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Abstract (German)  

Hintergrund. Die Prävalenz nicht übertragbarer Krankheiten nimmt ständig zu und 

erfordert einfache und kostengünstige Methoden zur Identifizierung von Personen, die für 

die Entwicklung dieser Krankheiten gefährdet sind. 

Ziele. Die Studie zielt darauf ab, einen auf Biomarkern basierenden Risikoindikator 

einzuführen, diesen mit anerkannten gesundheitlichen Risikofaktoren zu verknüpfen, ihn 

mit der aktuellen Krankheitslast in Beziehung zu setzen und prospektiv Personen zu 

identifizieren, die ein Risiko für vorzeitige Sterblichkeit und eingeschränkte 

Alltagsfunktionen haben. 

Methoden. Anhand der Konzentrationen von C-reaktivem Protein (CRP), Interleukin-6 

(IL-6), Fibrinogen, Cortisol und Kreatinin wurden in einer US-amerikanischen Stichprobe 

(N=1234) K-Mean Cluster identifiziert und in einer japanischen Stichprobe (N=378) 

validiert. Die Assoziationen der Cluster mit biologischem Geschlecht, Alter, Body-Mass-

Index (BMI), körperlicher Aktivität, Alkohol- und Rauchgewohnheiten sowie 

frühkindlichem Stress wurde untersucht. Die Odds Ratios für Depressionen, 

Herzkrankheiten, Bluthochdruck, Magengeschwüre, Schlaganfall und Krebs wurden 

zwischen den Clustern verglichen. Die Cluster wurden zur Vorhersage der Sterblichkeit 

und der Arbeitsunfähigkeit (=Krankheitstage in den letzten 30 Tagen) 10 Jahre nach der 

Biomarker-Erfassung verwendet. 

Ergebnisse. Es wurden drei biochemische Cluster identifiziert und validiert. Ein Cluster 

war durch durchschnittliche Konzentrationen aller Biomarker gekennzeichnet 

(=Referenzcluster), eins durch durchschnittliche Konzentrationen von CRP, IL-6 und 

Fibrinogen und überdurchschnittliche Werte von Cortisol und Kreatinin (=metabo-

endokrines Cluster), und eins durch überdurchschnittliche Werte von CRP, IL-6 und 

Fibrinogen und durchschnittliche Werte von Cortisol und Kreatinin (=Hochrisikocluster). 

Im Vergleich zu den anderen Clustern bestand der Hochrisikocluster aus einem höheren 

Anteil von Männern und aus Personen mit einem höheren BMI, geringerer körperlicher 

Aktivität und einer höheren Exposition gegenüber frühkindlichem Stress. Diese Gruppe 

wies die höchsten Odds Ratios für Depressionen, Herzerkrankungen, Bluthochdruck, 

Magengeschwüren, Schlaganfall und Krebs auf. Personen im Hochrisikocluster hatten 10 
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Jahre nach der Biomarker-Erfassung ein höheres Sterberisiko und eine höhere Anzahl 

an Krankheitstagen, unabhängig von Geschlecht, Alter und Krankheitslast.  

Schlussfolgerungen. Die immunendokrinen Profile unterscheiden sich in der Verteilung 

von Geschlecht, Alter, BMI, körperlicher Aktivität und frühkindlichem Stress und stehen 

in Zusammenhang mit Krankheitslast. Sie sagen über das Geschlecht, das Alter und die 

Krankheitslast hinaus auch die Sterblichkeit und die Funktionsfähigkeit im Alltag im 

folgenden Jahrzehnt vorher. Die Ergebnisse unterstreichen die Bedeutung der 

biomarkerbasierten Erstellung von Risikoprofilen, die neue Ziele für Interventionen im 

Rahmen der Präventivmedizin bieten. 
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Abstract (English)  

Theoretical Background. The prevalence of non-communicable diseases are 

continuously increasing requiring simple and inexpensive ways to identify individuals at 

risk for developing these disorders to target with preventive approaches. 

Study Aims. The current study aims to introduce a novel biomarker-based risk indicator, 

to link this novel tool to commonly recognized health risk factors, to relate it to current 

disease burden, and to prospectively identify individuals at risk for premature mortality 

and reduced everyday functioning. 

