
Conclusions

In this thesis we developed algorithms for the high-dimensional
���

-nearest-neighbor problem. We pre-
sented their average-case analysis under the assumption that the � data points are chosen independently at
random under uniform distribution. We did not assume any distribution of the query point. The algorithms
improve considerably the brute-force method, are simple and easy to implement, and have a low storage
requirement.

The query algorithms developed in Section 3.1 are based on simple preprocessed data structures. The
searching algorithm REJECT_SCAN requires �����	��
 storage and �����	�
������
 preprocessing time, and has an
expected running time of ��������������������! #"$� � � �
���%� " . It improves the brute-force method by a factor of& � ���(' �*),+ �-�/.�021� 
 . The constant in the � -term is close to one, and for many applications the dimension � is in
the range of some hundreds, so the speedup factor comes close to 50, which is a considerable improvement
in practice. This consideration is confirmed by the experimental comparison with the brute-force method in
Section 4.5.

The searching algorithm REJECT uses the same data structure like the algorithm REJECT_SCAN, has an
expected running time of �3�4������� � � � �
���%�5
 and can be extended to work efficiently in the external-
memory model of computation.

The data structure based on a preprocessed partition of the data set into monotone sequences achieves
an expected runtime that is sublinear in � and � . The query algorithm has an expected running time of�7698 �;:<� 0>=@?A B :#�����	C for dimensions �ED � ���F����F�����G"<H .

We extended our methods to solve the I -nearest-neighbor problem with an expected asymptotic runtime

of �76#�����J6 ����9'K� ),L 1 �! C � � � �MI � �$�ONQP$�MC . Furthermore, the expected runtime analysis of our algo-

rithms has been generalized to other "well-behaved" probability distributions.
In Chapter 5 we developed a method which provides tradeoffs between the space complexity of the data

structure and the time complexity of the query algorithm.

89



90


