The model is run in a global 1

6
◦-grid with numerical poles located in East

Asia and South America (chi-configuration). The simulation is set up to dissipate en-
ergy dominantly by quadratic bottom friction and topographic wave drag (setting W0 of
Sulzbach et al. (2021a) with eddy viscosity coefficient Ah = 2 × 103 m2 s−1) dissipation
mechanisms, which are theoretically well understood. Thus, this setup also possesses a
high degree of reliability in altered (paleo-)oceanographic conditions (Arbic et al., 2008;
Egbert et al., 2004).
Within, the model includes wave drag dissipation by a parameterization introduced by
Nycander (2005) that is directly inferred from information about ocean stratification and
bathymetry. The employed bathymetry H is derived from the RTopo-2 data set (Schaffer
et al., 2016). The effect of Self-Attraction and Loading (SAL) that exerts a strong influ-
ence on tidal dynamics (Ray, 1998a) is included by spherical harmonic decomposition and
load Love numbers (e.g., Schindelegger et al., 2018). In contrast to the local estimation of
SAL, ζSAL = ϵζ (Accad and Pekeris, 1978) that relates SAL to local sea surface elevation
ζ by a constant ϵ, here the non-local (i.e., global) gravitational interaction of water masses
mediated by SAL is considered. The non-approximated, in-line inclusion of SAL in TiME
is in contrast to most formerly employed paleotidal models (cf. Section 6.1.2), that with
the exception of Hill et al. (2011), employ local approximations, iterative approaches, or
completely neglect the effect.
Changes in sea ice and shelf ice cover are prominent features of glacial-interglacial climate
variations (e.g., CLIMAP-Project-Members, 1981; Jakobsson et al., 2014; Sejrup et al.,
2000; Stein et al., 2017; Tarasov et al., 2012). Therefore, in addition to the TiME model
characteristics documented in Sulzbach et al. (2021a), we consider the long-range inter-
action of the barotropic ocean flow with floating ice, possibly exhibiting a drift velocity
vice, by introducing the barotropic acceleration (cf. Figure 6.1a)

aice = rice fice

H
|vrel| (vice − v) (6.1)

into the numerical model (e.g., Kagan and Sofina, 2009; Müller et al., 2014; Cancet et al.,
2016; Bij de Vaate et al., 2021). This acceleration is structurally identical to quadratic
bottom friction, where the bottom friction coefficient r = rice is retained (doubled bottom
friction). However, the relative velocity between ice and ocean flow, vrel = vice − v, con-
trols the dynamics and is constrained by the fractional ice cover 0 < fice(x) < 1, where
x = (λ, θ) denotes the longitude-latitude pair. It is important to note that this paramet-
erization induces two distinct effects. First, a dissipative, dampening effect proportional
to −v, similar to bottom friction, and second an acceleration proportional to vice, denoted
aice, that will induce a residual, non-periodic circulation. The later considered realizations
of vice and fice are shown in Figure 6.1b and c.
Altogether, TiME integrates the nonlinear shallow-water equations to simulate barotropic
ocean dynamics, which are forced with the tide-raising potential (TRP, cf. Sulzbach et al.,
2021a, 2022c). Within this study, we only consider the individual excitation of partial tides
(frequency ω) as listed in the tide-generating potential (TGP) HW95 (Hartmann and Wen-
zel, 1994, 1995b), i.e., setting the potential proportional to P lm(sin θ) cos(ωt+mλ), where
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P lm are the normalized associated Legendre polynomials (partial tide forcing mode). Dis-
regarding minor, nonlinear tides, we extract the harmonic constituents for a partial tide,
with label i, the amplitude |ζ i|(x) and Greenwich-phase lag ϕi(x), for the sea surface
elevation after an initialization time of at least 1 month, denoted

ζ imod(t) = |ζ i|(x) cos (ωit − ϕi[x]) . (6.2)

Comprising the results of this Section, TiME is employed as a transformation operator
that translates a certain partial tTRP V ilm

tid into the respective ocean tidal response de-
scribed by |ζ i|(x) and ϕi(x), considering the relevant oceanographic conditions.
With respect to other ocean tide models adapted to paleo conditions, the presented TiME
configuration primarily distinguishes itself by the combination of two properties that were
not considered together by other studies, which are the implementation of the non-local
effect of SAL (C1), and a truly-global grid (C2), that allows the unbiased investigation
of Arctic tides (cf. Section 6.1.3). Additional novel features are the implementation of
the Nycander wave drag scheme with estimated paleo stratification data and the ice fric-
tion effect, which did not considerably impact the study, as we will show. While the
model resolution of 1

6
◦ is among the higher-resolving models. Several studies employ finer

resolutions of 1
8

◦ (e.g., Wilmes et al., 2019) and even higher (e.g., Velay-Vitow et al.,
2020).

6.2.2 Model Setup and Validation
To validate the model results for present-day tidal conditions, empirical data is employed.
In order to further quantify the impact of the newly introduced ice friction parameteriza-
tion, we consider a set of 3 simulation experiments: no sea ice (mod), non-drifting sea ice
(mod-ice), and drifting sea ice (mod-ice-v). Validation of tidal solutions is pursued by em-
ploying bottom pressure records (OBP) compiled by Ray (2013) and the data-constrained
tidal model FES14 (Lyard et al., 2021) for the main lunar M2 tide.
We calculate the root-mean-square error (RMS) between TiME and the data sets, where
the comparison to FES14 is restricted to a non-polar (|lat|< 66◦) open ocean (H>1000
m) domain. For experiment mod, an RMS of 6.78 cm (FES14) and 6.05 cm (OBP) is
obtained. Compared to the results obtained on a 1

12
◦-grid by Sulzbach et al. (2021a), the

employment of experiment mod leads to an RMS-increase of 2.66 and 1.95 cm, respect-
ively. Similar results are obtained with experiments in mod-ice and mod-ice-v, hinting at
a minor improvement by an RMS reduction on the mm-level. An inter-comparison of the
three experiments reveals that the most significant deviations due to sea ice friction arise
in the direct vicinity of shallow, ice-covered regions and a smaller impact in the northern
mid-latitudes. For a more detailed discussion of the ice effect, we refer to Appendix F.
Evaluating the global dissipation of the M2 partial tide, we find 2.49 TW1 for mod with
only minor changes for the other experiments. Here, the dissipation by ice friction is
found to be considerably affected by winter (134 GW) and summer (46 GW) conditions
in the Northern Hemisphere (cf. Müller et al., 2014). Figure 6.1 (b, c) show the most
prominent differences in seasonal ice coverage, which are found in the Hudson Bay and
Hudson Straight, i.e., shallow marginal seas that are known to possess relatively large M2

11 TW = 1000 GW = 1012 J/s
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Figure 6.2: Example time series (60 days) and derived tidal levels synthesized of eight
major partial tides (black curve) at Gulf Saint Vincent, Australia (35◦S, 138.3◦E) for
present-day conditions. High and low tides (blue points) are used to derive the tidal
levels (horizontal lines). As the tidal constituents for S2 and M2 have nearly equivalent
amplitude, the time series shows a pronounced spring/neap-asymmetry. Spring/neap
tide-related parameters derived with the help of p± (cf. Equation G.1) appear with an
asterisk.

flow amplitudes.
As the sea ice friction, Equation (6.1), is proportional to H−1 and |vrel|, this points to
an essential prerequisite for ice friction to impact tidal dynamics: The ice coverage must
occur in shallow seas with large tidal flow velocities. On the one hand, the impact of sea
ice was relatively small compared to the mean tidal signal for the modern M2 tide. On the
other hand, the extent of shallow shelf seas is known to reduce during the LGM (Wilmes
and Green, 2014). Hence, we ignore the effect of sea ice in the presented simulations.
However, we will present additional simulations considering exaggeratedly expanded sea
ice (polewards of |45◦|) to estimate the maximum effect of sea ice.
As TiME is barotropic and has been optimized for open ocean dynamics, the validation
in this section primarily targeted those areas with a less precise representation of shelf
and coastal regions. However, because SLIPs are inherently located in coastal vicinity, we
discuss the accuracy of TiME concerning reconstructed coastal tide levels based on tide
gauge data in the next section.

6.2.3 Reference Levels for Tidal Heights

Tidal levels like MLLW to HAT introduced in Section 6.1 describe the periodic sea surface
variability at a specific location. They are composed of several harmonic constituents with
frequencies related to astronomical processes (e.g., Doodson, 1921; Bretagnon, 1982). This
temporal harmonic behavior can be described by

ζmod(x, t) =
N∑
i

|ζ i|(x) cos (χi(t) − ϕi[x]) , (6.3)
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where χi(t) = ∑6
j=1 q

i
j D

astro
j (t)+qi7 π

2 , is a combination of astronomical arguments Dastro
j (t)

multiplied with integers3 (i.e., related to Doodson numbers) and qi7
π
2 is the Doodson-

Warburg phase shift related to the definition of the TGP (Petit and Luzum, 2010). While
an elaborate tidal analysis of the TGP (here HW95, Hartmann and Wenzel, 1994, 1995b)
and sea surface dynamics (e.g., Lyard et al., 2021; Piccioni et al., 2019) are typically com-
posed of a large number of constituents, the most significant part of the variability can
be captured by considering eight major tidal constituents.
These partial tides, comprising four diurnal (K1, O1, P1, and Q1) and four semidiurnal
(M2, S2, N2, and K2) constituents, are employed to predict global ocean tidal dynamics
for a given epoch. To reduce the computational effort, only two partial tides per tidal
band (M2, K2, K1, and O1) are simulated. The residual four tidal solutions are estimated
by assuming the ocean admittance function Zlm to be a linear function of the excitation
frequency ω.
This linear admittance approach builds upon the assumption that barotropic ocean tidal
dynamics are only weakly nonlinear in ζ and ω (for small δω), a fact that is well-confirmed
by observational data for present-day tides (e.g., Munk and Cartwright, 1966; Hart-Davis
et al., 2021a; Rieser et al., 2012).
To discuss tidal amplitudes, we follow three approaches. The considered major partial
tides are predominantly varied only by integral multiples of the mean lunar time τ (di-
urnal), the mean lunar longitude s (monthly), and the mean solar longitude h (annually).
Solely Q1 and N2 are impacted by variations of longer periods (mean longitude of the
lunar perigee, 8.85 yr). As they are below the smaller amplitude components of the con-
sidered tides, we decided to neglect this long-period variation of Q1 and N2 and consider
Equation (6.3) for 1000 lunar days (approx. 3 yr), evaluating 65 time steps per lunar
day. The astronomical arguments within χi(t) are evaluated employing the development
of Simon et al. (1994). The resulting time series (cf. Figure 6.2) is then further processed
to derive tidal levels in agreement with the HOLSEA format for MLLW, MLW, MHW,
MHHW, and HAT (approach A). Therein, the tidal levels or datums are defined as stat-
istical measures of the high-tide or low-tide variability. MTL was found to be on the order
of only a few cm and thus can be assumed to be zero within this approach.
SLIPs are typically found in coastal proximity. Therefore, we validate the accuracy of the
derived tidal levels with respect to a set of coastal tide gauges as a proxy for the accuracy
of paleotidal levels. For this purpose, we utilize the tide gauge data set TICON (Piccioni
et al., 2019) consisting of 1145 tide gauge stations with 40 tidal constituents (amplitude:
|ζ i|tg; phase: ϕtg

i ) each and derive tidal levels by two means: First, by employing the
identical procedure as for TiME (eight major tides, 1000 lunar days: approach B) and
second, by considering 29 partial tides of TICON for 7000 lunar days covering multiple
cycles of the lunar perigee (29 partial tides, approach C). Only nonlinear and seasonally-
modulated tides that are not included in HW95 (M8, S4, S3, MKS, MS4, R2, MA2, and
MB2) and minor, long-period tides (Msf, Msq, Mtm) are ignored.
To quantify the mean agreement between two approaches, x and y, we calculate the RMS
and normalize it to the mean quadratic amplitude obtained from the second data set, y,
thus expressing the mean captured signal fraction c(x, y) = 1 − RMS(x, y)/RMS(0, y),
which takes values between 100% (perfect agreement) and −∞. We find a high mean
agreement for approaches B and C between 92.3% (HAT) and 97.2% (MLLW), indicating

