
Chapter 4

Extensions of the CUBE METHOD

We present several generalizations of the CUBE METHOD. In section 4.1 we analyze the query
algorithm GROWING-CUBE. The difference to the CUBE METHOD occurs in the case when the
cube

����� �
is empty : instead of calling the brute-force method, the GROWING-CUBE enlarges the

cube with center � until it contains data points. In Section 4.2 we extend the algorithm GROWING-
CUBE to compute the � nearest neighbors to some query point � from the data set � . Next we
generalize in Section 4.3 the expected runtime analysis of our algorithms to other “well-behaved”
probability distributions. In Section 4.4 we develop extensions of our algorithms which work
efficiently in the external-memory model of computation introduced in [2]. Section 4.5 shows an
experimental comparison of implementations of the presented variants of the CUBE METHOD. We
emphasize the factors by which the algorithms are faster than the brute-force method.

A part of the results presented in this chapter has been published in [39].

4.1 The GROWING-CUBE variant

If the cube
�	��� �

considered by the CUBE METHOD is empty, the alternative to determining the
nearest neighbor by brute-force is to consider a larger cube with center � and determine the points
contained in it. The size of the current cube should be increased as long as it contains no points of� . This searching algorithm is called the GROWING-CUBE method.

The first cube
�	��� ��

around � contains an expected number ��
 of points. ��� is the expected
number of points which are contained in the cube

����� ���
, considered in the � -th iteration, i.e.

E ��� ����� ����� ��� ��� ��� . The side length �� of this cube
�	��� ���

is determined by the procedure
SIDE_LENGTH, as described in Section 2.1.2. SIDE_LENGTH gets a sequence of parameters!#" �$�%�'&
�(�'&) (+*,*,*-(�'&�.(/*,*,*-(�'&�103254 such that

687:9<; � &�5=�
?> !A@CB�D+" � &� " 6FEHGI; ��� @CBJD * (4.1)

A more exact setting will be specified later. The side lengths J� are determined such that

� &� "
E ��� ����� � � � �K�L�M�+��� (� &� > ! * (4.2)

The sequences ; �'&� D �5N�
 and ; ��� D �5N�
 are strictly monotone increasing. The termination of the
algorithm is ensured and we define ��O�PRQK� 6S7T9<; �U�V� &� � BJD

. The following gives a schematic
description of the algorithm.

53

GROWING_CUBE (� @��)�����	�
;

repeat
t:=t+1;
if (
 &����
) then������� ��� := SIDE_LENGTH(
 &� ���);� � �

:= SEARCH_CUBE(
� � ����� � ���);

else
� ��� ��� �

;
until (� � � � ��� �

);� := BRUTE_FORCE
� � ��� � ;

return
� ;

SEARCH_CUBE stands for one of the orthogonal range searching procedures SCAN, REJECT and
SCAN_REJECT. Procedure SIDE_LENGTH was introduced in Section 2.1.2. It computes the side lengths
of the cubes ! ��� ��� . The order

�
of dimensions corresponds to the increasing order of the side lengths of a

box ! ��� � �#"%$ � �'&)(+*
. This order depends only on the query point and is also computed by the SIDE_LENGTH

procedure, but just only once in the first iteration in , �.-�/10324- � time.

We measure the running time 576�8�9�: of the GROWING-CUBE method by the number of performed com-
parisons and arithmetic operations.

For the expected runtime analysis we introduce the discrete random variable ; � that represents the
number of points of

�
contained in the cube ! ��� � � . To enable compactness of formulas, we define ;=< �� < �
 < �>�

. Let ? � be the discrete random variable representing the number of tests required by an
independent call of SEARCH_CUBE

�@� � ���A� � � to determine the points of
�

contained in the cube ! ��� � � .
The expected runtime of the GROWING-CUBE method is given by:

E
$ 5B6�8�9C: (� E

$ 57DFE *�G (IH E
$ 57D GCJ 8LKNM (IH E

$ 5PO 8LQ � G (
where E

$ 57D GCJ 8�KFM (is the expected runtime of the SEARCH_CUBE procedure:

E
$ 5PD G�J 8�KFM (�

� 03254 =�
R
�+S<
 Pr T@; �5=�
 �	�VUXW'Y[Z\W

E
$? � �'; �5=�
 �	� (B�

(4.3)

where
Y'Z

is the corresponding constant of the SEARCH_CUBE procedure.
E
$ 5PO 8�Q � G (is the expected runtime of the brute-force part of the GROWING-CUBE method:

E
$ 5PO 8LQ � G (� �103254R

�+S<
 Pr T ; �5=�
 �]� " ; � � � U W - W^Y[_%W
E
$; � �'; �5=�
 �	� � ; � � � (B�

(4.4)

where
Y'_

is the corresponding constant of the brute-force method.
The expected runtime E

$ 5`DFE *�G (, required to compute the side lengths of the cubes ! ��� � � and the order�
of dimensions, is given by:

E
$ 57DFE *�G (�

�103254L=�
R
�+S<
 Pr T ; �5=�
 �	� U W'Y)abW - W /1032#�.-
 �C� (4.5)

where
Y[a

is the constant of the SIDE_LENGTH procedure.

54

In the following we first give bounds on E
$ 5 DNE *�G (and E

$ 5PO 8LQ � G (. Next we present the expected
runtime analysis of the SEARCH_CUBE part for each of the 3 searching strategies : SCAN, REJECT and
SCAN_REJECT.

The analysis uses a bound on the probability that the cube ! ��� � � is empty:

Pr T ; � �	� U �
Pr
� ! ��� � � is empty � � � &��
 �

����	��
 =
� ��� (4.6)

We used Pr
� �� ! ��� ��� � � � �� for some random point �� $ � �'&)(�*

.
The expected runtime to determine the side lengths of the cubes can be bounded by using (4.6),
 � ��
 H]&

for
& � � � � O�PRQ , /1032 � �
 H	& � � / 032
 H �

for
��� &

and (4.5):

E
$ 57DNE *�G (� Y�a W - W /1032#�
 - � W

�103254L=)R
�+S <

� &��
 �

 ��� H Y�abW - W �103254L=)R

�+S <
� � H]& � W � &��
 �

 ���
� Y�a W - W /1032#�
 - � W R �5N <
 =
�

� H Y�a W - W R
�5N <

� � H	& � W
 =
� � � (4.7)

Let ; �E ��� � �'&�� with � � & � ����� �
 be discrete random variables such that
� ; �E � & ��� � �

point E �! ��� � � � . We use ; � �"! �E1S<
 ; �E and Pr T ; �E � & U � � �� . We bound the expected runtime of the brute-force
part as follows:

E
$ 5PO 8LQ � G (� Y[_%W � 03254R

�+S<
 Pr T ; �5=�
 �]� " ; � � � U W - W �R E S<
 E
$; �E �'; �5=�
 �]� � ; � � � (

� Y _ W - W � 03254R
�+S<

�R E S<
 Pr T ; �E � & " ; �5=�
 �	� " ; � � � U%$
� Y _ W - W � 03254R

�+S<

�R E S<
 Pr T ; �E � & " ; �5=�
 �	� U�$

� Y _ W - W � 03254R
�+S<

�!E S<
 # Pr T ; �E � & " ; �5=�
E �	� U W'&(*)S#E Pr
� ; �5=�
(�	� � $+$

� Y[_%W - W � 03254R
�+S<

W �
 �

�
 �5=�

 � W � &��
 �5=�

 � � =�
 (4.8)

We used Pr T ; �E � & " ; �5=�
E �	� U �
Pr
� E � ! ��� ����, ! ��� � �.-
 � � � ��

� � �.-
� .

Expected runtime of GROWING_CUBE when searching with SCAN

We choose the sequence �
 &� � �5N�
 such that

 &
 �
 � & �
 &) �0/
 � ����� �
 &� � �
 � ����� �
 &�103254 �
 (4.9)

We specify the value
 later.
By (4.7) and by
 � �
 &� � �
 ,

& � � � � O�PRQ , we obtain:

E
$ 57DFE *�G (� , � - /1032B�.-
 � �

�
(4.10)

55

Since
 =�� -
� �
) for
 ���
and
 � � �
 , we obtain, by (4.8) and (4.2), the following:

E
$ 5BO 8LQ � G (� Y _ W - W � 03254R

�+S<

�
 H]& � � &��
 �5=�

 � � =�
 � Y _ W �
 H	& � W - W R �5N <
 =
�
� � -
�

� Y[_%W �
 H]& � - W R �5N <
&/ � � � / W'Y[_%W �
 H	& � - (4.11)

To estimate the scanning part we recall the analysis of the SCAN procedure, which we presented in
Section 2.1.2. We focus on the number 5 D K J � of performed tests of coordinates.

