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A B S T R A C T   

Groundwater contamination by fluoride (F‾ >1.5 mg/L) is pervasive and typically confined to arid and semi-arid 
regions. Therefore, several parts of India are contaminated with F‾. However, genesis, sources, and mobilization 
of F‾ in groundwater are unclear or so far evaluated based often on studies conducted at a local scale. To un
derstand the severity of F‾ contamination at the national scale and to devise remedial strategies, we performed a 
statistical evaluation between F‾ and its influencing factors, including geology, hydro-meteorology, and potential 
hydro-chemical parameters based on a large dataset (n = ~2000) published in the last two decades throughout 
India. Results revealed that (a) alkalinity plays a pivotal role in the mobilization of F‾ into groundwater from the 
sediments/rocks, (b) high F‾ in groundwater is more pronounced in the arid and semi-arid areas of alluvial plains 
than hard rock regions, and (c) positive correlation of elevated F‾ with SiO2 and K+ indicates the dominance of 
geogenic sources linked to the weathering of fluorine bearing silicates. Investigations show that one-third of the 
Indian drinking water wells are contaminated with F‾, thereby risking the health of over millions of people 
through the drinking water pathway. Findings from this study have addressed the most possible sources, path
ways, and regional prevalence of F‾ contamination in the groundwater of India, and suggested the suitable 
remedial measures based on prevailing surface and sub-surface conditions. Lastly, this review also addresses 
challenges and propose future research directions to tackle high F‾ groundwater and ensure safe drinking water 
supply in India.   

Introduction 

Fluorine is one of the lightest halogen elements, electronegative, and 
highly mobile at high temperatures. It is one of the abundant elements in 
the Earth crust (625 mg/kg), and in aqueous solution; it behaves as F‾ 
ions (Ali 2017). World Health Organization (WHO 2011) and the Bu
reau of Indian Standards (2012) have set the upper safe limit to 1.5 mg/L 
of F‾ in drinking water; however, excess of this is considered to be 
contaminated. Intake of F‾ via the drinking water pathway beyond the 
permissible/safe limit can cause dental fluorosis, especially in children, 
and have dangerous severe, irreversible effects in the long-term and 
evident in the form of skeletal fluorosis (Ali et al., 2016; Mohammadi 
et al., 2017; Kumar et al., 2018; Nordstrom and Smedley, 2022). How
ever, an optimum level of F‾ (0.5 mg/L) is needed for tooth enamel and 

bone mineralization (Ali et al., 2016). Various studies on F‾ contami
nation were earlier documented to study its sources and pathways in 
different parts of the globe (Ozsvath et al. 2006; Guo et al., 2007; Kumar 
et al., 2015Vithanage and Bhattacharya 2015; Dehbandi et al., 2018; Ali 
et al., 2018; Fuge 2019; Kashyap et al., 2020; McMahon et al., 2020). 

F‾ contamination can be derived from both geogenic and anthro
pogenic sources, while geogenic sources are widespread (Nordstrom and 
Smedley, 2022). In India, groundwater from both crystalline rocks, as 
well as unconsolidated aquifers, are largely reported to be contaminated 
by F‾ (Saha et al., 2016; 2020). Nearly 300 minerals were reported to 
contain F‾; however, the most commonly occurring minerals are fluorite 
(CaF2), fluorapatite [Ca5 (PO4)3F], biotite [K(Mg, Fe)3 (AlSi3O10) (OH, 
F)2], phlogopite [K Mg3(AlSi3O10) (F, OH)2], apatite [Ca5(PO4)3(F, Cl, 
OH)], cryolite (Na3AIF6), and topaz [Al2SiO4(F, OH)2] (Nordstrom and 
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Smedley, 2022; Kumar et al., 2023a). The pH of groundwater is one of 
the critical factors responsible for the release of F‾ from the sed
iments/rocks. Fertilization in agriculture and its abundant use in in
dustrial sectors such as aluminum smelting, fertilizers manufacturing, 
and coal power stations are likely anthropogenic sources (Ali et al., 
2016; Rao et al., 2017; Kumar et al., 2019; Kumar et al., 2023a). Apart 
from drinking water, F‾ can also be consumed through food, beverages, 
and teas, particularly F‾ bearing brick tea used in China (Ali et al., 
2016). Even though, the content of F‾ in beverages is comparatively 
lower than in drinking water, the daily consumption of F‾ through these 
beverages can significantly contribute to fluorosis (De et al., 2021). 

