
Chapter 3

Nearest-Neighbor Search with
preprocessing

In this chapter we present two strategies to speed up the orthogonal range searching procedure
SCAN of the CUBE METHOD introduced in Chapter 2.

In Section 3.1 we make use of a simple preprocessed data structure of linear size, where the
coordinates of the data points of

�
are stored sorted in each of the dimensions �������������
	�� . The

query algorithm has an expected runtime of
������������������� �! � � � 	"�#�$	&% , assuming that the data
set is drawn randomly under uniform distribution. A summary of the results presented in this
section has appeared in [39].

The query algorithm that we present in Section 3.2 is based on a preprocessed partition of
the data set, such that each subset allows an efficient orthogonal range searching. The parti-
tion consists of subsequences that are monotone with respect to some of the dimensions. The
query algorithm works well for dimensions 	(' � ��������)����� %�* , when it has an expected running

time of
�+�, 	�-.�0/21435 6 -.�#�7�98 . For higher dimensions 	;: � ��������)����� % * its expected runtime is

 + 	<-.� /21=35 6 -.�#�7�#�7� 8 .

3.1 Speeding up the CUBE METHOD by rejecting points

The contribution of this section is the improvement of the CUBE METHOD for high dimen-
sions 	 > �#�7� . The method requires
?�@�A	& storage and
?�@�A	B�#�C�A preprocessing time.
Its average runtime assuming that the set

�
is drawn randomly under uniform distribution

is
D��������� �������� �! � � � 	"�#�$	&% , thereby improving the brute-force method by a factor of
?� ���FE /HG �JILK �M�.N� .
Drawback of the searching procedure SCAN

Depending on whether O7PRQ SUTWVYXZ���\[� or O$PRQ S^]T_VYXZ���\[� either the side length ` or the geometric
mean of the side lengths of the box OaPRQ ScbdVYXZ���\[� equals

6e fhg � , where
f

is the expected number of
points contained in the cube OaPJQ S . The value

6e fhg � is very large (larger than 0.9) for the case of
high dimension 	 , in the range of some hundreds, and reasonable values � , in the range of several

19

thousands. Figure 3.1 considers the case OaPRQ S T V XZ�\�\[� with
f � � and shows values of the side

length ` � 6e � g � for high dimension 	 .

0.8

0.85

0.9

0.95

1

1000 5000 10000

S
id

e
le

ng
th

 o
f t

he
 c

ub
e

number of points

d=100

0.5

0.6

0.7

0.8

0.9

1

50 200 400 600 800 1000

S
id

e
le

ng
th

 o
f t

he
 c

ub
e

dimension d

n=10000

Figure 3.1: Side length ` � 6e � g � is large for high dimension 	
Large side lengths imply a large number of points that do not fail the test in step labeled by

(TESTS) of procedure SCAN. This means that in each of the dimensions the expected number of
points whose coordinates are outside of the appropriate interval is a small number. This observation
leads to the idea to look at the points which are not in the cube with respect to each dimension
independently and reject these points in order to determine the points which are in the cube1.

3.1.1 Searching the cube by rejecting

During the preprocessing the coordinates of the points are sorted in each of the dimensions
���

��� ���\���F� 	 � . This takes
 � �9	"�#�C�� time. For a dimension
��� ��� ���\���\�
	�� an array ��� with � items

is stored. Item �	��V�
H[contains the
 -th largest coordinate ����V�
H[H��
������ 	 in dimension
�

and the index
����V�
H[H��
H�A	���� ��� of the point � K corresponding to that coordinate. The data structure consists of the
indexed data set

�
and the arrays ��� , � � � �\�������
	 .

The query algorithm is the CUBE-METHOD with an orthogonal range searching procedure
which works as follows: for each dimension

��� ��� ���������
	�� those points are marked as rejected
in a bit array whose coordinates in dimension

�
are outside of the interval V���� � S * �!�!� � S * [. At the

end the bit array is scanned and all non-rejected points are returned. This orthogonal searching
procedure is called REJECT.

The points outside the interval "#�%$ � V��&�'� S * �!�!� � S * [could be determined by binary search for
each dimension

�
. We do not analyze this variant since for each coordinate outside "�� we perform

a marking operation anyway.

Figure 3.2 illustrates the rejecting process and the following gives a schematic description of
procedure REJECT. (is here the set of dimensions ��� �#) ���������
	�� .

REJECT *!+-,/.0,21-,/34,2576
1The author would like to thank Piotr Indyk for this hint.

20

forall
� � (

 $ � � ;
while (
 ' � and �	� V�
H[H�
������ 	 � �&� � S *) (TESTS)
do mark point with index ��� V�
 [��
��9	 ��� as rejected;
 $ �
 � � ;

 $ � � ;
while (
 :D� and �	� V�
H[H�
��/� � 	 > �&� � S *) (TESTS)
do mark point with index ��� V�
 [��
��9	 ��� as rejected;
 $ �
 �^� ;� S $ ��� ;

for
 $ � � to � do
if (��� not rejected) then

� S $ � � S��4�#���H� ; (BITARRAY)
return

� S ;

��		

��
��

����

�����
���

����

����
����
����

���� ���� !!

"#"$#$ %& '(

))**
++,,
--..

//001
1223
344

55667
78899::

;;<<==>>

??@@

1

0

1

0

dim 1 dim 2

0

dim j

− α/2

+ α/2

1

(p , i) i
j

s
j

q
j

q
j

j
q

Figure 3.2: The REJECT procedure

Expected runtime of the REJECT procedure

We measure the runtime �BADC �ECGFIH of the REJECT procedure by the number of comparisons of
coordinates and of bit array entries performed in steps labeled by (TESTS) and (BITARRAY), re-
spectively.

Clearly, the total number of comparisons of bit array entries performed in step (BITARRAY) is� . The expected total number of comparisons of coordinates performed in steps (TESTS) is given
by:

�J
�LK / �)

�NM V number of points outside of V��#� � ` g) �!�&� � ` g) [�[� �)�	 � �J
�LK / �d-&�J� �NO#�� B�

21

where O � � O � �H`c is the side length of the box O7PRQ S b VYXZ���\[� in dimension
�
. Let "#� $ � V��!��� S * �!�&� � S * [for

� � ��� �����\�\�
	�� . By using the inequality between the arithmetic and geometric mean we obtain:

�J
�LK /

M V�� points outside "!� [� �J
�LK / �d-&�J� �NO#�F ' �h� 	 � 	 6, O / -)�\����- O � �� (3.1)

The product � ��EK / O � is the volume of the box OaPJQ S bUV XZ�\�\[� and equals � � , where
f

is the expected
number of points in OaPJQ S b � . By Lemma 2.3, we obtain:

�J
�LK /

M V�� points outside "!� [' �9	 �J� � 6e fhg �� ' ���#�A� � g�f �� (3.2)

Thus,

E V�� ADC �ECGFIH�[� � �) 	 � �J
�EK / ��-�� � � O#�\ =' � �)�	 � �A	 �J� � 6e fcg �� =' � �)�	 � ���#���@� g f c� (3.3)

If special case O7PRQ S T VYXZ���\[� occurs then the above upper bound on the expected number of tests is
asymptotically tight. In this special case we have

E V � ADC � CGFIH#[� � �)�	 � �A	 � � � 6e fhg �� � (3.4)

Thus, by Lemma 2.2, and by using + 6e fhg � � /C���� 	 � �#�0�@� g f 8 we obtain:

E V�� ADC � CGFIH [d: � � ���\E � I � N* � � �)�	 if 	 : �#��� � g�f � � � /C �A	 � � �)�	 if 	 � ����� � g f � (3.5)

The total expected runtime

The probability that the cube OaPRQ S does not contain any point of
�

is �J� � �� � . In that case, the
brute-force method is called, having a runtime of 	 �@�A	& . With probability � �^�J� �
�� � there is at
least one point in O7PRQ S and in this case the brute-force method will be called with the set O PRQ S b �
having the expected runtime 	 � f 	 .

The expected runtime E V � F���
ICJ[of the CUBE METHOD with the REJECT searching procedure
is proportional to the number of performed comparisons and arithmetic operations. By (2.1), we
have:

E V�� F���
ICJ[� 	 � E V � ADC � CGFIH#[� � � � �� � 	 �@�A	& � � � � �J� � �� � %a-�	 � f 	& � 	 �H	B�#�9�H	 f R
�
 ��� � ���#�A� � g�f � � 1 � �9	 � f 	 � 	B�#�7	 % (3.6)

The choice of the parameter ���
22

Procedure SIDE_LENGTH � f�� �!� computes side length ` such that the expected number
f

of
points in O$PRQ S�b � lies in V f � � f � � �! . A suitable parameter

f �
is to be determined such that the

expected runtime is minimized asymptotically.
For fixed �c� 	 ��� , � :) and 	 :) , and a real � � V � � �A we introduce the following notation:� � �M�
	 ���9 � ���#�A� � g �9 � � 1�� �A	 � � 	 (3.7)

We obtain in (3.6) an upper bound on E V � F���
ICJ[which is 	 � � � �M�
	 � f � � � � 	"�#�$, where the
constant in the 	 -notation is close to 1. Note that the computation of the side length ` does not
effect the total asymptotic expected runtime. Let

f
	
� � be the value which minimizes

� � �M�
	 ���9 for
fixed numbers � and 	 over all possible settings of � � V � � �� . Note that any value different fromf�	

� � cannot improve asymptotically the expected runtime we obtain with
f � � f�	

� � . We have� � � �M�
	 ���9 � � � X ��� � � �
� � � �� 	 (3.8)

and, obviously, � � f
	
� � is the unique value which satisfies (3.8).

By (3.8), we obtain

����� � �
� � � �� 	

� 'D�<') ����� � �� � � ��9	
� � if � � f�	

� � � (3.9)

We have � �C�� 'D��� �#�7�='�� % and + �� � 'D��� � � '�� 8 . By (3.9), these observations imply������� � � � ���7����' f�	
� � .