In Section 2.1.2 we denoted by ! (��� � � the box obtained by relaxing the side lengths of the cube ! ��� ��� to
unit intervals with respect to those dimensions different from the first � ones in the list

�
. For

& � � � � O�PRQ
we consider:

E
$ 5 D K J � �
 �C� �C; �5=�
 �	� (�
 W � &4H * =�
R(S<
 Pr � E � ! (��� � � �C; �5=�
 �	��� � � (4.12)

where 5 D K J � �
 �C� is the number of comparisons required by an independent call of SCAN
�@� � � � � . Since the

event ” E � ! (��� � � ” and the event ” ; �5=�
� �]�
” are independent for all 	�
� � �'& � 	 �
 we obtain

Pr � E � ! (��� � � �C; �5=�
 �	� � �
Pr � E � ! (��� � � �C; �5=�
E �]� � �

Pr � E � ! (��� � �
�� E
� ! ��� � �.-
 �
Because of ! ��� � � -
�� ! (��� � � the following holds:

Pr � E � ! (��� ������ E
� ! ��� ���.-
 � � Pr
$ E � ! (��� ��� (
� Pr

$ E � ! ��� ���.-
 (&��
Pr
$ E � ! ��� � � -
 (� Pr

$ E � ! (��� ��� ((4.13)

which implies:

E
$ 5 D K J � �
 �C� �C; �5=�
 � � (� E

$ 5 D K J � �
 �C� (
�

(4.14)

By (4.6) and (4.14), we obtain:

E
$ 5 D K J � (� �103254L=�
R

�+S<
 Pr T ; �5=�
 �	� U W
E
$ 5 D K J � �
 ��� �C; �5=�
 �	� (

� � 03254 =�
R
�+S<

� & �
 �5=�

 � � W E $ 5 D K J � �
 ��� (B�

where E
$ 5 D K J � �
 �C� (�
 H � *����� � � � ��� , which we obtain by (2.7). Note that E

$ 5 D K J � �
 �C� (is also bounded
by
 - .

If
 � ���

 then ������ � � � � � �
) � *����� � � � � . Let

� & be the smallest
�

such that
 � � �

 . Then, by (4.2) and
(4.9), we obtain:

E
$ 5 D K J � (� ����=�
R

�+S<

� &��
 �5=�

 � � W
�
 H /
 -/ �7�
�!
 ��" H � 03254 =�
R
�+S � � � &��
 �5=�

 � � W
 -
� �
 H /
 -/ �7�
�!
 ��" W R

�5N <
 = � � H
 - W
�103254 =�
R
�+S � �
 =
� � -
 (4.15)

� �
 H /
 -/ �7�
�!
 � " W R
�5N <
 = � � H
 - W
 =
� � � -
 W R �5N <
 = � � (4.16)

� � & H &

 � ��& " W�� /
 -/ �7�
�!
 � H
 H
 - W
 =
� � � -
 " �

(4.17)

56

Now, by (4.2) and (4.9), we get
 � �
 &� H & �
 &�5=�
 H
 H & �
 �5=�
 H
 H &
for

& � � � � O�PRQ , which
implies
 =
� � � -
 ��
 =�� � ��� ���<
 , since
 � � � �

 . For
 such that �
 � �
 � &

we have:

/ �
 � �
 � & � �
 ��&�H � �
 � �
 � � �
 W � �
 � �
 � � �

 �

�

for
 � �
. Thus, the inequality
 = � � ��� � �
� holds, and, by (4.17), we get:

E
$ 5 D K J � (� � &�H &

 � ��& " W�� /
 -/ �7�
�!
 � H
 H
 W - " �
(4.18)

By (4.10), (4.11) and (4.18), we obtain an upper bound on the expected runtime of the GROWING_CUBE

method:

E
$ 5B6�8�9C: (� , �
 -/ �7�
�!
 � H
 H
 - H - / � - " �

The function � �
 � ��� � *����� � � � �
H
 - is monotone increasing in
 on

$ & �
 � . Thus, we choose
 � &
and

obtain E
$ 5B6�8L9�: (� , � � *��� �

H
 H - / � - � .
Expected runtime of GROWING_CUBE when searching with REJECT

Obviously, E
$ 5 6�8L9�: (��� �

E
$ 5 8 G (G K � �
 � (H
 - H - / �7�.-
 ��� , where 5 8 G (G K � �
 � is the number of compar-

isons required by REJECT for a cube ! ��� � expected to contain
 points. By (3.5), we have E
$ 5 8 G (G K � (�, �
 / �7�
�!
 � H
 H - � . The aim is to prove that E

$ 576�8�9�: (� , �
 / �P�
�!
 � H
 H
 - H - / �X- � . The func-
tion � �
	 ��� 	

, � �
 � �
 / �P�
�!
 � H
 - takes its minimum at
 & ��
������ � * �'&�� . We set
 � � * . Because
of the small probability of an empty first cube, we choose here the sequence �
 &� � �5N�
 to grow more slowly
than in the case of SCAN:

 &
 �
 ��
���� � � * �'& � �4�
 &) �
 H	& � ����� �
 &� �
 H]� � ��& � �
����� �
 &�103254 �

�
By (4.7), we obtain:

E
$ 57DNE *�G (� , � -�/1032#�.-
 � �

�
(4.19)

In order to bound E
$ 57O 8LQ � G (we use the following inequalities, which we obtain by (4.2):

 �
 &
 H	& �
 H &

 � �
 &� H	& �
 &�5=�
 H & �
 �5=�
 H / �

where
/ � � � � O�PRQ

Now, by (4.8) we obtain the following bound on E
$ 5 O 8�Q � G (:

E
$ 5PO 8LQ � G (� Y�_ W - W

 H Y[_%W - W �103254R

�+S)
�
 � �
 �5=�
)� W � &��
 �5=�

 ��� =�

� Y�_ W - W �
 H]& � H Y[_%W - W �103254R

�+S<

/ � &��
 �

���� =�

� Y _ W �
 H	& � W - H / W^Y _ W - W � 03254R

�+S<

 =
� � �
-
� (4.20)

57

By
 =�� -
� �
) for
 ���
, we have :

� 03254R
�+S<

 =
� � �

-
� � � 03254R
�+S<

� &/ " �
�
� � 03254R

�+S<

� &/ " ��� � �5=�
 �

� &/ � R �5N�
 &/ �5=�
 � // � � & �
(4.21)

This together with (4.20) implies

E
$ 5PO 8LQ � G (� Y _ W �
 H	& � W - H Y _ W � -/ � � (4.22)

For the runtime analysis of the procedure REJECT we focus on the number of tests of coordinates and tests of
bit array entries. In the following we bound E

$ 5 8 G (G K � �
 � � �); �5=�
 �	� (
for

& � � � � O�PRQ . Let ; �E � (� � � �'&��
be discrete random variables such that

� ; �E � (� & � � � � E(��� �(��� $ � (� ���) ��� (H ���) (� , & � � �
 ,& � � � -
. We obtain:

E
$ 5 8 G (G K � �
 � � �[; �5=�
 �	� (�
 H

*R(S<
 T / H�� ��� points outside � �(�'; �5=�
 �]� � U
� �
 H / - � H *R(S<
 �R E S<
 Pr

� ; �E � (�	� �[; �5=�
 �	� �
�

(4.23)

Since " ; �E � (� �
" and " ; �5=�
� �]�

" are independent events for all 	
� � , & � 	 �
 we have

Pr
� ; �E � (�	� �[; �5=�
 �	� � � Pr

� ; �E � (�	� �'; �5=�
E �	� � � Pr
� ; �E � (�	� �

Pr
� ; �5=�
E �	� �

� &���� �(& � � �.-
�
�

(4.24)

To enable compactness of formulas we set ; <E �	�
for all � � � & � ����� �
 � and
 < �]�

. Note that Pr
� ; �5=�
E �� � � & � � �.-
� � �

for
& � � � � O�PRQ . Furthermore, the side length

� (of the first cube is smaller than the
side length

� �(of the
�
-th cube. Thus, by (4.24):

� ��� points outside � �(�'; �5=�
 �	� � � �R E S<
 Pr
� ; �E � (�	� �[; �5=�
 �	� � (4.25)

�
 W &��	� �(&�� � � -
� �
 W
& ��� (&�� � � -
� (4.26)

By (3.1) and (3.2), we have *R(S<

 W �L&���� (� �
 / �7�
�!
 � � (4.27)

Thus, *R(S<
 � � � points outside � �(�'; �5=�
 �	� � �
 / �7�
�!
 �&�� � �.-
� (4.28)

Thus, by (4.23) and (4.28), we obtain for
& � � � � O�PRQ :

E
$ 5 8 G (G K � �
 � � �[; �5=�
 �	� (�
 H / - H
 / �7�
�!
 �&�� � �.-
� (4.29)

�
 H / - H
 / �7�
�!
 �&�� � �.-
� �
 H / - H
 / �7�
�!
 �&�� � �.-
�
�

(4.30)

58

This together with (4.3) and (4.21) implies:

E
$ 5PD G�J 8�KFM (� Y[Z W �
 / �7�
�!
 � H
 H / - � W �� &�H R

�5N�

� &��
 �

���� =�
���
� Y[Z W �
 / �7�
�!
 � H
 H / - � W �� &�H R

�5N�

 =
� � �
-
� ��

� / W'Y[Z W �
 / �7�
�!
 � H
 H / - �
Summarizing, E

$ 5P6�8L9�: (� , �
 / �B�
�!
 � H
 - H -�/ � - � where
 � � * , thus, E
$ 5P6�8�9C: (�

, �
 / � - H -�/ �X- � .
Expected runtime of GROWING_CUBE when searching with REJECT_SCAN

We recall the analysis of the REJECT_SCAN procedure presented in Section 3.1.2. If the expected number

of points in ! ��� � " � fulfills

- � / �7�
�!
 � , then REJECT_SCAN
�.�A��� � consists essentially of the SCAN-part,

since rejecting is done only with respect to one of the dimensions. In this case the expected running time
of REJECT_SCAN is , �
 � , which is also the running time of SCAN

