Chapter 5

Time-Space Tradeoffsfor Nearest-Neighbor
Search

We develop a method which provides a tradeoff between the space complexity of the data structure and the
time complexity of the query algorithm. The idea is to compute in the preprocessing phase a decomposition
of the d-dimensional unit cube into simple cells and store for each cell C of the decomposition aset Lo C P
of nearest-neighbor candidates. We guarantee that for each query point in the cell C' the corresponding set
L¢ contains the nearest neighbor to ¢ from the data set P. Given a query point g, the query algorithm
determines the cell C containing it, and checks the corresponding set L by the brute-force method to find
the nearest neighbor to ¢. The size of the decomposition is controlled by a parameter m, which provides a
time-space tradeoff for the data structure.
A summary of the results presented in this chapter has appeared in [38].

5.1 Thedatastructure

We consider the decomposition of [0, 1] in m? congruent grid-cells which are d-dimensional cubes of side
length % for a parameter m > 2 (see Figure 5.1). We build our data structure D in the preprocessing phase.
For each cell C' the corresponding set L of nearest-neighbor candidates is determined. This set includes all
possible nearest neighbors from the data set P to points of the cell C. To compute the set L, we determine
a suitable cube W (C) around the center s of the cell C, and choose the set L to equal W(C) N P. We
compute the side length of the cube W (C) as follows. We determine the nearest neighbor n ¢ from P to the
center s of the cell C. The interior of the cube C; , around s of side length z = 2||n¢c — s/, CONtains no
data points from P. We choose the cube W (C) to be the cube around s of side length = + % (see Figure
5.2). We show in the following that this cube contains all possible nearest neighbors from the data set P to
points of the cell C. For each point r € C' the nearest neighbor n(r) from P to r is contained in W (C), the
cube around s of side length 2[ln¢c — s|jc + 2t

[n(r) = slleo < [In(r) = 7lloo +lIr = sllec < [In0 = Tlloo + [ = 5]loo

N

< lne = slloo + 2[Ir = sllo

1
[nc = slloo + —-
m

Given the cube W (C), the set Lc = W(C) N P is determined in time O(nd). Since we can determine
nc for each cell C in time O(nd) the total preprocessing time is O(m¢? - nd). The storage size of the data
structure Dis Y. d-| Le| = O(m?-nd).

cell ¢
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Figure 5.1: Decomposition of the unit cubein  Figure 5.2: Cube W contains all nearest neigh-
congruent cells borsto cell C' from the point set P

The query algorithm determines for a query point ¢ = (g1, ... ,qq) € [0,1]¢ the cell C(q) containing q.
This cell is determined in time ©(d) by the values [ 4 |, 1 < j < d. Next we determine the nearest neighbor
from the set Lo = W(C) N P to the query point g, which is also the nearest neighbor from the set P to
g. This computation is done by the brute-force method in ©( d - | L¢(q) | ) time. Instead of the brute-force
method we can use the ADAPTIVE METHOD, described in Section 2.2, to determine the nearest neighbor
from the set L¢ to the query point g.

We determine the expected query time and the expected space complexity of the data structure D, under
the assumption that the points of P = {p!,...,p"} are drawn independently at random under uniform
distribution. For the expected runtime analysis of the query algorithm we choose the brute-force method to
determine the nearest neighbor from the set L¢ to g.

5.2 Theexpected runtime and expected space complexity

To analyze the expected runtime and the expected storage size of the data structure D, we investigate for a
fixed cell C' of the decomposition the expected number of data points from P contained in the corresponding
cube W(C). Let N(C) be the random variable representing the number |IW (C) N P| of nearest neighbor
candidates stored for the cell C.

Let X be the continuous random variable for the value z = 2||nc — s||«, Where ne is the computed
nearest neighbor from P to the center s of the cell C. The value z is the maximum side length of a cube
around s containing in its interior no points of P. Note that z € [0,2 — %]. The corresponding cube W (C)
of the cell C has center s and side length = + % The variable N(C') representing the number of nearest
neighbor candidates stored for the cell C' depends on the side length variable X .

We investigate the conditional expectation ¥'(X¢) = E[ N(C) | X¢ ] of N(C) given X¢. The con-
ditional expectation (X ) is a random variable. We have E[¥(X )] = E[N(C)] by the theorem on
conditional expectation (see [34]). Thus,

EINO)] = [ "EIN©) | Xe = 2] fxola) do 51

where fx,, is the density function of X.
We introduce the function vc : [0,2 — L] — [0, 1] with

vo(z) = Pripe Csy ],
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where p is some random point in [0, 1]¢ and Cs ,; is the cube of side length z around the center s of the cell
C. Because of uniform distribution the function v (z) equals the volume of the box C , N [0, 1]¢.
The distribution function F'x, of X is given by:

Fx.(z) = PriX¢ <z] = 1-Pr[|Cs; NP|=0] = 1—(1—-wve(z))".
Thus, the density function of X is given by
fxe(@) = n-(1—-vo() )" - vp(x) - (5.2)

The conditional expectation E[ N(C) | X¢ = z | of N(C) given X¢ = z is a function of z. In the
following we determine E[ N(C) | X¢ = = ] in terms of the volume v (z) of the box Cs , N [0, 1]4.

