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Abstract
Background: To detect changes in biological processes, samples are often studied at several time points. We
examined expression data measured at different developmental stages, or more broadly, historical data. Hence, the
main assumption of our proposed methodology was the independence between the examined samples over time. In
addition, however, the examinations were clustered at each time point by measuring littermates from relatively few
mother mice at each developmental stage. As each examination was lethal, we had an independent data structure
over the entire history, but a dependent data structure at a particular time point. Over the course of these historical
data, we wanted to identify abrupt changes in the parameter of interest - change points.
Results: In this study, we demonstrated the application of generalized hypothesis testing using a linear mixed effects
model as a possible method to detect change points. The coefficients from the linear mixed model were used in
multiple contrast tests and the effect estimates were visualized with their respective simultaneous confidence
intervals. The latter were used to determine the change point(s). In small simulation studies, we modelled different
courses with abrupt changes and compared the influence of different contrast matrices. We found two contrasts,
both capable of answering different research questions in change point detection: The Sequen contrast to detect
individual change points and the McDermott contrast to find change points due to overall progression. We provide
the R code for direct use with provided examples. The applicability of those tests for real experimental data was
shown with in-vivo data from a preclinical study.
Conclusion: Simultaneous confidence intervals estimated by multiple contrast tests using the model fit from a linear
mixed model were capable to determine change points in clustered expression data. The confidence intervals directly
delivered interpretable effect estimates representing the strength of the potential change point. Hence, scientists can
define biologically relevant threshold of effect strength depending on their research question. We found two rarely
used contrasts best fitted for detection of a possible change point: the Sequen and McDermott contrasts.

Keywords: Simultaneous confidence intervals, Change point detection, Multiple contrast tests, Linear mixed models,
Expression analysis

Background
Independent observations over time are counterintuitive.
Examining samples at different time points, one would
assume a dependent data structure between those. An
ongoing aim of scientists is a better understanding of the
underlying fundamental mechanisms that control organ-
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isms’ development. Scientists have investigated many
genes, transcripts, proteins, etc. and their corresponding
roles and have introduced models of connecting these
networks. In our work, the observations between differ-
ent time points were independent as the examination was
lethal. The samples were measured at defined stages dur-
ing gestation and later life (developmental stages) and
were hence considered, in a broader sense, historical data.
For reasons of reproducibility, more than one sample was
measured at each time point and the measured parameter
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was gene expression. At each developmental stage, litter-
mates and non-littermates were examined. Hence, we had
a data setting with independent developmental stages but
a dependent and independent data structure at each stage.
The described setting is common for development studies
in small mammals. Therefore, we want to present a novel
methodology to find abrupt changes - so-called change
points - in clustered historical gene expression data.
Two methodological approaches could be identified:

A change point detection or a dose-response analysis.
However, both ignore important aspects of our research
question. A change point analysis assumes that the same
subject is measured repeatedly over time and the data
would therefore be dependent over time. Due to lethal
examination of themice, repeatedmeasurement over time
is not given in our data structure though. Therefore,
change point detection algorithms assuming dependent
points in time cannot be applied. Classical change point
detection considered independent observations [1, 2] but
is not easily accessible for the non-expert user.
The second methodological approach would be to ana-

lyze the developmental expression data with a dose-
response analysis. In this setting, different increasing
doses would be administered and the goal of the analysis
would be to find the dose at which the (gene expres-
sion) response changes relevantly. As the measurement
at each dose can be lethal, the observations are indepen-
dent. In the dose-response setting, multiple contrast tests
are widely used [3–5]. Nevertheless, there are differences
to our biological setting, where the doses would corre-
spond to developmental stages. Dose-response data is a
type of progression. The developmental stages, however,
do not lead to a monotonic increase in gene expression
but can be up- and down-regulated over the time course.
In a dose-response setting, a monotonic increase would
be expected or an increase with an sudden decrease. In
addition, the dose has defined units and therefore the dis-
tance between each dose should correspond to the change
in dose. The developmental stage intervals in our exam-
ple are not equidistant. It is, nevertheless, possible that
the expression level of certain genes changes consider-
ably during the lifetime of an individual. Changes could be
due to maturation of certain organs or to birth [6–8]. The
change could be gradual over time or very abrupt. In our
work, such a developmental time point of an abrupt major
change in gene expression is called a change point. Multi-
ple contrast testing, e.g. using the Changepoint contrast,
has been checked for statistical properties [9–11], but not
been discussed for the purpose of detecting change points
outside of the dose-response setting. Hothorn (2006) [12]
shows the properties and a visualization of the Williams
and Changepoint contrast in the setting of a randomized
dose-response trials with a confidence intervaloriented
approaches without clustering effects. Hothorn (2006)

[12] also presents user specific contrasts, but which might
be too complicated to build for non-expert users.
Moreover, not only the position of the change point (the

corresponding developmental stage) was of interest but,
for reasons of the underlying biological research ques-
tion, also the corresponding effect size. In addition, we
did not want to simply report the mean difference or
the median difference, but also adjust the effect of the
change point for possible confounders, which is not pos-
sible with classical machine learning methods for change
point detection. In our view, the significance is not as
important as the relevance [13]. Therefore, we focussed
on the point estimator and the overall course of the con-
fidence interval. This shift to informative effect estimates
was required tomake sure that findings can be reproduced
on the way from basic research to clinical trials [14, 15].
Our approach using a log-normal transformation of mea-
sured expression values allowed estimating the effect of
the change point. Depending on the measured parameter,
linear mixed models could also be used to model the full
range of the exponential family [11].
Therefore, we propose a novel application workflow to

analyze historical data and return estimands for detected
change points. In our case, we defined historical data as
data consisting of a dependent structure between time
points and a mixture of dependence and independence at
each time point. We applied generalized hypothesis test-
ing by using a linear mixed effect model as a possible
change point detection method. We selected three poten-
tial contrast matrices for generalized hypothesis testing.
When using a linear regression model, one can decide
between effect parameterization and mean parameter-
ization. In case of effect parameterization, one fits a
model where the intercept is determined during the fit-
ting process and all β-coefficients are dependent on and
compared to the intercept. In case of mean parameter-
ization, the intercept is set to zero and the calculated
β-coefficients represent the mean of the corresponding
variable. As we wanted to calculate the adjusted mean
value for possible confounder effects for every time point,
we decided to use mean parameterization. A linear mixed
effect model with mean parameterization also allowed
inclusion of the mix of dependent and independent data,
while leaving the focus on the predictor of interest (the
developmental time point). Generalized hypothesis test-
ing offered the possibility to include multiple contrast
scenarios. To our knowledge, this combination of meth-
ods has not been used to detect change points with an
interpretable effect estimate.We tested the applicability of
three established types of contrast matrices for our spe-
cific biological data setting. With two of those, we were
able to obtain confounder adjusted effect estimates to
detect change points. The effect at each potential change
point could easily be interpreted by the non-expert user.
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Finally, we successfully applied the proposed method to
in-vivo data presented in Kirschner et al. (2022) [16]