�.����� � if
- � / �7�
�!
 � . Thus, for reasons

of simplicity, if
- � / �7�
�!
 � then we consider the GROWING-CUBE method to call the searching algorithm

SCAN. In this case the expected runtime of the method is , �
 � .
Assume

- � / �P�
�!
 � . We prove that E
$ 5 6�8�9C: (� , �
 / � � *����� � � � � �

H
 H
 - H - / � - � when search-

ing is done by REJECT_SCAN. Observe that the function � � $ & ��� � � 	
, � �
 � �
 / � � *����� � � � � �

H
 - is

monotone increasing in
 . We choose the sequence �
 &� � �5N�
 such that

 &
 �
 � & �
 &) � /
 � ����� �
 &� ��
�� � � �
 �
 � � ����� �
 &�103254 �

�

The expected running times E
$ 5`DNE *�G (and E

$ 5PO 8LQ � G (can be bounded as shown in (4.19) and (4.22),
respectively. To estimate the expected running time required to search the cubes for points, we use (4.3)
and prove a bound on

� � 5 8 G (_ D K J � �
 � � �� ; �5=�
 �	� �
, where

& � � � � O�PRQ . 5 8 G (_ D K J � �
 � � is the number of
comparisons required by an independent call of REJECT_SCAN

�@� � � � � and is composed of the number of
performed comparisons to partition the dimensions and the number of tests of coordinates and tests of bit
array entries required in the reject-part and scanning-part.

Let
� � � �

	 � �) be the partition of variables done in the

�
-th iteration by REJECT_SCAN. It is computed

to fulfill (3.27) and (3.30), and it can be determined with at most
-

comparisons. Let
��� �

be the points which
were not rejected in the

�
-th iteration. Thus,

� � �

contains all points E such that E(� $ � (� �) ��� (H �) (for

all dimensions � � � �
 . Only these points are scanned with respect to the dimensions of
� �) . We have:

� � 5B8 G (_ D K J � �
 �C� �� ; �5=�
 �]� �
� � � 5B8 G (G K � �
 � ��� �
 � �� ; �5=�
 �	� � H ��
 5 D K J � �
 � � � �

�
 ��� �) � �� ; �5=�
 �	��� H - �
(4.31)

where 5B8 G (G K � �
 � ��� �
 � and 5 D K J � �
 � � � �
�
 ��� �) � are the numbers of comparisons required by an independent

call of REJECT
�@� � ��� �
 � and by an independent call of REJECT

�@� � � ��� �
 ��� �) � , respectively.
The reject part is given by

� � 5#8 G (G K � �
 � ��� �
 � �� ; �5=�
 �]� �
� / � � �
 � H R(�� � �
 � � � points outside � �(�� ; �5=�
 �	� � H

�
(4.32)

59

We recall the arguments used in the analysis of the expected runtime of GROWING_CUBE with the searching
algorithm REJECT. By (4.23) and (4.30), we obtain:

� � � points outside � �(�� ; �5=�
 �]� � �

& � � (&�� � � -
�

�
(4.33)

By (4.32), (3.36) and (4.33), we obtain:

� � 5 8 G (G K � �
 � ��� �
 � �� ; �5=�
 �	� � � / - H
 H
 / � � *����� � � � � �
H /
&�� � �.-
�

�
(4.34)

Let ? � � E ��� �) � be the number of comparisons required to scan some data point E with respect to its dimen-
sions in

� �) . Then the scan part of the expected runtime is given by

�
 5 D K J � �
 � � � �
�
 ��� �) � �� ; �5=�
 �	��� � �
 � � � �
 � �� ; �5=�
 �	��� W � � ? � � E ��� �) � �� ; �5=�
 �	� � �

which holds since events with respect to different dimensions of the points are independent. By arguments
similar to those in (4.12) and (4.13), we get

� � ? � � E ��� �) � �� ; �5=�
 �	� � � � � ? � � E ��� �) � � . Based on the
analysis of SCAN, property (3.27) of partition

� � � �
 	 � �) and arguments of (2.5), we obtain for
& � � �� O�PRQ :

� � ? � � E ��� �) � �� ; �5=�
 �	� � � � � ? � � E ��� �) � � � &�� & (�� � �� � �(&���� � �
(4.35)

where
� � ���� � �� � &

is the geometric mean of the side lengths
� �(of the box ! ��� ��� " $ � �'&)(*

.� � �

are the points contained in the box ! ��� ��� ��� �
 � , which is obtained by relaxing the side lengths of

the cube ! ��� � � to unit intervals, except those with respect to the dimensions in
� �
 . In analogy to (4.13), the

following inequalities are easily seen to hold:

�
 � � � �
 � �� ; �5=�
 �	��� �
 W
Pr � E � ! ��� ��� ��� �
 � �� E
� ! ��� � �.-
 �

�
 W
Pr � E � ! ��� ��� ��� �
 � � � �
 � � � �
 � � �

(4.36)

where E is some data point. Following the arguments of (3.29) and (3.34) in Section 3.1.2, we obtain for& � � � � O�PRQ :
��
 � � � �
 � � W � � ? � � ��� �) � � �
 &(�� � �
 � �(�
 �

&���� � �

�

This combined with (4.34), (4.31) and (4.3) implies

E
$ 57D GCJ 8LKNM (� Y[Z W��
 / � � -

/ �7�
�!
 � " H �
 H / - " W �103254R
�+S<

� &��
 �5=�

 � � =�

� Y[Z W �
 / � � -
/ �7�
�!
 � " H �
 H / - " W R

�5N <
/ = � � �

by using T &�� � �� U �
=�
 �
 =
� � � -
� � / = � � . Since we chose
 � &

, we obtain E
$ 576�8L9�: (�

, T
 / � T *��� � U
H
 H - / � - U

.

We summarize the results in the following theorem.

60

Theorem 4.1. The GROWING_CUBE method finds the nearest neighbor from the set
�

of data points to
some query point

�
and has the expected asymptotic runtime of the CUBE METHOD.

In practice, GROWING_CUBE may perform better than the CUBE METHOD. This consideration is con-
firmed by the experiments in Section 4.5 and it is based on the fact that the GROWING-CUBE starts with a
smaller cube. Furthermore, the CUBE METHOD calls the brute-force method if the considered cube does not
contain any points of

�
.

61

4.2 � -Nearest-Neighbor Search

4.2.1 The algorithm

The GROWING-CUBE method can be extended to compute the � nearest neighbors of the query point
�

from
the point set

�
. The extended GROWING-CUBE method works as follows : the points in the current cube

are determined; if still less than � points have been found so far, then a larger cube is considered. We use
the notations introduced in Section 4.1. In the

�
-th iteration the procedure SIDE_LENGTH is called with the

parameter
 &� and computes side lengths
� � such that
 &� � � $ � ! ��� � �#" � � (�
 � �
 &� H	&

. For the first
iteration we choose
 &
 � � . The following gives a schematic description of the algorithm.

GROWING_CUBE (�������	�)�����	�
;
 < ����� ; , < ��� �

;
repeat�4��� � H	&

;
if (
 � ��
) then������� ��� := SIDE_LENGTH(
 � ���);� � � � , �C� := SEARCH_CUBE(

� � ����� , �5=�
 ���);
 � ���
 �5=�
 	 � � ;
else
 � ��� �

;
� � ��� , �5=�
 ; (SET_UPDATE)

until (�
 � � � �);
if (�
 � � �
�)

then
 ���
 �5=�
 	 SELECT(� � �
 �5=�
 � ����� � �); (SELECT)
else
 ���
 � ;
return
 ;

Set
 contains the � nearest neighbors to the query point
�
.
 � is the set of points found by the end of the�

-th iteration. , � represents the set of points outside the cube ! ��� ��� , which is together with
� � � , �5=�
 , , �

the result of a slightly modified SEARCH_CUBE. The iteration terminates if �
 � � � � . If �
 � �X��� the
additional � � �
 �5=�
 � nearest neighbors, which we still need, are extracted from the set

� � by the SELECT-
procedure. The procedure SELECT(��� ���A� � �) computes the distances of all points of

� � to the query
�
, selects

the � � smallest distances and returns as result the corresponding points from
� � . Using a linear time selection

algorithm, the running time of SELECT(��� ���A� � �) is
Y'Z W - W � � �@� for some appropriate constant

Y Z � �
.

��
����

������
���� ���

��� � �!

�

We provide the set , � of points outside ! ��� � � , since we do not want to test in the next iteration the points
of
 � , which have been found so far. We need some small modifications of SEARCH_CUBE, which is one of
the searching procedures SCAN, REJECT and REJECT_SCAN:

62

- Since SCAN checks each point of its input set, it can simply maintain two index lists, for the points
inside and for those outside of the current cube.

- REJECT gets the set , �5=�
 as a bit array, where an entry is set to 1 if and only if this represents the index
of a point outside ! ��� � �.-
 . After the rejecting phase, the bit array contains 1-entries exactly for the
points in ! ��� ����, ! ��� � �.-
 , and represents the result

� � . We built the bit array , � by the bitwise-AND
between , �5=�
 and the bitwise-complement of

� � .
- REJECT_SCAN has the bit array , �5=�
 as part of the input. At the end of the rejecting phase we have a

bit array with 1-entries exactly for the points to be scanned in this
�
-th iteration. The scanning phase

has
� � as result and bit array , � is built as described above.