3The notation was harmonized with Chapter 2.
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that 8 major tides and simulation for 1000 lunar days will be sufficient to predict tidal
levels to a high level of accuracy. In the next step, tidal levels are calculated on the ro-
tated TiME grid (chi) and are interpolated (nearest-neighbor interpolation) to standard
coordinates. Here the coordinate transformation as depicted in Chapter 3 is employed.
Interpolation on the rotated grid is preferred because iit is the most distinct possibility
for predicting near-coastal tidal levels. We find a mean captured signal fraction of 70.6%
(HAT) and 71.7% (MLLW) between approaches A and B. Recalling the high agreement
between approaches B and C, we conclude that the mean agreement between predicted
and measured tidal levels is 65–70%, when employing approach A.
The results for approaches A and C are presented in Figure 6.3. The plots generally
indicate a close match between TiME and TICON, with larger relative deviations in mi-
crotidal marginal seas (e.g., Baltic Sea, Mediterranean Sea, ...) and moderately reduced
agreement in extended shelf seas (e.g., European Shelf) in comparison to the deep ocean
where the agreement is best. While it was to be expected that a global tidal model with
comparably low resolution in coastal areas would exhibit increased deviations with coastal
tide gauges, the apparent level of 70% is still relatively high. In addition, we will focus on
the evolution of temporal model differences, e.g., differences of tidal levels between two
epochs, that are likely to partially absorb systematic model deviations.
To enlarge the procured set of tidal levels, we further estimate the parameters MLWN,
MLWS, MHWN, and MHWS. To achieve this, MLW and MHW are multiplied with a
factor p± based on the tidal amplitudes of the two largest tides per tidal band (M2 and S2
vs. K1 and O1) that are the main drivers for spring/neap-cycles (cf. Appendix G). Please
note that those parameters exhibit an increased uncertainty due to the qualitative nature
of this approach but integrate reasonably into the set of directly derived parameters. For
example, Figure 6.2 shows a synthetic 60-day time series from Gulf Saint Vincent. Due to
comparably strong S2 and M2 constituents, this location is known to exhibit a pronounced
spring/neap tide cycle, locally known as dodge tide, which is reasonably well predicted by
employing p±.
The employed extraction scheme for tidal levels features two key elements which were not
considered in prior paleotidal studies (cf. Section 6.1.3). First, the continuous simulation
of four partial tides per epoch (C3) and the linear admittance constrained augmentation
to eight partial tides with the proper extraction of tidal levels conforming to the HOLSEA
format (C5).

6.2.4 Ocean Tide Dissipation

Tides mediate energy transfer in the Earth–Moon–Sun system by frictional processes
controlling, e.g., the evolution of the lunar orbit (Mignard, 1979; Kagan and Sündermann,
1996; Ray et al., 2001; Green et al., 2017; Daher et al., 2021). Within, the predominant
part of ocean tidal dissipation is carried out through turbulent bottom friction on the
continental shelves and the excitation of internal waves in the deep ocean (Egbert and Ray,
2000; Nycander, 2005). For example, the main lunar ocean tide M2 dissipates 2.45 TW,
of which about 1 TW can be attributed to the generation of internal waves in the deep
ocean (Egbert and Ray, 2001). As internal waves ultimately dissipate their energy by
breaking into turbulent mixing (St. Laurent et al., 2002), they can influence baroclinic
processes as the MOC, thus ultimately linking the tidal regime of a particular epoch to
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Figure 6.3: Tidal levels as derived from TiME (approach A, global field) and TICON (ap-
proach C, circles) in cm, exemplary for HAT (a) and MHW (b), and respective agreement
c in % at tide gauge stations (c, d).

its climate (Müller et al., 2010; Schmittner et al., 2015; Wilmes et al., 2019).
Therefore, predicting and monitoring tidal dissipation can provide boundary conditions
for paleo-climate reconstructions and the evolution of the lunar orbit. Furthermore, it can
serve as an additional benchmark for validating present-day tidal models with observations
of tidal dissipation. Thus, tidal dissipation was selected as an additional model output in
addition to the tidal levels discussed in the previous section.
Assuming linear admittance, the global dissipation of tides of identical degree (here l = 2)
and order (here m = 1, 2) follows the equation

Di = (αb
2(ωi)Ai)2 (c0

2m + c1
2m ωi) , (6.4)

where Ai is the amplitude of the TGP, αb
2 is a combination of body tide Love numbers and

ci2m are constants stemming from global integrals of vi and ∇Y2m (cf. Appendix H). As
two partial tides per tidal band m are simulated, the ci2m can be extracted, thus allowing
the exploitation of Equation (6.4) to estimate dissipation by additional partial tides.
Tidal sea surface height variations estimated by linear admittance are proportional to
Ai. In contrast, Equation (6.4) is proportional to A2

i . Thus tidal dissipation concentrates
on the highest amplitude tides diminishing quickly for minor tides. Attention has to be
paid when employing this approach, as dissipation estimates can change the sign for far-
extrapolated tides. This nonphysical behavior should be discarded as an artifact of the
linear admittance approach, but it did not occur in our simulations.
Applying this approach to modern-day tidal dynamics, we obtain a total dissipation by
the considered major tides of 3682 GW (partitioning as M2: 2494 GW, S2: 481 GW, K1:
334 GW, O1: 199 GW, N2: 97 GW, K2: 35 GW, P1: 34 GW and Q1: 8 GW). These
results match the reference values for Earth–Moon–Sun dissipation (3.7 TW) and pure
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Figure 6.4: Relative depth change with respect to the present-day bathymetric map
(0 ka BP) in meter. Coastlines are drawn as for the respective epoch, with increased
land area in gray and flooded grid cells in magenta (Hudson Bay, Baltic Sea). As the
topography considers ice sheets, areas of Northern Canada, Barents Sea and Baltic Sea
appear gray due to ice cover.

M2 dissipation of 2.45 TW (Egbert and Ray, 2001). The dissipation is dominated by M2
to O1, with only minor contributions by N2 to Q1.
Employing the presented linear admittance approach, it is possible to estimate the tem-
poral evolution of the global tidal dissipation by all eight major tides, not only K1 and
M2, that dominate the dissipation spectrum.

6.3 Paleotidal Conditions
In this section, we discuss changes of the paleoceanographic conditions which impact

the tidal regime mapped by the ocean tide model introduced in the last section. While
changes in the Coriolis parameter, the TRP, and the surface gravity are negligibly small
in the time span of interest, we focus on changes in non-astronomical factors that are
known to be relevant on the discussed time scale from prior studies (e.g., Wilmes and
Green, 2014; Haigh et al., 2020; Daher et al., 2021).
Changes of the paleoclimate are expected to impact the quantity and distribution of sea
and shelf ice. As floating ice masses interact with the mean tidal flow via frictional forces,
these changes can, in principle, affect the paleotidal dynamics. Due to the reasons dis-
cussed in Section 6.2.2 we ignore the effect of sea ice friction and restrain ourselves to
evaluating a number of estimates by considering extreme ice coverage for certain time
slices (7.5, 10, 12.5, 15, 17.5 ka BP).
Secondly, the changed climatic conditions impact the stratification of the ocean and,
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therefore, the coupling between the here studied barotropic ocean tides and their baro-
clinic counterparts (internal tides) that can be parameterized as topographic wave drag
(e.g., Bell, 1975; Llewellyn Smith and Young, 2003; Nycander, 2005).
Estimates of the ocean stratification were obtained from three different climate simula-
tions using the fully coupled Earth system model (COSMOS) (Jungclaus et al., 2010)
for pre-industrial, LGM, and deglacial conditions. The corresponding climate states for
pre-industrial and the LGM (21 ka BP) are experiments PI and LGMW from (Zhang
et al., 2013). The deglacial state is representative of conditions at 16 ka BP at a time of
substantial ice sheet disintegration and associated meltwater flux to the North Atlantic,
which has been simulated as experiment 16_0.21 (Sun et al., 2022). For technical details
of the model components, model configuration, and experimental setup, we would like to
refer to these base studies (Zhang et al., 2013; Sun et al., 2022) and references therein.
Employing these data sets, we constructed topographic wave drag tensors (Nycander,
2005) for diurnal and semidiurnal tidal species for four different epochs: First, we assume
modern conditions as described in Sulzbach et al. (2021a) utilized for times slices 0 to
0.5 ka BP (regime I ). Further, preindustrial conditions for time slices 0.5 to 7.5 ka BP
(regime II ), Heinrich-stadial conditions before the Bølling/Allarød (B/A) for time slices
7.5 ka BP to 18.5 ka BP (regime III ), and LGM conditions from 18.5 to 21 ka BP (regime
IV ) were employed. Already anticipating the results of the following section, we found
the impact of the changed wave drag dissipation to be of minor importance. Admittedly,
the impact of the altered ocean stratification on the vertical current profile and, connected
to this, the tidal ocean bottom friction was not considered in this study, while this effect
is known to impact the seasonal variations of M2 (Müller et al., 2014; Howarth, 1998).
The quantification of this effect would be an intriguing application of a global, baroclinic
paleo-ocean tidal model and is thus out of the scope of this study.
The most considerable influence on ocean tides is known to originate from changes in the
bathymetric conditions triggered by glaciation and deglaciation processes (e.g., Thomas
and Sündermann, 1999; Griffiths and Peltier, 2008; Velay-Vitow et al., 2020). These
bathymetric changes, implicitly including progressing and receding shorelines, directly
impact the barotropic resonance conditions that can be elegantly described by a set of
ocean normal modes (e.g., Müller, 2007). Reconstructing the sea level history is complic-
ated, as it is not sufficient to know the amount of water bound in ice sheets, i.e., the
GMSL. Additionally, the local sea level is impacted by changes in the Earth’s shape, the
geoid, which is again controlled by mass redistribution in the ocean, glaciers, and the
solid Earth. These changes depend on quantities like the mantle viscosity, the insolation,
and the resulting global ice history that exhibit large uncertainties but control the effect
of GIA (e.g., Abe-Ouchi et al., 2013).
Modern geodetic techniques such as GNSS or satellite gravimetry set precise, large-scale
constraints for uplift rates due to GIA and, therefore, effectively reduce the uncertainty
of the respective reconstruction. In this study, we rely on the reconstruction ICE-7G_NA
that considers a comprehensive amount of said constraining data on the North American
continent (Roy and Peltier, 2015, and references therein). Even though no constraining
data was used in this area, Roy and Peltier (2018) showed that the obtained sea level re-
construction agrees well with SLIPs in the Mediterranean and also certain far-field areas.
To obtain high-resolution bathymetric maps, we employ the data set RTopo-2 (Schaffer
et al., 2016) to derive a bathymetric map for modern conditions as described in Sulzbach
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et al. (2021a), i.e., containing sub-ice shelf cavities as free water column. Paleo bathy-
metries are obtained by modifying these high-resolution data sets by the topographic and
bathymetric differences from ICE-7G_NA. As a result, a set of high-resolution bathymet-
ries is obtained for individual time slices (cf. Figure 6.4). Due to changes in the Geoid,
the sea level might rise locally. Therefore, it is important to also allow apparent sea level
rise when calculating paleobathymetries, which is considered here. This phenomenon is
most notable in the Baltic Sea and Hudson Bay. While this study is not focused on es-
timating the impact of different paleo reconstructions as, e.g., Wilmes and Green (2014)
and Wilmes et al. (2019), the combination of ICE-7G and RTopo-2 has to our knowledge
not been considered, yet. We will focus on comparing the obtained dissipation rates to
results obtained by others.
To conclude this discussion, it is important to mention that uncertainties in the Antarctic
grounding line are not considered within this study. Nonetheless, we acknowledge that
this effect could considerably impact the obtained tidal levels, also on the Northern Hemi-
sphere, and therefore represents a source of uncertainty within this study (Wilmes and
Green, 2014; Wilmes et al., 2019).

6.4 Paleo Ocean Tidal Dynamics
In this section, we discuss the results of the paleo tide simulations. First, we focus

on changes in the partial tide oscillation systems and the accompanying shifts in tidal
dissipation. Afterward, consequences for tidal levels are discussed, focusing on a number
of exemplary regions that exhibit the most notable changes in tidal levels. Basin masks
are obtained from the World Ocean Atlas 20093 (Levitus, 2009), with the mask for Hudson
Bay adjusted for the increased sea level.