Methods
In the following, we present a combination of model fit-
ting and multiple contrast testing for the detection of
change points in data which consisted of independent
and dependent data points. However, dependence was not
between data points at different but at the same time
points and the observations were nested in each time
point. As example, we used a developmental data set.
The respective pups were nested through their mothers.
At each time point, there were three new mother ani-
mals. Measurement of the expression levels is lethal for
both, mother mice and their offspring. The aim was to
find change points in historical gene expression data. In
more detail, we wanted to find time points where the
expression level of a gene majorly changed compared to
the expression levels measured before, incorporating the
underlying data characteristics. We tested our method
on four biological sets of historical gene expression data
and eleven simulated data sets. The simulation settings
were designed by basic research scientists to ensure appli-
cability. A flowchart of the main steps of the applied
methods can be found in Supplementary Section 6 Fig. 17,
Additional file 1.

Biological expression data
Wepresent a biological data set as amotivational example.
In case of gene expression across developmental stages,
e.g. in mice, the collection time points must be as few as
possible but as many as necessary [17]. To assess relevant
gene expression changes throughout the lifetime of rela-
tively short-lived organisms like mice, one has to acquire
data at specific, predefined time points during all devel-
opmental stages like embryonic, fetal, postnatal and adult.
Predefined mouse development stages may be Theiler
Stages (TS) and the day of birth (postnatal day: P) [18].
Data series in those cases consists of around 12-15 inde-
pendent developmental stages. Additionally, at certain
developmental stages and with certain data acquisition
techniques, the examination is lethal and an individual
can only be tested once. However, when lethal data acqui-
sition is performed, ethical reasons demand examination
of all pups in a litter [19]. To reduce the bias from one
mother mouse and increase the sample size, pups from at
least three mother mice are examined at each time point.
The nesting leads to so-called mother effects and there-
fore dependency between certain data points. As each
litter introduces its own variance, this information has to
be taken into account when analyzing the data.
The expression data set is an extraction of a so-

far unpublished study. We used the biological data as
received (full course, not cleaned) to illustrate the pro-

posed method. It is on the researcher to decide which
developmental stages should be included depending on
the research question. In detail, our example data consists
of two genes in two mouse organs. We analyzed mouse
livers and kidneys from thirteen developmental stages
(embryonic to adult) for glucose transporter 1 (Glut1) and
carbonic anhydrase 9 (Car9) expression by probe-based
qPCR against a standard curve. The expression levels are
displayed asGlut1 orCar9molecules per 106βActin(Actb)
molecules.We used log-transformed expression values for
our analysis to meet normality assumptions of the linear
mixed model. We provide more information on the bio-
logical data in the Supplementary Section 2.1, Additional
file 1. The four data sets were chosen because both genes
showed a stable basal expression and a change of expres-
sion in only one of the organs. Expression changes from
high-to-low (liver Glut1) and low-to-high (kidney Car9)
were used to visualize our approach.

Artificial expression data
The researchers in the study defined four hypothetical
historical gene expression data courses, representing bio-
logically realistic and interesting scenarios. We simulated
data with respect to the described data structure shown
in Fig. 1. In detail, theoretical curves of the mean of the
measured expression values for the respective time points
in a time series were acquired. By the help of the theoret-
ical courses, we were able to determine the properties of
the different contrast tests. In total, four overall relevant
courses of the means of the gene expression in the histori-
cal data were defined and were as follows: a) no change, b)
steady change, c) stepwise change and d) partly dropped.
In addition, we also simulated both directions (increase
and decrease), if possible, simulating a linear increase as
well as a linear decrease and so on.
We would not expect to detect change points in the

historical data in scenarios a) and b). Therefore, both
scenarios are our control or null models. However, for sce-
narios c) and d), we would expect detection of at least one
change point. In addition, the confidence intervals should
also provide more details on our findings. For each of the
defined historical data scenarios, gene expression data for
12 distinct time points were simulated. As our biological
example data had 13 developmental stages, we removed
the adult stage to generate congruent data sets. The num-
ber has also good properties for the generation of the time
points. For simulation of the expression data, we used the
statistical programming language R 3.6 and the R package
simstudy [20]. For each time point, we first generated
three data points sampled from a normal distribution with
a mean of zero and a variance of 5, the mother effects.
These simulated mother values represented the individ-
ual effects each of the selected mother mice introduced
on their respective litters. We did expect some mother



Sieg et al. BMC Genomics          (2022) 23:491 Page 4 of 16

Fig. 1 Possible courses of included historical data. Each subplot a) to d) represents one group of scenarios of courses within historical data. Points in
time are on the x-axis, parameter values on the y-axis. Scenario a) shows a course with no change. Steady changes b) and stepwise changes c) each
include increase and decrease of parameter values within the historical data. Scenario d) represents a partly dropped course which readjusts to
previous parameter values after a while. The values may drop down to zero. These hypothetical time courses were provided. For scenarios a) and b),
one would not expect any change points. In contrast, one would predict finding change points for scenarios c) and d). Example simulations for c)
and d) can be found in Figs. 3 and 4

effect, but no drastic differences at the same time point.
We did choose a high mother variance, to achieve a more
drastic setting. A very low variance would have generated
very distinct expression values which we considered a very
unrealistic setting. The amount of pups per litter was sam-
pled from a Zero-truncated Poisson distribution with a
lambda of 10. Therefore, each mother has an average of
roughly 10 pups. The expression values of the mouse pups
from the different litters were then generated by sampling
from a normal distribution. The mean was based on the
respective intercept and sampled mother effect. The vari-
ance was set to 2 since we expected only small differences
between the expression values of the pups. We conducted

a small simulation study for the variance of the mother
effects with the values of 2, 6, and 10 and did not find any
effect on the course of the confidence intervals showing
that the linear mixed model was able to take into account
the different mother variances. The simulation results
can be found in the Supplementary Section 5, Additional
file 1. In consequence, we had simulated expression val-
ues for pups from three different mothers for each of
the 12 time points per defined course. For the more
programming-oriented reader, we present the R code
on a GitHub repository (https://github.com/msieg08/
clustered_data_changepoint_detection) and code chunks
in the Supplementary Section 4, Additional file 1.

