Chapter 5

Time-Space Tradeoffs for Nearest-Neighbor Search

We develop a method which provides a tradeoff between the space complexity of the data structure and the time complexity of the query algorithm. The idea is to compute in the preprocessing phase a decomposition of the d-dimensional unit cube into simple cells and store for each cell C of the decomposition a set $L_{C} \subseteq P$ of nearest-neighbor candidates. We guarantee that for each query point in the cell C the corresponding set L_{C} contains the nearest neighbor to q from the data set P. Given a query point q, the query algorithm determines the cell C containing it, and checks the corresponding set L_{C} by the brute-force method to find the nearest neighbor to q. The size of the decomposition is controlled by a parameter m, which provides a time-space tradeoff for the data structure.

A summary of the results presented in this chapter has appeared in [38].

5.1 The data structure

We consider the decomposition of $[0,1]^{d}$ in m^{d} congruent grid-cells which are d-dimensional cubes of side length $\frac{1}{m}$ for a parameter $m \geq 2$ (see Figure 5.1). We build our data structure \mathcal{D} in the preprocessing phase. For each cell C the corresponding set L_{C} of nearest-neighbor candidates is determined. This set includes all possible nearest neighbors from the data set P to points of the cell C. To compute the set L_{C}, we determine a suitable cube $W(C)$ around the center s of the cell C, and choose the set L_{C} to equal $W(C) \cap P$. We compute the side length of the cube $W(C)$ as follows. We determine the nearest neighbor n_{C} from P to the center s of the cell C. The interior of the cube $C_{s, x}$ around s of side length $x=2\left\|n_{C}-s\right\|_{\infty}$, contains no data points from P. We choose the cube $W(C)$ to be the cube around s of side length $x+\frac{2}{m}$ (see Figure 5.2). We show in the following that this cube contains all possible nearest neighbors from the data set P to points of the cell C. For each point $r \in C$ the nearest neighbor $n(r)$ from P to r is contained in $W(C)$, the cube around s of side length $2\left\|n_{C}-s\right\|_{\infty}+\frac{2}{m}$:

$$
\begin{aligned}
\|n(r)-s\|_{\infty} & \leq\|n(r)-r\|_{\infty}+\|r-s\|_{\infty} \leq\left\|n_{C}-r\right\|_{\infty}+\|r-s\|_{\infty} \\
& \leq\left\|n_{C}-s\right\|_{\infty}+2\|r-s\|_{\infty} \leq\left\|n_{C}-s\right\|_{\infty}+\frac{1}{m}
\end{aligned}
$$

Given the cube $W(C)$, the set $L_{C}=W(C) \cap P$ is determined in time $O(n d)$. Since we can determine n_{C} for each cell C in time $O(n d)$ the total preprocessing time is $O\left(m^{d} \cdot n d\right)$. The storage size of the data structure \mathcal{D} is $\sum_{\text {cell } C} d \cdot\left|L_{C}\right|=O\left(m^{d} \cdot n d\right)$.

Figure 5.1: Decomposition of the unit cube in congruent cells

Figure 5.2: Cube W contains all nearest neighbors to cell C from the point set P

The query algorithm determines for a query point $q=\left(q_{1}, \ldots, q_{d}\right) \in[0,1]^{d}$ the cell $C(q)$ containing q. This cell is determined in time $\Theta(d)$ by the values $\left\lfloor\frac{q_{j}}{m}\right\rfloor, 1 \leq j \leq d$. Next we determine the nearest neighbor from the set $L_{C}=W(C) \cap P$ to the query point q, which is also the nearest neighbor from the set P to q. This computation is done by the brute-force method in $\Theta\left(d \cdot\left|L_{C(q)}\right|\right)$ time. Instead of the brute-force method we can use the ADAPTIVE METHOD, described in Section 2.2, to determine the nearest neighbor from the set L_{C} to the query point q.