6.4.1 Tidal Resonances and Dissipation
The following discussion relates to the tidal dissipation displayed in Figure 6.5. Please
also consider changes in tidal amplitudes in Figures I.1 to I.8 in the Appendix. Going
backward in time, we first note that changes in tidal dissipation are relatively small until
approximately 9 ka BP, where the shelf area fraction begins to decrease, which is in line
with the findings of Wilmes and Green (2014). A notable variation in this period is the
slightly augmented M2 resonance in the Hudson Straight and Hudson Bay that peaks at
4.5 ka BP and later at 8 ka BP. The reason for this is the locally-increased sea level with
respect to the present-day sea level (e.g., Simon et al., 2014), which improves the coupling
between shelf sea and open ocean. Thereby it induces a slight decrease in dissipation and
a drop on the North Atlantic M2 amplitude (Uehara et al., 2006), and can be understood
in terms of a coupled oscillator model (Arbic et al., 2009). The feedback of the improved
shelf resonance on the open ocean is significant as the dominant semidiurnal eigenmode
of this region is known to be near resonant to the M2 frequency (Arbic et al., 2007).
The most pronounced change in the global M2 resonance is also related to this region.
Mainly due to the blocking of the Hudson Straight and the global sea level drop, the North
Atlantic M2 amplitude is strongly amplified at 10 ka BP and earlier (Wilmes and Green,

3ftp://ftp-oceans.ncei.noaa.gov/www/sites/woa.data.nodc/WOA09/MASKS/basin.msk

ftp://ftp-oceans.ncei.noaa.gov/www/sites/woa.data.nodc/WOA09/MASKS/basin.msk
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Figure 6.5: Cumulative tidal dissipation during the last 21 ka for semidiurnal tides (blue)
and diurnal tides (red), where the individual shadings represent the dissipation by M2,
S2, N2 + K2 and K1, O2, P1 + Q1, respectively. Dissipation for diurnal and semidiurnal
tidal species is presented on different scales. Further, the dissipation fraction by wave
drag, wf, for M2 and K1 (black, dashed/dashed-dotted), and the shelf-area fraction, sf
(cyan-shaded) are superimposed. Additionally, the regimes I to IV that mark the change
in stratification parameters employed for performing tidal simulations are overlaid (▷/◁:
solutions in two neighboring regimes). The ⬣-markers present solutions obtained by
employing an extreme ice cover polewards of |45|◦.

2014; Haigh et al., 2020). The M2 dissipation reaches a level of around 3.4–3.6 TW per-
sisting approximately from 10.5 ka BP to the LGM. While the large-scale North Atlantic
amphidromic system is responsible for the prominent increase in M2 dissipation by 1 TW,
several more localized resonances are observed, of which the transition of the Arctic tidal
regime from microtidal to megatidal between 11.5 and 15.5 ka BP is the most prominent.
The described changes also map to increased tidal levels, e.g., HAT, which are displayed
in Figs. 6.6, 6.7, and 6.8.
We further compare the predicted deep ocean dissipation under glacial conditions of this
study (Ti23) to the findings of several recent studies, namely Wilmes and Green (2014);
Wilmes et al. (2019), denoted W14 and W19, Velay-Vitow et al. (2020), denoted VV20,
and Griffiths and Peltier (2008, 2009), denoted GP09. All studies predict a general in-
crease in tidal dissipation, which is most prominent for M2, and shifted towards dissipation
by internal tide generation, i.e., wave drag, which carries out approximately 60 − 70% of
the dissipation. Ti23 predicts enhancement of wave drag dissipation by a factor of 2.4
(W19: 1.8 − 3; W14: 3 − 3.5; VV20: 1.4; GP09: 2.4). W19 computes the indicated range
from variations of the Antarctic grounding line position, where paleo bathymetries derived
from ICE5G and ICE6G result in a dissipation difference of 0.9 TW. The predictions of
Ti23 appear amid this estimate (similar to GP09). However, Ti23 and GP09 consider the
Arctic resonance (‘Arctic Megatide’, cf. the following section), which was computation-
ally hampered in W19 and W14. It is reasonable to assume that the Arctic resonance
enhances Atlantic deep ocean dissipation and would presumably increase the dissipation
estimates of W19. Thus, the dissipation estimates in this study would be closer to the
lower boundary predicted by W19, obtained with ICE-6G.
The dissipation by diurnal tides changes only slightly but continuously with time. Even
more, a weakly negative trend in the K1 dissipation, also predicted by W14, VV20, and
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Figure 6.6: Relative change of the HAT with respect to the present-day tidal range (0 ka
BP) for selected time slices in cm. Regions of interest include the Atlantic Ocean, the
Arctic Ocean, and the Caribbean Sea.

GP09, is overcompensated by a positive trend in the O1 dissipation rate towards the LGM
even though the tide-generating forces for O1 are approximately 30 % weaker than for
K1. Similar to this, VV20 finds an overall increase in the global and deep ocean dissip-
ation of O1 (+25%), but to a smaller extent than Ti23 (+250%). In contrast to W14
and VV20, which estimate the glacial deep ocean dissipation fraction by diurnal tides
to approximately 40 − 60%, Ti23 only predicts approximately 30% related to different
parameterizations of topographic wave drag. O1 becomes the most effective contributor
to diurnal dissipation during the LGM, increasing the overall diurnal dissipation from
575 GW at present-day to 675 GW under LGM conditions. This large-scale O1 resonance
in the Pacific Ocean is accompanied by several shelf resonances, most notably in the South
China Sea (cf. Figa 6.9).

The generally increased deep ocean dissipation is ultimately a consequence of the de-
creasing shelf sea fraction sf to values around 8%, resulting in the blocking of the Hudson
Straight and drying-out of the Siberian shelf and large parts of the European shelf. This
development removes these areas as energy sinks by turbulent bottom friction. Addi-
tionally, the emergence of the described shelf resonances, e.g., in Hudson Bay, can have
implications for global ocean dissipation. As shelf resonances tend to decrease the ocean
tide amplitude in the coupled deep ocean, especially if they exhibit only weak frictive
forces (Arbic et al., 2008; Arbic and Garrett, 2010). Thus, they can decrease the amount
of energy dissipated by internal waves in the nearby deep ocean. This might be differ-
ent for the Arctic resonance, which takes place in the deep ocean, altering the Atlantic
Ocean’s resonance conditions as a whole.
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Figure 6.7: Development of the spatially averaged Highest Astronomical Tide, HAT, with
respect to the present-day value, HAT(t=0 ka BP) for several regions: South China Sea
(1), Sea of Japan (2), Hudson Bay (3), North Atlantic (4), Baffin Bay (5) and the Arctic
Ocean (6). The development of the mean depth H with respect to its modern value for 1
+ 3 is shown, denoted ∆H. Please note that this value is not identical to ∆H, which is
larger in Hudson Bay due to the variable shoreline.

We performed additional simulations to quantify the impact of an exuberant sea ice cover
(polewards of |45|◦) and report a minor impact on the observed dissipation pattern. We
follow the reasoning that a decreased shelf area fraction sf minimizes the dissipation by
turbulent bottom friction, which also applies to turbulent ice friction (i.e., doubled bot-
tom friction). Both effects can only represent an efficient energy sink in shallow shelf areas
with large barotropic current velocities, which are very sparse under glacial conditions (cf.
Figure 6.8).
As the ocean stratification was changed between regimes I to IV, simulations at regime
boundaries (0.5, 7.5, 18.5 ka BP) are repeated with wave drag tensors based on both
regimes to quantify the impact of the ocean stratification on the simulation outcome.
Figure 6.5 shows that, while wf can be affected by this parameter, the overall dissipation
remains almost constant. In line with the results of Griffiths and Peltier (2009), this
finding suggests that stratification changes are significant for baroclinic processes while
the here discussed global barotropic tidal dynamics are pretty robust to changes in this
parameter: Critical transitions of the tidal regime are triggered by bathymetric changes
and the resulting resonance conditions and to a far smaller extent by wave drag or sea ice
friction.

6.4.2 Tidal Levels
The following discussion relates to Figs. 6.6, 6.7, 6.8, and 6.9 and exemplary focuses on

the temporal evolution of the Highest Astronomical Tide, HAT. Changes in other tidal
levels are found to be similar in character and are therefore not presented in detail. Please
also consider Figures I.1 to I.8 in the Appendix.
In line with the results of prior paleotidal studies (e.g., Thomas and Sündermann, 1999;
Egbert et al., 2004; Wilmes and Green, 2014), we find that the most significant global-
scale change of the tidal levels is driven by the North Atlantic M2 resonance discussed
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Figure 6.8: Changes in HAT for selected time slices for the White Sea (top) and Hudson
Bay (bottom) with respect to present-day conditions. Changes in the coastline are indic-
ated by the dashed (present-day) and solid (past) lines, with differences of the land mask
in gray shading.

in the previous section, which is related to blocking of Hudson Straight (Arbic et al.,
2004a; Uehara et al., 2006). Setting in around 10 ka BP and before, the absolute value
of the tidal levels strongly increases in most coastal regions of the North Atlantic. The
increase is non-uniform, with hot spots reaching over +700 cm (e.g., Baffin Bay) and
regions where even a slight decrease can be reported (e.g., the zone from Newfoundland
to the Cap Verde). Marginal seas are affected in different ways. While tidal amplitudes
in the Mediterranean and the Baltic Sea remain small, prominent increases are observed
for the Caribbean Sea up to +200 cm under LGM conditions (cf. Figure 6.9, bottom)
and Hudson Bay (cf. Figure 6.8, bottom), where tidal levels peak at 4.5 and 8 ka BP
due to an increased sea level before falling dry at 9 − 10 ka BP. On the other hand, K1
exhibits similar global resonance characteristics under present-day and glacial conditions,
except for an increased amplitude around Antarctica that is counterbalanced by a slight
decrease of tidal amplitudes in other oceans (cf. Figure I.4), as reported by other stud-
ies (e.g., Griffiths and Peltier, 2009; Wilmes and Green, 2014). Accompanying the increase
of global O1 dissipation (cf. Figure 6.5) we report increases in global O1 amplitudes, es-
pecially in the Pacific Ocean, with even larger impacts on tidal levels in Pacific marginal
seas (cf. Figure I.2). While the S2 amplitudes increase in the North Atlantic, similar to
M2, a reduction in the Pacific Ocean is predicted, which is the main driver of the HAT
reduction on the North American West Coast under glacial conditions.
Another intriguing development is proposed for the White Sea (cf. Figure 6.8, top). The
reduced sea level promotes the isolation of the respective basin between 9 and 13 ka BP,
which causes HAT to drop close to zero. At the same time, the level at the nearby Barents
Sea is elevated by over +350 cm. Interestingly this isolation only appears for the most
recent bathymetry RTopo-2, whereas ETOPO5 or ETOPO2 (e.g., Amante and Eakins,
2009) show a deep channel on the western flank of the outlet, excluding isolation.
The most remarkable change is predicted for the Arctic Ocean. While the present-day
tidal regime can be described as microtidal, several studies predict the transition to a
megatidal regime under glacial conditions (Griffiths and Peltier, 2008, 2009; Velay-Vitow
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et al., 2020; Velay-Vitow and Peltier, 2020). While some tidal models employed for study-
ing paleo-tides exclude a fully-unconstrained development of Arctic tides (e.g., Egbert
et al., 2004), the rotated-pole numerical grid of TiME is suited for studies of this region.
In agreement with the findings of Velay-Vitow and Peltier (2020), a strong increase in tidal
levels, mainly driven by the M2 and N2 tide (cf. Figure I.5 to I.8), is predicted between the
B/A and LGM. On the other hand, the predicted Arctic M2 amplitude increase within
this study is approximately 30% smaller than reported by VV20. This difference ori-
ginates from the representation of SAL, which was parameterized as ζSAL = 0.085ζ by
VV20, as we report an equivalent increase in the Arctic M2 amplitude when considering
the same ϵ-implementation. This finding suggests a high sensitivity of the Arctic tide to
the implementation of SAL and recommends this area for further study.
Further, changes in tidal levels in other world regions are predicted. The most substantial
increases in HAT are found in several semi-enclosed basins developing around the Indone-
sian Archipelago with falling sea levels (cf. Figure 6.9, top). The simulations predict a
HAT increase in the South China Sea by up to +250 cm, which is caused by K1 and even
more by O1, in line with the findings of Griffiths and Peltier (2009) and Uehara et al.
(2006). On the other hand, the resonances in the Banda and the Coral Sea are caused and
dominated by the semidiurnal M2 tide. Other basins experiencing changes to a smaller
extent are, e.g., the Patagonian shelf and the seas around New Zealand (not shown), as
well as the Caribbean Sea (cf. Figure 6.9, bottom). The latter was investigated by Hill
et al. (2011), who found tidal levels to rise from 7 ka BP up to a factor of approximately 2
at 10 ka BP, with respect to present-day conditions which agrees with this study. Further,
they describe a local maximum at 9 ka BP (up to a factor of 3), which was not reproduced
by TiME. The presented results can also be compared to the study by Ward et al. (2016),
who investigated the European Shelf region, showing a good qualitative agreement. E.g.,
both studies predict an increased M2 amplitude up to 400 cm at the coast of Brittany
under glacial conditions, with a reduced amplitude of only 100 cm maximum South of
Ireland and in the Irish Sea (cf. Figure 6.9).
A notable special case is the Sea of Japan (cf. Figure 6.7). While this sea is microtidal
under present-day conditions, the glacially-induced GMSL drop isolates it even stronger
from the deep ocean, leading to a considerable drop in the tidal levels. As previously
mentioned, a larger source of uncertainty remains the position of the Antarctic grounding
line. Therefore, the predicted increases in HAT in the Weddell Sea of up to +200 cm
should be considered cautiously.