We obtain the upper bound ����� � * �� � �����) �� !� on
f�	

� � by using � � ' * �C � � � ' �#���) �� J% and+ �<' * �� � � � ' * �� 8 . Altogether, we get:

������" � 	 � �#�C�$# ' f�	
� � ' ����� �) �	 � �����) ��

�
(3.10)

The following shows that ����� � � � � ���$��� is a good approximation of
f
	

� � .
Proposition 3.1. Consider the function % $'& G�(& , %M�)�9 $ � � � �M�
	 ���9 defined in (3.7) for fixed�c� 	 ��� with �=:+* and 	 :-, . Let

f�	
� � be such that . �. � � f�	 � � � X . Then the following holds for

all positive �c�
	 ��� :�
)
� ���c� 	 � �����/� � � � �#�C���&% ' � �@�c�
	 � f0	 � � ') � ���M�
	 � ������� � � � ���$����%

Proof. If ������� � � � ���$��� � � � then �#�7� ' � � ' f�	
� � ' * �� . Since 	 ' ������ we obtain 	"�#�$	 '�� ,

which implies 	 ' � � IL� , which is equivalent to
� �* C21�3 6 ' �

* . Thus, by (3.10):

�
) % � ����� � � � � �#�$� �&% � �

) �����7	 � �
)
�9	
� � IL� � �

) ' ���#���H	 g) � � � ���#�A�H	 g) � �A	
� * � IL� � �

' ���#�A� � g f�	 � � � �9	
� �5476 1 � f�	

� � 	 � %M� f�	 � �
' ���#�$	 � �A	

� � IL� �) � ')8%M� � g 	 �)8% � ����� � � � � �#�7� ��%
23

If ������� � � � ���7��� � ���7� then, by (3.10),
� � ' ���7� ' f�	

� � , and either �����) �� : * �� , thus, ���7�^'f�	
� � ' �#�A�) �A and

�
) % � ����� � � � � ���7� �)% � �

) �#�d+ ����7� 8 � 	
) � 	

) �#�7� ' ���#��� ��#���) �� �� � 	
) � 	"���7�

' %M� f�	 � � ' ����� + ��#�7� 8 � 	 � 	"�����) �� U')8%d� �����/� � � � �#�7� ��%
or �#���) �� � * �� , thus,

� � ' ���$�=' f�	
� � ' * �� and

�
) %M� f � � �

) ���d+ ��#�7� 8 � 	
) � 	

) �#�$� ' �������H	 g)� � �A	
� * � IL� � 	B�#�$�

' %M� f�	 � � ' ���#�d+ ����7� 8 � 	 �) �;')8%M� f �
We choose parameter

f �
to equal ����� � � � � �#�7� � . As described in Section 2.1.3, procedure

SIDE_LENGTH computes for the parameter
f � � V ��� � � �\[the side length ` of a cube O7PRQ S with

center � such that the expected number of points in
� b4OaPRQ S is

f � V f � � f � � �! . We obtain by
(3.6):

E V�� F��
IC2[� �
 � ���#�a	& if 	 ' ������
 � ����� � ������ % � 	"���7	 % if 	 > ����)� (3.11)

Thus, E V �BF���
ICJ[�
?�@���#�7	 � 	"���7	& .
If O$PJQ S T VYXZ���F[� we have by (3.5) and because of �#�A� � g�f $' �#���@� g f � 7' ���a	 � 	 :

E V�� F��
IC [� � 	 � ���#�$	 if 	 ' ����)�
	 � ���#� � ����)� % � 	"���7	 % if 	 > ����&� (3.12)

Observe that if 	 > ����&� then 	 �����#� � ������ % � 	"�#�a	�% � 	 �@���#�7	 � 	"���7	& . Thus, by (3.11) and
(3.12), we have E V��BF��
IC [� 	 �@���#�a	 � 	"���a	& if the special case O7PRQ S T VYXZ���\[� occurs.

Remark 3.1. By the choice of
f
	

� � and by Proposition 3.1 there is no value of parameter
f �

such
that the upper bound in (3.6) that we obtain for

f � � ����� � � � � �#�7� � can be improved asymptoti-
cally.

Theorem 3.1. Let
�

be a set of � points from VYXZ���\[� . The CUBE_METHOD with the REJECT

searching procedure finds the nearest neighbor from
�

to the query point � � VYXZ���\[� with an
expected asymptotic runtime of
^� ���#�a	 � 	B�#�7	& if the points of

�
are drawn independently at

random from VYXZ���F[� under uniform distribution.

3.1.2 Searching the cube by rejecting and scanning

The drawback of the REJECT procedure is that points might be rejected more than once, as opposed
to SCAN, which considers each point only once. The contribution of this section is to combine the
procedures REJECT and SCAN in order to determine the points of

�
contained in the cube O PJQ S .

24

The preprocessing is done as described in Section 3.1.1. The data structure consists of the
indexed data set

�
and the arrays ��� , � � � �����\�F�
	 as introduced in Section 3.1.1. The query

algorithm is the CUBE METHOD with an orthogonal range searching algorithm, which works as
follows. The algorithm determines a partition (/ � (* of the set of dimensions (. Procedure
REJECT is called with the set (/ of dimensions to determine the set

��� 3S of the points � � such that
� �� � V��!� � S * �!�!� � S * [, for all

� � (/ . In the second phase, procedure SCAN is called with the set
(* of dimensions and the set

��� 3S of points. In the following we give a schematic description of
this searching algorithm called REJECT_SCAN and fill in the details later.

REJECT_SCAN *&+ ,/. , 1-,/34,2576� (/ � (* �$ � PARTITION � (;��� 3S := REJECT(`"�&� �&�a� � � (/);� S := SCAN(`"�!�&� ��� 3S �&(*);return
� S ;

We prove that for a suitable partition (/ � (* of the set of dimensions (and suitable parameterf �
, the CUBE METHOD with REJECT_SCAN has an expected runtime of
?�@���#�9� ������ � �! � � �	"���7	& . The result is summarized in Theorem 3.2 at the end of this section.

3.1.2.1 Details of the algorithm and analysis of the expected runtime

To analyze the expected runtime of the combined parts REJECT and SCAN we determine the total
number of comparisons of coordinates and bit array entries performed in steps labeled by (TESTS)
and (BITARRAY) of procedure REJECT.

We will compute a suitable partition (� (/ � (* with
 �H	& comparisons and multiplications.
We denote by

�
the geometric mean of the side lengths of the box O PRQ Scb?VYXZ���\[� , which contains

an expected number
f

of points from
�

. By uniform distribution, the volume of O PRQ S�b VYXZ���\[�
equals �� , thus,

� � 6e �� .
First we analyze the special case OaPRQ S T VYXZ���\[� .

A) Special case ��� Q S T V����
	 [�� : All side lengths equal ` � � � 6e fhg � .
The partition (/ � (* is chosen such that

(/ � ��� �����\�F� �9� (* � �#� � � �������F�
	��
where � is a parameter of the analysis, which we specify later. We express the expected runtime of
REJECT_SCAN as a function of � and compute the optimal value � 	 � � that minimizes it.

By (3.4), the expected total number of tests performed in the REJECT-part is

� �)�� � � �J� � � J� �
The expected total number of tests performed in the SCAN-part is given by:

E V�
 � � 3S
\[-&� � � � � ����� � � � 1���1 / �
which holds since events with respect to different dimensions of the points are independent. For
reasons of simplicity, we ignore here the computation of parameter � , which can be done in this

25

case in constant time (see below). Thus, the expected total number E V�� ADC � _ � F�� � [of tests performed
by REJECT_SCAN for � :D� is given by:

E V � A C � _ � F�� � [� � �)�� � �0�J� � � � � �d- � � -&� � � � � ����� � � � 1���1 /
� � �)�� � �0�J� � � � � � � � � f

� � � � (3.13)

The following lemma computes � such that
� $ & (& with

� � � $ �)�� � �0�J� � � � � �����
/21 � is

minimized.

Lemma 3.1. Consider the function
� $ & (& with

� � � �)�� � �0�J� � � J� � �����
/21 � , where� � 6e � � � �HX ���! , �=> * and 	 :) . Function

�
takes its minimum in �HXZ�	� at

� 	 � � � ��#��� � g � -.�#��� �#�0� � g � �J� � � - �� � � � *� � � (3.14)

Proof. We have
��
 � � �) � �J� � � J� � �d- � � �����/21 � . Since

� � � XZ���! we obtain:

�
 � � � X ��� �d- � � �#�0� � g � � � � �) � � � � � �
��� � � � �J� � � *�#�0� � g � �)� - � � �

�����J� g � � �J� � � \�J� � � � *� �#���J� g � � (3.15)

Since
E /21 ��N E /21 � G�
1 N���\E / I �FN > X for

� � �HX ���! , we get:

�
 � � � X ��� � � ��#�A�J� g � -������ �#�A�J� g � � � � � - �� � � � *� � �
We have ��� �

�����
� � � X since X � � � � . Thus, ��� �

�����
��
 � � �) � �J� � � �U> X . On the other hand,

by Lemma 2.3, we get:

�
 � X) �) � � � � � � � � - ���0�J� g � � � � ') � � �J� � � � �d- � � �
� � � ') � � � � X��

We used � � ��) � � /21 / IL� - 6, f �) : � /21 / IL� �)�>^X for �=> * and 	 :) . Therefore, function
�

takes its minimum in � XZ��� at

� 	 � � � ��#��� � g � -.�#� � �#�0� � g � �J� � � - �� � � � *� � �
We claim that � 	 � � > X . By Lemma 2.3, we obtain

���\E / I �FN/21 � : � for
� � �HXZ�\�! . For �U> * we have� � � �?- 6e � � >) , which is equivalent to � � � � � *� % � � . These imply

���FE / I ��NE /21 ��N - //21 � G
1 > � and

� 	 � � > X follows.

We set parameter � to equal the value � � � � �#� � 	 ��� � 	 � ��� � :D� , where � 	 � � is defined in (3.14).

26

Lemma 3.2. If O7PRQ S T VYXZ���\[� then the expected asymptotic runtime of REJECT_SCAN with param-

eter � � � �#� � 	 ��� � 	 � � � � is
 +C���#��� ����\E � I � N � �! � �?8 .

Proof.

CASE 	 � �����@� g f We claim � 	 � � � � . This is equivalent to
� � 476 1 > �

, since
� � � XZ���! . By

(3.15),
� � 476 1 � E /21 ��N E /21 � G
1 N���\E / I �FN > E /21 ��N
���\E / I ��N . Thus, it suffices to prove

E /21 ��N
���\E / I ��N > �
. Since

� � � XZ���! , we
have � � � � *���0�J� g � > � ��� � � � � *� > �#��� � g � � � �� �7) � � > �#��� � g � B� (3.16)

In this case, we have 	 � �����@� g f ��� � � 6e fhg � � �
� � (3.17)

Consider the function � $ �HXZ� /C [(& , � � � � /� �) � � �4���0�J� g � . The derivative of this function
is �
 � � � � /�
 � � � /� � �

 G � 1 /�

� X for
� � /C . Since � � /C � � � /C ��, � C
 1 � C G /C > X , we

obtain � � � <> X for
� � �HXZ� /C [. By (3.16), we get

� � 476 1 > �
, thus � 	 � � � � and � � � � . So the

SCAN part dominates the searching algorithm. By (3.13), we obtain:

E V�� ADC � _ � F�� � [� � �) � �J� � � J� � � � * � f
� � � � �) � � � � � � g �! �� , � �) 9�

CASE 	 : ����� � g f We have

E V � ADC � _ � F�� � [� � �)�� � � � � �J� � � J� � � � � � � f
� � � � (3.18)

where � � � � �#� � � � 	 � ��� �
	�� .
If � 	 � � > 	 then � � � 	 and E V � ADC � _ � F � � [� 	 � �������@� g f � � � 	& , which is the special case

when REJECT_SCAN consists only of the REJECT part. Since

� � 6� f
� � � �#�<� � g � � �#�<�@� g f 	 ��� ���<�J� g � M-!	 � �#�<�@� g f �

we have by (3.14):

� � 	 � � > 	& ��� ������ � g � -.�#��� �#�0� � g � �J� � � c-&� � � � � *� � >^	 � � �#�0� � g � �J� � � c-&� � � � � *� > �f �
Thus, by Lemma 2.2, the following holds in this case:

�
�
� ���\E / I ��NE /21 ��N
 '��#��� � g � B- + � � /���\E / I ��N 8 * �����\E � I � N �

���FE � I � N� �) . Therefore, 	 � �������@� g f � � � 	& �
 +$���#�A� ����\E � I � N � �?8 in this case.