Methods. K-mean clusters were identified based on C-reactive protein (CRP), interleukin-

6 (IL-6), fibrinogen, cortisol, and creatinine concentrations in a U.S. American sample 

(N=1,234) and validated in a Japanese sample (N=378). The association of the resulting 

clusters with biological sex, age, body mass index (BMI), physical activity, alcohol, and 

smoking habits as well as early-life stress were examined. Odds ratios for depression, 

heart disease, hypertension, peptic ulcer disease, stroke, and cancer were compared 

between individuals in the identified biochemical clusters. The identified clusters were 

used to predict mortality and the inability to work (=number of sick days during the last 30 

days) 10 years following the biomarker assessment. 

Results. Three distinct biochemical clusters were identified and validated. One of these 

clusters was characterized by average concentrations of all considered biomarkers 

(=reference cluster), one by average concentrations of CRP, IL-6, and fibrinogen but 

above-average levels of cortisol and creatinine (=metabo-endocrine cluster), and a third 

one characterized by above-average levels of CRP, IL-6, and fibrinogen, and average 

levels of cortisol and creatinine (=high-risk cluster). Compared to the other identified 

clusters, the high-risk cluster consisted of a significantly higher proportion of men vs. 

women, and individuals with a higher BMI, lower physical activity, and higher reported 

exposures to early-life stress. This cluster had the highest odds ratios for current 

diagnoses of depression, heart disease, hypertension, peptic ulcer disease, stroke, and 

cancer. Individuals in this biochemical risk cluster had a higher risk for mortality 10 years 

following the biomarker assessment, independently from sex, age, and disease burden 
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at baseline. Furthermore, individuals in the high-risk cluster reported the highest number 

of sick days. 
Conclusions. Immune-endocrine profiles differ by sex, age, BMI, physical activity, and 

early-life stress, and they are associated with disease burden. Importantly, they are 

predictive of mortality and everyday functioning within the following decade, over and 

above sex, age, and baseline disease burden. The findings highlight the importance of 

biomarker-based risk profiling providing new targets for interventions in the context of 

preventive medicine in the transition from health to disease and disease-related mortality. 
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1. Introduction  

1.1. Global burden of disease: Current situation and recent developments 

In 1990, infectious diseases still represented a major cause of both mortality and 

Disability-Adjusted Life Years (DALYs), signifying the loss of the equivalent of one year 

of full health (Vos et al., 2020). Specifically, the three diseases causing the highest 

percentage of DALYs in 1990 were neonatal disorders (ranked first; 10.6% of DALYs), 

lower respiratory infections (second; 8.7% of DALYs), and diarrheal diseases (ranked 

third; 7.3% of DALYs) across all ages (Vos et al., 2020). However, between 1990 and 

2019, a fundamental shift happened with Non-Communicable Diseases (NCDs) replacing 

infectious diseases as the leading cause of mortality and DALYs (Global Burden of 

Disease Collaborative Network, 2018; Vos et al., 2020). According to a recent Global 

Burden of Disease analysis, in 2019, neonatal disorders were still ranked first as causing 

the highest percentage of DALYs worldwide (7.3% of DALYs), whereas ischemic heart 

diseases were now ranked second (causing 7.2% of DALYs), and strokes were ranked 

third (causing 5.7% of DALYs) (Vos et al., 2020). In addition, the DALYs caused by mood 

disorders steadily increased within the past three decades (Global Burden of Disease 

Collaborative Network, 2018; Vos et al., 2020). In particular, depressive and anxiety 

disorders have increasingly been recognized as important causes of DALYs (with 

depressive disorders rising from rank 19 in 1990 to rank 13 in 2019, and anxiety disorders 

rising from rank 34 to 24 between 1990 and 2019) (Vos et al., 2020). NCDs including 

mental disorders, hence, cause a major burden to affected individuals measured as 

DALYs but, at the same time, they also imply a massive socioeconomic strain, particularly 

to the health-cares systems (Global Burden of Disease Collaborative Network, 2018). 

Due to the prolonged and expensive treatments that many NCDs require, it is not 

surprising that, altogether, NCDs caused 90% of the annual health-care spending in the 

United States in 2019 – and this upward trend can be seen in multiple sites across the 

globe, and it will continue to rise (Global Burden of Disease Collaborative Network, 2018; 

Martin et al., 2021). 

Collectively, prevalence and incidence of NCD as well as health-care spending for their 

treatment are continuously increasing, marking them as a global pandemic (Global 
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Burden of Disease Collaborative Network, 2018; Martin et al., 2021; Vos et al., 2020). 