We determine the expected query time and the expected space complexity of the data structure \mathcal{D}, under the assumption that the points of $P=\left\{p^{1}, \ldots, p^{n}\right\}$ are drawn independently at random under uniform distribution. For the expected runtime analysis of the query algorithm we choose the brute-force method to determine the nearest neighbor from the set L_{C} to q.

5.2 The expected runtime and expected space complexity

To analyze the expected runtime and the expected storage size of the data structure \mathcal{D}, we investigate for a fixed cell C of the decomposition the expected number of data points from P contained in the corresponding cube $W(C)$. Let $N(C)$ be the random variable representing the number $|W(C) \cap P|$ of nearest neighbor candidates stored for the cell C.

Let X_{C} be the continuous random variable for the value $x=2\left\|n_{C}-s\right\|_{\infty}$, where n_{C} is the computed nearest neighbor from P to the center s of the cell C. The value x is the maximum side length of a cube around s containing in its interior no points of P. Note that $x \in\left[0,2-\frac{1}{m}\right]$. The corresponding cube $W(C)$ of the cell C has center s and side length $x+\frac{2}{m}$. The variable $N(C)$ representing the number of nearest neighbor candidates stored for the cell C depends on the side length variable X_{C}.

We investigate the conditional expectation $\Psi\left(X_{C}\right)=\mathrm{E}\left[N(C) \mid X_{C}\right]$ of $N(C)$ given X_{C}. The conditional expectation $\Psi\left(X_{C}\right)$ is a random variable. We have $\mathrm{E}\left[\Psi\left(X_{C}\right)\right]=E[N(C)]$ by the theorem on conditional expectation (see [34]). Thus,

$$
\begin{equation*}
\mathrm{E}[N(C)]=\int_{0}^{2-\frac{1}{m}} \mathrm{E}\left[N(C) \mid X_{C}=x\right] \cdot f_{X_{C}}(x) d x \tag{5.1}
\end{equation*}
$$

where $f_{X_{C}}$ is the density function of X_{C}.
We introduce the function $v_{C}:\left[0,2-\frac{1}{m}\right] \rightarrow[0,1]$ with

$$
v_{C}(x)=\operatorname{Pr}\left[p \in C_{s, x}\right],
$$

where p is some random point in $[0,1]^{d}$ and $C_{s, x}$ is the cube of side length x around the center s of the cell C. Because of uniform distribution the function $v_{C}(x)$ equals the volume of the box $C_{s, x} \cap[0,1]^{d}$.

The distribution function $F_{X_{C}}$ of X_{C} is given by:

$$
F_{X_{C}}(x)=\operatorname{Pr}\left[X_{C} \leq x\right]=1-\operatorname{Pr}\left[\left|C_{s, x} \cap P\right|=0\right]=1-\left(1-v_{C}(x)\right)^{n}
$$

Thus, the density function of X_{C} is given by

$$
\begin{equation*}
f_{X_{C}}(x)=n \cdot\left(1-v_{C}(x)\right)^{n-1} \cdot v_{C}^{\prime}(x) \tag{5.2}
\end{equation*}
$$

The conditional expectation $\mathrm{E}\left[N(C) \mid X_{C}=x\right]$ of $N(C)$ given $X_{C}=x$ is a function of x. In the following we determine $\mathrm{E}\left[N(C) \mid X_{C}=x\right]$ in terms of the volume $v_{C}(x)$ of the box $C_{s, x} \cap[0,1]^{d}$.

Lemma 5.1. The conditional expectation of $N(C)$ given $X_{C}=x$ is

$$
E\left[N(C) \mid X_{C}=x\right]= \begin{cases}1+(n-1) \cdot \frac{v_{C}\left(x+\frac{2}{m}\right)-v_{C}(x)}{1-v_{C}(x)} & \text { if } 0 \leq v_{C}(x)<1 \tag{5.3}\\ n & \text { if } v_{C}(x)=1\end{cases}
$$

Proof. Obviously, if $\operatorname{Pr}\left[p \in C_{s, x}\right]=v_{C}(x)=1$ then the probability for a data point p to be contained in $W(C)$ is also 1 , since $W(C)$ is the cube $C_{s, x+\frac{2}{m}}$. Thus, in this case $\mathrm{E}\left[N(C) \mid X_{C}=x\right]=n$.