Elevated level of F‾ in the groundwater is now a global problem and 
are frequently reported. Typically, these regions are confined to the arid 
and semi-arid areas which mainly fall in the developing world. In Africa, 
high F‾ levels were found in numerous countries and chiefly reported 
from the vicinity of the East African Rift Valley (Kut et al., 2016; 
Kimambo et al., 2019; Ijumulana et al., 2021; Sunkari et al., 2022). In 
Latin America, the elevated levels were largely reported from Argentina, 
Mexico, and Brazil. However, studies from other South American 
countries are limited (Gomez et al., 2009; Alarcón-Herrera et al., 2013; 
Martins et al., 2018). While in Asia, China, Mongolia, and Indian sub
continents have often recorded high F‾ (Wu et al., 2015; Ali et al., 2016; 
2019; 2022; Rahman et al., 2020; Khattak et al., 2022; Ling et al., 2022). 
For example, Chandrajith et al. (2020) investigated drinking wells in Sri 
Lanka and found that F‾ contaminates nearly 50% of the wells in dry 
zones. Coastal aquifers of China were also found to be contaminated 
(Cao et al., 2023). Prevalent regions containing elevated F‾ in ground
water were reported in many countries; some of the prominent studies 
that investigated F‾ contamination across the globe are mentioned here: 
India (Jacks et al., 2005; Ali et al., 2016); China (Dong et al., 2022; Hao 
et al., 2022; Wu et al., 2015); Ethiopia (Rango et al., 2012); Mongolia 
(Guo et al., 2012); Kenya (Olaka et al., 2016); and Malawi (Addison 
et al., 2020). Ali et al. (2016) earlier documented the F‾ contamination 
and systematically investigated the worldwide situation. Consequently, 
other reviews, such as by Chowdhury et al. (2019), have reported five F‾ 
bearing belts globally linked to the prevalence of F‾ contamination. 
Further, Yadav et al. (2019a) investigated the Asian continent on F‾ 
contamination. Similarly, Ali et al. (2019), Mukherjee and Singh (2018), 
and Podgorski et al. (2018) studied F‾ contamination in Indian 
groundwater. Nordstrom and Smedley (2022) and Podgorski and Berg 
(2022) are the most recent documents on worldwide F‾. Though, the 
occurrence and intensity of the F‾ contamination were reported, the 
association between F‾ and its influencing factors have not been dealt 
with in detail. 

Therefore, the current study aims to identify the inter-relationship 
between F‾ with geology, hydro-meteorology, and potential hydro- 
chemical parameters that influence the genesis and mobilization of F‾ 
into the groundwater. This study is based on the systematic development 
of a large secondary dataset with more than 2000 drinking water wells 
published in the past two decades in India. Thus, this work aims to (a) 
analyze the sources, distribution, genesis, and mobilization of high F‾ 
concentrations in groundwater, (b) correlation between co- 
contamination of F‾ with other potential ions, and (c) health impacts 
and potential remedies in India. Lastly, this review concluded with 
significant challenges and proposed future research to tackle high F‾ 
groundwater and put forward the option of safe and clean drinking 
water supply in India. 

Distribution of high fluoride groundwater in India 

Groundwater with high fluoride (F‾) is now reported as a major 
global contaminant (Kumar et al., 2023a; Neeti et al., 2023; Podgorski 
and Berg 2022; Li et al., 2021; Ali et al., 2016). Nordstrom and Smedley 
(2022) reported that fluorosis in India was first recognized in 1937. 

Kumar et al. (2019) investigated the Indo-Gangetic Alluvial plain 
and reported 5.8 mg/L of F‾ in groundwater. In Bihar, Mridha et al. 

(2021) reported that groundwater samples from Gaya and Nawada 
districts are highly contaminated with F‾, and found mean value of 2.15 
± 1.78 mg/L and 3.2 ± 1.64 mg/L, respectively. Kumari and Mishra 
(2023) also reported that F‾ levels in groundwater of Munger district 
were up to 12 mg/L. Nizam et al. (2022a) studied the Kanpur region of 
the Gangetic plain and observed 5.2 mg/L of F‾. High values of F‾ were 
frequently reported in the groundwater of Haryana state. For example, 
Yadav et al. (2019b) reported 18 mg/L, and Ali et al. (2018) reported 
18.5 mg/L of F‾ from the Mahendergarh and Bhiwani districts, respec
tively. Malik and Kavita (2022) reported 4.5 mg/L of F‾ from the Karnal 
district. In adjoining Punjab, Duggal and Sharma (2022) observed more 
than 10 mg/L of F‾ from few localities in the Malwa region. Ahada and 
Suthar (2018) investigated southern regions of Punjab and found up to 5 
mg/L of F‾. Recently, Nizam et al. (2022b) investigated the Patiala 
district, Punjab, and found the F‾ value up to 9.2 mg/L. In Rajasthan 
state, 5.74 mg/L of F‾ was reported from the Jhunjhunu district (Jandu 
et al., 2021). The highest value reported from Jaisalmer of Rajasthan 
was 6.6 mg/L (Singh and Mukherjee, 2015). 

In East India, Mukherjee et al. (2019) and Thapa et al. (2017) re
ported 18.25 mg/L and 20.4 mg/L of F‾ from the drinking well of West 
Bengal state, which is higher than ten folds of the safe limit of WHO and 
BIS. However, the geogenic sources from West Bengal are 
undocumented. 

Southern Indian states are long known to be prone to F‾ contami
nation due to bedrock. Hot spots like the Nalgonda district, Telangana 
(previously in Andhra Pradesh) have granitic rocks with F‾ concentra
tion reported up to 1706 mg/kg by Mondal et al. (2009) and as high as 
3125 mg/kg by Reddy et al. (2010). Prevalence of endemic fluorosis in 
this district and adjacent areas has led to several studies on the occur
rence, sources, and distribution of F‾ in groundwater. Groundwaters 
from this district have recurrently reported elevated F‾ ranging from 3 
to 7.6 mg/L (Reddy et al., 2010), 0.7 to 19 mg/L (Mondal et al. (2009)), 
and 0.1 to 8.8 mg/L (Brindha and Elango, 2011; Brindha and Elango, 
2013). Other districts in Telangana, such as the Yadadri-Bhuvanagiri 
district, have also recently recorded a maximum of 3.56 mg/L F‾ in 
groundwater (More et al., 2021). The adjacent state of Andhra Pradesh 
has often reported high F‾ in its groundwaters. F‾ in Andhra Pradesh 
from various districts, such as the Prakasam district, ranged between 0.7 
and 2.8 mg/L (Subba Rao, 2017), and from the Guntur district, ranged 
between 0.3 and 2.3 mg/L (Subba Rao, 2003). 