6.5 Conclusions
In this study, we have applied the barotropic ocean model TiME (Sulzbach et al., 2021a)
to paleo-topographic conditions from the Last Glacial Maximum to the present time. To
investigate the impact of temporal changes in the ocean state on tidal dynamics, we dis-
cussed deviations in ocean stratification, sea-ice dynamics, and the geometry of ocean
basins, i.e., changes in bathymetry and shoreline position. We identified paleo bathy-
metry being the dominant factor, whereas ocean stratification and sea ice only marginally
impact tidal amplitudes (e.g., Griffiths and Peltier, 2009).
We also show that at a moderately high global resolution of 1

6
◦ (about 18.5 km), the

tidal model agrees on a high level with present-day tide gauge data. As TiME is a
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Figure 6.9: Changes in HAT for selected time slices for the Indonesian Archipelago (top)
and Caribbean Sea (bottom). Changes in the coastline are indicated by the dashed
(present-day) and solid (past) lines, with differences of the land mask in gray shading.

data-unconstrained model, it can be applied directly to paleo topographies and allows
the reconstruction of paleotidal dynamics consistently. Furthermore, in TiME the spatial
coordinate system can be rotated, allowing adjustment of the setup to a specific region
of interest. In this study, the configuration was chosen so that the North Atlantic and
the Arctic Ocean were located in the center of the numerical domain. Here, the aspect
ratio of the grid cells only varies slightly4. Similar setups are possible for other regions of
interest, e.g., East Asia. In addition to this truly-global domain, comparable to Griffiths
and Peltier (2008) and Velay-Vitow et al. (2020), TiME considers the non-local effect of
SAL. This effect was formerly solitarily implemented in the global paleo model of Hill
et al. (2011), with a much coarser resolution of approximately 1

2
◦. Additional technical

novelties in paleo-ocean tide modelling are the wave drag scheme of Nycander (2005) and
ice friction, with a minor impact on the simulation results.
Applying it to paleo topographies derived from ICE7G and the present-day RTopo-2 ba-
thymetry, a combination that has not been investigated before, we model tidal amplitude
changes of the main partial tides and also derive tidal levels which are of importance for
the interpretation of sea level data like SLIPs. Here, we employ a novel approach that
is based on simulating four partial tides and augmenting the results with 4 additional
tides utilizing linear admittance theory and the extraction of tidal levels in the HOLSEA
format from constructed time series. The constructed data set is thus explicitly designed
to be a handy tool for paleo-sea level science.
The sea level was much lower during the Pleistocene. Accordingly, the tidal levels are

4cf. Figure 3.3 in Chapter 3.
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expected to be larger due to less flooded continental shelves where the shallow waters
serve as an efficient damping mechanism for ocean tide amplitudes, which prior paleotidal
studies have repeatedly reported. Hence, in agreement to the findings of Egbert et al.
(2004); Griffiths and Peltier (2009); Wilmes et al. (2019); Velay-Vitow et al. (2020), the
simulations predict a strong increase in semidiurnal deep ocean dissipation by internal
tide generation. The here-reported dissipation rates are within the span of former pre-
dictions. As especially M2 is very sensitive to minor changes in the Antarctic paleo
bathymetry (Wilmes and Green, 2014; Wilmes et al., 2019), the provided dissipation
rates are afflicted with considerable uncertainty, which also maps to the tidal levels to a
restricted degree, i.e., tidal levels on the Northern Hemisphere are more robust than close
to Antarctica. Nonetheless, the provided data set allows us to reconstruct the temporal
development of the deep ocean dissipation, which can be used to constrain paleo climate
simulations (e.g., Green et al., 2009; Schmittner et al., 2015; Wilmes et al., 2019). A
formerly not-discussed change is related to the O1 tide, which is shifted towards a reson-
ant state and becomes the main diurnal dissipator under glacial conditions.
Comparison to prior studies shows convincing qualitative agreement in most cases (Sec-
tion 6.4.2). Yet, deviations from prior studies are found in some cases (e.g., North Amer-
ican East Coast, Arctic tides). An interesting open question remains about the back
action of the Arctic M2 resonance on the abyssal dissipation in the North Atlantic with
impacts on ocean mixing and general circulation. While this study proposes a minor
magnitude of this effect compared to changes in global M2 resonance conditions, the local
effect could be more pronounced. This secondary effect could be quantified within a fu-
ture study where only the Arctic bathymetry is modified while keeping global conditions
constant and observing changes in the basin-wise deep ocean dissipation for individual
time slices.
In addition to glacial resonances discussed in prior studies (e.g., North Atlantic, Arctic,
South China Sea, Antarctic Kelvin wave), several new features are predicted by the global
model. e.g., for the Atlantic region (cf. Figure 6.8), we found a Holocene high-tide episode
around 5 ka BP for the Hudson Bay preceded by a further episode after deglaciation of
this region around 8 ka BP. The White Sea shows diminishing tidal amplitudes around
11.5 ka BP due to isolation from the Barents Sea. This result is based on the recent
RTopo-2 bathymetry data set. In contrast, previous bathymetries showing deeper waters
east of the Kola Peninsula do not support the isolation of the White Sea. In the trop-
ical regions (cf. Figure 6.9), the separation of the Pacific from the Indian Ocean around
11 ka BP resulted in the emergence of resonant conditions with a tidal level increase of 2
to 3 m in the South China Sea (e.g., Griffiths and Peltier, 2008), as well as in the Banda
Sea and Coral Sea southwest and southeast of Java, respectively. These appear despite
the fact that the semidiurnal tides of the open Pacific are only weakly affected by the
paleo conditions (strongest reduction for S2), but instead are related to the near-resonant
conditions of the Pacific O1 tide. Another curious example is the Sea of Japan, where
tidal levels further decrease under glacial conditions.
Detailed examination of all regional patterns of tidal changes is beyond the scope of this
study, and – as shown for the White Sea – also depends critically on the applied ba-
thymetry. Moreover, a higher spatial resolution is likely necessary to represent specific
basin geometries more realistically. Nevertheless, the data underlying this chapter al-
lows the closer inspection of arbitrary regions of interest to investigate their paleotidal
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dynamics and resulting tidal levels. We hypothesize that temporal differences in tidal
levels, as presented in the figures, are likely to partially absorb residual modelling er-
rors and should thus be considered in combination with a modern data-constrained tidal
model (e.g., Hart-Davis et al., 2021b; Lyard et al., 2021; Egbert and Erofeeva, 2002) for
maximum accuracy when interpreting SLIPs.
Accordingly, we provide the governing partial tides and the derived tidal levels for dif-
ferent time slices during the last deglaciation. These can be applied easily for further
investigations. The tidal levels can directly be used to provide consistent paleotidal levels
for Pleistocene and Holocene sea level data which are necessary to derive the indicative
meaning and ranges of respective sample types.
As partial tide solutions are provided comprising tidal transports, they can be used to force
regional paleotidal models (e.g., Hill et al., 2011). They can also be included in baroclinic
oceab models that are, for example, used to study climate or sedimentation (Drinkorn
et al., 2021).
As a final note, the flexibility of the tidal model TiME allows for further increasing the
tidal solution’s spatial resolution. This can be met by using a well-tested configuration
with 1

12
◦ horizontal grid sampling (Sulzbach et al., 2021a) or experimental setups with

even higher resolution. Reaching the 10 km resolution level reduces the need to employ
regional numerical models, which are both computationally expensive and challenging to
implement due to the need for consistent open boundary conditions.
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Context

Figure 6.10: Globally integrated dissipation Di and power consumption W when forcing
TiME with the M2 partial TRP. The simulation is run for 120 tidal periods (approximately
60 days) and discriminates between dissipation by wave drag (wd), bottom friction (bf),
and parameterized eddy viscosity (ed). Dissipation rates are sampled eight times per tidal
period. Parameters are chosen for experiment W0 of Table 4.1, which was the default
setting for Chapter 6. Horizontal black lines indicate mean equilibrium dissipation rates.

Building on the insights accumulated in the previous chapters, which mostly concerned
objectives O1 and O2, Chapter 6 is dedicated to predicting paleo-ocean tide levels and
paleotidal dissipation, i.e., O3. A major modification concerning the default simulation
setting RE, which was preferred in Chapters 4 and 5, is the rebalancing of the tidal dis-
sipation mechanisms. Figure 6.10 shows the ocean tide dissipation predicted by TiME
for setting W0, which, in contrast to setting RE (cf. Figure 3.10), predicts more realistic,
i.e., reduced with respect to RE, dissipation rates for present-day conditions. Optimizing
the model setup to a resolution of 1

6
◦ resulted in a further improved global M2 dissipation

estimate of 2.49 TW for the present-day (reference value: 2.45 TW). Comparing the two
figures, the different weighting of dissipation mechanisms (red curves) is prominently vis-
ible in the equilibrium state.
Setting W0 minimizes dissipation by parameterized horizontal eddy viscosity and is em-
ployed by many modern data-unconstrained ocean tide models (e.g., Schindelegger et al.,
2018; Egbert et al., 2004). Consequently, all active dissipation mechanisms of TiME
depend on distinct oceanographic and geophysical quantities (i.e., stratification, bathy-
metry, ...) and are virtually free of undefined tuning parameters. Therefore, ocean tide
simulations could be performed for past epochs since the LGM. Based on the simulated

129



130 Context

Figure 6.11: Relative sea level (RSL) and indicative range (IR) of SLIPs from Hudson
Bay. Top: RSL inferred from specific SLIPs; bottom: corresponding IR. Values published
in Vacchi et al. (2018) (black), values determined with TiME (red). Error boxes at the
top are specified only by IR and the dating of the SLIP. Provided by V. Klemann and H.
Dümpelmann (personal communication, March 7, 2023).

data, it was possible to provide the first global data set of tidal levels designed to interpret
sea level markers (Sulzbach et al., 2022b). Tidal levels and sea-level reconstruction are
central to the discussion in this thesis chapter, but tidal dissipation is also briefly touched
on.
To illustrate the application and capability of the created data set, the tidal levels sim-

ulated with TiME were applied to the samples published by Vacchi et al. (2018) in the
following, which are found in the Hudson Bay region (cf. Figure 6.11). The figure shows
both the derived RSL and the IR, which is spanned by the underlying tidal levels. For the
presented figure, samples specified by MTL only and those from gravel beaches, where a
constant storm-beach correction of 3 m was added, were excluded (for details, cf. Vacchi
et al., 2018, Table 1). For the remaining samples, derived IRs and the RSL were compared
between the results of this thesis and Vacchi et al. (2018).
The Hudson Bay is located in a region of post-glacial uplift. Accordingly, during the last
6 ka, a significant RSL fall of more than 100 m was observed, and the differences in RSL
due to deviations in the considered tidal levels appear to be small. In the compilation
of Vacchi et al. (2018), the paleotidal model of Hill et al. (2011) was applied, which covers
the western North Atlantic, but not the Arctic. Accordingly, the authors did not consider
deviations from present-day tidal levels for SLIPs of Hudson Bay. For all samples, the
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Figure 6.12: M2 cotidal chart in the North Atlantic for experiment W0 and MA (top) and
respective wave drag dissipation density (bottom) under glacial conditions (17 ka BP) for
W0 and the difference MA-W0. The dissipation density is integrated over the depicted
domain, yielding the dissipation rate Dwd. Ocean regions with depths smaller than 500 m
appear in purple.