Now assume $v_{C}(x)<1$. The event $\left\{X_{C}=x\right\}$ states that the cube $C_{s, x}$ has at least a data point on its boundary and its interior contains no data points. Let $Y_{C} \in\left\{p^{1}, \ldots, p^{n}\right\}$ be the random variable which represents the data point n_{C} computed for the cell C to be the nearest neighbor of its center s. Since the data points are drawn independently at random we have $\operatorname{Pr}\left(Y_{C}=p^{i}\right)=\frac{1}{n}$, for all $i \in\{1, \ldots, n\}$. We obtain :

$$
\begin{aligned}
\mathrm{E}\left[N(C) \mid X_{C}=x\right]= & \sum_{i=1}^{n} \operatorname{Pr}\left(\left.p^{i} \in C_{s, X_{C}+\frac{2}{m}} \right\rvert\, X_{C}=x\right) \\
= & \sum_{i=1}^{n}\left[\operatorname{Pr}\left(Y_{C}=p^{i}\right) \cdot \operatorname{Pr}\left(\left.p^{i} \in C_{s, X_{C}+\frac{2}{m}} \right\rvert\, X_{C}=x, Y_{C}=p^{i}\right)\right. \\
& \left.\quad+\operatorname{Pr}\left(Y_{C} \neq p^{i}\right) \cdot \operatorname{Pr}\left(\left.p^{i} \in C_{s, X_{C}+\frac{2}{m}} \right\rvert\, X_{C}=x, Y_{C} \neq p^{i}\right)\right] \\
= & \sum_{i=1}^{n} \frac{1}{n} \cdot 1+\left(1-\frac{1}{n}\right) \cdot \operatorname{Pr}\left(\left.p^{i} \in C_{s, x+\frac{2}{m}} \right\rvert\, p^{i} \notin \operatorname{int} C_{s, x}\right) \\
= & 1+\sum_{i=1}^{n}\left(1-\frac{1}{n}\right) \cdot \frac{\operatorname{Pr}\left(p^{i} \in C_{s, x+\frac{2}{m}} \backslash \operatorname{int} C_{s, x}\right)}{\operatorname{Pr}\left(p^{i} \notin \operatorname{int} C_{s, x}\right)} \\
= & 1+(n-1) \cdot \frac{v_{C}\left(x+\frac{2}{m}\right)-v_{C}(x)}{1-v_{C}(x)}
\end{aligned}
$$

where $\operatorname{int} C_{s, x}$ is the interior of the cube $C_{s, x}$.

By (5.1), (5.2) and (5.3) we get:

$$
\mathrm{E}[N(C)]=\int_{0}^{2-\frac{1}{m}} n \cdot(n-1) \cdot v_{C}\left(x+\frac{2}{m}\right) \cdot\left(1-v_{C}(x)\right)^{n-2} \cdot v_{C}^{\prime}(x) d x+n \cdot \int_{0}^{2-\frac{1}{m}} h(x) d x
$$

where $h(x)=v_{C}^{\prime}(x) \cdot\left(1-v_{C}(x)\right)^{n-1}+v_{C}(x) \cdot\left(\left(1-v_{C}(x)\right)^{n-1}\right)^{\prime}=\left(v_{C}(x) \cdot\left(1-v_{C}(x)\right)^{n-1}\right)^{\prime}$.