Weathering of granite and granitic gneiss host rocks in the Ilkal area 
of Karnataka had led to F‾ in groundwater from 0.3 to 6.5 mg/L (Tir
umalesh et al., 2007). Studies in the granitic belt of Badami Taluk and 
Hunagund Taluk of Karnataka consistently recorded F‾ >2 mg/L in all 
investigated locations (Gaonkar et al., 2019). Several other taluks and 
districts also have F‾ at excessive levels, such as in the Indi taluk (0.26 to 
3.57 mg/L) reported by Ugran et al. (2017), and Kolar district (0.36 to 
3.34 mg/L) and Thumkur district (0.78 to 5.35 mg/L) reported by 
Mamatha and Rao (2010). 

Dharmapuri district in Tamil Nadu is another F‾ endemic area in 
southern India. Here, F‾ between 0.15 and 6.48 mg/L was reported by 
Jagadeshan et al. (2015a) from epidote hornblende biotite gneiss and 
charnockite areas containing average F‾ of 59.4 mg/kg and 35.8 mg/kg, 
respectively (Jagadeshan et al., 2015b). Maximum F‾ from Tir
uvannamalai region in Tamil Nadu was reported to be 3.2 mg/L from 
open wells and 3.8 mg/L in bore wells (Chicas et al., 2022). Ground
water analyzed from areas with charnockite rocks in Madurai district 
(Thivya et al., 2017) and Dindigal district (Ramachandran et al., 2012) 
in Tamil Nadu had F‾ up to 1.8 mg/L and 2.5 mg/L, respectively. In the 
northern part of Tamil Nadu, namely in Kancheepuram district, F‾ was 
observed to range from 1 to 3.24 mg/L by Dar et al. (2011). 

Compared to the studies on F‾ in the southern Indian states, Kerala 
has only a very few documented studies. However, this does not imply 
that groundwater has low F‾ content. Reported studies from Chittur 
Block had a maximum of 6.3 mg/L (Shaji et al., 2018), Alleppey recor
ded 0.68 to 2.88 mg/L (Raj and Shaji, 2017), and Palakkad district 
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documented 0.2 to 5.75 mg/L of F‾ (Shaji et al., 2007). 

Methodology 

Systematic searches for data mining 

For the present work, systematic searches were conducted on the 
Google Scholar and Scopus web engines to include the maximum 
research articles on F‾ contamination in the groundwater of India in 
international peer-reviewed journals (Fig. 1). 

Various key words like 1) fluoride in India, 2) fluoride in ground
water of India, 3) fluoride in alluvial plains, 4) fluoride in arid and semi- 
arid regions, and 5) fluorosis in India; were used to collect maximum 
articles. Various articles falling in the following criteria were discarded: 
1) studies conducted on water other than the groundwater, and 2) ar
ticles specifying only min-max ranges of F‾. After deletion, all articles 
were thoroughly studied. At this stage, there were 64 research articles. 
Further, an Excel sheet (Microsoft Office) was prepared where all the 
parameters along with F‾ level were compiled. For the bivariate plots, 
elevated F‾ content with other physio-chemical parameters were only 
considered (expect some exceptions). At this stage, it was found that the 
articles investigated for the F‾ contamination were not studied with all 
the hydro-chemical parameters. So, even if one parameter was 
mentioned, the article is considered for this work. Therefore, the number 
of variables varies during the correlation analysis. Finally, a total of 
more than 2000 wells (hand pumps, tube wells, and bore wells) were 
compiled along with potential parameters recorded in the groundwater 
for this study. 

As mentioned, research articles in the international domain from the 
last two decades comprising more than 2000 drinking water wells across 
India were investigated. Further, statistical correlation of F‾ with other 
potential hydro-chemical parameters was performed to investigate the 
possible genesis and mobilization of F‾ release into the groundwater 
(Fig. 2). In some studies, all hydro-chemical parameters were not 
analyzed; however, available parameters were used for this study; and 
thus, differ in the number of variables during the statistical correlation. 
F‾, along with other hydro-chemical parameters, were initially consid
ered for statistical correlation. However, during the analysis, it was 
observed that a significant correlation could not be drawn by consid
ering all the data of F‾. Therefore, F‾ values greater than the safe limit 

(>1.5 mg/L) were only considered for in-depth statistical correlation. 
This study suggests that nearly one-third of India’s drinking wells have 
elevated levels of F‾, thus a major concern for the water supply. The 
results revealed significant findings and are discussed in the subsequent 
sections. 