Thus, identifying individuals at risk for NCDs and providing them with pre-emptive 

interventions should be the highest priority to effectively decrease the economic as well 

as the individual burden of NCDs. To identify these vulnerable individuals early-on, it is 

pivotal to better understand the determinants of health and disease, and to grasp how 

different somatic components interact.  

Over the past few decades, therefore, there has been a trend arising away from 

established, unidimensional risk measures such as clinical CRP cutoffs and towards a 

more holistic and systemic consideration of preventive medicine and particularly risk 

prediction. An important milestone in this development represents the Allostatic Load 

Index based on the concept of allostatic load that generally refers to the aggregate burden 

of chronic stress, life events, and environmental factors (McEwen, 1998). The Allostatic 

Load Index is a cumulative multi-system risk score resulting from a comprehensive 

analysis from seven different angles; i.e., (1) anthropometric measures (body-mass index; 

BMI and waist-to-hip ratio; WHR), (2) cardiovascular markers (systolic and diastolic blood 

pressure), (3) indicators of sympathetic (epinephrine and norepinephrine) and 

parasympathetic system nervous system (heart rate variability parameters), (4) lipids 

(total cholesterol, low-and high-density lipoproteins; LDL and HDL, and triglycerides), (5) 

glucose homeostasis parameters (glucose and insulin), (6) neuroendocrine markers 

(cortisol and dehydroepiandrosterone sulfate; DHEA-S), and (7) immune-inflammatory 

markers (C-reactive protein; CRP, fibrinogen and albumin) (Chen et al., 2012; McEwen, 

1998). For each system, risk indices are computed as the proportion of biomarkers within 

a system for which an individual has been assigned to a predefined high-risk quartile 

(Chen et al., 2012). These sub system risk scores vary from 0 to 1 (indicating 0 - 100% 

of system biomarkers in high-risk range for a given individual) and the final value of the 

Allostatic Load Index is calculated as the sum of the seven sub system scores (ranging 

from 0 to 7) (Chen et al., 2012; McEwen, 1998).The Allostatic Load Index has become a 

widely-used measure in research and it has been found to be predictive for various 

disease outcomes as well as all-cause mortality (Gallo et al., 2014; Juster et al., 2010), 

while, however, there are also critical limitations related to its conceptualization (Bertele 

et al., 2021).  
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Among these limitations is the fact that summing up the separate risk indices for each of 

the seven angles makes it impossible to account for any interactions among different sub 

systems and to estimate the potential predictive value of these interactions (Bertele et al., 

2021). This gap is unfortunate because the allostatic load index includes parameters that 

were indeed found to interact, such as BMI and blood pressure (M. Tanaka, 2020). 

Furthermore, as described in 1.2.4, metabolic, endocrine, and immunological processes 

are generally linked and so are their effects on disease risk. Another concern refers to 

practicability issues related to the Allostatic Load Index making it challenging to ultimately 

implement it into the health care system; while the different parameters needed to 

calculate the Allostatic Load Index can be assessed relatively easy, it still bears the risk 

that, under routine clinical circumstances, parameters are only available partly for the 

majority of patients (Bertele et al., 2021). It remains unclear if and how that might 

decrease the predictive value of the Allostatic Load in these patients.  

Collectively, the Allostatic Load Index is a comprehensive concept that triggered an 

important rethinking in science and medicine but, at the same time, it artificially splits and 

then sums up physiological processes that are naturally woven into a systemic allostatic 

reaction, as even suggested by the creator of the Allostatic Load Index (Bertele et al., 

2021; McEwen, 1993). In addition, the Allostatic Load Index lacks feasibility in clinical 

routine, which is highlighted by the fact that, to date, the Allostatic Load Index has not 

been widely implemented in the health care system. 