https://github.com/msieg08/clustered_data_changepoint_detection
https://github.com/msieg08/clustered_data_changepoint_detection
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We did not run different simulations with different sam-
ple sizes because the properties of the estimates from a
linear mixed model in multiple contrast test is already
well known. A general tutorial on linear mixed models
using contrasts in R and the theoretical background can
be found in Schad et al. (2020) [21], Bretz et al. (2016)
[22] and Hothorn et al. (2008) [23]. Linear mixed models
used in multiple contrast test will deliver unbiased esti-
mates and will produce simultaneous confidence intervals
on a 95% significance level. The properties are checked
for heterogeneity [9], complex data models [10], and even
under overdispersion and with small sample sizes [11].
Therefore, we consider the use of linear mixed models a
valid and unbiased way to determine the estimates for the
multiple contrast testing.

Change point detection with linear mixedmodels and
multiple contrast tests
To determine change points in our specific time series
data, we first fitted a simple linear mixed effects model
with mean parametrization. The expression data for one
gene was set as the response. The different measurement
time points were set as the fixed effects. The random
effects part of the model were the mothers of the mouse
pups. Therefore, the litter effect was accounted for and
possible overdispersion was reduced. Equation 1 shows
our simple linear mixed model with mean parameteriza-
tion. For simplicity, only 5 (instead of 12) time points were
illustrated.
150×1
︷︸︸︷
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where

• y is the 150 × 1 vector of normally distributed
expression values,

• X is the 150 × 5 design matrix for the fixed effects
considering five time points (t1, ..., t5),

• β is the 5 × 1 vector of the fixed effects coefficients
due to mean parametrization the mean of each of the
five time points (t1, ..., t5),

• Z is the 150× 15 design matrix for the random effects
of the fifteen mothers with a constant intercept,

• u is the 15 × 1 vector of the random effects
coefficients i.e. the effect of the mother on the
expression with u ∼ N(0, 5).

As a result, the β-coefficients represented the estimated
mean values of the respective time points without the ran-
dom effects variance introduced by the mothers. Using
this approach, even more complex models with more
confounders would be possible. In this study, we have
concentrated on a simple model to illustrate the gen-
eral framework. The effects of the time points could be
adjusted as in any other multiple linear regression anal-
ysis. For further clarification, we provide a very short R
code chunk as an example with the Changepoint con-
trast. The R terms can be matched to the formula 1
as follows. The expression indicates the y, the vari-
able timepoint the Xβ as fixed effect, and the term
(1 | mother) the Zu as random effects. The 1 in
(1 | mother) indicates a constant intercept for all
mothers. Mean parameterization was achieved by remov-
ing the intercept and placing 0 at the beginning of the
lmer() formula. More complex code chunks are avail-
able in the Supplementary Section 4, Additional file 1.
In addition, we provide further R code and functions
on a connected GitHub repository (https://github.com/
msieg08/clustered_data_changepoint_detection).
Therefore, we used the lme4 package [24] in R to fit

the linear mixed models using the function lmer(). The
function lmer() uses restricted maximum likelihood
estimation by default to fit models that include varying
random effects. The functionality determines the vari-
ances introduced by the random effects, here the mother
effects.With respect to the variances, the rest of themodel
was fitted and the mean of each time point estimated.
In the next step, change points were determined apply-
ing generalized linear hypotheses testing which utilized
contrast matrices and directly performed multiple testing
adjustment by applying a multivariate t-distribution. We
tested different contrast matrices on the data to compare
biologically relevant scenarios. In general, other endpoint
distributions would be possible by modifying the pro-
posed linear regression model. The function glmer()
allows to fit the full range of the exponential distri-
bution family. If required and with a sufficient sample
size, one could add additional fixed or random effect
variables like identifier of the PCR run or gender of
the pups.
Tables 1, 2, and 3 show different contrast matrices.

In the context of our work, the columns in a contrast
matrix represent each existing time point and the rows
represent possible scenarios. The scenarios can be consid-
ered as weighted comparisons between the time points.

https://github.com/msieg08/clustered_data_changepoint_detection
https://github.com/msieg08/clustered_data_changepoint_detection
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Table 1 Changepoint contrast for five points in time and the
resulting four contrasts. In C1 the first time point t1 is compared
to the average of the other time points. In C2 the average of t1
and t2 is compared to the average of t3, t4, and t5

t1 t2 t3 t4 t5

C 1 -1.00 0.25 0.25 0.25 0.25

C 2 -0.50 -0.50 0.33 0.33 0.33

C 3 -0.33 -0.33 -0.33 0.50 0.50

C 4 -0.25 -0.25 -0.25 -0.25 1.00

Each cell contains an assigned weight for the correspond-
ing time point at the respective contrast. The sum of
the weights equals zero for each row. There are different
methods to calculate the respective weights depending on
the type of a contrast matrix. In addition, each contrast
could be adjusted for the number of samples per group i.e.
unbalanced sample size. This latter adjustment is incorpo-
rated in the R package multcomp. In the context of this
study, the following three types of contrast matrices were
tested to detect change points: Changepoint, Sequen, and
McDermott [25] from the R multcomp package [23].
Constructions of the contrast matrices to represent each
of these types can be found in the Supplementary Section
4, Additional file 1.
We constructed the contrast matrices in our study as

follows: Each row of a contrast matrix consisted of one
possible single change point scenario with respect to the
selected construction method. Hence, the contrast matrix
represents all possible single change point scenarios for
the respective time series and selected method. Table 1
shows an example of the Changepoint contrast. If the
Changepoint contrast is selected, the data is first divided
into two groups for each row of a contrast matrix. One
group contains the time points before the potential change
point, the other group the time points at and after the
potential change point. Then, the relative weight for each
time point with respect to its group is calculated. Basi-
cally, the sample sizes from all time points of a group are
summed and the sample size of each time point is divided
by the respective sum. The sum of the weights from each
group therefore adds up to one and the sum of the weights