If � 	 � � ' 	 then � � � � � 	 � ��� and we need an estimation of � 	 � � , which ist defined in (3.14).
We use the following bounds implied by Lemma 2.3:

�����J� g � � � � � - �� � � � *� ' ��#���J� g � - � �#��� � g � � � � � * � (3.19)

27

To get an upper bound on this expresion, we observe that X � ���\E / I ��N/21 � is decreasing in
�

, and, by

(3.17),
� � 6e � � : /C because of 	 : �#���@� g f . By (3.14), (3.19), by ���0�J� g � � ���\E � I � N� , and since� CC 1 / % * � � , we get the upper bound

� 	 � � ' 	�#���@� g f -.�#� � �.	�����@� g f � �
which implies:

�
� ' 	����� � g f -.����� �.	�#�A� � g f � � � � (3.20)

By Lemma 2.3, we have � � � � � � �4' � -&� � - ����E � I � N� , thus, we get:

�
� � � � � �;' � -.��� � �.	����� � g f �� � ���#�A� � g f 	 � (3.21)

By (3.15) and by Lemma 2.3, we have:

� � � 4 6 1 � f
� � � � �d- � � � � *��#�0� � g � �

f
� � � ' � � 	 � f �) �#�0�@� g f � (3.22)

This positive upper bound is also an upper bound for
� ��� � 1 �/21 � , which either equals X (if � � �) or

is less than
� � � 4 6 1 1 �/21 � . Thus, X ' ��� � � 1 �/21 � ' � .

This together with (3.18), (3.20) and (3.21) implies :

E V�� ADC � _ � F�� � [') � � �d-.��� � �.	����� � g f �� � ���#�A� � g�f 	 �) 	����� � g f -.��� � �.	�#�A� � g f � �)
�
 � ����� � 	����� � g f � � � � �

B) General case: The ordered list (� � (� �! ����\���F� (�H	& of dimensions corresponds to the in-
creasing order of the side lengths of the box O PRQ S bUV XZ�\�\[� :

O � E / N ' O � E * N 'D������' O � E � N � (3.23)

(is computed once at the beginning, by procedure SIDE_LENGTH.
(/ ��(* is a partition of ��� �\�����\� 	 � , where sets (/ and (* are considered to be ordered. The

size � �
 (/
 is a parameter.
By (3.3), the expected total number of tests performed in the REJECT-part is

� �)�� � � - J
��� � 3

�J� �NO#�F �
28

The expected total number of tests performed in the SCAN-part is given by:

E V�
 � � 3S
\[-&� � � O#� 3 � �\��� � � 1���1 /�
� K /

O#���\ � � -)� �
� � � 3

O#�C c-&� � � O#� 3 � �\��� � � 1���1 /�
� K /

O#���\ � (3.24)

where � � / ���\���\� � � 1�� � (* . This holds since events with respect to different dimensions of the
points are independent.

Let � A � � (/ �&(* be the expected total number of tests performed in the parts REJECT and SCAN:

� A � � (/ �&(* � � �)�� � � - J
� � � 3

�J� � O#�F � �d-&� �
��� � 3

O#�" c-&�J� � O � 3 � ����� � � 1���1 /�
� K / O#� � B� (3.25)

where � � / �������F� � � 1�� � (* .
CASE 	 � �����@� g f : We prove that in this case the optimal partition of variables is:

(/ � ��(� �! (* � ��(�) ���������&(� 	 � � � �. M
This proof is based on two observations. The first one uses the increasing order of the side
lengths for partitions where parameter � � � . Let � � / � � * �������F� � � be a permutation different from� (� �! ��\�������&(�H	& . By (3.23), we have

� A � � (/ �&(* � � �) � �h�J� � O � E / N � � -��BO � E / N � O � E / N - O � E * N � ����� � � 1���
� K / O

� E��
N
' � �) � �h�J� � O K 3 � � -�� O K 3 � O K 3 - O K
 � ����� � � 1���

� K /
O K � B�

This proves that if � � � then � (/ �&(* is the optimal partition.
The second observation refers to partitions with parameter �U> � . Let � � / � � * �\�����\� � � be some

permutation and
� � 6� � �� K / O � � 6e � � is the geometric mean of all side lengths. We have:

� A � � (/ �&(* � � �) � � �J� �NO � E / N � �d- O � E / N � �d-&�BO � E / N - O � E * N � ����� � � 1���
� K /

O � E��
N
�) �) � � �d-&�BO � E / N - O � E * N � ����� � � 1���

� K /
O � E��
N U') �) � � � -&� � * � ����� � � � 1��

' � �) � � � �d- � * - �� � � ' � �) � � -&�)%� * � (3.26)

� � �) � � � - �J

� K / �J� �NO K 6 � � - ��

� K / O K 6 -&� � � O K ��� 3 � ���\� � � 1 /�
� K ��G /

O K � �
We used O � ') �	�
 , � :) and � � �

/21 � ') � * � for
� � /C , which holds by (3.17). This complete

the proof that � (/ �&(* is the optimal partition in this case.

29

Since
� � /C and by (3.26), we get �BA � � (/ �&(* �) � � � � -&� � � �

/21 � ���* � �) .
CASE 	 : ����� � g f : It is difficult to efficiently find the best partition (/ � (* of (such that the
expected runtime of REJECT_SCAN is minimized. We can prove good bounds for the partition
strategy which uses the REJECT procedure for the dimensions corresponding to the largest side
lengths. The intuitive motivation for this choice is the observation that SCAN works better with
respect to dimensions corresponding to smaller side lengths of the box O PRQ S b V X ���\[� . We refer for
illustration to Figure 3.3.

�� �� ����		

��
��

����

����

����

��������
1

0 ����

������������
 !!
""##

$$%%&&''
1

0

(())

**++
,,--..//
0011
2233

444555

6677

1

0

8899

::;;<<==
>>??

@@AA

BBCCDDEE
FFGG

1

0

HI JK LMLN

increasing side lengths

REJECT OQPSRUTSCAN OQPWVXT
Figure 3.3: The REJECT_SCAN procedure

Procedure PARTITION gets the ordered set (with property (3.23) as input. The partition (/ �(* of �������������
	�� is chosen as follows

(/ � ��(�H	 � � � �! �������F�&(�H	& 0 (* � ��(� �! ����\���F� (�H	 � � c � (3.27)

It remains to determine a suitable value of the parameter � .

The geometric mean of all side lengths is
� � 6� � �� K / O � � 6e � � . Additionally, we introduce

the following geometric means of side lengths:

�c� � � 6ZY � �
� � �

O#� ["� � � � �

��� � 3
O#� (3.28)

We have �h� � C' � '\["� � for �<'�� ' 	 . � A � � (/ � (* is given by:

� A � � (/ �&(* � � �)�� � �d- J
� � � 3

� � �NO �� � �d-&�]["� � R � -&�0� � O � E / N � ���\� � � 1���1 /�
�LK / O � E � N

30

Since O � E / N ' O � E * N ' ������' O � E � N we have

� � O � E / N � ���\� � � 1���1 /�
�LK / O � E � N ' � � �h� � � �\��� � � �c� � R � 1���1 / � � � �)�c� � R � 1��� � �c� � �

which can be shown in analogy to (2.5) (see the proof of Lemma 2.1). We obtain:

� A � � (/ �&(* U' � �) � � � - J
� � � 3

� � �NO#�� � � -��]["� � R � � f
� � �c� � (3.29)

Parameter � is set to equal � � defined as follows:

�
� � � � �#� � �
 � ��� � 3 O#� ' � � 476 1 and X '�� �
 (/
�' 	 � if � 	 � � ' 	� otherwise

(3.30)

where � 	 � � is defined in (3.14). � (/
 � K � � � (*
 � K � � is here an approximation for the optimal solu-
tion.

The value � � can be determined with � � comparisons and � � multiplications. By (3.14),� � 4 6 1 � E /21 ��N E /21 � G�
1 N���FE / I ��N is a constant. The value � � is well defined: obviously, the function� ["� � � � � � � � 3 O#� is monotone decreasing in � . In addition ["� X) $ � �<> � � 476 1 . Thus, � � : � .
If the special case O7PJQ S_T VYXZ���\[occurs, all side lengths equal

� � 6e fcg � , and � � de-
fined above in (3.30) takes the same value as discussed in the special case analysis, that is
� � � � �#� � 	 ��� � 	 � � � � .

The partition (/ � (* is determined as given in (3.27), where parameter � is set to equal the
value � � defined in (3.30). To estimate the expected runtime of REJECT_SCAN, it is sufficient to
focus on the number �BA C � _ � F�� � of comparisons performed:

E V�� ADC � _ � F � � [� � A � � (/ �&(* � � � ' � A � � (/ � (* � 	�� (3.31)

Lemma 3.3. If 	 : �#�A� � g�f then the total expected number of tests performed by REJECT_SCAN

is bounded as follows:

E V�� ADC � _ � F � � [� ����� � 	�#��� � g�f �� � * � � , 	
Proof. From the definition of � � in (3.30) and using the notations from (3.28), we have:

��
�EK � 1�� � G *

O � E � N � � ["� � � � �! � � 1 / > � � 476 1 (3.32)

�
� � � 3

O#� � ��
�LK � 1�� � G /

O � E � N � � ["� � � � � ' � � 476 1 � if � 	 � � ' 	 (3.33)

If � 	 � � > 	 then � ["� � � � � � � � .
31

We first estimate the term
� � E�� E � � N�N � � 1 �/21 � of the bound in (3.29), which is either X or can be

bounded in the case � 	 � � ' 	 by using (3.33) and (3.22):

�d-&� ["� � � � � � f
� � � ' � - � � 4 6 1 � f

� � � ' � � 	 � f �7) �#��� � g�f (3.34)

The term � -�� � � � 3 � � �NO#�F of the sum in (3.29) can be bounded by using the inequality between
the arithmetic and geometric mean. Additionally we use inequality (3.32), Lemma 2.3 and the fact
O#� : S * :

�
* for any

� � �����������F�
	�� , which follows by (2.3).

