
Coarse Graining of Agent-Based Models
and Spatio-Temporal Modeling of

Spreading Processes

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

vorgelegt von
Johannes Zonker

Fachbereich Mathematik und Informatik
Freie Universität Berlin

Berlin, März 2023



Betreuer: Prof. Dr. Christof Schütte
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butions, from providing data sets to the many interesting and fruitful discussions during
the development and analysis of the models.

I would also like to thank the Biocomputing Group at the Freie Universität Berlin
and the Computational Humanities Group at the Zuse Institute Berlin for the pleasant
working atmosphere, and the Computational Systems Biology Group at the Zuse Insti-
tute Berlin for the scientific discussions in our joint group seminars. Special thanks to
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”On the beach at night alone,
As the old mother sways her to and fro singing her husky song,
As I watch the bright stars shining, I think a thought of the clef of the universes and of
the future.

A vast similitude interlocks all,
All spheres, grown, ungrown, small, large, suns, moons, planets,
All distances of place however wide,
All distances of time, all inanimate forms,
All souls, all living bodies, though they be ever so different, or in different worlds,
All gaseous, watery, vegetable, mineral processes, the fishes, the brutes,
All nations, colors, barbarisms, civilisations, languages,
All identities that have existed or may exist on this globe, or any globe,
All lives and deaths, all of the past, present, future,
This vast similitude spans them, and always has spann’d
And shall forever span them and compactly hold and enclose them.”

42 Walt Whitman, On the Beach at Night Alone



Introduction

The recent events surrounding the COVID-19 pandemic have highlighted the importance
of understanding spreading processes within human societies. Not only the epidemic
spreading itself, but also the process of informing the public and the spreading of mis-
information have challenged scientists and policymakers [1]. Mathematical models are
useful for studying these processes and for discussing the similarities and differences in
their dynamics. By integrating real-world data, short-term predictions can be made to
support the decision-making process [2]. Depending on the scale of the system, differ-
ent approaches are used to model spreading processes, such as compartmental models
based on ordinary differential equations for a macroscopic description of the process,
metapopulation models on the mesoscale or the agent-based model (ABM) on the micro
level. The choice of model type for an application usually depends on the available data
that can be used to parameterize and validate the model, and on the precise research
question. Questions that deal with details of the real-world system under consideration,
such as the effectiveness of specific interventions, often require a microscopic descrip-
tion of the process through an ABM for meaningful discussion. The amount of detail
that can be incorporated into ABMs is one reason why they are a popular choice in
many disciplines such as ecology [3], sociology [4], economics [5] and epidemiology [6]
for modeling emergent phenomena and processes based on interactions. In recent years,
agent-based models have been increasingly used in the field of archaeology to test and
illustrate hypotheses about the past [7]. While an increasing amount of data is available
on contemporary social processes, data on prehistoric processes are usually scarce and
uncertain. Therefore, the application of data-driven statistical approaches is generally
infeasible. In this situation, ABMs can be used to fill the gaps in the data through ratio-
nal modeling assumptions, not with the goal of reconstructing the past, but to provide
plausible scenarios that could have happened [8].

Much work remains to be done to find a general framework that unifies the different
approaches to ABM used in the literature. Since ABMs are often the result of in-
terdisciplinary collaborations, the models are usually formulated in a mixture of the
languages of the fields involved. Thus, ABM formulations are often descriptive rather
than mathematically explicit. In this thesis, we will explore a mathematical viewpoint
on ABMs that can be formalized as Markov processes. The class of Markov processes
is general enough to include particle-based ABMs [9] as well as ABMs based on social
networks [10, 11] in one framework. The formalization of ABMs as Markov processes
also provides a way to address typical challenges in agent-based modeling. ABMs are
comparatively realistic models of dynamics arising from interactions, but they are often
very expensive to simulate. Especially for large-scale agent systems with randomness,
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generating enough trajectories for statistical analysis or parameter optimization is gen-
erally not feasible. However, for Markov processes we can utilize and further develop
established simulation algorithms [12] for a gain in computational efficiency and also
apply model reduction techniques for metastable dynamics [13] that greatly reduce the
simulation effort, though at the cost of losing some details of the original process. The
model reduction framework for ABMs that will be established in this thesis builds on the
Markov state model theory [13] and provides an explicit connection between metastable
ABMs and a mesoscopic formulation as a metapopulation model.

In addition to these more theoretical contributions, we will also examine several models
of spreading processes in real-world systems and illustrate how the theoretical results
can be applied to them. We will discuss the details of the construction of the models as
well as the integration of real-world data and highlight the different challenges for the
prehistoric and contemporary context. In the computational analysis of the models one
focus is the identification of metastable sets through the application of clustering meth-
ods. We will also discuss a novel approach to identify spatio-temporal clusters despite
strong perturbations that are generated by the dynamics of the model.

Outline of the Thesis

This thesis is composed of three chapters. The topic of Chapter 1 is the mathematical
formalization and simulation of agent-based models. Chapter 2 focuses on the topic of
model reduction based on the Markov state model framework. In the final chapter, the
concepts of the previous two chapters are applied to the modeling of spreading processes
in real-world systems.

Chapter 1 begins with an overview about the theory of stochastic processes in which
the important mathematical objects and terms that are used throughout the thesis are
briefly introduced. Afterwards, we proceed with the definition of a framework for the
formalization of ABMs as Markov processes. In this section also the basic components
of ABMs for spreading processes are introduced within this framework. The chapter
concludes with a section about the details of the simulation algorithms that are used in
this thesis. All concepts of the first chapter are illustrated with numerous examples, one
of them being an ABM for the self-organisation of agents according to local information
about a target distribution.

The first section of Chapter 2 is an introduction to the Markov state model framework
for the model reduction of metastable dynamics. In the following section this approach
is applied to ABMs and an explicit relation between the microscopic and mesoscopic
model parameters is established. The model reduction of ABMs to a stochastic and sub-
sequently a piecewise-deterministic metapopulation model is illustrated with a simple
example for which we discuss the approximation quality as well as the gain in computa-
tional efficiency.
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In Chapter 3 several models for prehistoric and contemporary spreading processes that
are based on real-world data are explored. The first section features the construction
of an ABM for the spreading of the wool-bearing sheep, which is an example for an
important innovation in human history. This model is a result of an interdisciplinary
cooperation with researchers from the former German excellence cluster TOPOI. In Sec-
tion 3.2 the ABM for innovation spreading is generalized to a conceptional model for
the mobility and cultural evolution of hunter-gatherer societies. Both applications are
in the prehistoric context and it is illustrated how such models can be formulated and
parametrized even though there is a lack of data about the original processes. Finally,
Section 3.3 covers the modeling of epidemic spreading, especially in the context of the
COVID-19 pandemic. Several modeling approaches are discussed in this section as well
as the details of a metapopulation model that includes local and global intervention
strategies in the model assumptions and is parametrized according to the results of
recent studies.

Relation to Previous Publications

The results of this thesis have partially been published in [14–16] or are about to be
published in [17]1. The event-based simulation algorithm for ABMs was presented in
[15] for a less general case, the formalization of ABMs as well as the model reduction
framework and the metapopulation model for the spreading of COVID-19 were presented
in [16], the ABM for the spreading of the woolly sheep was featured in [14, 15] and the
ABM for the mobility and cultural evolution of hunter-gatherer societies is also the topic
of [17]. Figures 1.10,2.1-2.6 and 3.24-3.28 have been originally designed for [16], Figures
1.15,1.16 and 3.2 have been originally designed for [15], Figure 3.1 has been originally
designed for [14] and Figures 3.12-3.14,3.16,3.18,3.22 have been originally designed for
[17]. All other figures haven been designed for this thesis by the author.

Model Code Availability

All models have been implemented with MATLAB and the scripts are available in the
repository https://git.zib.de/bzfzonke.

1The article ”Insights into drivers of mobility and cultural dynamics of African hunter-gatherers over
the past 120,000 years” is now published. The citation has been updated accordingly.
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1 Mathematical Formalization and
Simulation of Agent-Based Models

In this chapter we provide a framework for formulating an agent-based model (ABM)
with explicit mathematical equations and objects, which often allows formal analysis as
well as the application of established techniques for efficient simulation, computational
analysis and model reduction.

For the modeling of real-world processes the introduction of randomness to the model
is often essential to match the characteristics of the process and to include the fact that
even with a lot of input data we are always working with incomplete information. Espe-
cially when it comes to the modeling of human interactions, there are no deterministic
laws that human decision-making always follows (e.g., due to free will [18]). However,
we can often assume that there are many independent factors that influence a decision
and that therefore the law of large numbers and the central limit theorem hold. For
these reasons, we make assumptions about the characteristics of the randomness that is
necessary to formulate our agent-based models later.

In the first section we present a brief overview about stochastic processes in general and
Markov processes in particular, especially those based on additive processes. We then
proceed with defining agent-based models in terms of Markov processes and highlight
in an example how the mathematical formalism can help us defining a model with the
properties we want. Finally, we study established simulation techniques for stochastic
processes and how they can be utilized for the realization of agent-based models.

1.1 Markov Processes

In this section we will introduce the notation for well-known concepts to describe and
formalize the stochastic processes that will be used for the models in this thesis. Due to
the length of this thesis, we will focus here only on the basic definitions and properties.
For a detailed overview we refer to [19–23].

Our focus will be the class of Markov processes, which are the stochastic processes
that can be described as memoryless. The memorylessness property means that the fu-
ture development of the process only depends on the present state and is stochastically
independent of the past development of the process conditioned on the present. This
property is also known as Markov property and thus eponymous for the class of processes.
In the literature there often is the distinction between discrete-time Markov chains and
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continuous-time Markov processes as well as discrete and continuous state spaces. We
will use a general framework that includes the different cases in one notation [13]. In
the first subsection we will state the most important properties of Markov processes and
introduce the notion of the transfer operator semigroup and the infinitesimal generator
as a way to characterize and define Markov processes.

In the following subsections we will focus on the different cases of continuous, discrete
and hybrid state spaces and illustrate how the characteristics of the randomness are vary-
ing in each case and how the specific processes are connected to the general framework
of the first subsection.

1.1.1 General Concepts

In the following we will assume that the reader is familiar with the basic concepts of
probability theory, functional analysis and stochastic analysis. We will begin with the
basic definition of the stochastic process as a family of random variables.

Definition 1. A stochastic process is a family of random variables (X(t))t∈T defined on
a common probability space (Ω, E ,P) and mapping onto the measurable space X ⊆ Rn
equipped with the Borel-σ-Algebra B(X). X is called the state space. If the index set
T = N, then (X(t))t∈T is called a process in discrete time. For T = [0,∞) we call
(X(t))t∈T a process in continuous time.

We will consider in principle the more general case of continuous-time processes and the
case of discrete time will be mostly considered when constructing discretizations of the
continuous objects. For the analysis of continuous-time processes it is reasonable to have
the number of discontinuities in the sample paths restricted such that we do not have
uncountably many jumps. This can be guaranteed by the càdlàg property for sample
paths, that ensures that we can almost surely consider the set of discontinuities to be
countable.

Definition 2. Let X be a metric space and T ⊆ R. A function f : T → X is called a
càdlàg function if it is right-continuous with left limits. (X(t))t∈T has càdlàg paths if
the function X(t) is a càdlàg-function almost surely.

The abbreviation càdlàg is derived from the literal translation of the two conditions that
need to be satisfied into the french language: continué à droite limité à gauche.

The next concept that is important for the analysis of stochastic processes is concern-
ing how we encode the information about the development of a process. Figuratively
speaking, we want to be able to ask questions like ”How did the process evolve until
time t?”. In a mathematical sense this means that we want to be able to formulate
conditional probabilities and expectations with respect to the σ-algebras generated by
the past development of a process.
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Definition 3. Let (Ω, E ,P) be a probability space, I a totally ordered index set and Fi
be a sub-σ-algebra of E for every i ∈ I. Then, (Fi)i∈I is called a filtration if Fj ⊆ Fk
for all j ≤ k.

Often it is necessary to consider a filtration that is adapted to a specific stochastic
process. This can be guaranteed by considering the filtration that is generated by the
process.

Definition 4. Let (X(t))t∈T be a stochastic process and Ft the sub-σ-algebra generated
by the development of the process until time t, i.e.

Ft := σ({Xs | s ≤ t}).

Then, the family (Ft)t∈T is the filtration generated by the process (X(t))t∈T. If (Ft)t∈T is
completed by the null-sets of (Ω, E ,P), then we call it the standard filtration of (X(t))t∈T.

The addition of the null sets to the filtration generated by a stochastic process is impor-
tant to ensure measurability even for arbitrary initial distributions [23]. In practice this
will be hardly relevant but for the theoretical foundation it is necessary to take the null
sets into account.

Let us now introduce two important classes of stochastic processes, where the key prop-
erties that characterize them are defined in terms of the information of the development
of the process that is encoded in the filtration. The first kind of process we consider is
the martingale process which has a major application area in the modeling of fair games,
which is also the origin of the name martingale itself.

Definition 5. Let (X(t))t∈T be a stochastic process and (F(t))t∈T be the standard
filtration of the process. (X(t))t∈T is called a martingale if E(|X(t)|) <∞ for all t ∈ T
and it holds that

E(X(t+ s) | Ft) = X(t)

almost surely for all t, s ∈ T.

The martingale property is a statement about the expected future development of the
process conditioned on the past and important for the proofs of many convergence re-
sults, e.g. the dominated convergence theorem or Lp-convergence [20]. Especially in
the construction of the Itô integral the martingale property is essential. For stochastic
integration also a generalization of martingales is of interest.

Definition 6. Let (X(t))t∈T be a stochastic process and (F(t))t∈T the standard filtration
of the process. Then, (X(t))t∈T is called a semimartingale if it can be decomposed into
a process (M(t))t∈T that is a martingale and a process (A(t))t∈T of bounded variation.

Semimartingales are closed under linear combinations. For all processes (X(t))t∈T that
are semimartingales a stochastic integral

∫
f(t)dX(t) for Lipschitz continuous functions

f can be constructed [20]. The process defined by the stochastic integral is itself a semi-
martingale with càdlàg paths [20].
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Now we focus on another class of processes that will be the main component of our
later models. The defining property is that of randomness without memory.

Definition 7. Let (X(t))t∈T be a stochastic process with standard filtration (F(t))t∈T.
The process (X(t))t∈T fulfills the Markov property if

P(X(t+ s) ∈ A | F(t)) = P(X(t+ s) ∈ A |X(t))

almost surely for all A ∈ B(X) and s, t ∈ T.

The Markov property gives us a characterization of memorylessness in the sense that
the future development of the process does not depend on the whole past encoded in
the filtration but only on the current state. To show that a process fulfills the Markov
property can be difficult, so we also consider an equivalent characterization via the
transition function that is somewhat more tangible.

Definition 8. A function p : T×X×B(X)→ [0, 1] is called Markov transition function
if it has the following properties:

1. x 7→ p(t, x,A) is measurable for all t ∈ T and A ∈ B(X);

2. A 7→ p(t, x,A) is a probability measure for all t ∈ T and x ∈ X;

3. p(0, x,X\{x}) = 0 for all x ∈ X;

4. p fulfills the Chapman-Kolmogorov equation for all t, s ∈ T, x ∈ X and A ⊆ X:

p(t+ s, x,A) =

∫
X
p(t, x, dz)p(s, z, A)dx.

We call a function Q : T × X × B(X) → [0, 1] that fulfills properties 1 and 2 but not
necessarily 3 and 4 a Markov kernel [23].

We can define a stochastic process by a Markov transition function and it is especially
the fourth property of the Chapman-Kolmogorov equation that is closely connected to
the Markov property.

Definition 9. A Markov process is a stochastic process on state space X, that is defined
by a Markov transition function p : T× X× B(X)→ [0, 1] through

p(t, x,A) = P(Xt+s ∈ A|Xs = x),

for all t, s ∈ T, x ∈ X and A ⊆ X. If p(t, x,A) does not depend on t the process is called
homogeneous, else it is called inhomogeneous.
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It can be shown that a stochastic process that is defined by a Markov transition function
fulfills the Markov property. Actually, it can even be shown that this relation is 1-1 [22]
and thus the transition function indeed gives an equivalent characterization of Markov
processes. Unfortunately, for most processes the transition function can not be written
down explicitly.

Even though there are very prominent examples of stochastic processes that fulfill both
the martingale and the Markov property in general both properties are independent from
each other, i.e., there exist processes that fulfill only one but not the other of the two
properties. However, there is a property that is closely related to both and gives us a
class of stochastic processes that have both properties.

Definition 10. Let (X(t))t∈T be a stochastic process. If for any n ∈ N the random
variables X(t1) − X(t0),X(t2) − X(t1), ...,X(tn) − X(tn−1) are independent for all
t0 < t1 < ... < tn ∈ T, then (X(t))t∈T has the property of independent increments.

From the property of independent increments it follows that also the Markov property
holds. On the other hand, if (X(t))t∈T is a process with independent increments and
E(X(t)) exists for all t ∈ T, then the process (Y (t))t∈T with Y (t) := X(t) − E(X(t))
fulfills the martingale property [20]. So, it follows that a process (X(t))t∈T with inde-
pendent increments and E(X(t)) = 0 for all t ∈ T is a Markov process as well as a
martingale. The other direction, however, is not true as there exist processes without
independent increments that still are martingales and possess the Markov property as
well.

Definition 11. We call a stochastic process (X(t))t∈T with X(0) = 0 a.s. independent
increments and càdlàg paths an additive process. If the increments of (X(t))t∈T are also
stationary, i.e., (X(t))t∈T is time-homogeneous, then it is called a Lévy process.

As the name suggests it holds that the sum of two independent additive processes is
again an additive process. Also the sum of two independent Lévy processes is again a
Lévy process.

Now let us recall some important properties of Markov processes that also highlight
why Markov processes are interesting for modeling in general. The Markov property it-
self of course leads to advantages in simulation effort as independence of the past leads to
less memory allocation requirements and also implies under some additional conditions
convergence of the process to an equilibrium with respect to the transition function.

Definition 12. Let (X(t))t∈T be a Markov process. Then, the probability measure µ
is called invariant measure for (X(t))t∈T if for all A ⊂ X holds:∫

X
p(t, x,A)dµ(x) = µ(A).

If µ can be expressed in terms of a probability density, we will also refer to µ as invariant
density.
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Often we are not interested in a single trajectory of a Markov process (X(t))t∈T but
rather in the development of an ensemble or a probability density on the state space.
For the propagation of a density we use the concept of the transfer operator [13].

Definition 13. Let p : T × X × B(X) → [0, 1] be the transition function of a Markov
process (X(t))t∈T and µ an invariant measure for (X(t))t∈T. Then, the mapping P t :
Lr(µ)→ Lr(µ) for t ∈ T and 1 ≤ r <∞ is defined as∫

A
P tν(y)dµ(y) =

∫
X
ν(x)p(t, x,A)dµ(x).

P t is called propagator or forward transfer operator.

Proposition 1. The set of propagators P t : Lr(µ) → Lr(µ) of a Markov process with
transition function p : T× X× B(X)→ [0, 1] is a semigroup.

Proof. First it is to show, that P 0 is the identity on Lr(µ).∫
A
P 0ν(y)dµ(y) =

∫
X
ν(x)p(0, x, A)dµ(x) =

∫
X
ν(x)χA∩{x}dµ(x) =

∫
A
ν(x)dµ(x)

Thus, P 0ν = ν and therefore P 0 = IdLr(µ).
The second property we need to check is P t+s = P tP s for all s, t ∈ R+. This follows
from the Chapman-Kolmogorov equation, which is fulfilled by the transition function.∫

A
P t+sν(y)dµ(y) =

∫
X
ν(x)p(t+ s, x,A)dµ(x)

=

∫
X

∫
X
ν(x)p(s, x, dz)p(t, z, A)dµ(x)

=

∫
X
P sν(z)p(t, z, A)µ(dz)

=

∫
A
P tP sν(y)dµ(y).

Definition 14. Let (X(t))t∈T be a continuous-time Markov process with transfer oper-
ator semigroup P t and C0(X) the space of continuous functions on X. If

1. for all continuous functions ν ∈ C0(X) also P tν ∈ C0(X)

2. for all ν ∈ C0(X) and all x ∈ X the limit limt→0 P
tν = ν exists,

then (X(t))t∈T is called a Feller process and P t a Feller semigroup.

All Feller processes (X(t))t∈T have a representation with càdlàg paths and Feller semi-
groups are strongly continuous [23]. For strongly continuous semigroups we can define
an infinitesimal generator of the semigroup. The generator can be seen as a generaliza-
tion of the derivative for operator semigroups as it describes the change of a density in
an infinitely small time interval.
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Definition 15. Let P t : Lr(µ)→ Lr(µ) be the propagator of a continuous-time Markov
process with 1 ≤ r ≤ ∞ and let D(L) the set of all ν ∈ Lr(µ) such that the limit

Lν = lim
t→0

P tν − ν
t

exists. The operator L : D(L) → Lr(µ) defined in this way is called infinitesimal
generator of the semigroup P t.

Additive and Lévy processes possess a strongly continuous transfer operator semigroup
as they have càdlàg paths and thus can be characterized by a generator.

For the propagator semigroup of a Markov process we have P tµ = µ for all t and for
the generator Lµ = 0 holds. However, not every Markov process possesses an invariant
measure. There are some restrictions on either the state space X or the dynamics of
(X(t))t∈T. We will recite two important results on that matter. The first result requires
the notion of tightness of a sequence of measures, which tells us that the probability
mass is concentrated on compact sets.

Definition 16. A sequence M of probability measures on a topological space X is called
tight if for every ε > 0 there exists a compact set K ⊂ X such that ν(K) ≥ 1 − ε for
every ν ∈M .

With this definition in mind we can state the result from Krylov and Bogolyubov, which
states a condition under which a Feller process has an invariant measure [24].

Theorem 17. (Krylov-Bogolyubov) Let (X(t))t∈T be a Feller process on a polish space
X with propagator semigroup P t. If there exists an element x ∈ X such that the sequence
of measures (P tδx)t≥0 is tight, then there exists an invariant probability measure µ for
(X(t))t∈T.

A consequence of the theorem is that Feller processes on compact spaces X have
an invariant probability measure µ [24]. This already is applicable in many modeling
scenarios and especially in the agent-based model case the space in which agents can
move will be chosen compact. For the case of spaces X we can apply another criteria
that is based on Lyapunov functions.

Definition 18. Let (X(t))t∈T be a Markov process on a polish space X with transition
function p. A measurable function V : X→ R+ ∪ {∞} is called a Lyapunov function for
(X(t))t∈T if it satisfies the following conditions:

– there exist x ∈ X for which V (x) is finite, i.e., V −1(R+) 6= ∅

– the level sets V −1({x ≤ c}) are compact for every c ∈ R+

– there exists a positive constant γ < 1 and a constant C ∈ R such that∫
X
V (y)p(t, x, y)dy ≤ γV (x) + C

for all x ∈ X with V (x) <∞ and all t ∈ T.
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The second condition implies that V is asymptotically converging towards infinity out-
side of compact sets and the third condition ensures that the dynamics of the process
(X(t))t∈T are non-explosive. For Feller processes (X(t))t∈T that admit a Lyapunov
function there exists an invariant measure. [24] There are also more general Lyapunov
criteria for processes that are not Feller [22].

For Markov processes that have an invariant measure we also have a convergence of
the process in a probabilistic sense.

Definition 19. A Markov process (X(t))t∈T with invariant measure µ is called ergodic
with respect to µ if for all functions f : X 7→ R with

∫
X f(x)dµ(x) <∞ it holds that

lim
t→∞

1

t

∫ t

0
f(X(t))dt =

∫
X
f(x)dµ(x)

almost surely.

If a Markov process has a unique invariant measure, then it also is ergodic [24]. Er-
godicity then implies that the time average of an infinitely long trajectory of a process
converges to the ensemble average of an infinite ensemble of realizations, which is dis-
tributed according to the invariant measure µ. In this sense a Markov process converges
to the invariant measure µ if it exists and is unique.

It is often of interest when a Markov process (X(t))t∈T enters some area of the state
space for the first time, e.g., for modeling the spreading of infections when is the first time
an infected individual arrives at a new location. This can be mathematically formulated
as a stopping time of the process.

Definition 20. Let (X(t))t∈T be a Markov process and A ⊂ X. Then, the first hitting
time of the set A when starting in x is defined as:

τA(x) = inf{t ≥ 0|Xt ∈ A,X0 = x}

The expectation of the first hitting time of A when starting in x is denoted by:

mA(x) = E(τA(x)).

mA is called mean first passage time or mean first hitting time.

Analogous to the arrival of the process at a set, it is also often of interest when the
process leaves a set of interest. To stay with the example of infection spreading the first
time an infectious person leaves an area would be an exit event of interest.

Definition 21. Let (X(t))t∈T be a Markov process and A ⊂ X open and connected.
Then, for all x ∈ A the first exit time from A is defined as

ρA(x) = inf

{
t ≥ 0 :

∫ t

0

χAc(Xs)ds > 0, X0 = x

}
.

We define the exit rate λA := 1
ρA(x)
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If (X(t))t∈T has continuous trajectories, this is equivalent to the first hitting time of the
complement of A.

Another interesting quantity that is based on first hitting times is the committor func-
tion [13].

Definition 22. Let (X(t))t∈T be a Markov process and A,B ⊂ X. Then, the committor
function of A and B is defined as

qAB(x) := P(τB(x) < τA(x)),

which is the probability that B is hit by (X(t))t∈T before A when starting in x.

The value of of this function describes whether the point x is closer to the set A or the
set B with respect to the dynamics of the process (X(t))t∈T. The committor function
can be used to characterize rare transitions of a process and to identify transition path-
ways [13]. Thus, it will be an important tool when we address in a later section the topic
of metastability and model reduction.

The concepts that we have discussed so far are rather abstract as they apply to many
different kinds of Markov processes. We will now continue with more details on specific
processes where we can also give some intuitive examples for the general concepts of this
section.

12



1.1.2 Markov Diffusion Processes

The first kind of randomness without memory that we consider is the Brownian Motion
in a continuous state space X. In this subsection all processes are in continuous time.
The fundamental characteristic of the Brownian motion is a change of direction at every
point in time, independent of the previous direction. The following characterization of
(standard) Brownian motion (B(t))t∈T is the most common:

1. B(0) = 0 almost surely.

2. B(t) is almost surely continuous.

3. B(t) has independent increments.

4. B(t) has stationary increments that follow a normal distribution, i.e., B(t+ s)−
B(s) ∼ N (0, t) for t, s ≥ 0.

As (B(t))t∈T has independent increments and E(B(t)) = E(B(t) −B(0)) = 0 we have
that (B(t))t∈T is a Markov process as well as a martingale. There exists a representation
of the Brownian motion such that the paths of the Brownian motion are almost surely
continuous but also almost surely nowhere differentiable [23]. The Brownian motion
thus fulfills also the conditions of a Lévy process. For the Brownian motion we can even
write down the transition function explicitly.

Example 1. Let (B(t))t∈T be a Brownian motion in R. Then, the increments B(t) −
B(s) are independent and distributed according toN (0, t−s) for all s < t ∈ T. Therefore

P(B(t+ s) ∈ A|B(s) = x) = P(B(t+ s)−B(s) ∈ {y − x|y ∈ A})

=

∫
A

1√
2πt

exp(−|y − x|
2

2t
)dy.

This means the transition function of the Brownian motion is given by

p(t, x, y) =
1√
2πt

exp(−|y − x|
2

2t
).

The standard Brownian motion in R can be easily extended to n dimensions by defining
an independent one-dimensional Brownian motion for each dimension. The increments
are then distributed according to an n-dimensional Gaussian distribution. In the figures
1.1 and 1.2 we illustrate the Brownian motion for one and two dimensions.

Next we will consider stochastic processes (X(t))t∈T that are composed of a deter-
ministic part and a scaled Brownian motion as added randomness. Usually, these pro-
cesses are defined by a stochastic differential equation, which is in fact rather an integral
equation with a stochastic integral term but written down in differential notation [25].
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Figure 1.1: Standard Brownian motion in one dimension for a short (left) and a long
trajectory (right). The characteristic change of direction at (almost) every
point in time is clearly visible, also the increasing variance with time. An
infinitely long trajectory of Brownian motion will cross any finite threshold
almost surely.

Figure 1.2: Standard Brownian motion in two dimensions for a short (left) and a long
(right) trajectory with starting point chosen to be the origin marked in red
and end the point of the trajectory in green. Similarly to the 1-dimensional
case an infinite trajectory would leave any ball with finite radius around the
origin almost surely but also return to a neighborhood of the origin countably
many times. In higher dimensions however the Brownian motion is transient.

Definition 23. Let (X(t))t∈T be a stochastic process with state space X ⊆ Rd satisfying
the stochastic differential equation

dX(t) = b(X(t))dt+ σ(X(t))dB(t)

with b, σ being Lipschitz continuous functions and (B(t))t∈T a Brownian motion in Rd.
(X(t))t∈T is called Markov diffusion process with drift b and diffusion coefficient σ.
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The easiest example of a diffusion process is the case where both b and σ are just con-
stant functions. The resulting diffusion process is called Brownian motion with drift and
can be seen as a linear function with added noise. Even for a comparably small drift
constant one can observe that the deterministic part dominates the long term evolution
of the process (compare Figure 1.3).

Figure 1.3: Visualization of a short (left) and long (right) trajectory of a one-dimensional
Brownian motion with drift for b = 0.5 and σ = 1. For the short term
development the added randomness of the Brownian motion is dominating as
we have chosen the diffusion parameter σ to be higher as the drift parameter
b. In the long term development the deterministic drift term (marked with
a red dashed line) is leading.

Neither the standard Brownian motion (b = 0, σ = 1) or a Brownian motion with drift
possess a stationary density as we have X(t) ∼ N (bt, σ2t) changing with the advance-
ment of the time t. Even though the standard Brownian motion does not possess a
stationary probability density the set Bε(0) that denotes the ball with radius ε > 0 is a
recurrent set (in the case of 2 dimensions or less) [26], highlighting that recurrence alone
does in general not imply the existence of a stationary probability density.

A dynamically more interesting case is the diffusion in a potential landscape given by a
smooth function V (see Figure 1.4 for an example), which is utilized in many models for
particle physics, e.g., Langevin or Smoluchowski models [13].

Example 2. Let (X(t))t∈T be a Markov diffusion process, where the dynamics are
defined by the stochastic differential equation

dX(t) = −∇V (X(t))dt+ σdB(t)

with σ ∈ R, B(t) a Brownian motion in Rn and V a smooth function. Then, the
development of the density ∂tνt of X(t) is given by the Fokker-Planck equation

∂tνt = Lνt
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for all t ∈ T. The generator L of (X(t))t∈T is therefore given by

L = −∇V (x)∇x +
σ2

2
∆x,

where ∇x is the gradient and ∆x the Laplacian operator with respect to x.

In the case of ∇V = 0 and σ = 1 the stochastic differential equation (SDE) describes
the standard Brownian motion in Rn and the corresponding generator is 1

2∆x.

(a) Potential V

(b) Short trajectory

(c) Long trajectory

(d) Invariant density µ

Figure 1.4: Diffusion process in a double-well potential V which is shown in (a). The
process starting in X(0) = 0 quickly moves towards one of the two local
minima of V and stays in a local neighborhood for a longer time which
illustrated in (b) for a short trajectory of a numerical realization. In the
long trajectory of the same realization (c) we can observe that transitions
between the two wells are possible but rather rare events and that the process
is ergodic with respect to the invariant density µ given by the Boltzmann
distribution that is depicted in (d).
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For a diffusion process in a potential landscape with a constant diffusion coefficient the
invariant probability density function exists if V is a Lyapunov function and is then
given by the Boltzmann distribution [13]

µ(x) =
1

Z
exp(− 2

σ2
V (x))

with Z =
∫
X exp(− 2

σ2V (x))dx as a scaling constant.
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1.1.3 Markov Jump Processes

Next we want to focus on continuous-time Markov processes with random events only
occurring at discrete time points and not continuously. While in the continuous case the
memorylessness of the diffusion processes is in some sense inherited from the Brownian
motion, in the discrete case the memorylessness will be characterized by exponentially
distributed waiting times between state changes of the process. We call a state change
after a waiting time a jump event and the corresponding Markov process a jump process.
We will first focus on countable state spaces that allow us to write down the generator
of the process in terms of a (countable) matrix.

Definition 24. Let S be a countable set. A (countable) matrix L = (λij)i,j∈S with
entries that fulfill {

λij ≥ 0 for i, j ∈ S with i 6= j∑
j∈S λij = 0

is called a transition rate matrix.

With the notion of a rate matrix we can define Markov jump processes as the class of
Markov processes that are characterized by transition rate matrices.

Definition 25. A continuous-time Markov process (X(t))t∈T with countable state space
S is called Markov jump process if the infinitesimal generator L has the form of a
transition rate matrix. The entries λij are the transition rates determining the transition
probabilities from state i to state j for i 6= j and the entries −λii are the exit rates from
state i.

The construction of the process from the rate matrix is straightforward. The exit
rate −λii determines the holding time τ ∼ Exp(−λii) describing how long the pro-
cess (X(t))t∈T stays in a discrete state i ∈ S. After this exponential waiting time a jump
event occurs and the state of the process is changed from state i to another state j ac-
cording to the probability determined by the transition rate λij , i.e., P(X(τ) = j) =

λij
|λii| .

If the entries of the rate matrix depend on the time t we call the corresponding jump
process inhomogeneous in contrast to the homogeneous case, where the jump and tran-
sition rates are constant.

A well-known class of Markov jump processes are counting processes, often denoted
by (N(t))t∈T, that take values in N and have increments of 1 [21]. The state N(t) of the
process at time t can be interpreted as the number of jump events that have happened
until time t. These processes can also be characterized as Poisson point processes on the
real line [21] and the standard Poisson process with unit rate is very useful as a basic
process for the construction of more complicated jump processes. Our definition of the
standard Poisson process will be in terms of our framework as a Markov jump process
with a generator matrix.
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Definition 26. The Markov jump process (P(t))t∈T with state space N defined by the
countable rate matrix with entries

λij =


−1 if i = j

1 if j = i+ 1

0 else

with P(0) = 0 is called unit rate Poisson process.

From the standard Poisson process we can construct any counting process (N(t))t∈T by
adapting the rate matrix according to an intensity rate function λ that is different from
the unit rate. We can accomplish this also if we utilize the unit rate Poisson process and
rescale the time t according to the intensity λ instead [27]. In general, we distinguish
between the case of a constant intensity rate λ > 0 and the case of a time-dependent
intensity rate given by a positive and measurable function λ(t).

Figure 1.5: Visualization of a short (left) and longer (right) trajectory of a unit rate
Poisson process. The jump times are marked with dashed black lines in the
short trajectory and the graph of the identity on R, which is the expectation
of the process, is plotted with a dashed red line in the longer trajectory.

Definition 27. Let λ > 0 and (P(t))t∈T a unit rate Poisson process. The counting
process (N(t))t∈T defined by N(t) := P(λt) is called a homogeneous Poisson process
with intensity rate λ.

The homogeneous Poisson process (N(t))t∈T is illustrated in Figure 1.5 and has the
following key properties, which also give an alternative definition of the process:

1. (N(t))t∈T is a Lévy process, i.e., it has stationary and independent increments and
cádlaǵ paths.

2. The random variable N(t) is Poisson distributed with parameter λt.

Now we consider the case of a time-dependent intensity rate function.
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Definition 28. Let λ : T→ [0,∞) be a locally integrable function such that
∫ t2
t1
λ(τ)dτ <

∞ holds for all t1, t2 > 0 and (P(t))t∈T be a unit rate Poisson process. The counting
process (N(t))t∈T defined by N(t) := P(

∫ t
0 λ(s)ds) is called an inhomogeneous Poisson

process with intensity rate function λ.

The inhomogeneous Poisson process (N(t))t∈T with time-dependent rate function λ has
the following key properties:

1. (N(t))t∈T is an additive process with càdlàg paths and independent but not sta-
tionary increments.

2. The random variable N(t) is Poisson distributed with parameter
∫ t

0 λ(s)ds.

Similarly, we can also construct state-dependent inhomogeneous Poisson processes with
rate functions defined on N or N× T. The key properties are analogous to the case of a
rate function defined on T.

Figure 1.6: Visualization of a time-dependent (left) and state dependent (right) inho-
mogeneous Poisson process. In the time-dependent example the intensity
switches between 1 and 10 every 5 units of time, in the state-dependent
example the intensity switches between 1 and 10 every 10 events.

Since Poisson processes are semimartingales, we can construct a stochastic integral with
respect to the unit rate Poisson process and introduce an SDE representation for counting
processes [28]. For a counting process (N(t))t∈T with intensity rate function λ we can
write

N(t) = N(0) +

∫ t

0
λ(s)dP(s)

or
dN(t) = λ(t)dP(t)

with (P(t))t∈T being a unit rate Poisson process.

20



Through the composition of Poisson processes we can construct any Markov jump process
(X(t))t∈T with finite state space S with n elements given by a rate matrix L by defining
for each possible transition from i to j a state change vector vij and an independent

inhomogeneous Poisson process Pij
(∫ t

0 δi(X(τ))λij(s)ds
)

. It then holds that

X(t) = X(0) +
n∑
i=1

n∑
j=1
j 6=i

vijPij
(∫ t

0
δi(X(τ))λij(s)ds

)
, (1.1)

where δi denotes the indicator function of the discrete state i ∈ S. If we restrict the
number of state change vectors that define the possible jump events to be finite (e.g.,
in the case of a counting process we have only increments by 1 and thus only one state
change vector), then we can also write down a jump process with a countable state space
S in a similar way.

For now we have only considered a finite set of state change vectors for possible jump
events. The next generalization includes the possibility for random instead of determin-
istic state change vectors. This also enables the construction of jump processes that take
values in a continuous state space beyond a discrete subset.

Definition 29. Let (N(t))t∈T be a counting process with intensity λ and Q a Markov
kernel on X× B(X). A compound Poisson process (X(t))t∈T is defined by

X(t) :=

N(t)∑
i=0

Zi

with Z0 = X(0) and Zi distributed according to Q(X(τi)) for i > 0 and τi denoting the
times of the jump events.

We can also denote the process given by (1.1) as a compound Poisson process by defining
a Markov kernel Q with

Q(i, vij) =
λij
|λii|

and (N(t))t∈T with a state dependent intensity rate function

λ(X(t)) :=
n∑
j=1

j 6=X(t)

λX(t)j .

For compound Poisson processes there is also a notation utilizing a stochastic integral
with respect to (N(t))t∈T. We can write

X(t) = X(0) +

∫ t

0
ZN(s)dN(s).

We now proceed with a generalization of Markov jump processes to piecewise-deterministic
Markov processes, which are driven by Poisson noise but also include a deterministic in-
fluence.
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1.1.4 Piecewise-Deterministic Markov Processes

For Markov jump processes the state of the process does not change between two jump
events. We now want to consider stochastic processes, where the randomness is generated
via a Poisson process, but where the state of the system also can change between jumps in
a deterministic way. These processes are called piecewise-deterministic Markov processes
(PDMP) and the term has first been introduced by Davis in [29]. His construction of a
PDMP consists of three main concepts:

1. A deterministic flow Φ that governs the development of the process between two
jump events.

2. An inhomogeneous Poisson process (N(t))t∈T that has an intensity rate function
λ for the times of jump events.

3. A Markov kernel Q that determines the probability of different jump events, de-
pending on the current state of the process at the time of a jump event.