Table 2 Sequen contrast for five points in time and the resulting
four contrasts. In C1 the first time point t1 is compared to the time
point t2. In C2 the timepoint t2 is compared to t3 and so on. A zero
indicates, that the time point is ignored for this specific contrast

t1 t2 t3 t4 t5

1-2 -1.00 1.00 0.00 0.00 0.00

2-3 0.00 -1.00 1.00 0.00 0.00

3-4 0.00 0.00 -1.00 1.00 0.00

4-5 0.00 0.00 0.00 -1.00 1.00

Table 3 McDermott contrast for five points in time and the
resulting four contrasts. In C1 the first time point t1 is compared
to the second time point t2. In C2 the average of t1 and t2 is
compared to t3. In comparison to the Sequen contrast the
average of on increasing number of time points is compared to a
single time point. Therefore, in the last contrast C5 the average of
t1 to t4 is compared to t5

t1 t2 t3 t4 t5

C 1 -1.00 1.00 0.00 0.00 0.00

C 2 -0.50 -0.50 1.00 0.00 0.00

C 3 -0.33 -0.33 -0.33 1.00 0.00

C 4 -0.25 -0.25 -0.25 -0.25 1.00

of both groups equals zero. The weights belonging to the
time points before and at the possible change point are
negated. If selecting the Sequen contrast, only the time
point directly before and at the possible change point are
considered. All other time points are set to 0. The time
point directly before the possible change point is set to -1
and the possible change point is set to 1. Table 2 shows a
numerical example.
Lastly, theMcDermott contrast is amixture between the

Changepoint and the Sequen contrasts (numeric exam-
ple Table 3). The weights of the time points of the time
series before the possible change point are calculated the
same way as for the Changepoint contrast. The sample
sizes of each time point in this part of the time course
are divided by summed sample sizes of this group. The
possible change point itself is set to 1 and the rest of the
time series is set to 0. The McDermott contrast matrix
was originally invented for ordered means. A significant
contrast in our setting would therefore suggest an overall
significant change in the historical data, especially since
our means are not ordered. In summary, Changepoint
considers all data points in the time series, Sequen consid-
ers data points at and just preceding the potential change
point, and McDermott only the data points at the time
points before and at each potential change point.
How should we now match with our simulated settings

(Fig. 1) with the contrasts? The Changepoint contrast
compares the first time point with the mean of the fol-
lowing time points as well as the last time point with the
average of the previous time points. It can be assumed that
change points at the beginning and at the end would be
more easily recognizable. By averaging the contrasts (C2
and C3 in Table 1) the discriminatory power between two
neighboring time points decreases. The Changepoint con-
trast should therefore make it harder to separate the bio-
logical setting in Fig. 1c and d. The Sequen contrast always
compares two adjacent groups or time points. Therefore,
the Sequen may provide the exact point of change, but not
the pattern of change. One could consider the Sequen as a
repeated t-test - for two points at a time. The McDermott
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contrast, on the other hand, compares the current time
point with the mean of all the previous time points. Thus,
the McDermott contrast is able to show a progression.
Both contrasts, Sequen and the McDermott, were able to
show how the actual time point changed in contrast to the
previous one and can correctly deptict the settings from
Fig. 1c and d in the corresponding simulations in Figs. 3
and 4.
Taken together, we fitted linear mixed effect models

for different biologically relevant time courses and for
each of the four historical in-vivo gene expression data.
To each fitted model, we applied three varying general-
ized hypotheses testing contrasts. The contrasts returned
effect estimates for each scenario and respective 95% con-
fidence intervals. The contrasts were evaluated on the
basis of whether the respective contrast could be used to
determine change points and whether it would potentially
return the positions and directions of change points.

Maximal number of usable steps
The presented approach has a theoretical limitation in
the number of detectable significant differences. If many
comparisons are included, each comparison will be cor-
rected for the type I error. Therefore, at a given number of
comparisons depending on the maximal observed effect
size δmax and the corresponding standard deviation s, no
significant change point will be detected as significant.
However, the point estimator of the confidence interval
will not be influenced. In addition, the approximation also
depends on the chosen contrast matrix. In the following,
we will examine an approximation of how many com-
parisons can be analyzed. The scientist must estimate a
δmax and the corresponding s from the literature or the
observed data. Then, we can calculate the z-score:

z = δmax
s

(2)

The absolute value of the Z-score can be used by the
probability density function of the normal distribution to
calculate a p-value. In R, this can be achieved by the func-
tion pnorm(), which returns the integral from −∞ to
z of the probability density function of the normal dis-
tribution. Multiplying the result by two to account for a
two-sided test resulting in the pmax. and simplifying by
assuming a Bonferroni adjustment, dividing 0.05 by pmax
will determine the maximal number of theoretically pos-
sible detectable significant change points. The emphasis
is on theoretical, because if we are not able to find any
significant p-value, we will also not find any significant
confidence intervals.This is only an approximation, please
be referred to the discussion section for further considera-
tions. A small numeric example is given in Fig. 2a showing
a δmax of 3 between the two plateaus. Assuming a standard
deviation of 1, we can calculate a z of 3

1 equal 3. Using the

function pnorm(-3) we get a p-value of 0.00135. Hence,
we would be able to run approximately 37 comparisons
in our analysis with at least one significant confidence
interval but we recommend not to concentrate on the sig-
nificance but to rather consider the course of the point
estimators. Since the confidence intervals directly repre-
sent the effect estimator, the user must decide whether
the change point is relevant for the biological question.
The confidence intervals provide a measure for the uncer-
tainty, but the number of comparisons is also integrated
by the width of the confidence intervals.