�J
� K � 1�� � G /

�J� �NO � E � N � �J
� K � 1�� � G *

� � �NO � E � N � � � �NO � E � 1�� � G / N %
' � � � � �! c-��0� � ["� � � � �! M � � � � g)
' � � � � �! c-������ �� ["� � � � �! � � �

) � � �) � �
) �

� ��� � ��
� 476 1 � � �

) � �
) - �#�0�@�

g f 	
' ��� � ����� � g � � � � � F�J� � � � *� � � � (3.35)

By (3.19), we get �#� + ���FE / I ��NE /21 ��N E E /21 � G�
1 N N 8 ' �#� + C ����FE � I � N 8 , thus:

� - �J
� K � 1�� � G / �J� �NO � E � N � �d-.��� � 	�#�A� � g f � � �d-.�#��� �! � � � (3.36)

By (3.29), (3.31), (3.36) and (3.35), we obtain:

E V � A C � _ � F�� � [' � �)�� � �d-.�#��� 	�#�0�@� g f � �) � � � � 	 � f �) �#�0�@� g f � 	
� ����� � 	�#�A� � g f � � * � � ,�	 �

This bound on E V�� ADC � _ � F � � [is not tight for very large values of 	 , e.g. 	 ��� + �� -.�#�A� � g�f 8 . By

using � � � � 3 � � �NO#�F ' � ��EK / �J� �NO#�\ ' ���#�A� � g�f (see (3.1) and (3.2)), we get E V � A C � _ � F�� � [�
?�@���#�9� � g f � � � 	 , which is a better bound in this case.

The total expected runtime

The expected runtime E V � F���
IC2[of the CUBE METHOD with the REJECT_SCAN searching procedure
is proportional to the number of performed comparisons and arithmetic operations. By (2.1), we
have:

E V�� F��
IC [� 	 � E V�� ADC � _ � F � � [� �J� � �� � 	 � �A	& � � � � � � � � � � % -�	 � f 	& � 	 �H	"����� 	 f �
32

Thus,

If 	 � ����� � g f then E V �BF���
ICJ[�
D�L� � � 1 � �9	 � f 	 � 	B�#�7	�%
If 	 : ����� � g f then E V �BF���
ICJ[�
 +.���#� + ����\E � I � N 8 � � � � 1 � �9	 � f 	 � 	"�#�$	&8 (3.37)

To obtain a total asymptotic runtime of
 � ���#� � ����)� � � % � � � 	B�#�a	 % , it is sufficient to guar-
antee that parameter

f
fulfills the following inequality:

� 1 � �9	�' ����� " ���#� + ����\E � I � N0� � 8 � ��# �
We have � 1 � �A	 ' � ��� f : �#�a	 and

� 1 � �9	 ' ���#� + ����\E � I � N � � 8 � � f : ���a	 � ��� + ����\E � I � N � � 8
We choose parameter

f �
of procedure SIDE_LENGTH to equal ���a	 . Since

f � V f � � f � � �! we
obtain:

E V�� F���
ICJ[�
����
 � �A if 	 � �#�C�
D�����#� � ����)� % � � � 	"�#�a	�% if ���7�4' 	 � �
 �H	B�#�7	& if 	 : � (3.38)

Altogether, we have proven the following theorem.

Theorem 3.2. The CUBE METHOD with the procedure REJECT_SCAN finds the nearest neighbor
from

�
to a query point with an expected asymptotic runtime of
 � ���#�A� ����)� � �. � � � 	B�#�a	 %

if the � points of
�

are drawn independently at random under uniform distribution. The method
requires
?� �9	& storage and
 � �A	B�#�$�A preprocessing time.

33

3.2 Speeding up the CUBE METHOD by using monotone se-
quences

In this section we present a query algorithm that is based on a preprocessed partition of the
data set

�
, such that each subset of the partition allows an efficient orthogonal range search-

ing. The partition consists of sequences of points that are monotone in & � with respect to some
of the dimensions. For dimensions 	(' � ������������)� % * the query algorithm has an expected run-

time of
 + , 	�-.� /21435 6 -.�#�7� 8 . For higher dimensions 	;> � ���)���������� %!* its expected runtime is

 + 	<-.� /21 35 6 -.�#�7�#�7� 8 .

3.2.1 Preliminaries

We call a 	 -dimensional sequence to be monotone, if it is monotone in each of its 	 dimensions.
Since in higher dimensions a partition into monotone sequences might be very large (see Section
3.2.3 and Section 3.2.4), we consider a preprocessed partition of the point set into sequences which
are monotone only with respect to a subset (/�� ��� �\�������
	�� of the dimensions. The query algo-
rithm is the CUBE METHOD, which considers for a given query point � the cube O PRQ S . To determine
the point set

� b O7PRQ S we proceed as follows. For each sequence of the preprocessed partition we
perform a logarithmic orthogonal range searching restricted to the dimensions of (/ . We obtain
the set

� � 3S of points � � such that � �� � V��!� � S * �!�&� � S * [, for all
� � (/ . These points are tested by

the SCAN algorithm with respect to the rest of the dimensions ��� ���\���F� 	 � � (/ , to finally obtain the
points contained in the cube. This searching method will be described in more detail in Section
3.2.5.

In Section 3.2.2 we mention methods to compute a suitable partition of the set
�

into monotone
sequences. Section 3.2.3 and Section 3.2.4 deal with the worst-case complexity and expected
complexity of monotone partitions, respectively. In Section 3.2.5 we finally present the searching
method and its analysis, and summarize the results in Theorem 3.7.

In the following we define monotone sequences in & � and motivate their use in geometric
searching. We show that monotone sequences in & � allow efficient orthogonal range searching
and efficient nearest-neighbor search.

Monotone sequences in two dimensions

Erdős and Szekeres [25] proved that any sequence ��� �.� of � real numbers has a monotone
(increasing or decreasing) subsequence of length � , � � . Now considering a set � � � ��� � ��� �
�
 ���� ���\���F� �M�)� of � distinct points in the plane we can easily find a monotone subsequence of length
� , � � . The elements of � are sorted with respect to the increasing order of the first coordinate
of the points; w.l.o.g. let this order be � / '	� * ' ���\�c'	� � . The sequence ��� � � has a monotone
subsequence ��� ��
 � of length � , � � . Thus, the subsequence � ��� ��
 ��� ��
 � of � of length � , � � is
monotone with respect to some order o

� �<�J'<��' �
!� '��\: B� .
A consequence of the Erdős-Szekeres result is the existence of a partition of a set of � points

in the plane into
 � , � monotone subsequences. This partition can be computed in time
 � � � I *
[14]. A longest monotone increasing subsequence of a sequence of � real numbers can be com-
puted in time
?� �������h�A .

34

Partitioning into monotone subsequences is a useful tool for various applications in the plane.
Matoušek and Welzl developed an algorithm for the halfspace range-counting problem in the plane,
using the Erdős-Szekeres result [52]. This technique has also been applied to solve some other
geometric-searching problems, including ray shooting and intersection searching [13].

In the following we show that monotone sequences in & � allow efficient orthogonal range
searching and efficient nearest-neighbor search.

Monotone sequences in higher dimensions

A sequence of points in & � is called monotone in & � if it is monotone with respect to some
order from ��'��\:<� � , in other words if it is monotone in each dimension
 � ��� �\�������
	�� . We define
the set � � � ��'��\:<� � of reflexive partial orders on & � . Let o

� � � , o � � o � �! ����\���\� o �H	& with
o �
2 � ��'<��:<� ,
 � ��� �����\�F�
	�� . Consider two points in & � � � ��� / �\�����\� � � and � � ��� / �������F��� � .where � � ��� � � & . We write as usual � o � to mean that ��� ���� is in the order o, which is defined as
follows: � o � � � � � o �
2 � � �
 � �������������
	�� .
Definition 3.1. A sequence � � V�� / � � * ��������� ��A [of distinct points from & � is monotone in & � if
and only if there is some order o

� � � such that � / o � * o ����� o ��A holds. We call � to be monotone
with respect to o.

4

������������

������������
��������	�		�	

����
�

�
��

p

p

p
p

p

1

2

3

p5 6

B

� � �#� / � � * �����\�\� ���F�

6x5x4x xx

������������
3

�������� ��������
2

����������������
1x

������������

������������

������ � �
!�!!�!"�""�"

#�##�#$�$$�$%�%%�%&�&&�&

'�''�'(�((�(
2

3
4

5
6

1y

y
y
y

y
y

� � ����� �/)&� , �) � � ��� �+* ��*Z�, b � � �#�
 �����\�F� � H � � �#� � � �.-��

Figure 3.4: Orthogonal range searching for a monotone sequence

For any monotone sequence orthogonal range searching can be done in time
?� 	"� � � � . Given
are a monotone sequence � � V � / � � * �����\�F� � A [and an orthogonal range

, � V � / �!� / [0/ ���\�1/ V � � �!� � [.To determine
, b � we find by binary search in time
?�@� ��� �� for each dimension

� � ��� �\�����\� 	 �
the indices � � and) � of the point whose coordinate is leftmost in V � �.�!�#�
[and of the point whose
coordinate is rightmost in V � �!�!�#� [, respectively. We can determine � � ����� ��� / �������F��� � � and) �

35

� �#� �) / �������F�) � � in time
?� 	 . Obviously,
, b � � �#�
 � �
 G / �������F� � H � . Figure 3.4 illustrates this

orthogonal range searching.

�������
�

p2
������
���
������
���
p3

���
�

p4 ��		p5

�

�
�
�

��

���
�

p1

p6
q

|| p - q ||i

i51 2 3 4 6

Figure 3.5: Voronoi diagram of the monotone sequence V � / � � * ��������� � A [and the corresponding
distance sequence �

 � �����

 � �

Another advantageous property of a monotone sequence is that nearest-neighbor search can be
done by binary search in time
?�H	B� ��� � .
Lemma 3.4. Consider a monotone sequence � � V � / � � * ��������� � A [and a query point � � & � .
Let 	 � �

 � � � �

 � ,
 � �������������!��� . Then there exists no index
 � �/)&���������!� � ��� such that	 � 1 / � 	 � >^	 � G / .
Proof. Assume 	 � 1 / � 	 � > 	 � G / for some
 � �/)&�������F�!�%� ��� .

Let � be the dimension such that

 � � � �

 �
�
 � � K � � K
 . For the dimension � the sequence

� K � V�� /K � � *K �\�����\� � A K [is monotone. By symmetry, it is sufficient to consider the case when � K is
monotone increasing. In this case we have:

� � 1 /K ' � � K ' � � G /K �
If � K : � � K then 	 � �
 ��� K � � K
 '
 � � 1 /K �7� K
�' 	 � 1 / , which is a contradiction to our assumption. If
� K '���� K then 	 � �
 ��� K � � K
�'
 � � G /K ��� K
�' 	 � G / , which is a contradiction to our assumption.