With the concepts from the previous section we can define the process as a compound
Poisson process with an additional deterministic influence.

Definition 30. Let X ⊂ Rd, S a discrete set and Y = X × S. Let λ be a measurable
function from Y to [0,∞), Q a Markov kernel on Y×B(Y) and Φ(x, i, t) a differentiable
function on X× T for every i ∈ S. The process (Y (t))t∈T given by

Y (t) = Φ(Y (t), t) +

N(t)∑
j=0

Zj

with Zi distributed according to Q(Y (t)) and (N(t))t∈T being a Poisson process with
intensity λ(Y (t)) is called piecewise-deterministic Markov process.

We have expanded the continuous state space X with a discrete index set, such that
we can include switches in the deterministic flow after a jump event leads to a change
in the index set. For each element of the index set we have a distinct branch, i.e., a
copy of X. A trajectory of the process takes only values in one branch at a time, so
we can interpret the trajectory as a motion in X with the index set being necessary
to encode flow changes but only in the background. For the development of a proba-
bility distribution through the transfer operator or generator of the dynamics we are
considering an object that is a combination of a probability density for X in the first
component and a probability vector for the index set S in the second component. The
derivation of a generator for a PDMP is also discussed in the original paper of Davis [29].

We will consider now a PDMP in a slightly simpler setting presented in [30] that will
be sufficient for our modeling purposes and can also be expressed with a time change
representation. We restrict the number of different possible jump events to be finite and
also the domain for jumps to the discrete component of the state space S and thus we
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can write down a representation similar to (1.1). We again consider state change vectors
vk for each of the possible changes at jump events and split the intensity rate function
λ into a total of J different intensity rate functions λk, one for each state change vector.
For this setting we can define (Y (t))t∈T as

Y (t) = Φ(Y (t), t) +

J∑
j=1

vjPj
(∫ t

0
λj(Y (s))ds

)
with Pj being independent unit rate Poisson processes. For such a process we can also
formulate a stochastic differential equation with a deterministic part and a part that is
integrated with respect to Poisson processes.

Figure 1.7: A short (left) and long (right) trajectory from a numerical realization of a
unit rate compensated Poisson process.

Example 3. Let (N(t))t∈T be a Poisson process with intensity rate function λ. Then,
the stochastic process defined by

Ñ(t) := −
∫ t

0
λ(s)ds+ N(t) (1.2)

is called compensated Poisson process. The integral term
∫ t

0 λ(s)ds of this process is also
called compensator and is the expected number of jumps until time t. As we have

E
(
Ñ
)

= E(N(t))−
∫ t

0
λ(s)ds =

∫ t

0
λ(s)ds−

∫ t

0
λ(s)ds = 0

for all t ∈ T in addition to the property of independent increments and càdlàg paths
the compensated Poisson process is a martingale. Because of the martingale property
the compensated Poisson process plays an important role in the theory of stochastic
integration as it can be used to prove a version of Itô’s lemma for stochastic integrals
with respect to Poisson processes. [20]
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The homogeneous compensated Poisson process is closely related to the Brownian mo-
tion even though the characteristics of the paths are fundamentally different. Both
processes are martingales and the variance of the distribution of the process at time t
grows linearly for both cases. For sufficiently large values of t the Poisson distribution
with parameter λt can be approximated by a normal distribution, which is then in the
case of a compensated Poisson process again centered at 0 due to the compensation term.
So, the limiting distribution of a homogeneous compensated Poisson process is the same
as that of the Brownian motion. This result is known as the Poisson approximation
and can also be utilized to approximate Poisson noise with a high intensity through the
randomness of a Brownian motion [31].

Example 4. Let S := {1, 2},X := R and Y := X × S. We define (Y (t))t∈T on Y to be
the PDMP given by

Y (t) = (X(t),S(t)) = Y (0) +

∫
−1S(t)dt+

J∑
j=1

vjPj
(∫ t

0
λj(Y (s))ds

)
(1.3)

with v1 = (0, 1), v2 = (0,−1) being the J = 2 state change vectors and

λi(Y (t)) =

{
1 if S(t) 6= i

0 else

for i = 1, 2 the corresponding intensity rate functions. The process switches between the
2 discrete states after an exponential waiting time and is either linearly increasing or
decreasing between two switch events. A numerical realization of the process is visualized
in Figure 1.8.

Figure 1.8: Piecewise linear PDMP example for a short (left) and long (right) trajectory.
While S(t) = 1 the line is colored blue and while S(t) = 2 it is colored red.
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1.1.5 Jump Diffusion Processes

In the last sections we have considered stochastic differential equations that include
a deterministic drift term either in combination with Poisson noise in the piecewise-
deterministic case or with a Brownian noise term in the diffusion case. The next logical
step is to construct processes that include both types of noise. This could be interpreted
either as starting with a PDMP and substituting the deterministic development between
jump events with a diffusive development and thus the process becoming piecewise-
diffusive or as starting with a diffusion process and adding discontinuous jumps to the
continuous dynamics and thus the process becoming a jump diffusion. Since the term
jump diffusion process is much more common we will also use it to describe these kind
of dynamics. Common application areas for jump diffusion processes are mathematical
finance or molecular dynamics (e.g., stock/option pricing or reaction diffusion models)
and of course the application that we focus on in this thesis: agent-based models.

Definition 31. Let (X(t))t∈T be a stochastic process that is given by a stochastic
differential equation

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t) + ZN(t)dN(t) (1.4)

with b,σ Lipschitz continuous functions, (B(t))t∈T a Brownian motion that is indepen-
dent from the inhomogeneous Poisson process (N(t))t∈T and ZN (t) distributed according
to a Markov kernel Q for all times t. We call (X(t))t∈T a jump diffusion process.

Most of the time we will, similarly as in the PDMP case, make the simplification of a
finite set of state change vectors determining the possible jump events and can thus use
the somewhat simpler notation with transition vectors and their corresponding Poisson
processes instead of a compound Poisson process.

Example 5. As a relatively simple example we consider an expansion of the piecewise-
linear process from example 4 by adding a standard Brownian motion term and a com-
pound Poisson term with increments distributed according to a standard normal distri-
bution. We can then write down the process as

Y (t) = Y (0) +

(∫
−1S(t)dt, 0

)
+ (B(t), 0) +

R(t)∑
k=0

Zk +

J∑
j=1

vjPj
(∫ t

0
λj(Y (s))ds

)
with R being a unit rate Poisson process independent from B and Pj and Zk normally
distributed random variables. A sample path of the process is visualized in Figure 1.9.

An interesting result concerning jump diffusion processes is the Lévy-Itô decomposition
[28], which essentially states that every Lévy process can be decomposed into three parts:

1. a linear deterministic drift part

2. a scaled Brownian motion part
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Figure 1.9: Visualisation of a short (left) and long (right) trajectory from a numerical
realization of the jump diffusion process in example 5. For the short trajec-
tory dotted black lines are used to indicate the jump times of the compound
Poisson jumps in X as well as the discrete switches in S. While S(t) = 1
the deterministic drift term is positive and the line is colored blue, while
S(t) = 2 the drift term is negative and the line is colored red.

3. a jump part consisting of a compensated and a compound Poisson process.

For the rigorous statement see Theorem 42 in [20]. A similar result can also be proven
for additive processes [28,32], which can also be decomposed into a deterministic, a dif-
fusion and a jump part. In this case the drift and diffusion coefficients do not need to be
constant but still state independent. So, the class of jump diffusion processes actually is
sufficient to describe all additive stochastic processes as those are characterized exactly
by these three building blocks. Theorem 32 in the book of Protter [20] states a condition
for processes defined by stochastic differential equations to possess the Markov property.
It is sufficient that all integrands of the SDE are additive processes and all coefficients
are Lipschitz continuous functions.

We now proceed with the introduction of agent-based models and a mathematical for-
malization of them in terms of Markov processes.
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1.2 Mathematical Formalization of Agent-Based Models

Mathematical modeling is a possibility for comprehending the reality that we live in.
A complicated real-world object or process can be represented by an abstraction that
we can formulate in the mathematical language based on observations. The study of
this somewhat simpler object can help us understand some aspects of the real-world
counterpart for which it is a model. Of course even with the best possible model we
will always be limited by our human perception of reality and human logic. This insight
ultimately leads to the famous quote that is attributed to George Box [33]: ”all models
are wrong, but some are useful”. As mathematicians or scientists in general we are of
course interested in formulating useful models which need to carefully balance simplic-
ity and realism. A model that is very realistic can be too complex for any meaningful
analysis, e.g., if there are too many parameters to assess, which of them are the param-
eters responsible for certain results. On the other hand, a model that makes too many
simplifications might not describe the problem accurately enough. In general, it is a
good strategy to start with a model that is more on the simplistic end of this spectrum
and expand it step by step to add more realism but in a manner such that too much
complexity is avoided and it is clear which effect on the system the additional element
causes. This is also one reason to consider Markov processes as a possible restriction for
the building blocks of a model as an extension to a model with another Markov process
does not change the fundamental mathematical properties.

Agent-based models are on this spectrum rather on the more realistic side but they
can easily be constructed as too complex for a meaningful analysis. Restricting oneself
to ABMs that can be written down in a formal mathematical way is a first step to avoid
too complex models but even then one often ends up with high-dimensional stochastic
processes that have no analytical solution, especially when real-world data is involved.
So, usually the strength of ABMs lies in hypothesis testing through Monte Carlo simula-
tions and a subsequent computational analysis. As this can lead to a high computational
effort, it is crucial to construct models in a way such that they can be efficiently simu-
lated or else not many scenarios or parameter settings can be explored. This is another
reason to consider a mathematical formalism within the realm of Markov processes as
this enables us to utilize efficient simulation algorithms and established model reduction
techniques.

In this section we will discuss how ABMs are defined in other works and provide a
formalism for ABMs that can be written as jump diffusion processes. Then, we will
introduce an example that can be seen as a basic building block for interacting agent
systems that will later also be used to illustrate how model reduction can be applied to
ABMs. In another example we utilize the mathematical formalism to define an ABM
such that a desired equilibrium emerges only from self organization of the agents accord-
ing to local information.
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1.2.1 Definition of Agent-Based Models

The first question that needs to be answered in this section is rather obvious, the answer
to it though requires some elaboration. The question is of course: what is an agent-
based model? Definitions of ABMs range from very descriptive formulations [34] to
very precise formulations using concepts from models in statistical physics [35]. Which
level of mathematical formalism is used heavily depends on the application area and
the mathematical background that is expected of the reader. Often an interdisciplinary
audience is the target as ABMs can be viewed as a bridge between disciplines [36]. The
range of application areas is vast but the most prominent are the disciplines concerned
with the interactions of human individuals within societies, e.g., social science [4], eco-
nomics [5], epidemiology [6], ecology [3] or archaeology [7]. However, ABMs are not
limited to human interactions as they can also be utilized to model the decision-making
and behavior of animals, e.g., in flocking dynamics [34] or movements for foraging [37],
and the behavior of particles in molecular dynamics [38]. What is connecting these dif-
ferent applications is the interaction of the entities that are modeled with each other
and with an environment in which they are existing. Interaction alone is, however, not
unique to ABMs as they share this trait with other model types like compartmental
ODE and metapopulation models that can be used for modeling population dynamics,
e.g., for disease spreading within a society [39,40]. The difference between these different
model types for this example is the modeling scale which ultimately leads to different
dynamical descriptions for the same real-world process. While compartmental ODE
models provide often a macroscopic description of a process, ABMs are focusing on the
microscopic dynamics. The microscopic description of an interaction process features at
least some discreteness in the sense that the distinction between the interacting entities
is always possible. So, a first descriptive answer to the opening question would be: An
agent-based model is a microscale model for the interactions of discrete entities with
each other and with their environment.

Now let us be a bit more specific and first take a closer look at the properties a discrete
entity should have to be considered an agent. The state of an agent in general consists of
multiple variables that each represent a certain feature relevant to the application, e.g.,
a position in space or an indicator about an opinion or the presence/absence of specific
information or physical goods. So, to be precise an agent is a collection of state variables
that can take values in continuous as well as discrete spaces [35]. A system of agents is
consequently the collection of variables of all agents. The change of these state variables
is how we define the interactions of agents with each other and their environment and
thus an agent-based model is essentially a dynamical system. In principle we could write
down any function that acts on the space on which the variables defining the agent sys-
tem are defined and to specify the rules after which the agents behave. However, to get a
meaningful model that can be analyzed it is reasonable to restrict oneself, e.g., by having
the function defining the rules not depending on the individual agent itself but only on
the state of the system. This raises then the question: if agents do not behave according
to individual rules but rather general rules, are they then still distinguishable from each
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other? There are at least two general cases in which this is still true, the first one being
the case where the ABM is essentially a network model with each agent represented by
a node on a network with a non-trivial network topology. The second case would be
those of at least one of the defining variables of an agent being continuous, such that
all agents will have a different value almost surely. We will be interested mostly in the
second case in this work. On another note using general behavior rules does not exclude
heterogeneity among the agents, as different agent types can be encoded by a discrete
state variable. So, in this work we will only use the term agent-based model for (random)
dynamical systems with a state space that is defined by a collection of variables that
contains at least one continuous variable and usually also at least one discrete variable
to allow for the definition of heterogeneous behavior.

Though a position can also be defined on a discrete grid or network and an opinion
could also be defined to take values in a continuous opinion space [41], we will later
without too much loss of generality assume that all variables concerning the mobility of
an agent (e.g., position, velocity, orientation) are continuous while variables describing
the status (e.g., susceptible, infected, indicator of knowledge/opinion) of an agent are
discrete. So, in this interpretation the microscale characteristic of an ABM refers to the
spatial resolution of the model. An ABM for continuous opinion dynamics is then to be
viewed as movement in an opinion space. The environment in which the agents move
and interact can be defined implicitly, either through shared state variables of agents
or the functions determining the behavior and interaction rules, and does not need to
be an additional entity itself. For network models with agents that are not mobile the
network topology can be defined through the interaction functions as well, making net-
work models for social interaction essentially a special case of the more general case of
an ABM with mobile agents.

As we now have a good picture of what we mean by the term agent-based model in
this work, we can continue to focus on more specific types of ABMs. In particular we
are interested in ABMs that can be described by Markov processes. The inclusion of
randomness in ABMs is very common as in the case of the complex real-world systems
that we try to model we are always dealing with missing information, especially when
it comes to human decision-making. The class of Markov processes is on the one hand
broad enough to include many interesting ABMs based on established physical models
that utilize Markov processes [35], on the other hand the restriction to processes that
are memoryless has huge analytical and computational advantages. Whether the as-
sumption of memoryless randomness is justified will be in the end more a question of
the existence of a better alternative assumption. Following the principle of Ockham’s
razor, I believe that Markovian randomness is in general the lesser assumption than the
alternative as we would then have to make an additional assumption about the memory
characteristics of the random process, which themselves would require some additional
justification. Including memory in the decision-making of agents can also be realized
by expanding the state space and leaving the fundamental characteristic of randomness
Markovian. Especially when in the process of building a model, we want to start simple
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and expand the model iteratively through extensions using models based on additive
Markov processes is a reasonable decision.

We now proceed with the formalization of ABMs that can be described by Markov
processes and introduce the notation for ABMs that will be used in all following ex-
amples. A similar formalization has been done in [16] and we will follow the overall
structure and notation.
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1.2.2 Formalization of ABMs as Markov Processes

Definition of the agent system

The state space for defining the collection of variables representing a single agent will
be the product space of a compact domain X ⊂ Rd for encoding continuous variables
and a discrete set S ⊆ N for encoding all discrete variables. Usually, we consider a finite
number of ns different possibilities for the status of an agent. The combined state space
will be denoted by Y := X × S. Without loss of generality we refer to the continuous
variables of an agent α as the position xα and the change of the continuous variables as
mobility of an agent. We call the collection of discrete variables of an agent α the status
sα and refer to status changes also as adoption of a new status. Both the mobility and
the adoption dynamics will be defined as Markov processes in continuous time, i.e., the
index set T is a continuous time interval, e.g., T = [0,∞).

We consider a finite set of agents with the number of agents na being constant. In
a later application we will also introduce variable agent numbers but with an upper
bound for the maximum number of agents. Through an extra status variable for agents
that encodes whether an agent is currently existing or not the case of variable agent
numbers can be reduced to the case of constant agent numbers as long as the number of
agents is bounded.

The whole system of the na agents is encoded through the two vectors collecting the
variables of all agents: the vector X = (xα)α=1,...,na consisting of all positions and the
vector S = (sα)α=1,...,na denoting the status of all agents. We call the vector Y = (X,S)
the system state and define the space of all possible system states as Y := Xna × Sna .

Change of state variables

The discrete status changes of an agent will be modeled by a Markov jump process with
finitely many different possible jump events refered to as adoption/status change events.
As human mobility can exhibit Levy walk characteristics [42] as well as characteristics of
Brownian motion [43] we assume the mobility process to be in general a jump diffusion
process. For the application of model reduction by projection of the dynamics to a
Markov state model we will restrict ourselves later to a pure Markov diffusion process
for the mobility process and omit thereby the possibility for compound Poisson jumps
of the continuous state variable. We thus have a strict separation between discrete
dynamics in the discrete space S and continuous dynamics in the continuous space X.
These can nevertheless still be coupled and affect each other. However, under certain
assumptions for the jump characteristics there also exist asymptotic convergence results
and characterizations of metastable behavior for jump diffusions in potential landscapes
[44], so under the right assumptions our model reduction framework from the next
chapter can also be applied in the more general case.
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Mobility process

We formulate the jump diffusion process for the agent-based model in terms of the sys-
tem state and define (X(t))t∈T as the (jump) diffusion process on Xna that governs the
movements of all na agents. The motion of a single agent is then related to the respec-
tive marginal process of (X(t))t∈T. As we have chosen X to be compact we will have an
invariant measure for the distribution of the agents’ positions as long as the dynamics
of (X(t))t∈T are those of a Feller process.

The environment in which the agents move is implicitly defined in the stochastic differen-
tial equation generating the mobility process and not a separate entity. External changes
to the environment through time (e.g., climate changes) can be modeled in terms of the
movements of the agents depending on the time variable in addition to the positions
and status of all agents. An example for this would be a diffusion process in a time
changing potential landscape. In that case, however, we have in general non-equilibrium
dynamics.

Adoption process

For the adoption process of a single agent α we consider a finite number of J possible
adoption events, each associated with a state change vector vj ∈ Y and an adoption rate
function

f
(α)
j : Y→ [0,∞)

specifying the intensity of the jump process. In the case of S being a finite set, i.e.,
sα ∈ S := {1, ..., ns}, we can write down a jump process for each possible transition of
the form i→ j for i, j ∈ S with associated adoption rate function

f
(α)
ij : Y→ [0,∞)

and with associated state change vector

v
(α)
ij := (0Xna , (j − i)eα) (1.5)

where 0Xna denotes the 0-vector in Xna and eα denotes the na-dimensional vector with
the αth entry being 1 and all other entries being 0, i.e., the αth unit vector of Rna . For
a given system state Y = (X,S) we have

Y + v
(α)
ij = (X,S − ieα + jeα)

so only the status variable of agent α gets assigned a new value.

While in general the status changes of an agent can depend on the whole system state
Y , we often define the adoption rate functions in a way that not all the position and
status values of other agents are influencing the intensity of the jump process. The
general case can be interpreted as having global knowledge or interacting on a global
scale, while a reduction of dependencies can be interpreted as having locality for both
information about and interaction with other agents. We now introduce two important
types of adoption rate functions, which are the core building blocks of many models.
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First order adoptions

The first type is for modeling status changes of an agent that are independent of the

state of all other agents. The adoption rate function f
(α)
ij then only depends on the

position and status of the agent α itself. We call this type of status changes first order
adoptions and can write

f
(α)
ij (X,S) = δi(sα)γij(xα), (1.6)

where δi denotes the indicator function of a status, i.e., δi(s) = 1 if s = i and δi(s) = 0
otherwise, and γij : X→ [0,∞) specifies the intensity rate for a status transition from i
to j depending on the spatial location of the acting agent. In particular, we set γii(x) = 0
for all positions x.

Second order adoptions

The next type of adoption dynamics we consider is based on pairwise interactions with
other agents. In this case we speak of second order adoptions and we set

f
(α)
ij (X,S) = δi(sα)

na∑
β=1
β 6=α

δj(sβ)γij(xα, xβ), (1.7)

where γij : X2 → [0,∞) is a function defining the intensity rate for a status adoption from
i to j depending on the positions of two interacting agents. In a more special setting,
this rate γij(xα, xβ) depends only on the distance between the interacting agents, e.g.,
they need to be closer than some interaction radius r > 0 to interact, as for example
in the Doi model [45] in the context of chemical reaction systems. The underlying idea
is that interactions of agents that can lead to status changes require proximity of the
agents in physical space. For this case, we set

γij(xα, xβ) := cij · dr(xα, xβ) (1.8)

for a constant cij ≥ 0, where dr : X2 → {0, 1} for r > 0 is the distance indicator function:

dr(xα, xβ) =

{
1, if |xα − xβ|≤r
0, otherwise.

(1.9)

For i = j there are no status transitions and we set cii = 0. The way we have defined the
second order adoptions the intensity of the associated jump process also depends on the
number of agents with a different status in the neighborhood as we assume interactions
with all neighbors. For some applications with high agent numbers in the neighborhood
it can make more sense to define the adoption rate function with a threshold or to divide
the adoption rate by the number of neighbors to limit the influence of the number of
neighbors on the jump intensity.
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Process formulation

The coupling of the diffusion process and the jump dynamics given by status changes
leads to a Markov process (Y (t))t∈T on the system state space Y. Let p(X,S, t) be the
probability mass function for the process (Y (t))t∈T to be in the system state (X,S) at
time t, where the marginal with respect to X is a continuous density function and the
marginal with respect to S is a probability vector.

We define for each status i an operator Li that describes the change of the proba-
bility mass function through the motion of a single agent under the condition that it is
currently in status i. Then, we can write down an operator L for the movement of the
agents,

Lp(X,S, t) :=

na∑
α=1

L(α)
sα p(X,S, t), (1.10)

where L
(α)
sα is defined as Li for i = sα acting on a function p(X) with respect to the

component xα of X (see Example 6 for details). Note that, consequently, L
(α)
sα acts only

on the position part of the probability mass function p(X,S, t) in (1.10).

As for the adoption dynamics, we define

Gp(X,S, t) :=−
ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S)p(X,S, t)

+

ns∑
i,j=1

na∑
α=1

f
(α)
ij

(
(X,S)− v(α)

ij

)
p
(

(X,S)− v(α)
ij , t

)
=−

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S)p(X,S, t)

+

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S − ieα + jeα) p (X,S − ieα + jeα, t) ,

(1.11)

where eα denotes the αth unit vector of Rna . The first term on the right-hand side
refers to the outflow from the current state through adoption events and the second
term to the inflow through adoption events that would lead to the current state. The
change of p(X,S, t) including movement and status transitions is then given by the set
of differential equations

∂tp(X,S, t) = Lp(X,S, t) +Gp(X,S, t). (1.12)

The strength of this general agent-based approach is that different types of restrictions
regarding the interaction dynamics can be included and quite complicated dynamics can
be formulated. On the other hand, the coupled differential equations which describe the
system are usually not analytically solvable. Instead, Monte Carlo simulations of the
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dynamics are required to sample the quantities we are interested in and the simulation
of such complex systems can be numerically very costly, especially if local neighborhoods
have to be computed in every time step.

We proceed with two explicit examples to illustrate how to use this framework to de-
fine agent-based models in terms of Markov processes. Afterwards, we will discuss the
simulation of agent-based systems.
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1.2.3 Guiding Example

The first example that we also call guiding example consists of the basic building blocks
for modeling spreading processes. This example was also featured in [16]. We define for
the agent mobility a diffusion process in a potential landscape that exhibits metastability
and in addition a jump process for second order adoptions.

Example 6 (Two-status dynamics in a double-well potential). We consider the contin-
uous space for the agent movements to be X = R2 and the discrete status space to be
S = {1, 2}. The movement of a single agent is defined as a diffusion process and is given
by the following stochastic differential equation

dx(t) = −
(σ

2

)2
∇U(x(t))dt+ σdB(t),

with U(x1, x2) = (x2
1−1)2 + 7x2

2 being a 2-dimensional double-well potential (see Figure
1.10), diffusion constant σ ∈ R and B(t) a standard Brownian motion process in R2.
The movement process of all na = 100 agents is denoted by X(t). As for the status
dynamics, we consider second-order adoptions with rate functions defined by (1.7) and
(1.8), assuming that only the changes from status 1 into status 2 are possible, namely
with rate constant c12 > 0, while transitions back to status 1 are excluded by setting
c21 = 0.

In the initial state, all agents are in status 1 except for one agent in the left well,
given by the subset (−∞, 0] × R ⊂ X, which has status 2. The critical transition event
that we are interested in is the first time that an agent with status 2 makes the transition
from the left to the right well (0,∞]×R as this enables the spreading of status 2 within
the right well. In Figure 1.10b we see that this transition happens only after almost
all agents in the left well have adopted status 2. This indicates that adoptions within
one well happen faster than between two wells, which is due to the metastability of the
diffusion process for the mobility of the agents.

In the following chapter we will focus on this type of dynamics and derive reduced
models that preserve its main properties. In particular, we will consider the critical
transition event in order to compare the relevant statistics and quantify the approxima-
tion error of derived reduced models. This example has also been used in [16] for the
same purpose.
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(a) ABM Trajectory (snapshot) (b) Projected ABM Trajectory

Figure 1.10: Two-status dynamics in a double-well potential, see Example 6 [16]. The
adoption rate constant is chosen as c12 = 0.1 and the interaction radius as
r = 0.15 (a) Snapshot of an ABM trajectory for a simulation with na = 100
agents with contour lines of the potential U from Example 6 with diffusion
constant σ = 1.2. The blue dots refer to spatial positions of agents in status
1, the red dots represent agents in status 2. Grey lines show movement
trajectories of the agents. (b) Projected trajectory of the same example,
showing the temporal evolution of the total number of agents in each of the
two wells (given by (−∞, 0]× R and (0,∞)× R) depending on the status.
The dashed black line refers to the time of the snapshot. The example will
be revisited in Section 2.2.5.

42
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1.2.4 Self Organisation of Agents According to Local Information

Agent-based models often revolve around interactions based on local information [46],
but some applications also require agents to act on global information about the sys-
tem [47]. In this section, we will use a simple example to explore the differences between
agents acting on global information and agents acting on local information. For this
example we will also consider a dependence of the mobility dynamics on the status of
the agents, and thus we have a feedback loop between the mobility and the adoption
process [48,49].

Let us first define the state space and the mobility process for an agent system that
will serve as a numerical example in this section.

Example 7. We consider a system with a constant number of na = 1000 agents, status
set S = {1, 2}, position space X = [−2, 2] and Li, for i = 1, 2 as defined in Equation
(1.10) given by the diffusion SDE

dx(t) = −∇Vi(x(t))dt+ σdB(t)

with the potential Vi chosen as depicted in Figure 1.11, σ = 0.7 and Bt a one-dimensional
Brownian motion. For each Li, the invariant probability density function is given by the
Boltzmann distribution

µi(x) =
1

Z
exp

(
− 2

σ2
Vi(x)

)
with Z =

∫
X exp

(
− 2
σ2Vi(x)

)
dx as a scaling constant. The potentials are constructed so

that agents with status 1 are more attracted to the left well and agents with status 2
are more attracted to the right well.

Figure 1.11: Graphs of potentials V1 (left) and V2 (right).

The basic idea for the adoption dynamics is that the agent system should organize itself
such that the agents are distributed according to a specified target distribution η. We
choose η to be the equilibrium distribution resulting from an ensemble of agents that
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do not adapt their status and are initialized with the status distributed according to
the probability vector π. For the numerical example, we choose π = (0.4, 0.6). We
distinguish between two general modeling approaches for the status dynamics. The first
one considers agents with global knowledge, where we define the adoption rate functions
such that they are only depending on the status of the agents and not on the positions.
The second approach considers agents with local knowledge about other agents within
a specified interaction radius. We can utilize the Markov process description for agent-
based models to define a suitable adoption rate function for the dynamics of this case.

For the numerical example we will compare the stationary distributions of the different
dynamics, sampled from 50 simulations each, since we can not compute the stationary
density analytically for all cases. As a measure for the error, we will use the total varia-
tion distance1 between the probability measures of the theoretical target distribution η
and the empirical distributions obtained from the agent-based simulations.

In the following, the adoption rate functions are defined so that they are independent
of time t and depend only on the system state Y (t). We will first consider the case of
agents with access to global information. Although in our example we have only two
different status values, we formulate the adoption rate functions with the more general
setting of a status set S with ns different status values in mind.

π-Global Information

Let agent α be in status i, γ > 0 a constant for specifying the jump intensity and

g
(α)
ij (X,S) := γmax

{
0,

(
πj −

∑na
β=1 δj(sβ)

na

)}
(1.13)

the adoption rate function for transitions from i to j, with δj being the indicator function
for status j. The adoption rate depends on the global population statistics and is either
0 or linearly increasing from 0 if the fraction of agents in status j is less than the value
πj of the given status distribution.

Equipped with these dynamics, the status change of the system stops completely as
soon as the probability vector π matches the status distribution of the agent system,
and thus the theoretical equilibrium distribution is given by the invariant probability
density functions of the diffusion generators L1, ..., Lns weighted by the respective entries
of π. We denote this stationary distribution for a single agent as

η : X× S→ [0,∞)

(x, i) 7→ πiµi(x).

1The total variation distance of two probability distributions ν1, ν2 is defined as

dTV(ν1, ν2) := sup
A
|ν1(A)− ν2(A)|

.

39



The invariant measure for the whole system is given by the product measure ηna . We
are also interested in the local status distribution, for which we can define a function
π(loc) : X× S→ R with

π(loc)(x, i) =
η(x, i)∑ns
j=1 η(x, j)

(1.14)

describing the frequency of each status i for a given location x according to the invariant
distribution η. In the numerical example, π is eventually reached by construction. The

Figure 1.12: Example 7 with π-global information dynamics defined by the adop-
tion rate functions in Equation (1.13): Empirical system state dis-
tributions η̂1(·, 1), η̂1(·, 2) (left) and empirical local status distributions

π̂
(loc)
1 (·, 1), π̂

(loc)
1 (·, 2) (right) for agents are plotted with dashed lines. For

comparison the respective theoretical distributions η(·, 1), π(loc)(·, 1) and
η(·, 2), π(loc)(·, 2) are plotted as well. The curves referring to status 1 are
marked blue and the curves referring to status 2 are marked orange.

empirical equilibrium state η̂1 from the numerical example (see Figure 1.12) is very close
(dTV(η, η̂1) ≈ 0.005) to the theoretical equilibrium given by the Boltzmann distributions
for each diffusion process weighted with π. This result suggests that the number of
Monte Carlo simulations used for sampling is high enough for our purposes.

If instead we want to achieve the target distribution η, but only with local informa-
tion within a radius r available to each agent, it is reasonable to define the adoption
dynamics so that with increasing radius r →∞ we return to the global information case

defined by g
(α)
ij in Equation (1.13). One approach to obtaining this property would be to

define the rate functions as before, but using the population statistics of a sample from
the local neighborhood of agent α instead of the global population statistics.

π-Local Information

Let agent α be in status i, γ > 0 a constant for scaling the jump intensity and r > 0
the interaction radius, which determines the sampling area around the position xα of an
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agent. Then, we define the adoption rate function as

f
(α)
ij (X,S, t) := γmax

{
0,

(
πj −

∑na
β=1 dr(xα, xβ)δj(sβ)∑na

β=1 dr(xα, xβ)

)}
(1.15)

where dr is the distance indicator function defined in (1.9) and δj is the indicator function
of status j. The adoption rate depends on the local population statistics and increases
linearly from 0 if the fraction of agents in status j in the local sample is less than the
value πj of the given status distribution.

With this definition of adoption dynamics, agents change their status to reach π in
the status distribution not globally but locally. This leads in general to a different equi-
librium for the system state than with the dynamics of π-global information defined in
(1.13), since the local status distribution and thus also the spatial distribution of agents

in a given status is different. Although it is clear that f
(α)
ij → g

(α)
ij for r → ∞, the

equilibrium of this system is not necessarily η for a sufficiently small radius r.

If we look at the agent system of our numerical Example 7 we have the case of a different
equilibrium distribution. If we consider the master equation for a single agent that is part
of an infinite population distributed according to η, we would get π(loc)(x, 1), π(loc)(x, 2)
as values for the local population sample centered around position x, which would lead
to the following equation:

∂tη(x, 1) =π1L1µ1 + π2L2µ2

− π1

∫
X
f

(α)
12 (x)dµ1(x) + π2

∫
X
f

(α)
21 (x)dµ2(x)

=0 + 0− π1

∫
X
γmax{0, π2 − π(loc)(x, 2)}dµ1(x)

+ π2

∫
X
γmax{0, π1 − π(loc)(x, 1)}dµ2(x).

(1.16)

By the construction of our example this difference is nonzero, so the change of the prob-
ability density η is nonzero, and therefore η can not be the equilibrium density of the
dynamics defined in Equation (1.15).

As expected, the dynamics with π-local information leads to an empirical equilibrium η̂2

that is not close to η (dTV(η, η̂2) ≈ 0.1364). The status distribution also deviates glob-
ally (π̂2 ≈ (0.42, 0.58)) as well as locally from π, which is not quite expected since the
adoption rate functions are constructed in such a way that the status distribution should
converge to π at least locally. The deviation is due to the feedback between adoptions
and mobility, as agents are more attracted to different wells depending on their status.
Figure 1.13 visualizes the distributions of this scenario.

So if we want the system to converge to the same target distribution η as in the case of
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Figure 1.13: Example 7 with π-global information dynamics defined by the adop-
tion rate functions in Equation (1.15): Empirical system state dis-
tributions η̂2(·, 1), η̂2(·, 2) (left) and empirical local status distributions

π̂
(loc)
2 (·, 1), π̂

(loc)
2 (·, 2) (right) for agents are plotted with dashed lines. For

comparison the respective theoretical distributions η(·, 1), π(loc)(·, 1) and
η(·, 2), π(loc)(·, 2) are plotted as well. The curves referring to status 1 are
marked blue and the curves referring to status 2 are marked orange. The
blue and red horizontal lines mark the status distribution π which the π-
local information dynamics try to achieve locally.

π global information, but with only the information of a local neighborhood available to
the agents, we need a different approach.

Our second approach to solving this problem requires the utilization of the function
for the local status distribution π(loc). From the system of Equations (1.16) it becomes
clear how to modify the adoption rate functions such that η emerges as the stationary
distribution. Instead of comparing the local status distribution from the sample of an
agent α to the global status distribution π for determining the adoption rate, we should
compare it to the averaged local status distribution∫

Br(xα) π
(loc)(x, ·)dx

λ(Br(xα))
(1.17)

within a ball Br with radius r. For r → ∞ this would be the same as the comparison
with π, so with increasing radius we would converge to the case of agents with global
information. On the other hand, we can assume that for a sufficiently small radius r it
holds that ∫

Br(xα) π
(loc)(x, ·)dx

λ(Br(xα))
≈ π(loc)(xα, ·).

So, we can replace (1.17) with π(loc) in the definition of the adoption rate function to
avoid calculating numerical integrals in the simulation steps.
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π(loc)-Local Information

Let agent α be in status i, γ > 0 a constant for scaling the jump intensity and r > 0 the
interaction radius, which determines the sampling area around the position xα. Then,
we define the adoption rate function as

`αij(X,S, t) := γmax

{
0,

(
π(loc)(xα, j)−

∑na
β=1 dr(xα, xβ)δj(sβ)∑na

β=1 dr(xα, xβ)

)}
(1.18)

with π(loc) as defined in (1.14), dr the distance indicator for radius r and δj the indicator
function for status j.

The adoption rate depends on the local population statistics and now increases lin-
early from 0 if the fraction of agents with status j in the sample of agent α is smaller
than the value π(loc)(xα, j) of the given local status distribution.

By construction the target equilibrium density η emerges from the agent system equipped
with these dynamics. Since the observed sample of agents in status j for every agent α
converges to π(loc)(xα, j) and therefore the rate functions `αij are zero for a population
that is distributed according to η. Also, the change in the position part of η is zero, since
it is constructed from the invariant densities of the generators of the diffusion processes
for the agent mobility.

Figure 1.14: Example 7 with π(loc)-local information dynamics defined by the adop-
tion rate functions in Equation (1.18). Empirical system state dis-
tributions η̂3(·, 1), η̂3(·, 2) (left) and empirical local status distributions

π̂
(loc)
3 (·, 1), π̂

(loc)
3 (·, 2) (right) for agents are plotted with dashed lines. For

comparison the respective theoretical distributions η(·, 1), π(loc)(·, 1) and
η(·, 2), π(loc)(·, 2) are plotted as well. The curves referring to status 1 are
marked blue and the curves referring to status 2 are marked orange.

The empirical equilibrium state of the numerical example under π(loc)-local information
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dynamics η̂3 is a good approximation for the equilibrium of the π-global information
dynamics (dTV(η, η̂3) ≈ 0.0215), although again there is a small deviation from the lo-
cal status distribution that the system tries to achieve by construction. Unfortunately,
also in this scenario there is a deviation from the global status distribution as we have
π̂3 ≈ (0.42, 0.58). The convergence to η can be improved by increasing the number of
agents or the interaction radius compared to the chosen values in this realization. This
is due to a better estimation of the observed local status distribution through a larger
local sample. The speed of the adoption dynamics is also crucial for the convergence to
the target equilibrium η and we have already chosen it fast enough such that we are in
the regime where further increasing the jump intensity will not significantly improve the
results.

A possible application area for this modeling approach could be the field of systems
biology, as many phenomena of biological organization depend on local interactions [50].
Especially for the process of morphogenesis, it is assumed that cells adapt according to
local spatial information [51]. The adoption dynamics defined in Equation (1.18) is one
way to encode positional information in a reaction-diffusion type ABM so that agents
adapt their status according to an observed concentration. As the relationship between
reaction-diffusion models and models based on positional information for morphogenesis
is still being discussed [52], an adaptation of our example to a real-world system could
be an interesting topic for future research.
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1.3 Simulation of Agent-Based Models

As the dynamics of an agent-based model is usually defined through a set of stochastic
differential equations which are not analytically solvable, we usually need to compute
a numerical solution for the evaluation of the ABM. Since the ABMs we consider in
general include randomness, we need to realize multiple Monte Carlo simulations for
generating a sufficiently large sample to gather statistics about the distributions of our
quantities of interest, e.g., first hitting times for critical transition events. Besides costly
function evaluations, e.g., in the case of neighborhood computations, the generation of
pseudorandom numbers is another factor which significantly contributes to the overall
computational effort. Therefore, there will always be the trade-off between additional
accuracy for single numerical realizations of the model and the realization of additional
simulation runs to increase the sample size. Using efficient algorithms for the simulation
of ABMs can thus allow us to make the best use out of limited computational resources.