Results
The following section is divided into two parts. First, we
present four motivational biological data examples, three
of which can be found in the Supplementary Section 2,
Additional file 1. The mouse development data set under-
lines the biological necessity of our approach. Second, we
simulate different course settings inspired by the biologi-
cal data. We show the resulting confidence interval plots
for each simulation and contrast and separately report the
effect estimates.
In all presented plots, subplot a) shows the respective

data with time points on the x-axis and the measured
expression values on the y-axis which we assume to have
at least a log-normal distribution. Each dot in the plot
represents one measured value. The colors represent the
data dependencies, meaning that dots with the same color
belong to the same cluster, e.g. pups from the same
mother. Subplots b) to d) show the estimated mean dif-
ference including the 95%-confidence interval (x-axis) for
each respective change point scenario (y-axis).

Biological gene expression data
Our motivational biological example data include the
developmental Glut1 gene expression in the liver (Fig. 2,
numerical effect estimates in Table 4) and kidney (Sup-
plementary Section 2, Additional file 1), respectively. The
estimation of the model parameters of the Car9 expres-
sion during kidney development (Supplementary Section
2 Fig. 1, Additional file 1) caused converting problems
as we observed singular fits. This was not the case for
Car9 expression data from developing liver (Supplemen-
tary Section 2 Fig. 2, Additional file 1) orGlut1 expression
data from kidney (Supplementary Section 2 Fig. 3, Addi-
tional file 1). All plots have the same structure and consist
of the same subplots. The subplot a) shows the biological
data separated into three developmental stages. Each dot
represents a single pup nested into a single mother which
is indicated by the same (litter) color. Please note that the
expression data is log-transformed. The other subplots
show the results of the different contrast tests: b) Change-
point, c) Sequen, and d) McDermott. The scattered line
indicates the biological relevance limits. These limits are
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Fig. 2 Biological example data for Glut1 expression in the developing liver. Subplot a) shows the biological example data set (log-transformed). Each
point in time on the x-axis represents an independent developmental stage. Each data point represents a pup and each color a mother animal. The
pups are nested into the mothers. We added three broader development stages (embryonal, fetal, postnatal) for easier reference. The subplots
show the confidence intervals of the Changepoint contrast (b), Sequen contrast (c), and McDermott contrast (d). The red scattered line indicates the
chosen limits of biological relevance

user-specific and depend on the research question. We
chose ± 1 for our example.
Figure 2 shows an example of a visually obvious change

point with severe expression changes after birth (from P0).
This change point is indicated by a gray line in Table 4.
The Changepoint contrast visualized the overall course of
the time points more than the rapid decrease from TS26

to P3 and it did not deliver a clearly interpretable posi-
tion of the change. The averaging over all time points
concealed the linear increase between the TS17 and TS21
developmental stages because the decrease at the end of
the time points is too severe. In contrast, the Sequen con-
trast detects the change point at the 9-8 position (P0-P1)
with an effect of -1.82 [-3.03; -0.61]. Due to the mixed
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Table 4 Contrasts and estimates of Fig. 2. The table shows the numeric values for the Glut1 example data from liver. The C column
indicates the contrast, the � the log mean change of the corresponding contrast C. The gray row indicates a possible change point by
visual inspection of Fig. 2. A significant confidence interval does not include zero

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† �‡ Low Upp C† �‡ Low Upp C† �‡ Low Upp

C 1 0.22 -0.79 1.23 2 - 1 0.76 -0.62 2.13 C 1 0.76 -0.63 2.14

C 2 -0.17 -0.87 0.53 3 - 2 0.79 -0.44 2.03 C 2 1.19 0.08 2.29

C 3 -0.81 -1.39 -0.23 4 - 3 0.39 -0.82 1.61 C 3 1.06 0.04 2.08

C 4 -1.27 -1.79 -0.75 5 - 4 0.47 -0.73 1.68 C 4 1.24 0.27 2.20

C 5 -1.95 -2.45 -1.46 6 - 5 -0.15 -1.28 0.98 C 5 0.74 -0.11 1.60

C 6 -2.51 -2.99 -2.02 7 - 6 -0.56 -1.70 0.58 C 6 0.03 -0.91 0.96

C 7 -2.90 -3.40 -2.41 8 - 7 -0.71 -1.92 0.50 C 7 -0.69 -1.61 0.23

C 8 -3.19 -3.71 -2.67 9 - 8 -1.82 -3.03 -0.61 C 8 -2.42 -3.34 -1.50

C 9 -3.08 -3.63 -2.52 10 - 9 -1.17 -2.39 0.04 C 9 -3.34 -4.26 -2.42

C 10 -2.73 -3.34 -2.11 11 - 10 0.18 -1.04 1.41 C 10 -2.86 -3.77 -1.95

C 11 -2.46 -3.18 -1.74 12 - 11 0.22 -1.00 1.43 C 11 -2.41 -3.31 -1.51

C 12 -2.26 -3.20 -1.33 13 - 12 -0.05 -1.26 1.17 C 12 -2.24 -3.15 -1.33

C 13 -2.13 -3.46 -0.80 14 - 13 -0.04 -1.69 1.61 C 13 -2.13 -3.57 -0.70
†
Given contrast. See Table 1 for Changepoint, Table 2 for Sequen, and Table 3 for McDermott.

‡
Point estimator of the confidence interval i.e. mean difference given the contrast

modeling, we were able to account for the high variance
of developmental stage P1. However, no confidence inter-
val fell below the lower relevance limit. The McDermott
contrast showed confidence intervals below the relevance
limit with an effect of -2.42 [-3.34; -1.50] at birth. In the
following, the confidence intervals had a point estimate
around -3.2. The slight increase in the beginning was also
pictured in the course of the confidence intervals with an
effect around 1.
Supplementary Section 2 Fig. 1, Additional file 1, shows

the biological data of the Car9 gene from kidney (numeri-
cal values in Supplementary Section 2 Table 1, Additional
file 1). The estimation of the model parameters caused
converting problems. We achieved singular fits, there-
fore got estimated variance-covariance matrices with less
than full rank. The warning indicated that one or more
variances were very close to zero. Therefore, a careful con-
sideration of the results is required. We are sure to avoid
the fitting of overly complex models [26] and assured con-
sistency of the model with the experimental design [27].
Therefore, we believe that the mean estimates and the
variance /covariance matrices were valid, even if mixed
models can show converting problems. The biological
data showed a plateau from TS20 to P7 with a high
expression increase at P14. The Changepoint contrast
again delivered a biased visualization. The change point
might be recognized, but the overall trend was flawed.
The Sequen contrast detected the change point as sig-
nificant and above the relevance limit. The lower limit