Lemma 3.4 is illustrated in Figure 3.5 where the Voronoi diagram of a monotone sequence in
2 dimensions is also shown.

Lemma 3.4 implies that the minimal distance 	 � �
�
 � � � �
�
 � can be found by binary search
in
?� ����� �� steps. In each step a distance

 � � ���

 � is computed. Thus, the nearest neighbor to �
from � can be found in time
?� 	"� � � � .

36

3.2.2 Computing a partition into monotone subsequences

Consider a partially ordered set (poset)
� � � � � � to be a pair of a ground set

�
and a reflexive,

antisymmetric and transitive binary relation � on
�

. A chain of
�

is a set of pairwise comparable
elements and an antichain of

�
is a set of pairwise incomparable elements, where two elements

�]��� � � are incomparable if neither � � � nor � � � . The height of
�

is the size of a maximum
chain and the width of

�
is the size of a maximum antichain in

�
.

A � -cover of
� � � � � � where � � � is a set of � disjoint chains such that every element of�

is in some chain. A fundamental theorem of partial orders is the following.

Theorem 3.3 (Dilworth’s Theorem). Every finite poset of width � has a � -cover and � is the
minimum number of chains needed to cover the elements of

�
.

We consider partial orders from � � . Let us first restrict the partition of
�

into monotone
sequences in one of these partial orders, � � � � . The corresponding poset graph � E�� Q	� N can be
determined in time
 �H)� * . � E
� Q	� N � ��� � M has as vertex set � � ������������� �M� the indices of the
points of

�
and the edge set is defined M � � �
R� � $ � � � � � � . Figure 3.6 shows a 2-dimensional

poset � � �!�J'<��' c and its corresponding embedded poset graph.

��p5

p2�������� ��������p6

p4������������

������������
������������

������������
��������

p

p1

8

p

p7

3

Figure 3.6: Poset � � �!�J'<��' M and its corresponding embedded poset graph

We will compute a minimum chain cover of � � � � . The width of an � element poset with
the corresponding antichain and chain cover can be obtained using a max-flow computation on a

bipartite network with unit capacities in
 + � �
 g , ����� � 8 time. If the width of � � � � is at most � ,
then a minimum chain cover can be computed in
 ��� � * time [28].

The algorithms are based on the Fulkerson’s proof of Dilworth’s Theorem by reducing it to the
König-Egervary duality theorem for bipartite graphs, which states that in a bipartite graph the size
of a minimum vertex cover equals the size of a maximum matching. Fulkerson’s proof uses the
split �a� � of � � � � , i.e., the bipartite graph having as vertices two copies

�

,
�

of
�

and an
edge � �
 � �

 whenever � � � , �]� � in

�
. A matching ! in �a� � corresponds to a partition of�

into
 �
 �
"!
 chains : begin with the partition of
�

into 1-element chains, then for each edge� �
 � �

 � ! hook the tail of the chain ending with � to the beginning of the chain with � thus
reducing the number of chains by one. Let

�
be a vertex cover of � � � and associate the antichain#%$ � �2� � � $��
 � �

]� � � with it. Because �a� � comes from a transitive order relation it

37

can be shown that
 # $
 �
 �
 �
 �
 when
�

is a minimal vertex cover. Then Dilworth’s theorem
follows from �����
"!
 � � ���
 �
 , the König-Egervary duality theorem.

By the above considerations the algorithm for bipartite matching of Hopcroft and Karp [41]

allows to compute the width of
�

in
 � � �
 time. An improvement to
 +.� �
 g , ����� �A8 has been

obtained by Alt et al. [6].

To find a minimum chain cover in
 +�� �
 g , ����� �A8 time, let ! be the maximum matching

obtained by the algorithm, view
�

as a directed graph and consider the subgraph obtained by
restricting to the edges � � �0� � $A� �
 � �

 � ! � . As in Fulkerson’s proof, it is easy to see that this
subgraph yields the desired minimum chain cover.

For orders of width at most � the minimum chain cover can be computed in
?� � � * time
as shown in [28]. They compute the max-flow on the bipartite network in two phases. In the
first phase a greedy chain decomposition is computed by the recursive extraction of chains of
maximum length from

�
and is used to obtain a feasible flow which is at most �$� ��� � units less

than the maximum. In the second phase the true max-flow is computed using augmenting paths.

Corollary 3.1. [41, 6] For a given order � � � � , where
�

is a set of � points in & � and � � � � , a

minimum chain partition can be found in
 + � �
 g , ����� � 8 time.

To compute a partition of the point set
�

into monotone sequences we do not have to restrict
the monotonicity to only one of the orders in � � . We can proceed as follows.

We consider a set
� � � � / ���\���F� � A�� T � � of orders and compute a decomposition of

�
into sequences that are monotone with respect to one of the orders from

�
. Let � / �������F� � A be the

widths of the posets � � � � / ����\���\�!� � � � A , respectively. We define the
�

-minimum width of
�

to
be � � � �#� � � / �������F� � AF� . We compute a greedy

�
-monotone chain decomposition of the point set�

, that is obtained by the recursive extraction from
�

of chains of maximum length over the orders� � � � / �����\�\� � A\� of
�

. We define
��� � �

and recursively define chain O � to be the longest chain
of all maximum chains of � � � 1 / � � / ������\�\�!� � � 1 / � � A
 , respectively. � � ��� � K are the orders induced
on the set

� � � � � 1 / � O � . A maximum chain of an induced suborder of � � � � K can be found by
a modified depth-first-search for finding a longest path in the corresponding poset graph, which
is a directed acyclic graph. In analogy to [28], we observe the following: the longest maximum
chain in � � ��� � / ����\���\�!� � �H� � A has size at least

� � g � . Therefore,
 � �
�' � �J�0� /� D� ' � � 1 6� , which
is less than one for
�> �7���$� . Thus, the greedy monotone chain decomposition with respect to� � / �������F� � AF� consists of at most �$�#�7� chains.

The above upper bound on the size of the greedy decomposition is not tight. Intuitively, we
could get a smaller decomposition into monotone sequences if we do not restrict ourselves to only
one of the orders in � � . For our theoretical analysis we restrict the decomposition to contain
subsequences which are monotone with respect to only one of the orders in � � . The expected
runtime analysis of the query algorithm based on monotone decompositions is presented in Section
3.2.5.

We conclude the sections preparing this runtime analysis with a survey on the length of a
longest monotone sequence in & � and the size of a monotone decomposition. In high dimensions
the longest monotone subsequence of a point set can be very small, thus, any monotone decompo-
sition is large. The following section shows that there exists a set

� �
� & � of � points which has

38

no monotone subsequence of length larger then � � 3
 6 Y 3 � , even though the subsequences of
�

are
allowed to be monotone with respect to any of the � � -orders.

More positive results are known on the expected length of the longest chain of an order � � � � ,� � � � if the points of
�

are chosen uniformly independently at random from VYXZ���\[� . These are
mentioned in Section 3.2.4.

3.2.3 A set with longest monotone subsequences of length ��� ������ �
	
A monotone subsequence of length � � 3
 6 Y 3 � can be determined easily : by the repeated application
of a ”folklore” algorithm for finding a monotone subsequence of length � , � � from a sequence of� reals in time
?� �������h�A (see e.g. [31], [52]). It is also known that � � 3
 6ZY 3 � is the worst-case
longest length of a monotone subsequence one can guarantee in & � (this is mentioned e.g. in [48]
but without a proof). In two dimensions this is shown by Erdős and Szekeres [25].

We show here an own construction of a set
� �

� & � of � points which has no monotone
subsequence of length larger then � � 3
 6 Y 3 � . We described this construction of the set

� �
also in

[37].

Construction of the set
� �

We build
� �

such that � � � � � � � ��� / �
L ������\�\�
� � �
2

 � ���������F� � � � (3.39)

where � � $M��� �\������� �M� (��� �����\�F� � � , �?' � ' 	 , are appropriate permutations. � ���
2 is the
�
-th

coordinate of the point � � of
� �

. Permutation ��� defines the coordinates � /� �������F� � �� in dimension
�

of the points � / �������F� � � of
� �

. We have �#� /� �\�����\� � �� � � ��� �\������� �M� .
Let

� � � � � �\> � � . Note that, by (3.39), any 2 points of
� �

will be related with respect to some
order in

� � . Let � � � V o / � o * �������F� o * 6 Y 3 [be a list of the) � 1 / orders � o
 o � � � and o �J�! �
 �
 � ,
where the monotonicity with respect to the first coordinate is kept fixed to

 �
 . The rest of the
orders in

� � can be obtained by inverting those in � � . As an example the list � � is defined as� � � V � � � � � �
!� � � � ��>
!� � ��> � � �
.� � ��> ��> [. Figure 3.7 shows the � � -orders as the rows of
the table � .

Note that it suffices to construct
� �

such that it has the property that there cannot be more than
� � 3
 6 Y 3 � points in any o � -monotone subsequence of

� �
for any � �

� � � ,
 � ��� �����\�\�) � 1 / � .
We consider first the case � 3
 6ZY 3 � � . To define the above permutations � K , we consider the

) � 1 / -dimensional grid-cube � � ��� �������F� � 3
 6ZY 3 � *
6ZY 3 of side length � 3
 6ZY 3 :

� � "�� � V�� / � � * �������F�&� * 6ZY 3 [��� � � � ��� ���\���F� � 3
 6ZY 3 � # � (3.40)

Note that the grid cube � is a set of � elements. We will define 	 total orders � � (� ' � 'D) on
� . The order � � on � will define the permutation � � , where � ' � ' 	 .

The first order � / is defined to be the lexicographic order of the elements of � . Let � �V � / �&� * ���������&� * 6ZY 3 [and � � V � / � � * ���\���F� � * 6ZY 3 [be two different grid-points of � , then:

� � / � ��� � � / ��� / �����\�\�&� � 1 / � � � 1 / and � �
� �

� � for some
 � ��� ���\���\�) � 1 / � %=�
39

�������������
	�	�	 	�	�	�����
�

����� ����
� V�� ���

��������������	�	�	

��������������	�	�	

	�	�	����

	�	�	����

	�	�	����

!#"%$ 	�	�	

�

����

� 3 ����

&

��������������	�	�	 � 6 ����
 	�	�	����

� V

�('

� R

Figure 3.7: Table � with the � � -orders

Let � / � / � * � / ����� � / � � be the lexicographically ordered elements of � . The order � /induces the identity permutation � / . Thus, in the first dimension we have:

� // � � � � * / �)�� �������F� � � / � � �
where ��� / is the first coordinate of the point � � � � � .