Results and discussion 

The unconsolidated alluviums are dominantly composed of sand, silt, 
and clay mixed with kankars (calcareous nodules) with varying pro
portions found to form suitable aquifers in India. The hard crystalline 
rocks also form suitable aquifers wherever they were found to be jointed 
and fractured (Saha et al., 2016; 2020). Groundwater largely occurs in 
these aquifers with distinct quantity and quality. In general, the wells 
installed in the unconsolidated aquifers have higher discharge rates than 
the crystalline ones. The inhabitants primarily depend on the ground
water which is extensively used for drinking from both aquifers. 

In this study, a detailed statistical analysis of F‾ was conducted with 
various other potential hydro-chemical parameters for the evaluation of 
possible genesis, mobilization, and causes of contamination of F‾ in the 
groundwater of India. The F‾ content from both of the aquifers are 
included in the present work. The association of hydrochemical pa
rameters with F‾ are discussed below. 

Bivariate plot of fluoride with hydro-chemical parameters 

pH and EC 
The elevated F‾ content with pH showed an insignificant positive 

correlation (n = 1155; Fig. 2a). Box and Whisker diagram was plotted for 
all the F‾ values, which suggests that the groundwater with elevated F‾ 
levels has higher pH values (Fig. S1). The bivariate plot confirmed that 
the pH plays a pivotal role in triggering the F‾ from fluorine-bearing 
sediments or rocks to the aqueous medium (Ali et al., 2016). Further, 
the statistical correlation between F‾ (>1.5 mg/L) with electrical con
ductivity (EC) was performed (n = 1079; Fig. 2b). The bivariate plot 
between F‾ and EC revealed that the F‾ has weak positive correlation 
with EC. This is possible due to the longer water-rock/sediment inter
action, which could enrich high F‾ content in the groundwater (Ali et al., 
2021). 

Fig. 1. Flowchart showing exclusion and inclusion criteria of articles selection.  
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HCO3‾, Na+, SO4
2‾, and NO3‾ 

Bivariate plot between F‾ and HCO3‾ revealed a statistically insig
nificant correlation (Fig. 2c). Further, the bivariate plot of F‾ with Na+

suggests a statistically weak positive correlation (Fig. 2d). This corre
lation is well supported with our earlier studies (Ali et al., 2016; 2021). 
In another plot between F‾ and SO4

2‾, positive correlation was observed 
(Fig. 2e). The bivariate plot of F‾ with NO3‾ revealed negative corre
lation (Fig. 2f). This supports the lower possibilities of anthropogenic 
involvement in F‾ enrichment in Indian groundwater. 

Mg2+, Ca2+, and K+

Other ions, such as Mg2+, Ca2+, and K+, were also evaluated for this 
study. The plot of F‾ with Mg2+also revealed negative correlation (Fig. 2 
g). The bivariate plot between F‾ and Ca2+revealed an insignificant 
correlation (Fig. 2h). Further, the plot between F‾ and K+was also 
attempted, which revealed poor positive correlation between each of the 
ions (Fig. 2i). This correlation also supports the geogenic sources of F‾ 
which simultaneously releases K+ with F‾ (Ali et al., 2016). 

Fe and SiO2 
The plot between F‾ and Fe revealed an insignificant negative 

Fig. 2. Bivariate plots between F‾ with (a) pH, (b) EC, (c) HCO3‾, (d) Na+, (e) SO4
2‾, (f) NO3‾, (g) Mg2+, (h) Ca2+, (i) K+, (j) Fe, and (k) SiO2 (bubbles size is 

proportional to F‾ content; continued, n = 64 and given here alphabetically). 
Acharya et al. (2018); Adimalla et al. (2018); Adimalla et al. (2018a); Ahada and Suthar (2018); Ali et al. (2021); Ali et al. (2018); Arulbalaji and Gurugnanam 
(2017); Arveti et al. (2011); Batabyal (2017); Bhuiyan and Ray (2017); Chatterjee et al. (2008); Dar et al. (2011); Das et al. (2003); Datta et al. (2014); Datta et al. 
(1999); Devadas et al. (2007); Duraiswami and Patankar (2011); Gawle et al. (2021); Gupta and Misra (2018); Gupta et al. (2006); Haritash et al. (2008); Jha et al. 
(2010); Joshi and Seth (2011); Kantharaja et al. (2012); Karthikeyan et al. (2010); Kashyap et al. (2020); Keesari et al. (2014); Khanna (2015); Kodate et al. (2007); 
Kumar (2017); Kundu et al. (2001); Madhnure and Malpe (2007); Madhnure et al. (2007); Meenakshi and Malik (2004); Misra and Mishra (2007); Mondal et al. 
(2014); Mondal et al. (2009); Narsimha and Sudarshan (2017); Pandith et al. (2017); Prasad and Rao (2018); Raj and Shaji (2017); Raju (2017); Raju et al. (2009a); 
Raju et al. (2009b); Rao (2017); Rao et al. (2012); Rao (2009); Rao (2008); Sahu et al. (2017); Salve et al. (2008); Saxena and Ahmed (2003); Shaji et al. (2007); 
Shankar et al. (2008); Sharma et al. (2012); Singh et al. (2013); Sudarshan et al. (2018); Sujatha (2003); Sujatha and Reddy (2003); Tirumalesh et al. (2007); Tiwari 
et al. (2020); Usham et al. (2018); Vikas et al. (2009); Viswanathan et al. (2009); and Yadav et al. (2021). 
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correlation, although the correlation is only based on the limited 
available Fe data (Fig. 2j). The bivariate plot between F‾ and SiO2 is 
crucial for revealing the geogenic contamination. The plot has also 
shown positive correlation between these two parameters (Fig. 2k). This 
suggests that the geogenic sources are most likely possible contamina
tion sources which could be linked to the weathering of fluorine-bearing 
silicates. 