of the confidence interval exceeded the upper relevance
limit with 2.15 [1.64; 2.66]. Finally, the McDermott con-
trast visualized the plateau in conjunction with the rise of
expression with a point estimate of 2.01 [1.64; 2.37]. The
last three confidence intervals were all above the relevance
limit with an effect of 2.01, 2.93, and 2.63. There was no
obvious expression change in the two biological examples,
Car9 expression in the developing liver and Glut expres-
sion in the developing kidney (Supplementary Section 2,
Additional file 1). All three contrasts stayed within the
relevance limits. The examples illustrated that both, bio-
logical visualisation and confidence intervals, are required
to find biologically relevant change points.

Simulation data
We simulated eleven simulation settings according to
Fig. 1 and motivated by the biological examples. We fit-
ted one linear mixed effect model on each of the sim-
ulated times series. These fitted models were then used
for generalized linear hypothesis testing with three dif-
ferent contrast matrices. The results of interest were the
mean difference and associated 95% confidence inter-
vals. Depending on the contrast matrix used, the output
suggested the presence or absence of change points (all
simulation results in Supplementary Section 3, Additional
file 1). We present here two out of the eleven simulated
settings. Figures 3 and 4 show the course for the settings
in Fig. 1c (“stepwise change”) and d (“partly dropped”).
Tables 5 and 6 present respective the numeric values. We
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Fig. 3 Confidence intervals of estimates from linear mixed model coupled with contrast matrix for historical data with two change points. Figure a)
shows the points in time (x-axis) of the sampled historical data in association with gene expression (y-axis) with two expected change points. Each
color is related to one mother mouse. Subfigures b), c) and d) show the estimates (x-axis) including confidence intervals for the observed contrasts
(y-axis) with methods Changepoint, Sequen and McDermott, respectively. The blue line indicates the simulated effect

indicated the simulated change point by a gray row. The
number of simulations was increased since we modelled
expression decrease separately from expression increase.
Figure 3 showed a stepwise increase of expression (cor-

responding numeric values in Table 5) and we observed
two distinct change points. For illustration purposes, we
simulated the variance in such a way that a slight over-
lap of the observations occurred. The simulated effect was

10. Therefore, each rise/expression change increased the
average expression by 10 (subplot a). In contrast to our
assumption, the Changepoint contrast did not detect a
change point (Fig. 3b, confidence intervals in Table 5).
Hence, the name of the contrast was misleading - as
was the position of all significant confidence intervals.
The Sequen contrast delivered the change points cor-
rectly at contrasts 5-4 and 9-8. We were able to detect
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Fig. 4 Confidence intervals of estimates from linear mixed model coupled with contrast matrix for historical data with a “partly dropped” change
points. Figure a) shows the increasing points in time (x-axis) of the sampled historical data in association with gene expression (y-axis) with two
expected change points. Each color is related to one mother mouse. Subfigures b), c) and d) show the estimates (x-axis) including confidence
intervals for the observed contrasts (y-axis) with methods Changepoint, Sequen and McDermott, respectively. The blue line indicates the simulated
effect

the change by the significant confidence intervals or visu-
ally by exceeding of the intervals. The direction of the
change is also represented correctly. In addition, there
is a slightly lower effect of 7.77 [3.36; 12.17] at the sec-
ond compared to the first change point with 10.63 [6.22;
15.05] (subplot a). Hence, the Sequen contrast delivers the
correct direction in conjunction with the correct effect
estimates. Finally, the McDermott contrast mimicked the

steps of the simulated data. Each rise at C4 and C8 could
be observed by a stronger shift of the confidence inter-
vals to the right with an effect of 9.53 [6.02; 13.05] and
13.05 [9.70; 16.40], respectively. Hence, position and the
direction of the change point were both correct. The con-
fidence interval itself was not on the same level because
the single time points had slightly different means. These
findings were also true for one and three positive change
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Table 5 Contrasts and estimates to Fig. 3. The table shows the numeric values form the simulation for three change points. The C
column indicates the contrast, the � the log mean change of the corresponding contrast C. The gray row indicates the predefined
change point(s). A significant confidence interval does not include zero

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† �‡ Low Upp C† �‡ Low Upp C† �‡ Low Upp

C 1 9.34 6.25 12.42 2-1 -3.82 -8.19 0.55 C 1 -3.82 -8.23 0.58

C 2 12.40 10.10 14.70 3-2 2.68 -1.71 7.08 C 2 0.65 -3.19 4.49

C 3 13.25 11.26 15.25 4-3 -1.91 -6.32 2.50 C 3 -1.44 -5.07 2.19

C 4 15.20 13.37 17.04 5-4 10.63 6.22 15.05 C 4 9.53 6.02 13.05

C 5 14.01 12.25 15.77 6-5 2.74 -1.67 7.15 C 5 10.33 6.89 13.77

C 6 12.97 11.24 14.70 7-6 -1.96 -6.34 2.42 C 6 6.87 3.51 10.24

C 7 13.10 11.34 14.86 8-7 0.34 -4.03 4.71 C 7 6.05 2.71 9.39

C 8 13.90 12.05 15.74 9-8 7.77 3.36 12.17 C 8 13.05 9.70 16.40

C 9 12.92 10.93 14.91 10-9 -0.03 -4.42 4.35 C 9 11.87 8.61 15.14

C 10 11.87 9.56 14.18 11-10 2.61 -1.73 6.95 C 10 12.74 9.49 16.00

C 11 9.23 6.13 12.34 12-11 -2.05 -6.42 2.32 C 11 9.23 5.96 12.51
†
Given contrast. ‡ Point estimator of the confidence interval i.e. mean difference given the contrast

points (Supplementary Section 3 Fig. 6 and 8, Additional
file 1) as well as one, two and three negative change points
(Supplementary Section 3 Fig. 10, 11 and 12, Additional
file 1). In summary, the Sequen and McDermott contrasts
were able to detect the position and direction (Sequen)
or the overall course (McDermott) of predefined change
points.
Figure 4 presents a “partly dropped” change point