IR is specified by two tidal levels. For instance, the tidal range between MTL and HAT
defines the IR of macrofossils representing intertidal facies, marked as box symbols in the
lower plot of Figure 6.11. The IR generally shows a good agreement between the two tidal
correction models. It is evident that the IR predicted by TiME increases with time due
to larger tidal levels (cf. Figure 6.8) and so is significantly larger than the values of Vacchi
et al. (2018). As the IR is usually considered as an uncertainty (e.g., Khan et al., 2017),
these changes influence the statistical analysis of paleo-sea level change in this region.
Another curious paleotidal feature peripherally discussed in Chapter 6 was the drastic

increase of the Arctic tidal levels under glacial conditions (cf. Figures 6.6 and 6.7). This
phenomenon is also known as ‘Arctic Megatide’ and was previously predicted by nu-
merical experiments of multiple studies (Egbert et al., 2004; Griffiths and Peltier, 2008,
2009; Velay-Vitow et al., 2020; Velay-Vitow and Peltier, 2020), which were conducted on
truly-global domains. However, the emergence of this phenomenon is suppressed if the
considered models employ open boundary conditions in the Arctic Ocean (e.g., Wilmes
and Green, 2014; Wilmes et al., 2019). As the emergence and suppression of Arctic mega-
tidal conditions were not yet reported within the same modelling framework, its influence
on lower latitude regions could not yet be quantified.
The additional experiment MA was designed for the M2 partial tide, as it dominates the
Arctic tidal regime. The setup is identical to W0 introduced in Section 6.2.2 but retains
the Arctic bathymetry at a non-resonant state. To this means, the glacial bathymetry
(here, at 17 ka BP) transitions to present-day conditions at the north of the ϕcut = 75◦N
latitude circle under consideration of a ϕw = 5◦ Gaussian overlap zone. This means
that south of ϕcut, the present-day bathymetry tapers off with fg(ϕ) = exp

(
(ϕ−ϕcut)2

ϕ2
w

)
.

In contrast, the paleo bathymetry is superseded with (1 − fg). The experiment is then
performed following the procedure outlined in Chapter 6 and evaluated for the North At-
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Figure 6.13: M2 cotidal chart in the Arctic Ocean for experiment W0 and MA (left) and
bottom friction dissipation density (right) under glacial conditions (17 ka BP) for W0
and the difference MA-W0. The dissipation density is integrated north of 72◦ N (dashed
circle), yielding the dissipation rate Dbf. Ocean regions with depths smaller than 500 m
appear in purple.

lantic (cf. Figure 6.12) and the Arctic Ocean (cf. Figure 6.13), where the mean dissipation
density by bottom friction dbf and wave drag dwd is resolved and integrated to regional
values.
The experiments show that the Arctic bathymetry modification of experiment MA can

effectively suppress the formation of the Arctic Megatide, which leads to increased dis-
sipation by turbulent bottom friction in the Arctic of Dbf = +36 GW. At the same time,
the large tidal amplitude all over the Arctic basin is prohibited (cf. Figure 6.13). The
predicted dissipation by wave drag in the Arctic Ocean is negligible, i.e., smaller than
5 GW. On the other hand, the signs of the changes in the North Atlantic basin are inver-
ted. For experiment MA, the M2 tidal amplitude in the North Atlantic decreases, which
can be attributed to the suppressed feedback from the Arctic Kelvin wave. The effect
also impacts the wave drag dissipation in the North Atlantic, which decreases by 108 GW
(approximately 15%).
While experiment MA proposed that the Arctic tidal regime represents only a second-
order impact on the North Atlantic, the results allows comparing the findings of studies
with a truly-global domain (e.g., Velay-Vitow and Peltier, 2020) and with restricted Arc-
tic coverage (e.g., Wilmes et al., 2019). Further, conclusions can be drawn on how Arctic
tidal feedback might affect diapycnal mixing and general circulation in the North Atlantic.
In summary, Chapter 6 demonstrates that the continuous simulation of paleotidal dynam-
ics and the detailed assessment of derived quantities like dissipation and tidal levels is
feasible with the updated TiME version. The comparison to geologic sea-level proxies and
previously published studies on the subject has been started and will be continued in the
future.



7
Résumé

This thesis’ primary goal was to develop an ocean tide model that significantly improves
the quality of ocean tidal corrections. Emphasis was given to cases where the quality of
available geodetic data is comparably low, so empirical estimates are of limited precision.
These situations comprise geographical regions, tidal frequencies, and past epochs, i.e., the
polar oceans, minor tides, and tides since the LGM. To achieve this goal, three main
objectives, O1-O3, were formulated in Chapter 1. They are revisited in the following.

7.1 Summary
The core element of O1 was the development of a truly-global and versatile data-

unconstrained ocean tide model with high accuracy based on the model TiME (Weis
et al., 2008). While the model coverage was already global before the conducted up-
grades, the near-Arctic domain was affected by numerical artifacts originating from the
utilized ‘pole cap’ formulation.
This limitation was overcome in this thesis by introducing rotated-pole grids, which al-
lowed relocating the problematic areas around the numerical North and South Poles to
land-covered geographical regions. The numerically-lightweight formulation proved ro-
bust and versatile and allowed the implementation of two pari passu formulations. The
selected formulation brought a multitude of benefits. First, it facilitated running twin
experiments on grids with different locations of the poles. The results indicated that the
derived internal model precision is a factor of 4 − 5 better than the model accuracy with
respect to empirical data. Second, it provides tidal predictions for the polar regions with
undiminished accuracy, which is in contrast to satellite altimetry data-constrained ocean
tide models and ocean tide models with open boundary conditions in the Arctic (cf. Fig-
ures 4.7a and 5.9). Third, it is an indispensable prerequisite for conducting unbiased
paleotidal simulations to address O3 (cf. Figure 6.13).
Major improvements in TiME’s accuracy, as quantified by the root-mean-square deviation
to geodetic data sets (OBP recorders, TG stations, altimetry data), could be achieved
by implementing an updated formulation of the ocean tide PDEs. Including the mod-
ern high-resolution bathymetry RTopo-2, the consideration of the non-local effect of SAL,
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and particularly the consideration of energy dissipation by topographic wave drag allowed
to reduce the modelling misfit for the M2-tide by 73 − 78% depending on the reference
data set. With these improvements, the model accuracy for M2 is on a similar level as
data-unconstrained ocean tide models implementing comparable concepts of ocean tide
physics (e.g., Schindelegger et al., 2018; Blakely et al., 2022; Barton et al., 2022; Pal et al.,
2023), which is a mean deviation of 3.39 cm for the non-polar deep ocean. A benefit of
the selected formulations, especially concerning the wave drag effect in the formalism
of Nycander (2005), is that all implemented effects can be employed virtually free of
weakly-constrained tuning parameters. In contrast, they depend directly on well-known
geophysical quantities, like stratification, bathymetry, and the solid Earth’s elasticity.
Based on the efficient implementation of tidal hydrodynamics in TiME, the simulation of
geophysical signals on the edge of detectability was tackled (O2 and O3).
During the model development, two complementary model setups were fostered. The first
setup, labeled RE, relies on substantial energy dissipation by parameterized horizontal
eddy viscosity in the tradition of former TiME developments (e.g., Weis et al., 2008).
This setting improves the agreement to empirical data in the open ocean, especially for
minor tides. Hence, setting RE was preferred for present-day applications, where max-
imum accuracy is required. On the other hand, this setup lacks a solid foundation in tidal
hydrodynamics and overestimates M2 tidal dissipation by +250 GW.
This is different for the second setup W0, where dissipation by parameterized horizontal
eddy viscosity is minimized. The result is a slightly increased root-mean-square deviation
in the open ocean while the overestimation of M2 tidal dissipation decreases to +120 GW.
The probable reason for the worse performance of W0 compared to RE is the imperfect
representation of shallow-water processes in TiME. Future developments should consider
revisiting this topic with the ultimate goal of making W0 the standard setting for all
conducted experiments. For this thesis, W0 was only used for experiments toward achiev-
ing O3, which calls for an accurate representation of physical processes under variable
oceanographic conditions and a realistic tidal dissipation prediction.
Drawing on the successful realization of O1, our results corroborate that TiME can pre-
dict partial ocean tides on a reliably high accuracy level of 70 − 85% with respect to the
mean tidal signal, regardless of the partial tide amplitude (cf. Figure 4.8).
Objective O2 was the accurate prediction of formerly non-explicitly modeled minor par-
tial tides. Here, degree-2 tides in the edges of the tidal bands were the first example of
multiple subgroups of partial tides introduced in Section 2.2.3. The second group was
degree-3 ocean tides at the center of Chapter 5. Within this thesis, comprehensive sim-
ulations of third-degree tides were performed. The produced solutions comprise at least
one tidal constituent from all possible degree-3 species (monthly to terdiurnal) and offer
global coverage. In terms of SG, TG, and altimetric validation, it could be shown that
the high relative accuracy of TiME extends to this tidal subgroup. Within the study
presented in Chapter 5, it was possible to successfully model and validate terrestrial gra-
vimetric signals on the few nGal (i.e., 100pm

s2 = 10−11g0) level, scratching the theoretically
achievable limit of precision of superconducting gravimetry (e.g., Hinderer et al., 2015).
The third group, explicitly addressed with TiME simulations, is radiational (or atmo-
spherically excited) tides. The simulation results were validated on a high accuracy level
with the help of OBP and TG data (Balidakis et al., 2022). Hence, the model’s radiative
partial tides and the tidal subgroups mentioned before were included in the TiME22 tidal
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atlas. This compilation emerged from objective O2 (Sulzbach et al., 2022a) and comprises
57 ocean tides, transformed to Stokes coefficients. It includes many minor tides (degree-
2, degree-3, radiational), which are not routinely included in state-of-the-art ocean tide
atlases. The produced atlas is designed to function as a tidal prediction and correction
model for satellite gravimetry. While extended tests of the TiME22 atlas are still to be
performed, first results indicate that for several partial tides, e.g., the radiational S1 tide,
tidal aliasing can be reduced (cf. Figure 8 of Balidakis et al., 2022), when considering the
provided solutions. Currently, the compilation of a gridded tidal atlas comprising primary
(e.g., tidal height) and secondary (e.g., vertical displacement) tidal observables is in pro-
gress. It will allow considering TiME22 tides in processing various geodetic techniques,
as compiled in Figure 1.2.
The research premise that motivated O1 and O2 can be verified, as it could be proven
that data-unconstrained ocean tide modelling can improve the accuracy of existing tidal
atlases in several aspects (e.g., spatial coverage and minor tides). Nonetheless, the model-
ling results showed that altimetry-constrained ocean tide models are superior in accuracy
for major tidal excitations that comprise the largest tidal variability. Our results (cf. Fig-
ure 4.8) suggest that the most accurate predictions of tidal dynamics would be achieved
when combining data-constrained ocean tide solutions for large- and medium-signal ocean
tides and data-unconstrained solutions for the smallest signals, i.e., by this creating a hy-
brid ocean tide atlas. The threshold between these two regimes is located on the few-mm
signal level. Whether it is beneficial to derive minor constituents with linear admittance
remains to be tested. However, this approach will likely benefit several partial tides
(e.g., Hart-Davis et al., 2021a).
At present, including few-mm and sub-mm tides into the GRACE(-FO) dealiasing pro-
cess will likely have a minor impact on the gravimetric fields or could even remain hidden
below the current noise level. However, extensive validation should be performed. Addi-
tionally, such small tidal signatures will become more important when other sources of
error, e.g., satellite accelerometer noise or non-tidal high-frequency oceanic mass trans-
port, are minimized or better constrained (Flechtner et al., 2016). The impact of hybrid
models on terrestrial measurements is possibly more pronounced than for GRACE, espe-
cially for terrestrial SG measurements (cf. Chapter 5).
Objective O3 was the continuous simulation of primary and secondary tidal observables
since the last glacial maximum. Without a dense network of paleotidal observations,
internal model plausibility was central for supporting the credibility of the results. To
achieve maximum plausibility, the simulations relied on the model setting W0. Extended
present-day model validation was pursued with TG, OBP, and altimetric reference data
sets, which returned agreement values between 65% (HAT by TG stations) and 80% (M2,
non-polar, deep ocean by FES14). The model run, which was performed on a 1

6
◦ grid,

also proved very accurate for the present-day M2 tidal dissipation, which was only over-
estimated by approximately 2% (50 GW).
The modelling results for dissipation and tidal levels since the LGM appear within the
range of formerly conducted studies. However, the combination of TiME’s model features,
especially the truly-global grid, the inclusion of SAL, the bathymetry, and the simulation
of 4 partial tides per epoch, allows for revisiting several aspects of paleotidal dynamics
with unprecedented precision.
These aspects include creating a global data set of paleotidal levels with a dense temporal
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coverage, which can be applied to interpret SLIPs at arbitrary locations (cf. Figure 6.11).
The TiME simulations show that the derived IR for SLIPs vary in space and time, with
deviations up to 10 m in extreme cases. The largest deviations are often related to local
resonances, for example, the Arctic megatidal regime that emerges under glacial condi-
tions. This repeatedly debated phenomenon formed in TiME’s default run. It could be
shown that the implications of suppressing this phenomenon in the simulations for the
North Atlantic are non-negligible and could affect tidal mixing on a 15%-level.
In summary, the implementation of O1-O3 was successful. However, it was accompanied
by newly-emerging research questions and possibilities for improving the obtained results,
which is discussed in the next section.