The order
�

of dimensions corresponds to the increasing order of the side lengths of a box ! ��� � �7"=$ � �'&)(+*
.

This order depends only on the query point and is computed by the SIDE_LENGTH procedure only once in
the first iteration in , �.- /10324- � time.

4.2.2 The expected runtime analysis

We introduce the discrete random variable ? � to represent the total number of tests of coordinates and tests
of bit array entries required by an independent call of SEARCH_CUBE

�@� � ����� , �5=�
 � . Let ; � be here the
discrete random variable for the number �
 � � of points found during the first

�
iterations,

� � &
. We have

E
$; � (�
 � for

�%� &
, and we define ;%< �	�

.
In practice the numbers
 &� could be chosen to depend on the number of nearest neighbors which are

still to be found, thus, if � ; �5=�
 � � � then
 &� �
 &�5=�
 H � � � ; �5=�
 � . The analysis of the algorithm with
random variables
 &� is involved. We consider a fixed sequence �
 &� � �5N�
 , that is known at the beginning
of the method, and which satisfies (4.1). The termination of the algorithm is ensured and we can define� O�PRQ ��
�� � � � �
 &� �
 � .

The expected runtime E
$ 5P6�8L9�: (of the GROWING-CUBE is given by:

E
$ 5B6�8�9�: (� E

$ 5PDNE *�G (IH E
$ 57D G�J 8�KFM (�H E

$ 57D G � (�
where E

$ 57D GCJ 8�KFM (is the expected runtime of the SEARCH_CUBE procedure:

E
$ 5PD G�J 8�KFM (� �103254 =�
R

�+S<
 Pr
� ; �5=�
 � � � W^Y[Z W E $? � �'; �5=�
 � � ((4.37)

and E
$ 57D G � (is the expected runtime of step (SELECT):

E
$ 57D G � (� �103254R

�+S<
 Pr � � ; �5=�
 � � � " � ; � � � � �
W'Y[_=W - W

E � ; � � ; �5=�
 � ; �5=�
 � � � ; � � � � �
(4.38)

The values
Y'Z

and
Y[_

are the corresponding constants of the SEARCH_CUBE procedure and of the SELECT-
procedure, respectively. The expected runtime E

$ 5 DNE *�G (for the computation of the side lengths of the cubes! ��� ��� is given by:

E
$ 5PDNE *�G (� �103254L=�
R

�+S<
 Pr T ; �5=�
 � � U W Y)a W - W /1032 �.-
 ��� �
(4.39)

where
Y[a

is the constant of the SIDE_LENGTH procedure introduced in Section 2.1.2.
In the following we first bound the probability Pr

� ; � � � � and then determine the expected running
time of SELECT, SIDE_LENGTH and SEARCH_CUBE.

63

The probability of cube enlargement

To bound the probability Pr
� ; � � � � we use the following theorem (see [22]) based on the Chernoff Bound.

Theorem 4.2. [22] Let
�

be the discrete variable which counts the total number of successes by performing
 independent Bernoulli trials with the success probability of a trial. Then

Pr
� � �
 ��� � ��
 � ��� � !
 � 8

for each
� �
O�PRQ � � �
 = � � where �) �
 �L&�� � is the variance of

�
.

Taking
� ��� 8) � �
 = � � in Theorem 4.2 we get the bound:

Corollary 4.1. Let
�

be the discrete variable which counts the total number of successes by performing

independent Bernoulli trials with the success probability of a trial. Then

Pr
� � �
 ��� � ��
 -	� �
 ���
 -�
��

where
� � � �) � �
 = � �

O�PRQ � � �
 = � �
.

Corollary 4.2. ; � is the discrete random variable for the number of nearest neighbors found by GROW-
ING_CUBE during the first

�
iterations, and � a constant such that
 � � E

$; � (� � , where
& � � � � O�PRQ .

Then the following holds:
Pr
� ; � � � � �
 =
� � ��� � ��� =�
 � �) �

(4.40)

Proof. Let � � be the random variable for the number of points of
�

within
$ � �'&)(* , ! ��� . Thus, � � �
 � ; � ,

Pr
� ; � � � � � Pr

� � � �
 � � � � Pr
� � � �
 � � H & � and for some point � � $ � �'&)(+*

the probability � Pr
� � � � � � equals

&�� � �� . Let

� ���
 � � H	&��
 �
 � � H	&����
 �
 �L� �
 � � � H	&
Because of � � ���
 � � � H & �
 � �
 �L&�� � � /
 �L&�� �
���� � �'& � �
we get by Corollary 4.1:

Pr
� � � �
 � � H	& � �

Pr
� � � �
 �
 � � H	&��
 �

�
 -	� �
 ���
 -�
�� �

-
��� � -	���
 � �
 � � �

By using
= � � � = � �<
 � �� � � � � � �� H � =�
) we obtain the stated inequality.

We choose
 &� to fulfill

 &� �
 H � ��& � � � & � ����� � � O�PRQ �
where
 ��/ � H]& �

(4.41)

with
� O�PRQ ��
�� � � � �
 &� �
 � . We specify the exact value of
 later.

We have E
$; � (� � H	&

. By (4.40) and
 &� �
 � , we obtain:

Pr
� ; � � � H]& � ��
 = � ��� � (4.42)

64

The total expected runtime of the GROWING-CUBE method

We introduce some preliminary notations and observations. The event ” ; �5=�
 � � ” is the union of the
following 2 disjoint events for any � � � & � ����� �
 � :
� ; �5=�
 � � � �

� !(*)S#E ; �5=�
(� � ��& � " � ; �5=�
E � &�� $ 	 # � !(�)S#E ; �5=�
(� � � " � ; �5=�
E �	� � $ �
(4.43)

where
� ; �E � & � � � �

point E � ! ��� ��� � for any � � � & � ����� �
 � . We denote by � �5=�
� � � � and by � �5=�
� � � �
the left event and the right event of the union in (4.43), respectively. We will use the following inequality:

Pr
� ; �5=�
 � � H	& ��

Pr
� ; �5=�
E � & � Pr

� !(�)S#E ; �5=�
(� � � H Pr
� ; �5=�
E �	� � Pr

� !(*)S#E ; �5=�
(� � �
�

Pr
� !(�)S#E ; �5=�
(� � � (4.44)

Proposition 4.1. The expected runtime of step (SELECT) is , �
 - � .
Proof. We have:

E
$ 57D G � (� Y[_%W - W �103254R

�+S<
 Pr � � ; �5=�
 � � � " � ; � � � � � W
E
$; � � ; �5=�
 � ; �5=�
 � � � ; � � � (

� Y[_%W - W �103254R
�+S<
 �R E S<
 Pr � � E � ! ��� � � , ! ��� ���.-
 � " � ; �5=�
 � � � �

(4.45)

Since variables ; �E , � � & � ����� �
 are independent, we obtain by (4.43), (4.44) and (4.45), the following for& � � � � O�PRQ :
Pr � � E � ! ��� ����, ! ��� � �.-
 � " � ; �5=�
 � � � �

� �
 �

�
 �5=�

 � W Pr
� !(�)S#E ; �5=�
(� � �

� /

W
Pr
� !(�)S#E ; �5=�
(� � � � /

W
Pr
� ; �5=�
 � � H	& �

We used the fact
 � �
 �5=�
 �
 &� H	&��
 &�5=�
 � / .
If
� � &

then, obviously, Pr � � E � ! ��� � " � ; < � � � � � �� . Altogether, we have:

E
$ 5PD G � (� Y[_%W
 - H Y[_ W / - W R

�5N <
Pr
� ; � � � H	& �

� Y[_%W
 - H Y[_ W / - W R
�5N <
 = � ��� � , �
 - �

�
In a similar way, we bound the expected running time to compute the side lengths of the cubes ! ��� ���

and the order
�

. We proceed in analogy to (4.7), use
! �5N < � W
 = � ��� � , �L& � and (4.42), and we obtain:

E
$ 57DFE *�G (� R

�5N�
 Pr
� ; �5=�
 � � � W^Y�a W - W / 032 �.-
 ��� � , �.- / 032#�
 - ���

�
(4.46)

65

In the following we bound the expected runtime E
$ 5 D GCJ 8�KFM (for each of the considered searching pro-

cedures, SCAN, REJECT and REJECT_SCAN.

A) If SCAN is used, then for iteration
�
,
& � � � � O�PRQ , we obtain

E
$? � �'; �5=�
 � � (�
 W * =�
R(S < Pr � E � ! (��� ��� , ! ��� ���.-
 �� ; �5=�
 � � � �

(4.47)

where !�<��� ��� � $ � �'&)(+*
and ! (��� ��� , & � � � -

is, as introduced in Section 2.1.2, the box obtained by
relaxing the side lengths of the cube ! ��� ��� to unit intervals with respect to those dimensions different
from the first � ones in

�
. The equation (4.47) is easily verified by adapting the analysis of SCAN to

the fact that only points outside ! ��� � �.-
 are scanned. By using
� E � ! (��� � � , ! ��� � �.-
�� "

� �5=�
� � � � ��
, (4.43), (4.44) and the fact that the points are drawn independently at random, we obtain:

Pr � � E � ! (��� ��� , ! ��� � � -
 � " � ; �5=�
 � � � ��
Pr � � E � ! (��� ��� , ! ��� � �.-
 � " � �5=�
� � � � �� �

Pr
� E � ! (��� � � � �
 �5=�

 � W Pr
� !(*)S#E ; �5=�
(� � �

� Pr
� E � ! (��� � � � W Pr

� ; �5=�
 � � H	& � (4.48)

This implies together with (2.2) and (4.37)

E
$ 5PD G�J 8�KFM (� Y[Z W �103254R

�+S<
 Pr
� ; �5=�
 � � H	& � W E $ 5 D K J � �
 �C� (B�

where 5 D K J � �
 �C� is the total number of tests required by an independent call of SCAN
�@� � ����� � � .