Each other order � � , � �)&�������F�
	 , will produce another unique sequence of the elements� / � � * ���\���\� � � of � . It remains now to specify the order � � , � � �/) �����\�\�
	�� . We define order � �
by making use of the

�
-th column of the table � of the � � -orders, which we illustrated in Figure

3.7. Let � � V�� / �&� * �������F�&� * 6ZY 3 [and � � V � / � � * �����\�\� � * 6 Y 3 [be two different grid-points of � , then� � is defined such that:

� � � � � ��� � � / ��� / �����\�\�&� � 1 / � � � 1 / � and � � � � � � � � � � for some
 � ��� �\�������) � 1 / � % �
(3.41)

Note that for any � � V�� / � � * �������F�&� * 6 Y 3 [and � � V � / � � * �������F� � * 6ZY 3 [distinct elements of � we
have � / � � / �������F�&� � 1 / � � � 1 / and � �]� � � for some
 � ��� �����\�\�) � 1 / � . The definition of the
order � � in (3.41) means that:

) if � � � � �
� and � � � � � �
 �
 then � � � � ,

) if � � � � �
� and � � � � � �
 >
 then � � � � .

Each order � � , � � �����������
	 , produces a unique sequence of the elements � / � � * �������F� � � of
� . This unique sequence induces the permutation ��� $ ��� �����\�F� � � (��� �������F� �M� such that the
following holds:

�+*

 E / N � � �+*

 E * N � � ����� � � �,*

 E � N � � ����� � � �+*

 E ��N � (3.42)

Thus, in the
�
-th dimension we have

� /� � ����� �! � � *� � ��� �) �U�����\�\� � �� � �����@�� �
40

where � �� is the
�
-th coordinate of the point � � � � � , and ��� is defined in (3.42).

By the construction of
� �

we can define the bijection � $ � (� �
such that

��� � � ��� / � � ����\���F��� ��� � ����\���F��� � � � c � � � � (3.43)

where � � $ � (��� ���\���F� �M� is a bijection such that

� ��� � �
 ��� � is the
 -th smallest element with respect to the order � � . (3.44)

Properties of the set
� �

We show that there cannot be more than � 3
 6ZY 3 points in any o � -monotone subsequence of
� �

for
any � �

� � � .
Consider some order o �

� � � (
 � ��� �����\�F�) � 1 / �). For any points �A�!� � � �
with � o � � let� � V � / �������F�&� * 6ZY 3 [and � � V � / ���\���\� � * 6 Y 3 [be their preimages with respect to � , which means

� 1 / � � � � and � 1 / � �� � � . There is some � � ��� �����\�\�) � 1 / � such that � / � � / �������F�&� � 1 / �� � 1 / and � �]� � � . Without loss of generality let us assume that � � � � � . By (3.41),(3.44) and
(3.44), the coordinates � � and �!� (� ' � ') of � � � � / �\�����\� � � and � � � � / ���\���\�!� � fulfill the
following for all

� � ��� �\�����\� 	 � :
� � � �!� ��� � � � � � � � � � � �
 �

� � > �!� ��� � � � � � � � � � � �
 >

Thus, � � � � , and since there exists a unique order � � � � with � � � , we have � �
 , as we assumed
� o � � . This means, that if � o � � , ���!� � � � then their preimages � � � � � with respect to � have
the property � �]� � � . By the definition of � in (3.40) we have � � � � � � ��� ��������� � 3
 6 Y 3 � . Thus, there

cannot be more than � 3
 6ZY 3 points in any o � -monotone sequence of points from
� �

.
We conclude that

� �
has no monotone subsequence of length larger then � 3
 6ZY 3 . The general

case works as follows. Let � � � � 3
 6ZY 3 � . Thus, � '�� * 6ZY 3 holds. Now let
� 	

be a set of � * 6 Y 3
points in & � with longest monotone subsequence of length at most � , and which is constructed
as discussed above. Take any subset

� �
�
� 	

of � '�� * 6 Y 3 points.
� �

has also no monotone
subsequence of length larger then � � � � 3
 6 Y 3 � .
3.2.4 Expected height and width of a random order

Let � be the dominance order, which is defined such that � � ��� / �������F��� � � � � ��� / �����\�\��� � if
and only if � � ' � � for each
 � � �������F�
	 . All results mentioned in this section hold for any other
partial order of � � .

Let � � � � � $�
 � ���������F� �M� be � points independently and uniformly distributed on the unit	 -cube. The random variables of interest are � � Q � � � � � � / �����\�\� � � , the length of the longest
chain in the set � � � � , which is the height of the poset � � � � , and � � Q � � � � � � / �\������� � � the
cardinality of the largest anti-chain in � � � � , which is the width of the poset � � � � . Determining
the expected height and width of � � � � is equivalent to determining the expected height and width
of a random 	 -dimensional order. Random 	 -dimensional orders were introduced by Winkler [66].
There are two useful and very natural equivalent definitions of a random 	 -dimensional order

� � � �A
[66], [16], [18].

41

1. The 	 -dimensional unit cube VYXZ���F[� is equipped with the normal product measure and the
componentwise order. The random order is defined by choosing � points uniformly, inde-
pendently at random from VYXZ���F[� , and taking the order induced on them.

2. Consider all the ��� orders on the set ��� �\������� �M� . The random order
� � �@�� is defined by taking	 of these uniformly, independently at random and forming their intersection.

The problem to determine the expected height E V � � Q � [turned out to be surprisingly difficult.
Determining the height of

� * � �A is known as Ulam’s problem. Hammersley [36] showed that the
expected length of a maximum increasing subsequence in a random permutation of ��� �) ���\���F� �M�
converges to
 , � with increasing � , for some constant
 . A simple proof that
 ') is given by
Pilpel [56]. A review on the length of the longest increasing subsequence of � real numbers, which
covers results on random and pseudo-random sequences is given in [62].

The problem of estimating � � Q � for general 	 is dealt by Winkler [66], Bollobás and Winkler
[17], and, Bollobás and Brightwell [16]. Bollobás and Winkler proved in [17] that the expected
height E V � � Q � [of

� � �@�� converges to
 � - 6, � with increasing � , where
 � is a constant depending
on 	 . It is known [50, 63] that
 * �) and that � � � � ���
 � � � . The strongest result [16] shows that
there is a sharp concentration about the mean for � � Q � with 	 :) :
Theorem 3.4 (Bollobás and Brightwell ’92). For each integer 	 :) , there is constant O � such
that, for � sufficiently large,

Pr

�

 � � Q � ��
 � � / IL�
�>

� O � � / I * � ����� � I * ������ � � �B� � '�� X � * � 1 �

for every

�
with) � � � � 3 3
 6���	�����	��� .

A consequence of this result is that the variance of � � Q � is at most � / IL� � � � * � , and another is
that:

Theorem 3.5 ([16]).
�
 V � � Q � [��
 � 6, �
 '

6, ��� ��� � I * � .

To precisely determine
 � with 	?>) is a challenging problem. Bounds are given by Bollobás
and Winkler [17]:

Lemma 3.5 (Bollobás and Winkler ’88). For each 	 :) :
	 *� 	�� / IL��
 �J� g 	& '
 � � �

The estimation of the width � � Q � has been much less studied. Winkler [66] proved that the
probability that � � Q � is lying between � 1 / � /21 / IL� and � /21 / IL� � ��� � tends to 1 as � (� . Brightwell
[18] improved the upper and lower bound:

Theorem 3.6 (Brightwell ’92). a) For each integer 	 :) and for � sufficiently large:

E V � � Q � [d' *))� /21 / IL� �
42

b) Let O be any constant less than � � g �! e � g���� XZ� *�X � . There is a 	 � � 	 � � O and ` � `C�HO�
such that

E V � � Q � [0: O ,)� /21 / IL�
whenever 	 : 	 � and �=: �H`M	 �JI * .

3.2.5 Searching by using a partition into monotone sequences

As already mentioned, a partition into sequences that are monotone with respect to all dimensions
(� ��� �����\�F�
	�� might be very large. We present an orthogonal range searching algorithm that uses
a preprocessed partition of the point set

�
into monotone sequences, such that the sequences are

monotone with respect to the dimensions of a fixed subset of the dimension set (� �������������
	�� .
This orthogonal range searching algorithm is called by the CUBE METHOD to compute for

some cube O7PRQ S , the set O$PRQ SBb � of points. The searching algorithm works as follows. It considers
a suitable subset (/ � (of dimensions. It determines the set

� � 3S of points � � such that � �� �V��!� � S * �!�&� � S * [, for all
� � (/ . The computation of

��� 3S is based on a preprocessed partition of�
into sequences that are monotone with respect to the dimensions of (/ . On each sequence we

apply a logarithmic orthogonal range searching as described in Section 3.2.1. In the second phase
the SCAN procedure is called with the set

��� 3S of points and the set (� (/ of dimensions, to finally
determine the set O7PRQ S b � of points.

Which subset (/ of dimensions is suitable depends on the query point � and the side length ` of
the cube O7PJQ S and is decided during the query algorithm. The preprocessing consists of computing
partitions of

�
into sequences that are monotone with respect to different candidates subsets for

(/ .In the following we present the analysis of the data structure and the query algorithm for the
situation when the sequences are monotone with respect to the dominance order, which we men-
tioned in Section 3.2.4.

The size � �
 (/
 is a parameter of the analysis and we specify it later.

3.2.5.1 The preprocessing

The first phase of the preprocessing is to build a set � of
?� 	 subsets � � (,
 �
 � � , which are
the candidate sets for (/ . � should have the property that for any query point � and any side length` there exists a suitable subset � � � .

The second phase is to compute and store for each � � � its partition
���

of the point set
�

into
sequences which are monotone with respect to the dimensions in � . The total storage requirement
of the data structure

� � � ���c� ���
 � � � � is
?�@�A	 * . All partitions
���

are determined with

respect to the dominance order and with a total runtime of
 +!)� �
 g , � � � ��8 by the algorithm

mentioned in Section 3.2.2 [41, 6].

It remains to specify what is a suitable subset of dimensions and how to build the set � .

Notation 3.1. We denote by
� ��! , where ! T ��� �������R	�� , the geometric mean of the side lengths

O#� of O$PRQ S bUVYXZ���F[� with respect to the dimensions of ! , that is
� ��! � 6� � � �
	 O � .

43

Definition 3.2. Given are a fixed number � ' � � 	 , a query point � � VYXZ���F[� and the side length` of the cube O$PRQ S with center � . A subset (/ � �����������R	�� with � �
 (/
 is suitable for � and ` if
the following holds:

� � (/ �$ � � �
� � � 3

O#� ' 6 ���� ��
�LK / O#�

� $ � (3.45)

where O � � � ���A� �!� � ` g)&���! � ����� � �&�%� ` g) �
X) is the side length of the box O7PRQ S�b^VYXZ���\[� in
dimension

�
.

Observation 3.1. Let ["��� be the geometric mean of the elements of a finite set � � & G . Let
! � ! / � ! * � & G be finite sets such that ! � ! / � ! * and ! / b ! * � � . If ["��! <' # and
["��! / 7: # for some

� & G then ["� ! * C' # .