7.2 Outlook
While the implemented model upgrades successfully enabled TiME to specifically simulate
the largest part of the tidal spectrum (cf. Figure 2.8), several subgroups cannot yet be pre-
dicted with sufficiently high accuracy. First, this comprises shallow-water tides (e.g., M4,
cf. Figure 4.9) and is related to the representation of hydrodynamic nonlinearity in TiME.
As the most significant nonlinear effect is turbulent bottom friction, which accounts for
the largest part of present-day tidal dissipation (cf. Figure 6.10), improvement of this
effect will impact the accuracy of major tides, e.g., M2. The achieved accuracy for M2 is
relatively high. Yet, it is still approximately a factor of 10 worse than for data-constrained
models, especially in shallow water, where bottom friction predominantly occurs. Here,
the regional optimization of bottom friction and topographic wave drag led to significant
improvements in other data-unconstrained ocean tide models (e.g., Blakely et al., 2022)
and is also considered for data-assimilating ocean tide models (e.g., Lyard et al., 2021).
Thus, an equivalent approach should be considered for TiME.
Based on this avised improvement, the full-ephemeris operation mode of TiME could be
employed to augment the TiME22 ocean tide atlas by terdiurnal and higher frequency
compound- and overtides and improve the quality of existing major partial tide solu-
tions. Recomissioning the full-ephemeris mode conjures the challenge of correctly rep-
resenting the effect of topographic wave drag, which is frequency-dependent (cf. Equa-
tion 3.7), e.g., it strongly differs for diurnal and semidiurnal tides (Egbert and Ray, 2003).
However, the precise representation of this effect caused the most noticeable improvement
in the model accuracy (cf. Table 4.3). Thus, the accurate simulation of terdiurnal com-
pound tides originating from diurnal-semidiurnal nonlinear tidal interaction will likely
depend on a proper broadband wave drag implementation.
Further, seasonal satellite tides like Mα

2 and Mβ
2 are not yet covered by TiME22. While

the sea ice module introduced in Chapter 6 allows for studying the effects of seasonal
ice coverage on major ocean tides (cf. Figure F.1), additional effects such as temporally
varying stratification (e.g., Schindelegger et al., 2022) should be considered.
The above-outlined upgrades are focused on expanding the TiME22 atlas. Additionally,
general model developments that improve the overall accuracy of all included partial tides
should be taken into account. For this, one possibility is increasing the model’s resolution
in the global mean or by regional nesting approaches. In the present configuration, a
global minimum meridional resolution of δϕ = 1

20
◦ and maximum nested regions of up to

1
40

◦ are feasible, which would allow targeting specific regions with complex shallow-water
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dynamics, e.g., the North Sea or the Irish Sea.
Another promising step would be to consider the assimilation of empirical tidal constitu-
ents derived from satellite altimetry (e.g., EOT20) or tide gauge data (e.g., TICON-3)
into TiME to create a data-constrained derivative of TiME22. The upgraded tidal atlas
would then benefit from the upgraded model physics of TiME and the full potential of
existing empirical data sets.
On the other hand, the already addressable ensemble of applications includes multiple
aspects. Within Chapter 6, the emergence of the Arctic Megatide was discussed. The
question of how this apparent tidal regime acts back on the North Atlantic should be
addressed in more detail, also investigating possible impacts on general circulation, which
would require using a general circulation model. Overall, the conducted paleo study would
benefit from further increased model resolution.
Further, it was remarked in the last section that extensive tests of tidal corrections by
TiME22 in a pure or a hybrid configuration are still to be conducted. It should be
considered to expand the ensemble of secondary tidal observables in TiME22 to Earth
Rotation Parameters (ERP, cf. Weis et al., 2008) and mean tidal dissipation estimates.
By extending the base of observational data sets that could be contrasted against TiME,
additional information for validation (or calibration) of model experiments might be ex-
plored.
Another intriguing possibility would be to force TiME with atmospheric reanalysis data
to predict high-frequency non-tidal mass variability. The current community standard for
removing suchlike signals from GRACE data is AOD1B (Shihora et al., 2022; Dobslaw
et al., 2017), which relies on the baroclinic model MPIOM (Jungclaus et al., 2013). It is
critical to stress that a barotropic (single-layer) model like TiME cannot depict baroclinic
processes essential for the general circulation. On the other hand, the effect of baro-
tropic pressure excitation and the mean impact (i.e., the barotropic component) of wind
stress forcing can be successfully captured, which has been shown for radiational tides
(e.g., Carrère and Lyard, 2003; Arbic, 2005; Balidakis et al., 2022, 2023) and non-tidal
dynamics for altimetric (e.g., Carrere et al., 2016) and gravimetric (e.g., Schindelegger
et al., 2021) signals. Further, barotropic models are typically numerically less expensive
than baroclinic models, allowing the advantage of increased horizontal resolution, which
is particularly beneficial for depicting semi-enclosed marginal seas and narrow straights.
On the one side, the spatially non-local implementation of SAL in TiME, known to im-
pact the atmosphere-driven high-frequency ocean dynamics (e.g., Shihora et al., 2021),
will benefit the representation of non-tidal ocean dynamics. Additionally, provided the
successful update of barotropic-baroclinic conversion to account for temporal non-locality,
this endeavor seems promising. Therefore, it should be investigated if the advantages of
a modern barotropic ocean model with parameterized baroclinic processes can provide
improved mass distribution estimates for the limited case of predicting high-frequency
mass variability.
Chapter 5 motivates that data-unconstrained numerical models can be powerful tools to
model and identify minuscule geoscientific signals on the edge of detectability, such as
third-degree ocean tides. This allowed us to study load tide and body tide signals in
the terdiurnal frequency band. Given the successful upgrade of TiME, especially in the
field of tidal nonlinearity, it would be a good plan to revisit this topic, e.g., by trying
to discriminate lunar degree-4 tides (cf. Figure 5.11) from shallow-water tides, terdiurnal
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and 1/4-diurnal radiational tides from their shallow-water counterparts (e.g., Ray et al.,
2023), or even approach the ψ1 tide. This tide is generally considered problematic and is
additionally affected by the insufficiently-constrained FCN-resonance (cf. Table 2.1) and
seasonal variations (Ray, 2017; Ray et al., 2021).
In conclusion, the work conducted within this thesis advanced the numerical modelling
of ocean tidal dynamics in several aspects and provided novel ocean tide solutions for
processing geodetic data. Regardless of the long history of ocean tide science, there re-
main numerous intriguing research questions to answer, which the continuous efforts in
tidal modelling have brought within reach. Accordingly, it is expected that the research
of tidal phenomena will maintain its significance within planetary sciences in the future.



Appendices

A Spherical Harmonic Functions
The fully-normalized spherical harmonic base functions employed within this thesis are

real-valued (in contrast to their generally complex definition in quantum mechanics). This
difference implies a modification with respect to the usually employed normalization factor
in complex notation, which can ultimately induce misinterpretation of base functions. The
normalization factor Nlm was implicitly introduced in Equation (2.3) as the scale factor
of the associated Legendre Polynomials P lm = NlmPlm, and is given by (e.g., Heiskanen
and Moritz, 1967, p. 24, 31)

Nlm =

√√√√(2l + 1)(2 − δm0)
(l −m)!
(l +m)! , (A.1)

where the Kronecker-δ modifies the normalization factor for m = 0 harmonics and ‘!’
signifies the factorial. It is stressed that Heiskanen and Moritz (1967) and Hartmann
and Wenzel (1994, 1995b) refer to these functions as ‘fully-normalized’, as they fulfill the
relation

1
4π

∫
dΩ (Ylm)2 = 1 , (A.2)

where integration is performed over the entire solid angle domain. It could also be argued
that Ylm should include the factor 1√

4π for full normalization. One would then speak of the
notation mentioned above as 4π-normalized. However, this thesis follows the introduced
nomenclature that builds the basis for the employed TRP.
The associated Legendre Polynomials up to degree-4 are listed in the following Table.

l 0 1 2 3 4
Pl0 1 sinϕ 1

2 (3 sin2 ϕ− 1) 1
2 (5 sin3 ϕ− 3 sinϕ) 1

8(35 sin4 ϕ− 30 sin2 ϕ+ 3)
Pl1 cosϕ 3 sinϕ cosϕ 3

2 cosϕ (5 sin2 ϕ− 1) 5
2(7 sin3 ϕ− 3 sinϕ) cosϕ

Pl2 3 cos2 ϕ 15 cos2 ϕ sinϕ 15
2 (7 sin2 ϕ− 1) cos2 ϕ

Pl3 15 cos3 ϕ 105 sinϕ cos3 ϕ
Pl4 105 cos4 ϕ

Here, the functions are defined in terms of the latitude ϕ to be compatible with the
geographical coordinates to which the ocean model refers. In general, it is standard to
define Plm in terms of the colatitude θ = π

2 − ϕ. This implies the identities cosϕ = sin θ
and sinϕ = cos θ, which can be used to transform the Plm. Please also consider the spatial
representation of the introduced Ylm in Figure A.1.
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Figure A.1: Global representation of the real-valued spherical harmonic functions Ylm for
degree/order (l,m) up to lmax = 4, where red (blue) colors represent positive (negative)
extreme values for each function.

B Bathymetric Interpolation Algorithm

The spatially high-resolution bathymetric data set1 RTopo-2 (Schaffer et al., 2016) is
regridded to the tidal model’s lower resolution ( 1

12
◦
...1◦). Seeking an algorithm that op-

timally conserves the bathymetric information obtained from high resolution, we consider
the shallow-water equations in the abbreviated form(

[Ô1 + Ô2(H)] ζω − F0
)
eiωt = 0 (B.1)

where three groups of operators are defined: Group Ô2(H), which explicitly depends
on the bathymetric function H , group Ô1 independent of H, and the external forcing
F0 = −g∇ζeq, additionally independent of ζ. We further assume H = H0 + δB and
ζω = ζ0 +δζ, thus introducing a tiny bathymetric disturbance δB to a known bathymetric
function H0, that causes an exiguous disturbance δζ in the corresponding solution vector
ζ0. Since this disturbance is small, δζ is determined by

(O1 + O2[H0 + δB]) δζ =
 r|v0| 1

H2
0
v0

v0 · ∇ + (∇H0)v0−∂tζ0
H0

 δB ≡ Fϵ(δB,H0, ζ0) . (B.2)

This equation describes shallow water dynamics for δζ driven by the external force Fϵ.
We define the bathymetric disturbance introduced by a drastic reduction of the initial

1This Appendix is transcribed from the Supporting Information of Sulzbach et al. (2021a).
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resolution as
δBij = H

(h)
ij −H

(l)
kl . (B.3)

Here, we added the indices h/l to indicate whether the bathymetries are defined at high
or low resolution. We allow both fields to be evaluated at high resolution suggested by
the index (i,j). Here, the coarsely resolved fields are assigned values in terms of nearest-
neighbor interpolation H

(l)
ij = H

(l)
kl in the vicinity of H(l)

kl , denoted roi(k,l)2. Due to the
huge resolution difference, the disturbance δBij will have a ‘bumpy structure’ with minor
differences between grid cells in one roi(k, l) and bigger jumps, where the next-neighbor
interpolation value of H(l)

ij changes.
The overall goal is to choose H(l)

kl in such a way that it minimizes the quantum of tidal dy-
namics evoked by Fϵ. Since the forcing is proportional to δBij, it has a noisy structure and
will thus not show pronounced resonance with the oceanic eigenmodes (cf. Section 2.2.2).
Its impact on OTD is best reduced by minimizing ||Fϵ|| under variation of H(l)

kl . The
forcing operator can thus be rewritten as

Fij
ϵ = Fij

res +

 c
(kl)
1

(
H

(h)
ij

)−2

c
(kl)
2

(
H

(h)
ij

)−1

 δBij ,with (i, j) ∈ roi(k, l) (B.4)

where the complex c(kl)
1 , c

(kl)
2 are constants depending on the local value of ζ0 and ∇H0.