Statistical correlation 

Statistical correlation of F‾ with other parameters is shown in 
Table 1. For this work, statistical analysis is broadly divided into two 
groups aiming to study the possible association with F‾ contamination: 
1) all F‾ values and 2) F‾ >1.5 mg/L. 

Table 1 showed a noticeable positive correlation of pH with F‾. This 
revealed that alkalinity has a pivotal role in the mobilization of F‾ into 
the groundwater (Ali et al., 2016). In addition, the table also suggests a 
noticeable positive correlation of F‾ with SiO2 and K+. This is possibly 
linked to the weathering of the fluorine-bearing silicates. Further, Box 
and Whisker diagrams were plotted for all the states of India. This is 
created to highlight the regions with F‾ concentration above the safe 

limit to demarcate the contaminated states based on the research con
ducted in the last two decades (Fig. 3). 

Identification of fluoride-polluted areas 

This study highlighted the states having F‾ content greater than the 
safe limit in drinking water of India. States like, Andhra Pradesh, 
Chhattisgarh, Haryana, Jammu and Kashmir, Kerala, and Punjab, are 
highly contaminated (Fig. 3). Further, Fig. 3 also revealed that except 
significant parts of Jammu and Kashmir, other states falling in the arid 
and semi-arid regions are typically contaminated by F‾. Further, this 
study suggests that the F‾ contamination is more predominant in states 
having drinking water in alluvial zones (Delhi, Gujarat, Haryana, Pun
jab, Rajasthan, Uttar Pradesh, and West Bengal) than the states having 
hard rock aquifers (including all states other than the alluvial ones; 
Fig. S3). This could be due to the leaching of F‾ in the alluvium derived 
from the hard rocks, whereas F‾ content in hard rocks are least mobi
lized. Further, this study suggests that the F‾ are commonly found in the 
alluvial areas, mainly in arid and semi-arid regions, followed by the hard 
rocks regions (Fig. S4). Further, this study does not include most of the 
eastern part of India, as few studies were conducted in those regions. 

Fig. 2. (continued). 
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Finally, all F‾ content were plotted on the hydrogeological map of 
India. For this work, each data point in the groundwater was initially 
classified into three groups, i.e., less than 1.5 mg/L, 1.5–3 mg/L, and 
more than 3 mg/L (Fig. 4). In this study, prevalent contaminated regions 
were shown as a single point on the hydrogeological map of India (Fig. 4; 
www.cgwb.gov.in). For clear distinction, five data pertaining to each 
point were plotted on the map. It is evident from Fig. 4 that the F‾ 
concentration in the groundwater greater than the safe limit is typically 
restricted to the semi-arid and arid regions of India. 

This study revealed that alkalinity plays a pivotal role in triggering 
F‾ into the groundwater from the fluorine-bearing sediments/rocks. The 
contamination is more pronounced in the arid and semi-arid areas of 
alluvial plains than in the hard rock regions. The significant correlation 
of elevated F‾ with SiO2 and K+suggests the possibility of the dominance 
of geogenic sources over anthropogenic and is possibly linked to the 
weathering of the silicates (Fig. 5). The results showed that the F‾ 
contamination in the groundwater is primarily contaminated by geo
genic sources. This study highlighted the prevalent areas and thus sig
nificant for policymakers where safe water supply must be priorities. 

Genesis and mobilization of fluoride in groundwater 

F‾ in natural water is primarily governed by pH, anion exchange 
between hydroxyl groups with F‾ and residence time of water in the 
aquifer (Apambire et al., 1997). The most accepted mobilization process 
is ion exchange of F‾ by hydroxyl ions (OH‾; Edmunds and Smedley 
2013; Ali et al., 2018). It was also reported that the aquifers with low 
hydraulic conductivity retain water for a longer time, resulting in 
elevated F‾ levels. However, this association is not well documented. 

High evaporation and scanty rainfall in the arid and semi-arid re
gions facilitate the release of F‾ from the host rocks. Handa (1975) 
earlier observed a link between sodium bicarbonate facies in ground
water and high F‾. Documentation of worldwide studies (Ali et al., 
2016) showed that F‾ is significantly negatively correlated with calcium 
ions and positively correlated with sodium and bicarbonate ions. While 
limited studies are conducted on the identification of contamination 
sources of F‾ globally (Ali et al., 2021). Ali et al. (2021) investigated the 
Delhi older alluviums in India and attributed mica as a possible geogenic 
source for F‾ ions. Ali (2022) recently observed that F‾ in the 

Fig. 2. (continued). 
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groundwater of Delhi is primarily controlled through water-sediment 
interactions, local hydro-meteorological conditions, and mean water 
residence time. Further, Ali (2022) investigated the possible release of 
F‾ from sediments/rocks. The release of F‾ from common F‾ bearing 
minerals is given below:   

(Chakraborty et al., 2022) 

(2) 

(Guo et al., 2007) 

(3) 

(Guo et al., 2007) 
Water-rock interaction is one of the most significant processes 

resulting in the operation of various other processes leading to the 
enrichment of F‾ in groundwater. Ali (2022) recently reported that the 
enrichment of F‾ is primarily governed via sediment geochemistry, 
water-sediment interactions, residence time, and existing local 
hydro-meteorological (temperature and rainfall) condition in Delhi. 
Kumar et al. (2019) concluded that the weathering of hard rocks in the 
Indo-Gangetic alluvial plains was responsible for high F‾ in the region. 
However, limited studies only reported the sources of F‾ in the 
groundwater of India (Ali et al., 2018; 2021). 