In this section we will briefly review some well-known established numerical discretiza-
tion schemes for stochastic processes. We will first discuss the numerical realization of
the Brownian motion and Markov diffusion processes and afterwards the simulation of
jump processes. We will then proceed with combined simulation approaches for jump
diffusion processes and how to apply the algorithms to the ABMs that we are interested
in. An event-based approach [15] that is well suited to simulate processes that possess a
low jump intensity will be illustrated at the end of the section with a numerical example.
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1.3.1 Simulation of Diffusion Processes

As is also the case for deterministic integrals and for that matter any continuous object,
we will never be able to construct a discrete object that fully captures all properties of
its continuous counterpart. We can only hope to get an approximation that is accurate
enough in the sense that the error that we make when evaluating the discrete approxi-
mation instead is small and that the key properties are maintained.

When it comes to Brownian motion we know that the process has independent Gaussian
increments. So, for all times t and all time-step sizes ∆t ∈ R it holds that

B(t+ ∆t)−B(t) ∼ N (0,∆t).

The sequence of random variables defined by

Zn+1 = Zn +
√

∆tξn (1.19)

with Z0 = 0, ∆t > 0 the time step size and ξn ∼ N (0, 1) independent for all n ∈ N has
by construction also independent Gaussian increments and each Zn is distributed as a
Brownian motion at the same point in time would be (Zn ∼ B(n∆t) in the case of a
constant step size ∆t). However, between the discrete time points the process defined
by the Zn and linear interpolation inbetween behaves vastly different than a Brownian
motion. Only for a sufficiently small time step size ∆t the approximation error will be
small [53]. If we view a sequence 0 < t1 < ... < tn as a discretization of the Lebesgue
measure on T ⊆ R that measures each interval with ∆t, then we can view the sequence of
scaled Gaussian random variables defined by

√
∆tξn as a discretization of the Gaussian

random measure generated by the Brownian motion for the same intervals.

Euler-Maruyama scheme

To create a realization of a diffusion process (X(t))t∈T defined by a stochastic differential
equation of the type

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t)

one has to both solve the deterministic integral and realize the stochastic integral with
respect to Brownian motion numerically. A well-known method to compute this is the
Euler-Maruyama scheme which combines the explicit forward Euler method with an
added properly scaled discrete approximation of the Brownian motion [53]. The Euler-
Maruyama scheme can be defined as

X̂(t+ ∆t) = X̂(t) + b(X̂(t), t)∆t+ σ(X̂(t), t)
√

∆tξt (1.20)

with step size ∆t and ξt ∼ N (0, 1) independent random variables. The step size ∆t can
be a random variable as well, as long as there is a strict upper bound given by a positive
constant δ > ∆t for all t [53]. The Euler-Maruyama scheme has weak convergence order
1 and strong convergence order 0.5 [53].
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Higher order methods and splitting schemes

Though there also exist higher order schemes based on explicit strong Itô-Taylor ap-
proximations [53], e.g., the Milstein scheme, the Euler-Maruyama scheme is still widely
used. Even though the order of convergence is weaker, the effort compared to higher
order methods is considerably less as it requires less function evaluations and less draws
of pseudorandom numbers. For the sampling of most quantities of interest weak conver-
gence of the sample paths already is sufficient and the bottleneck lies then rather in the
number of realizations N as the Monte Carlo sampling converges only with

√
N to the

expectation.

Recently also splitting methods have been proposed to improve the convergence or-
der without including higher order terms [54]. Leimkuhler and Matthews have proposed
an adaption to the Euler-Maruyama scheme that can be written down as

X̂(tn+1) = X̂(tn) + b(X̂(tn), tn)∆t+ σ

√
∆t

2
(ξtn + ξtn+1)

with tn+1 := tn + ∆t a sequence of time points and ξtn ∼ N (0, 1) independent standard
normal random variables. The drawback of the method is that the increments are no
longer independent but correlated with each other due to the reuse of one previous
random variable in each time step. The process can however be made Markovian again
by expanding the state space with the random variable that is reused in the next iteration
step [54].
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1.3.2 Simulation of Jump Processes

A time-continuous Markov chain on a finite state space S with rate matrix Λ can be
discretized by calculating a transition matrix P∆t for a chosen time step size ∆t by
evaluating

∫ ∆t
0 exp(tΛ)dt. However, for large sets S the matrix multiplication is not

well-conditioned, and for Markov chains that are metastable we will have holding prob-
abilities close to 1 for appropriately small step sizes ∆t which can result in a high
simulation effort and numerical instability. Thus, also in this case a simulation approach
that is based on the view of Markov chains in terms of Poisson processes is useful.

As in the case of diffusion processes the first step is to construct a discretization of
the Brownian motion, it is natural that for the simulation of jump processes we are
interested in a discretization of the (unit rate) Poisson process. In the Poisson case we
have the advantage compared to Brownian motion that the state changes due to random
events already only happen at discrete time points for the original object and not con-
tinuously. For the realization of a homogeneous counting process (N(t))t∈T with jump
intensity λ > 0 there are two common approaches.

Time discretization approach

The first approach would be analogous to the Brownian motion case: We fix a time step
∆t for the next iteration of the process and use the property of independent increments.
Since we have

N(t+ ∆t)−N(t) ∼ Pois(λ∆t)

for the original process the iterative definition that preserves this quality is the process
defined by

N̂(t+ ∆t) = N̂(t) + ρt (1.21)

with N̂(0) = 0, ρt ∼ Pois(λ∆t) independent and constant interpolation between the
evaluations, which by construction also has independent increments that are Poisson
distributed with the same intensity λ as the original process (N(t))t∈T. With this
construction we again have a good approximation for sufficiently small time steps ∆t in
the sense that the evaluations at each time of the sequence 0 < t1 < ... < tn are correctly
distributed but inbetween we again have a deviation from the original characteristics of
the process. We can again interpret the sequence of Poisson random variables that is
induced by the time discretization as a discretization of the Poisson random measure
that is generated by the counting process (N(t))t∈T.

Event-based approach

The second approach would be to simulate each state change event of (N(t))t∈T sep-
arately. As we have an exponentially distributed waiting time τ ∼ Exp(λ) between
two state change events it suffices to draw a sequence of exponential random variables
τ1, ..., τn ∼ Exp(λ) and define iteratively

N̂(t+ τk) = N̂(t) + 1 (1.22)
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with N̂(0) = 0. This approach has the advantage that it provides an essentially exact
realization of (N(t))t∈T. However, in the case of a high intensity λ we will have to draw
significantly more pseudorandom numbers compared to the first approach.

Both approaches can easily be adapted to the case of homogeneous compound Pois-
son processes (X(t))t∈T with Markov kernel Q. In the case of the event-based approach
we draw for each waiting time τk also a random variable Zk ∼ Q and adapt the definition
from (1.22) to

X̂(t+ τk) = X̂(t) + Zk. (1.23)

In the case of the time discretization approach we draw a total of ρt random variables
Zk ∼ Q for each time step and adapt the increments in (1.21) accordingly to

X̂(t+ ∆t) = X̂(t) +

ρt∑
k=1

Zk. (1.24)

Stochastic simulation for inhomogeneous jump processes

In the case of an intensity rate function λ we need to calculate a numerical integral to
determine the jump intensity correctly for either drawing correctly distributed waiting
times τ ∼ Exp(

∫
λdt) or a correctly distributed number of jump events. Here we can

distinguish between the two cases of a dependency of the intensity rate function purely
on the state of the jump process, which does not change between two jump events, and
an either direct or indirect dependence on time itself.

State-dependent jump intensity

In the first case scenario the value λ(X(t)) is constant between two jump events and thus
for calculating the jump intensity between two iteration steps we only need to evaluate
the rate function λ(X̂(t)) at the value of the last iteration. We then can draw in the
event-based discretization approach an exponential waiting time τ ∼ Exp(λ(X̂(t))) to
determine the time t+ τ of the next iteration and draw a random variable Z according
to the Markov kernel Q(N̂(t)). This method is again essentially exact and also known
as the stochastic simulation algorithm [55].

For the time discretization approach we need to assume that the time step size ∆t
is small enough such that the intensity rate function λ is almost constant between t and
t + ∆t, i.e., the state changes between two evaluations of the discretization scheme do
not have a strong influence on the jump intensity [56]. We then can draw the number
of jump events ρt ∼ Pois(λ(X̂(t))∆t) for the system state update after time ∆t and the
random variables Zk with respect to the Markov kernel Q(X̂(t)) for the update of the
system. Depending on the definition of Q, we might need to update the discretization of
the Markov kernel after the draw of each Zk, e.g., by considering Zk+1 ∼ Q(X̂(t) +Zk),
to avoid a sequence of events that is dynamically impossible for the original process (e.g.,
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mutually exclusive events that both have a positive intensity rate, such as an agent do-
ing an i → j1 transition as well as an i → j2 transition at the same time for j1 6= j2).
Alternatively, an update through such a combination of Zk could be avoided by a form
of rejection sampling. The method described by this time discretization approach is also
known as tau-leaping in the literature [56]. Again, this approach is mostly useful in
the case of a generally high jump intensity as we then gain more efficiency compared to
the exact event-based algorithm. There are also combinations of both methods, where
depending on the current jump intensity either the tau-leaping method or the stochastic
simulation algorithm is used [57].

Time-dependent jump intensity

In this case we have λ(X(t), t) also changing between two jump events through the ad-
ditional dependence on the time t. In the time discretization approach basically nothing
changes compared to the previous case as we already needed to assume that ∆t is cho-
sen such that the assumption that the intensity rate function λ is almost constant on
[t, t+ ∆t) holds.

For the event-based simulation approach we now also need to compute the numerical
integral

∫ t+τ
t λ(X(s), s)ds such that we can draw a correctly distributed waiting time τ

between two events. We know that we can construct an inhomogeneous Poisson process
with intensity rate function λ by scaling the time of a unit rate Poisson process according
to λ. Thus, we can draw a waiting time τ ′ ∼ Exp(1), which is the waiting time for a
unit rate Poisson process, in advance and by solving

τ ′ = argminτ

{∫ t+τ

t
λ(X(s), s)ds

}
we can calculate a correctly distributed waiting time τ . An algorithmic way to realize
this is presented in [58] for the case of a jump process on a time dependent network
for modeling disease spreading. Translated to the general case of an inhomogeneous
compound Poisson process the algorithm can be written as is done in Algorithm 1. Be-
sides the numerical error from integrating the intensity rate function the jump times are
stochastically exact.

This event-based simulation method is the algorithm of choice whenever the assumption
that λ is almost constant on [t, t+ ∆t) holds only for sufficiently small ∆t that in con-
sequence lead then on average to jump events only happening after multiple time steps,
i.e., the Poisson random variables drawn in the time discretization approach being 0
with a high probability.

The algorithm realizes the numerical integration of the intensity rate function λ through
an explicit 1-step forward Euler scheme. While in principle the method could be adapted
to utilize a higher order scheme for calculating the jump intensity, as is e.g., done in
higher order tau-leaping methods [59], it then becomes unclear how to calculate the
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adaptive step size in the jump event steps. A possible solution could be to use the
forward Euler scheme to determine whether a jump event takes place and only apply a
higher order scheme to improve the accuracy for time steps without jumps. Exploring
whether accuracy can be gained by such an adaption of the event-based approach could
be a topic for future research.

Algorithm 1: Event-based simulation of Compound Poisson processes

1 initialize time t = 0 and state X̂(0) = X(0);
2 choose a time step ∆t and time horizon T ;
3 draw τ ′ ∼ Exp(1) # exponentially distributed with rate 1;
4 while t < T do
5 # compute the jump intensity rate;

6 set Λ := λ
(
X̂(t), t

)
;

7 if Λ∆t > τ ′ then
8 # jump event;

9 draw Z according to the Markov kernel Q
(
X̂(t), t

)
;

10 # state update;

11 X̂
(
t+ τ ′

Λ

)
= X̂(t) + Z;

12 # time update;

13 t = t+ τ ′

Λ ;
14 draw new τ ′ ∼ Exp(1);

15 else
16 # time update;
17 t = t+ ∆t;
18 τ ′ = τ ′ − Λ∆t;

19 end

20 end

Result: (X̂(t))t≤T
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1.3.3 Combined Simulation Approach

We will now combine the simulation methods for realizing jump processes and diffu-
sion processes to get a simulation scheme for jump diffusion processes and subsequently
agent-based models that can be formalized as Markov processes based on jump diffusions.

We will expand the event-based Algorithm 1 step by step and adapt it first for the
simulation of PDMPs and afterwards for the simulation of jump diffusions. In the case
of a consistently high jump intensity, a similar adaption to the time discretization method
for jump processes might perform better, but as the adaption is pretty straightforward,
we will in the following only discuss the event-based approach in detail.

Simulation of PDMPs

In the case of (Y (t))t∈T being a piecewise-deterministic Markov process given by

dY (t) = b(Y (t), t)dt+ ZN(t)dN(t)

with Markov kernel Q and (N(t))t∈T a Poisson process with intensity rate function λ,we
have the situation that the state of the process also changes between two jump events
so we have at least an implicit time dependence of the intensity rate function through
the deterministic development of the process. Thus, we adapt Algorithm 1 for event-
based simulation of inhomogeneous compound Poisson processes by combining it with
an explicit forward Euler scheme to update the state of the process between jump events
according to the deterministic drift term b.

Again, in principle we could also utilize a higher order method for all fixed step size
iteration steps without jump events and use the forward Euler method only for the it-
erations of the process in which a jump event is calculated and the time step size adapted.

The corresponding time discretization approach to simulating a PDMP can be viewed
as the analogue to the Euler-Maruyama scheme for SDEs driven by a deterministic drift
and Poisson noise. As there are higher order tau-leaping methods one could also utilize
such a scheme for the simulation of PDMPs.
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Algorithm 2: Event-based simulation of PDMPs

1 initialize time t = 0 and state X̂(0) = X(0);
2 choose a time step ∆t and time horizon T ;
3 draw τ ′ ∼ Exp(1) # exponentially distributed with rate 1;
4 while t < T do
5 # compute the jump intensity rate;

6 set Λ := λ
(
X̂(t), t

)
;

7 if Λ ∆t > τ ′ then
8 # jump event;

9 draw Z according to the Markov kernel Q
(
X̂(t), t

)
;

10 # state update;

11 X̂
(
t+ τ ′

Λ

)
= X̂(t)b

(
X̂(t), t

)
τ ′

Λ + Z;

12 # time update;

13 t = t+ τ ′

Λ ;
14 draw new τ ′ ∼ Exp(1);

15 else
16 # state update;

17 X̂ (t+ ∆t) = X̂(t) + b
(
X̂(t), t

)
∆t;

18 # time update;
19 t = t+ ∆t;
20 τ ′ = τ ′ − Λ ∆t;

21 end

22 end

Result: (X̂(t))t≤T
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Simulation of jump diffusion processes

Finally, for the simulation of jump diffusion processes (Y (t))t∈T defined by an SDE of
the form

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t) + ZN(t)dN(t)

we can realize the simulation by adapting Algorithm 2 used for the simulation of PDMPs
by updating the process between the jump events with an Euler-Maruyama scheme in-
stead of the forward Euler.

Algorithm 3: Event-based simulation of jump diffusion processes

1 initialize time t = 0 and state X̂(0) = X(0);
2 choose a time step ∆t and time horizon T ;
3 draw τ ′ ∼ Exp(1) # exponentially distributed with rate 1;
4 while t < T do
5 # compute the jump intensity rate;

6 set Λ := λ
(
X̂(t), t

)
;

7 if Λ∆t > τ ′ then
8 # jump event;

9 draw Z according to the Markov kernel Q
(
X̂(t), t

)
;

10 # state update;
11 draw ξ ∼ N (0, 1);

12 X̂
(
t+ τ ′

Λ

)
= X̂(t)b

(
X̂(t), t

)
τ ′

Λ + σ
(
X̂(t), t

)√
τ ′

Λ ξ + Z;

13 # time update;

14 t = t+ τ ′

Λ ;
15 draw new τ ′ ∼ Exp(1);

16 else
17 # state update;
18 draw ξ ∼ N (0, 1);

19 X̂ (t+ ∆t) = X̂(t) + b
(
X̂(t), t

)
∆t+ σ

(
X̂(t), t

)√
∆tξ;

20 # time update;
21 t = t+ ∆t;
22 τ ′ = τ ′ − Λ ∆t;

23 end

24 end

Result: (X̂(t))t≤T

The convergence of the combined method follows from the convergence of the Euler-
Maruyama scheme, which also allows for random but bounded time steps as the ones
we have, and the convergence of the stochastic simulation algorithm. The weak and
strong order of convergence is limited by the convergence order of Euler-Maruyama.
The algorithm can easily be adapted to utilizing the earlier mentioned adaptation of
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Euler-Maruyama proposed by Leimkuhler and Matthews [54] by drawing an additional
random variable when initializing the system and adapting the state update step accord-
ingly.

For the time discretization approach we adapt the Euler-Maruyama scheme with the
additional draw of a Poisson distributed random variable ρ according to the jump inten-
sity and the random variables Zk to realize the jump event. This method is sometimes
also called extended Euler-Maruyama scheme [60].

Algorithm 4: Time discretization approach for simulation of jump diffusion
processes

1 initialize time t = 0, Z0 = 0 and state X̂(0) = X(0);
2 choose a time step ∆t and time horizon T ;
3 while t < T do
4 # compute the jump intensity rate;

5 set Λ := λ
(
X̂(t), t

)
;

6 # state update;
7 draw ξ ∼ N (0, 1);
8 draw ρ ∼ Pois(Λ∆t);
9 if ρ > 0 then

10 for k = 1 : ρ do

11 draw Zk according to the Markov kernel Q
(
X̂(t) +

∑k−1
i=0 Zi, t

)
;

12 end

13 end

14 X̂ (t+ ∆t) = X̂(t) + b
(
X̂(t), t

)
∆t+ σ

(
X̂(t), t

)√
∆tξ +

∑ρ
k=0 Zk;

15 # time update;
16 t = t+ ∆t;

17 end

Result: (X̂(t))t≤T

Again, the event-based simulation approach is more accurate than the time discretiza-
tion approach, but it requires in the case of a high jump intensity more computational
effort.

In general, the consideration of higher order methods for simulating the diffusion process
between jump events with a higher accuracy has the same drawbacks as in the case of
pure diffusion processes. Nevertheless, for the time discretization approach also higher
order methods for jump processes are used, especially in mathematical finance [61, 62].
Utilizing higher order methods in the event-based approach could be a topic for future
research.
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Simulation of ABMs

Now we will apply the two simulation approaches for jump diffusion processes to our
agent-based model formulation from Section 1.2.2. We will compare the accuracy of
both approaches for a simple numerical example and see that indeed the event-based
approach is more accurate in this case.

We consider a system of na agents that take values in the state space Y := X × S
with X encoding all agents’ positions and S encoding the status of all agents in the sys-
tem state Y = (X,S). For simplicity we assume that the process for the agent mobility
can be written down as an SDE of the form

dX(t) = −∇V (Y (t), t)dt+ σ(Y (t), t)dB(t)

but of course also more general processes can be realized with the algorithms that have
been presented so far. For the adoption process we assume a finite number of Jna state

change vectors v
(α)
j with corresponding adoption rate functions f

(α)
j which allows us an

explicit construction of the Markov kernel Q at the time of a jump event. The index j
indicates the event type while the index α denoted the agent ID.

The movements of the agents can then be simulated via the Euler-Maruyama scheme,
and in every time step without jump events the positions of the agents are updated
according to

X(t+ ∆t) = X(t)−∇V (Y (t), t)∆t+ σ(Y (t), t)
√

∆tξ, (1.25)

where ξ is drawn from a standard normal distribution in Rdna with d denoting the
dimension of X. For the Euler-Maruyama scheme to be consistent, the time step ∆t
needs to be chosen sufficiently small. As the jump intensity of the adoption process
depends in general on the positions, also the adoption rate functions need to be evaluated
again after the update of the position vector. We now provide the pseudo code for the
event-based simulation algorithm that is illustrated in Figure 1.15 and afterwards the
pseudo code of a tau-leaping method for ABMs.
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Event-Based Approach for ABMs

Algorithm 5: Event-based simulation algorithm for ABMs

1 initialize time t = 0 and system state Y (0) = (X(0),S(0)) for na agents;
2 choose a time step ∆t and time horizon T ;
3 draw τ ′ ∼ Exp(1) # exponentially distributed with rate 1;
4 while t < T do
5 # calculate rates for adoption events
6 for j = 1 . . . J and α = 1 . . . na compute the adaption rate function

f
(α)
j (Y (t), t);

7 calculate total adoption rate Λ(t) =
∑J

j=1

∑na
α=1 f

(α)
j (Y (t), t);

8 if Λ(t) ∆t > α then
9 # choose adoption event

10 define Markov kernel Q with Q(v
(α)
j ) :=

f
(α)
j (Y (t),t)

Λ ;

11 draw a state change vector v
(α)
j according to Q;

12 # status update

13 S
(
t+ τ ′

Λ

)
= S(t) + v

(α)
j ;

14 # position update
15 draw ξ ∼ N (0, 1);

16 X
(
t+ τ ′

Λ

)
= X(t)−∇V (Y (t), t) τ

′

Λ + σ (Y (t), t)
√

τ ′

Λ ξ;

17 # time update

18 t = t+ τ ′

Λ(t) ;

19 draw new τ ′ ∼ Exp(1);

20 else
21 # position update
22 draw ξ ∼ N (0, 1)na ;

23 X (t+ ∆t) = X(t)−∇V (Y (t), t) ∆t+ σ (Y (t), t)
√

∆tξ;
24 # time update
25 t = t+ ∆t;
26 τ ′ = τ ′ − Λ ∆t;

27 end

28 end
Result: (Y (t))t≤T

In the actual implementation there is no extra step to define a separate object for the
Markov kernel determining the jump events as it is already implicitly defined through
the calculation of the jump intensity rates which are stored in a vector. For the pseudo
code however I think that it is more clear to write it down in this way. The same
comment will apply to all future algorithm steps in which Markov kernels are explicitly
calculated.
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Figure 1.15: Illustration of Algorithm 5. The updates of the system state of an ABM
are illustrated by a time-dependent interaction network that is implicitly
defined through the second order adoptions in many applications. The
colors of nodes represent the status and the edge indicates that two agents
are closer than an interaction radius. Between two jump events at times t∗

and t∗∗ the positions of the agents are updated through Euler-Maruyama
steps of size ∆t and the time-dependent network changes accordingly.

For the realization of the jump event at time t∗∗ we take a reduced step size such that
the waiting time τ that is the unique solution of

τ ′ = argminτ


∫ t∗+τ

t∗

J∑
j=1

na∑
α=1

f
(α)
j (Y (t), t)dt


with τ ′ ∼ Exp(1) being correctly realized. The jump event is illustrated by a status
transition of the node from yellow to red. After the jump event at t∗∗ we proceed with
steps of size ∆t until the next jump event is realized. 42

58



Time Discretization Approach for ABMs

Pseudo code for a tau-leaping approach to simulating ABMs:

Algorithm 6: Time discretization approach for simulation of ABMs

1 initialize time t = 0 and system state Y (0) = (X(0),S(0)) for na agents;
2 choose a time step ∆t and time horizon T ;
3 while t < T do
4 # calculate rates for adoption events;
5 for k = 1 . . . J and α = 1 . . . na compute the adoption rate function

f
(α)
k (Y (t), t);

6 calculate total adoption rate Λ(t) =
∑J

j=1

∑na
α=1 f

(α)
j (Y (t), t);

7 define Markov kernel Q with Q(v
(α)
j ) :=

f
(α)
j (Y (t),t)

Λ ;

8 # draw random variables;
9 draw ξ ∼ N (0, 1)na ;

10 draw ρ ∼ Pois(Λ∆t);
11 if ρ > 0 then
12 for k = 1 : ρ do
13 draw Zk according to an adjusted Markov kernel Qk;
14 end

15 end
16 # status update;
17 S(t+ ∆t) = S(t) +

∑ρ
k=0 Zk;

18 #position update;

19 X (t+ ∆t) = X(t)−∇V (Y (t), t) ∆t+ σ (Y (t), t)
√

∆tξ;
20 # time update;
21 t = t+ ∆t;

22 end
Result: (Y (t))t≤T

Depending on the adoption rate functions, in some cases it is reasonable to draw binomial
random variables instead of Poisson random variables, e.g., to avoid negative populations
in models for chemical reaction kinetics [57]. For a generally low jump intensity with a
total adoption rate close to zero and/or a high population drawing Binomials is a good
approximation to drawing Poisson random variables and can be more efficient [63]. If we
assume that within a time step ∆t an agent can only perform one action, then we can
infer a probability p for the distribution B(na, p) such that E(B(na, p)) = pna = Λ∆t =
E(Pois(Λ∆t)). This identity can also be used to translate ABMs that are defined in a
more descriptive way with agents performing rejection sampling for their interactions in
each time step to the corresponding formulation as a Poisson process. An action of a
single agent that happens with probability p within a time step ∆t is then related to a
Poisson process with rate λ = p

∆t .
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Numerical Example: Single-Well Suitability Landscape

For illustration and comparison of the two simulation approaches, we consider a simpler
version of our guiding Example 6 that was also presented in [15] by me and coauthors.
We define a system with n = 20 agents moving in a single-well potential landscape on
X = R2 given by

V (x, y) = 10(x2 + y2)

with the status space being the set S = {0, 1} with only second order adoptions for the
transition from 0→ 1. The potential landscape has one local (and also global) minimum
at (0, 0), which for the agents corresponds to the most attractive point of the landscape.
The diffusion process will then result in the agents’ positions to be concentrated around
the minimum. In order to study the spreading of status 1 among the agents, we initiate
the status vector S of the agent system with s1 = 1 and sα = 0 for all other agents
α 6= 1. With rate γ = 10 the innovation spreads to other agents along the edges of the
time-evolving contact network that arises from the evaluation of the distance indicator
function dr in the definition of the second order adoptions.

Next, we compare the two joint simulation approaches, i.e., the event-based simula-
tion algorithm and the time discretization approach, which was realized for this example
by a synchronous updating scheme [15], where in each time step and for each possible
status transition a random number was drawn to determine whether the event is realized
or not. Because of the very small time step and low number of agents, the total intensity
rate of this system is so low that a rerun of this example with the tau-leaping method did
not perform well, which is why we stick with the synchronous updating scheme in this
case even though in general it is not recommended because of the additional effort. The
results were averaged over a Monte Carlo sample of 2000 realizations of each parameter
choice of ∆t. In this example we choose ∆t = 0.002 as the largest time step size in order
to obtain an accurate approximation of the agents’ movements and the resulting numer-
ical integral of the adoption rate functions. Given the time-evolving network based on
the distance indicator function, for any ∆t the event-based simulation approach provides
statistically exact event times, whereas the synchronous updating scheme is a good ap-
proximation of the spreading process only for small ∆t [64]. In order to compare the
two combined approaches, we use the time discretization scheme with ∆t = 0.0001 as a
benchmark. From the plot in Figure 1.16, one can see that the event-based simulation
with ∆t = 0.002 indeed agrees with our benchmark. The synchronous updating for
larger time steps ∆t = 0.002 deviates from the benchmark and on average the spreading
is slower than the event-based approach as we have to draw multiple additional random
numbers in each time step.

This example highlights again that a time discretization approach should only be con-
sidered for an agent system with a generally high jump intensity, as we have to choose
a sufficiently small step size for realizing the diffusion part of the process but on the
other hand tau-leaping does not perform well when we have an expected number of
jump events within a time step is close to 0. So, unless the effective step size of the
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event-based algorithm drops significantly lower than the default step size ∆t, the event-
based method is both more efficient and more accurate than the alternative. In this

Figure 1.16: Illustration of the single-well example [15]. The dashed lines are showing the
average adoption process within the well from a sample of 2000 simulations
with the synchronous updating scheme for two different step sizes ∆t. The
result of the event-based simulation algorithm coincides with the benchmark
of the synchronous updating scheme and has a greater accuracy than the
synchronous updating scheme of the same step size.

example case, we have confirmed that the event-based approach is more accurate than
the synchronous updating scheme for the same step-size, but also in other cases this
holds [58, 64] due to the immediate response of the simulation algorithm to adaption
events in the event-based approach. Besides the accuracy of the event-based scheme,
we also have to consider computational costs. In general, the simulation time for the
discretization of the diffusion process is the same for both simulation approaches as long
as the same time step sizes are chosen. However, depending on the overall jump inten-
sity for the system, each of the two approaches can be computationally advantageous.
Especially in the case of jump events only happening at a fraction of the time steps, e.g.,
in the case of a spreading process with sparsely connected agents, the computational
gain of the event-based algorithm is high. On the other hand, if jump events happen so
frequently that the adaptive step size in the event-based approach leads to a highly in-
creased number of time steps to simulate the same amount of time, then the synchronous
updating scheme is significantly faster. In the application to models based on real-world
data in Chapter 3 we will actually encounter both cases.
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In the case of a large-scale agent system, the computational effort of both simulation
approaches will be very high as the computational cost for evaluating the adoption rate
functions usually scales non-linearly with the number of agents, e.g., because of neigh-
borhood computations. So, a sufficiently large Monte Carlo sample of realizations will
be at least very costly if not infeasible to calculate. Therefore, we discuss in the next
chapter how to derive a reduced model that captures the essential properties of the ABM
but takes significantly less effort to simulate.
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2 Coarse Graining of Agent-Based Models

In the last chapter, we saw that Markov processes, although each of them has its own
distinct characteristics, are fundamentally connected by their defining property of being
memoryless. In many limiting cases one can be approximated through the other, e.g., by
use of the central limit theorem or approximations through the expectation. In the mod-
eling of chemical reaction kinetics a formulation as a jump process through the chemical
master equation [65] can in limiting cases be approximated by a diffusion process given
by the chemical Langevin equation [31] or even a purely deterministic process [66]. There
are also hybrid approaches where the limiting procedure is applied to only a part of the
dynamics and the system can then be modeled by a PDMP [30]. On the other hand, for
metastable Markov processes that exhibit exponential exit time characteristics, we can
derive an approximation by a discrete Markov chain through a suitable projection of the
state space [13]. Each of the approximation steps leads to a reduced model, which loses
some details of the original model in the approximation process, but in return requires
significantly less simulation effort. The aim is of course to preserve the fundamental
properties of the model that we are interested in for addressing the research question at
hand. If we approximate e.g., an agent-based model for infection spreading by a com-
partmental ODE model then the spatial resolution is completely lost and some questions
can no longer be answered by the coarser model.

In this chapter, we want to discuss a mesoscale approximation approach for agent-based
models, so that we simplify the microscale dynamics but still keep some level of spatial
resolution. We will utilize some of the aforementioned techniques for model reduction,
namely the Markov state model (MSM) framework for projected dynamics on a reduced
state space and the limiting approaches for jump processes with high intensity. We will
in the process however lose the defining property of the agent-based model, as through
the spatial coarse-graining the individual agents will no longer be distinguishable and in
consequence the reduced model will be formulated as a metapopulation model [67]. We
will consider two types of metapopulation models, one that has the dynamics of a pure
jump process and as a second type, the piecewise-deterministic model formulation that is
justified by population limit results [68]. The main argument for making this distinction
is when a timescale separation is possible, such that some types of jump events have a
significantly higher intensity rate than other types, so that already for an intermediate
population we can apply the limit for the fast processes. The hierarchy of the different
models and the connections through the approximation steps are illustrated in Figure
2.1.
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Figure 2.1: Illustration of the hierarchy of the modeling approaches considered in this
chapter and the related steps of the coarse-graining procedure. Dots rep-
resent agents that have a status (blue or red), mesoscale boxes represent
subpopulations. Straight lines between dots indicate connections between
agents that allow interaction. Grey lines on the microscale show movement
trajectories of the agents, arrows and lines between boxes on the mesoscale
represent possible transitions between subpopulations. For the piecewise-
deterministic metapopulation model, the population state is depicted by the
proportion of blue and red.
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It is of course natural to also consider a hybrid model that utilizes a diffusion approxima-
tion [31] of the fast jumps instead of a deterministic one and there might be applications
where we also want to preserve some kind of stochasticity in the fast dynamics. The re-
sulting model would then be a jump diffusion metapopulation model with the advantage
that also for the fast dynamics some stochasticity is maintained but the disadvantage
that it takes significantly more effort to simulate compared to the PDMP counterpart.
However, in this work we will not discuss this in detail and leave it as a topic for future
research.

We will now first recall the Markov state model framework for projected transfer opera-
tors presented in [13,69], as some readers may not be familiar with it, and then discuss
in detail our model reduction approach for ABMs that can be described as Markov pro-
cesses. We will also illustrate the approach on the guiding example of the first chapter.
The results on the stochastic and piecewise-deterministic metapopulation models were
presented by me and co-authors in [16] and I will present them in a similar way in this
work, including some literal passages from the publication.
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2.1 Markov State Model Theory

A good motivation for the concept of Markov state models is the situation of the double-
well potential example in Section 1.1.2. In Figure 1.4 we see that the trajectory concen-
trates around the two local minima of the double-well potential and takes values outside
the two wells only during the rare transitions between the neighborhoods of the local
minima. The exit time from one of the two wells can be approximated by an exponential
waiting time, with the approximation quality depending on the diffusion coefficient and
the steepness of the well. If we fix the diffusion coefficient, then the deeper the well
is the longer the process will remain on average close to the minimum before exiting
the neighborhood and the approximation of the exit time with an exponential random
variable will be better. This property is called metastability and has been extensively
studied analytically as well as computationally [13,70]. Metastable systems can be char-
acterized by multiscale dynamics, i.e., we can distinguish between dynamics on fast and
slow time scales [13]. In the double-well example the diffusion within the neighborhood
of an attractor would be considered a fast process compared to the much slower transi-
tion process between the wells. If we are only interested in which of the two wells the
process is located at the time, but not in the exact position within one of the wells,
then we can consider a simpler model that we can derive through a projection of the
process according to a partition of the state space into two sets that each contain one
of the two wells. As we have asymptotically exponential exit time characteristics the
slow transition process between the two wells of the system can be approximated by a
pure jump process that switches between two discrete states that represent the sets of
the partition. The characteristics of the fast diffusion process within a well is, however,
no longer present in the reduced model. The larger the time scale difference of these
processes is, the lower the approximation error will be.

The Markov state model framework describes an approach how to derive such a re-
duced model (X̂(t))t∈T from the original metastable Markov process (X(t))t∈T. The
idea is to define a Galerkin projection based on a division of the state space and to
apply it on a transfer operator P t (in the following we will in general omit the time t
to make the notation more readable) or the generator L of (X(t))t∈T. The resulting
projected dynamics defined by the projected operators QPQ or QLQ can be used to
derive the jump intensity and transition rates for the jump process of the Markov state
model on the projected state space. We will define in the following all objects neces-
sary for this approach and illustrate it on the case of a full partition of the state space.
Afterwards we will also discuss the core set approach that works with a fuzzy partition
that is based on the isocommittor functions for a suitable choice of metastable sets, e.g.,
the neighborhood of an attractor in the double-well example.

2.1.1 Galerkin Projection Approach

we will define the basis function for the projection based on a suitable division of the
state space X. We denote with χA the characteristic function of a set A.

67



Definition 32. A family of measurable functions {Φ1, ...,Φm} ⊂ L2(µ) is called a par-
tition of unity if it holds that:

1. All functions Φk are non-negative and linear independent.

2. For the sum over all Φk it holds that
m∑
k=1

Φk = χX almost everywhere.

A simple example for a partition of unity is the case of a full partition of the state
space X.

Example 8. Let {Ak}k=1,...,m be a full partition of the state space X, i.e., Ai ∩Aj = ∅
for all i 6= j ≤ n and

⋃
iAi = X. Then, the characteristic functions {χAk}k=1,...,m are a

partition of unity, since they are by definition non-negative, linear independent, because
the sets Ak are disjoint, and the sum of the characteristic functions is the characteristic
function χX (the one function on X).

For a given set of basis functions that form a partition of unity for the state space X
of a Markov process (X(t))t∈T with invariant measure µ we can define the Galerkin
projection that maps operators that act on the space L2(µ) to operators acting on the
function space that is defined on the subspace D spanned by the basis functions.

Definition 33. Let {Φ1, ...,Φm} be a partition of unity, D := span{Φ1, ...,Φm} and W
an n× n-matrix with entries W (k, j) = 〈Φk,Φj〉. The matrix W is invertible, since the
Φk are linear independent. Then, the mapping Q : L2(µ)→ D with

Qν =
m∑

k,j=1

W−1(k, j)〈Φk, ν〉Φj

is called Galerkin projection on the subspace D.

In the case of a full partition we can write down the Galerkin projection in a slightly
simpler way as the scalar product of two different basis functions is zero.

Example 9. Let {Ak}k=1,...,m be a full partition of the state space X and {Φ1, ...,Φm}
the respective partition of unity with Φk = χAk given by the characteristic functions of
the partition sets. Then, the matrix W for the Galerkin projection to the associated
subspace D is given by a diagonal matrix with the entries

W (k, k) = 〈Φk,Φk〉µ =

∫
Ak

1dµ(x) = µ(Ak)

and thus Q can be written as

Qν =

m∑
k=1

1

µ(Ak)
〈χAk , ν〉µχAk
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Projection of transfer operators

Now we apply the Galerkin projection Q to the operators that define the dynamics of a
Markov process (X(t))t∈T to derive projected versions of these operators that define a
Markov process on the reduced state space.

Definition 34. Let P be the transfer operator of a Markov process, Φ1, ...,Φn a partition
of unity and Q the Galerkin-projection onto the associated subspace D. The operator
QPQ : L2(µ)→ D is called the projected transfer operator onto the subspace D.

The projected transfer operator can be written down in terms of a matrix representa-
tion [13].

Proposition 2. [13] Let P be a transfer operator of a Markov process (X(t))t∈T,
Φ1, ...,Φn a partition of unity and QPQ the projected transfer operator on the associated
subspace. The projected transfer operator QPQ has a matrix representation

PQ = PM−1,

with M being an n× n-matrix with entries

M(k, j) =
W (k, j)

〈Φk, χX〉µ
=
〈Φk,Φj〉µ
〈Φk,ΦX〉µ

and P a n× n-matrix with entries

P(k, j) =
〈Φj , PΦk〉µ
〈Φk, χX〉µ

.

Proof. Let {Ψ1, ...,Ψn} be the basis of the subspace D with

Ψk =
Φk

〈Φk, χX〉µ
.

Then, every function u ∈ D can be written as a linear combination of the basis functions

u =
n∑
k=1

ckΨk

and we can identify u with the vector of coefficients c = (ck)k=1,...,n. A matrix represen-
tation PQ ∈ Rn×n of QPQ needs to map the vector of coefficients c, such that

n∑
k=1

(cPQ)kΨk = QPQu
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holds for all u ∈ D. If γ is the vector of coefficients for QPQu ∈ D then γ = cPQ. We
can write

QPQu =
n∑
k=1

ckQPΨk

=
n∑

k,l,j=1

ck(W
−1)(l, j)〈Φj , PΨk〉µΦl

=

n∑
k,l,j=1

ck(W
−1)(l, j)〈Φj , PΨk〉µ〈Φl, χX〉µΨl

=
n∑
l=1

γlΨl.