In the following, we assume that tidal solutions are well resolved within one roi, thus
allowing us to treat c(kl)

1,2 as constants within one roi. Fij
res contains all forces that do not

depend on the absolute depth value H(h)
ij .

Equation (B.4) states that the individual contributions to the noisy forcing will be pro-
portional to δBij but weighted with individual weights proportional to H−1

0 and H−2
0

multiplied with coefficients c1,2, respectively. We concentrate on the contribution propor-
tional to H−1

0 as it originates from the conservation of mass as a fundamental principle
of hydrodynamics. We only have to evaluate the third vector component in terms of the
|| ||2-norm, yielding

∂
H

(l)
kl

|| (Fϵ − Fres) · e3||2 = ∂
H

(l)
kl

∑
ij

|c(kl)
2 |2

1 − H
(l)
kl

H
(h)
ij

2

= 0 , (B.5)

resulting in the minimization condition

H
(l)
kl =

∑
ij

(
H

(h)
ij

)−1
/
∑
ij

(
H

(h)
ij

)−2
. (B.6)

Equation (B.6) states that individual weights inversely-proportional to the bathymetric
depths are the right choice to minimize resolution-dependent disturbances. Please note
that consideration of terms proportional to c1 instead of c2 would lead to a similar result
with powers of H0 changed by -1, further increasing the weight of shallow water grid

2roi = region of interest
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cells3. In light of this finding, we want to stress that Equation (B.4) proposes to perform
a resolution reduction operation with weights that grow for shallow depths.
The prerequisite c1,2 = const. within one roi, is only broken in coastal regions (rois con-
taining ocean and land), where the tidal elevation can change drastically. As a byproduct
of the depth-inverse regridding, these rois are evaluated as dry (shrinking ocean area),
leading to the problem of closing narrow passages as, e.g., the Straight of Gibraltar.
We overcome this problem by using weights proportional to depth in coastal areas (first-
order conservative interpolation). This scheme evaluates rois containing at least one wet
grid cell as wet (growing ocean area) and conserves the cross-section of straights. We
finally emphasize that the differences between the discussed scheme and first-order con-
servative remapping are small at a resolution of 1

12
◦ but much more significant at a lower

resolution.
Despite the partially rough approximations and assumptions, these considerations res-
ulted in a physically meaningful and versatile interpolation technique that allows the
construction of bathymetric maps for any given spatial grid with rotated poles automat-
ically.

C Properties of the Gravity Residuals

The interpretation of the standard deviation derived by error propagation as the
confidence interval depends on the spectral characteristics of the gravity residuals4, which
are required to be normally distributed. With the quantities given in Table C.1, the
properties are summarized for each station: the RMS, a power spectrum, and the power
vs. frequency ratio providing the noise color. The effect of high-pass filtering in ETERNA-
x in the underlying data series has been restored when applied (last column of Table C.1).

Together with the RMS value of each site’s residual, the spectra indicate the presence
of a signal, be it from instrumental or environmental sources, that has escaped reduction
in the tidal analysis because it was neither included in the functional model nor as prior
data correction. The noise color, as given by the ratio log(P )/ log(f) in Table C.1, is
mostly close to red (i.e., Brownian), with larger deviations for some sites, as indicated by
the chi-squared test for the linear fit of this parameter from the power spectrum.
The average power within spectral bands defined equally wide in log(f) is shown in blue
in the small figures of Table C.1. Diurnal and semidiurnal tidal frequencies are covered
in the 5th bar from the left in those small figures of Table C.1, while the other bars are
assumed to be dominated by non-tidal sources, i.e., periods longer than one day, and are
typically dominated by the effects of water storage changes. Strong but narrow spectral
lines occur at specific periods and are represented by an amber surplus above the average.
Such deviations indicate that attention is required, specifically if appearing in band 5. For
most conspicuous stations such as BO, SU, or YS, the non-stationary behavior of solar
tides ∗Sn is the most likely cause, suggesting an advanced atmospheric correction.

3This change is due to the origin of the c1-term from bottom friction, which is strongest in shallow
waters.

4This Appendix originates from the Supporting Information of Sulzbach et al. (2022c).
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Table C.1: Properties of gravity residuals after tidal analysis. In the cases of filtered data,
the unfiltered residual has been restored. cf. Figure C.1 for a detailed explanation of the
equally scaled tiny power spectra in column PSP. The ratio log(P )/ log(f) was obtained
from the average amplitude in dB per octave. The goodness of this fit is provided by
the chi-squared test. Values χ2/n >> 1 indicate larger fluctuations in the spectrum, also
visible in the deviations of the mean (blue) and maximum (amber) magnitude of the PSP.
The RMS is given in nm/s2, and the last column flags whether the time series were filtered
before tidal analysis.

Site RMS PSP log(P )/ log(f)∗ χ2/n Filter

AP 24.0 -2.05 0.8 no

BH 7.4 -1.75 2.6 no

BO 28.6 -1.75 7.2 yes

CA 67.7 -1.69 0.3 no

CB 34.1 -1.69 2.3 no

ES 161.3 -2.01 1.8 yes

KA 131.0 -2.25 2.3 no

LP 42.8 -2.09 17.6 yes

MB 23.7 -2.00 1.3 no

MC 11.9 -1.73 0.3 no

NY 35.1 -1.69 1.4 no

OS 9.9 -1.67 4.4 yes

SU 17.1 -1.84 12.3 yes

TC 87.1 -2.07 2.9 yes

WE 45.1 -1.90 2.2 no

YS 32.1 -2.30 13.7 yes
∗: Assuming an uncertainty for log(P ) of 0.16, the uncertainty
of log(P )/log(f) is 0.07 throughout.
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Figure C.1: Average power spectrum of gravity residuals explaining the tiny images in
column PSP of Table C.1. The abscissa is logarithmic in frequency, and the corresponding
periods are given at the top. The resolution has been devised such that bar number 5
contains the diurnal, semidiurnal, and terdiurnal periods. All bars are equally wide in
log(f). The amber-colored part shows the maximum power in each band, and the blue
part is the arithmetic average of the dB values of power within the bin.

D Global Admittance Functions
Here, we present the global admittance functions of selected tides appearing in Table 5.1

to highlight differences in the underlying response patterns5. The depiction of Zlm that
was introduced in Equation (5.4) facilitates a direct comparison between partial tides that
possess excitation amplitudes encroaching several scales as ocean responses are normalized
by their excitation amplitudes. We extend this concept to the gravimetric response gω
induced by ocean tide ζω (cf. Equation 5.7). For this purpose, gω = gωcos+igωsin is normalized
with the Newtonian gravitational shift induced by a localized, uniform layer of seawater
of height Aωab

l

g0
, which is the measure we employed for the equilibrium tidal height. This

corresponds to the limit of a locally flat Earth, covered with said layer and amounts to
half the gravity of a uniformly water-covered sphere

geq = 2πGρsw
Aωa

b
l

g0
= 3ρsw

2ρse

Aωa
b
l

Re

. (D.1)

The resulting ocean loading-induced gravity admittance function is then obtained by

Z∗
lm(ϕ, λ, ω) = gω

Aωabl

2ρse

3ρsw
Re = g0

∑
l′m′ βl′ζ

ω,lm
l′m′ Yl′m′

Aωabl
, (D.2)

where βl is the LLN-composed prefactor in Equation (5.7). Results for Zlm and Z∗
lm are

presented in a combined plot in Figures D.1 and D.2. 3M3 results are not presented as
they cannot be compared to a neighboring degree-2 tide. The following features can be
identified

• Degree-2 and degree-3 admittance functions take unrelated, independent shapes
both in terms of amplitude and phase.

5This Appendix originates from the Supporting Information of Sulzbach et al. (2022c).
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Figure D.1: Dimensionless, diurnal admittance functions Zl1 (right color bar) and Z∗
l1

(left color bar) evaluated for diurnal excitations (top: l = 3 for 3M1; bottom: l = 2 for
2M1). Lines indicate the tidal phase ϕi in increments of 60◦, where the continuous fat line
marks 0◦ and the dashed fat line represents 60◦ phase lag.

• At coastal margins, the phase lag of ocean tide and is the respective induced gravity
signal is not a steady function but can exhibit visible phase shifts due to the non-
local character of ocean tidal loading (e.g., 3M1 tide at the West African coast).

• The strongly enhanced 3L2-admittance can be easily identified and clearly exceeds
3N2 (Ray, 2020).

• Inverted behavior can be asserted in the case of semidiurnal degree-2 tides where 2N2
admittance exceeds the 2L2 response in the Atlantic and Pacific oceans. This result
seems to be counter-intuitive. On the other hand, this behavior is not unexpected
as the different excitation patterns of degree-3 and degree-2 tides will profoundly
change the underlying normal mode decomposition of the respective partial tide,
hence changing the relative importance of modes with specific resonance frequen-
cies (Müller, 2007).

E TiME22 Tidal Atlas
Based on the simulations performed by Sulzbach et al. (2021a, 2022c) and Balidakis

et al. (2022), the TiME22 tidal atlas was created (Sulzbach et al., 2022a) and comprises
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Figure D.2: Dimensionless, semidiurnal admittance functions Zl2 (right color bar) and
Z∗
l2 (left color bar) evaluated for semidiurnal excitations (top to bottom: l = 3 for 3L2

and 3N2; l = 2 for 2L2 and 2N2). Lines indicate the tidal phase ϕi in increments of 60◦,
where the continuous fat line marks 0◦ and the dashed fat line represents 60◦ phase lag.
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mass variations from atmospheric and oceanic tides in the form of Stokes Coefficients.
The data set is designed for dealiasing of satellite gravimetric data. Therefore, this data
publication not only provides mass anomaly coefficients but also includes an introduction
to the theory of linear admittance and computational building blocks to compute linear
admittance estimates from the TiME22 atlas.
The ocean component (OCN) comprises 57 partial tides, including many minor tides
discussed in Section 2.2.3 (i.e., degree-2 tides in the edges of tidal bands, degree-3 tides,
and atmospherically-excited or radiational tides). In the current form, nonlinear and
climatologically-induced tides are not included for the reasons discussed in Chapter 7.
In Figures E.1 to E.3, the TiME22 atlas is presented, with the classification of each partial
tide following in Table E.1. The transition from SEQT to the dynamical tidal regime can
be studied by comparing Figures 2.2 to the figures of this Appendix, i.e., the patterns of
TGPs for long-period tides can be easily identified in Figure E.1, which is impossible for
diurnal and higher frequency tides. The figures indicate which tides are excluded from
linear admittance estimation and where degree-3 admittance must be considered.
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Figure E.1: Long-period, terdiurnal and high-frequency tides of the TiME22 OCN catalog.
Degree-3 tides are framed in black and radiationally-excited tides that are not approved for
admittance estimation are marked in red. Here, and in the following plots the Greenwich-
phase lags −180◦ < ϕi < 180◦ are represented as black lines in increments of 60◦, where
dashed lines represent negative values and ϕi = 0◦ is marked by the white background
line. The phase-lag for om1 is zero at each point, as the tide is modeled to be in phase
with the TGP (equilibrium tide). Modified from Sulzbach et al. (2022a).
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Figure E.2: Diurnal tides of the TiME22 OCN catalog. Degree-3 tides are framed in
black and radiationally-excited tides that are not approved for admittance estimation are
marked in red. Modified from Sulzbach et al. (2022a).
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Figure E.3: Semidiurnal tides of the TiME22 OCN catalog. Degree-3 tides are framed in
black and radiationally-excited tides that are not approved for admittance estimation are
marked in red. Modified from Sulzbach et al. (2022a).
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Table E.1: 57 partial tides (label i) as appearing in TiME22. Column idx refers to
the numbering in the supporting information of Sulzbach, Dobslaw, & Thomas (2021),
ATM states whether atmospheric forcing was considered and LINAD whether the tide is
considered for linear admittance. l is the degree of the partial TGP, and Ai the respective
amplitude. Further, the trivial name of the partial tide and the tag (ID) that is used in
the file naming convention is presented.