Clearly, 5 D K J � �
 �C� �
 - and by (2.7) E
$ 5 D K J � �
 �C� (�
 H � *����� � � � ��� for

& � � � � O�PRQ .
Note that the upper bound on E

$ 5`D GCJ 8�KFM (is monotone increasing in
 for this case when the SCAN

procedure is used. We choose the smallest possible value of
 which fulfills (4.41), that is
 � / � H &
.

If
 � � �
 � then:
 -/ �7�
�!
 �C� �
 -/ �7�
�! �
 � �
� /
 -/ �7�
�! � �

Thus, by using (4.37), E
$ 5`D G�J 8�KFM (can be bounded as follows:

E
$ 57D G�J 8�KFM (� R� ����� � � ���

Pr
� ; � =
 � � H & � W��
 H /
 -/ �7�
�! � � " H R� �
	�� � � ���

Pr
� ; � =
 � � H & � W
 -

If
 � �
� �
 ��� we have
� �� � � � �� H � =�
) � � � � � ���� H � =�
) . It can be shown that

� � � ���� � � =�
) �
� �� � / �
 for
 big enough and � �
�!�� . In this case, if
 � �
� �
 ��� then

� �� � � / �
 . Let
� & be

the smallest
�

such that
 � ��� �
 ��� . Since
� � �� � � / �
 , we have by (4.42):

R� �
	�� � � ���
Pr
� ; � =
 � � H	& � � R� � N � � � ���

Pr
� ; � � � H	& �

� R
�5N � �
 = � ��� �
 = � � ��� W , �L& � �

&

W , �L& �

66

By (4.42), we get:
! � �
��� � � ��� Pr

� ; �5=
 � � H & � � ! �5N <
 = � ��� � , �L& � . With this we obtain

E
$ 5PD G�J 8�KFM (� , � � *��� � � � � �

H
 � for � �
�!�� . If � �
�!�� then the expected runtime of the searching

procedure SCAN is , �
 - � .
Thus, by (4.46) and Proposition 4.1, the expected runtime of the GROWING-CUBE method with the

searching procedure SCAN is , � � *����� � � � �
H
 H � - H -�/ � - � for � �
 .

Notice that our method is only of interest if � is significantly smaller then
 , since �
� � - � tests are

needed in any case and the brute-force method cannot be beaten asymptotically by the GROWING-
CUBE method if � � �

�
 � .
B) We consider the procedure REJECT to determine the point sets ! ��� ���B" � . By (4.37), we obtain:

E
$ 5PD G�J 8�KFM (� �103254L=�
R

�+S<
 Pr
� ; �5=�
 � � � W'Y[Z W E $ 5B8 G (G K � �
 �L� �'; �5=�
 � � (P�

where 5 8 G (G K � �
 � is the number of comparisons required by REJECT for a cube ! ��� � expected to
contain
 points. For the runtime analysis of the procedure REJECT we focus on the number of tests
of coordinates and tests of bit array entries. We will count also the

/
 additional bit operations to
build bit array , � .
The discrete random variables ; �E � (� � � �'&�� are defined as in Section 4.1 such that

� ; �E � (� & � � �� E(� � �(��� $ � (� ���) ��� (H ���) (� , & � � �
 ,
& � � � -

. We obtain:

E
$ 5B8 G (G K � �
 �C� �'; �5=�
 � � (� �
 H

*R(S<
 T / H � � � points outside � �(�'; �5=�
 � � � U
� � �
 H / - � H *R(S<
 �R E S<
 Pr

� ; �E � (�	� �[; �5=�
 � � � � (4.49)

Thus,

E
$ 57D GCJ 8LKNM (� Y[Z W � �
 H / - � W �103254R

�+S<
 Pr
� ; �5=�
 � � �

H Y Z W � 03254R
�+S<

*R(S<
 �R E S<
 Pr
$ � ; �E � (�	� � " � ; �5=�
 � � � ((4.50)

The essential step is to bound Pr
$ � ; �E � (� � � " � ; �5=�
 � � � (for

& � � � � O�PRQ , where ” ; �E � (� �
“

is the event stating that dimension � of point E lies outside the interval � �(� $ � (� ���) ��� (H ���) (.
Observing that � ; �E � (�	� � " � �5=�
� � � � � �

, we obtain:

Pr � � ; �E � (� � � " � ; �5=�
 � � � � �
Pr � � ; �E � (�	� � " � �5=�
� � � � �� Pr
$ � ; �E � (�	� � " � ; �5=�
E �	� � " � !(*)S#E ; �5=�
(� � � (

� Pr
� ; �E � (�]� � W Pr

� ; �5=�
 � � H	& �� Pr
� ;
E � (�]� � W Pr

� ; �5=�
 � � H	& �� �L&���� (� W Pr
� ; �5=�
 � � H & � � (4.51)

67

where
� (is the side length of the first cube. We also used (4.44), the fact that the points are drawn

independently at random, and that in each iteration the side length increases. Obviously, since
Pr
� ; �5=�
 � � � � Pr

� ; �5=�
 � � H	& � , the inequalities (4.50), (4.51) and (4.27) imply:

E
$ 57D GCJ 8LKNM (� Y[Z W �
 / �7�
�!
 � H �
 H / - � W R �5N < Pr T ; � � � H	& U

� Y[Z W �
 / �7�
�!
 � H �
 H / - � W R �5N <
 = � ���� , �
 / �7�
�!
 � H
 H - �
Thus, the expected runtime E

$ 576�8�9�: (of the GROWING-CUBE method with the searching procedure
REJECT is , �
 / �7�
�!
 � H
 - H - / �X- � , where
 � / � H]&

. The function � � 	 � � 	
with � �
 � �
 / �P�
�!
 � H
 - takes its minimum at � * and is monotone increasing on

$ � * ��� � . We choose
 �

���� � � * � / � H%&��

. If
/ � H%& � � * then E

$ 5B6�8�9�: (� , �
 / �P�
�! � � H � - H -�/ � - � , otherwise E
$ 5P6�8�9C: (�, �
 / � - H - / �X- � .

C) We consider the procedure REJECT_SCAN to determine the point sets ! ��� ��� " �
. The analysis is

based on the results obtained in Section 3.1.2 and Section 4.1.

If
- � / �7�
�!
 � then the GROWING-CUBE method calls the searching algorithm SCAN, as an extremal

case of the procedure REJECT_SCAN. In this case the expected runtime of the method is , �
 H
 -4H- / � - � .
Now assume

- � / �7�
�!
 � . To compute partition
� � � �
 	 � �) such that (3.27) and (3.30) are

fulfilled we need at most
-

comparisons. To bound the rejecting part in iteration
�
,
& � � � � O�PRQ , we

investigate
� � 5#8 G (G K � �
 � ��� �
 � �� ; �5=�
 � � �

, where 5B8 G (G K � �
 � ��� �
 � is the number of comparisons
required by an independent call of REJECT_SCAN

�@� � � � ��� �
 � . In analogy to (4.32) and (4.49) and by
using (4.51), we have

� � 5B8 G (G K � �
 � ��� �
 � �� ; �5=�
 � � � � �
 H R(�� � �
 T / H � ��� points outside � �(�'; �5=�
 � � � U
� � �
 H / - � H R(�� � �
 �R E S<
 Pr

� ; �E � (�	� ��; �5=�
 � � �

� � �
 H / - � H R(�� � �
 �R E S<
 Pr
� ; �5=�
 � � H	& �
Pr
� ; �5=�
 � � � W �L& ��� (� �

By using the properties of the partition
� � � �
 	 � �) and (3.36), we get:

� � 5B8 G (G K � �
 � ��� �
 � �� ; �5=�
 � � � � �
 H / - H Pr
� ; �5=�
 � � H	& �
Pr
� ; �5=�
 � � � W �
 / � � -

/ �P�
�!
 � " H /
 "
The scanning part in iteration

�
,
& � � � � O�PRQ , is given by:

* =�
R(S <
 W
Pr

 E � ! � �
 � (, ! ��� � � -
 �� ; �5=�
 � � � �

where ! � �
 � (is the box obtained by relaxing the side lengths of the cube ! ��� ��� to unit intervals except
those with respect to the dimensions in

� �
 and the first � dimensions in the list
� �) . By using the

68

same arguments as in (4.48), we obtain the following bound for the scanning part:

� 03254 =�
R
�+S<
 Pr

� ; �5=�
 � � H	& � W
* =�
R(S <
 W

Pr

 E � ! � �
 � (� �

In analogy to the analysis presented in Section 4.1, we obtain, by the properties of the partition� � � �
 	 � �) , the following:

* =�
R(S <
 W
Pr

 E � ! � �
 � (� �
 �`��� �
 � �
 �&�� �`��� � � �
 �

where
�`��� �
 � is the geometric mean of those side lengths of ! ��� ��� which correspond to the dimen-

sions in
� �
 . Since

! �103254�+S<
 Pr
� ; �5=�
 � � H & � � , �L& � for
 � / � H &

, we obtain E
$ 5 D GCJ 8LKNM (�

, �
 / � � *����� � � � � �
H
 H - � . Thus, E

$ 5B6�8L9�: (� , �
 / � � *��� � � � � � �
H
 H
 - H - / � - � , where

 ��/ � H	&
.