Health impacts of drinking high fluoride groundwater 

Extensive use of high F‾ groundwater for drinking poses potential 
threat to humans. As discussed earlier, the importance of F‾ studies has 
increased due to their adverse effects on humans. The consequence of F‾ 

contaminated water is evident in the form of dental and skeleton fluo
rosis. This may lead from initial mild dental fluorosis to prolonged ef
fects of irreversible crippling skeleton fluorosis (Nordstrom and Smedley 
2022; Table 2). 

F‾ within the permissible limit is also a boon to humans, which helps 

in formation of tooth enamels and bone mineralization. Therefore, it is 
also said to be a sword with two edges. It was estimated that nearly 200 
million people globally are potentially exposed to fluorosis (Edmunds 
and Smedley 2013), and significant vulnerable population lives jointly 
in India and China (Podgorski and Berg 2022). Predicting affected 
people from fluorosis is challenging; therefore, the exposed number is 
infect clearly more than estimated. Recently, random forest modeling 
was also performed for F‾ prediction and demarcation of contaminated 
areas on a regional scale in India (Sarkar et al., 2023; Podgorski and Berg 
2022). 

Numerous researchers have evaluated the probabilistic non- 
carcinogenic human health risk assessment of F‾ consumption (Ali 
et al., 2019; Li et al., 2019; Keramati et al., 2019; Kaur et al., 2020; 
Kumar et al., 2023). These studies reported that children are highly 
vulnerable than adults due to their lower body weight. Few studies 
documented the noticeable link between pregnant women and F‾ 
exposure. On examining the F‾ levels in groundwater and the potential 
risk through the drinking water pathway, Green et al. (2019) reported 
that F‾ exposure during pregnancy can be associated with lower IQ in 
children. Studies also showed negative effects on the development of 
children intelligence (Karimzade et al., 2014). However, this association 
needs further investigation. Further, Kheradpisheh et al. (2018) inves
tigated F‾ links with human thyroid disease and found a good relation 
between them. Ahmad et al. (2022) recently reported that the kidney, 
liver, and heart are three crucial parts of the human body exposed to 
excess consumption of F‾, which could accelerate various diseases. 

(1)   

Table 1 
Correlation coefficient between fluoride and other hydro-chemical parameters shown as heat map for better visualization.  
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Kadam et al. (2020) and Senthilkumar et al. (2021) investigated 
western India and observed that children and infants are vulnerable to 
fluorosis. Further, Duggal and Sharma (2022) investigated the northern 
region of India and also observed that children are more vulnerable to 
fluorosis than other age groups in the Punjab state. Ali et al. (2019) 
reported that children are more likely to be highly vulnerable than 
adults in numerous states of India. Kumar et al. (2023a) summarized the 
potential F‾ impacts on humans and observed that high F‾ consumption 
might affect the liver, kidney, and reproductive systems. 

Karunanidhi et al. (2020) investigated the Coimbatore region of 
South India and found that children are more vulnerable to adult fe
males and males. Adimalla and Qian (2022) also studied the southern 
region and found that infants are more vulnerable than other age groups. 
Thabrez et al. (2023) reported that people from the Sira region in Kar
nataka are more prone to dental fluorosis than skeletal fluorosis. This 
study also showed that children (<8 years) face moderate risk of dental 
caries, dental fluorosis, and skeletal fluorosis, whereas adolescents and 
adults do not encounter such risk. Clinical studies by Ugran et al. (2017) 
found F‾ content ranging from 0.34 to 3.41 mg/L in urine samples of 
people who consume elevated F‾ groundwater. This study also observed 
symptoms of clinical fluorosis among these sample populations, which 
include arthritis, joint pains, gastrointestinal discomfort, and lower limb 
deformities (Ugran et al., 2017). Jose et al. (2014) conducted a survey 
among school students and observed dental fluorosis in 36% of the 
sample population, more prevalent in children aged between 9 and 10 
years and with boys more frequently affected by dental fluorosis than 
girls. 

Potential remedies/techniques for high fluoride groundwater in 
India 

Various defluoridation methods were earlier investigated and 
documented by numerous researchers like Mohapatra et al. (2009), 
Jagtap et al. (2012), Vithanage and Bhattacharya (2015), Kut et al. 
(2016), Yadav et al. (2019), Kashyap et al. (2021), and Kumar et al. 
(2023a). The defluoridation methods can efficiently remove up to 
70–90% from various defluoridation methods; providing sustainable F‾ 
free water to large communities is challenging. However, cost-effective 
defluoridation methods impose a potential challenge on the scientific 
community. Fluoridation issue is highly debatable even though, in the 
United States of America; the optimum level of F‾ is mandated in the 
water supply (www.cdc.gov). Solving this F‾ problem remains a major 
challenge even today, especially in developing countries. Treating the 
water using ion exchange or precipitation methods is technically feasible 
and has been tried. However, these methods have typically been met 
with limited success in developing countries. For example, in India, 
defluoridation technologies have been implemented nationwide for a 
safe and clean drinking water supply. 