We have $\int_{0}^{2-\frac{1}{m}} h(x) d x=\left[v_{C}(x) \cdot\left(1-v_{C}(x)\right)^{n-1}\right]_{0}^{2-\frac{1}{m}}=0$, since $v_{C}(0)=0$ and $v_{C}\left(2-\frac{1}{m}\right)=1$. This implies:

$$
\mathrm{E}[N(C)]=\int_{0}^{2-\frac{1}{m}} n \cdot(n-1) \cdot v_{C}\left(x+\frac{2}{m}\right) \cdot\left(1-v_{C}(x)\right)^{n-2} \cdot v_{C}^{\prime}(x) d x
$$

We want to estimate $v_{C}\left(x+\frac{2}{m}\right)$ in terms of $v_{C}(x)$. The probability $v_{C}(x)=\operatorname{Pr}\left[p \in W_{C}^{x}\right]$ is the product of the side lengths $s_{1}(x) \leq s_{2}(x) \leq \ldots \leq s_{d}(x)$ of the box $C_{s, x} \cap[0,1]^{d}$.

By (2.3), the side lengths $s_{i}(x)$ have the following properties:

- $s_{j}(x) \leq x$ for all $1 \leq j \leq d$,
- $\frac{1}{2} \cdot s_{j}(x) \leq s_{i}(x) \leq 2 s_{j}(x)$ for all $i \neq j \in\{1, \ldots, d\}$.
- $\frac{1}{2} \cdot \lambda(x) \leq s_{j}(x) \leq 2 \lambda(x)$, where $\lambda(x)$ is the geometric mean of $s_{j}(x), j=1, \ldots, d$.

The side lengths $s_{j}\left(x+\frac{2}{m}\right)(j=1, \ldots, d)$ of the cube $C_{s, x+\frac{2}{m}}$ fulfill

$$
\begin{equation*}
\min \left\{1, s_{j}(x)+\frac{1}{m}\right\} \leq s_{j}\left(x+\frac{2}{m}\right) \leq s_{j}(x)+\frac{2}{m} \tag{5.4}
\end{equation*}
$$

We refer for illustration to Figure 5.3.
unit cube

Figure 5.3: Side lengths of $W(C) \cap[0,1]^{d}$

Lemma 5.2. Let s_{j} be the side lengths of the cube $C_{s, x}$ and let λ be their geometric mean. Given $a \in \mathbb{R}$, a>0 we have

$$
\left(\lambda+\frac{1}{2} a\right)^{d} \leq \prod_{j=1}^{d}\left(s_{j}+a\right) \leq(\lambda+2 a)^{d}
$$

Proof. Let $\mathcal{D}=\{1, \ldots, d\}$ be the set of dimensions. For some subset $S_{n-k} \subseteq \mathcal{D}$ of size $n-k$, let denote by $\pi\left(S_{n-k}\right)=\prod_{j \in S_{n-k}} s_{j}$ the product of the corresponding side lengths $s_{j}, j \in S_{n-k}$. We have

$$
\begin{equation*}
\prod_{j=1}^{d}\left(s_{j}+a\right)=\sum_{k=0}^{d} a^{k} \cdot \sum_{\substack{S_{n-k} \subseteq \mathcal{D} \\\left|S_{n-k}\right|=n-k}} \pi\left(S_{n-k}\right) \tag{5.5}
\end{equation*}
$$

Consider a side length s_{l}, where $l \in S_{n-k}$ for some subset S_{n-k}. By the properties of the side lengths, we obtain:

$$
\frac{\lambda^{d}}{2^{k} \cdot \pi\left(S_{n-k}\right)}=\frac{1}{2^{k}} \pi\left(\mathcal{D} \backslash S_{n-k}\right) \leq\left(s_{l}\right)^{k} \leq 2^{k} \pi\left(\mathcal{D} \backslash S_{n-k}\right)=\frac{2^{k} \lambda^{d}}{\pi\left(S_{n-k}\right)}
$$

which implies

$$
\frac{\lambda^{d(d-k)}}{2^{k(d-k)} \cdot\left(\pi\left(S_{n-k}\right)\right)^{d-k}} \leq\left(\pi\left(S_{n-k}\right)\right)^{k} \leq \frac{2^{k(d-k)} \lambda^{d(d-k)}}{\left(\pi\left(S_{n-k}\right)\right)^{d-k}} .
$$