Since in both cases the upper bound on the expected runtime of the GROWING-CUBE method is
monotone increasing in
 , we choose
 � / � H	&

.

Thus, the expected runtime of the GROWING-CUBE method with the searching procedure REJECT_

SCAN is , �
 / � � *��� � � � � �
H & � H
 H - � H - / � - � .

We summarize the results obtained for the GROWING-CUBE method with the searching procedure RE-
JECT_SCAN:

Theorem 4.3. The GROWING-CUBE method with the searching procedure REJECT_SCAN finds the � near-
est neighbors from the set

�
of
 points to some query point

�
with an expected asymptotic runtime of

, �
 / � � *����� � � � �
H]& � H
 H - � H - / � - � , if � �
 and if the
 points of

�
are drawn independently at

random under uniform distribution. The method requires , �
 - � storage and , �
 -�/ �
 � preprocessing time.

4.3 Other distributions

In the following we present a generalization of the runtime analysis of the discussed methods to other ”well-
behaved” distributions. For reasons of clarity, we focus here only on the analysis of the CUBE METHOD with
the orthogonal range searching procedures SCAN, REJECT and SCAN_REJECT.

Let � � � �
 � ����� � � * � be the random vector that represents the coordinates of a point � �
and let��� ��	 * � $ � �'&)(

be the joint distribution function of the random vector � . We consider the points of
�

to
be drawn independently at random under the following distributions:

a) Independent distribution:
The random variables �
 � ����� � � * are independent. We have

��� ���
 � ����� ��� * � � & *(S<
 ���	� ��� (� , where
���	�

is the distribution function of the random variable � (.
b) Positively-bounded distribution(see [15]):
We say that � � � �
 � ����� � � * � is positively-bounded over the bounded, convex open region
 if there
exists constants

� � !
 � !) such that !
 � � � ��� � � !) for all
� �
 , � where � has Lebesgue

measure � �
� � � �

and � � ��� � � �
for
	 * ,
 . The distribution function has the following property:!
 W
� � ? � � Pr

$ � � ? (� !) W�� � ? � where ? �
 is a region of volume (measure)
�

.

69

Expected runtime analysis under independent distribution

We assume that the
 points of
�

are drawn independently at random under independent distribution.
For a given query point

�
we have:

� � �@� � ���
Pr
$ E � ! ��� � (� *�(S<
 T � �	� �.� (H�� ! / � � � �	� �.� (� � ! / � U �

We introduce the functions
� (��	 ��� $ � �'&)(

with

� (�@� � � ���	� �.� (H�� ! / � � � �	� �.� (� � ! / � � � � & � ����� ��- �
(4.52)

Since the functions
� (are continuous and monotone increasing, the function

� � �@� � � & *(S<
 � (�@� � is con-
tinuous and monotone increasing as well. Thus, we can determine the side length

�
of the cube ! ��� � such

that
 &

 � Pr � E � ! ��� � � � *�(S<
 � (�@� � �
 & H	&

 � &

by binary search, where
 & � $ & �
 � &)(
is the parameter of the algorithm which determines the side length�

of the cube ! ��� � .
The permutation

� � �.� �L& � �
����� ��� �.- ��� of dimensions is chosen such that

� � �
 � �@� � � ����� � � � � * � �@� � �
We measure the running time of the CUBE METHOD by the number of comparisons of coordinates and

bit array entries. We omit here the computation of the side length
�

and of the order
�

of dimensions, which
depends on the complexity of computing the distribution functions

� �	�
.

Since the points are drawn independently at random, the expected number
 of points in the cube ! ��� �
equals
 W

Pr
$ E � ! ��� � (�
 W � � �@� � � $
 & �
 & H	& � . Let

�
be defined such that

� � ��

� �� � � �@� � �
First, we consider the SCAN procedure. The expected number E

$ 5 D K J � (of tests of coordinates of the
SCAN procedure is given by:

E
$ 5 D K J � (�
 W

�� &�H * =�
R(S<
 Pr � E � ! (��� � � �� �

where ! (��� � are obtained by relaxing the side lengths of the cube to unit intervals with respect to those

dimensions that are different from the first � ones in the list
�

. The probability Pr

 E � ! (��� � � equals& (� S<
 � � � � � �@� � . By (2.5) and by Lemma 2.2, we obtain the same results as in Section 2.1.2:

E
$ 5 D K J � (�
&�� � �
&�� �� � � �
 -/ �7�
�!
 � H

�
70

We proceed in analogy to the analysis in Section 2.1.4 and we obtain that the CUBE METHOD with the
searching procedure SCAN performs an expected number , � � *��� �

H
 � of comparisons of coordinates.

The expected number E
$ 5 8 G (G K � (of comparisons of coordinates and bit array entries of the procedure

REJECT is given by

 H / - H
 W *R(S<
 �L&��	� (�@� ��� �
 H / - H
 -#� & � �� �
 �@� � W ����� W � * �@� � �
�
 H / - H
 -#� & � � � �

Since
� � �� � � , we obtain, by Lemma 2.3, E

$ 578 G (G K � (�
 H / - H
 / �P�
�!
 � . The rest of the analysis of the

CUBE METHOD with the searching procedure REJECT is done as discussed in Section 3.1.

We skip the details of the running time analysis of the procedure REJECT_SCAN. Its expected number
E
$ 5B8 G (_ D K J � (of comparisons of coordinates and bit array entries is given in (3.25), where the functions� (�@� � are defined in (4.52), instead of representing the side lengths of the box ! ��� � " $ � �'&)(+*

. The crucial
observation is that the upper bound on E

$ 5 8 G (_ D K J � (obtained in Section 3.1.2 can be expressed as function

of
� ���� �� (see (3.34) and (3.35)), thus, it holds also in the case when we assume independent distribution

of the points. Thus, the CUBE METHOD with the searching procedure REJECT_SCAN performs an expected
number of , T
 / �P� *��� �

H]& � H
 U comparisons of coordinates and bit array entries.

Expected runtime analysis under positively-bounded distribution

We assume w.l.o.g.
� � $ � �'&)(�*

and
 � � � �'& � * . We consider the
 points of
�

to be drawn independently
at random under positively-bounded distribution. In the following we use the notations ! (��� � , 5 D K J � , 5B8 G (G K �and 5B8 G (_ D K J � as introduced above.

We consider the procedure REJECT to determine the point set ! ��� � " � . For each point E � � we obtain

Pr � E � ! (��� � � �
Pr � E ��� (��� � � �

where �
(��� �

is the box ! (��� � " $ � �'&)(+*
. Therefore,

!
 W�� � � (��� � � � Pr � E � ! (��� � � � !) W�� � � (��� � � (4.53)

and

!
 W
(�� S<
 � � �@� � � Pr

$ E � ! (��� � (� !) W
(�� S<
 � � �@� � �

where the function
� � �@� � represents the side length of �

��� � � ! ��� � " $ � �'&)(* in dimension 	 � � & � ����� ��- � and
is given by (2.3). The side length

�
is determined by the procedure SIDE_LENGTH, as described in Section

2.1.3, such that

 &

 � � � � ��� � � �

*�(S<
 � (�@� � �
 & H	&

 � & �

(4.54)

where
 & is a real parameter in
$ & �
 � &)(of SIDE_LENGTH. By (4.53) and (4.54) we have for � � � & � ����� �
 � :
!
 W
 &
 � Pr � E � ! ��� � � � !) W
 &

H &

�
71

We consider the order
�

of dimensions to be defined as mentioned in Section 2.1.2 , to correspond to the
increasing order of the side lengths of the box �

��� �
.

By (2.2) and Lemma 2.2, we obtain:

E
$ 5 D K J � (� * =�
R(S < Pr � E � ! (��� � � � !) W

* =�
R(S < � (� !) W �
 -/ ���
�! �
 & H	& ���
H
 "

where
� � �� � � � ��� � � � �� � � �<
� . For the probability of an empty cube ! ��� � we have Pr

� � " ! ��� � � � � ��L& � !
 � �� � � �0
 =��

 � � . Note that , by (4.53), we have !
 � �� �

&
. To obtain a total asymptotic runtime of

, � � *����� � � � � �
H
 H -�/ � - � , we guarantee

 =��
 � � W
 - � !) W
 -/ ���
�! �
 & H	& ��� (4.55)

which is satisfied for
 & �

�

 W / �7�

� �
/ �
 � . We choose
 & �

�

 W / �7�

� �
/ �
 � , and we obtain that the

expected asymptotic runtime of the CUBE METHOD with SCAN is , � � *��� �
H
 H -�/ � - � if the points are

drawn independently at random from
$ � �'&)(.*

under positively-bounded distribution.