Lemma5.1. The conditional expectation of N(C') given X¢ = z is

vo % — .
E[N(C) | Xo =] = { L+ (n=1) —5m ~ T0<wel) <1 (5.3)
n ifvo(z) =1

Proof. Obviously, if Prjp € Cs ;] = ve(z) = 1 then the probability for a data point p to be contained in
W(C) isalso 1, since W(C) is the cube C; ,, 2. Thus, inthiscase E[ N(C) | X¢ =z | = n.

Now assume veo(z) < 1. The event {Xcm: x} states that the cube C , has at least a data point on
its boundary and its interior contains no data points. Let Yo € {p',...,p"} be the random variable which
represents the data point n computed for the cell C' to be the nearest neighbor of its center s. Since the data

points are drawn independently at random we have Pr(Y¢o = pt) = % forall7 € {1,...,n}. We obtain :
n .
E[N(C)|Xc=z] = ZPF(pz €C,xor2 | Xo ::1:)
i=1

n
= Z [Pr(YC:pi)-Pr(piECs,Xc+z \XC:iU,YC:Pi)
i=1 "
—l—Pr(YC #p’)PT(pZ € Cs,Xc-Fl |XC ::L.aYC;épZ)]

n

1 1 ; i
= Zﬁ'1+(1_ﬁ>'Pr(PZECs,H%|p1¢'”tCs,w)

i=1
_ 1+i - 1), Pr (7' € Gy 2 \ Nl )
N — n Pr(p* ¢ intCs )
“vo(z + 2) —ve(z)
1 —ve(x)

= 14+(n-1)

where intC; ; is the interior of the cube C ;.

By (5.1), (5.2) and (5.3) we get:

21

m

=
E[N(C)] = /0 n-(n—l)-vc(x+%)-(l—vc(x))”_2-vb(w) dz —I—n-/o h(z) dz
where h(z) = vi(2) - (1 - ve (@)™ +ve() - (1 - vo(@)"™") = (vel@) - (1 - ve(@)" )"
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1 1
We have f02 ™ h(z) dr = [vc(z) - (1 — vc(m))"—l]i_m =0, since vc(0) = 0 and ve(2 — L) = 1.

This implies:
24
E[N(C)] = /0 n-(n—1)-ve(z+ 2) - (1 —ve(@)" - vp(e) de

We want to estimate ve(z + %) in terms of vc(x). The probability ve(z) = Pr[p € W ] is the product
of the side lengths s1(z) < sa(z) < ... < sq(x) of the box Cs , N [0, 1]%.
By (2.3), the side lengths s;(z) have the following properties:

o s;(z) <zforalll <j<d,

-sj(z) < si(x) < 2sj(x) foralli # 5 € {1,...,d}.

N[—= N

o 5 A(z) < sj(x) < 2X(x), where A(z) is the geometric mean of s(z),5 = 1,...,d.

The side lengths s;(z + 2) (j = 1,...,d) of the cube C, , » fuffill

(5.4)

3o

min{ 1, s;j(z)+ 5 } < sj(z+32) < sj(z) +
We refer for illustration to Figure 5.3.

unit cube

W(C)
Csx

Figure 5.3: Sidelengths of W (C) N [0, 1]¢

Lemma5.2. Let s; be the side lengths of the cube C; , and let X be their geometric mean. Givena € R,
a > 0 we have

(A—i—%a)d < (sj+a) < (A +2a)¢ .

—-

Jj=1



Proof. Let D = {1,...,d} be the set of dimensions. For some subset S,,_, C D of size n — k, let denote
by 7(Sp—k) = Hjesn_k s; the product of the corresponding side lengths s, j € S,,—;. We have

d d
[Gita) => d > 7(Sa), (5.5)
j=1 k=0

Sp_kCD
|Sp—gl=n—Fk

Consider a side length s;, where [ € S,,_ for some subset S,,_x. By the properties of the side lengths, we
obtain: 4 o
A 1 28\
_— = D k < 2k D — == .
ok . 7T(Sn lc) 21C m(D\ Snk) < (s1)" < (D \ Sn—k) W(Sn—k)

which implies

ok(d—k) yd(d—k)

\d(d—k) .
7(S_ A —
= ( ( k)) = ("(Sn—k))d_k

2R(d—H) . (m(Sp_g))*F T
This implies together with

%"‘H < (Spg) < 28-XF

By (5.5), we obtain

d d
d
(A + 3a) Z() /\dk<Hs]—|—a SZ(k)ak.2k.)\d_k:(/\+2a)d
j=1 k=0

k=0

Lemma 5.2 and (5.4) provide an upper bound on v¢(z + %) in terms of ve(x):

ve (s+2) < (Yool + %)d. (5.6)