Construction of the set �
If �� � � consider a partition of the set of dimensions (� �������������
	�� in �� subsets of � elements:

� � � �#� �
0� �! � � ���\���F� ��
R� , �<'
 ' �� and let � � � � / �������F� � �JI � � . Obviously, one of the sets � �
will be suitable in this case.

For the case ��]� � consider some partition (� � / �^����� � � 	 ��� where
�� �
 � � ,
 �� ���\���\� � � � �
�	� and

�
 � 	 mod � . The subsets � � ,
 � �B�\���F� � are candidates for suitable

subsets. Then, we take some partition of � 	 , � 	 � � / � �\��� ���
� �� ����� ��� with

� �
 �

�
 , and

replace � � �
 � ��� ��������� � �� ��� � � by � in � 	 and get another � �� ��� � candidates for suitable subsets.
Finally, we replace � in � 	 by subsets �

� � from the set � of candidates for suitable subsets
of size

�
 in � , and get the rest candidate subsets in � . See Figure 3.8 for illustration. Procedure
SUIT_CAND computes the set � . PART ��! �!� returns a partition of a set ! into � � 	 �A � sets of size
� and one of size
"!
 mod � .

������������������������

��������������

������������������������ � � � � � � !�!�!!�!�! "�"�"�""�"�"�"
#�#�##�#�#$�$�$$�$�$%�%�%%�%�%&�&�&&�&�&'�'�''�'�'

(�(�(�()�)�)�)
R

S

mS

m

1

R

RH

1 2S S

Figure 3.8: Building candidates for suitable subsets

44

SUIT_CAND * 5 ,�� 6��� / �������F� � 	 � � $ � PART � (� � ; g g
� � � �� �� � � � / �������F� � 	 � ;if �
 �
�>^X� g g

�
 � 	 mod �+ � / ��������� � � �� ��� � � � 8 $ � PART � � 	 �

�
� ;
foreach � � ;

g g � � � �����\�\� � �� ��� �� $ � � � � � � 	 � � �F � � � ;
if �

�
�> X� g g

 �
 � � mod
 �

� $ � SUIT_CAND � � �

�
� ;

foreach � �
 � �
� $ � � �;� � � 	 � � � �
 � ;

return � ;

Lemma 3.6. SUIT_CAND � (� � computes a set � , such that for each query point � and side length` , there exists a subset � � (,
 �
 � � , such that � is an element of � and is suitable for � and ` .

Proof. Given are the query point � and the side length ` . We prove by induction on � that
SUIT_CAND � (� � � yields a subset � � T (� such that

� � � � ' � � (� , for any set of dimen-
sions (� TD��� ���������
	�� ,
 (�
�:�� .

For reasons of simplicity we develop the proof for the case (� � (� ��� ���\���F� 	 � . The
following arguments hold if we replace (by some subset of the dimension set ��� �\�������
	�� of size
larger or equal to � .

For � � � , (� ��
� K / � � and
 � �
 � � . Obviously, there exists ��� such that

� �����F C' � � (� �
.

Now, consider some � > � . If �� � �
we have

�JI ��
� K / � �

� (. Thus,
� ��� � ' �

for some
 ,

otherwise
� � � � � � 6� � �JI ��

� K /
� ��� � � � � which is a contradiction.

The case ��]� � is more involved. Suppose
� � � � > �

,
�
 � � ���\���\� � , otherwise we are done. In

this case, by Observation 3.1,

� ��� $' �
and

� � � 	 � � C' � � (3.46)

If � � 	 � � �\ � � is suitable for some
� � ��� ���\���\� � �� ��� � � then we are done. Suppose, this is not

the case. Then, by (3.46)
� � � �F ' �

,
� � � ��� ���\���F� � �� ��� � � , which implies

� ��� 	 � � ' �
. If� � � then we get

� ��� 	 ' �
which is a contradiction to our assumption

� � � � > �
,
�
 �� ���\���\� � . If

�
a> X , since
 �
 � � there exists by the induction assumption a set �
 � � ,

�

 �
 �
 and �

� � with

� ���
 ' � � � ' �
, which is computed by SUIT_CAND � � �
 �
Y

Thus,
� � ��� 	 � � � �
 C' �

, i.e. ��� 	 � � � �

, which is a set of � , is suitable.

We conclude the preprocessing specification with the following lemma:

Lemma 3.7. SUIT_CAND � (� � computes the set � of size
?�H	& in time
 �H	& .
45

Proof. Let denote this size of � by
# � 	 � � . Consider the following finite, strictly decreasing

sequence of remainders � � > � / > ���\� > �#� G / , defined such that: � � � �H	 mod � , � / � � � mod � � ,�����F�!� � G / � � � � 1 / mod � � , where � � G / is the first integer in the sequence which equals X .
# �H	 � � �

�� � � �� � if � � � X� �� � � � �A�� � if � / � X� �� � � � �A � � � # � � � �!� / otherwise
(3.47)

Notice that either � � � � * � � � � � * % or � � : � * � 	 � � � � � � � � � � * % . Thus, � � � � * . We
denote

� �0� � � X if � �7� X , then by (3.47) we get
# � 	 � � � 	 � # � � � �!� / , where � � � � * .Therefore,

# � 	 � � �) 	 . The runtime complexity is
 �
 �
� �
?� 	 .

3.2.5.2 The query algorithm

The query algorithm is the CUBE METHOD, which considers a cube O PRQ S around the query point �
and calls the searching procedure MONSEQ_SCAN to compute the set

� S of the points contained
in the cube O7PJQ S . Finally, the set

� S is checked by the brute-force method to determine the nearest
neighbor to � .

The preprocessed data structure
� � � ���c� � �
 � � � � , introduced in Section 3.2.5.1, is used

by the searching procedure MONSEQ_SCAN as follows. For the given query point � and the side
length ` , a suitable subset (/ of dimensions is determined from the preprocessed set � of candidate
subsets. The preprocessed partition

� � 3 of the data set
�

in sequences monotone with respect to
the dimensions in (/ is used to determine the set

��� 3S of points ��� such that ���� � V��!� � S * �!�&� � S * [,for all
� � (/ . The procedure SCAN, introduced in Section 2.1.2, is called with the dimension set

(� (/ and the point set
��� 3S , and it has as result the set

� S .
The following gives a schematic description of the procedure MONSEQ_SCAN.

MONSEQ_SCAN *!+-,�.0, � 6� (/ � (* �$ � DIM_PARTITION(� � �); (PARTITION)��� 3S := MON_SEQ(`B�!�&� � � 3 �&(/); (MONOTONE)� S := SCAN(`"�!�&� � � 3S �&(*); (SCAN)
return

� S ;

where procedure DIM_PARTITION finds a suitable subset (/ and procedure MON_SEQ determines
the point set

� � 3S . These procedures are described below.
Procedure DIM_PARTITION finds a suitable subset (/ by checking subsets � � � for suitabil-

ity. The first found suitable � is returned as the subset (/ . Lemma 3.6 implies the existence of a
suitable subset (/ � � . The result of DIM_PARTITION is the set (/ and the dimension set (� (/ ,sorted into a list (* . The order of the dimensions in the list (* is chosen to correspond to the
increasing order of the side lengths � O��
 � � (� (/ � of the box O7PRQ S$b4VYXZ���F[� , since the searching
algorithm SCAN works best by checking the dimensions of the points in this order.

DIM_PARTITION *!. , � 6
46

for � � �
if (� is suitable)
then break for-loop;

(/ $ � � ;
(* $ � SORT_SIDE(�&�&(� (/);return ((/ �&(*);

To determine the point set
� � 3S , procedure MON_SEQ(`B�!� � � � 3 �&(/) performs for each mono-

tone sequence of
� � 3 a binary searching in the orthogonal range � � 3/ / ����� /�� � 3� , where

� � 3K �
� V�� K � S * �!� K � S * [if � � (/VYXZ���F[otherwise

and restricted to the dimensions of (/ . The logarithmic orthogonal range searching is performed
for each monotone sequence as described in Section 3.2.1.

3.2.5.3 Analysis of the expected runtime of the query algorithm

We measure the running time � 	�� � _ � F�� � of the procedure MONSEQ_SCAN by the number of com-
parisons and arithmetic operations.

The runtime of DIM_PARTITION is measured by the number of multiplications, divisions and
comparisons. The parameter � , which is the size of a suitable set, will be specified at the end of
the analysis.

To determine whether a set � � � is suitable, DIM_PARTITION computes the geometric mean� � � of the side lengths O � of the box �=PJQ S � O$PRQ Shb V XZ�\�\[� with
� � � . The side lengths of the box

� PRQ S depend only on the query point � and can be computed in
?� 	& time. Let
�

be the geometric
mean of all side lengths. For each tested � � � the product � � � � R � is computed and compared
with

� � � � fhg �A � 6 , which can be computed once in
?� 	 time. The products � � � � � � for the
sets � � can be computed with a total number of
?�H	& multiplications. We recall the sequence of
remainders introduced in Lemma 3.7. DIM_PARTITION can be implemented such that the products
of the sets � � 	 � � �� � � cost �A�� - � � � � multiplications and additionally one division and one
multiplication. Thus, for some small constants
 / �!
 * > X the costs O �H	 � � of DIM_PARTITION to
determine a suitable set (/ can be bounded as follows:

O �H	 � � 4'
 / -&�H	 � � �
 * -!O � � � �&� / '
C-&�H	 � � � � � � ����� � �#�� ��
where
 � ����� ��
 / �#
 * � . Since � �

� �* � * � 6 3
 � we get O � 	 � � C'+* -
C-!	 �
?�H	& .
Let O / ������� O � � O �FG / �������F� O � be the side lengths of the box OaPRQ S�b VYXZ���\[� such that O ��G / 'D������' O �

are in increasing order. The order O ��G / ' ����� ' O � can be computed in
?�H	B� ���h	 time. The
corresponding order of dimensions is stored in (* .Altogether, the total runtime of DIM_PARTITION is
?� 	"����� 	& .

The runtime of the MON_SEQ and SCAN parts is proportional to the number of performed
comparisons. Let � 	�� � and � � F�� � be the discrete random variables for the number of comparisons
performed by the MON_SEQ procedure in the first phase and by the SCAN procedure in the second
phase of the procedure MONSEQ_SCAN, respectively.

We first estimate E V�� 	�� � [and E V�� � F�� � [in terms of the parameter � . Next we show how to
choose a suitable parameter � and summarize the analysis of the query time.