Then, we have

γl =

n∑
k,j=1

ck(W
−1)(l, j)〈Φj , PΨk〉µ〈Φl, χX〉µ

=
n∑

k,j=1

ck(W
−1)(l, j)

〈Φj , PΦk〉µ
〈Φk, χX〉µ

〈Φl, χX〉µ,

and therefore it holds that

PQ(k, l) =
n∑
j=1

(W−1)(l, j)
〈Φj , PΦk〉µ
〈Φk, χX〉µ

〈Φl, χX〉µ,

which is exactly PM−1(k, l).

Since we did not explicitly use any properties of the transfer operator itself the same
calculation can also be done for the generator L of the process or any other operator
that acts on the space L2(µ(X)). For the case of a full partition the projected transfer
operator can be written down as follows.

Example 10. Let P be a transfer operator of a Markov process (X(t))t∈T and Q be
the Galerkin projection for a full partition {Ak}k=1,...,m of the state space X. Then, the
projected transfer operator QPQ has the matrix representation

PQ(k, l) =
n∑
j=1

(W−1)(l, j)
〈Φj , PΦk〉µ
〈Φk, χX〉µ

〈Φl, χX〉µ

=
1

µ(Al)

〈χAl , PχAk〉µ
〈χAk , χX〉µ

〈χAl , χX〉µ

=
〈χAl , PχAk〉µ
〈χAk , χX〉µ

.
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The projected transfer operator QPQ and projected generator QLQ inherit many prop-
erties of the original transfer operator such as the existence of a dominant eigenvalue 1
with the corresponding stationary distribution being the projected invariant density of
the original process [13]. In the full partition case the matrix representation PQ of the
projected operator QPQ is a stochastic matrix and induces a discrete time Markov chain
between the partition sets, while the matrix representation LQ of the operator QLQ is
a rate matrix inducing a continuous-time Markov jump process. We call the process
(X̂(t))t∈T that is defined by a projected transfer operator a Markov state model. This is,
however, only an approximation of the original projected process (QX(t))t∈T, which in
general is no longer Markovian. In general the Galerkin projection and the propagation of
the process do not commute, i.e., QP kQ 6= (QPQ)k and Q exp(tL)Q 6= exp(tQLQ). The
propagation error decays exponentially with the decay rate for the upper bound given
by the largest eigenvalue λ1 that is smaller than the dominant eigenvalue λ0 = 1 [69]. It
holds that

E(k) := ‖QP kQ− (QPQ)k‖
≤ ‖QP kQ−Π0‖+ ‖Π0 − (QPQ)k‖
≤ ‖Q(P k −Π0)Q‖+ ‖Π0 − (QPQ)k‖ ≤ 2λk1

with Π0 denoting the orthogonal projection to the subspace spanned by the invariant
measure µ, which is the dominant eigenfunction. Since λ1 is usually an eigenvalue that
is close to one the error decays quite slowly. The constant of the upper bound can be
improved by choosing a sufficiently large lag time and a proper discretization of the state
space through the basis functions of the Galerkin projection [69]. One simple strategy for
discretizing the state space would be a full partition through a fine grid. This however
becomes infeasible in high dimensions and also in low dimensions leads to Markov state
models with a high number of states that can be further aggregated. Therefore, we are
interested in finding a good set of basis functions for the Galerkin projection Q that
reduces the approximation error of the Markov state model without relying on a large
number of partition sets.

2.1.2 Metastability

We already mentioned the concept of metastability without giving a formal definition
for the meaning of the term. An intuitive characterization is given through the notion
of almost invariant sets.

Definition 35. Let (X(t))t∈T be a Markov process. A set A ⊂ X is called almost
invariant with respect to time scale t ∈ T if

P(Xt ∈ A|X0 ∈ A) = p(t, A,A) ≈ 1.

The relation p(t, A,A) ≈ 1 can be interpreted as there exists an ε > 0 such that
p(t, A,A) ≥ 1− ε.
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In the case of multiscale dynamics a set will be considered metastable if it is almost
invariant for the time scales t related to the fast dynamics. So, a process will stay with a
high probability within a metastable set and the exit time from the set is asymptotically
exponential with a small rate parameter [13]. For the full partition Galerkin projection
it is useful to consider a partition of the state space into metastable sets.

Definition 36. A full partition A1, ..., Am of a state space X is called metastable if every
set of the partition is a metastable set. This means that

m∑
k=1

P(Xt ∈ Ak|X0 ∈ Ak) ≈ m

holds for small time scales t.

The existence of metastable sets and slow processes is strongly connected to the spectrum
of the transfer operator, i.e., the existence of eigenvalues that are close to 1 [13]. The
next result from [69] provides a relation between the number of metastable sets of a
system and the number of dominant eigenvalues close to 1.

Proposition 3. [13] Let (X(t))t∈T be a reversible Markov process with transfer operator
P fulfilling the following properties:

1. The spectral radius of the essential spectrum of P is smaller than 1.

2. For the eigenvalue λ = 1 it holds that from η ∈ σ(P ) and |η| = 1 it follows that
η = 1.

Then, P is selfadjoint and the spectrum of P is of the form:

σ(P ) ⊂ [a, b] ∪ {λm} ∪ ... ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λm ≤ ... ≤ 1. Let ν1, ..., νm be the respective eigenvectors, normed
such that ‖νk‖ = 1 for all k = 1, ...,m. Let A1, ..., Am be a full partition of the state space
X, χA1 , ..., χAm the respective characteritic functions and Q the orthogonal projection
onto the associated subspace. Then, the sum of the probabilities p(Ak, Ak) is bounded
from above through

p(A1, A1) + ...+ p(Am, Am) ≤ 1 + λ2 + ...+ λm

and bounded from below through

1 + κ2λ2 + ...+ κm + cλm ≤ p(A1, A1) + ...+ p(Am, Am),

where κj = ‖Qνj‖2L2(µ) und c = a(1− κ2) · · · (1− κm).

As we have defined a set to be metastable if it almost invariant, Proposition 3 implies that
a partition with more sets than dominant eigenvalues has to include at least one set that
is not almost invariant, i.e., the probability to stay within the set is not approximately 1.
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The lower bound on the other hand implies that a full partition projection that minimizes
the approximation error of the projected eigenfunctions is a metastable partition. While
this result answers the question how many metastable sets there are it still remains
unclear how to identify them. One approach is through utilizing the eigenfunctions
themselves as there is a relation between the sign structure and the metastable sets [71].
Also, the eigenfunctions are almost constant on the metstable sets, so a partition of unity
that is based on a metastable partition spans a subspace in which the eigenfunctions can
be approximated well [13]. There are however also approaches based on hitting times as
the function for the mean first passage time of a properly chosen subset of the state space
exhibits also the characteristic of being almost constant on metastable sets [72]. This
approach is especially useful in cases where the eigenfunctions can not be calculated,
e.g., when the dynamics of the original process (X(t))t∈T are not reversible. As the
probability mass of the invariant measure also concentrates on the metastable sets, the
application of clustering methods to trajectory data is a widely used strategy as well [73].

2.1.3 Core Set Approach

Once we have identified the metastable sets, it remains to estimate the parameters for
the Markov state model. While for low-dimensional systems it is also possible to directly
solve the equation system for the eigenfunctions numerically in general a computational
approach is more feasible.

The maximum likelihood estimator for the transition rates between metastable sets Ai
and Aj of a metastable full partition is given by

κij :=
NT
ij

RTi

with NT
ij counting the transitions from Ai to Aj within the time interval [0, T ] and RTi

being the total time the process spent within the set Ai until time T . For increasing
trajectory length T →∞ the estimator κij converges to the true value of the transition
rate λij of the projected process. Of course we are limited by the finiteness of the
trajectory data that we can generate, but besides that there is also another source of
error that is related to how we define what we consider a transition between metastable
sets.

Recrossing problem

As already was mentioned before through the projection of the process we lose in general
the Markov property. This can be illustrated by the example of the one-dimensional
double-well potential. Let us consider a partition of the state space into two sets A1 =
(−∞, 0], A2 = (0,∞) with the barrier separating the sets being the local maximum of
the potential. When a transition from A1 to A2 happens then the process will still be
close to the local maximum directly after the transition and have a significantly higher
probability to recross the barrier between the sets compared to the average probability
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for an arbitrary position within A2. In this regard, the projected process has a memory
effect and is no longer Markovian, as it does matter whether the set A2 was just entered
or the process has remained there already for a longer time. If we count every crossing of
the barrier between the two sets as a transition, then we will overestimate the transition
rate with the maximum likelihood estimator. One solution that reduces this error is
to introduce a lag time τ > ∆t to define that a transition from Ai to Aj after lag
time τ occurs when X(t) ∈ A1 and X(t + τ) ∈ A2. This leads to only a part of the
trajectory data being used and some of the recrossings during the transition between
the two metastable sets being omitted. For a sufficiently large lag time τ this procedure
reduces the error of the estimator significantly [13].

Milestoning process

An alternative approach to the problem of recrossings utilizes a discretization approach
that is not based on a full partition of the state space. In the core set approach for each
set Ak of the metastable full partition a core set Ck is chosen that focuses on the local
neighborhood of an attractor and does not include parts of the transition region. The
core sets can be chosen to be metastable sets themselves but because of the fast mixing
within the metastable sets also a proper subset can be sufficient for the purpose. We
define the milestoning process (X̃(t))t∈T for the estimation of the transition rates of the
original process (X(t))t∈T between the core sets utilizing memory about the past of the
trajectory [74]. The process (X̃(t))t∈T takes as value the index of the last core set that
was visited by (X(t))t∈T, i.e

X̃(t) = i⇔Xσ(t) ∈ Ci

for the stopping time

σ(t) := sup
s≤t

{
s : X(s) ∈

m⋃
k=1

Ck

}
which tracks the last time that the process (X(t))t∈T was within one of the m core sets.
As the definition of the milestoning process (X̃(t))t∈T involves a stopping time with
memory, it is clear that is not Markovian. An alternative construction of the milestoning
process would be to introduce an extended state space Y := X× {1, ...,m} and define a
process (Y (t))t∈T where the first component is given by the original process (X(t))t∈T
and the second component is updated to a new index whenever (X(t))t∈T enters a core
set with a different index than the current value of the second component. This combined
process would be Markovian as all information that would lead to a dependence on the
trajectory is incorporated in the present state and the marginal process of the second
component would coincide with the milestoning process (X̃(t))t∈T. The projection onto
the marginal process of the second component would however again lead to a loss of
the Markov property. The projection approach using a full partition has the recrossing
problem where we know that right after entering a new partition set the probability for
leaving is higher than average. We have a similar situation for the milestoning process
(X̃(t))t∈T. At the time when a new value is taken we know that the original process is
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within one of the core sets and not near the transition region and that the probability
for entering another core set is lower than average [13]. However, for the estimation of
the transition rates between the core sets this memory effect for the milestoning process
is negligible.

Core set MSM

Thus, we can consider a set of m core sets C1, ..., Cm instead of a metastable full par-
tition A1, ..., Am for the construction of an MSM (X̂(t))t∈T and count the transitions
between the core sets for the maximum likelihood estimator κij and define a jump pro-
cess according to the calculated transition rates. This procedure is also associated with
the application of a Galerkin projection, but with a set of committor functions as basis
for the projection operator. The basis functions associated with the core set MSM are
the isocommittor functions q1, ..., qm defined by

qk := qCk,Ck . (2.1)

The committor function for entering Ck before the set Ck which is defined as the union
of all other core sets

Ck :=
m⋃
l=1
l 6=k

Cl.

The projection error of the core set MSM associated with the isocommittor projection
is smaller than that of a full partition for the right choice of core sets [69]. The jump
process defined by the core set MSM (X̂(t))t∈T has then the same transition rates as
the milestoning process (X̃(t))t∈T [75].
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2.2 Stochastic Metapopulation Model

As we motivated the Markov state model construction with the diffusion in a double-well
potential, the metastability of the guiding Example 6 shall be our motivation for this
section. The diffusion process from Example 6 exhibits metastable behavior: An agent
remains for a comparatively long period of time within one well of the potential U before
it eventually jumps to the other well. The metastability of the mobility dynamics also
induces a metastability in the adoption dynamics. Until the critical transition event
happens the spreading of status 2 happens only in one of the two wells. The Markov
state modeling approach lets us derive a reduced model for the mobility of the process,
but also the adoption dynamics has to be adapted to the reduced state space such that
the MSM can be related to the projected ABM. The resulting model is a metapopula-
tion model [76], where the total population is divided into subpopulations (which in our
guiding example represent the metastable sets) with rare spatial transitions between the
subpopulations and internal adoption dynamics within the subpopulations. The diffu-
sive characteristics of the mobility process gets reduced to that of a pure jump process
through the projection and thus the stochastic metapopulation model (SMM) is a pure
jump process.

In the microscopic dynamics of ABM, not all agents within a metastable set can in-
teract with each other. The pairwise second order adoptions require that the distance in
physical space between two agents is sufficiently small, but in the reduced state space,
where we cannot distinguish between different positions within a metastable set, all in-
dividuals within a subpopulation are connected. The mesoscopic rate constants for the
adoption rate functions of the coarse-grained model must then be adjusted relative to the
microscale rate constants so that the adoption dynamics of the metapopulation model
reflect the adoption dynamics of the projected ABM.

In this section, we will first provide a formal definition of the SMM and then estab-
lish a relation to the projected ABM by applying the MSM framework. By applying
a Galerkin projection with an appropriate set of basis functions, we can establish an
explicit relation between the microscopic and mesoscopic rate constants of the adoption
rate functions. Overall, this section is structured similarly to [16], and the notation and
proofs are mostly done in the same way.
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2.2.1 SMM Definition

We consider a population with na members (agents) that is divided into m subpopu-
lations and the finite status space S = {1, ..., ns}. The system state of the stochastic

metapopulation model at time t is denoted by an ns×mmatrix N(t) = (N
(k)
i (t))i=1,...,ns,k=1,...,m,

where N
(k)
i (t) refers to the number of members (agents) of the subpopulation k in status

i at time t. The set of all possible system states for a system with na agents, is denoted
by Mna ,

Mna :=

{
N = (N

(k)
i )i=1,...,ns,k=1,...,m ∈ Nns,m0 :

ns∑
i=1

m∑
k=1

N
(k)
i = na

}
. (2.2)

We distinguish between two types of jump events: spatial transitions between the sub-
populations and status adoptions within a subpopulation. A member of status i in
subpopulation k transitioning to subpopulation l at time t is associated with the state

change vector −E(k)
i +E

(l)
i , where E

(k)
i is an ns×m matrix with all entries zero except

for the entry at index (k, i) being one. Similarly, an adoption event from status i to
status j in subpopulation k leads to jump event associated with the state change vector

−E(k)
i + E

(k)
j .

Let P (N, t) := P(N(t) = N) denote the probability to find the system in state N ∈Mna

at time t. Then, the evolution of the metapopulation model is given by the master
equation

d

dt
P (N, t) = LP (N, t) + GP (N, t) (2.3)

for operators L,G given by

LP (M) :=
∑

N∈Mna

L̂NM · P (N), GP (M) :=
∑

N∈Mna

ĜNM · P (N), (2.4)

where L is a rate matrix, i.e., L̂NM for M 6= N is the rate to go from N to M by a
spatial transition event between the subpopulations and L̂NN := −

∑
M L̂NM . Analo-

gously, G is a rate matrix for changes through adoption events, where the entries are

specified by adoption rate functions f̂
(k)
ij : Mna → [0,∞) for status changes from i to j

in subpopulation k. In the following we specify the shape of L̂ and Ĝ and show their
connection to the ABM operators L and G of Equation (1.12) by means of Galerkin
projection methods.
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2.2.2 Galerkin Projection Approach for ABMs

Let us assume that the mobility process of an ABM exhibits metastable dynamics and
that we can find a partition of the state space X into m metastable sets A1, ..., Am. We
then make use of the approach given in [16,77] to define the basis functions for a Galerkin
projection Q to construct a Markov state model with respect to the movements of the
agents. We apply the projection operator Q to the generator L+G defined in (1.12) and
derive a projected generator, see also [78]. In particular, we will study how this projection
affects the agents’ mobility process and the adoption rate functions, especially those for
first-order and second-order adoptions defined in Equations (1.6) and (1.7). For the
derivation of the analytical results, we will focus on the case of a full partition of the
state space as is described in Section 2.1.1.

Basis functions of the projection

For any N = (N
(k)
i ) ∈Mna we define the indicator ansatz functions

ΦN (X,S) :=

m∏
k=1

ns∏
i=1

φ
N

(k)
i

(X,S) (2.5)

with

φ
N

(k)
i

(X,S) := δ
N

(k)
i

(
na∑
α=1

χAk(xα)δi(sα)

)
, (2.6)

where δi denotes the Kronecker delta for status i and χAk the characteristic function of
set Ak. The function ΦN (X,S) has the value 1 whenever there are for each i, k exactly

N
(k)
i agents α with position xα ∈ Ak and status sα = i, otherwise it is zero. These

ansatz functions are by definition non-negative and associate each ABM system state
uniquely with a metapopulation system state N ∈Mna , i.e.,

∑
N∈Mna

ΦN (X,S) = 1 for
all (X,S) ∈ Y. Thus the functions ΦN form a partition of unity.

Next, we define the inner product of two functions f, g : Y→ R as

〈f, g〉 :=
1

(µ(X)ns)na

∑
S∈Sna

∫
Xna

f(X,S)g(X,S) dX, (2.7)

where µ denotes the Lebesgue measure on X. For the indicator ansatz functions ΦN

defined above we observe that 〈ΦM ,ΦN 〉 = 0 holds for M 6= N , while for M = N we
have 〈ΦM ,ΦN 〉 = 〈ΦN ,ΦN 〉 = 〈ΦN ,1〉, where 1 denotes the constant 1-function on Y.

Definition of the projection operator

Now, after defining the basis functions and the inner product for functions on the system
state space, we can define the full-partition projection Q : L2(Y) → D to the ansatz
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space D = span{ΦN , N ∈Mna} given by [13]

Qv =
∑

N∈Mna

〈ΦN , v〉
〈ΦN ,1〉

ΦN . (2.8)

Given any linear operator H : L2(Y)→ L2(Y), a Galerkin projection with Q yields the
projected operator QHQ : L2(Y) → D. The goal is now to find the matrix representa-
tions L̂ = (L̂NM )N,M∈Mna

and Ĝ = (ĜNM )N,M∈Mna
(see Equation (2.4)) of the projected

operators QLQ and QGQ for the operators L and G defined in (1.10) and (1.11), re-
spectively. The jump process of the stochastic metapopulation model that is defined
through the matrix representations is then the MSM approximation for the projected
ABM process.

The following corollaries from [16] will be needed to show our main results of this section.

Again, we use the notation eα for the α-th unit vector of Rna , while E
(k)
i denotes an

ns ×m matrix with all entries zero except the entry at index (k, i) which is one.

Corollary 1. [16] For any N ∈Mna and given i, j ∈ S, it holds that

ΦN (X,S + ieα − jeα) = Φ
N+E

(kα)
j −E(kα)

i

(X,S)

for each α ∈ {1, ..., na} with sα = j and N
(kα)
i > 0.

The condition N
(kα)
i > 0 in Corollary 1 is necessary to guarantee that N + E

(kα)
j −

E
(kα)
i ∈ Mnaholds, so that Φ

N+E
(kα)
j −E(kα)

i

is actually defined. In order to simplify

the notation in all the following calculations, we extend the definition of ΦN and set

ΦN (X,S) := 0 for N /∈ Mna . With this definition, Corollary 1 also works for N
(k)
i = 0

because both sides of the equation become zero.

Proof. Choose ` ∈ {1, ..., ns} and k ∈ {1, ...,m}. For i 6= j we consider

δj(sα)φ
N

(k)
`

(X,S + ieα − jeα)

(2.6)
= δj(sα) · δ

N
(k)
`

 na∑
β=1

χAk(xβ)

{
δ`(sβ) if β 6= α
δ`(i) if β = α


= δj(sα) · δ

N
(k)
`

({ ∑na
β=1

χAk(xβ)δ`(sβ) if xα 6∈ Ak∑na
β=1

χAk(xβ)δ`(sβ) + δ`(i)− δ`(j) if xα ∈ Ak

)
.

Thus, using definition (2.6), we get for k with xα /∈ Ak:

δj(sα)φ
N

(k)
`

(X,S + ieα − jeα) = δj(sα)φ
N

(k)
`

(X,S)

for any `. For k such that xα ∈ Ak, on the other hand, we distinguish between the
following cases. For ` 6= i and ` 6= j, it holds

δj(sα)φ
N

(k)
`

(X,S + ieα − jeα) = δj(sα)φ
N

(k)
`

(X,S),
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for ` = j, we calculate

δj(sα)φ
N

(k)
j

(X,S + ieα − jeα) = δj(sα)δ
N

(k)
j

 na∑
β=1

χAk(xβ)δj(sβ)− 1


= δj(sα)δ

N
(k)
j +1

 na∑
β=1

χAk(xβ)δj(sβ)


= δj(sα)φ

N
(k)
j +1

(X,S)

and for ` = i, we analogously get

δj(sα)φ
N

(k)
i

(X,S + ieα − jeα) = δj(sα)φ
N

(k)
i −1

(X,S).

By definition of E
(k)
i the matrix N + E

(k)
j − E(k)

i is the state where all numbers N
(k)
`

stay the same except N
(k)
i , which is replaced be N

(k)
i − 1, and N

(k)
j , which is replaced

be N
(k)
j + 1. Let kα denote the index of the set Ak for which xα ∈ Ak. Then, combining

the above calculations and using the definition ΦN =
∏m
k=1

∏ns
i=1 φN(k)

i

of ΦN given in

(2.5), we obtain
ΦN (X,S + ieα − jeα) = Φ

N+E
(kα)
j −E(kα)

i

(X,S)

for each α = 1, ..., na with δj(sα) = 1. � For the
basis functions of metapopulation system states that differ by only one adoption event,
we also need the following relationship.

Corollary 2. [16] For N ∈Mna with N
(k)
i > 0 and M = N +E

(k)
j −E

(k)
i it holds that

〈ΦM ,ΦM 〉
〈ΦN ,ΦN 〉

=
N

(k)
i

N
(k)
j + 1

. (2.9)

Proof. Using basic combinatorics, we obtain that

〈ΦN ,ΦN 〉 =
1

(µ(X)ns)na

∫
Xna

∑
S∈Sna

ΦN (X,S) dX

=
na!∏

κ,`N
(κ)
` !

∏
κ,`

( µ(Aκ)

nsµ(X)

)N(κ)
`
. (2.10)

This results from the multinomial distribution of na agents into boxes (κ, `), κ =

1, . . . ,m, ` = 1, . . . , ns with N
(κ)
` agents each and the box probabilities pκ,` := µ(Aκ)

nsµ(X) .

Then, for M = N + E
(k)
j − E

(k)
i by using Equation (2.10) we directly obtain (2.9). �

Finally, given a linear operator H : L2(Y)→ L2(Y), we derive the matrix representation
of the projected operator QHQ for the considered case of a full-partition projection.
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Corollary 3. [16] Given a linear operator H : L2(Y)→ L2(Y), the Galerkin projection
QHQ with Q defined in (2.8) has the matrix representation Ĥ, where

ĤNM =
〈ΦM , HΦN 〉
〈ΦN ,1〉

. (2.11)

The calculation for the corollary is analogous to the proof of Proposition 2 with the
chosen basis functions from Equation (2.6).

Remark 1. In the case of more general basis functions ΦN that form a partition of
unity but are not necessarily indicator functions, e.g., a basis of committor functions in
case of the core set approach, the result from Corollary 3 can be extended by applying
Proposition 2 to the more general basis. The matrix representation of the projected
generator QHQ with Q given by

Qv =
∑

M,N∈Mna

(W−1)MN 〈ΦM , v〉ΦN , WMN := 〈ΦM ,ΦN 〉 (2.12)

has the form ĤŴ−1 with Ĥ given in (2.11) and

ŴMN :=
〈ΦN ,ΦM 〉
〈ΦM ,1〉

.

In the following, we will use these corollaries for proving the main results (Theorems
37-39) for the explicit relation between the mesoscale and microscale rate constants for
the spatial transitions and the first and second order adoptions.

2.2.3 Projection of the Spatial Dynamics

We consider the generator L of the mobility process of the ABM system and define

λ
(kl)
i :=

〈χAl , LiχAk〉X
〈χAk ,1〉X

=

∫
X
χAl(x)(LiχAk)(x)dx∫

X
χAk(x)dx

(2.13)

where 〈·, ·〉X refers to the standard scalar product for functions in L2(X) and 1 denotes
the constant 1-function on X [16].

Theorem 37. The matrix representation of the projected generator QLQ is given by L̂
with

L̂NM =


λ

(kl)
i N

(k)
i , if M = N + E

(l)
i − E

(k)
i , k 6= l,

−
∑ns

i=1

∑m
k,l=1;l 6=k λ

(kl)
i N

(k)
i , if M = N,

0, otherwise.

Proof. We first observe that for fixed α ∈ {1, ..., na} and i ∈ S it holds

δi(sα)ΦN (X,S) =

m∑
k=1

δk(xα)δi(sα)Φ
N−E(k)

i

(X¬α, S¬α), (2.14)
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where S¬α ∈ Sna−1 denotes the vector resulting from S ∈ Sna by skipping the entry sα,
and X¬α ∈ Xna results from X ∈ Xna by skipping the entry xα.1

Set µ0 := 1
(µ(X)ns)na

. Using the definition of L given in (1.10), we calculate

〈ΦM , LΦN 〉

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

na∑
α=1

ns∑
i=1

δi(sα)L
(α)
i ΦN (X,S) dX

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

na∑
α=1

ns∑
i=1

m∑
l=1

χAl(xα)δi(sα)L
(α)
i ΦN (X,S) dX

(2.14)
= µ0

na∑
α=1

ns∑
i=1

m∑
k,l=1

∑
S∈Sna

∫
Xna

Φ
M−E(l)

i
(X¬α, S¬α)χAl(xα)δi(sα)(LiχAk)(xα)Φ

N−E(k)
i

(X¬α, S¬α) dX

= µ0

na∑
α=1

ns∑
i=1

m∑
k,l=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(l)

i
(X¬α, S¬α)δi(sα)

∫
X
χAl(xα)(LiχAk)(xα)dxαΦ

N−E(k)
i

(X¬α, S¬α) dX¬α

(2.13)
= µ0

na∑
α=1

ns∑
i=1

m∑
k,l=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(l)

i
(X¬α, S¬α)δi(sα)λ

(kl)
i

∫
X
χAk(xα)dxαΦ

N−E(k)
i

(X¬α, S¬α) dX¬α

= µ0

na∑
α=1

ns∑
i=1

m∑
k,l=1

λ
(kl)
i

∑
S∈Sna

∫
Xna

Φ
M−E(l)

i +E
(k)
i

(X,S)δi(sα)χAk(xα)ΦN (X,S) dX

= µ0

ns∑
i=1

m∑
k,l=1

λ
(kl)
i

∑
S∈Sna

∫
Xna

Φ
M−E(l)

i +E
(k)
i

(X,S)

na∑
α=1

δi(sα)χAk(xα)ΦN (X,S) dX

(∗)
= µ0

ns∑
i=1

m∑
k,l=1

λ
(kl)
i

∑
S∈Sna

∫
Xna

Φ
M−E(l)

i +E
(k)
i

(X,S)N
(k)
i ΦN (X,S) dX

=

ns∑
i=1

m∑
k,l=1

λ
(kl)
i N

(k)
i

〈
Φ
M−E(l)

i +E
(k)
i
,ΦN

〉
,

where (∗) results from the fact that it holds
∑na

α=1 δi(sα)χAk(xα) = N
(k)
i for all (X,S)

with ΦN (X,S) 6= 0. Assume that it holds M = N +E
(l)
i −E

(k)
i for certain k, l, i, k 6= l.

Then, all summands are zero except one summand and we obtain

〈ΦM , LΦN 〉 = λ
(kl)
i N

(k)
i 〈ΦN ,ΦN 〉.

For the case M = N we need k = l such that Φ
M−E(l)

i +E
(k)
i

= ΦM = ΦN , and obtain

〈ΦM , LΦN 〉 =

ns∑
i=1

m∑
k=1

λ
(kk)
i N

(k)
i 〈ΦN ,ΦN 〉.

1Again, we use the extended definition ΦN := 0 for N /∈ Mna , such that Φ
N−E(k)

i

is also defined in case

of N
(k)
i = 0.
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For other combinations of M,N the overall sum is zero. In total, we get

〈ΦM , LΦN 〉

=


N

(k)
i λ

(kl)
i 〈ΦN ,ΦN 〉, if M = N + E

(l)
i − E

(k)
i , k 6= l∑ns

i=1

∑m
k=1N

(k)
i λ

(kk)
i 〈ΦN ,ΦN 〉, if M = N,

0, otherwise,

=


N

(k)
i λ

(kl)
i 〈ΦN ,ΦN 〉, if M = N + E

(l)
i − E

(k)
i , k 6= l

−
∑ns

i=1

∑m
k,l=1l 6=kN

(k)
i λ

(kl)
i 〈ΦN ,ΦN 〉, if M = N,

0, otherwise,

where for the case M = N we used λ
(kk)
i = −

∑
l 6=k λ

(kl)
i . By means of Corollary 3 we

can have to divide by 〈ΦN ,1〉 = 〈ΦN ,ΦN 〉 and obtain

L̂NM =


N

(k)
i λ

(kl)
i , if M = N + E

(l)
i − E

(k)
i , k 6= l

−
∑ns

i=1

∑m
k,l=1l 6=kN

(k)
i λ

(kl)
i , if M = N,

0, otherwise

for the entries of L̂.
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2.2.4 Projection of the Adoption Dynamics

Now we derive the matrix representations of the projected generator QGQ for the adop-
tion dynamics. We consider the two special cases of first-order and second-order adop-
tions separately.

First-order adoptions

For first-order status changes with adoption rate functions given in (1.6), we define the
conditional expectation of γij(x) given that x ∈ Ak:

γ
(k)
ij :=

〈γij , χAk〉X
〈χAk ,1〉X

=

∫
X γij(x)χAk(x)dx∫

X
χAk(x)dx

. (2.15)

Then, we obtain the following result.

Theorem 38. For first-order adoptions with an ABM rate function f
(α)
ij of the form

(1.6), the projected generator QGQ has the matrix representation Ĝ with

ĜNM =


f̂

(k)
ij (N), if M = N + E

(k)
j − E

(k)
i , i 6= j,

−
∑ns

i,j=1

∑m
k=1 f̂

(k)
ij (N), if M = N,

0, otherwise,

where
f̂

(k)
ij (N) := γ

(k)
ij N

(k)
i .

Proof. Based on the Corollary 1, we see that the action of the ABM generator G on an
individual indicator ansatz function can be written as

GΦN (X,S)

=

ns∑
i,j=1

na∑
α=1

(
−f (α)

ij (X,S)ΦN (X,S) + f
(α)
ij (X,S + ieα − jeα)Φ

N+E
(kα)
j −E(kα)

i

(X,S)

)
,

with the consequence that

GMN := 〈ΦM , GΦN 〉 = −G1,M,N + G2,M,N , (2.16)

where

G1,M,N :=

〈
ΦM ,

ns∑
i,j=1

na∑
α=1

f
(α)
ij ΦN

〉

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S)ΦN (X,S)dX,

G2,M,N :=

〈
ΦM ,

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S + ieα − jeα)Φ

N+E
(kα)
j −E(kα)

i

〉

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S + ieα − jeα)Φ

N+E
(kα)
j −E(kα)

i

(X,S)dX
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and again µ0 := 1
(µ(X)ns)na

. We compute

G1,M,N

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S)ΦN (X,S)dX

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

ns∑
i,j=1

na∑
α=1

δi(sα)γij(xα)ΦN (X,S) dX

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna

ΦM (X,S)δi(sα)χAk(xα)γij(xα)ΦN (X,S) dX

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(k)

i
(X¬α, S¬α)δi(sα)

∫
X

χAk(xα)γij(xα)dxαΦ
N−E(k)

i
(X¬α, S¬α) dX¬α

(2.15)
= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(k)

i
(X¬α, S¬α)δi(sα)γ

(k)
ij

∫
X

χAk(xα)dxαΦ
N−E(k)

i
(X¬α, S¬α) dX¬α

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

γ
(k)
ij

∑
S∈Sna

∫
Xna

ΦM (X,S)δi(sα)χAk(xα)ΦN (X,S) dX

= µ0

ns∑
i,j=1

m∑
k=1

γ
(k)
ij

∑
S∈Sna

∫
Xna

ΦM (X,S)

na∑
α=1

δi(sα)χAk(xα)ΦN (X,S) dX

(∗)
= µ0

ns∑
i,j=1

m∑
k=1

γ
(k)
ij

∑
S∈Sna

∫
Xna

ΦM (X,S)N
(k)
i ΦN (X,S) dX

=

ns∑
i,j=1

m∑
k=1

γ
(k)
ij N

(k)
i 〈ΦM ,ΦN 〉

=

{ ∑m
k=1

∑ns
i,j=1 γ

(k)
ij N

(k)
i 〈ΦN ,ΦN 〉, if M = N,

0, otherwise.

In (∗) we used that it holds
∑na

α=1 δi(sα)χAk(xα) = N
(k)
i for all (X,S) with ΦN (X,S) 6= 0.

Analogously, we calculate the non-diagonal entries setting γii(x) = 0 such that we can
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sum over all i, j:

G2,M,N

= µ0

ns∑
i,j=1

∑
S∈Sna

∫
Xna

ΦM (X,S)

na∑
α=1

δj(sα)γij(xα)Φ
N+E

(kα)
j −E(kα)

i
(X,S) dX

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna

ΦM (X,S)δj(sα)χAk(xα)γij(xα)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(k)

j
(X¬α, S¬α)δj(sα)

∫
X
χAk(xα)γij(xα)dxαΦ

N−E(k)
i

(X¬α, S¬α) dX¬α

= µ0

na∑
α=1

ns∑
i,j=1

m∑
k=1

∑
S∈Sna

∫
Xna−1

Φ
M−E(k)

j
(X¬α, S¬α)δj(sα)γ

(k)
ij

∫
X
χAk(xα)dxαΦ

N−E(k)
i

(X¬α, S¬α) dX¬α

= µ0

ns∑
i,j=1

m∑
k=1

γ
(k)
ij

∑
S∈Sna

∫
Xna−1

ΦM (X,S)

na∑
α=1

δj(sα)χAk(xα)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX

(∗∗)
= µ0

ns∑
i,j=1

m∑
k=1

γ
(k)
ij

∑
S∈Sna

∫
Xna−1

ΦM (X,S)(N
(k)
j + 1)Φ

N+E
(k)
j −E

(k)
i

(X,S) dX

=

ns∑
i,j=1

m∑
k=1

γ
(k)
ij (N

(k)
j + 1)

〈
ΦM ,ΦN+E

(k)
j −E

(k)
i

〉
=

{
γ
(k)
ij (N

(k)
j + 1)〈ΦM ,ΦM 〉, if M = N + E

(k)
j − E(k)

i , i 6= j,

0, otherwise,

(2.9)
=

{
γ
(k)
ij N

(k)
i 〈ΦN ,ΦN 〉, if M = N + E

(k)
j − E(k)

i , i 6= j,

0, otherwise.

In (∗∗) we used that it holds
∑na

α=1 δj(sα)χAk(xα) = N
(k)
j + 1 for all (X,S) with

Φ
N+E

(k)
j −E

(k)
i

(X,S) 6= 0.

Combining the diagonal and non-diagonal part and using Corollary 3, we obtain

ĜNM =


γ

(k)
ij N

(k)
i , if M = N + E

(k)
j − E

(k)
i , i 6= j,

−
∑ns

i,j=1

∑m
k=1 γ

(k)
ij N

(k)
i , if M = N,

0, otherwise

for the entries of the matrix Ĝ.

Second-order adoptions

For the second-order status-changes, we consider the adoption rate function f
(α)
ij defined

in (1.7). We assume that the interaction radius r is small compared to the diameters of
the sets Ak such that second-order adoptions will mainly be caused by agents of the same
subpopulation as these agents are located relatively close to each other in space. Near
the boundaries of the spatial subsets also agents of different subpopulations can still be
close enough to interact with each other, even in the case of a small interaction radius
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r > 0. In a metastable system, agents are sparsely positioned at the boundaries, and
thus the probability of second-order adoptions due to cross-over interactions between
different subpopulations approaches zero. More precisely, let

bkl :=

∫
X2 dr(x1, x2)χAk(x1)χAl(x2)dx1dx2∫

X2
χAk(x1)χAl(x2)dx1dx2

(2.17)

for dr given in (1.9) denote the conditional probability for two agents to have a physical
distance closer than the interaction radius, given that they are located in the sets Ak
and Al, respectively. Given the coarse-grained system state N of the SMM, we define

ε
(k)
ij (N) := cij

m∑
l=1
l 6=k

bklN
(k)
i N

(l)
j (2.18)

as the equilibrium intensity rate for an adoption event i→ j to take place in subpopu-
lation k because of a cross-over interaction with agents from a different subpopulation
l 6= k, and

γ̂
(k)
ij := cijbkk (2.19)

as the mesoscopic rate constant for adoptions within subpopulation k. Using these
definitions, we obtain the following result.

Theorem 39. For second-order adoptions with an ABM rate function f
(α)
ij given by

(1.7) and (1.8), the projected generator QGQ has the matrix representation Ĝ with

ĜNM =


f̂
(k)
ij (N) + ε

(k)
ij (N), if M = N + E

(k)
j − E(k)

i , i 6= j,

−
∑ns
i,j=1

∑m
k=1

(
f̂
(k)
ij (N) + ε

(k)
ij (N)

)
, if M = N,

0, otherwise

where
f̂
(k)
ij (N) := γ̂

(k)
ij N

(k)
i N

(k)
j . (2.20)

Proof. At first, we observe that for each i, j ∈ S, S ∈ Sna , α ∈ {1, ..., na}, and M ∈Mna

it holds

δi(sα)δj(sβ)

∫
Xna

χAk(xα)χAl(xβ)dr(xα, xβ)ΦM (X,S) dX

= bklδi(sα)δj(sβ)

∫
Xna

χAk(xα)χAl(xβ)ΦM (X,S) dX.

(2.21)

This can be seen from the following calculation:

δi(sα)δj(sβ)

∫
Xna

χAk(xα)χAl(xβ)dr(xα, xβ)ΦM (X,S) dX

= δi(sα)δj(sβ)

∫
Xna−2

∫
X2

χAk(xα)χAl(xβ)dr(xα, xβ)dx1dx2Φ
M−E(k)

i −E
(l)
j

(X,S) dX

(2.17)
= δi(sα)δj(sβ)

∫
Xna−2

bkl

∫
X2

χAk(xα)χAl(xβ)dx1dx2Φ
M−E(k)

i −E
(l)
j

(X,S) dX

= bklδi(sα)δj(sβ)

∫
Xna

χAk(xα)χAl(xβ)dx1dx2ΦM (X,S) dX.
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We use the same decomposition (2.16) as in the proof for the first-order adoption rate
functions. Let the rate function γij be given by γij(x1, x2) = cij ·dr(x1, x2) for cij ≥ 0, see
Equation (1.8) for a definition, where cii = 0. Note that by setting cii = 0 we can take
the sum over all α, β without the condition β 6= α because it holds δi(sα)δj(sβ)cij = 0
for all i, j in case of α = β. We compute

G1,M,N

= µ0

∑
S∈Sna

∫
Xna

ΦM (X,S)

ns∑
i,j=1

na∑
α=1

f
(α)
ij (X,S)ΦN (X,S)dX

= µ0

na∑
α,β=1

ns∑
i,j=1

cij
∑
S∈Sna

∫
Xna

ΦM (X,S)δi(sα)δj(sβ)dr(xα, xβ)ΦN (X,S) dX.