This implies together with $2^{\frac{k(d-k)}{d}} \leq 2^{k}$:

$$
\frac{1}{2^{k}} \cdot \lambda^{d-k} \leq \pi\left(S_{n-k}\right) \leq 2^{k} \cdot \lambda^{d-k}
$$

By (5.5), we obtain

$$
\left(\lambda+\frac{1}{2} a\right)^{d}=\sum_{k=0}^{d}\binom{d}{k} a^{k} \cdot \frac{1}{2^{k}} \cdot \lambda^{d-k} \leq \prod_{j=1}^{d}\left(s_{j}+a\right) \leq \sum_{k=0}^{d}\binom{d}{k} a^{k} \cdot 2^{k} \cdot \lambda^{d-k}=(\lambda+2 a)^{d}
$$

Lemma 5.2 and (5.4) provide an upper bound on $v_{C}\left(x+\frac{2}{m}\right)$ in terms of $v_{C}(x)$:

$$
\begin{equation*}
v_{C}\left(x+\frac{2}{m}\right) \leq\left(\sqrt[d]{v_{C}(x)}+\frac{4}{m}\right)^{d} \tag{5.6}
\end{equation*}
$$

Let $d^{\prime}(C, x)=\max \left\{j: s_{j}(x) \leq 1-\frac{1}{m}\right\}$. Note that for a given cell $C, d^{\prime}\left(C, X_{C}\right) \in\{1, \ldots, d\}$ is a random variable depending on X_{C}. If $s_{l}(x)>1-\frac{1}{m}, l \in\{1, \ldots, d\}$ then the side length $s_{l}\left(x+\frac{2}{m}\right)$ of the cube $W(C)$ equals 1. Let denote $v^{\prime}(x)=\prod_{j=1}^{d^{\prime}} s_{j}(x)$, if $d^{\prime}(C, x)=d^{\prime} \in\{1, \ldots, d\}$. By (5.4), we obtain

$$
\begin{equation*}
\left(\sqrt[d^{\prime}]{v_{C}^{\prime}(x)}+\frac{1}{2 m}\right)^{d^{\prime}} \leq v_{C}\left(x+\frac{2}{m}\right) \leq\left(\sqrt[d^{\prime}]{v_{C}^{\prime}(x)}+\frac{4}{m}\right)^{d^{\prime}} \quad \text { if } d^{\prime}(C, x)=d^{\prime} \tag{5.7}
\end{equation*}
$$

We focus on the upper bound obtained in (5.6) and we get

$$
\begin{equation*}
\int_{0}^{2-\frac{1}{m}} n \cdot(n-1) \cdot v_{C}\left(x+\frac{2}{m}\right) \cdot\left(1-v_{C}(x)\right)^{n-2} \cdot v_{C}^{\prime}(x) d x \leq \mathcal{F}\left(n, \frac{4}{m}\right) \tag{5.8}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{F}(n, a) & =\int_{0}^{2-\frac{1}{m}} n \cdot(n-1) \cdot\left(\sqrt[d]{v_{C}(x)}+a\right)^{d} \cdot\left(1-v_{C}(x)\right)^{n-2} \cdot v_{C}^{\prime}(x) d x \\
& =\int_{0}^{1} n \cdot(n-1) \cdot(\sqrt[d]{y}+a)^{d} \cdot(1-y)^{n-2} d y \\
& =\int_{0}^{1} n \cdot(n-1) \cdot \sum_{i=0}^{d}\binom{d}{i} \cdot y^{i / d} \cdot a^{d-i} \cdot(1-y)^{n-2} d y \\
& =\sum_{i=0}^{d} n \cdot\binom{d}{i} \cdot a^{d-i} \cdot \int_{0}^{1} y^{i / d} \cdot(1-y)^{n-2} \cdot(n-1) d y \tag{5.9}
\end{align*}
$$