(numeric values in Table 6). The expression was reduced
at two time points before it is restored to the original
values. In contrast to Fig. 3, the Changepoint contrast in

Fig. 4 did deliver a change in the confidence interval plot
but the indicated change of 2.16 [0.40; 3.92] at C7 did not
mimic the simulated data. Again, the Changepoint con-
trast did not help to indicate the correct position or effect
directions as it indicated a positive change instead of a
negative one (decreased expression). The Sequen contrast
indicated both change points at the correct position. The
6-5 and 8-7 contrasts were significant with an effect of
-7.26 [-11.67; -2.85] and 10.34 [5.98; 14.71]. The direction
was also correct. The first significant confidence inter-
val had a negative effect, indicating the drop and the

Table 6 Contrasts and estimates to Fig. 4. The table shows the numeric values from the simulation for a “partly dropped” change
point. The C column indicates the contrast, the � the log mean change of the corresponding contrast C. The gray row indicates the
predefined change point(s). A significant confidence interval does not include zero

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† �‡ Low Upp C† �‡ Low Upp C† �‡ Low Upp

C 1 -4.00 -7.08 -0.92 2-1 -3.82 -8.19 0.55 C 1 -3.82 -8.23 0.58

C 2 -2.23 -4.52 0.07 3-2 2.68 -1.71 7.07 C 2 0.65 -3.19 4.49

C 3 -2.66 -4.65 -0.67 4-3 -1.91 -6.32 2.50 C 3 -1.44 -5.07 2.19

C 4 -2.45 -4.28 -0.62 5-4 0.63 -3.78 5.05 C 4 -0.47 -3.98 3.05

C 5 -2.62 -4.37 -0.86 6-5 -7.26 -11.67 -2.85 C 5 -7.63 -11.07 -4.19

C 6 -0.89 -2.62 0.84 7-6 -1.96 -6.34 2.42 C 6 -8.49 -11.85 -5.13

C 7 2.16 0.40 3.92 8-7 10.34 5.98 14.71 C 7 3.30 -0.04 6.64

C 8 1.49 -0.35 3.34 9-8 -2.23 -6.64 2.17 C 8 0.65 -2.70 4.00

C 9 1.61 -0.38 3.60 10-9 -0.03 -4.41 4.35 C 9 0.56 -2.71 3.82

C 10 2.21 -0.10 4.52 11-10 2.61 -1.73 6.95 C 10 3.08 -0.17 6.34

C 11 0.68 -2.42 3.78 12-11 -2.05 -6.42 2.32 C 11 0.68 -2.60 3.95
†
Given contrast. ‡ Point estimator of the confidence interval i.e. mean difference given the contrast
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second significant confidence interval had a positive effect
indicating the rise in expression. In comparison to the
Sequen contrast, the McDermott contrast must be inter-
preted differently. Again, the two significant confidence
intervals were indicating the area of change with two sig-
nificant confidence intervals at C5 and C6 with an effect
of -7.63 [-11.07; -4.19] and -8.49 [-11.85; -5.13]. How-
ever, the direction of the change must be calculated by
the researcher. The McDermott contrast rather visual-
ized the course than giving the concrete direction of the
decrease/increase. Depending on the research question,
Sequen or McDermott might be preferred. Supplemen-
tary Section 3 Fig. 13, Additional file 1, shows the extreme
event of four time points with no expression and therefore
no variance at those (numeric values of the confidence
intervals in Supplementary Section 3 Table 13, Additional
file 1). In this extreme scenario, all three contrasts deliv-
ered confidence intervals. Again, the Changepoint con-
trast pictured highly misleading directions and effects.We
observed a lower plateau with a linear increase to another
plateau, not at all emulating the course of the expression
data at all. In contrast, the Sequen contrast correctly deliv-
ered the change point positions and directions at 5-4 and
9-8 with the effects of -8.76 [-12.62; -4.90] and 8.28 [4.43;
12.14]. The McDermott contrast had more biased confi-
dence intervals. The drop was visualized by the contrast
but the last confidence intervals falsely indicated a higher
plateau of expression than at the beginning of the time
course. In addition, the significant confidence intervals
indicating the drop also falsely showed a steady decrease
of the effect.
Finally, we simulated no change, linear increase, and lin-

ear decrease. Supplementary Section 3 Fig. 4, Additional
file 1, shows the results of the “no change” simulation.
None of the contrasts did detect any change points, pre-
senting non-significant, overlapping confidence intervals.
The results of “linear increase” and “decrease” are shown
in Supplementary Section 3 Figs. 5 and 9, Additional file 1,
respectively. The overall tendencies of the confidence
intervals were the same in both settings. Supplementary
Section 3 Fig. 5, Additional file 1, mirrored Supplemen-
tary Section Fig. 9, Additional file 1. The Changepoint
contrast was significant for all confidence intervals with
a strong effect. The point estimates were the same for
nearly all confidence intervals. The Sequen contrast had
some slightly significant confidence intervals. However, all
confidence intervals overlapped, indicating no change in
expression. The McDermott contrast mimicked the lin-
ear tendency of the expression data with its positive and
negative trends. As all confidence intervals overlapped, we
concluded that no change point was present.
A word of caution about the estimated effects and the

direction of the effect. Our approach allows determin-
ing the point estimate of the difference between time

points. Depending on the contrast, different effects will
be reported. The preferred contrast is therefore highly
dependent on the research question. While the Sequen
contrast provides the point of change, the McDermott
contrast visualizes the overall course of the change. In
contrast, we cannot recommend the original Changepoint
contrast for detection or assessment of the change point
as its effect estimates are biased.
In summary, if Sequen or McDermott contrast matri-

ces were applied and an actual change point was present
in the simulated data, the confidence interval from the
respective contrast was significant and no (or only a small)
overlap with the confidence interval of the preceding con-
trast occurred. When there was no change point, the 95%
confidence intervals for each contrast were either not sig-
nificant or they overlapped with the confidence interval
of the preceding contrast. The respective patterns can
be observed in a more or less defined way on all sim-
ulated data for the Sequen and McDermott contrasts.
The Changepoint contrast cannot be recommended for
the detection of a change point in any simulation setting.
Overall, we suggest using McDermott’s method to deter-
mine if there is a significant change within the time frame,
while Sequen could be applied to determine the specific
change point(s) and their direction(s).