Earlier, several studies have reported that the “Nalgonda procedure,” 
designed by NEERI, Nagpur, is the defluoridation technology most 
commonly employed for domestic use at the grassroots level (Nawlakhe 
et al., 1975; Bulusu et al., 1979; Nawlakhe and Rao, 1990; Nawlakhe and 
Paramasivam, 1993). Community-oriented “defluoridation plant” was set 
up in the Nalgonda district of Andhra Pradesh to remove F‾ from potable 
water; NEERI invented the technique in 1961. In the 1930’s, activated 
alumina was used as an effective defluoridation method for domestic 
water uses. Using activated alumina, the Sathya Sai University for 
Higher Education, Puttaparthi, created the Prasanthi technology. 

Fig. 3. Box and Whisker diagram showing the 
range of F‾ concentration (mg/L) in the states 
of India (Fig. S2). 
A: Andhra Pradesh; C: Assam; E: Chhattisgarh; 
G: Delhi; I: Gujarat; K: Haryana; M: Jammu and 
Kashmir; P: Jharkhand; R: Karnataka; T: Kerala; 
V: Madhya Pradesh; Y: Maharashtra; AB: Odi
sha; AD: Punjab; AF: Rajasthan; AI: Tamil Nadu; 
AL: Telangana; AO: Uttar Pradesh; AR: West 
Bengal. nA = 439; nC = 64; nE = 33; nG = 44; nI 

= 40; nK = 122; nM = 26; nP = 32; nR = 103; nT 

= 31; nV 
= 43; nY 

= 207; nAB 
= 36; nAD 

= 76; 
nAF = 238; nAI = 327; nAL = 242; nAO = 345; 
nAR = 223 (n is the number of data available for 
correlation. Indian states boundaries with name 
are shown in the Fig. S2).   
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Drawbacks to this technology include high cost, the need for skilled 
workers to reprocess the filter material, and a byproduct of slightly 
higher concentrations of residual aluminum (Agarwal et al., 1999). 
Ayoob et al. (2008) reported defluoridation methods most frequently in 
locations where F‾ contamination is a problem via coagulation and 
adsorption/ion exchange. In addition, Ayoob et al. (2008) summarized 
that in several developing nations, including India and Tanzania, the 
Nalgonda method and bone char adsorption—or integrated approach
es—have been applied at both individual and communal levels. Even 
though membrane separation methods guarantee high-quality water, 
they are "highly technical and expensive" alternatives for most 
fluoride-endemic countries. Electrochemical approaches are "ener
gy-intensive," which provide good F‾ removal. During the 1990’s, it has 
been more common for rural Indian communities to look for home-based 
water quality remediation solutions for their drinking water supply. In 
India, since 1991, the UNICEF initiative program, defluoridation units 

attached to hand pumps, and domestic defluoridation units were built 
using locally produced activated alumina (Eswar and Devaraj, 2011). 
Further, evidence of the usefulness and efficiency of activated alumina 
in removing F‾ was provided by down-flow column tests (Srimurali and 
Karthikeyan, 2008). The IISc technology of F‾ treatment at Kolar, Kar
nataka, comprises of blending cum sedimentation unit with geared 
manual-operated mechanical stirrer for blend of MgO and water (Rao 
and Mamatha, 2004; Eswar and Devaraj, 2011). Furthermore, adsorp
tion has been reported as cost-effective and simple method for 
defluoridation (Agarwal et al., 2002; Karthikeyan et al., 2005). After
ward, Sulaiman et al. (2009) reported the application of granular 
alumina cement on fixed beds for F‾ removal from groundwater and 
demonstrated how granules performed in rural Indian villages. 

Lunge et al. (2011) have synthesized lanthanum-treated chitosan 
granules and applied them for groundwater monitoring through 
pre-packaged loose absorbents, cloth-in-pouches, and porous bamboo 

Fig. 4. Fluoride concentration in the groundwater of India (five data points pertaining to each point are shown on the hydrogeological map of India; after 
CGWB, India). 
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pillars in rural areas of Madhya Pradesh. Lunge et al. (2011) reported 
that F‾ levels were reduced to 1 mg/L for domestic utilities, such as 
drinking and cooking purposes, to avoid costly techniques and to 
implement in-situ applications. Feedback from end-users showed that 
implementing this technology was widely accepted at the community 
level in the Dhar district of Madhya Pradesh, India. Anjaneyulu et al. 
(2012) described that the F‾ levels in rainwater collected from the upper 
surface were less than the desired limit/level of 1 mg/L and can be 
employed for cooking/drinking purposes. The current effort focuses on 
studies including the implications of “solar distillation for defluoridation 
purposes”. In Bangalore, “an inclined basin-type solar distillation setup” 
consisting of sand-water was used for defluoridation based on Thomas’s 
design (http://www.planetkerala.org/). Andey et al. (2013) summa
rized that NEERI, India, has developed electrolytic defluoridation (EDF) 
technology for treating excessive F‾ in water sources. EDF technology 
offers a technologically sound, affordable, and dependable community 
drinking water defluoridation system for providing safe drinking water 
that complies with the WHO guideline value. Iyer et al. (2013) used 
state-of-the-art solar-based technologies – passive reverse osmosis units 
– or 77% of 100 installed units and also performed interactive surveys 
with residents and local officials. However, none of the Nalgonda 
technology or activated alumina units are currently in use due to high 
operational costs and skilled labour requirements. 