47

Expected runtime of the first phase

Procedure MON_SEQ performs a logarithmic orthogonal range searching for each monotone se-
quence of the partition

� � 3 of the point set
�

into sequences that are monotone with respect to the
dimensions of (/ . Let ! be the discrete random variable for the size of

� � 3 . By construction,
the partition

� � 3 is a minimal chain decomposition of � � � � � 3 , where the order � � 3 denotes the
dominance order on

�
with respect to the dimension set (/ . We have

E V�� 	�� � [� J 	 E V � 	 � �
"! � �?[- Pr V ! � �?[9�
The expected value E V � 	�� �
	! � �?[is bounded by

E V � 	�� �
"! � �?[0'
 � - M V!� -.� ��� � / � � -.� ��� � * � ���\� � � -.� � � � 	
 ! � � [��
where
 � is a constant and �

� ,
 � � �\������� ! are the lengths of the sequences which build the
partition

� � 3 of size ! . We have � / � � * � �\��� � � 	 � � . By concavity of the logarithm-
function we obtain

����� � / � � ��� � * � ���\� � ����� � 	 ' ! -.� ��� � � / � ����� � � 	
! � � ! -.����� � � ! -.����� ! �

which implies:

E V�� 	 � � ['
 � - J 	 ��� � ����� � � � � � ��� � c- Pr V ! � �?[
�
 � -&� � -.����� �d- E V ! [���� - E V ! ����� ! [9�

The function %M� � $ � � � ��� � is convex for � > X . Thus, we obtain E V ! � � � ! [� E V %M��! 2[:%�� E V ! [� E V ! [-�� � � � E V ! [, by Jensen’s inequality (see [34], page 161). This implies an upper
bound on E V � 	�� � [:

E V � 	 � � [0'
 � -!� - E V ! [-&� � � �B� � ����� � E V ! [h � (3.48)

The following lemma provides a lower bound on E V ! [.
Lemma 3.8. We have

E V ! [: �
� �, � �

�, ��� ��� � I * � �
where ! is the size of the partition

� � 3 .
Proof. The size ! of the partition

� � 3 equals the width of the poset � � � � � 3 , where � � 3 is the
dominance order on

�
with respect to the dimension set (/ . Let � be the discrete random variable

for the height of � � � � � 3 .Since, in any partial order, the height times the width is at least the number of elements, we
have ! - � : � . Since ! > X and � > X , we can apply the Cauchy-Schwarz inequality and
obtain:

E V ! [- E V � [: + E V , ! � [8 * : � �
48

Since the points of
�

are drawn independently at random, Theorem 3.5 and Lemma 3.5 imply

E V ! [: �
E V � [: �

� �, � �

�, ��� � � � I * � �

We are now prepared to bound the expected runtime of the MON_SEQ procedure.

Lemma 3.9. For � sufficiently large:

E V � 	�� � [�
D� � � /21 / I � ����� � � � * � /21 / I � ����� � ��� �9%4�
Proof. Lemma 3.8 provides

����� � E V ! [: � ��� � � ������� � �, �9% � � � � +
 �, � ����� � I * � 8
� � ��� � �^� � ,) - ����� �� � ,) -.����� � � �B� �

This implies together with (3.48):

E V�� 	 � � [�
^� E V ! [.� ��� � � � E V ! [�� ��� � � �B�? �
By Theorem 3.6, we obtain:

E V � 	 � � ['
 � � � /21 / I � � � �B� � � * � /21 / I � � � �B����� � % �
since the points of

�
are drawn independently at random and since

� � 3 is a partition of
�

into
sequences which are monotone with respect to � of the dimensions ��� ���������
	�� .
Expected runtime of the second phase

We measure the running time � � F�� � of the scanning part of the algorithm by the number of com-
parisons of coordinates.

Lemma 3.10. For � sufficiently large and
f ' �

C we obtain

E V � � F�� � [d' � /21 � 6 - f � 6 - � 	�#���@� g f � � �
Proof. E V � � F�� � [is given by:

E V � � F�� � [� �d- ��

� K / O � -
�
� � O �FG / � O ��G / - O ��G * � ����� � � 1 /�

� K ��G / O � � �
where O / �\�����\� O � are the side lengths of the box OaPRQ Sab V X ���\[� with respect to the dimensions of (/and O ��G / ' �����0' O � are the side lengths corresponding to the list (* of dimensions. The set (/was chosen such that [�$ � � � (/ 7' � ' � � (* $ � � where:

� � 6 ���� ��
� K / O �

� 6� f
� � [$ � � � (/ � �

���� ��

� K / O � � � $ � � � (* � 6ZY � ���� ��
� K ��G / O �

49

Making use of the increasing order of the side lengths O ��G / 'D�\����' O � we get:

E V�� � F�� � [' � - [� - � � � � � � * � �\��� � � � 1���1 / %
' � - [� - � ��� � 	 � �A� �� � �

� ' �d- � �� � 1�� �J� � �9 (3.49)

It would be convenient if /� 6ZY � E /21�� N ' /� 6 Y � E /21 ��N . Consider the function
� $ �HXZ���. (& ,

� � � �/�
6ZY � E /21 � N . Obviously,

�
is monotone decreasing on � XZ���4� /� 1���G / [and monotone increasing onV � � /� 1���G / ���. . Since

� '�� it remains to compare � with � � /� 1���G / .
Case � � 1�� ' /C . We have +)� � /� 1�� 8 � 1�� ' ��' /� 6ZY � which implies � 'D� � /� 1��FG / . Thus,

E V�� � F�� � [' � - � �� � 1�� �J� � �9 ' � - � �� � 1�� � � � �
� � - � �� � � ' � -�+ f� 8

� 6 - � 	����� � g f � � � (3.50)

For the last inequality we used Lemma 2.2.

Case � � 1�� > /C . Since � � 1�� - [� � � � we get [� � � � � . By (3.49):

E V�� � F�� � [' �d- [� -&�H	 � � � � - �a- � � -&�H	 � � � � - f -)�H	 � � (3.51)

The following holds:

� - f -&�H	 � � C' � /21 � 6 - f � 6 - 	����� � g f ��� �a- + � � � 	 8 -.����� � g f $' � �f � /21
� 6

(3.52)

The last inequality holds since
�
� : � and since � -���� � ' � for all � : � .

Summarizing, we get by (3.50), (3.51) and (3.52):

E V � � F�� � [d' � /21 � 6 - f � 6 - � 	�#���@� g f � � �
The choice of the parameter �
It remains to choose the parameter � of the data structure

� � � ���c� ���
�� � � � introduced at
the beginning of Section 3.2.5.

For � sufficiently large the expected runtime of procedure MONSEQ_SCAN is bounded by:

E V � 	�� � _ � F�� � [' O / - � / � � � O * - � * � �
for constants O / and O * and functions

� / � � and
� * � � defined as follows

� / � � � � � /21B3� � � �B� � � * � /21 3� � ��� ����� �
� * � � � � /21 � 6 - f � IL� - � 	�#���@� g f � � �

50

� / � � is monotone increasing in � and
� * � � is monotone decreasing in � . Additionally,

� / �J�! �� * � �! and
� / �H	& C> � * �H	& . A suitable � for the asymptotic expected runtime E V�� 	�� � _ � F�� � [is the value

� � such that
� / � � � � � * � � � . We do not determine � � exactly. In the following we give a lower

and an upper bound on � � as functions of � , 	 and
f

. The following holds:
� / � � � � * � � ��� � ��� � � / � � � ����� � � * � � R (3.53)

��� � * � ��� � � g�f � � - # � � � 	B� ��� � � X<� (3.54)

where
# � � � 	�- + � � � � � � � � �� � ����� � � * ����� � ����� �� R � � ��� + ����FE � I � N0� � 8A8 .

(3.54) implies:

�
� � � # � � � � e # * � � � � * 	"� � � ��� ����� � g�f

)h� ����� � g�f � , 	<- � ��� �� � � � � g f (3.55)

It can be verified that for the case 	 � � ��� �@� g f the lower bound for � � holds:
� �* -

� ���	� ����	� E � I � N � � � .
We choose � � , 	 which is, by above observations, for

f � �Z�@�� a good approximation of � � .
We consider the following cases:

CASE 	 ' � ������������)� %.* :

We have in this case

E V�� 	�� � _ � F�� � [d')�O / - ,)� /21 35 6 � � � � � O * -.� /21 35 6 - f 35 6 - � 	���0� � g f � � �
The expected runtime of the CUBE METHOD with the searching procedure MONSEQ_SCAN

is given by

E V �BF���
ICJ[0'
 	D- E V�� 	 � � _ � F�� � [� � 1 � -2
�� -.�A	 �
�� - f 	 �
���-!	"���7	 � (3.56)

where
 	 �#
��h�#
�� are appropriate constants. The expected number
f

of points in the cubeO$PRQ S is contained in the interval V f � � f � � �! , where
f �

is the parameter of the procedure
SIDE_LENGTH. It is sufficient to guarantee that

f
fulfills

� 1 � �9	 ' ,)�0/21435 6 � � � �
which is satisfied if we choose

f � : ���&�
� � , since 	 ' ��� * � in this case. Since the upper bound

on E V � 	�� � _ � F�� � [and
f 	 are monotone increasing in

f
, we choose

f � � ���)�
� � .

Altogether, we obtain E V � F��
IC2[�
 + , 	<-.� /21=35 6 -.���7� 8 in this case.

CASE 	 > � ���)����)����� %!* :

We obtain

E V � 	�� � _ � F�� � [') O / -!)� /21 35 6 ����� � ��� � �) O * -.� /21 35 6 - f 35 6 - 	�#�A� � g�f �
51

The expected runtime of the CUBE METHOD with the searching procedure MONSEQ_SCAN

is given in (3.56). We guarantee

� 1 � �A	 ' 	�� /21=35 6 ����� � ��� � � � /21=35 6 - f 35 6 - 	�#��� � g�f
which is satisfied if

f : �����
� � � �#�$���7� . Argumenting as in the previous case, a suitable value

of
f �

is
�����
� � � �#�7���7� . Thus, we obtain E V � F���
IC2[�
 + 	<-.� /21=35 6 -.���7�#�7� 8 .

Theorem 3.7. Let
�

be a set of � points. The CUBE METHOD with the searching procedure
MONSEQ_SCAN finds the nearest neighbor from

�
to the query point �

A) if 	 ' � ���)��������)� % * with an expected asymptotic runtime of
 + , 	�-.� /21=35 6 -.���7�A8
B) if 	 > � ���&����)���&� %�* with an expected asymptotic runtime of
 +.	�-.� /21=35 6 -.���7�#�7�A8

if the points of
�

are drawn independently at random from V XZ�\�\[� under uniform distribution. The
search procedure uses a data structure of size
 � �A	 * , which is build during the preprocessing in
 +)� �
 g , ����� � 8 time.

Remark 3.2. The MONSEQ_SCAN searching procedure is competing with the REJECT_SCAN

searching procedure. If 	 ' �#�C� the MONSEQ_SCAN procedure dominates: the speedup factor

by which MONSEQ_SCAN is faster than REJECT_SCAN, is � + � 3 3 5 6� � � ���)� 8 . Note that if 	 ' ���7� then

��� � � ���
� 3 3 5 6� � � ���)� � � .

52