Discussion
In a classical longitudinal design, each patient is exam-
ined at each inter-dependent time point. In this study, we
examined a different counterintuitive setting: The time
points are independent as the intervention on the mice
is lethal and the observations (gene expression in the lit-
ters’ organs) at each time point are correlated, resulting in
a mixture of dependent and independent data structures
at one time point. We solved the research question look-
ing for change points in this experimental setting by using
multiple contrast tests and by visualizing the change point
with simultaneous confidence intervals. We investigated
three contrasts which differ in the research questions they
can answer: Should a single change point be found, or
should the overall course rather be pictured? The Sequen
contrast answers the first, theMcDermott the second. The
Changepoint contrast gives a clearly biased visualization
and is unable to correctly determine change points in our
setting. To summarize, we used generalized hypothesis
testing with linear mixed effect models using various con-
trast matrices to detect change points in historical data of
gene expression levels with independent and dependent
data points.
A connected question is how long such a time line could

be to still be able to detect differences. As generalized
hypothesis testing was applied, it automatically adjusted
locally for multiple testing. Therefore, for each model, the
respective significance level was met. The number of time
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points minus one comparison was evaluated for all cho-
sen contrasting methods. The higher the number of time
points, themore contrasts were tested, leading to a stricter
change point selection but also higher run times. In our
method section, we only give an approximation of the
theoretical maximal length of historical data because the
main aim of our work was to identify the most informative
contrast test for detecting a given change point pattern.
Surprisingly, the Sequen and McDermott contrasts were
found which both intuitively were not our first choice. In
future work, the borders of the maximal number of time
points and multiplicity adjustment approaches [28, 29]
will be examined in more detail.
We have discussed the possible length of historical data

in terms of significance. Thus, if a confidence interval is
significant, we would assume a change point. However, in
the biological example data, we could also define a rele-
vance threshold ranging from (just barely) significant to
biologically relevant in our decision making. The proper
choice of estimands, i.e., effect estimators, is embedded
in a more general discussion of reproducibility. To date,
the discussion of estimands has focused on drug develop-
ment and clinical trials. Akacha et al. (2017) [30] notes that
certain choices in statistical analysis can partially or com-
pletely blur the scientific question. The interested reader
might read Mallinckrodt et al. (2019) [31] for a detailed
discussion of estimands, estimators, and sensitivity analy-
ses in clinical trials.
Many multiple contrast tests are well described in the

literature as well as the application in statistical infer-
ence [22]. The most common contrast might be the all-
pairs contrast (also known as the Tukey contrast), or the
many-to-one contrast (also known as the Dunnett con-
trast). Other types of contrasts are not so widespread
and known. Interestingly, the so-called Changepoint con-
trast does not deliver any change point in the context
of our experimental design. We do not criticize its gen-
eral approach but for our data, it does not deliver the
best interpretable change point(s) in the context of con-
fidence intervals. The Sequen and McDermott contrasts
are both able to detect change points while answer-
ing slightly different questions. Sequen visualizes the
point and direction of change, while McDermott visu-
alizes the course of the change. Of note, if the mean
differences in sequential contrasts seem to be signifi-
cant but switch between plus and minus, one should
evaluate whether there are multiple change points or
just high fluctuations in the measured values. Conse-
quently, although change points were detected by these
methods, one should still check for validity and rele-
vance. Using generalized hypothesis testing may be a
prefilter but the final decision should still be made by an
expert of the respective field based on the context of the
study.

If we used a simple linear model without taking the
nested litter/mother effects into account, the linear model
would cause some type of overdispersion. In addition,
our model would not reflect our true data structure. The
results would include a high amount of false positive (non-
existing) change points. Especially, if we decided only
based on significance. As a drawback, the lme package
sometimes has convergence or model fitting problems
with small sample sizes. In some cases, the lmer()
function displays a “is singular” warning that the esti-
mated variance-covariance matrix has some entries of
zero. Therefore, the matrix does not have a full rank.
In these cases, it is possible that some standard errors
are underestimated and results should be considered with
care.
We presented four in-vivo expression data sets of devel-

opmental stages in mice. We decided to present different
biological courses to provide evidence for its practical
application: Two of the data sets did not show any abrupt
changes, one first showed a steady increase over three
time points, stayed at that level for some time and then
increased again. The fourth data set showed no changes
apart from two time points with a drastic drop in expres-
sion. The respective R code can be found in the Sup-
plementary Section 4, Additional file 1, as well on our
GitHub repository. Therefore, the presented application
should easily be replicated by the interested scientist.
In our study, we presented a solution for historical data
with a limited number of observed genes. If the num-
ber of genes went into the hundreds, a visual inspection
would not be feasible any longer. Hence, the scientist
would have to sort the potential change points by effect
size in comparison to the respective relevance limits and
only visually inspect the top relevance hits. A pattern
recognition on confidence intervals is open to further
research.

Conclusion
In summary, we showed that multiple contrast tests can
be used for change point detection in historical data.
Our application is special in the sense that the individual
time points are independent of each other. Nevertheless,
there is a dependent data structure within the individ-
ual developmental stages. We showed that generalized
hypothesis testing with linear mixed-effect models can be
used to detect change points in clustered expression data.
We delivered an approximation of the maximally usable
time points in the historical data and allow the researcher
to define relevance thresholds to guide decision making
by the effect estimators. Our algorithm is easily applica-
ble in R. We tested three different contrast matrices and
found Sequen to be the best to detect a change point at
a concrete time point in the course. Confidence intervals
delivered a good visualization of the position of the change
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point as well as an interpretable estimator of the strength
and direction of the change. To determine if there is an
overall significant change within the time frame, we sug-
gest using McDermott’s method as it is good at detecting
changes throughout the historical data course. Bothmeth-
ods can also be used in sequence to verify results from
historical data: First McDermott for a general overview
and then Sequen for a selective examination of (parts of )
the course.
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