As we have ΦM ·ΦN = 0 for M 6= N , we can follow G1,M,N = 0 for M 6= N . For M = N ,
on the other hand, we have ΦM · ΦN = ΦN , such that we can omit ΦM and get

G1,M,N

= µ0

na∑
α,β=1

ns∑
i,j=1

cij
∑
S∈Sna

∫
Xna

δi(sα)δj(sβ)dr(xα, xβ)ΦN (X,S) dX

= µ0

na∑
α,β=1

ns∑
i,j=1

m∑
k,l=1

cij
∑
S∈Sna

∫
Xna

δi(sα)δj(sβ)χAk(xα)χAl(xβ)dr(xα, xβ)ΦN (X,S) dX

(2.21)
= µ0

na∑
α,β=1

ns∑
i,j=1

m∑
k,l=1

cijbkl
∑
S∈Sna

∫
Xna

δi(sα)δj(sβ)χAk(xα)χAl(xβ)ΦN (X,S) dX

= µ0

ns∑
i,j=1

m∑
k,l=1

cijbkl
∑
S∈Sna

∫
Xna

na∑
α,β=1

δi(sα)δj(sβ)χAk(xα)χAl(xβ)ΦN (X,S) dX

(∗)
= µ0

ns∑
i,j=1

m∑
k,l=1

cijbkl
∑
S∈Sna

∫
Xna

N
(k)
i N

(l)
j ΦN (X,S) dX

=

ns∑
i,j=1

m∑
k,l=1

cijbklN
(k)
i N

(l)
j 〈ΦN ,ΦN 〉,

where (∗) is true because of
∑na

α=1 δi(sα)χAk(xα) = N
(k)
i and

∑na
β=1 δj(sβ)χAl(xβ) = N

(l)
j

for all (X,S) with ΦN (X,S) 6= 0. Using

f
(α)
ij (X,S + ieα − jeα) = cijδj(sα)

∑
β 6=α

dr(xα, xβ)δj(sβ)
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with cij = 0 for i = j, we analogously get for the non-diagonal entries:

G2,M,N

= µ0

ns∑
i,j=1

cij
∑
S∈Sna

∫
Xna

ΦM (X,S)

na∑
α=1

δj(sα)

na∑
β=1
β 6=α

δj(sβ)dr(xα, xβ)Φ
N+E

(kα)
j −E(kα)

i
(X,S) dX

= µ0

na∑
α=1

na∑
β=1
β 6=α

ns∑
i,j=1

m∑
k,l=1

cij
∑
S∈Sna

∫
Xna

ΦM (X,S)δj(sα)δj(sβ)χAk(xα)χAl(xβ)dr(xα, xβ)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX.

In case of M 6= N+E
(k)
j −E

(k)
i for all i, j = 1, ..., ns and all k = 1, ...,m we get G2,M,N = 0

because it holds ΦM · ΦN+E
(k)
j −E

(k)
i

= 0 for all i, j, k. For M = N , we have G2,M,N = 0

because of cii = 0. If, on the other hand, M = N + E
(k)
j − E(k)

i for some i 6= j and

k ∈ {1, ...,m}, we have ΦM · ΦN+E
(k)
j −E

(k)
i

= Φ
N+E

(k)
j −E

(k)
i

and

G2,M,N

= µ0

na∑
α=1

na∑
β=1
β 6=α

m∑
l=1

cij
∑
S∈Sna

∫
Xna

δj(sα)δj(sβ)χAk (xα)χAl(xβ)dr(xα, xβ)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX

(2.21)
= µ0

na∑
α=1

na∑
β=1
β 6=α

m∑
l=1

cijbkl
∑
S∈Sna

∫
Xna

δj(sα)δj(sβ)χAk (xα)χAl(xβ)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX

= µ0

m∑
l=1

cijbkl
∑
S∈Sna

∫
Xna

na∑
α=1

na∑
β=1
β 6=α

δj(sα)δj(sβ)χAk (xα)χAl(xβ)Φ
N+E

(k)
j −E

(k)
i

(X,S) dX

(∗∗)
= µ0

m∑
l=1

cijbkl
∑
S∈Sna

∫
Xna

(N
(k)
j + 1)N

(l)
j Φ

N+E
(k)
j −E

(k)
i

(X,S) dX

=

m∑
l=1

cijbkl(N
(k)
j + 1)N

(l)
j 〈ΦN+E

(k)
j −E

(k)
i

,Φ
N+E

(k)
j −E

(k)
i

〉

(2.9)
=

m∑
l=1

cijN
(k)
i N

(l)
j bkl〈ΦN ,ΦN 〉.

In (∗∗) we used that

na∑
α=1

na∑
β=1
β 6=α

δj(sα)δj(sβ)χAk(xα)χAl(xβ) = (N
(k)
j + 1)N

(l)
j

holds for all (X,S) with Φ
N+E

(k)
j −E

(k)
i

(X,S) 6= 0. For k 6= l this is clear because for

these (X,S) there must be N
(k)
j + 1 agents of status j located in subset Ak and N

(l)
j

agents of status j in subset Al 6= Ak. For l = k we obtain (N
(k)
j + 1)N

(k)
j , which is the

number of pairs of different agents both of status j and being located in Ak. Dividing by
〈ΦN ,1〉 = 〈ΦN ,ΦN 〉 (see again Corollary 3) and combining diagonal and non-diagonal
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entries, we find that the matrix Ĝ has the entries

ĜNM =


∑m

l=1 cijbklN
(k)
i N

(l)
j , if M = N + E

(k)
j − E

(k)
i , i 6= j,

−
∑ns

i,j=1

∑m
k,l=1 cijbklN

(k)
i N

(l)
j , if M = N,

0, otherwise

By using Equations (2.18), (2.19) and (2.20) we complete the proof.

Projection error

Theorem 39 shows how the projected rate functions of second-order adoptions can be
decomposed into: (1) a part coming from interactions between agents of the same sub-

population with adoption rate functions given by f̂
(k)
ij ; and (2) a part coming from adop-

tions that take place between agents of different subpopulations. As discussed above, in
a metastable system and for a metastable full partition A1, . . . , Am, the probability of

cross-over interactions is small and thus the value of ε
(k)
ij (N) will be negligibly small. As

we will see in the following subsection for the application to the guiding Example 2.2.5,
the error introduced by omitting cross-over interactions is often orders of magnitude
smaller than the discretization error of the Galerkin projection.

Spatio-temporal master equation

In the SMM, therefore, we consider only the first type (1) of second-order adoptions,
i.e. we assume that there are no (cross-over) adoptions between agents of different
subpopulations. Using the results of Theorems 37-39, the equation for the evolution of
the SMM given by (2.3) and (2.4) can be written as the following spatio-temporal master
equation:

dP (N, t)

dt
=−

m∑
k,l=1
k 6=l

ns∑
i=1

λ
(kl)
i N

(k)
i P (N, t)

+

m∑
k,l=1
k 6=l

ns∑
i=1

λ
(kl)
i (N

(k)
i + 1)P (N + E

(k)
i − E

(l)
i , t)

−
ns∑
i,j=1

m∑
k=1

f̂
(k)
ij (N)P (N, t)

+

ns∑
i,j=1

m∑
k=1

f̂
(k)
ij (N + E

(k)
i − E

(k)
j )P (N + E

(k)
i − E

(k)
j , t),

(2.22)

where the first two terms on the right-hand side refer to the change caused by the spatial
transitions between subpopulations defined by the rate matrix L, while the other two
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terms are describing the change through status adoptions within the subpopulations
described by the operator G.2

Relation to models for chemical reaction kinetics

Using the definitions of the functions f̂
(k)
ij given in Theorems 38 and 39, the interaction

propensities are consistent with the standard law of mass-action from the chemical con-
text [79]. This is due to the fact that we assume that the agents interact independently
of each other (and of the overall system state) – which we do by choosing the ABM adop-
tion rate functions according to Equations (1.6) and (1.7). As for the spatial dynamics,
state-of-the art metapopulation models [76] typically assume that the commuting flow

between two subpopulations k and l is of the form λ
(kl)
i (Nk)

a(Nl)
b for exponents a, b ≥ 0

which tune the dependence with respect to each subpopulation size. In our setting, we
assume that the spatial movement of each agent is independent of the population sizes,
which corresponds to setting a = 1 and b = 0.

Extension to core set approach

Instead of a partition of X into m metastable sets, we can also consider a decomposi-
tion based on m core sets C1, ..., Cm. The core sets should be chosen such that all core
regions of the corresponding sets of the metastable partition are included and the tran-
sition regions with a low invariant measure are not covered by the sets [69, 74, 75]. The
subpopulations of the coarse grained system state can then be interpreted either in the
sense of a milestoning process as was described in Section 2.1.3 or in the probabilistic
sense of the associated Galerkin projection based on the isocommittor functions defined
in (2.1). In the milestoning interpretation, agents within subpopulation k are those who
visited the core set Ck last. The associated Galerkin projection however associates the
agents of the ABM to a subpopulation of the projected process according to the commit-
tor probabilities. Based on the position x the committor function takes the value qk(x),
which describes the probability of an individual agent to have visited the core set Ck last.

For the construction of a core set SMM, where the system state can be interpreted
in the milestoning sense we need to adapt our results for the matrix representations [16].

The spatial transition rates λ
(kl)
i correspond in this case to the transition rates of a

milestoning process between the core sets instead of the transition rates between the
partition sets and are sampled from the trajectory data as described in Section 2.1.3.
The Equation (2.15) for first-order adoptions is adjusted to

γ
(k)
ij :=

〈γij , qk〉X
〈qk,1〉X

=

∫
X γij(x)qk(x)dx∫

X qk(x)dx
(2.23)

2In the second line of (2.22), we need the rate to go from M := N + E
(k)
i − E(l)

i to the given N . By

Theorem 37 we know that this rate is given by λ
(kl)
i M

(k)
i = λ

(kl)
i (N

(k)
i + 1).
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and the interaction probabilities for the second-order adoptions are modified to

bkl :=

∫
X2 dr(x1, x2)qCk(x1)qCl(x2)dx1dx2∫

X2 qCk(x1)qCl(x2)dx1dx2
. (2.24)

Compared to the full partition results we replaced the characteristic functions of the
partition sets with the committor functions of the respective core sets. Since the value
of the scalar product between two different committor functions is small we still have a

negligibly small error ε
(k)
ij (N) due to adoptions between different subpopulations, but in

addition also a reduced error for the spatial discretization.

Remark 2 (Approximation quality). The step from the full-scale ABM to the SMM
(2.22) involves two approximations: the discretization error originating from the Galerkin
projection and the error resulting from neglecting the cross-over interactions between dif-
ferent spatial domains. While the latter error can be easily monitored by estimating the
neglected cross-over rates, the discretization error is more difficult to control. For cases
where the spatial motion exhibits metastability, estimating the discretization error for
the mobility process is possible (see [75] for the core set approach), but requires sufficient
ABM simulation data.

So far, we have been referring to the metastability of the mobility process when we
talked about metastability in the ABM. For the SMM to be a good approximation of
the ABM, there must also be a time scale separation between the mobility and adoption
dynamics, in the sense that mixing within a subpopulation occurs on a faster time scale
than adoption events. If this is not the case, then the assumption that agents are well
mixed within a subpopulation is no longer valid with respect to the adoption process,
since there may be dependencies for the adoption rates on the exact position within the
subpopulation that are no longer reflected by the averaged interaction probabilities bkl.
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2.2.5 Application to the Guiding example

Example 6 (continued). Given the double-well potential shown in Figure 1.10 and
using the Markov state model approach, we partition the space X = R2 of movement
into the two core sets C1 = (−∞,−0.5) × R and C2 = (0.5,∞) × R and the transition
region X \ (C1 ∪ C2). The system state of the SMM is a 2 × 2 matrix and the initial

system state is chosen with values N
(1)
1 = 49, N

(2)
1 = 1, N

(1)
2 = 50 and N

(2)
2 = 0, which

is also the projected initial state of the ABM. The jump rates λ
(12)
i and λ

(21)
i between

the two subpopulations are the transition rates between C1 and C2 and are estimated
using the maximum likelihood estimator of Section 2.1.3 for the milestone transitions
of the ABM trajectory data. The interaction probabilities b11 and b22 for the scaling

of the projected adoption rate functions for the SMM f̂
(1)
12 (N) = c12b11N

(1)
1 N

(1)
2 and

f̂
(2)
12 (N) = c12b22N

(2)
1 N

(2)
2 are estimated from trajectory data as well.

(a) Critical transition time distribution
for σ = 0.6

(b) Critical transition time distribution
for σ = 1.2

Figure 2.2: Distribution of the critical transition time for the ABM (blue) and the SMM
(orange) given in Example 6, sampled over 10000 MC-simulations. The over-
lap of the two distributions is colored brown. For small σ the distribution is
very well matched, while for larger σ the critical transition happens faster in
the SMM.

We analyze the quality of the SMM approximation for two different values of the diffusion
constant, σ = 0.6 and σ = 1.2, where the first case is more metastable than the other.
We compare the SMM process with the projected ABM dynamics with respect to the
temporal distribution of the critical transition event given by the first agent with status 2
switching from one subpopulation to the other (for the projected ABM, this means that
an agent with status 2 who last visited core set C1 reaches core set C2 for the first time),
see Figure 2.2. Since this transition has a large impact on the overall dynamics, we con-
sider the overall approximation error to be small if the difference in the distribution of
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this critical transition event time is small. We observe that for smaller σ the approxima-
tion is better due to an increase in the metastability of the dynamics and consequently a
better approximation of the exit time of a subpopulation by an exponential holding time.

This becomes even clearer when comparing the temporal evolution of the average num-
ber of agents with status 2 in the two subpopulations, see Figure 2.3. For the smaller
value σ = 0.6, the first moments agree very well (Figure 2.3a). In contrast, for the
larger diffusion constant σ = 1.2 there is a significant difference between the model
results regarding these first moments (Figure 2.3b). This is due to the fact that the
approximation quality of the Markov state model is worse because the diffusion process
is less metastable and thus the first spatial transitions in the SMM happen too fast on
average. The deviation of the spatial transition dynamics is also the main contributor to
the approximation error of the critical transition event time, as the expected evolution
of adoptions within the initial subpopulation is still well approximated even in the less
metastable case. This is also because the mixing within the subpopulations is consid-
erably faster than the adoption process in both cases. Numerical experiments with a
strongly increased value for the constant c12 resulted in the SMM overestimating the
frequency of adoption events, since in the projected ABM adoptions happened almost
instantaneously whenever two agents were within the interaction radius of each other,
and thus the agents could no longer be considered well mixed with respect to the adop-
tion dynamics. While in the SMM for this scenario all agents have the same probability
of interacting with each other, this was not the case in the ABM due to the relatively
slow mixing compared to the fast adoptions.

(a) σ = 0.6 (b) σ = 1.2

Figure 2.3: Comparison of the time-dependent mean population size of agents with status
2 over 10000 MC-simulations for the projected ABM and the corresponding
stochastic metapopulation model. The projection is based on a core set ap-
proach with C1 and C2 given in Example 6 and defining two subpopulations
denoted by SP1 and SP2. In scenario (a) the solid blue and dashed blue line
are indistinguishable due to the good approximation quality.
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2.3 Piecewise-Deterministic Metapopulation Model

For metapopulation models with a large population of interacting agents, the stochastic
simulation of the stochastic metapopulation dynamics becomes computationally very
expensive because it tracks every single adoption event. In this case, a further model re-
duction can be very useful to reduce the simulation effort. Since the number of agents in
each subpopulation is large, we can apply standard convergence results and approximate
the jump process describing the internal adoption dynamics, for which we assume a high
intensity rate, by a deterministic evolution equation [66]. Such approximations, based
on the law of large numbers, are well known in the context of chemical reaction systems,
where they are used to reduce model complexity for systems with large molecular popu-
lations [79]. On the other hand, we assume that the spatial transition events have a low
intensity rate and are comparatively rare events that occur only after long waiting times.
To reduce the computational complexity of the simulations while preserving the discrete,
stochastic nature of the transition events between the subpopulations, we approximate
the overall dynamics by a piecewise deterministic Markov process, see [30,80,81] for de-
tails. This model will be called piecewise-deterministic metapopulation model (PDMM).

In this section, we will first introduce the ODE approximation to go from an SMM to a
PDMM, and afterwards again apply the method to our guiding example and elaborate
on the approximation quality.

95



2.3.1 ODE Approximation for the PDMM

The stochastic process (N(t))t∈T given by (2.22) can be rewritten in a pathwise notation
of the form

N(t) = N(0) +
m∑

k,l=1
k 6=l

ns∑
i=1

P(kl)
i

(∫ t

0
λ

(kl)
i N

(k)
i (s)ds

)
(E

(l)
i − E

(k)
i )

+

ns∑
i,j=1

m∑
k=1

R(k)
ij

(∫ t

0
f̂

(k)
ij (N(s))ds

)
(E

(k)
j − E

(k)
i ),

(2.25)

where P(k)
ij and R(kl)

i refer to independent, unit-rate Poisson processes [80,82].

Assuming that the jumps induced by the Poisson processes P(k)
ij , which refer to the

spatial transitions between metastable domains, occur much less frequently than the

jumps induced by the Poisson processes R(kl)
i , which refer to the adoption dynamics

within the subpopulations, we can apply standard convergence results for Markov pro-
cesses [21] in order to approximate the stochastic dynamics given by the second line of
Equation (2.25) by deterministic dynamics and obtain the PDMM process (N̂(t))t∈T
given by the equation

N̂(t) =N̂(0) +
m∑

k,l=1,k 6=l

ns∑
i=1

P(kl)
i

(∫ t

0
λ

(kl)
i N̂

(k)
i (s)ds

)
(E

(l)
i − E

(k)
i )

+

ns∑
i,j=1

m∑
k=1

∫ t

0
f̂

(k)
ij (N̂(s))ds (E

(k)
j − E

(k)
i ).

(2.26)

The first line is almost identical to the SMM description, as we keep the rare spatial
transitions stochastic, while the second line now refers to an ODE system for modeling
the local adoption dynamics of the population, similar to [81]. It is well-known [68, 79]
that the relative error produced by this approximation (relative with respect to the
population size) decreases as the number of agents increases. Therefore, we will consider
a finite population, which is sufficiently large for the approximation to be reasonable.
The ODE approximation of the PDMM can be interpreted as the expected evolution of
the fast adoption process between two rare spatial transition events.
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2.3.2 Application to the Guiding Example

Example 6 (continued). For our guiding example of two-status dynamics in a double-
well potential, the deterministic status-adoption dynamics from the second line of (2.26)
is given by

N̂(t0 + τ) = N̂(t0) +
m∑
k=1

∫ t0+τ

t0

f̂
(k)
12 (N̂(s))(E

(k)
2 − E(k)

1 )ds

for τ < t1−t0, where t0, t1 denote the time points of two subsequent stochastic transition

events induced by the first line of (2.26). Using the definition (2.20) of f̂
(k)
12 , we get the

following ODE for the number N̂
(k)
2 of agents in subpopulation k having status 2:

dN̂
(k)
2 (t)

dt
= γ̂

(k)
12 · N̂

(k)
1 (t)N̂

(k)
2 (t) (2.27)

for t0 < t < t1. Let n
(k)
0 := N̂

(k)
1 (t0) + N̂

(k)
2 (t0) denote the total number of agents in

subpopulation k at time t0. Between two transition events this number is constant, so

we can substitute N̂
(k)
1 (t) = n

(k)
0 − N̂

(k)
2 (t) in Equation (2.27) to arrive at

dN̂
(k)
2 (t)

dt
= γ̂

(k)
12 N̂

(k)
2 (t)

(
n

(k)
0 − N̂

(k)
2 (t)

)
.

This equation is a logistic ODE, which is a special case of Bernoulli ODEs for which an
analytical solution is known. The solution is given by the logistic function, that is, we
obtain an analytical solution

N̂
(k)
2 (t) = n

(k)
0

(
1 + e−γ̂

(k)
12 n

(k)(t0)t
(
n

(k)
0 − N̂

(k)
2 (t0)

))−1

for t0 < t < t1. Treating the diffusive transitions between the subpopulations as stochas-
tic events which induce jumps in the state N̂ of the PDMM process, we obtain trajec-
tories as depicted in Figure 2.4 (b).

The main difference between the trajectories (see Figure 2.4) is that in the stochastic
metapopulation model we have many discontinuous jumps while in the PDMM only
a few remain. The error in estimating the critical event time induced by the PDMM
approximation (see Figure 2.5) is small compared to the error arising from the spa-
tial discretization (see Figure 2.2). Even though our population size of 100 individuals
is not very large, the critical transition time distribution of the SMM is already well
approximated by the PDMM for both choices of σ.
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(a) Stochastic metapopulation trajectory (b) PDMM trajectory

Figure 2.4: Comparison between (a) SMM and (b) PDMM trajectories for σ = 1.2. In
(b) the rare jump events are marked by vertical dotted lines.

(a) σ = 0.6 (b) σ = 1.2

Figure 2.5: Distribution of the critical transition time for SMM (blue) and PDMM (or-
ange) sampled over 10000 MC-simulations. The overlap of the two distri-
butions is colored brown. For both values of σ the distribution is very well
matched.

42
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2.4 Simulation and Computational Efficiency

In this section, we look at the methods for simulating the two metapopulation model
approaches presented in the previous section and also used for the realizations of the
guiding example. We will compare the computational effort of the different simulation
approaches, especially for the simulation runs of the guiding example.

2.4.1 Simulation of the SMM

For the stochastic metapopulation model, which is a pure jump process, we implement
the sampling with the stochastic simulation algorithm, which produces statistically ex-
act realizations of the process, without any numerical approximation error [55]. The
pseudocode for applying the method to the SMM can be written as follows:

Algorithm 7: Stochastic simulation algorithm for the SMM

1 initialize time t = 0, system state N(0) and time horizon T ;
2 while t < T do
3 # compute the total jump intensity for both transition and adoption events

4 set Λ :=
∑m

k,l=1
k 6=l

∑ns
i=1 λ

(kl)
i N

(k)
i (t) +

∑m
k=1

∑ns
i,j=1 f̂

(k)
ij (N(t)) ;

5 draw waiting time τ ∼ Exp(Λ);
6 set Markov kernel Q with
7 #probability for spatial transition events

8 Q
(
N(t),N(t) + E

(l)
i − E

(k)
i

)
:=

λ
(kl)
i
Λ and

9 #probability for adoption events

10 Q
(
N(t),N(t) + E

(k)
j − E

(k)
i

)
:=

f̂
(k)
ij (N(t))

Λ ;

11 draw a state change vector v according to Q;
12 # state update
13 N(t+ τ) = N(t) + v;
14 # time update
15 t = t+ τ ;

16 end

Result: (X̂(t))t≤T
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2.4.2 Simulation of the PDMM

In order to simulate a PDMM process given by (2.26) one has to simultaneously integrate
the deterministic flow of the ODE part and the state-dependent intensity rate functions

λ
(kl)
i for the stochastic jumps, see [82]. Using the event-based simulation method for

PDMPs from Section 1.3.3 one can determine the time point of the next stochastic jump
while updating the system with the forward Euler scheme. Applied to the situation of
the PDMM the simulation algorithm can be written as follows.

Algorithm 8: Event-based simulation for the PDMM

1 initialize time t = 0 and state N̂(0);
2 choose a time step ∆t and time horizon T ;
3 draw τ ′ ∼ Exp(1) # exponentially distributed with rate 1;
4 while t < T do
5 # compute the jump intensity rate for spatial transitions

6 set Λ :=
∑m

k,l=1
k 6=l

∑ns
i=1 λ

(kl)
i N̂

(k)
i (t) ;

7 if Λ ∆t > τ ′ then
8 # jump event
9 set Markov kernel Q with

10 #probability for spatial transition events

11 Q
(
N̂(t), N̂(t) + E

(l)
i − E

(k)
i

)
:=

λ
(kl)
i
Λ ;

12 draw a state change vector v according to Q;
13 # state update

14 N̂(t+ τ ′

Λ ) = N̂(t) +
∑m

k=1

∑ns
i,j=1

(
E

(k)
j − E

(k)
i

)
f̂

(k)
ij (N̂(t)) τ

′

Λ + v;

15 # time update

16 t = t+ τ ′

Λ ;
17 draw new τ ′ ∼ Exp(1);

18 else
19 # state update

20 N̂ (t+ ∆t) = N̂(t) +
∑m

k=1

∑ns
i,j=1

(
E

(k)
j − E

(k)
i

)
f̂

(k)
ij (N̂(t))∆t;

21 # time update
22 t = t+ ∆t;
23 τ ′ = τ ′ − Λ ∆t;

24 end

25 end

Result: (X̂(t))t≤T
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2.4.3 Effort Comparison

In addition to the details of the mobility process, which already make the ABM effort
several orders of magnitude higher than the reduced models, we need to perform a range
search in each time step to evaluate the adoption rate functions. The pairwise compari-
son of distances between agents scales quadratically with the number of agents na, but
even for neighborhood computations using k-d-trees the computational effort still scales
superlinearly with O(na log(na)) [83,84].

The simulation effort of the SMM is much lower than for ABM simulations, since the
diffusive mobility process is reduced to a jump process with a low intensity rate, but
still scales linearly with the number of agents, since each adoption event requires a sep-
arate simulation step. This means that for large populations, sampling the quantities of
interest may still be infeasible due to high computational cost.

The numerical effort of the PDMM simulations does not scale significantly with the
number of agents for our example, and thus, among the approaches considered in this
work, the PDMM is the most efficient choice for simulating systems with high popu-
lations or large numbers of agents. For small numbers of agents, the PDMM effort is
higher compared to the SMM because the critical transition event occurs significantly
later and thus more time steps are needed in the PDMM computation. See Figure 2.6
for a comparison of the computational effort for the three modeling approaches.

(a) ABM effort (b) SMM and PDMM effort

Figure 2.6: Numerical effort for the simulations of the guiding example system of Ex. 6
for different choices of agent numbers na, depending on the number of agents.
Even for low agent numbers, the approximate models are at least two orders
of magnitude more efficient.

Overall, the reduction in effort from the PDMM approximation of ABMs is immense
and can allow sampling of large ABM sets that would otherwise be infeasible. This is
especially the case when we consider models based on real-world data, as we do in the
next chapter.
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3 Modeling of Spreading Processes

In this chapter, we will focus on applying the concepts from Chapter 1 to formalize
and construct agent-based models for real-world processes. We will also look at cases
where the concepts from Chapter 2 can be applied to either derive a reduced model that
preserves important properties of the ABM or to directly construct a metapopulation
model for the process. All applications are based on real-world data, and we will il-
lustrate how the data can be incorporated into the construction and calibration of the
models. Unfortunately, due to the complexity of the models, formal analysis will not be
feasible, and we will instead focus on methods for computational analysis. While in the
previous chapter we discussed how metastability is a prerequisite for deriving a reduced
model with good approximation quality, in this chapter we will focus more on how to
identify metastable sets and discuss approaches that use clustering methods.

The processes that we are interested in are spreading processes in general, such as the
dispersal of a species in physical space or spreading processes within a human popu-
lation, such as the transmission of a disease or information. While different types of
spreading processes each have their distinct dynamical properties, there are two general
concepts that are key features for many of them. The first is mobility, and the second
is interaction. For the dispersal of a species it is clear that in order to spread to a new
location in physical space the members of that species must be mobile themselves or
be able to produce mobile vectors for reproduction, such as pollen or spores [81]. The
ability of a species to persist in a location depends on interactions with other members
of the same species, the environment or other competing species [85]. For information
to propagate within human populations, interactions in the form of some kind of com-
munication are mandatory, and usually physical proximity is either required or a major
influence. Therefore, mobility plays an important role in these processes. Even more
so in the case of infectious disease spreading, where actual physical contact is required
to transmit a virus or other vector from one individual to another. Thus, in modeling
spreading processes, one must capture the influence and type of mobility involved in the
original process as well as the interaction patterns when designing the model dynamics.

In total, we will discuss three models for spreading processes in more detail. In the
first section, we will consider an agent-based model for the spreading of the woolly
sheep in ancient times, which is an example for innovation spreading within and be-
tween human populations. The model that we discuss in the second section is an ABM
for the mobility and cultural evolution of hunter-gatherer societies in prehistoric times.
These are two examples of applications in the prehistoric context in which the collection
and integration of data as well as the validation of the model are challenging tasks. We
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discuss where the difficulties lie for our examples and how the model results can be inter-
preted. Afterwards, we consider in the third section the spreading of infectious diseases
in present day societies. While we also briefly discuss agent-based approaches at the
end of the section, our focus will be the metapopulation level. For each of the presented
models, we will discuss the assumptions about the real-world processes that we make
and which level of detail the model should have depending on the research question.
We will then derive a formal description of each model in terms of Markov processes
and apply the simulation algorithms of Chapter 1 to provide an implementation. The
simulation results of each model are discussed in terms of a computational analysis with
focus on the sampling of rare events such as critical transitions, macroscopic variables
that quantify the complex system states and the identification of mesoscopic patterns
such as clustering of agents. We also discuss the applicability of the model reduction
framework from Chapter 2 for each of the applications and how it could be adapted for
more general dynamics.
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3.1 The Spreading of the Woolly Sheep in Ancient Times

The first application of the previously discussed approaches to a real-world scenario will
be the spreading of the wool-bearing sheep in ancient times, which has also been dis-
cussed by me and co-authors in [14, 15]. The topic is of interest to archaeologists, as
the woolly sheep represents an important innovation for the manufacturing of textiles at
the time and subsequently also had a huge impact on the socio-economic development
of past societies [86, 87]. The modeling prehistoric processes faces several additional
difficulties compared to modern day settings. One challenge is the limited availability of
data, which tends to be sparse, indirect and uncertain [88]. The localization, dating and
categorization of archaeological findings already involves estimation techniques and the
possibility of measurement errors that must be taken into account. Another challenge is
that it is not possible to generate additional data through experiments or to replicate the
prehistoric process. While it is possible to perform physical experiments, for example, to
estimate the efficiency of ancient mining or smelting techniques [89], or to evaluate the
suitability of certain materials for tool making [90], we cannot recreate an ancient society
in a similar way. Thus, many of the state-of-the-art approaches based on data fitting
and validation [91] cannot be directly applied, and reconstruction of the original process
is generally not feasible. Instead, we want to conduct a rational modeling approach that
utilizes expert knowledge and additional assumptions to compensate for the gaps in the
data. The resulting model can then be used as a tool to test hypotheses and illustrate
the characteristics of the prehistoric process.

The area of interest for our study is the geographical region that includes the Near East
and Southeastern Europe (see Figure 3.1). This region includes the presumed origin of
the woolly sheep in present-day Northern Syria where the earliest archaeological evi-
dence of wool production is located [92]. The available archaeological data for our study
region includes a set of spindle whorl findings in Southeastern Europe and a set of ovi-
caprid bone finds spread throughout the region but with the majority of the data points
also being located in Southeastern Europe. Both data sets are visualized in Figure 3.1.
While the spindle whorls can be linked to wool processing within the area of the site, we
can not make the same connection for the bone findings. From the analysis of the bones
we can only infer that sheep or goats have been present in the area but not whether the
sheep that left behind the bone was wool-bearing or not. Thus, the only facts that we
can infer with relative certainty from the data is the starting location and time of the
spreading process as well as the presence of the innovation in the northwestern edge of
our study area approximately 2000 years later. While the presence of ovicaprid bones
could be interpreted as evidence that the environment has been suitable for keeping
sheep the amount of data is too small and the distribution too uneven to use it for
generating a model as many areas are not covered. In addition to the archaeological
data also present day geographical data for the complete the study area is available.
This data can be used to assess whether areas have been suitable for keeping sheep but
of course a suitable environment alone is no indication that herders have been present
there in prehistoric times.
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Figure 3.1: Map of the study area with excavation sites and borders of a partition into
major landscape units [14].
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To deal with the uncertain data we introduce an agent-based modeling approach that
only utilizes the geographical data in the model construction and leaves the archaeologi-
cal data for discussing the plausibility of the results. The basic idea for the model is the
hypothesis that the woolly sheep has mainly been propagated through the prehistoric
human society and that the mobility of the shepherds is mainly influenced by the search
for a suitable environment. The simulation of the ABM then generates a distribution
of the population in the physical space and a hypothetical realization of the historical
spreading process which can be analyzed and compared with the archaeological data.
From the microscopic dynamics of the ABM emerges a larger-scale spreading process
between the major landscape units of the study area, which are also visualized in Fig-
ure 3.1. The ABM can be utilized to estimate exchange rates between these regions and
through the application of the model reduction framework of Chapter 2 we can construct
a metapopulation model for the spreading process on the mesoscale. The derivation of a
PDMM from the ABM will, however, be more challenging in the real-world application
than it has been for the conceptual model of the Guiding Example 6.

In this section, we will first discuss the ABM for the woolly sheep in detail and in
comparison to [14, 15] the model is formulated such that it fits to the general ABM
framework from Chapter 1. Afterwards we will go into the details of the model re-
duction to a PDMM and compare the results with the ABM simulations to assess the
approximation quality.

106



3.1.1 ABM for the Spreading of the Woolly Sheep

In this subsection, we define the ABM for innovation spreading in ancient times, in par-
ticular for the spreading of the woolly sheep in the Near East and South-East Europe
for the time period starting at 6200 BC. At first we will discuss the basic model assump-
tions for the agent system in a descriptive way. Afterwards, we use the formalism of
Chapter 1 to define the corresponding formal ABM as a Markov process. Then, we take
a look at the available real-world data for our application and how we can integrate it
into the model. Finally, we discuss the simulation of the model and the analysis and
interpretation of the results.

Model assumptions

The first step of our model construction is to clarify what entity an agent represents in
the model. It would only be natural to assume that when we model the spreading of
a new variant of a species, i.e., the mutation of the woolly sheep, that the agents or at
least some of them should be the individual members of the species itself. In our case,
however, we assume that in addition to the spreading driven by intraspecies dynamics,
e.g., the migration of sheep due to the need for foraging, the interaction with humans
has been a major factor. We even go so far that we assume that the woolly sheep as
a domesticated species was mainly propagated due to human interactions and that we
can neglect the allegedly significantly slower spreading that occurred without human
influence. Thus, an agent in the model represents a group of herders that keep sheep
in their flock and are thus able to adopt the woolly sheep. The woolly sheep itself is
then to be viewed as an innovation that can be present or absent among the herders.
The spreading of the woolly sheep is thus an example for the spreading of innovations
in ancient human societies.

The agents are located within the area of interest for the study and characterized by a
position on the map and the presence (or absence) of the innovation. To keep the model
from being too complex we only explicitly model the mobility of the agents within the
study area and their interactions. Instead of also defining rules for demographic changes
of the population, we keep the number of agents constant.

For the mobility of the agents we assume that the main cause of migration for the
herders is the need for a suitable environment for feeding their flock. In addition, we
also assume that agents want to avoid conflicts over resources and thus keep a distance
between each other that is, however, not too large such that the interaction with other
agents is still possible.

While the exchange between groups of herders has certainly been more complex, we
assume that the agents can interact with all other agents that are nearby. The propa-
gation of the innovation is modeled as a transmission from one agent to another due to
a pairwise interaction, i.e., a second order adoption.
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Model formulation

State space: To formalize our model assumptions using the framework of Chapter 1 we
define the domain X ⊂ R2 as the map of our study area and define for the status of the
agents the set S := {0, 1}, with 0 indicating the absence and 1 indicating the presence
of the innovation of the woolly sheep. We assume a constant number of na agents that
are characterized by a position in the domain X and an innovation status from S. We
denote again the agents’ positions by a vector X, the status of all agents with a vector
S and the system state by Y := (X,S). The system state space is consequently defined
as Y := Xna × Sna .

Agent mobility: As the main motivation for migration of an agent α is the search
for a suitable environment we define a suitability landscape V : X → R that encodes
for each location of the domain an assessment how fitting the local environment is for
herding sheep, with lower values indicating a higher suitability. As mobility patterns for
foraging often exhibit Lévy walk or Brownian motion characteristics [93] we assume that
for the agents of our model a Brownian motion Bα(t) on X is the driving force. The
Brownian motion is on the one hand a good choice for modeling the exploratory nature
of the foraging mobility and on the other hand also accounts for unknown reasons to
change the location, e.g., as a reaction to a catastrophic event. The resulting process
is then a diffusion process in the suitability landscape V which we already have studied
before in this work for simpler settings. The metastability of this process embodies the
return to suitable environments and thus the two main characteristics of foraging dy-
namics are represented in the model.

It remains now to include the influence of the positions of the other agents as an ad-
ditional factor for the mobility process. A popular choice for modeling this kind of
dynamics is through interatomic potentials such as the Morse potential [94] which has
also been utilized to model swarming behavior [95]. Thus, for each agent α we introduce
an interaction potential Uα : Xn → R with

Uα(X(t)) =
n∑
β=1
β 6=α

−cA exp

(
−
‖xα(t)− xβ(t)‖

lA

)
+ cR exp

(
−
‖xα(t)− xβ(t)‖

lR

)
, (3.1)

where ‖·‖ refers to the Euclidean distance, cA ≤ 0 is the constant specifying the strength
of the attraction force, cR ≤ 0 is the corresponding constant for repulsion force strength
and lA, lR ≤ 0 are the respective decay rate constants. As long as we choose cR > cA
and la > lR we have the repulsion from other agents dominating for short distances
and the attraction forces dominating for longer distances. The potential Uα has then a
unique local minimum at an optimal distance where both attraction and repulsion forces
are 0.

Combining these two influences we can formulate the mobility process for an agent
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α of our model with the stochastic differential equation

dxα(t) = − (∇V (xα(t)) +∇Uα(X(t))) dt+ σdBα(t), (3.2)

where σ > 0 denotes a diffusion constant, V the suitability landscape and Uα the inter-
action potential of agent α. The mobility process for the complete system of agents X(t)
can be viewed as a diffusion process in a generalized potential landscape (V + U) [35]
that is defined on the system state space. The suitability landscape V will be designed
such that the border ∂X of the domain is an unsuitable area and in addition we impose
reflecting boundary conditions, i.e., a motion due to randomness that leads to an exit of
the domain is rejected. Thus, the mobility process is restricted to the compact set Xna
and there exists a unique equilibrium distribution for the positions of the agent system.

Innovation spreading: For the spreading process between the agents we a define a
jump process and assume a second order adoption from innovation status 0 to innovation
status 1 as defined in Equations (1.7) and (1.8). We define for each agent α the status

change vector v
(α)
01 as in Equation (1.5) that represents an adoption of the innovation

and the corresponding second order adoption rate function

f
(α)
01 (X,S) = δ0(sα)

na∑
β=1
β 6=α

c01δ1(sβ)dr(xα, xβ), (3.3)

with c01 > 0 a rate constant and r > 0 the interaction radius. We assume that there is
no transition back to status 0, i.e., the agents do not dismiss the innovation once it was
adopted. The jump process for the adoption dynamics is then given by

S(t) = S(0) +

na∑
α=1

eαP(α)

(∫ t

0
f

(α)
01 (Y (s))ds

)
, (3.4)

where eα is the α-th na-dimensional unit vector and the P(α) are independent unit rate
Poisson processes.