The following lemma solves a useful integral:
Lemma 5.3. Consider $d \in \mathbb{N}, d \geq 2, j \in \mathbb{N}, j \geq 1$ and $i \in\{1 \ldots, d\}$. The following equality holds:

$$
\int_{0}^{1} y^{i / d} \cdot j \cdot(1-y)^{j-1} d y=\binom{j+i / d}{j}^{-1}
$$

Proof. Let $f(j)=\int_{0}^{1} y^{i / d} \cdot j \cdot(1-y)^{j-1} d y$. We have:

$$
\begin{aligned}
\left(1+\frac{i / d}{j}\right) \cdot f(j) & =f(j)+\int_{0}^{1}\left(y^{i / d}\right)^{\prime} \cdot y \cdot(1-y)^{j-1} d y \\
& =\left(f(j)-\int_{0}^{1} y^{i / d} \cdot(1-y)^{j-1} d y\right)+\left(\int_{0}^{1} y^{i / d} \cdot y \cdot(1-y)^{j-2}(j-1) d y\right) \\
& =\int_{0}^{1} y^{i / d} \cdot(1-y)^{j-1}(j-1) d y+\left(-\int_{0}^{1} y^{i / d} \cdot(1-y)^{j-1}(j-1) d y+f(j-1)\right) \\
& =f(j-1)
\end{aligned}
$$

Thus, $f(j)=\frac{j}{j+i / d} \cdot f(j-1)$ which together with $f(1)=\int_{0}^{1} y^{i / d} d y=\frac{1}{1+i / d}$ implies:

$$
f(j)=\frac{j}{j+i / d} \cdot \frac{j-1}{j-1+i / d} \cdot \cdots \cdot \frac{1}{1+i / d}=\binom{j+i / d}{j}^{-1}
$$

By Lemma 5.3, we get:

$$
\begin{equation*}
\int_{0}^{1} y^{i / d} \cdot(1-y)^{n-2} \cdot(n-1)=\binom{n-1+i / d}{n-1}^{-1} \tag{5.10}
\end{equation*}
$$

Proposition 5.1. Consider $d \in \mathbb{N}, d \geq 2, j \in \mathbb{N}, j \geq 1$ and $i \in\{1 \ldots, d\}$. The following inequalities hold:

$$
\begin{equation*}
\frac{(1 / e)^{i / d}}{(\sqrt[d]{n})^{i}} \leq\binom{ n-1+i / d}{n-1}^{-1} \leq \frac{e^{i / d}}{(\sqrt[d]{n})^{i}} \tag{5.11}
\end{equation*}
$$

Proof. We have $e^{x} \leq\left(1+\frac{x}{k}\right)^{k+1}$, for all $x \in[0,1]$ and $k \in \mathbb{N}, k \geq 1$. This is based on the fact that $h(x):[0,1] \rightarrow \mathbb{R}$ with $h(x)=(k+1) \ln \left(1+\frac{x}{k}\right)-x$ fulfills $h(0)=0$ and is monotone increasing on $x \in[0,1]$, since $h^{\prime}(x)=\frac{1-x}{(k+x)(k+1)} \geq 0$ for $x \in[0,1]$. Thus, $e^{\frac{i}{d} \cdot \frac{1}{j+1}} \leq\left(1+\frac{i / d}{j}\right)$ for $i \in\{1 \ldots, d\}$ and we obtain:

$$
\binom{n-1+i / d}{n-1}^{-1}=\prod_{j=1}^{n-1} \frac{j}{j+i / d} \leq e^{-\frac{i}{d} \sum_{j=1}^{n-1} \frac{1}{j+1}}<e^{-\frac{i}{d}(\ln n-1)}=\frac{e^{i / d}}{(\sqrt[d]{n})^{i}}
$$

which proves the right inequality of the proposition.
Now, consider $h(x):[0,1] \rightarrow \mathbb{R}$ with $h(x)=\sum_{j=1}^{n-1} \ln (j+x)-\sum_{j=1}^{n-1} \ln j-x \ln n-x$. Obviously, $h(0)=0$ and $h^{\prime}(x)=\sum_{j=1}^{n-1} \frac{1}{j+x}-\ln n-1<0$. Thus, $h(x) \leq 0$ for all $x \in[0,1]$, and with this $h(i / d)<0$ which proves the left inequality of the proposition.