Even though activated alumina has been found to remove F‾, and its 
long-term commercial uses are prevented due to bacterial buildup by its 
sluggish rate of adsorption and pH correction (Gill et al., 2014). The 

effectiveness of community-based defluoridation in avoiding severe 
fluorosis effect in Kaiwara village in the Indian state of Karnataka was 
evaluated by Isaac et al. (2020). After receiving ethical approval, this 
community interventional investigation was carried out in the hamlet of 
Kaiwara. This study highlights the significance of offering defluoridated 
water to people in villages as a potential fluorosis treatment. Agrawal 
et al., 2023 recently reported that defluoridation in rural regions of India 
could create potential employment opportunities. Sludge conversion 
into inexpensive construction raw low-cost materials can be a successful 
strategy for small-scale enterprises that uses both professional and un
skilled labours. In this study, Agrawal et al. (2023) examined the 
methods for achieving this, which would give them much-needed job 
and transform it into a small-scale enterprise. Ramanarayanan et al. 
(2022) proposed that different adsorbents based on flowering trees have 
been employed to develop a defluoridation approach that is inexpensive 
and well-liked based on the adsorption process. The samples were sub
sequently filtered, and F‾ levels were defined using a “fluoride 
ion-specific electrode technique”. Kumar et al. (2023b) have recently uti
lized rice-husk biochar for F‾ removal through batch and column 
sorption experiments, which showed efficient sorption at pH 7. Hand 
pumps and tube wells are frequently used in rural regions for cook
ing/drinking purposes, where biochar-mediated saturated fixed bed 
sand columns can effectively remove F‾ from surface/groundwater at a 
larger scale. 

Challenges and future research 

Our literature review shows that high caring for teeth is not a cultural 
practice in the developing world. Therefore, the initial consequences are 
often ignored due to the unnoticeable immediate effects of F‾. Further, 
practical and feasible solutions for defluoridation methods are chal
lenging. Membrane-based filtration is the most acceptable at present; 
however, the method is quite expensive and fails to provide water to 
large communities, mainly in India, and thus, only modern societies are 
benefited. Providing well locations with F‾ level data by continuous 
monitoring will be a remarkable success in the reported countries. Now, 

Fig. 5. Conceptual circular diagram showing major causes for high fluoride concentration in groundwater of India.  

Table 2 
Effects of fluoride consumption on human health (Ali 2016).  

Fluoride content (mg/L) Effect on humans 

<0.5 Promotes dental caries 
0.5–1.5 Required for strong bones and teeth 
1.5–4.0 Dental fluorosis in children 
>4.0 Dental and skeletal fluorosis 
>10 Crippling skeletal fluorosis  
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there is a need to look for safe aquifers to avoid contaminated sources. 
The dilution of F‾ content through recharge from rain, canal, or river 
water is evident in many studies. Therefore, the rejuvenation of water 
bodies can be highly helpful (Kalpana et al., 2019; Brindha et al., 2016). 

Even though, there are marked contaminated wells in few regions, 
many wells are still installed and frequently used for drinking due to the 
lack of adequate water supply in India. With no other drinking water 
option, inhabitants are forced to drink the contaminated water. There
fore, consumption of contaminated water is frequent. Some local 
defluoridation methods are available, but most are undocumented and 
confined only to the local level. Its application on a wider scale is 
challenging. Therefore, providing sustainable water supply is chal
lenging for the scientific community (Gutierrez et al., 2021). A 
remarkable achievement can only be achieved by involving local 
defluoridation methods, working with local people, and adopting 
practical and feasible science-based policy intervention measures over 
traditional methods. 

Conclusions 

In this study, the statistical correlation of F‾ with other hydro- 
chemical parameters was investigated based on the extensive dataset 
published in the last two decades for deciphering the genesis, mobili
zation, and contamination of F‾ in the groundwater of India. The study 
suggests that the alkalinity of the groundwater facilitates the mobiliza
tion of F‾ from sediments/rocks. It was observed that the elevated F‾ 
levels in the groundwater of India is mainly confined to the alluvial areas 
falling in the arid and semi-arid regions, followed by the hard rocks 
regions. This study also revealed that the high F‾ levels correlates well 
with SiO2 and K+, indicating F‾ in groundwater is mainly derived from 
the weathering of fluorine-bearing silicates and, thus, possibly geogenic 
in nature. Further, this study highlighted the contaminated regions in 
India where safe water must be supplied for drinking for the inhabitants. 
Besides, defluoridation should be implemented at the grassroots level to 
treat high F‾ groundwater for safe and clean drinking water and sus
tainable water supply. The policies intervention in contaminated areas 
in the developing world were often ineffective and had to be monitored 
more practically. To conclude, targeting uncontaminated aquifers for 
sustainable water supply and subsequent monitoring of drinking wells, 
and the willingness of the concerned authorities could be immensely 
helpful to mitigate the problem. 
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