Combined process: The combined process for the evolution of the agent system is
then given by the stochastic differential equation

dY (t) =− (1Xna , 0Sna ) (∇(V + U)(Y (t))dt− σdB(t))

+

na∑
α=1

v
(α)
01 f

(α)
01 (Y (t))dP(α)(t),

with 1Xna denoting the 1-function on Xna , 0Sna denoting the 0-vector on Sna and B(t)
a Brownian motion in Xna .

109



Data integration

From the available data we use the present-day geographical data to assess whether an
area of our domain has been suitable for herding sheep. The environmental data contains
four geographical features (see Figure 3.2 a-d):

1. elevation data derived from the Shuttle Radar Topography Mission with resolution
500m×500m (SRTM 500) [96]

2. topographic compound index (TCI) [97]

3. terrestrial landforms [98,99]

4. data on the soil texture [100]

The TCI represents the tendency of water to accumulate at any point in the catchment
and the tendency for gravitational forces to move the water downslope. These factors
influence the suitability of an area for grazing sheep and thus will be used to construct
the suitability landscape for the mobility model. The environmental data covers the
whole area of interest with a resolution of 500m×500m and is assumed to be static for
the simulated time period.

For the construction of the suitability landscape we can infer four main environmen-
tal factors that influence sheep-keeping from the four data sets: (1) elevation, (2) water
availability (TCI), (3) different geomorphological landforms (such as ridges, flat plains)
and (4) soil texture [14]. For each of these for environmental factors we have given an
assessment which values correspond to a high suitability and thus we have four functions
Fi : X → R, i = 1, ..., 4 on the domain that map each location to the evaluation of the
suitability. The final suitability landscape is then simply constructed as V :=

∑4
i=1 Fi

which corresponds after rescaling to an unweighted average of the environmental factors.
A weighted average could be an alternative option for the construction, either with the
help of additional expert knowledge or the utilization of an approximate bayesian com-
putation approach as is described in [14] to estimate the weights.

A majority of the bone data is located in suitable areas of the landscape V , which
can be interpreted that our assessment of the suitability is plausible. The presence of
ovicaprid bones at a position, however, only indicates that a sheep or goat either died or
was buried at that location and does not allow for the conclusion that the location of the
finding also was suitable. Vice-versa the absence of bone findings does not allow for the
conclusion that an area was unsuitable, especially in our situation of many missing data
points. The assessment of the suitability by the geographers that have been involved
in the project is thus a lot more convincing than an attempt to validate the suitability
landscape with the limited archaeological data.
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Figure 3.2: Visualisation of the different geographical features (a)-(d) that are used to
construct the suitability landscape V and a visualisation of V itself (e). The
colormap ranges from blue to yellow with blue indicating the most suitable
and yellow the least suitable areas. The assumed origin of the woolly sheep
in northern Syria is marked with a red circle in (e).

111



Simulation details

We choose the number of agents to be na = 4000 which corresponds to a population of
roughly 40000-100000 herders within the study area if we consider an agent to represent
a small group of 10-30 people. While not much is known about the population density in
that time frame simulations for the population density in the area of today’s Greece [101]
suggest that the chosen number of herders is reasonable. We measure the time of our
model in simulated years and choose the default time step size for the simulations to
be ∆t = 1

365 which corresponds to a simulated day. The suitability landscape V and
the diffusion coefficient σ are scaled such that the average distance that an agent moves
within a time step is roughly 1km. The constants and rates for the interaction potential
U are scaled such that we have the situation of short range repulsion and long range
attraction and an optimal distance between agents of approximately 1km.

For the parameters of the second order adoption rate functions we consider two dif-
ferent scenarios. The first scenario is the one discussed in [15] with the adoption rate
constant being c01 = 8 (which corresponds to roughly 45 days of pairwise interaction
until an adoption happens on average) and an interaction radius of r = 10km. As this
parameter choice for the adoption rate constant is rather high we have the situation that
the adoption process is faster than the mixing of agents within suitable areas. This has
an influence on the approximation quality of a model reduction to a PDMM. Thus, it is
interesting to also consider a second scenario for comparison where we have in addition
to the time scale separation of the mixing of the agents within and the transition of the
agents between suitable areas of the landscape also a time scale separation between the
adoption process of the agents and the mixing within the metastable sets of the suit-
ability landscape. Therefore, we choose c01 = 0.05 and r = 50km as parameter values
for the second scenario. As these choices are vastly different than the parameters of the
first scenario the question remains whether the choices are still reasonable and allow
for an interpretation of the results in the archaeological context. Considering the pa-
rameter choices for modeling hunter-gatherer societies in the next section I would argue
that the parameter values of the second scenario of this model are still plausible, even
though they are mainly motivated by the applicability of the model reduction framework.

We initialize the agent system with a uniform distribution of positions and only simulate
the mobility process until the positions are approximately distributed according to the
equilibrium distribution of the diffusion process within the suitability landscape. Then
we initialize the spreading process by setting the status of all agents that are close to
the assumed origin of the woolly sheep to 1. The time is then initialized as 0 (which
corresponds to 6200 BC). As some agents are isolated and not reachable, e.g., when
positioned on an island, the simulation is stopped when 95% of the agents have adopted
the innovation. In both scenarios, we have the situation of rather sparsely distributed
agents that have only few connections, which results in a generally low total adoption
rate. Also by the construction of our model at most 3999 adoption events can occur
within more than a million time steps. Thus, it is clear that for the simulation of the
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model the event-based approach of Algorithm 5 is more accurate and more efficient than
the alternatives. The algorithm has not to be further adapted for the model, however,
as for both the evaluation of the adoption rate functions and the evaluation of the inter-
action potential we need a neighborhood computation, it is clear that the neighbor lists
need to be stored for the time step duration such that the computation needs to be only
done once in each time step. The neighborhood computations as well as the evaluation
of the adoption rate functions and the interaction potential represent the majority of the
computational effort and unfortunately scale superlinearly with the agent numbers. As
the agent system of the model is already quite large compared to the conceptual models
of the examples in Chapter 1 this is reflected in a comparably long simulation time. For
a single realization of the ABM a node equipped with the hardware available at the time
of writing needs about 30 hours of computation time.

Results and analysis

As the model is too complex for a formal analysis we will only do a descriptive analysis of
the simulation results. Let us begin with discussing the example simulation of Scenario
1 that is visualized in Figure 3.3. In the first snapshot, we see the initial system state of
the time when the spreading process starts. In the second snapshot, we can observe that
the spreading within the Fertile Crescent region happens very fast until the agents en-
counter the first geographical barriers given by unsuitable areas. While during the next
1000 simulated years the woolly sheep has already spread to most regions in the Near
east the transition to Europe only occurs after a longer waiting time of an additional
900 simulation years (see snapshots 3 and 4). After this critical transition the spreading
within Southeastern Europe happens again on a faster time scale and after roughly 2800
simulated years the simulation ends with today’s Ukraine being the last region of our
study area that is reached (see snapshots 5 and 6).

There are many metastable system states that occur whenever a geographical barrier of
unsuitable terrain needs to be passed by an agent to spread the innovation to the next
suitable area and thus the metastability in the spreading process is inherited from the
metastability of the mobility process. The greatest time scale difference is induced by the
transition from the Near East to Europe over the Bosporus. This metastable behavior
is also observable when looking at the macroscopic spreading process, i.e., the number
of woolly sheep adopters over time, for several simulations as well as the average over
a sample of 42 ABM simulations for Scenario 1 and 50 ABM simulations for Scenario
2 (see Figure 3.4). The spreading speed of the average simulation slows down signif-
icantly once the first transitions through unsuitable terrain need to occur to continue
the spreading. For Scenario 2 we can observe that the adoption speed of the average
trajectory also slows down noticably again for the metastable transition into Europe. In
the single simulations, we can observe many time periods throughout which the number
of adopters over time is almost constant, especially during the long waiting time for the
transition to Europe.
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Figure 3.3: Visualization of six snapshots of an ABM simulation for the spreading of the
woolly sheep. Blue dots mark agents without the innovation and red dots
agents that have adopted the woolly sheep. The black borders indicate a
partition of the domain into 23 major geographical landscape units. [14]

Also when considering the mean first hitting time of the 23 specified geographical regions
for agents with status 1 the metastability of the mesoscopic spreading process between
the regions is visible (see Figure 3.5). The transition to Europe via the Bosporus happens
on a slower time scale than the spreading within the Near East and within South-East
Europe. The much greater interaction radius of Scenario 2 makes it more likely to trans-
mit the innovation over geographical barriers without agents fully crossing them leading
to significant differences for the mean first hitting time of some mountainous regions.
For a more detailed look at the first hitting time distributions, especially for the critical
transition to Europe, the sample size is unfortunately too small to get meaningful results.

The observed differences between the two scenarios raise the question how sensitive
is the model to parameter changes? It is clear that higher adoption rates lead to a faster
spreading, but only up to the point where each contact between agents with a different
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(a) Scenario 1 (b) Scenario 2

Figure 3.4: Number of adopters over time for the ABM simulations (blue curves) and
the average over all trajectories (red curve) for each scenario. The variance
increases greatly with time and for the trajectories of the single simulations
metastability in the adoption process can be observed. In comparison, the
macroscopic spreading process of Scenario 2 is more metastable and multiple
time scale separations can be observed in the average trajectory.

status is expected to lead to an instantaneous adoption event. In Scenario 1, we do not
yet have this situation, but the high adoption rate already leads to differences in the
observed macroscopic patterns. The spatial spreading path is, however, unaffected by
changes to the adoption rate and primarily influenced by our choice for the suitability
landscape and the scaling of the diffusion process. An increase in the number of agents
na will lead to an increased frequency of transitions between suitable areas and thus also
speed up the overall spreading process. The mobility patterns might also slightly change
due to the interaction potential. Finally, an increased interaction radius r leads to an
increase in the average number of connections between agents and as we have observed
can also affect the spreading path if chosen too large. A sensitivity analysis that was
performed for Scenario 1, however, suggests that the model is robust to small changes
to the interaction radius r [15].

Validation and interpretation

One can only speculate whether or not the true prehistorical spreading path is corre-
lated with the outcome of our simulation. The main reason we can not validate our
model is that the available archaeological data is very sparse and obscure. The data
suitable for validation consists of the spindle whorls from 23 sites that are located only
in the Panonian Basin [102]. Also, we can not generate new data to reproduce the true
dynamics in order to validate our results. For all these reasons a model validation in
the common sense of natural science appears impossible to us. The simulated spreading
path can be understood as a spreading path hypothesis which has to be discussed and
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(a) Scenario 1

(b) Scenario 2

Figure 3.5: Mean first hitting times for the 23 major geographical landscape units mea-
sured in simulated years for both scenarios.

evaluated with the help of additional expert knowledge [15].

The mean first hitting time of the Panonian Basin for agents with status 1 is a few
hundred years later than the dating of the oldest spindle whorls of the data set. This
can be explained with the model probably overestimating the critical transition time to
Europe. As the model does not allow for sea travel and we only assume movements of
the foraging type but not the use of established routes the Bosporus is probably a too
strong bottleneck.
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3.1.2 PDMM Approximation

While the small number of ABM simulations already provides a nice illustration and
possibly some insights for archaeologists about the hypothetical spreading path based
on the assumptions about the mobility patterns in ancient times, a more thorough anal-
ysis and estimation of critical transition time distributions is infeasible because of the
small sample size. As the sample size can only be increased with a lot of additional
computation time it already takes too much effort to even generate a sufficiently large
sample size for one scenario, let alone for multiple parameter sets. Thus, we are inter-
ested in reducing the simulation effort by applying model reduction techniques.

While the macroscopic spreading dynamics could probably also be learned by a method
like SINDy [103] with use of the right basis functions, as it has been successfully applied
to other ABMs [104], the mesoscopic patterns that we are especially interested in would
be lost. The model reduction framework of Chapter 2 fits much better to our situation,
as only the microscopic details of the ABM will be lost through a PDMM approximation,
but the spatial patterns on the mesoscale can be preserved. Thus, we will now discuss
the construction of a PDMM based on the ABM for innovation spreading in ancient
times.

Identification of subpopulations

The first step of the PDMM construction is the definition of the subpopulations. As
we already have a partition into 23 geographical regions given this would be the easi-
est choice for choosing the subpopulations. However, as we can observe in the micro-
scopic trajectory some regions contain multiple agent clusters that could be considered
metastable and some agent clusters are positioned at the borders between the parti-
tion sets. It is thus clear that the given partition into 23 major landscape units is not
metastable, so we can not expect that the resulting model would have a good approxi-
mation quality. So, we have to begin with identifying the metastable sets with respect
to the mobility process.

As we do not have an analytical expression for the transfer operator of the mobility
model we can not directly apply the spectral approach to metastability. While we could
utilize a square root approximation [105] to estimate a transfer operator for the diffusion
in the suitability landscape, this approach would neglect the influence of the interaction
potential. For the generalized potential landscape that includes all influences of the
mobility model, however, we can not apply this technique as the state space is too high
dimensional. We thus choose to apply an approach based on clustering methods.

The most commonly used method is probably the kmeans algorithm [106], which per-
forms well for centroid shaped clusters but can fail with correctly identifying oddly
shaped clusters. In this situation, density based clustering methods perform very well
and a current state of the art method in this regard additionaly utilizes an hierarchical
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Figure 3.6: Visualization of agent clusters that have been identified with HDBSCAN and
a corresponding full partition that is constructed by a Voronoi tessellation
based on the core sets. The core sets are marked by colored regions, the bor-
ders of the full partition set are indicated by black lines and for comparison
the positions of an ABM snapshot are visualized by black dots.

clustering approach [107], which improves the performance for varying data point den-
sities. Thus, the hierarchical density based clustering method HDBSCAN [107] will be
our method of choice to identify the metastable areas of our domain with respect to the
mobility process.

We apply the HDBSCAN algorithm to the position data sampled from ten different
realizations of the ABM for a reasonable minimum cluster size and get as a result a
set of m = 35 spatial clusters (see Figure 3.6). Depending on the approach we have
now various possibilities to define the subpopulations of the PDMM. The first possi-
bility would be to utilize the core set approach and directly define the subpopulations
C1, ..., Cm as the clusters from the HDBSCAN results. The second possibility would
be a full partition approach, where we define a partition A1, ..., Am of the domain by
utilizing a Voronoi tesselation based on the clusters (see Figure 3.6). In the following,
we will consider both approaches for constructing the model and discuss the differences
for the estimated transition rates and interaction probabilities. There are of course also
possibilities in between the two approaches, e.g., a core set approach with enlarged core
sets containing the clusters but not yet forming a full partition. The enlargement of the
core sets in a Voronoi fashion would lead to monotonically increasing transition rates for
the PDMM, with the model based on the full partition being the one with the maximal
transition rates.
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PDMM definition

We define the system state of the PDMM approximation by an m× 2 matrix N which
is initialized by drawing an initial distribution of population members according to an
estimated invariant measure µ̂ for the mobility process. The members of the subpopula-
tion that includes the origin of the woolly sheep are initialized with status 1 and for all
other subpopulations the members are initialized with status 0. We define the spatial
transitions between the subpopulations as a jump process generated by a rate matrix
Λ and as the type of dynamics is the same we define the deterministic dynamics of the
internal adoption process as we did for the Guiding Example 2.2.5, i.e., we define for
each subpopulation

f̂
(k)
01 (N) = c01bkN

(k)
0 N

(k)
1 , (3.5)

with bk being the interaction probability within the subpopulation k. However, instead
of using a forward Euler scheme to integrate the adoption rate functions to propagate the
internal adoptions, we directly use the analytical solution given by the logistic function,
i.e., we have for consecutive jump times t0 < t1

N
(k)
1 (t) = n

(k)
0

(
1 + e−c01bkn

(k)
0 t
(
n

(k)
0 −N

(k)
1 (t0)

))−1

,

with n
(k)
0 := N

(k)
0 (t) + N

(k)
1 (t). This way we can use an adapted stochastic simulation

algorithm, where we only need to draw the jump events for the spatial transitions and
thus have an additional gain in computational efficiency.

Parameter estimation from ABM data

We need to estimate in total three different parameters for each subpopulation k: the
invariant measure µ̂k for the initialization of the model, the kth row of the rate matrix
Λ and the interaction probability bk. For the estimation of the rate matrix Λ we use
the maximum likelihood estimator from Section 2.1.3. We can estimate the invariant
measure of subpopulation k by calculating the average number of agents assigned to

subpopulation k denoted by n̂(k) and setting µ̂k := n̂(k)

na
. For the core set approach the

assignment to the subpopulations is realized by calculating a milestoning trajectory from
the simulation data. Finally, we estimate bk by calculating the interaction probability
for agents assigned to subpopulation k for each simulation snapshot and averaging over
all snapshots.

As the core set approach leads in general to better estimates of the transition rate
matrix Λ we first define the subpopulations of the PDMM as C1, ..., Cm and estimate
the rate matrix for the core set MSM of the mobility model Λ(C), as well as the inter-
action probabilities bk(C) and the invariant measure µ̂(C). Unfortunately the resulting
model is not working as intended, as the transition rates from core sets located in the
Near East to core sets located in Southeastern Europe are all estimated as 0, i.e., there
are no spatial transitions possible from the Near East to Europe. While at first this re-
sult may seem devastating we actually gain the insight, that the original mobility model
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is not able to actually perform transitions over the Bosporus. The reason for that is
unclear, but it can be presumed that because of the narrow landscape the boundary
conditions are often imposed and agents tend to get stuck at the Bosporus. On the
other hand, because of the interaction potential the stuck agents repel other agents that
are entering the area of the Bosporus. Nevertheless, the transmission of the innovation
is still possible over the Bosporus through a chain of adoption events.

Since the PDMM approximation failed for the core set approach, the next step is to
apply the same procedure for the full partition case and define the subpopulations of the
PDMM as A1, ..., Am. We estimate the rate matrix for the core set MSM of the mobility
model Λ(A), as well as the interaction probabilities bk(A) and the invariant measure
µ̂(A). The interaction probabilities and the invariant measure are estimated almost the
same as for the core set approach, but as expected the estimated rate matrix Λ(A) con-
sists of much higher transition rates. While the resulting model is working as intended
the transitions between the subpopulations occur much faster than in the ABM and thus
also the simulated spreading process and the estimated first hitting times are too fast.
This can be explained by the frequent recrossings of the borders of the partition sets
and is a common problem for full partition MSMs, as we also pointed out in Section 2.1.3.

While both approaches led to inaccurate models each of the two PDMMs had some
desirable properties. While the core set PDMM was overall not working the transition
rates between the subpopulations located within one of the two continental regions have
been estimated closer to the ABM. On the other hand, while too fast the full partition
PDMM produced a working model with a network of subpopulations only consisting of
one connected component. So it is natural to consider a weighted average of the two
models. This way the two components of the core set PDMM will be connected due to
the inclusion of the positive full partition transition rates between the subpopulations
that include the Bosporus region. On the other hand the full partition transition rates
that have been too high get reduced due to the weighted averaging with the core set
MSM rate matrix.

To be precise, for the combined PDMM approach we define the subpopulations as the
full partition sets A1, ..., Am, we choose a weight constant w ∈ [0, 1] and estimate the pa-
rameters for the model as Λ(w) := wΛ(C)+(1−w)Λ(A), bk(w) := wbk(C)+(1−w)bk(A)
and µ̂(w) := wµ̂(C) + (1 − w)µ̂(A). And indeed, the resulting model produces accept-
able results which we can compare to the ABM results in the next section to assess the
approximation quality. In the machine learning community the concept of averaging
different models is also used, e.g., for neural networks [108], and the resulting averaged
models can have an increased approximation quality.

3.1.3 Comparison of both Approaches

We will now look at the results of the PDMM approximation in comparison with the
respective results of the ABM for innovation spreading in ancient times. For both sce-

120



narios we are able to generate a much larger sample of PDMM simulations because of
the reduced computational effort. The simulation of a single PDMM simulation takes
on average only a few seconds of computation time with the same hardware used for the
ABM simulations, which represents a massive gain in efficiency of 5 orders of magni-
tude! This means in addition to visualizing the average macroscopic spreading and the
expected arrival times between the regions on the mesoscale we are able to actually sam-
ple the distributions of the critical transition times, especially for the critical transition
to Europe, or even spreading path statistics.

Scenario 1

For Scenario 1 we choose the weight w = 0.6 for the averaging of the model parameters,
which means that the model parameters of the combined PDMM are closer to those
derived from the core set approach.

(a) PDMM trajectories (b) Comparison: ABM and PDMM results

Figure 3.7: PDMM results for Scenario 1. In (b) the averaged macroscopic trajectories
for the number of woolly sheep adopters of both model types are compared.

In Figure 3.7 (a) the trajectories of 1000 PDMM simulations are visualized as well as
the average over the sample. We can observe the increasing variance over time and the
metastability of the macroscopic trajectory for the number of woolly sheep adopters.
Compared to the ABM simulations we get a much better picture about the variation of
the trajectories due to the increased sample size. Comparing the average trajectories
of the PDMM and the ABM we can observe that there is some deviation and that
the PDMM spreading is faster. It is unclear, whether an increased sample size would
also lead to a smaller error, but we know that the parameter choice for the adoption
rate constant c01 is so high that the adoption process is faster than the mixing within
the subpopulations, which can be a source of error and cause a reduced approximation
quality. We can see that even in the beginning of the simulation, before the main source
of error due to the approximation of the spatial transition takes effect, we already have
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a significant difference in the average macroscopic spreading paths.

(a) ABM for Scenario 1

(b) PDMM for Scenario 1

Figure 3.8: Mean first hitting times for the partition sets of the full partition used for
the PDMM construction. The results for the ABM have been averaged over
42 simulations while for the PDMM a sample of 1000 simulations was used.

On the mesoscale we can overall observe a similar pattern for the first arrival of the
woolly sheep (see Figure 3.8), though there are clearly some sets with larger deviations
for the mean first hitting time. The slower transition over the Bosporus is well captured
in the reduced model and the estimated mean first arrival of the woolly sheep in Europe
is very similar in both models (ABM: after 1834 simulation years, PDMM: after 1860
simulation years.)
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Scenario 2

(a) PDMM trajectories (b) Comparison: ABM and PDMM results

Figure 3.9: PDMM results for Scenario 2. In (b) the averaged macroscopic trajectories
for the number of woolly sheep adopters of both model types are compared.

For Scenario 2 we choose the weight w = 0.66 for the averaging of the model parame-
ters, which means that the model parameters of the combined PDMM are again closer
to those derived from the core set approach. In Figure 3.9 (a) the trajectories of 1000
PDMM simulations are visualized as well as the average over the sample. We can observe
the increasing variance over time and the metastability of the macroscopic trajectory
for the number of woolly sheep adopters. Compared to Scenario 1 the characteristics
of the PDMM and the ABM trajectories are much more similar. While the ABM tra-
jectories for Scenario 1 have been less metastable (at least for the small sample) the
PDMM trajectories had almost instantaneous spreading of the innovation within the
subpopulations. In comparison, the trajectories of the PDMM for Scenario 2 feature a
slower and thus smoother spreading within the subpopulations as is also characteristic
for the ABM trajectories. The fit of the average trajectories (see Figure 3.9 (b) is much
better than it has been for Scenario 1 and we can reasonably assume that an increase
in size for the ABM sample would lead to an even better fit of the curves. As we have
constructed Scenario 2 to have faster mixing within the subpopulations compared to the
speed of the adoption process this potential source of error is no longer present. Indeed,
especially in the beginning of the simulation we now also have a very good fit.

On the mesoscale we can again observe overall a similar pattern for the first arrival of
the woolly sheep (see Figure 3.10)and compared to the first scenario there are no sets
with extremely large deviations of the mean first hitting time. The slower transition
over the Bosporus is again well captured in the reduced model but the estimated mean
first arrival of the woolly sheep in Europe is this time significantly faster in the PDMM
(ABM: after 2401 simulation years, PDMM: after 2132 simulation years). It is interest-
ing to note that in the southwestern part of the domain the PDMM simulation actually
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(a) ABM for Scenario 2

(b) PDMM for Scenario 2

Figure 3.10: Mean first hitting times for the partition sets of the full partition used for
the PDMM construction. The results for the ABM have been averaged over
50 simulations while for the PDMM a sample of 1000 simulations was used.

produces larger first hitting times compared to the ABM. This can be explained by the
large interaction radius of 50km in Scenario 2, which can lead to a spreading over geo-
graphical barriers.

As in the PDMM the interactions between agents of different subpopulations are ne-
glected this effect is not present, as there has to actually happen a spatial transition
between the subpopulations to enable the spreading. For the PDMM the increased
interaction radius only induces an increased interaction probability bk(w). A similar
situation might also appear for a few subpopulations that are surrounded by mountains
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in the situation of Scenario 1.

All comparisons between the models have to be taken with a grain of salt as the sample
size for the ABM simulations is too small in both cases. Some of the observed differences
or smilarities between the model outcomes might only be a result of the specific sample
of ABM simulations and thus simply caused by the stochastic nature of the model.

Critical transition times

Finally, we briefly take a look at the distribution of the critical transition time of the
woolly sheep to Europe estimated from a sample of 10000 simulations for each scenario
(see Figure 3.11).

(a) Scenario 1 (b) Scenario 2

Figure 3.11: PDMM results for the distributions of the critical transition time to Europe
for both scenarios.

Overall the shape of the distributions is heavy tailed and similar for both scenarios.
While a direct comparison with the ABM data is not meaningful because of the difference
in sample size, a Bayesian statistics approach [109, 110] might be suitable to assess the
likelihood of the critical transition time sample from the ABM simulations being drawn
from the distribution that is estimated by the PDMM. The application of Bayesian
methods might even be used to find an optimal weight w for defining the combined
model parameters. This, however, will be beyond the scope of this work and be left as
a possible topic for further research.
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3.2 Cultural Evolution of Hunter-Gatherer Societies

The second application of our modeling framework will again be the situation of a pre-
historical process. This time we are interested in developing a model for the cultural
evolution of hunter-gatherer societies in Central Africa from 120000 BP until present
time. While in the modeling scenario from the previous section we were designing the
model for innovation spreading with a specific prehistoric process in mind, in this section
the intention is to design a more general model that can be easily adapted to various
more concrete applications.

Central Africa homes some of the largest, most resilient and genetically ancient hunter-
gatherer populations in the world [111,112] spanning 120,000 years. It is relatively safe
to assume that until the advent of the Neolithic human populations were exclusively
composed of hunter-gatherer bands [113]. Thus gaining insights about the mobility of
hunter-gatherers is of importance not only for cultural evolution but for many prehistoric
processes. A key element of hunter-gatherer mobility is the adapation to changing envi-
ronments [114–117] and the changes in mobility patterns are assumed to be a major influ-
ence for population and cultural dynamics [118–120]. The evolution of complex culture
has parallels to the evolutionary dynamics of the genetic inheritance system [121–123]
and a key question is the role of interconnectedness of populations [124–127]. While
this question has already been extensively studied [125,128–130] there is still a need for
formal and explicit models to investigate the influence of environmental changes to the
interconnectedness of hunter-gatherer populations.

We will develop in this section a spatio-temporally explicit agent-based model to ex-
amine the socio-ecological drivers of hunter-gatherer demographic and mobility patterns
and how these patterns could have affected the process of cultural evolution. While the
model will be designed utilizing real-world data from hunter-gatherers and the environ-
ment of Central Africa it can easily be adapted to model the mobility of hunter-gatherers
from other regions of the world. The model for cultural evolution will be rather general
and conceptual such that it can be adapted to many more concrete research questions.
Still, we are able to explore which aspects of hunter-gatherer social structures are re-
quired for the emergence and maintenance of complex, cumulative culture and we can
offer insights into the adaptive nature of a foraging lifestyle. This model is also presented
in [17] with a greater focus on the case study and the interpretation of the results in the
anthropological context.
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3.2.1 ABM for Mobility and Cultural Evolution of Hunter-Gatherers

In this subsection, we formulate an agent-based model for the cultural evolution of
hunter-gatherer societies. We will at first state the modeling assumptions in a descriptive
way and then formalize our assumptions to define the Markov jump process for the ABM.
We will use the experience that we gained through the modeling of innovation spreading
in ancient times for the spreading of the woolly sheep and build upon the model from
the last section. The model will be adapted to include the different mobility patterns of
hunter-gatherers in Central Africa and expanded such that we can formulate the more
complex dynamics of the cultural evolution process.

Model assumptions

The agents are located in the Central African region including the Congo Basin. As
we are interested in the interactions between hunter-gatherer societies on this rather
large spatial scale we choose our agents to represent camps of hunter-gatherers instead
of individual human beings. The agents are characterized by the camp location on the
map, the number of camp members and a cultural status. The mobility of the agents
thus does not describe the mobility of the camp members but represents the residential
mobility of the hunter-gatherer camps, which is one of the defining features of hunter-
gatherers around the world and has been proposed to have important implications for
cultural transmission and evolution [114,115,127,131–133].

We assume that the residential mobility is mainly motivated by the need for a suit-
able environment that provides enough resources for foraging within the vicinity of the
camp location [115]. The agents are thus searching for a suitable environment, but also
want to avoid conflicts over resources with other agents, i.e., overlapping foraging areas.
The speed of the movements is influenced by the environmental conditions, i.e., the fric-
tion of the landscape.

The camp populations are subject to demographic changes that depend on the car-
rying capacity of the environment at the camp location. A lack of resources leads to
a decline of the population, while a sufficient supply leads to population growth. The
population of a camp cannot grow indefinitely, as after a certain point it can become
too large to stay organized as a single unit [134, 135]. In this case, there is a fission
into two smaller camps. Given that hunter-gatherer survival and reproductive abilities
depend on camp-wide division of labour, cooperation and sharing [131,135–137], we also
assume that an agent needs a minimum number of camp members to be able to survive.
An agent that does not meet this required number either faces extinction or can join
another nearby camp.

The culture of an agent consists of some number of attributes, referred to as cultural
features, each of which can take a number of values (or traits). Changes to the culture of
an agent happen on the one hand due to intrinsic processes and on the other hand due to
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pairwise interactions with other camps that can lead to a cultural transmission. For the
interactions we assume a dependence on the distance of the camps, i.e., agents that are
closer to each other interact more often. We assume that there is a dynamical distinc-
tion between cultural features that tend to evolve towards greater complexity [138], e.g.,
technology, and cultural features that are not subject to ecological pressures and where
complexity is not necessarily associated with greater payoffs, such as songs, folktales or
any other stylistic traits [139, 140]. We assume different intrinsic processes for the two
cases and a bias in the transmission dynamics in the first case such that more complex
traits are favoured.

Model formulation

We formulate our model on the micro-scale as an agent-based model similar to the ap-
proach that we utilized for modeling innovation spreading in ancient times. The basic
setting considers a set of na agents that follow rules for their spatial movement and the
social interactions that govern cultural transmission. While at first we assume the num-
ber na to be static we will move on to na being rather an upper bound for the number
of agents and explain how we realize a changing number of active agents.

An agent α represents a hunter-gatherer camp that at every point in time t has: (1)
a position xα(t), representing a location of the camp in terms of latitude and lon-
gitude coordinates; (2) a camp population dα(t), representing the number of people
who live in the camp and (3) a cultural status s(α)(t), representing a cultural tradi-
tion or technology of the camp. Thus, the state of the agent α at time t is given by
yα(t) :=

(
xα(t), dα(t), s(α)(t)

)
and Y (t) := (X(t), D(t), S(t)) denotes the system state

at time t. Formally, a position is denoted by a continuous state variable taking values
in the compact domain X ⊂ R2, a camp population taking values in R and a cultural
status is a discrete state variable that takes values in the countable set S, such that
Y (t) ∈ Y := Xna × Rna × Sna .

There are three processes that govern the change of the system state of the ABM.
The first is the (residential) mobility of the agents that we model as a diffusion process
in a suitability landscape V , where agents change their position in X according to the
suitability and friction of their physical environment and in reaction to the movements
of the other agents.

The second process is the demographic change of the population vector D(t) which
is modeled deterministically with population growth and decline depending on the car-
rying capacity of the landscape as well as the system state Y (t).

Finally, we have the evolutionary cultural dynamics for which we use a common adapted
version of Axelrod’s definition [141] in which culture is defined to be a set of attributes
that are subject to social influence [142, 143]. We consider the culture of an agent to
be composed of a finite number of c cultural features, each represented by an integer
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value. A feature could be knowledge about a certain kind of tool or technique but also
a shared belief or societal value (see Section. Thus, in a general setting we consider as
status space S ⊂ Nc.

Next, we will define the three processes of our ABM for the mobility and cultural disper-
sal of hunter-gatherer societies in more detail. Although the model and analytical tools
presented in the following sections are designed to be generalizable across temporal, en-
vironmental and ethnographic settings, we detail the present parametrization our model
with data from contemporary hunter-gatherer populations living in Central Africa.

Mathematical modeling of agents’ mobility

In our model, the movement of the agents, i.e. the relocation of camp positions, is
governed by the environmental influences, interaction with other agents and possible
unknown influences. Formally, these dynamics are generated by a stochastic differential
equation, such that the movement of every agent α is given by

dxα(t) = −∇ (V (xα(t), t) + Uα(X(t))) dt+ σ(xα(t))dBα(t), (3.6)

where V : X × T → R is the time-dependent suitability landscape of the environment,
Uα : Xna → R the interaction force between agents, σ : X → R the friction-dependent
scaling function for the noise and Bα(t) a standard Brownian motion in R2. We now
proceed with more details on the different components of the equation (3.6).

Figure 3.12: Two snapshots of the time-dependent suitability landscapes V at 80,000BP
and 10,000BP with borders of mobility clusters marked in black.

Environmental influence: We account for the possible environmental factors by con-
structing a time-dependent suitability landscape V : X× T→ R that determines which
areas of X are attractive for the agents [15] (see Figure 3.12 for a visualization). For the
construction of the suitability landscape V (·, t) we utilize a bioclimatic environmental
niche model (ENM) from which we derive the likelihood of a hunter-gatherer camp being
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present for each position in the map [111]. Higher suitability values from the ENM in a
particular area correspond to a higher attractiveness of that area for hunter-gatherers.

Social interaction: The mobility of agents is also governed by the position of other
agents, such that agents at long distances are attracted towards each other and agents
at short distances are repelled from each other. Intuitively, these attraction-repulsion
forces between agents represent the trade-off between avoiding isolation and benefiting
from social interaction for material or cultural exchanges and avoiding conflicts over
territories or scarce resources [114, 115, 117, 144]. Thus, for each agent α we define an
interaction potential Uα : Xna → R with

Uα(X(t)) =

na∑
β=1
β 6=α

−cA exp

(
−
‖xα(t)− xβ(t)‖

lA

)
+ cR exp

(
−
‖xα(t)− xβ(t)‖

lR

)
, (3.7)

where ‖·‖ refers to the Euclidean distance, cA ≤ 0 is the attraction potential constant,
cR ≤ 0 is the repulsion potential constant and lA, lR ≤ 0 are the respective decay rate
constants [94]. This is the same kind of interaction potential that we used for the model-
ing of innovation spreading in Section 3.1.1 and the relations of the constants are chosen
in a similar fashion such that there is again an optimal distance between the agents.
The dominating term is the short range repulsion, which leads to agents maintaining a
minimum distance from each other so that the foraging areas (i.e., areas regularly used
for subsistence activities) of each camp do not overlap. This assumption has a solid
foundation in the literature about hunter-gatherers [114,127,144].

Stochastic effects: The stochastic part of the SDE in (3.6) is represented by a scaled
Brownian motion, and it prevents the system from becoming stationary even if every
agent has found a position with high suitability and with enough distance from other
agents. The characteristics of diffusion within a suitability landscape captures the na-
ture of the foraging mobility of hunter-gatherers, which is in this regard similar to the
model in Section 3.1.1. The scaling of the Brownian motion determines how fast agents
can travel, and hence it is dependent on the friction of the terrain. We define the scaling
function σ : X → R such that higher friction of the terrain implies a lower scaling of
the Brownian motion. For environmental barriers, e.g., a cliff or a mountain, the scaling
function will take values close to 0. In this way, it is very unlikely that an agent in our
model moves through impassable terrain.

Cultural evolution of agents

We encode the status of all agents in a vector S(t) with the entry s
(α)
i (t) being the trait

value of agent α for feature i at time t. The cultural evolution of agents is modeled
as a Markov jump process where the possible jumps between different trait values of a
feature are encoded by the status change vectors vj , j ∈ {1, . . . , J} with J ∈ N. For two
consecutive event times t1 < t2 and the jump event at time t2 corresponding to vector vj ,
we can write the change to the system state due to status changes as (Y (t2)) = Y (t1)+vj
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with vj only acting on the status vector S and not on the other state variables. Each
of the J cultural status changes has a time-dependent rate specified by an associated
adoption rate function that depends on the evolution of the agent system.

For the status changes we consider two different event types: Events that result from
intrinsic processes of camps, e.g., the development of a new innovation or loss of knowl-
edge, by first order status changes and events that result from exchange or social learning
between camps, e.g., the transmission of a trait from one camp to another, by second
order adoptions. Transmissions between two agents are governed by the agents’ spatial
proximity that is captured in the structure of a time-dependant interaction network that
we utilize to define the second order adoption rate functions.

Additionally, we consider two types of cultural features: Progressive and Non-progressive.
The former represent,e.g., tools or technological innovations, where efficiency and pay-
offs increase with an increasing number of component elements [138]. As the knowledge
about more different or more efficient variants of a tool is beneficial we bias the trans-
mission dynamics to favor the transfer of knowledge [145, 146]. On the other hand,
”Non-progressive” cultural features represent those cultural domains not subject to eco-
logical pressures and where complexity is not necessarily associated with greater effi-
ciency [139,140]. In this case the transmission dynamics will be unbiased.

Interaction network

We assume that for the interaction of two agents spatial proximity is required and con-
struct a network from the agents’ positions X(t), where two distinct agents α and β are
adjacent at time t if their Euclidean distance is closer than a specified interaction radius
r, i.e., ‖xα(t) − xβ(t)‖ ≤ r. In our model we assume more frequent interactions, i.e., a
higher interaction rate ϕ1, in the closer neighborhood of the agents compared to long
distance interactions that are less frequent with rate ϕ2. We thus choose an interaction
radius r1 > 0 for defining the short range and another interaction radius r2 > r1 for
defining the long range interactions between agents.

Then, we define the adjacency matrix A(Y (t)) for the time-dependant weighted interac-
tion network between agents by

Aαβ(Y (t)) :=


ϕ1, if ‖xα(t)− xβ(t)‖ ≤ r1

ϕ2, if r1 < ‖xα(t)− xβ(t)‖ ≤ r2

0, else

(3.8)

with ϕ1, r1 corresponding to short and ϕ2, r2 corresponding to long range interactions.
In Figure 3.13, we plot a part of the interaction network from one simulation at time
80000 BP.
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Figure 3.13: Snapshot of a simulation for illustrating the short range interactions (left)
and the weighted interaction network (right). Blue edges correspond to
edge weights for short range and red edges to edge weights for long range
interactions.