We consider the procedure REJECT to determine the point set ! ��� � " � . The expected number E
$ 578 G (G K � (

of comparisons of coordinates and bit array entries of the procedure REJECT is given by

E
$ 5B8 G (G K � (�
 H / - H
 W *R(S<
 Pr

$ E(
� $ � (�=� ! / ��� (H�� ! / ((
�
 H / - H *R(S<

 W !) W �L&���� (�@� ����
 H / - H !) W
 -#� & � �� �
 �@� � W ����� W � * �@� � ��
 H / - H !) W
 W / �7�
�!
 & � �

We used (4.54) and Lemma 2.2.
As mentioned above we have the upper bound Pr

� � " ! ��� � � � � �
 =��
 � � . Thus, the expected runtime
of the CUBE METHOD with REJECT is , T
 H
 / �B�
�!
 & � H
 =��
 � �
 - H
 & - H -�/ �X- U

. A suitable value
of
 & is

 ��� � � * ��/ �7� !

 � ! !
 � . The expected asymptotic runtime of the CUBE METHOD with REJECT is, �
 / � - H -�/ �X- � if the points are drawn independently at random from
$ � �'&)(*

under positively-bounded
distribution.

The expected runtimes of the procedures SCAN and REJECT can be bounded in terms of the volume
of the box �

��� �
, and the constants !
 and !) . This can be achieved also in the analysis of the procedure

REJECT_SCAN by combining the above results. We obtain in a straightforward manner that the procedure
REJECT_SCAN has an expected runtime of , T
 / �P� *��� �

H	& � H
 H - / � - U
, assuming that the points are

drawn independently at random from
$ � �'&)(.*

under positively-bounded distribution.

Theorem 4.4. The CUBE METHOD with one of the orthogonal range searching procedures SCAN, REJECT

and SCAN_REJECT has the expected asymptotic runtime given in Theorem 2.2, Theorem 3.1 and Theorem
3.2, respectively, if the
 points of

�
are drawn independently at random under independent distribution or

positively-bounded distribution.

72

4.4 External-Memory Nearest-Neighbor Search

Many database applications involve massive datasets, which do not fit in the main memory of modern
machines. In such cases the data structures need to be stored on external storage devices such as disks. A
major performance bottleneck is the Input/Output (I/O) communication between fast internal-memory and
slow external storage. Minimizing the I/O communication is the essential problem considered in the design
of external-memory data structures and algorithms.

First we define the I/O model of computation and then present an external-memory variant of the CUBE

METHOD and of the CELL METHOD.

4.4.1 The External-Memory Model of Computation

Modeling accurately memory and disks systems is a complex task which has been broadly surveyed. We
shall work in the external-memory model of computation introduced by Aggarwal and Vitter [2]. This
standard two-level disk model focuses on the fact that typical disks read or write large blocks of contiguous
data at once, in order to amortize the access time over a large amount of data. The model has the following
parameters [2, 65, 47]:

� �
number of objects in the problem instance

5 �
number of objects in the problem solution

� �
number of objects that can fit into internal memory

� �
number of objects per disk block;

where � � � � � . An I/O operation is the reading or writing a block from or into disk, respectively (see
Figure 4.1). Computation is only performed on objects in internal memory. The measures of performance
in this model are the number of I/Os used to solve a problem, as well as the amount of space (disk blocks)
used and the internal memory computation time.

MP D

B

Figure 4.1: An I/O moves � contiguous elements between disk and main memory

More complex multi-level memory models have been considered in the literature, where several disks
are used in parallel to increase the performance of I/O systems. We refer to a recent survey by Vitter [64].

We primarily want to model the extremely long disk access time relative to the internal running time.
Therefore, we ignore the internal computation time in our algorithmic performance analysis.

4.4.2 The External-Memory Data Structure

We investigate the
�� -nearest-neighbor problem in the external-model of computation. Here an object or
item is a coordinate E((

& � � � -
) of some data point E � � � ��
 � ����� � � � or an index � � � & � ����� �
 �

of some data point E . The number of objects of the problem instance is � �
 - .

73

We consider the GROWING-CUBE method introduced in Section 4.1 and we compute the expected num-
ber of I/O operations performed by the external variant of this method to determine the nearest neighbor to
a query point

�
from the data set

�
. We assume that the data points
 � ����� � � are drawn independently at

random under uniform distribution.
We compare the external GROWING-CUBE with the external brute-force method, which stores the points

with their coordinates successively in contiguous locations of the external memory. The external brute-force
method loads the data from the disk and determines the nearest neighbor to the query with �

�
 - ! � � I/O
operations.

The GROWING-CUBE method considers cubes ! ��� ��� of increasing side lengths
� � around the query

point
�

until a cube containing points of
�

is found. In order to determine the points of a cube ! ��� � expected
to contain
 points, the GROWING-CUBE method calls the orthogonal searching algorithm REJECT. This
algorithm is the only one among the presented searching procedures having an efficient extension in the
external-memory model of computation. In the case of the REJECT procedure, the objects to be tested
in the main memory are stored in contiguous locations in disk blocks. More precisely, the external data
structure consists mainly of the arrays 5 ((� � & � ����� ��-

), introduced in Section 3.1.1. For a dimension� � � & � ����� ��- � the entries 5 ($ � ((� � & � ����� �
) are stored successively in contiguous locations on the disk.
The � -th entry is 5 ($ � (� � �(� 	 � , where �(is the � -th largest coordinate in the dimension � and 	 is the index
of the corresponding point �

. Additionally, the external data structure contains all points E of
�

such that
all coordinates E(for some point E are stored successively in contiguous locations of the external memory.
The external data structure is stored in , �
 - ! � � blocks on the disk.

First we analyze the expected I/O complexity of the REJECT procedure, which is required to determine
the set

� " ! ��� � of the points contained in a cube ! ��� � , itself expected to contain
 data points.

The expected I/O complexity of testing coordinates

The external REJECT procedure consists essentially of reading blocks containing objects 5 ($ � (� � �(� 	 � for
each dimension � and testing in the main memory whether the corresponding coordinates �(are still out of
the interval � (� $ � (� �) ��� (H �) (. The objects are read exactly in the same order as the order considered by
the internal REJECT procedure described in Section 3.1.1 : 5 ($ &)(F� ����� � 5 ($ 	 (for some index

& � 	 �
 and5 ($ � (F� ����� � 5 ($
 (for some index
& � � �
 (see Figure 4.2). Thus, for a given dimension � , almost all data

blocks which are read from the disk contain exclusively relevant data, which needs to be tested in the main
memory. In fact, for each dimension � , there might be at most two read blocks that contain also coordinates
which are not of interest.

The number of read operations required by REJECT to test the coordinates of points is bounded by

*R(S<
 � / H / W $ � � points outside � (� H / (
� " � / - H / W *R(S<
 � points outside � (H /

�

The additional multiplicative factor 2 comes from the fact that an array entry 5 ($ � (contains 2 objects. Let� E be the side lengths of the intervals � ((
& � � � -

). By (3.1) and (3.2), we get
� $ � points outside � ((�
 / �P�
�!
 � . By using the linearity of the expectation, we obtain that the expected number of I/O transfers

performed by REJECT in order to make the necessary test of coordinates is bounded by/ - H /
 / �7�
�!
 � H / -
�

�
(4.56)

where
 is the expected number of points of
�

contained in the cube ! ��� � .

74

T [1]j

jT [l]

���
����
�

���
�

���
���	
	

�
���

���
�
���
�

���
�

���
�

0

dim j

jT [2]B items

B items

1

Figure 4.2: Almost all blocks contain exclusively relevant data.

The expected I/O complexity of marking rejected points

The internal searching algorithm REJECT uses a bit array to mark the rejected points, in order to determine
the points inside the cube ! ��� � . A realistic assumption is that this bit array fits in the main memory. Under
this hypothesis the total I/O complexity of the REJECT procedure to determine the points of

�
contained in

the cube ! ��� � is , � - H � ����� � � � �_ � .

In case the bit array has to be stored in external memory, we proceed as follows to mark the rejected
points. While testing coordinates, the algorithm fills up a part of the main memory with indices of points
which have to be marked as rejected. This part of the memory consists of contiguous locations and has size

�
� � � . After the fill-up phase we determine the blocks of the bit array we need for the marking process

and load them into a part of the main memory of size �
� � � , consisting of free contiguous locations. The

bit entries of interest are set to 1 in the blocks loaded in the main memory. If necessary we repeatedly
replace those blocks that are not relevant in the current phase anymore. These fill-up and marking phases
are repeated until all coordinates were tested. Blocks of the bit array that are already in the memory due
to a previous phase can be reused. The worst case situation is that the expected number of I/O operations
required to mark the rejected points is linear in the number of rejecting steps, that is , �
 / �7�
�!
 � H - � . This
is based on the fact that loaded blocks of the bit array may contain only one entry of interest.

We propose an alternative procedure to determine the unrejected points. Instead of using a bit array,
we gather the indices of the rejected points during the process of testing coordinates. This is done by
repeatedly filling up the internal memory, sorting the indices such that each index appears only once, and

writing those indices in contiguous locations of the external memory. We end up having , � � ����� � � � � � *_ �
blocks, each of them containing sorted indices. By using the external merge sort algorithm introduced by
Aggarwal and Vitter [2], we obtain a list

�
with the indices of the rejected points in increasing order in

, � � ����� � � � � � *_ W /1032�� � _ � � ����� � � � � � *_ ��� I/Os. This list is stored in , T �_ U blocks in the external memory.

The list
�

is scanned and we determine in , T �_ U I/Os the missing indices � � � & � ����� �
 � from the list
�

.
The missing indices are stored in , T �_ U blocks in the external memory. They represent the points contained
in the cube ! ��� � and are the result of the external REJECT procedure.