Let '(C,z) = max{j : sj(z) < 1- 1} Note that for a given cell C, d'(C, X¢) € {1,...,d} isa
random variable depending on X¢. If s;(z) > 1 — L, 1 € {1,...,d} then the side length s;(z + 2) of the
cube W (C) equals 1. Let denote v'(z) = H;i' 185(z ), if d’(C,m) =d €{1,...,d}. By (5.4), we obtain

2m

d &
(d’ v (z) + L) <wve(z+2) < (d’ v (z) + %) ifd(C,z) =d . (5.7)
We focus on the upper bound obtained in (5.6) and we get
9L
/ n-(n—1)-volz+ 2)-(1-ve(@) 2 vh@) de < Fln, 1) (5.9)
0

where

B /oln'(”_1)'(<‘/§+a)d'(1—y)"_2 dy

1 d
/0

n-(n—l)-g (f) et (1 )2 dy

d 1
= ) n (j) 'G'H-/O Y/t 1=y (n — 1) dy (5.9)

1=0
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The following lemma solves a useful integral:

Lemma5.3. Consider d e N,d > 2,57€N,7>1andi € {1...,d}. Thefollowing equality holds:
1 . . -1
id - i +1/d
/O g (L —yy T dy = (‘7 j/ )

Proof. Let f(j) = [, y"/%-j- (1 —y)7 " dy. We have:
. 1
(1 + lg—d> fG) = fG) +/0 W y-(1—yy " dy

(f(j)—/olyi/d-(l—y)j‘ldy> +(/Olyi/d-y-(1—y)J 2(J—l)dy>

1 1
- /0yi/d-<1—y)f—1<j—1)dy+(—/0 y"/d-(l—y)j‘l(j—l)dy+f(j—1)>

= fG-1
Thus, f(j) = ﬁ-f(] — 1) which together with f(1 fly’/d dy = 1+z/d implies:
1) = i -1 1 (]-l-l/d)
D= 5vigd T—1+ijd " 1+id  \ j
([l
By Lemma 5.3, we get:
L - n—1+i/d\""
/ y 1=y (n-1) = ( /) (5.10)
0 n—1
Proposition 5.1. Consider d € N,d > 2,5 €N, j > 1andi € {1...,d}. Thefollowing inequalities hold:
i/d _ . -1 i/d
(1/6). < n—1+1i/d < et (5.11)
() n—1 ()

Proof. We have e < (1 + £)¥*! forall z € [0,1] and k € N,
h(z) : [0,1] = Rwith h(z) = (k + 1)In(1 + £) — z fulfills h,(
FReEs,

€ [0,1], since 7'(z) = gy 2 0forz € [0,1]. Thus, e
we obtain:

> 1. This is based on the fact that
= 0 and is monotone increasing on

< (1422 fori e {1...,d} and
<(1+%)

\./w

. —1 n—1 . e ) i/d
(n o 1 + Z/d> = H - ] S e_% Z]:11 ]% < e_%(lnn_l) = 61/ T
el i/d

n—1

which proves the right inequality of the proposition.

n—1 n—1
Now, consider h(z) : [0,1] - Rwithh(z) = > In(j+z)— > Inj—zInn—z. Obviously, h(0) =0
j=1 j=1
n—1
and h'(z) = Z_: m —Inn—1 < 0. Thus, h(z) < 0 for all z € [0,1], and with this A(i/d) < 0 which
proves the left inequality of the proposition. 0
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By (5.11), (5.10) and (5.9), we get:

(%Jra\d/ﬁ)d < Fln,a) < (Ve+ai/n)

Thus, by (5.8) we obtain

4\ @
E[N(C)] < <%+4f> . (5.12)

m

d
By (5.7), we obtain also a lower bound (% + %) < E[N(C)|d'(C,X¢) = d] under the condition
d(C,Xc) =d.

We summarize the results in the following theorem.

Theorem 5.1. The expected asymptotic runtime ¢ = ¢(m) of the query algorithm and the expected asymp-
totic storage size s = s(m) of the data structure D = D(m) are given by:

Hm) = O(d-(\d/é+4%)d) (5.13)

m
d d
4\/5) ) (5.14)
m

s(m) = O(d-md-(\d/é+

respectively, where m is a parameter.

The time-space tradeoff between the expected storage size s(m) of the data structure and the expected
running time ¢(m) of the query algorithm is controlled by the parameter m. As an example, let m = m, :=

4d Yn .
%_hﬁm and we get:

t(m.) = O(d.(l+%)d> = 0<d.(1+lnldn">d> — O(dlogn) ,
0 (mg.t(m*)) -0 ( (mﬁn)d ndlogn> .

If d'(C, X¢) = d for all cells C, we obtaint = ©(d- (1 + %)d yand s = O(d-m?- (1+ %)d ). This

i — a/s _ d — (. E—
provides m = ©({/5 — ¥/n) and_the tradeofft = © (_( G2 Und ) ) _

The data structure can be easily extended to work in the external-memory model of computation, by
storing for each cell C the set L of nearest-neighbor candidates in contiguous locations in the external
memory.

s(my)
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