Progressive cultural features

In the case of progressive features we consider only gradual changes of the trait values,
i.e., depending on the type of event an agent either increases or decreases its trait value
by 1. We thus define for a progressive feature i and each agent α, the na-dimensional

vector e
(α)
i which has a value 1 for feature i and agent α and value 0 otherwise. Com-

bining the status change vector v
(α)
i := e

(α)
i with the 0-vector on Xna × Rna gives us

then the associated state change vector ṽ
(α)
i for the ABM system state. We consider the

set containing all v
(α)
i and −v(α)

i as the set of possible status change events with 2cna
elements.

First order status changes: We choose constant rates γi, λi > 0 for gain and loss
of information in feature i respectively and define the corresponding status change rate
functions by setting

g
(α)
i (Y (t)) := γi

for the status change vector v
(α)
i and

l
(α)
i (Y (t)) :=

{
λi, if s

(α)
i (t) > 0

0, else
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for the status change vector −v(α)
i .We can write down the jump process for the first

order status changes as

na∑
α=1

c∑
k=1

Q(α)
k

(∫ t

0
g

(α)
k (Y (τ))dτ

)
v

(α)
k −

na∑
α=1

c∑
k=1

R(α)
k

(∫ t

0
l
(α)
k (Y (τ))dτ

)
v

(α)
k

=

na∑
α=1

c∑
k=1

Q(α)
k (γkt)v

(α)
k −

na∑
α=1

c∑
k=1

R(α)
k

(∫ t

0
l
(α)
k (Y (τ))dτ

)
v

(α)
k

where Q(α)
k ,R(α)

k are independent unit rate Poisson processes.

Second order status changes: We then define the status change rate function for
the gain of knowledge in feature i by transmission of information to agent α by

f
(α)
i (Y (t)) :=

n∑
β=1
β 6=α

max
{

0, s
(β)
i (t)− s(α)

i (t)
}
·Aαβ(Y (t)). (3.9)

We assume that different variants of a cultural feature are adopted independently of each
other and this implies that a greater difference of the trait values of two agents is leading
to a higher likelihood that an interaction between the two agents will induce a gain of
knowledge in that feature for the agent with the lower trait value. This is analogous to
people learning from more knowledgeable or skilled individuals [147,148]. An agent can
only increase the trait value through interaction if it has a contact with an agent that
has a higher trait value in that feature. As long as there are neighbors with higher trait
values there is a positive rate for an adoption event leading to an increment of the trait
value.

We can write down the jump process for the second order adoptions as

na∑
α=1

c∑
k=1

P(α)
k

(∫ t

0
f

(α)
k (Y (τ))dτ

)
v

(α)
k

where P(α)
k are independent unit rate Poisson processes. Combining the processes for

first and second order status changes we get as Markov jump process for the cultural
evolution

S(t) = S(0) +

na∑
α=1

c∑
k=1

P(α)
k

(∫ t

0
f

(α)
k (Y (τ))dτ

)
v

(α)
k

+

na∑
α=1

c∑
k=1

Q(α)
k (γkt)v

(α)
k −

na∑
α=1

c∑
k=1

R(α)
k

(∫ t

0
l
(α)
k (Y (τ))dτ

)
v

(α)
k .

To illustrate the rules for the dynamics of progressive cultural features, in Figure 3.14
we plot two consecutive snapshots of one simulation run around 110000 BP. Here, we
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consider a case of c = 3 features and color the agents according to their cultural status,

such that each value s
(α)
i , i = 1, 2, 3 denotes one component of the RGB color vector.

Thus, in the resulting plot agents of a similar status are colored by a similar color.

Figure 3.14: Two consecutive snapshots of a simulation run with c = 3 progressive cul-
tural features. Agents are depicted as dots and colored according to their
cultural status. The borders of spatially grouped agents are marked black.

Non-progressive cultural features

We consider for a non-progressive feature i a finite set Si of ns traits. We assume the
ns trait values to be unordered and that the switch from one arbitrary trait k ∈ Si to
any other trait l ∈ Si is possible. We thus define for all trait values k 6= l ∈ Si and each

agent α a status change vector v
(α)
ikl := (−k + l)e

(α)
i encoding the switch from trait k to

l in feature i for agent α and the associated system state change vector ṽ
(α)
ikl .

First order status changes: We choose a constant rate γi for spontaneous changes
of trait values in feature i (in analogy to evolutionary models also sometimes called

mutations) and define for all possible status change vectors v
(α)
ikl the corresponding rate

functions by

g
(α)
ikl (Y (t)) := γiδk

(
s

(α)
i (t)

)
with δk being the discrete indicator function of trait k.

Second order status changes: Similar to the progressive case we assume that inter-
actions of agents require spatial proximity and thus consider the same weighted network
defined by the adjacency matrix A(Y (t)) in Equation (3.8). The dynamics on the in-
teraction network however differ and are in the non-progressive case such that an agent
copies the trait of a neighboring agent similar to models for opinion dynamics [141]. We

define the rate function for the status change v
(α)
ikl due to transmission of trait l to agent

α as

134



f
(α)
ikl (Y (t)) :=

n∑
β=1
β 6=α

δk

(
s

(α)
i (t)

)
δl

(
s

(β)
i (t)

)
·Aαβ(Y (t)), (3.10)

where δk and δl denote the discrete indicator functions of traits k and l. As long as
there are neighbors with a different trait value in some feature, there is a positive rate
for such a status change event in which an agent copies the trait value of a neighbor.
The non-progressive cultural dynamics are illustrated in Figure 3.15 for a case of c = 3
features that can again be visualized by RGB color vectors. Also in this case agents with
a similar cultural status have a similar color in the plot.

Figure 3.15: Two consecutive snapshots of a simulation run with c = 3 non-progressive
cultural features. Agents are depicted as dots and colored according to their
cultural status. The borders of spatially grouped agents are marked black.

We can write down the jump process for the first order status changes as

na∑
α=1

c∑
i=1

ns∑
k=1

ns∑
l=1
l 6=k

Q(α)
ikl

(∫ t

0
g

(α)
ikl (Y (τ))dτ

)
v

(α)
ikl

where the Q(α)
ikl are independent unit rate Poisson processes and the jump process for

the second order status changes as

na∑
α=1

c∑
i=1

ns∑
k=1

ns∑
l=1
l 6=k

P(α)
ikl

(∫ t

0
f

(α)
ikl (Y (τ))dτ

)
v

(α)
ikl

where P(α)
ikl are independent unit rate Poisson processes.
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Combining the processes for first and second order status changes we get as Markov
jump process for the non-progressive cultural evolution

S(t) = S(0) +

na∑
α=1

c∑
i=1

ns∑
k=1

ns∑
l=1
l 6=k

P(α)
ikl

(∫ t

0
f

(α)
ikl (Y (τ))dτ

)
v

(α)
ikl

+

na∑
α=1

c∑
i=1

ns∑
k=1

ns∑
l=1
l 6=k

Q(α)
ikl

(∫ t

0
g

(α)
ikl (Y (τ))dτ

)
v

(α)
ikl .

Demographics

For the demographics of the agents we model growth and decline of the population
vector D(t) as deterministic processes that depend on the local carrying capacity of
the environment. The local carrying capacity Kt(x) is the maximum number of people
that can be supplied by foraging within the short range interaction radius r1 around
the location x ∈ X and depends linearly on the suitability Vt(x) (see [111] for empirical
evidence of this relationship). In the case of two camps being close enough to have
overlapping foraging areas, they each contribute to the local population of the other
camp proportionally to the size of the intersection of their foraging areas. We thus
define for an agent α the local population at time t

kα(t) :=

n∑
β=1

φ(αβ)
r1 dβ(t)

with dβ(t) referring to the entries of D(t). The sum of the population of all agents is

weighted by the intersection proportion φ
(αβ)
r1 of their foraging areas. In the case of α = β

we have φ
(αβ)
r1 = 1, so a camp always contributes fully to its local population. If there is

no intersection of the foraging areas around the camps α and β we have φ
(αβ)
r1 = 0 and

the population of camp β does not contribute to the local population of camp α.

While the local population is smaller than the local carrying capacity, i.e., kα(t) <
Kt(xα), the population dα(t) of a camp grows with rate ρg. If kα(t) > Kt(xα) we as-
sume that dα(t) declines with rate ρd.

The population of a camp cannot grow indefinitely, as after a certain point it can become
too large to stay organized as a single unit [134,135]. We thus define a fission threshold
hfis that sets a maximum for the population size dα(t) of an agent. If a fission event
occurs, i.e., dα(t) > hfis, the camp represented by agent α splits up into two camps re-
sulting in two new agents β1 and β2 being created with position xβ1(t) = xβ2(t) = xα(t)

and s
(β1)
i (t) = s

(β2)
i (t) = s

(α)
i (t) for all cultural features i. We assume that in the splitting

process the members of the old camp are distributed equally between the new camps
and thus set dβ1(t) = dβ2(t) = dα(t)

2 . After the splitting process the agent α is removed
from the system.
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Given that hunter-gatherer survival and reproductive abilities depend on camp-wide
division of labour, cooperation and sharing [131, 135–137], we also assume that a camp
needs a minimum number of members to be able to survive and thus define a fusion
threshold hfus that sets a minimum population for an agent. If dα(t) < hfus the mem-
bers of camp α try to get taken in by another nearby camp within their interaction
radius r2. In the case that there is another camp β within r2 the two camps can merge,
which is realized by modifying the agent β by increasing dβ(t) by dα(t) and adjusting

the status of agent β in the progressive case. We set s
(β)
i (t) to the maximum value

of s
(α)
i (t) and s

(β)
i (t) for each feature i. When there are no nearby camps for a fusion

process, then camp α goes extinct. In both cases the agent α is removed from the system.

The upper bound for the total population is given by the total carrying capacity κt :=∫
XKt(x)dx at time t. This total carrying capacity at time t also induces a maximum

number agents ηt at each time t. We choose the number of agents for our system to
be na = maxt{ηt} and realize the birth-death process for fusion and fission by distin-
guishing between active agents with dα > 0 and inactive agents with yα = 0. This way
we can realize the ”birth” of an agent α by assigning an inactive agent α to a non-zero
state when a fission event happens and the ”death” of an agent α by assigning it a zero
vector state in case of a fusion or extinction event. Through our choice for na we ensure
that we can always find inactive agents in case of birth events to assign to an active
state. Finally, the mobility and status dynamics can be adjusted such that the change of
inactive agents always is zero. The explicit definitions of the mobility and status dynam-
ics can in this sense be understood as the rules governing the active agents of the system.

In Figure 3.16 we provide a compact overview of the model dynamics. The actual
implementation of the model however does not exactly follow the flowchart but is real-
ized again by utilizing the event-based approach of Algorithm 5 from Chapter 1. At the
end of each time step there is an additional check for fission and fusion events that are
realized as described in this section.
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Model overview

Figure 3.16: Flowchart of the model dynamics. The chart was created in Lucidchart
(www.lucidchart.com).
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Model parametrization

The environmental niche model for generating the suitability landscapes was built using
the data of in total 749 contemporary hunter-gatherer camps in Central Africa. The
suitability value of a location on the map can be interpreted as a likelihood that the
location is occupied by a contemporary hunter gatherer camp. The ENM then weights
different environmental factors, e.g., the average temperature, to explain the observed
likelihood for the present day data. By using a bias-corrected time series of global ter-
restrial climate and vegetation and the ENM we are able to estimate the suitability of
the landscape up to 120000 years in the past [111, 149]. The time series of the palaeo-
climatic reconstructions is given by time slices covering 1000-2000 years. The estimated
suitability landscape is static during these time frames and only changes at the discrete
time points where the time slices are interchanged. So, during the static periods of the
suitability landscape the mobility process of the ABM can converge to an equilibrium
state (if the convergence speed is significantly faster than the frequency of perturbations,
which is the case for our model) and thus, even though the mobility dynamics are not
reversible, we can analyze the metastability of the system and identify spatial agent
clusters. This will be discussed in more details in the following section.

The friction landscape was obtained by scaling the GTOPO30 Digital Elevation Model
(DEM) [150] for our area of interest. Higher friction values correspond to lower values
of the scaling function σ of the diffusion process and vice versa. The scaling function σ
is bound from below by zero, but also from above by a constant σmax > 0. The mobil-
ity model is calibrated using mobility data of contemporary hunter-gatherers in Central
Africa.

We choose the radius for foraging and short range interactions r1 to be 20km based
on estimations in [144]. The carrying capacity of the landscape was calculated for our
choice of r1 following the approaches in [111, 144]. Based on population statistics of
present day hunter-gatherers [111] we chose the thresholds for fission and fusion to be
hfis = 60 and hfus = 18. The rates for population growth and decline are chosen as
ρg = ρd = 0.001, which corresponds to 0.1% per year and is within range of estimates
for prehistoric population growth rates for hunter-gatherer tribes [151].

For the rate constants of the cultural evolution we will explore different scenarios in
the next section and choose the rate constants to be independent of the feature index i.
We measure the time in years and set the default time-step size for our model to be 1
month.
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3.2.2 Computational Analysis

To analyze our model outcomes we first have to think about which macroscopic and
mesoscopic quantities are of interest. On the mesoscopic scale we can identify spatio-
temporal agent clusters with a more densely connected interaction network and inves-
tigate how these spatial clusters can be related to the cultural similarity of the agents.
Therefore we will consider two clustering approaches. The first one is taking only the
positions of the agents into account resulting in a clustering that only depends on the
agent mobility. The second approach defines the clusters purely based on the cultural
status of the agents and only after the clusters are assigned to the agents we can make
the connection to spatial areas and a comparison of the clustering approaches.

With regards to the cultural dynamics of our model the arrival times of a specific cultural
status is at least in this general setting not very meaningful. We are in our setting more
interested in measuring the cultural similarity and cultural differences of the agents. One
way to quantify these on the macroscopic scale is the utilization of a diversity index.
Our measure of choice will be a variant of Simpson’s diversity index that is defined by

I(Y (t)) = 1−
∑R(Y (t))

i=1 ni(Y (t))(ni(Y (t))− 1)

n(Y (t))(n(Y (t))− 1)
, (3.11)

where R(Y (t)) is the number of different status values of the system state Y (t) and
ni(Y (t)) the number of active agents with the same status for each of the observed sta-
tus vectors and n(Y (t)) is the total number of active agents at time t. By construction
we have I(Y (t)) = 1 if all agents have a different cultural status and I(Y (t)) = 0 if the
status of all agents is the same.

In the case of progressive cultural dynamics the value of the cultural status of the agents
has an interpretation as a level of complexity and the average cultural complexity of the
agents is a meaningful macroscopic variable to study. We will consider the development
of the average cultural complexity over time for different scenarios and we can on the one
hand observe the impact of different parameter settings on the results and on the other
hand relate the changes in cultural complexity to changes of the suitability landscape.

While all three observables and their changes in relation to different parameter settings
can also be interpreted in an anthropological sense [17], we will be mostly concerned
with the dynamical characteristics of the different scenarios. We will not construct a
reduced model as we did for the first application but we will briefly discuss the chal-
lenges of model reduction with regards to the more complex ABM dynamics, especially
the consequences of a changing landscape and temporal clusters.

Cultural diversity

In Figure 3.17 we illustrate the development of our chosen diversity index over time for
both types of cultural dynamics with similar parameter settings (the only difference is
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the frequency of first-order events, which is in the non-progressive case chosen to be an
order higher). We can observe that the diversity is higher in the progressive case despite
the lower frequency of first order events and that both curves are highly correlated.
This is on the one hand due to the nature of the transmission dynamics that lead in
both cases to an increase of similarity between the agents that are connected in the
interaction network. While in the non-progressive case within spatial agent clusters the
transmission of more frequent status values is more likely in the progressive case the
transmission of higher status values is favored. Thus, while in both cases there is a drift
towards a consensus within agent clusters in the progressive case there is more often a
change of which status value is representing this consensus of a cluster. This leads to
the overall higher diversity in the progressive case.

Figure 3.17: Cultural diversity over time according to the index defined in Equation
(3.11) for both progressive (technology) and non-progressive (opinion) cul-
tural dynamics. The results are averaged over 20 simulations for each of
the two scenarios.

On the other hand in both cases we have a strong dependence of the transmission
dynamics on the distribution of the agents in space. Substantial changes in the suitability
landscape can lead to vastly different interaction networks. This is also reflected in
the diversity index, the strong changes in overall diversity are in both types of cultural
dynamics highly correlated and can be linked to big changes in the suitability landscape.
Greater increases of the diversity index can for example be linked to more fragmented
landscapes that feature a higher number of clusters or an overall decreased carrying
capacity leading to lower numbers of active agents. Conversely a change to a landscape
that leads to agents being concentrated in only a few large clusters is connected to
stronger decreases of the diversity index. While on the one hand we can explain strong
changes in diversity with substantial landscape changes we can on the other hand also
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use the strong changes in diversity as an indicator to identify substantial changes in the
landscape.

Parameter sensitivity

When varying the parameters that specify the mobility process, i.e., the parameters
specifying the scaling function σ of the diffusion, as well as parameters for weighting the
three different influences small changes of the parameters lead only to minor differences
in the mobility patterns. Despite also having slight differences in the distribution of the
agents we consider mostly statistics about travel distances to quantify the differences of
the scenarios. We measure the average travel distance per default time step, the average
number of residential movements per year, i.e., movements with a travel distance of at
least 2 km as well as the average total distance travelled per simulation year. The res-
idential movements as well as the travel distances are also the mobility characteristics
that we can compare to the real-world data of contemporary hunter gatherer mobility
to assess whether the mobility process of our model is plausible. As we have no reli-
able data on prehistoric hunter gatherer mobility a validation in the classical sense is
not possible. The small variation of the mobility parameter values does not change the
characteristics of the cultural dynamics significantly, i.e., the overall diversity and accu-
mulation of complexity is not affected by small parameter changes. Thus, we choose one
fixed plausible setting for the mobility parameters when we investigate the sensitivity of
the parameters for demographics and cultural dynamics.

Figure 3.18: Relationship between fission and fusion thresholds and Simpson’s diversity
for a high frequency of first order events. The curves for the non-progressive
dynamics are labeled as opinion traits in the plots. The results for each
parameter setting are averaged over five shorter simulations.

.

For the parameters of the demographic dynamics, i.e., the fission and fusion thresholds we
consider four general scenarios. We distinguish between progressive and non-progressive
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cultural dynamics with both a high and a low frequency of first order events. The rela-
tions between the threshold parameters and the cultural diversity are rather similar in
all four scenarios and visualized for the case of a high frequency of first order events in
Figure 3.18. It is not surprising that higher values of hfus and hfis both lead to a lower
number of agents and a higher number of camp members per agent. Higher numbers
of agents are in general correlated with a decrease in diversity which can be explained
by a higher connectivity of the interaction network and thus a faster convergence to a
consensus within the agent clusters. Thus both thresholds are positively correlated with
cultural diversity in the model and as we can see in Figure 3.18 there is a saturation
effect in the non-progressive case which serves as an additional justification for the pa-
rameter choices made. As higher agent numbers are leading to a higher frequency of
innovation events in the progressive case there is in general a lower average complexity
for higher values of hfus and hfis.

Figure 3.19: Relationship between the number of possible trait values for non-progressive
dynamics and diversity. The left plot is showing the results for the case of
a high frequency of first-order events.

.

The parameters for the cultural dynamics are the rate constants for each type of adoption
event and in the non-progressive case also the number of possible trait values. Increasing
or decreasing all rate constants by the same factor only changes the relation between the
cultural dynamics and the mobility dynamics. As long as the changes are not too dras-
tic the diversity is not affected much, while the accumulation of complexity increases
with overall faster cultural dynamics. More interesting are the relations between the
different rate constants, especially in the progressive case. In the non-progressive case
an increased frequency of first order events in relation to the frequency of transmission
events also increases the diversity and vice versa. The diversity is increasing with the
number of possible trait values m but only for low values of m (compare Figure 3.19).
Once there are sufficiently many available possible trait values a further expansion of the
status space does not lead to significantly more diversity. So while we could for increased
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realism also expand the status space in the non-progressive case this would not lead to
more diversity or additional cultural clusters, as already for our example simulation with
m = 10 possible trait values there is only a small number of trait value combinations
associated with distinct clusters out of 1000 possible unique status vectors.

(a) Regime 1

(b) Regime 2

(c) Regime 3

(d) Regime 4

Figure 3.20: Average cultural complexity over time for four different choices of interac-
tion rates.

In the progressive case we have two types of first order adoption events to consider,
gain as well as loss of information. At first we consider the rates for gain and loss of
information to be equal. In this case we have a steady increase in the average cultural
complexity and can observe a diversity pattern similar as in Figure 3.17. An increased
rate for information gain γ, while fixing the loss rate λ and transmission rates ϕ1, ϕ2,
leads to an increase in diversity and a faster accumulation of cultural complexity. If
we fix the gain rate γ and the transmission rates ϕ1, ϕ2 and vary the loss rate we can
differentiate between different parameter regimes. Small increases of λ do not affect
the overall characteristics of the dynamics. Larger increases of λ, however, lead to
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time frames where the average trait values representing cultural complexity are remain-
ing constant or even decreasing and not only increasing. These phases are related to
changes in the suitability landscape that lead to reduced connectivity in the interaction
network. Very large increases of λ even lead to cultural complexity only rising for short
spikes or even not at all. The intermediate parameter regime where the accumulation of
cultural complexity depends stronger on the landscape changes begins when λ is about
two orders of magnitude lower than γ. Considering this ratio between γ and λ as fixed
then we can find similar parameter regimes for variations of the interaction rates ϕ1 and
ϕ2 (see Figure 3.20). The characteristics visualized in Figure 3.20 (b) can be observed
when the interaction rates are chosen such that the overall frequency of loss events is
similar to the combined frequency of gain and transmission events. In this case only
for suitability landscapes that lead to interaction networks with higher connectivity the
cultural complexity is increasing. In the anthropological sense this can be interpreted
as a higher connectivity and more frequent exchange between different hunter-gatherer
camps leading to a prevention of information loss. The parameter settings with very
high information loss rates are requiring more computational effort and because of the
high frequency of events the average step size is significantly smaller than the default
step size. In this situation a realization of the simulations utilizing a tau-leaping method
or a hybrid method instead of the purely event-based algorithm could lead to a gain in
computational effort.

More details on the parameter sensitivity, the case study and the anthropological in-
terpretation of the model can be found in [17].

Identifiying spatio-temporal clusters

The agents of our model distribute according to the attractive areas of the suitability
landscape and form spatial clusters. By the definition of the cultural evolution dy-
namics also a clustering in the status space emerges that has strong ties to the spatial
clustering. For the spatial cluster detection we can apply the hierarchical density based
clustering algorithm HDBSCAN for a time frame in which the suitability landscape does
not change, just like we did for the construction of the PDMM approximation of the
ABM for innovation spreading. However, we need to deal with several challenges when
we want to identify clusters based on the status of the agents instead.

The key to any clustering method is to define measures for closeness, connectivity or
density. In our case we want to define a clustering of the landscape that depends on
densely connected agents within the area being close in status. Through the nature
of our cultural status dynamics we have a lot of noise through first order events and
depending on how we define closeness in status even single mutation or loss events can
already be considered to be a strong perturbation. Thus, closeness in status has to be
considered in a way that the perturbations through first order events are filtered out in
some sense, while still allowing for a strong enough distinction between agents such that
we can still identify more than just one large cluster. For that we consider connectivity
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to be defined over a fixed time period that is long enough such that a few noisy snapshots
in the data do not hold a strong influence on the outcome of the connectivity calculation.

We define for each system state Y (t) an adjacency matrix Â(Y (t)) with entries

Âαβ(Y (t)) :=

{
1, if ‖sα(t)− sβ(t)‖ ≤ ha
0 else

for a suitable threshold ha ≥ 0, that defines closeness in status between two active agents
α and β. Entries referring to inactive agents are defined as 0. In the non-progressive
case, we set ha = 0 and thus consider agents only close in status if their status is exactly
the same.

Next we consider a set of consecutive system state snapshots Y (t1), ..., Y (tM ) and define
the time averaged adjacency matrix B([t1, tM ]) with entries

B̂αβ([t1, tM ]) :=
1

M

M∑
k=1

Âαβ(Y (tk))

The entries of B̂([t1, tM ]) can be interpreted as the percentage of the time interval [t1, tM ]
that two agents can be considered close in status with respect to the definition of close-
ness via Â.

We define the time averaged connectivity matrix C([t1, tM ]) with entries

Cαβ([t1, tM ]) :=

{
1, if B̂αβ([t1, tM ]) > hc

0 else

with connectivity threshold hc ∈ [0, 1]. The connected components of C([t1, tM ]) corre-
spond to cultural clusters of agents that are close in status for a significant amount of
the time interval [t1, tM ] with the threshold hc specifying the fraction of the time period.
Each agent α can then be assigned a label `α(t) ∈ N corresponding to the connected
component that it belongs to at time t. We define a minimum cluster size hm and assign
for agents belonging to cultural clusters with less than hm members the label 0.

The lower the connectivity threshold hc is, the more noise in the status variable is al-
lowed within the same cultural cluster. For larger values of the threshold hm the cultural
clusters need a larger size in order to be assigned a distinct label. In our illustrative
example we have chosen hc = 0.5 which means that more noise is allowed, but we still
can interpret the results such that within the cultural clusters the agents are close in
status for the majority of the snapshot sequence. This interpretation would be lost for
the choice hc < 0.5 that would allow for more noise within the cultural clusters. In
general, lower values of hc allow for more connections between agents in C([t1, tM ]). For
very large values of hc, in the example simulations we observe a lower number of cultural
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Figure 3.21: Illustration of the matrices B([t1, tM ]) (left) and C([t1, tM ]) (right) for a
time period [t1, tM ] with static suitability landscape. Only entries associated
with agents that have been active in the time period have non-zero entries.
The left matrix has entries between 0 (dark blue) and 1 (yellow), the right
matrix has entries that are either 0 or 1.

.

clusters. We have chosen hm = 5 for our example, so we also allow for the identification
of cultural clusters of smaller size. To not identify single agents as a distinct cultural
cluster one should set at least set hm > 1.

Next, we will introduce a way to determine how spatial areas can be associated with
the identified cultural clusters. Through the trajectory data in the time frame [t1, tM ]
with M system state snapshots we can translate the cultural clusters to areas of the
suitability landscape. We define a grid G with a suitable resolution that is covering X.
For a grid cell G ⊂ X we define the total number of visits of agents with label j > 0 as

vG(j) :=
∑
α

M∑
k=1

χj(`α)χG(xα(Tk)).

Using this quantity, we cluster all grid cells, such that we assign to a grid cell G the
label of its most frequently visited cultural cluster

`G :=

{
argmaxj{vG(j)}, if maxj{vG(j)} > hl

0 else

with a threshold hl ≥ 0 specifying the number of agents’ visits for becoming a part of
a cultural cluster. If a grid cell was not visited often enough by any agent that belongs
to a specific cultural cluster, it gets assigned the value 0. An assignment to 0 can be
interpreted in multiple ways: one case is that the grid cell belongs to a transition region
that is not densely populated with agents. Alternatively, there could be multiple agents
in an area, but their interaction network is not densely connected enough to establish a
similarity in status.
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Remark 3. Due to the stochastic nature of our ABM, the outcome of the cultural
clustering depends strongly on the realization. Thus, although the spatial distribution
of agents according to the mobility process is similar throughout multiple realizations,
the emergence of cultural clusters can be vastly different for each trajectory. Therefore,
in order to analyze the cultural clusters more thoroughly, it would be reasonable to
consider statistics of the clustering results over multiple simulation runs.

Applying both methods, HDBSCAN for the mobility data and the in this section intro-
duced method for identifying clusters based on status similarity, we are able to identify
the mobility clusters and the cultural clusters of our model. For that we choose time
frames that match the time periods in which the suitability landscape is static. Both
types of clusters are positioned at the suitable areas of the landscape of that time pe-
riod and more fragmented suitability landscapes lead in general to a higher number of
(mobility) clusters. In the illustrations of the spatio-temporal clustering (Figures 3.22
and 3.23) we can observe singular cultural clusters including multiple mobility clusters
as well as singular mobility clusters containing multiple cultural clusters. Two mobil-
ity clusters though spatially separated can still be dynamically close in the sense that
transitions between the mobility clusters occur frequent enough, such that the agents of
both mobility clusters still possess a similar cultural status. On the other hand a large
mobility cluster can be structured such that the interaction network is modular and thus
multiple cultural clusters can emerge due to the timescale separation.

We also can observe the dynamics off the different clusters over time, as we can connect
the different clusterings via the trajectories of the agents as is illustrated in the alluvial
diagrams of the Figures 3.22 and 3.23. In general, we can distinguish between three dif-
ferent types of cluster dynamics that are typically considered for the analysis of dynamic
communities [152]:

1. merging and splitting of clusters

2. emergence and disappearance of clusters

3. expansion and contraction of cluster areas.

These dynamical patterns are not necessarily mutually exclusive, e.g., a cluster can split
into multiple separate clusters and in addition there are also changes to the shapes of
the clusters through expansion and contraction of cluster areas. We can observe all of
the above patterns in the illustrations of Figures 3.22 and 3.23. In Figure 3.23 we have
clusters 4 and 5 of the first time period merging into cluster 3 of the second time period
and then splitting again into clusters 4 and 5 of the third time period. In the same
figure cluster 3 of the first time period is an example for disappearance of clusters and
cluster 3 of the third time period an example for an emerging cluster. Considering our
two types of cultural dynamics, in general we can observe a higher number of distinct
cultural clusters in the case of progressive dynamics. In the non-progressive case we
have more often the situation that the splitting of a mobility cluster does not induce
the splitting of a cultural cluster (see Figure 3.22). This is because the non-progressive
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Figure 3.22: Comparison between clusters based on non-progressive cultural status (col-
ored areas) and clusters based only on mobility trajectory data (marked by
black borders) for three consecutive suitability landscapes centered around
10000 BP. The relations between the different cultural clusters are illus-
trated in an alluvial diagram.

dynamics tend to maintain a specific value for a status consensus among agents, while
in the progressive case higher trait values are preferred and thus the spatial separation
leads more quickly to a difference in cultural status.

The temporal relations between the clusters are on the one hand also very interesting for
an anthropological interpretation of the model [17] and on the other hand also important
for the possible construction of a reduced model of the ABM on the mesoscale.

Model reduction

In the case of an autonomous ABM we can identify the metastable sets of the state space
and apply the model reduction framework of Chapter 2. For the hunter-gatherer model
we have an additional dependence of the generator on time and we have observed in the
mobility clustering results that an area of the state space that would be metastable with
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Figure 3.23: Comparison between clusters based on progressive cultural status (colored
areas) and clusters based only on mobility trajectory data (marked by black
borders) for three consecutive suitability landscapes centered around 10000
BP. The relations between the different cultural clusters are illustrated in
an alluvial diagram.

respect to the mobility process at time t1 is not necessarily metastable at time t2 as well.
There are several approaches to this problem, one of them would be to expand the state
space with the time variable such that we can simply apply the concept of metastable sets
on this expanded state space [153]. Another approach is the generalization of metastable
sets to a coherent family of sets [154]. The notion of a coherent pair consisting of two
sets A1 and A2 is a good starting point for understanding how the notion of coherence
is connected to metastability and almost invariant sets. We call (A1, A2) a coherent pair
if on the one hand the probability P(X(t2) ∈ A2 | X(t1) ∈ A1) ≈ 1 and on the other
hand P(X(t1) ∈ A1 |X(t2) ∈ A2) ≈ 1. Figuratively speaking this means that a process
starting in A1 is very likely to end up in A2 and a process that ends up in A2 has been
in A1 before with a very high probability. This forward-backward relationship can be
utilized to define a process by the composition of the forward transfer operator and its
adjoint, i.e., the backward transfer operator, and with respect to this forward-backward
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process [154] a coherent pair would be a metastable set with respect to the time scale
defined by the two time points t1 and t2. A coherent family is then the expansion of
coherent pairs to a time-indexed family of sets with any two arbitrary sets of the coher-
ent family fulfilling the property of a coherent pair. Depending on the process it makes
sense to only consider coherence on a finite time scale that is significantly faster than the
mixing time of the process. Otherwise, the case may arise that only the complete state
space can be considered a coherent set. The identification of coherent sets can then
also be done via a spectral approach by analyzing either the transfer operator of the
process on the expanded state space or the transfer operator of the forward-backward
process [153,154]. A discretized model based on a projection utilizing the coherent fam-
ilies of the process could then be constructed and several discretization approaches for
the transfer operator are presented in [153].

For our model it would make sense to utilize the stationary time periods during which
the generator of the process is not depending on the time variable. For these time peri-
ods we can construct a stochastic metapopulation model according to the framework of
Chapter 2 as our more complicated status dynamics are still only composed of first and
second order adoptions. For the choice of the subpopulations we can consider on the one
hand the mobility clusters or on the other hand the cultural clusters. Both approaches
could be justified, considering that both clusterings are closely related and both describe
a metastable behavior with respect to the process dynamics. A comparison of the dif-
ferent approaches would then also be interesting to investigate.

A first challenge is how to deal with the notation of the multidimensional cultural sta-
tus and the additional continuous population variable that is not discretized. While we
could denote the system state of the reduced model in a multi-dimensional matrix N in
the non-progressive case, we would have to further adapt the notation for the progressive
case. Accounting for all possible status values would lead to N being a countable matrix
and the object encoding the system state would then be actually of higher dimension
than the original ABM system state. Also in the non-progressive case there are in total
more possible status values than agents. Thus, the most reasonable choice might be to
simply denote the system state of the reduced model in the same fashion as the ABM
system state Y but with the set of subpopulation labels replacing X in the system state
space. The construction of the projected adoption rate functions has then to be adapted
accordingly. Considering the transitions between the subpopulations we would have a
change in subpopulation assignment for a chosen agent when a transition event happens.

The demographic dynamics are deterministic by construction but due to the dependence
on the stochastic mobility process the population variable exhibits stochastic character-
istics. One possibility to deal with the demographics would be to let number of members
of all camps of a subpopulation grow or decline simultaneously depending on whether
the total number of camp members in a subpopulation is lower or higher than the total
carrying capacity of the area associated with the subpopulation. Fission and fusion of
the camps could then be done in the same way as in the ABM while considering every
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camp of the subpopulation as close enough in case of a fusion event. The stochasticity
of the camp population variable would, however, be lost as the total number of camp
members would quickly converge to the total carrying capacity of the subpopulation and
then no longer change significantly.

A further reduction to a PDMM would not reflect the more stochastic nature of the
cultural dynamics well. In this case it would make more sense to consider a diffusion
approximation for the internal dynamics of the subpopulations as is done in the context
of the chemical Langevin equation. An example for the case of opinion dynamics on a
complete graph can be found in [155]. The agent numbers of our model however do not
require the additional approximation for effort reduction and we would be happy to just
stick with an SMM.

Thus, we have an idea how we could construct a reduced model for the stationary
time periods. The question that remains is how to connect the different metapopulation
models at the time points where the suitability landscape changes. Considering that
we define the subpopulations via clustering it makes sense to use the temporal relations
between the clusters to define the relations between the subpopulations of the different
models. As we track for each agent the subpopulation assignment we can simply reas-
sign the subpopulation of all agents according to the statistics that we gathered from
the trajectory data. An assignment to the label 0 could then for convenience be equiv-
alent to the agent becoming inactive. This way we already have covered the cases of
merging/splitting and disappearance of subpopulations. The change of the cluster area
through expansion/contraction is reflected in the change of the total carrying capacity.
What is still unclear is how to deal with the emergence of a subpopulation. We could
assign to an emerging subpopulation a sufficient number of previously inactive agents
such that the total number of camp members reflects the total carrying capacity. For
the initialization of the status variables of the agents a random initial state according to
a uniform distribution would make the most sense in the non-progressive scenario. In
the progressive case, however, the initial trait values should be at most the minimum
trait values present in all other status vectors. Otherwise, a transition from an agent
of the newly emerged subpopulation could directly influence the cultural complexity of
formerly established clusters.

This is, however, only a rough sketch of how to approach the challenge of model re-
duction for this more complex ABM system. To actually build a reduced model and
further investigate these and alternative assumptions could be the topic of future re-
search.
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3.3 Epidemic Spreading

Of all types of spreading processes, the spreading of infectious diseases has probably the
longest history, with early models dating back to the 18th century [156], and certainly
received the most attention in the last few years due to the COVID-19 pandemic. Sud-
denly, there was a strong demand for accurate models for the spreading of the SARS2-
CoV to assist in the decision-making process for finding a response strategy. But also the
amount of available data, e.g., on case statistics, has been unprecedented, providing an
opportunity for the development and evaluation of new models. The variety of modeling
approaches and methods that have been applied to the problem is as vast as the state of
the art allows. Most prominent are still macroscale approaches such as compartmental
ODE models, ranging from classical SIR models [157] to many added compartments,
e.g., for quarantine or hospitalization states [158], as the parameters for these models
can be estimated well from the available data on case statistics and thus can be quickly
adapted to new situations. However, also many mesoscale approaches like network [159]
or metapopulation models [160] have been applied as well as agent-based models on the
microscale [161]. While these approaches usually require more assumptions, additional
data and can be more difficult to parameterize they allow for the discussion of more
specific research questions that are directed at the core dynamics of infection spreading,
e.g., about the effectiveness of different kinds of non-pharmaceutical intervention mea-
sures.

In this section, we will briefly discuss the basic assumptions of standard modeling ap-
proaches for epidemic spreading within present day societies for different spatial resolu-
tions, especially those concerning the mobility of the population members. Afterwards,
we take a closer look at a piecewise-deterministic metapopulation modeling approach to
epidemic spreading on the mesoscale with adaptive rate constants, to e.g., model the
implementation of non-pharmaceutical interventions. At the end of the section, we will
briefly discuss under which conditions we could apply the model reduction framework
from Chapter 2 to an ABM for epidemic spreading.
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3.3.1 General Model Assumptions for Epidemic Spreading

The spreading of infectious diseases within human populations is a very complex process
that depends on many interactions on various spatial and temporal scales. No useful
model will ever be able to capture all the details of the real-world process at once as
many subprocesses are already on its own challenging modeling problems. To only name
a few, there is the interaction of the virus with the host [162], the transmission of the
virus between two individuals [163], the behavior and mobility of individuals within the
society [164]. The larger the scale of the model is, the more we need to simplify the
details of the dynamics to be able to actually simulate or analyze the model dynamics.
Thus, for the epidemic spreading on a population scale, we usually make very strong
simplifications of the microscopic interactions between the virus and the individuals.
Instead of modeling the details of the virus-host interactions and transmission dynamics,
we assume that the course of the disease of an individual can be modeled by stochastic
jumps between various expressions of an epidemiological status.