By (5.11), (5.10) and (5.9), we get:

$$
\left(\frac{1}{\sqrt[d]{e}}+a \sqrt[d]{n}\right)^{d} \leq \mathcal{F}(n, a) \leq(\sqrt[d]{e}+a \sqrt[d]{n})^{d}
$$

Thus, by (5.8) we obtain

$$
\begin{equation*}
\mathrm{E}[N(C)] \leq\left(\sqrt[d]{e}+\frac{4 \sqrt[d]{n}}{m}\right)^{d} \tag{5.12}
\end{equation*}
$$

By (5.7), we obtain also a lower bound $\left(\frac{1}{\sqrt[d]{e}}+\frac{d \sqrt{n}}{2 m}\right)^{d} \leq \mathrm{E}\left[N(C) \mid d^{\prime}\left(C, X_{C}\right)=d\right]$ under the condition $d^{\prime}\left(C, X_{C}\right)=d$.

We summarize the results in the following theorem.
Theorem 5.1. The expected asymptotic runtime $t=t(m)$ of the query algorithm and the expected asymptotic storage size $s=s(m)$ of the data structure $\mathcal{D}=\mathcal{D}(m)$ are given by:

$$
\begin{align*}
& t(m)=O\left(d \cdot\left(\sqrt[d]{e}+\frac{4 \sqrt[d]{n}}{m}\right)^{d}\right) \tag{5.13}\\
& s(m)=O\left(d \cdot m^{d} \cdot\left(\sqrt[d]{e}+\frac{4 \sqrt[d]{n}}{m}\right)^{d}\right) \tag{5.14}
\end{align*}
$$

respectively, where m is a parameter.
The time-space tradeoff between the expected storage size $s(m)$ of the data structure and the expected running time $t(m)$ of the query algorithm is controlled by the parameter m. As an example, let $m=m_{*}:=$ $\frac{4 d \cdot \sqrt[d]{n}}{\sqrt[d]{d e} \cdot \ln \ln n}$ and we get:

$$
\begin{aligned}
& t\left(m_{*}\right)=O\left(d \cdot\left(1+\frac{4 \sqrt[d]{n}}{\sqrt[d]{e} \cdot m_{*}}\right)^{d}\right)=O\left(d \cdot\left(1+\frac{\ln \ln n}{d}\right)^{d}\right)=O(d \log n) \\
& s\left(m_{*}\right)=O\left(m_{*}^{d} \cdot t\left(m_{*}\right)\right)=O\left(\left(\frac{4 d}{\ln \ln n}\right)^{d} n d \log n\right)
\end{aligned}
$$

If $d^{\prime}\left(C, X_{C}\right)=d$ for all cells C, we obtain $t=\Theta\left(d \cdot\left(1+\frac{\sqrt[d]{n}}{m}\right)^{d}\right)$ and $s=\Theta\left(d \cdot m^{d} \cdot\left(1+\frac{\sqrt[d]{n}}{m}\right)^{d}\right)$. This provides $m=\Theta\left(\sqrt[d]{\frac{s}{d}}-\sqrt[d]{n}\right)$ and the tradeoff $t=\Theta\left(\frac{s}{(\sqrt[d]{s}-2 \sqrt[d]{n d})^{d}}\right)$.

The data structure can be easily extended to work in the external-memory model of computation, by storing for each cell C the set L_{C} of nearest-neighbor candidates in contiguous locations in the external memory.