75

We take a closer look at the above bound , � � ����� � � � � � *_ W /1032�� � _ � � ����� � � � � � *_ ��� . For typical values

of � and
�

the base
� ! � of the logarithm is large, in the order of

& � �
. Thus,

/ 032 � � _ � � ��� � � � � � � *_ � is

less than 4 for all realistic values of
 ,
-

and
� ! � . Thus, in the above bound the important term is not

the
/1032

-term, but the � -term in the denominator of � ����� � � � � � *_ . This observation represents an important
feature of the external sorting.

The total I/O complexity

We consider in the following the realistic assumption that the bit array fits in the main memory. In this
case, the REJECT procedure performs expected at most

/ -4H / � ����� � � � � �) *_ I/Os to determine the points of
�

contained in some cube ! ��� � , where
 �
E
$ � � " ! ��� � � (.

The GROWING-CUBE method works as described in Section 4.1 and we choose the sequence �
 &� � �5N�

such that
 &� �
�� � �
 H � � � & � �
 � . We specify the value of the parameter
 later. The expected number
 � of points in the cube ! ��� � � fulfills
 &� �
 � �
 &� H &

, where
& � � � � O�PRQ and

� O�PRQ ��
�� � � � �'
 &� �
 � .
Let � �(� $ � (� ���) ��� (H ���) (. By using (4.28) and (4.21), we obtain the following upper bound on the

expected number of I/Os performed by GROWING-CUBE during the REJECT phase:

�103254 =�
R
�+S<
 Pr T@; �5=�
 �	�VUXW

�� / - H / W *R(S<
 E

 � points outside � �(�'; �5=�
 �	��� H /

�
��

� �103254 =�
R
�+S<

� &��
 �5=�

 � � W
�
/ - H /

�
W
�
 / �7�
�!
 �&�� � �.-
�

H / " "
� �103254 =�
R

�+S<

� &��
 �5=�

 � � =�
 W � / - H / W
 / �7�
�!
 � H / -
� "

� � / - H / W
 / �P�
�!
 � H / -
� " W # &�H �103254R

�+S<

� & �
 �

 � � =�
 $
� � / - H / W
 / �P�
�!
 � H / -

� " W # &�H �103254R
�+S<

 =
� � �

-
� $ � Y
 W � - H
 / �P�
�!
 � H / -
� " �

where
/ � Y
 � �

.

Next we look at the expected number of I/O operations performed in the brute-force part of the external
GROWING-CUBE method. If the current cube ! ��� � � is the first cube not to be empty, then the brute-force
method is called, which loads the coordinates of the data points E � ! ��� ��� and determines the minimum
distance of these points to the query. Since the data points contained in ! ��� � � are not necessarily stored
successively in the external memory, the brute-force method loads each point separately and requires � - ! ���
I/O operations per loaded point in the worst case. We proceed in analogy to (4.8) and (4.22), and obtain that
the expected number of I/Os performed in the brute-force part of the GROWING-CUBE is bounded by

Y) W
 W � - ! ��� � Y) W
 W -
�

H Y) W

for an appropriate constant

& � Y) � / .
A realistic assumption is that a data point or a query point fits in the main memory. In this case the

computation of the side lengths
� � can be done entirely in the main memory since they depend only on the

76

query point and the values
 &� . If
- � � then by (4.19) the computation of the side lengths

� � requires
expected , �.-�/ � �
 - � ! �

H%/ �7�
 - ��� I/O operations. This is based on the fact that as seen in Section 2.1.3 the
computation of

�
takes , �./ �7�
 - ��� steps. Each step involves an evaluation of the actual volume which takes, � � - ! ��� � I/O operations.

Altogether, we obtain the following upper bound on the number of I/Os required by the external
GROWING-CUBE to compute the nearest neighbor to the query point

�
:

, �
 / �7�
�!
 �
�

H
 W -
�

H -�/ � -
�

H
 H - "
Since the function � �
 � ��� � ����� � � � �_ H
 W *_ H
 takes its minimum at �* � _ , we set the parameter
 to equal
���� � �* � _ �'&�� .Summarizing, we obtain that the external GROWING-CUBE method finds the nearest neighbor from the

data set
�

to the query point
�

in , � � ����� * � _ �_ H * ��� *_ H - � I/O operations.

The external GROWING-CUBE method compares favorably with the external brute-force method if
 �
� and

- � / �7�.- H
� � , which is a realistic assumption in the external-memory model, where the data points

do not fit in the main memory.

77

4.5 Experiments

We present an experimental comparison of implementations of the presented variants of the CUBE METHOD

and GROWING-CUBE method. We emphasize the factors by which the algorithms are faster than the brute-
force method.

We test our algorithms on random test data. We generate data sets in
$ � �'&)(N*

, each of size
 , according
to the uniform distribution. For each data set a query point is chosen randomly in

$ � �'&)(C*
. For each of the

considered settings of
 and
-

we generate 20 pairs, each consisting of a random data set and a random query
point. Based on those 20 pairs we compute for each considered setting of
 and

-
the average speedup of

our algorithms with respect to the brute-force method.

In our first experiments we consider query algorithms that do not need preprocessing. Figure 4.3 shows
an experimental comparison for dimension

- � & �3�
and number of points
 between 1000 and 10000. The

value on the vertical scale is the factor by which each algorithm is faster then the brute-force method. The
speedup factors of the CUBE METHOD and the GROWING-CUBE method using the SCAN searching procedure
are represented by the curves cube and grow, respectively. The curves adaptcube and adaptgrow illustrate
the speedup factors of the methods when the range searching procedure ADAPTIVE_SCAN, introduced in
Section 2.2, is used. The speedup factors of the algorithms measured in practice show a similar behavior to
the speedup factor �

�./ �
 � presented in Chapter 2. As expected the ADAPTIVE_SCAN improves the query
algorithms. The observed improvement of the GROWING-CUBE method over the CUBE METHOD is based
on the fact that the GROWING-CUBE method starts with a smaller cube.

3

4

5

6

7

8

9

10

11

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sp
ee

du
p

number of points

Speedup with respect to brute-force with dim=100

adaptgrow
adaptcube

grow
cube

Figure 4.3: Comparison of the CUBE method
and GROWING-CUBE method with the brute-
force method

Speedup with respect to brute-force

50
100

150 1000

4000

7000

100002
3
4
5
6
7
8

number of nearest neighbors
number of points

speedup

Figure 4.4: Comparison for � nearest-neighbor
search of the GROWING-CUBE method using
SCAN with the brute-force method

Figure 4.4 shows a comparison of the GROWING-CUBE method for � -nearest-neighbor search with the
brute-force method, which computes all distances of the points of

�
to the query point and selects the �

smallest distances among them. The GROWING-CUBE method performs the orthogonal range searching of
the considered cubes by the searching algorithm SCAN. The experiments have been carried out for dimension- � & �3�

, number of points
 between 1000 and 10000, and number of nearest neighbors � between � and&
� � . The experimental comparison reflects the speedup factor �

�./ �7�
�! � ��� proven in Section 4.2.2.

Next, we consider the GROWING-CUBE method with the searching procedures REJECT and RE-
JECT_SCAN, and compare it with the brute-force method and the GROWING-CUBE method when using
the procedure ADAPTIVE_SCAN.

78

10

20

30

40

50

60

10000 20000 30000 40000 50000

sp
ee

du
p

number of points

Speedup with respect to brute-force with d=200

reject_scan
reject

adaptive_scan

Figure 4.5: Speedup factors for fixed dimension
�

10

20

30

40

50

60

70

80

100 200 300 400 500

sp
ee

du
p

dimension

Speedup with respect to brute-force with n=10000

reject_scan
reject

adaptive_scan

Figure 4.6: Speedup factors for fixed number of
points

B

Figure 4.5 shows an experimental comparison of the searching algorithms for dimension
- � / �3�

and sizes
 of the data set between 10000 and 50000. Figure 4.6 shows the experimental comparison
of the searching algorithms for
 � & �3�3�3�

and dimension
-

varying between 100 and 500. The value
on the vertical scale is the factor by which each algorithm is faster then the brute-force method. Both
figures illustrate that for high dimensions the methods using preprocessing dominate clearly the GROWING-
CUBE method with the ADAPTIVE_SCAN searching procedure. Furthermore, the REJECT_SCAN procedure
is better than the procedure REJECT as expected from the runtime analysis presented in Section 3.1. The
speedup factor of the GROWING-CUBE method with the REJECT_SCAN procedure is , � *����� * � ��� � �<
 � � with
respect to the brute-force method. Figure 4.6 points out the dependency of the speedup on the dimension

-
for the methods using preprocessing. A speedup factor above 30 is a considerable improvement in practice.

We conclude with the experimental comparison for � nearest-neighbor search. In Figure 4.7 the
GROWING-CUBE method using REJECT_SCAN is compared with the brute-force method. The experiments
have been carried out for number of points
 � & �3�3�3�

, dimension
-

between 100 and 500, and number of
nearest neighbors � between � and

&
� � . A growth of the speedup factor with the dimension

-
can be seen.

Even for big values of the number � of nearest neighbors the speedup factor of the GROWING-CUBE with
respect to the brute-force method is between 10 and 30.

79

Speedup with respect to brute-force for n=10000

5
50

100
150number of nearest neighbors

100
200

300
400

500

dimension

0

10

20

30

40

50

60

speedup

Figure 4.7: Comparison for � nearest-neighbor search of the GROWING-CUBE method
using REJECT_SCAN with the brute-force method

80