Compartmental ODE models

The common basis of most epidemic models distinguishes between three different status
expressions: An individual can be either susceptible to the disease (S), infected with
the disease and able to transmit it (I) or removed from the infection dynamics (R),
which in general can also be interpreted as recovered from the disease. The transition
from status I to status R is usually modeled by a first order adoption of the new status
with a constant rate, strongly simplifying the actual course of the disease, and the
switch from S to I modeled by a second order adoption due to pairwise interactions
with an infection rate constant, which is a strong simplification of the transmission
dynamics. On the coarsest spatial scale, we simply assume that the population is well-
mixed, i.e., all individuals have the same probability to interact with each other. We do
not consider individual infection and removal rates but rather general rates that reflect
average rates that can be derived from data, and thus we can write down the state of the
system similar as we did for the metapopulation models in Section 2.2, i.e., we divide
the population N in compartments NS , NI , NR according to the infection status. The
resulting model is known in the literature as SIR model for epidemic spreading and
can either be formulated as a jump process or deterministically. The formulation of the
jump process for the model can be written as

NS(t) = NS(0)− PSI
(∫ t

0
γSINS(s)N I(s)ds

)
N I(t) = N I(0) + PSI

(∫ t

0
γSINS(s)N I(s)ds

)
− PIR

(∫ t

0
γIRN I(s)ds

)
NR(t) = NR(0) + PIR

(∫ t

0
γIRN I(s)ds

)
with γSI being the infection rate constant, γIR the removal rate constant and PSI ,PIR
independent unit rate Poisson processes.
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As we are modeling on the macroscale in general we take into account a sufficiently
large population and thus we reasonably can consider the deterministic population limit
for the dynamics instead. The corresponding ODE system can be written as

d

dt
NS(t) = −γSINS(t)N I(t)

d

dt
N I(t) = γSINS(t)N I(t)− γIRN I(t)

d

dt
NR(t) = γIRN I(t)

with the same rate constants for infection and removal as in the stochastic model. This
formulation as a compartmental ODE model is the basic model that is widely used for
epidemic spreading on the macroscale and has the advantage that the model parameters
can be derived from observed case statistics.

While there are many extensions with additional compartments to more accurately
model the spread of a particular disease in a specific society, the general dynamics do not
change significantly and the strong simplification of the mobility remains with all its con-
sequences for applicability and interpretability. While the well-mixed assumption might
hold on the level of cities, and even there some spatial patterns can be observed [165],
it certainly is too strong for modeling the spread between countries on a global scale.
But also on the scale where the mobility can reasonably be simplified in this way, the
simplification of the societal dynamics is also an issue.

For example, the infection rate of compartmental ODE models incorporates many differ-
ent factors of the original process. It reflects the probability that a contact between two
individuals leads to a transmission as well as the average number of contacts an individ-
ual has over time due to the current behavior and mobility of members of the population
and is thus not an intrinsic property of a virus or other vector but also depending on the
society in which it spreads, e.g., for cities or countries with different population densities
and demographics the estimated infection rates for the spreading of the same disease can
be different [166]. A variation of the infection rate constant can then also have many
different interpretations, e.g., a reduced infection rate can be interpreted as a reduced
transmissibility of the virus due to wearing face-covering masks or a reduced number of
contacts either due to restricting policies or a generally more cautious behavior.

So while a compartmental ODE model might be suitable for short term predictions
of the case statistics of a chosen population, for discussion of more detailed questions
other approaches are better equipped. For the spreading on a larger scale, where the
well-mixed assumption does not hold, a metapopulation model can be used to assess
the risk of spreading between different cities or countries. For the detailed analysis of
specific measures to prevent the spreading of the disease within the population, an ABM
on the microscale might be the model of choice.
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3.3.2 PDMM for Epidemic Spreading

The term metapopulation model was first introduced in the context of ecology [167]
to model the environmental heterogeneity of spatially separated subpopulations. Since
then, metapopulation models have been widely used for different types of population
dynamics characterized by a timescale separation between the dynamics within and be-
tween the different subpopulations [67]. Besides the spatial separation, different social
groups (e.g. based on age) have also been considered for the division of the population in
epidemiological models [168]. Purely deterministic metapopulation models, in which all
flows between compartments within subpopulations as well as the interaction between
subpopulations are defined by an ODE system, as well as purely stochastic approaches,
both have their advantages, either in efficiency or in realism. A piecewise-deterministic
approach to metapopulation models can be advantageous compared to both of the pure
approaches. Especially in the case of multiscale dynamics, the PDMM has the advantage
of being more efficient than a purely stochastic model, especially for large populations,
as well as more realistic than the purely deterministic model for the slower processes
that are modeled with stochastic jumps. For modeling the epidemic spreading between
spatially separated subpopulations we can assume that there is a significant time scale
difference between the dynamics of travelling between subpopulations, which is necessary
to enable the spreading of a disease between members of different subpopulations, and
the interactions of individuals within a subpopulation. Thus, a piecewise deterministic
metapopulation model is a good choice for modeling epidemic spreading on a spatial
scale where the well-mixed assumption is no longer reasonable.

We will now apply the PDMM approach to model the spreading of COVID-19 between
two spatially separated subpopulations. This conceptual model has already been pre-
sented in [16] and it will be presented here in a similar manner including the figures and
some text passages from the original publication.

PDMM for spreading of COVID-19

In the case of COVID-19, metapopulation models provide a good approximation of the
original epidemic dynamics since the metastability assumption can be observed in mobil-
ity data [169], e.g., in rare spatial transitions between different cities or countries caused
by mobility restrictions. Moreover, sufficiently large population sizes are realistic to jus-
tify the assumption of piecewise-deterministic dynamics and to allow for a significant
reduction in model complexity compared to a purely stochastic metapopulation model
or a microscale ABM. Although we choose to construct a conceptual model, the PDMM
can be easily calibrated to real-world data, as we have good estimates for rates at the
population scale.

For simplicity, we consider two subpopulations that have frequent local interactions
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S E I RD
Figure 3.24: Visualization of the SEIRD model. Black arrows stand for possible status

transitions, blue arrows indicate an impact by interaction.

and rare transitions between them. The model was calibrated to parameters estimated
in studies from the beginning of the pandemic. Note that the model is not applied to
analyze a specific real-world dataset, but representative results are used to show how
the model can be applied to possible real-world scenarios. In addition, we will ana-
lyze the effectiveness of various containment measures taken within subpopulations and
global measures that affect the spread between subpopulations. However, the main goal
of this example is not to identify the optimal choice of containment measures, but to
demonstrate the applicability of the PDMM to stochastic spreading processes and its
efficiency on large real-world systems. One possible application is risk assessment for
critical transitions of new diseases or virus variants between different countries or cities.

As a first approach to formulate the piecewise-deterministic spreading dynamics, we
will consider the rate constants γ, which define the frequency of status changes for the
population members, to be independent of the evolution of the process. Later, we will
generalize the dynamics by letting these rates depend on time and on the history of the
process.

The System State

At the local scale of each subpopulation, we use a compartmental Susceptible-Exposed-
Infected-Recovered-Deceased (SEIRD) model [39, 170] to describe the internal trans-
mission dynamics of COVID-19. In this model, we consider five compartments for the
infection status of individuals: susceptible (S), exposed (E), infected (I), recovered (R)
and deceased (D). Susceptible individuals are the ones who have not yet been in contact
with the virus and have no immunity against it. After being exposed to the virus, a sus-
ceptible individual is first in an asymptomatic status E that changes to a symptomatic
status I after the end of an incubation period. Recovered and deceased individuals are
removed from the transmission dynamics as we consider recovered individuals to be
immune for the time scale of our model. Given these statuses as well as a set of m
subpopulations, we can write the state of the system as

N =
(
N

(k)
S , N

(k)
E , N

(k)
I , N

(k)
R , N

(k)
D

)
k=1,...,m
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where N
(k)
i denotes the number of individuals in status i ∈ {S,E, I,R,D} within sub-

population k.

Deterministic Local Interaction Dynamics

We assume that exposed individuals are already capable of transmitting the virus [171],
so the status change from S to E can be caused by the second-order interactions of

type either S + E → 2E or S + I → E + I, with corresponding rate constants γ
(k)
SE > 0

and γ
(k)
SI > 0, see Figure 3.24 for an illustration. In general, it is possible to distinguish

between infection rates from a contact with an exposed individual and from a contact
with an infected individual. However, for simplicity, we assume here that infectivity is

constant from the moment of exposure until recovery or death, i.e., γ
(k)
SE = γ

(k)
SI .

Given the system state N , the rate functions for the second-order status changes are
defined by

f
(k)
SE (N) = γ

(k)
SEN

(k)
E N

(k)
S

and
f

(k)
SI (N) = γ

(k)
SI N

(k)
I N

(k)
S ,

respectively, compare (2.20). The remaining status changes that we consider are given
by first-order events of the form E → I, I → R and I → D with respective rate constants

γ
(k)
EI , γ

(k)
IR , γ

(k)
ID > 0. For the status change E → I we accordingly obtain

f
(k)
EI (N) = γ

(k)
EI ·N

(k)
E ,

and equivalently for I → R and I → D

f
(k)
IR (N) = γ

(k)
IR ·N

(k)
I , f

(k)
ID (N) = γ

(k)
ID ·N

(k)
I .

The resulting ODE-system describing the local interaction dynamics within a subpopu-
lation k is then given by

d

dt
N

(k)
S = −

(
γ

(k)
SEN

(k)
E + γ

(k)
SI N

(k)
I

)
N

(k)
S

d

dt
N

(k)
E =

(
γ

(k)
SEN

(k)
E + γ

(k)
SI N

(k)
I

)
N

(k)
S − γ

(k)
EIN

(k)
E

d

dt
N

(k)
I = γ

(k)
EIN

(k)
E −

(
γ

(k)
IR + γ

(k)
ID

)
N

(k)
I

d

dt
N

(k)
R = γ

(k)
IRN

(k)
I

d

dt
N

(k)
D = γ

(k)
IDN

(k)
I .

(3.12)

Stochastic Dynamics for Spatial Exchange

While the local interaction dynamics are given by deterministic evolution Equations
(3.12), the spatial transitions between the subpopulations are described by stochastic
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jump events. At any point in time t ≥ 0, a member of subpopulation k can move to
another subpopulation l 6= k, which induces a discrete change in the system state of the
form

N(t) 7→N(t)− E(k)
i + E

(l)
i

depending on the individual’s status i ∈ {S,E, I,R}. (For i = D we naturally assume
that jumps cannot take place.) The PDMM process combines these discrete, stochastic
jump events between the subpopulations with the ODE dynamics (3.12) for local status-
changes, which results in a stochastic process N(t)t≥0,

N(t) =
(
N

(k)
S (t),N

(k)
E (t),N

(k)
I (t),N

(k)
R (t),N

(k)
D (t)

)
k=1,...,m

,

described by an equation of the form (2.26). The terms in the first line of (2.26) thereby
correspond to an integrated version of the ODE (3.12) for each k, and the second line

describes the spatial jumps for given rate constants λ
(kl)
i between subpopulations k and

l. In the following subsection, both the rate constants γ for the local interactions and
the rate constants λ for the spatial transitions will depend on the evolution of the overall
stochastic process N(t)t≥0.

Remark 4. Instead of physical transitions between subpopulations one can alternatively
define adoption rate functions for rare in-between interactions. This is more appropriate
if the subpopulations are defined in a social rather than a spatial sense, e.g., different
age groups or different activities. The system of equations could then be modified
accordingly, e.g., the process for transitions from S to E could be written as

dN
(k)
S =−

(
γ

(k)
SEN

(k)
E + γ

(k)
SI N

(k)
I

)
N

(k)
S dt

−
∑
l=1
l 6=k

(EkE − E
(k)
S )(γ

(lk)
SE N

(l)
E + γ

(lk)
SI N

(l)
I )N

(k)
S dP(kl)

E (t)

with γ
(lk)
SE := λ

(lk)
E γ

(k)
SE being the rate for rare interactions between susceptible individuals

of subpopulation l and exposed individuals of subpopulation k and γ
(lk)
SI := λ

(lk)
E γ

(k)
SI

being the rate for rare interactions between susceptible individuals of subpopulation l

and infected individuals of subpopulation k and P(kl)
E independent unit rate Poisson

processes.

Remark 5. The modeling choices presented above are made for simplicity and to demon-
strate how the PDMM can be used to conceptually analyze COVID-19 spreading. With
rich data sets and extensive literature on COVID-19 pandemics, our model can be easily
extended to include more realistic scenarios. For example, considering additional com-
partments such as symptomatic, asymptomatic, quarantined individuals [172]; including
more general infection rates with possible time dependence [173], adding demographic in-
formation [174,175], introducing vaccination effects [174] are just some of the extensions
that would make this model more realistic.
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Adaptive regulation of rate constants

At the beginning of the COVID-19 pandemic, much effort was made to slow the spread-
ing of the virus through non-pharmaceutical interventions, such as the introduction of
measures to reduce social contact. This is achieved by targeting individual interactions
(e.g. social distancing and wearing masks), reducing the number of interactions (e.g.
closing schools, offices), but also by introducing global measures such as travel bans
between countries and continents. In this sense, the choice of transition rate constants
γ that are independent of time and the evolution of the process seems unrealistic, since
containment measures are taken depending on the dynamics in order to influence the fu-
ture evolution of the process. Therefore, in the following we will consider rate constants
that are adapted over time according to given rules.

Transmission rates depend on the local contacts within a population, which change
over time as interventions are implemented. In addition, the dependence may also de-
pend on the type of interaction, e.g., exposed individuals may be less infectious than
infected ones, or symptomatic cases may cause fewer infections than expected because
they have already reduced their number of contacts. To accommodate many types of
possible dependencies, we define transmission rates in a very general way as functions
of the process history N≤t := (N(s))s≤t and time t

γ
(k)
SE = γ

(k)
SE (N≤t, t) , γ

(k)
SI = γ

(k)
SI (N≤t, t) .

This means that these rates depend not only on the current state, but also on the
history of the process. This allows us to define rules, such as implementing a strict
lockdown when the number of cases increases for the first time. In our model, the rate
for developing symptoms γEI ≥ 0 is a constant, while the recovery and case fatality
rates depend on the capacity of a population’s health care system, so they are defined

as state-dependent rates γ
(k)
IR = γ

(k)
IR (N) and γ

(k)
ID = γ

(k)
ID(N). One of the goals of the

measures introduced is to control the number of infections so that the limits of the health
care system are not reached. As part of the global measures, the transitions between

the subpopulations are reduced. Thus, the spatial transition rates λ
(kl)
i between the

subpopulations are defined as functions of the history and time of the entire process for
i ∈ {S,E, I,R}:

λ
(kl)
i = λ

(kl)
i (N≤t, t) .

Concrete Choice of Rate Constants for Status Changes

When modeling the implementation of virus containment measures, we assume that
each measure is followed by a phase in which the infection rate remains constant. The
transition between phases can be triggered by either deterministic or stochastic events,
such as the process crossing a threshold number of infections for the first time. In total,
we consider three different phases:
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1. Initial phase: At the beginning of the pandemic, the infection rates γ
(k)
SE and γ

(k)
SI

have values δSE > 0 and δSI > 0, respectively, and the interaction dynamics start
with unrestricted spreading.

2. Strict measures phase: The first measures to reduce the infection rates are
taken in subpopulation k as soon as the number of infected individuals exceeds a

critical value h
(k)
I > 0 for the first time. That is, the strict measures start at the

random first hitting time

t
(k)
1 (N≤t) := min

{
0 ≤ s ≤ t

∣∣∣N (k)
I (s) ≥ h(k)

I

}
∈ [0,∞],

with value t
(k)
1 (N≤t) = ∞ in case of N

(k)
I (s) < h

(k)
I for all s ≤ t. In this phase,

the infection rates γ
(k)
SE and γ

(k)
SI are reduced by a factor κ

(k)
1 ∈ (0, 1). These strict

measures are maintained until the number of infected individuals falls below the

critical value
h
(k)
I
2 , i.e., until the random time point

t
(k)
2 (N≤t) := min

{
t
(k)
1 < s ≤ t

∣∣∣∣∣N (k)
I (s) <

h
(k)
I

2

}
∈ [0,∞].

3. Moderate measures phase: After the strict measures are lifted, the interactions
within the population do not return to normal, i.e., to the values from the initial
phase. Instead, we introduce moderate measures where the infection rates are

scaled with a factor κ
(k)
2 , s.t. κ

(k)
1 < κ

(k)
2 < 1, allowing for more contacts than in

the previous phase. These measures are maintained for the remaining time of the

model even if the number of infected individuals again crosses the value h
(k)
I .

Taken all together, this means that the infection rate function is defined by

γ
(k)
SE (N≤t, t) :=


δSE for t ≤ t(k)

1 (N≤t)

κ
(k)
1 δSE for t

(k)
1 (N≤t) < t ≤ t(k)

2 (N≤t)

κ
(k)
2 δSE for t

(k)
2 (N≤t) < t

(3.13)

and equivalently for γ
(k)
SI , possibly with different reduction factors κ

(k)
i i = 1, 2. More

generally, also the rate constants δSE can depend on the subpopulation k, but here we
omit the corresponding indices for the purpose of simplicity.

In order to make our model more realistic, we include in each subpopulation k a limited

health care capacity given by a threshold h
(k)
R . We assume that the case fatality rate

γ
(k)
ID ≥ 0 increases from a given value δID to another value δ̃ID > δID if the number of

infected individuals exceeds this threshold h
(k)
R , giving

γ
(k)
ID(N) :=

{
δID for N

(k)
I ≤ h(k)

R

δ̃ID for N
(k)
I > h

(k)
R .

161



Vice versa, the recovery rate γIR is reduced in case of an exhausted health care capacity,
such that

γ
(k)
IR (N) :=

{
δIR for N

(k)
I ≤ h(k)

R

δ̃IR for N
(k)
I > h

(k)
R

for constants δIR > δ̃IR ≥ 0. Additionally, within each subpopulation k we consider

γ
(k)
ID + γ

(k)
IR to be constant, i.e., δIR + δID = δ̃IR + δ̃ID.

Finally, we assume that exposed individuals develop symptoms after an incubation pe-
riod of average length τEI > 0 and set

γ
(k)
EI =

1

τEI

for all k.

Concrete Choice of Rate Constants for Spatial Transitions

The global spatial transition rate functions between the subpopulations λ
(kl)
i will depend

on the local phases within each of the subpopulations. More precisely, we define

τ1 (N≤t) := min
{
t
(1)
1 (N≤t) , t

(2)
1 (N≤t)

}
to be the first time that one of the subpopulations initiates the lock-down phase and

τ2 (N≤t) := max
{
t
(1)
2 (N≤t) , t

(2)
2 (N≤t)

}
to be the first time that both subpopulations have ended the lock-down phase. Whenever
in one of the subpopulations the strict measures are applied, the spatial transition rates

are reduced by a factor κ
(kl)
1 ∈ (0, 1). After the strict measures have ended in both

populations, the spatial transition rates are scaled by a factor κ
(kl)
2 , where κ

(kl)
1 < κ

(kl)
2 <

1. Thus, the spatial transition rate functions are defined as

λ
(kl)
i (N≤t, t) :=


δ(kl), for t ≤ τ1 (N≤t)

κ
(kl)
1 δ(kl) for τ1 (N≤t) < t ≤ τ2 (N≤t)

κ
(kl)
2 δ(kl) for τ2 (N≤t) < t

(3.14)

for i ∈ {S,E,R}. We assume that people with symptoms do not travel, i.e., we set

λ
(kl)
I = λ

(kl)
D = 0 for all k, l independently of time.

PDMM-based simulations of COVID-19 spreading

We simulate the dynamics for model scenarios with different infection and spatial tran-
sition dynamics. In particular, we compare the following three scenarios:
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Scenario 1: Choose constant infection and spatial transition rates that can be
interpreted as no action being taken.

Scenario 2: Let the infection rate depend on the process history as defined in
Equation (3.13), but assume constant spatial transition rates between subpopula-
tions. This corresponds to introducing local measures to control the infection dy-
namics within subpopulations, but no additional travel restrictions between them.

Scenario 3: Combine the measures, i.e., let both infection and spatial transition
rates change according to the epidemic dynamics following the rules defined in
(3.13) and (3.14).

Parameter Choices

Recently, much research has been done to infer the parameters of the COVID-19 dynam-
ics from available data. However, for most parameters there is a wide range of estimates,
and thus the choice for a conceptual model can seem arbitrary. Since parameter esti-
mation is not the focus of this work, but the modeling approach is, we will choose the
parameters based on several recent publications [176–180].

Parameters for status change E → I: The average incubation period was esti-
mated to be 5− 6 days [178,179], so we choose τEI = 5.5.

Parameters for status change I → R and I → D: The average time for transi-
tion from I to either R or D will be set to 14 days [178, 179]. For the infection fatality
rate of our model, we will use the estimate from [180], which leads to the choices of
δIR = 1−0.014

14 and δID = 0.014
14 for the recovery and case fatality rates of the populations.

We choose δ̃ID = 3δID and δ̃IR accordingly such that δIR + δID = δ̃IR + δ̃ID is fulfilled.

Parameters for status change S → E: Here we consider two reactions that can
lead to the status change S → E, namely S + E → 2E and S + I → E + I. As

discussed before, for simplicity, we assume that γ
(k)
SE = γ

(k)
SI and thus δSI = δSE . Esti-

mates for the initial reproduction number R0 := δSE
δIR+δID

vary depending on the region
of choice [181] as well as on the estimation method [182]. This leads to a wide range
of possible parameter choices that have the highest impact on the model outcome. For
our model, we use R0 = 4.1 which corresponds to the estimate for the New York City
in [181], assuming our subpopulations to be well-mixed and an urban area like NYC to
meet this assumption. This choice of R0 leads to the infection rate δSE := 4.1

14 . The
remaining parameters will be subject to changes due to different containment measures.
During a period of strict measures phase we will reduce the infection rate to 10% of the

original value by setting a scaling factor κ
(k)
1 = 0.1 for k = 1, 2. In the phase of mod-

erate measures, we assume more interactions which lead to an increase of the infection
rate. For illustration purposes, we consider different choices of moderate measures in
each subpopulation, such that we set values of the infection rates to be 30% and 40% of
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the original δSE , i.e., κ
(1)
2 = 0.3 and κ

(2)
2 = 0.4. For both subpopulations, the infection

threshold for the first hitting time event is chosen to be 2% of the initial total population

number n
(k)
a in subpopulation k, i.e., h

(k)
I = 0.02 · na and the threshold for the capac-

ity of the health care system is reached when 10% of na are infected, i.e., h
(k)
R = 0.1 ·n(k)

a .

Parameters for spatial transitons: The spatial transition rates are chosen to be
δ(kl) = δ(lk) = 0.0003, which corresponds in our example to 3 out of 10000 agents tran-
sitioning per time unit and fits to the assumption of a metastable setting with slow
transitions between subpopulations compared to the infection dynamics within subpop-
ulations. When at least one subpopulation is in the strict measures phase, we introduce
travel restrictions by reducing the spatial transition rate to 5% of the original value,
i.e., we set κkl1 = κlk1 = 0.05. When both subpopulations are in the moderate measures
phase, we moderately relax the travel restrictions by increasing the spatial transition
rate to 50% of the original value, i.e., we set κkl2 = κlk2 = 0.5.

Simulation Results

For the initial population sizes we choose the values n
(1)
a = n

(2)
a = 10 000. We start with

one member of the subpopulation 1 (SP1) being in status E and all other members of
SP1 and subpopulation 2 (SP2) being in status S. The critical transition event is the
first time when an individual with status E jumps from SP1 to SP2. In Figure 3.25, we

(a) Subpopulation 1 (b) Subpopulation 2

Figure 3.25: Trajectory of a PDMM simulation for Scenario 1 (no measures). The dotted
magenta line marks the critical transition event, the horizontal red line
marks the threshold hR of health care capacity.

see one outcome of Scenario 1, where no containment measures are taken. We observe
one wave of infections in each subpopulation with the number of I cases quickly rising
above the threshold hR and staying there for a considerable amount of time. Almost all
members of the population get infected. Due to the increased case fatality rate γID, at
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the end 3.8% of the total population is in status D. This is a scenario that should be
avoided in reality, e.g., by flattening the curve by implementing containment measures.

As a result of the local measures that are present in Scenario 2, the infection curve
shows two smaller waves instead of one large wave, see Figure 3.26. In SP1, the number
of infections remains below the threshold hR throughout the simulation period, while in
SP2 the number of cases exceeds hR during the peak of the second wave. This is due
to a higher infection rate within SP2 in the phase of moderate measures, which leads
to a higher total number of infections and more fatal cases in SP2 at the end of the
simulation. Nevertheless, the outcome in both subpopulations is a much smaller number
of I and D individuals than in Scenario 1. The same is true for Scenario 3 which has
the same local interventions. In addition, the shape of the infection curves determined

(a) Subpopulation 1 (b) Subpopulation 2

Figure 3.26: Trajectory of a PDMM simulation for Scenario 2. The dotted magenta
line marks the critical transition event, the horizontal red line marks the
threshold hR.

by the internal population dynamics is the same in Scenarios 2 and 3 (see Figure 3.27).
However, the distribution of the critical transition time that starts the epidemic in SP2
is significantly different. Due to the introduction of travel restrictions in Scenario 3, we
observe a later first infection in SP2 compared to the one from Scenario 2, see Figure
3.27b.

In order to compare the critical transition time distributions for different containment
measures, we run 10000 MC-simulations for each of the three scenarios, see Figure 3.28.
For about a third of the simulations (regardless of the scenario), the critical transition

occurs before time t
(1)
1 when the measures are introduced in scenarios 2 and 3. After

this time, we can observe the differences in the shapes of the critical transition time dis-
tributions. Namely, compared to Scenario 1, we observe for Scenario 2 a larger number
of critical transitions occurring later in time. This is due to the influence of the number
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(a) Scenario 2 (b) Scenario 3

Figure 3.27: Comparison between infection curves for single trajectories obtained in Sce-
narios 2 and 3. The vertical dotted magenta line marks the critical tran-
sition event, the horizontal red line marks the threshold hR. The dashed
lines refer to the development in the subpopulation 1 and solid lines to
subpopluation 2.

of active cases in SP1, which decreases much faster in Scenario 2 than in Scenario 1 due
to the local interventions. The mean time for the first infection in SP2 is 24.5 days for
Scenario 1 and 43.9 days for Scenario 2. Due to the reduced number of spatial transi-
tions in Scenario 3, the probability of a critical transition during the measures is much
lower. As a result, in 3989 (out of 10000) MC-simulations the critical transition event
did not happen at all, and the virus was successfully contained in SP1. Conditional
on the transition occurring before the end of the simulation period, the mean critical
transition time was 78.6 days, which demonstrates the benefit of the travel restrictions
on the spreading dynamics.

In our conceptual model the outcome of the epidemic was improved by the implemen-
tation of measures. The spatial separation into multiple subpopulations has a strong
impact on the dynamics of the spreading process, especially when considering the sce-
nario of combined measures where the transmission between populations could be de-
layed for a long time and sometimes even be prevented. The model results highlight the
importance of a rapid response to a new disease or virus variant, as the probability of
spreading between separated populations is much higher before any measures are taken.
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(a) Scenario 1 and 2 (b) Scenario 2 and 3

Figure 3.28: Critical transition time distribution for different scenarios of the model.
The number of MC-simulations for each scenario is 10000.

3.3.3 Discussion of ABM Approaches and Model Reduction

While we are able to incorporate preventive measures into the macro- and mesoscale
models of epidemic spreading, we can only do so if we already have an assessment of
how the measures introduced affect the rate constants of the model. We are not able
to gain insight into the effectiveness of specific interventions, such as school closures or
mask use, beyond the information already built into the model assumptions. Questions
like these can only be addressed by a microscale model with more realistic dynamics for
the interactions of individuals within the population (or subpopulations).

An agent-based model for epidemic spreading on the microscale faces two major chal-
lenges compared to the ODE and metapopulation model approaches. The first challenge
is to build a realistic model for the mobility of the agents that replaces the well-mixed
assumption. The second challenge is the model parametrization as the microscopic rate
constants, e.g., for transmission of the virus, are usually unknown and have to be es-
timated by fitting the model outcome to available data. Since ABM simulations are
typically computationally expensive, this may not be feasible if the parameter space is
too high dimensional.

Modeling of contemporary mobility

While we assumed in the models for prehistoric social spreading processes that the mo-
bility of the agents was mainly characterized by foraging patterns, the mobility of the
present day society can be vastly different. Though there still exist hunter-gatherers
today, the majority of people are living in urban areas [183]. Within cities, individuals
choose their location in general based on the activity that they pursue at the moment or
in the near future. When a target destination is known, then in general also a shortest
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or fastest path to it is known, as well as a preferred mode of transportation to get there.
Exploratory movements are rather the exception and usually limited to the choice of
travel destinations, e.g., going to a new place for a leisure activity. Once the activities
are scheduled, the mobility decisions are mostly determined besides reactions to possible
unknown factors such as traffic jams or delayed departure times due to unforeseen events.
Therefore, to model these mobility dynamics we need a completely different approach
than in the previous agent-based models.

State-of-the-art ABMs for mobility typically feature agents with a state variable con-
sisting of a schedule of activities and their associated locations (home, office, school,
etc.) [184, 185]. Each location has a geographical position and depending on the scope
of the model the traffic resulting from agents commuting between the different loca-
tions is also explicitly modeled [184]. Especially in the context of epidemic modeling, it
is desirable to include the possibility for agents to meet while using public transportation.

In the context of epidemic spreading, the agents also possess the status variables that
are relevant for the research question, such as the epidemiological status (e.g., SEIR)
or the age group. The transmission dynamics are usually realized by pairwise interac-
tions, with agents being able to interact if they are at the same location (building or
vehicle) [158,185]. As the locations for activities are discrete, though they are linked to
a location in continuous space, this type of ABM could also be interpreted as a large
scale metapopulation model [186]. Many models consider the mobility and the epidemic
dynamics to influence each other, the transmission dynamics clearly depends on the
changes of the position and the schedule of the agents is adapted depending on the sta-
tus, e.g., after infection or recovery events.

At this microscopic scale, different specific measures can be emulated and their im-
pact on infection dynamics can be evaluated. Some measures can be implemented by
adjusting the schedules of the agents. Typical examples are school closings, home of-
fices, or isolation of infected agents [158,185]. Wearing masks in certain locations, such
as public transportation, can be implemented by adjusting the infection rate associated
with the location. Many models also distinguish between indoor and outdoor activities
and seasonal influences, and define different infection rates for each scenario. However,
the more realistic scenarios are more difficult to parameterize.

Model reduction

The spatial scale of ABMs or household models for epidemic spreading is usually involv-
ing at most one city. While the dynamics of mobility models based on real word data
can in general not be considered well-mixed as spatial effects can be observed [187,188],
there often is also no clear timescale separation possible to identify metastable areas.
Also, the interactions between different age groups, while less frequent than those within
groups, do not occur on a significantly slower time scale. Thus, the model reduction ap-
proach from Chapter 2 is in general not applicable to these models as the existence of
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metastable dynamics is crucial for a good approximation quality. Without metastability
the model does not profit from the assumption of a heterogeneous instead of a well-mixed
population and we can just apply a mean field approach for model reduction [189]. The
resulting model is then a compartmental ODE model where the interactions of the agent
population are approximated by well-mixed dynamics.

Since the model reduction process may aggregate multiple microscale parameters into
a single macroscopic parameter (e.g., multiple microscopic infection rates), it may not
be feasible to explicitly compute the macroscopic parameters from the microscopic pa-
rameters. Thus, for the construction of compartmental ODE models based on ABMs
on the microscale, it is common to utilize data driven approaches such as SINDy [190]
or PREDICI [158] for the derivation of the macroscopic parameters. For the reduced
models it is then also possible to perform parameter optimization, e.g. by calculating
the Pareto front [158].
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Conclusion

Agent-based models play a central role in modeling social spreading processes, in part
because they allow detailed representation of interactions between individuals while in-
tegrating data on real-world processes. However, the resulting models are often too
complex for a formal analysis and usually require high simulation effort. In this the-
sis, based on general remarks on theoretical concepts such as stochastic dynamics and
Markov processes, we have first presented some new theoretical results on the efficient
simulation and model reduction of agent-based models. Among these results are an
event-based simulation algorithm for ABMs and a model reduction approach based on
a projection of the state space and the utilization of convergence results to approximate
agent-based models by less complex metapopulation models that can be simulated with
much less effort. Assuming metastability of the agent system, this approach preserves
important model characteristics whith a low approximation error.

In relation to this background a number of applications of agent-based models have been
discussed. Of these, some are of fundamental structure, including a model to achieve
global goals with local information, and others concern concrete spreading processes in
prehistoric and contemporary societies. A focus among the applications is the spreading
and development of culture and innovations in ancient times, both on a conceptual level
and with reference to a concrete application case, the spread of the woolly sheep to
Europe. In this context, the presented models have been developed through interdisci-
plinary cooperation and by taking into account archaeological, anthropological as well as
geographical data in order to be able to depict the mobility and interactions of nomads,
such as hunter-gatherers or shepherds, as realistically as possible. An important aspect
that was discussed is the challenges posed by the prehistoric context, both in model
parameterization and in validation and interpretation of the results. The comparison
with current modeling scenarios is discussed with reference to the application area of
epidemic spreading. Specifically, the differences in the assumptions about agent mobility
and in the availability and reproducibility of data relevant to the model construction and
analysis are highlighted.

In the analysis of the models, we focused in particular on the identification of metastable
processes through the application of clustering methods, including a novel approach that
exploits the specific structure of the agent-based models we have presented. Based on
this analysis, possibilities for model reduction were discussed, which allow to generate
additional data on macroscopic properties and mesoscopic structures of the models with
low effort. Especially, the generation of relevant statistics about critical transitions and
other rare events is enabled by the reduced model complexity.
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Zusammenfassung

Agentenbasierte Modelle spielen bei der Modellierung sozialer Ausbreitungsprozesse eine
zentrale Rolle, da sie unter anderem die Interaktionen zwischen Individuen detailliert ab-
bilden und Daten über reale Prozesse integrieren können. Die resultierenden Modelle
sind jedoch häufig zu komplex für eine formale Analyse und in der Regel mit einem
hohen Simulationsaufwand verbunden. In dieser Arbeit werden zunächst, aufbauend
auf allgemeinen Ausführungen zu theoretischen Konzepten wie stochastischer Dynamik
und Markov-Prozessen, einige neue theoretische Ergebnisse zur Simulation und Mod-
ellreduktion von agentenbasierten Modellen vorgestellt. Hervorzuheben ist dabei ein auf
einer Zustandsraumprojektion basierender Ansatz zur Approximation agentenbasierter
Modelle durch weniger komplexe Metapopulationsmodelle, die mit deutlich geringerem
Aufwand simuliert werden können. Unter der Voraussetzung der Metastabilität bleiben
dabei wichtige Modelleigenschaften bei geringem Approximationsfehler erhalten.

In diesem Zusammenhang und im Anschluss daran werden eine Reihe von Anwendungen
agentenbasierter Modelle diskutiert. Einige davon sind grundlegender Natur, darunter
ein Modell zur Erreichung globaler Ziele mit lokalen Informationen, andere betreffen
konkrete Ausbreitungsprozesse in prähistorischen und zeitgenössischen Gesellschaften.
Ein Schwerpunkt unter den Anwendungsbereichen ist die Ausbreitung und Entwick-
lung von Kultur und Innovationen in der Antike, sowohl auf konzeptioneller Ebene als
auch in Bezug auf einen konkreten Anwendungsfall, die Ausbreitung des Wollschafs
nach Europa. Dabei wurden die vorgestellten Modelle in interdisziplinärer Koopera-
tion und unter Berücksichtigung archäologischer, anthropologischer und geographischer
Daten entwickelt, um die Mobilität und Interaktionen von Nomaden wie Jägern und
Sammlern oder Hirten möglichst realitätsnah abbilden zu können. Ein wichtiger As-
pekt, der diskutiert wird, sind die Herausforderungen, die sich aus dem prähistorischen
Kontext sowohl für die Modellparametrisierung als auch für die Validierung und Inter-
pretation der Ergebnisse ergeben. Der Vergleich mit aktuellen Modellierungsszenarien
wird in Bezug auf das Anwendungsgebiet der Infektionsausbreitung diskutiert. Dabei
werden insbesondere die Unterschiede in den Annahmen zur Mobilität der Agenten und
in der Verfügbarkeit und Reproduzierbarkeit der für die Modellkonstruktion und -analyse
relevanten Daten hervorgehoben.

Bei der Analyse der Modelle liegt ein besonderer Schwerpunkt auf der Identifikation
metastabiler Prozesse durch die Anwendung von Clusterverfahren, einschließlich eines
neuartigen Ansatzes, der die besondere Struktur agentenbasierter Modelle ausnutzt.
Darauf aufbauend werden Möglichkeiten der Modellreduktion diskutiert, die es erlauben,
mit geringem Aufwand zusätzliche Daten über makroskopische Eigenschaften und meso-
skopische Strukturen der Modelle zu erzeugen. Insbesondere die Generierung relevan-
ter Statistiken über kritische Übergänge und andere seltene Ereignisse wird durch die
geringere Modellkomplexität erst ermöglicht.
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[8] Fabian Becker, Nataša Djurdjevac Conrad, Raphael A Eser, Luzie Helfmann,
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[49] Nataša Djurdjevac Conrad, Jonas Köppl, and Ana Djurdjevac. Feedback loops
in opinion dynamics of agent-based models with multiplicative noise. Entropy,
24(10):1352, 2022.

[50] Mark Pogson, Mike Holcombe, Rod Smallwood, and Eva Qwarnstrom. Introducing
spatial information into predictive nf-κb modelling–an agent-based approach. PLoS
One, 3(6):e2367, 2008.

[51] Chad M Glen, Melissa L Kemp, and Eberhard O Voit. Agent-based modeling of
morphogenetic systems: Advantages and challenges. PLoS computational biology,
15(3):e1006577, 2019.

[52] Jeremy BA Green and James Sharpe. Positional information and reaction-
diffusion: two big ideas in developmental biology combine. Development,
142(7):1203–1211, 2015.

[53] Peter E Kloeden and Eckhard Platen. Stochastic differential equations. In Numer-
ical solution of stochastic differential equations, pages 103–160. Springer, 1992.

175



[54] Benedict Leimkuhler and Charles Matthews. Rational construction of stochastic
numerical methods for molecular sampling. Applied Mathematics Research eX-
press, 2013(1):34–56, 2013.

[55] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361, 1977.

[56] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. The Journal of chemical physics, 115(4):1716–1733, 2001.

[57] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Avoiding negative populations
in explicit poisson tau-leaping. The Journal of chemical physics, 123(5):054104,
2005.

[58] Christian L Vestergaard and Mathieu Génois. Temporal Gillespie algorithm: Fast
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Syria? Paléorient, pages 93–109, 2012.

[93] MJ Plank and A James. Optimal foraging: Lévy pattern or process? Journal of
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Tim Wirtz, and Stefan Wrobel. Efficient decentralized deep learning by dynamic
model averaging. In Joint European conference on machine learning and knowledge
discovery in databases, pages 393–409. Springer, 2018.

[109] Daniel McNeish. On using bayesian methods to address small sample problems.
Structural Equation Modeling: A Multidisciplinary Journal, 23(5):750–773, 2016.

[110] Rens van de Schoot, Sarah Depaoli, Ruth King, Bianca Kramer, Kaspar Märtens,
Mahlet G Tadesse, Marina Vannucci, Andrew Gelman, Duco Veen, Joukje Willem-
sen, et al. Bayesian statistics and modelling. Nature Reviews Methods Primers,
1(1):1–26, 2021.

[111] Cecilia Padilla-Iglesias, Lane M Atmore, Jesús Olivero, Karen Lupo, Andrea Man-
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