idx Doodson ATM LINAD l Ai [ mm2

s2 ] name ID n

1 055.565 n y 2 7.719645e+04 Ω1 om1 11

2 056.554 n y 2 1.360322e+04 Sa sa 22

3 057.555 n y 2 8.565377e+04 Ssa ssa 32

4 058.554 n y 2 5.006949e+03 Sta sta 42

7 065.455 n y 2 9.725014e+04 Mm mm 5
9 065.555 n y3 3 1.042363e+04 3Mm d3mm 6
11 073.555 n y 2 1.613284e+04 Msf msf 7
13 075.555 n y 2 1.841040e+05 Mf mf 8
17 085.455 n y 2 3.525008e+04 Mtm mtm 9

20 125.755 n y 2 1.298572e+04 2Q1 2q1 10
21 127.555 n y 2 1.565932e+04 σ1 sig1 11

135.555 n y 3 2.504000e+03 3Q1 d3q1 12
23 135.655 n y 2 9.813054e+04 Q1 q1 13
24 137.455 n y 2 1.862609e+04 ρ1 rho1 14

145.655 n y 3 1.280000e+03 3O1 d3o1 15
26 145.555 n y 2 5.125255e+05 O1 o1 16
27 147.555 n y 2 6.680540e+03 τ1 tau1 17
29 155.555 n y 3 7.832888e+03 3M1 d3m1 18
30 155.655 n y 2 4.028717e+04 M1 m1 19
32 157.455 n y 2 7.709119e+03 χ1 chi1 20
33 162.556 y n 2 1.393773e+04 π1 pi1 21
34 163.555 y y 2 2.384377e+05 P1 p1 22
35 164.555 y4 n 2 5.636309e+03 S1 s1 23
37 165.555 y y 2 7.205113e+05 K1 k1 24
39 166.554 y n 2 5.638973e+03 ψ1 psi1 25
40 167.555 n y 2 1.025988e+04 ϕ1 phi1 26
41 173.655 n y 2 7.706830e+03 θ1 tet1 27
42 175.455 n y 2 4.030173e+04 J1 j1 28

175.555 n y 3 3.859000e+03 3J1 d3j1 29
44 183.555 n y 2 6.683724e+03 SO1 so1 30
45 185.555 n y 2 2.204454e+04 OO1 oo1 31

47 227.655 n y 2 9.129880e+03 ϵ2 eps2 32
235.655 n y 3 2.086800e+03 32N2 d32n2 33

48 235.755 n y 2 3.130700e+04 2N2 2n2 34
49 237.555 n y 2 3.778507e+04 µ2 mu2 35
50 245.555 n y 3 7.604162e+03 3N2 d3n2 36
52 245.655 n y 2 2.365822e+05 N2 n2 37
53 247.455 n y 2 4.494047e+04 ν2 nu2 38
55 255.555 y y 2 1.235635e+06 M2 m2 39

255.655 n y 3 1.1463000+03 3M2 d3m2 40
56 263.655 n y 2 9.111517e+03 λ2 la2 41
57 265.455 n y 2 3.492889e+04 L2 l2 42
58 265.555 n y 3 7.013920e+03 3L2 d3l2 43
60 272.556 y n 2 3.360070e+04 T2 t2 44
61 273.555 y y 2 5.748299e+05 S2 s2 45

274.554 y n 2 / R2 r2 46
62 275.555 y y 2 1.561924e+05 K2 k2 47
65 285.455 n y 2 8.737090e+03 η2 eta2 48

345.655 n y 3 4.102100e+03 3MN3 d3mn3 49
66 355.555 n y 3 1.496874e+04 3M3 d3m3 50

375.555 n y 3 1.950000e+03 3MK3 d3mk3 51
381.555 y n / / T3 t3 52
382.555 y n / / S3 s3 53
383.555 y n / / R3 r3 54
491.555 y n / / S4 s4 55
5A0.555 y n / / S5 s5 56
6BZ.555 y n / / S6 s6 57

1 : Simulated as selfconsitent equilibrium tide ( 1
12

◦-grid); 2 : Simulated on 1
3

◦-grid
3 : Long-period degree-3 tides are considered with a constant admittance approach
4 : The atmospheric S1 tide possesses the Doodson number 164.556, while the
oceanic S1 tide follows Doodson/Schureman-convention, cf. Appendix of Ray and Egbert (2004).
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Figure F.1: M2 amplitude-differences ∆AM2
mod between the seasonal (FMA) and (ASO)

experiments (left) and between the (mod-ice) and (mod) on the Northern and Southern
Hemisphere (mid/right). The (ASO) ice-mask is presented as green shading, while the
(FMA) ice-mask is presented as gray shading. Both masks are identical in the Southern
Hemisphere, as seasonal changes were only considered in the Panarctic region.

F Impact of Sea Ice Friction
The newly implemented sea ice friction parameterization6 (6.1) depends on the spatial

distributions of the parameters rice, fice, and vice. While rice = r = 0.003 is set constant,
the ice mask fice and drift velocity vice are constructed from a data set obtained from
Copernicus Marine Services (https://doi.org/10.48670/moi-00007), where monthly
mean values are averaged over the period Jan 1995 – Dec 2019 to obtain climatological
mean values for winter (FMA) and summer (ASO). The fractional ice cover is rounded to
1 or 0, not allowing for intermediate values (cf. Figure 6.1a, b). The data set shows clear
deviations between winter and summer mean that induce seasonal variations of the tidal
solutions (cf. Figure F.1, left). Therefore, the presented solutions, mod-ice and mod-ice-v,
are constructed as annual mean values of winter and summer solutions.
The most notable impact of sea ice friction is observed when it occurs in Hudson Bay and
Hudson Straight with large-scale effects on the North Atlantic oscillation systems, both in
seasonal fluctuations and the mean M2 tide (cf. Figure F.1) as discussed, e.g., by Müller
et al. (2014). In addition, we consider ice friction of the Antarctic shelf ice constructed
from the RTopo-2 data set.
Seasonal sea ice cover in the Southern Hemisphere is not considered but could, in principle,
be included in subsequent studies. Validation with OBP and FES14 data only yields
improvements on the mm-level when considering ice friction, where allowing for ice drift is
even more insignificant (files 2 and 3 of Table F.1). Intercomparisons between experiments
mod to mod-ice-v indicate a mean deviation between 2 mm (deep ocean) and 8 mm (global
ocean), which must be seen in relation to the M2 signal rms, which is on the order of
300 mm.
We conclude that the considered ice friction parameterization induces a seasonal M2
amplitude variation up to 5 cm, which could be interesting for studying seasonally induced,
annual satellite lines. Global mean deviations are yet tiny with respect to the mean

6This Appendix originates from the Supporting Information of Sulzbach et al. (2023).

https://doi.org/10.48670/moi-00007
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Table F.1: rms-differences of individual simulation experiments and reference data sets
for the present-day M2 partial tide in cm. The labels d/g mark the evaluation over a
non-polar, deep ocean domain (d) and the global ocean (g).

OBP FES14 (d) mod-ice (d/g) mod-ice-v (d/g)
mod 6.78 6.05 0.24/0.86 0.24/0.87
mod-ice 6.75 5.98 / 0.01/0.03
mod-ice-v 6.74 5.99 / /

amplitude. Hence, the effect of ice friction is not considered within Chapter 6, which
which focuses on the more pronounced large-scale evolution of paleotidal levels.

G Estimating Spring/Neap Tidal Levels
To derive estimates for the spring/neap-cycle7 related parameters MLWS, MHWS, MLWN,
and MHWN from given the given set of 8 partial tides, we employ the auxiliary functions

p± =
f±(AO1

mod, A
K1
mod)

√
(AK1

mod)2 + (AO1
mod)2 + f±(AS2

mod, A
M2
mod)

√
(AS2

mod)2 + (AM2
mod)2√

(AK1
mod)2 + (AO1

mod)2 +
√

(AS2
mod)2 + (AM2

mod)2
,

(G.1)
with f±(a, b) = |a± b|/max(a, b). These dimensionless factors (±: spring/neap) fulfill the
condition 0 ≤ p− ≤ 1 ≤ p+ ≤ 2. The idea is to weigh the maximum possible constructive
interference, |a + b| of the two dominant partial tides per band (M2 and S2 vs. O1 and
K1) with the respective mean quadratic amplitude per tidal band for an estimate of the
spring tide modification. Correspondingly, the respective neap tide values relate to the
minimum possible amplitude through destructive interference |a− b|.

H Linear Admittance Assumptions for Tidal Dissip-
ation

The mean energy dissipation7 Di by a certain partial tide i equals the respective mean
tidal energy consumption and can be estimated by the global integral

Di = ρsw

∫
dA∇V ilm

tid (x, ωi t) · Vi(x, ωi t) , (H.1)

where Vi = H vi is the tidal transport and V ilm
tid the respective partial tide generat-

ing potential. We only consider partial tides of second-degree as higher-degree tides
(e.g., degree-3) only dissipate energy to a negligible extent (< 1 GW) (Sulzbach et al.,
2022c). Thus, we set

V ilm
tid (x, ωit) = αb

2(ωi)Ai (Y2m(x) cos[ωi t] − Y2 −m(x) sin[ωi t]) , (H.2)
7This Appendix originates from the Appendix of Sulzbach et al. (2023).



introducing the factor αb
2(ωi) = 1+k2(ωi)−h2(ωi), a combination of body tide Love num-

bers, the amplitude factor Ai(ωi), and the real-valued, fully-normalized spherical harmonic
functions Ylm(x) as defined in Heiskanen and Moritz (1967). Please note that αb

2(ωi) is
a frequency-dependent factor due to the NDFW-resonance and experiences considerable
variations for some diurnal tides (e.g., K1). Further, we assume linear admittance of the
tidal velocities vi setting

vi(x, ωit) = Ai α
b
2(ωi)

[
(vcos

0 (x) + vcos
1 (x)ωi) cosωi t + (vsin

0 (x) + vsin
1 (x)ωi) sinωi t

]
.

(H.3)
Employing the latter equation, the mean values in Equation (H.1) can be calculated,
resulting in Equation (6.4), which is then fitted to the data points obtained from M2, K2,
O1, and K1. While this 2-point evaluation per tidal band helps to sharpen the image of
global tidal dissipation, it increases the uncertainty of the obtained result, as admittance
is only approximately linear. The precision of this result can be improved by simulating
more partial tides and considering a piece-wise steady approximation of the admittance
function. Within the current approach, Q1 and N2 inherit the largest uncertainty, as they
possess the most prominent frequency difference from the simulated tides.

I Partial Tide Amplitudes Since the Last Glacial Max-
imum

In this study, the calculation of tidal levels8 is based on four partial tides (M2, K2, O1,
K1) that are explicitly simulated and four partial tides (S2, N2, P1, Q1) that are derived
by linear admittance. Changes in their global amplitude patterns are presented in this
section to facilitate comparisons to prior studies, which often discuss individual partial
tides. The following plots feature changes in tidal amplitudes of 8 partial tides, which
comprise the tidal levels discussed in the main article. In addition, the relative deviation
of the mean amplitude with respect to present-day conditions, δr, is added.
Different patterns are observed in the following figures. While K1 and P1 show a weak
strengthening of the Antarctic Kelvin wave under glacial conditions, as reported by, e.g., Ue-
hara et al. (2006) and Griffiths and Peltier (2009), O1 and Q1 show a more pronounced
global resonance. This resonance is likely to be driven by a single ocean normal mode
(cf. Figure 2.7, 26.19h-mode), known to dominate the diurnal tidal dynamics (Müller,
2007).
Similarly, the glacial resonance is most potent for M2 and N2 and much weaker pronounced
for K2 and S2, showing reduced amplitudes in the Pacific Ocean. Overall, the plots sug-
gest that individual constituents of the same tidal band can show quite different changes
under glacial conditions in terms of spatial patterns and also the mean amplitude. While,
e.g., the mean amplitude M2 and N2 increases up to +44%, S2 and K2 are reduced by
−10%. The same holds for K1 and O1, which increase only by 11% and up to +43%,
respectively.

8This Appendix originates from the Supporting Information of Sulzbach et al. (2023).
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Figure I.1: Amplitude change of the Q1 tide with respect to present-day conditions

Figure I.2: Amplitude change of the O1 tide with respect to present-day conditions
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Figure I.3: Amplitude change of the P1 tide with respect to present-day conditions

Figure I.4: Amplitude change of the K1 tide with respect to present-day conditions
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Figure I.5: Amplitude change of the N2 tide with respect to present-day conditions

Figure I.6: Amplitude change of the M2 tide with respect to present-day conditions
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Figure I.7: Amplitude change of the S2 tide with respect to present-day conditions

Figure I.8: Amplitude change of the K2 tide with respect to present-day conditions
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