However, given the rising number of NCDs, there is a critical necessity to establish 

measures for risk evaluation such as the Allostatic Load Index in routine clinical practice 

allowing to target individuals at an enhanced risk for NCDs with preventive steps – before 

they get ill (Bertele et al., 2021). This is underlined by an alarming finding of the Global 

Burden of Disease Study (2017) suggesting that, between 1990 and 2017, the total 

number of DALYs caused by NCDs per year rose from 1.2 to 1.6 billion years. With that, 

NCDs accounted for more than 60 percent of DALYs worldwide (Global Burden of 

Disease Collaborative Network, 2018). In addition to this individual burden caused by 

NCDs, they also strain society, due to massive related monetary and non-monetary costs 

(Benjamin et al., 2018; Global Burden of Disease Collaborative Network, 2018).  
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While it is increasingly becoming clear that early-on prevention is the most promising 

approach to disburden the health care system, this field also represents one of the major 

public health challenges; namely, due to limited resources, only individuals at an 

enhanced risk for NCDs can be provided with pre-emptive interventions. Hence, the first 

step towards decreasing the multifaceted burden due to NCDs is to develop and 

implement practicable and inexpensive ways to identify individuals at risk. 

To properly conceptualize such an approach, it is essential to comprehend the to-date 

knowledge about the multiple body systems involved in health and disease with each of 

them being represented by specific easily measurable biomarkers. To review these 

different systems together with commonly assessed biomarkers are the main purposes 

of the next sections. 

 

1.2. Biological alterations underlying health and disease 

1.2.1. The metabolic system 

The term “metabolic system” refers to all biochemical reactions and processes in our body 

cells that produce energy out of the food we eat (Salway, 2017). In particular, the 

metabolic system deals with three macronutrients that we supply to the body through 

food: carbohydrates, proteins, and fats (Salway, 2017). More specifically, the metabolic 

system cleaves carbohydrates into simple sugars, the primarily used fuel in the human 

body, it breaks proteins down into amino acids, cell signaling molecules that are key for 

maintenance, development, and immunity, and it turns fats into fatty acids, the primary 

storage method of fuel in the human body (Salway, 2017). Hence, the metabolic system 

is not only intricate and highly dynamic in its function, but it is also essential to sustain life 

(Salway, 2017).  

Carbohydrates, lipids, and proteins all ultimately break down into glucose, which 

represents the primary metabolic fuel of the human body. Consequently, glucose 

metabolism is a crucial part of the metabolic system. During the process of glycolysis, at 

the cellular level, the body uses glucose to generate two molecules of adenosine 

triphosphate (ATP), a universal form of energy that can be used by cells and tissues 
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(Nakrani et al., 2022). Insulin is an essential player in glucose metabolism since it allows 

glucose to enter cells, tissues, and organs, where it is used to generate ATP. In this way, 

insulin also regulates blood glucose levels keeping it within the healthy range (Schandry, 

2016). The glucose metabolism is impaired in many diseases, not only in diabetes 

mellitus but also in different types of cancer (Gillies et al., 2008; Permert et al., 1993) and 

even in neuropsychiatric disorders such as schizophrenia (Bryll et al., 2020). Regarding 

cancer, the main reason for the link to an impaired glucose metabolism (yielding blood 

glucose levels beyond the health range) is thought to be that elevated glycolysis in 

response to increased blood glucose levels yields the production of large amounts of acid, 

which provides cancer cells with a beneficial environment compared to normal 

parenchyma (Gillies et al., 2008). Schizophrenia, on the other hand, might be related to 

impaired glucose metabolism as the latter might compromise various cognitive processes 

that require ATP. Resulting dysfunctions in synaptic transmission may then yield neuronal 

death and, consequently, changes in different brain areas (Bryll et al., 2020). However, 

these are only a few examples illustrating the crucial role of the integrity of the glucose 

metabolism in health outcomes and, in turn, how an impaired glucose metabolism can 

increase the risk for multiple disease states. 

Another important actor in the metabolic system are the mitochondria, also referred to as 

“power houses of the cell” (Know, 2018). The mitochondria are bacterial endosymbionts 

meaning that, about 1.5 billion years ago, an α-protobacterium was internalized by an 

ancestry of the eukaryotic cell (Archibald, 2015). Therefore, mitochondria possess their 

own genome, known as mtDNA (Anderson et al., 1981). As critical cellular organelles, the 

mitochondria oxidate food with oxygen from the air and, in this way, generate ATP 

(Gyllenhammer et al., 2020). In this process called oxidative phosphorylation, 

mitochondria produce important signaling molecules, that is, reactive oxygen species 

(ROS) (Gyllenhammer et al., 2020).  

Besides this role as major energy supplier, the mitochondria also serve as a cellular 

signaling system that is highly sensitive to the environment (Chandel, 2015). To respond 

to changes in the environment resulting in altered bioenergetic needs of the organism, 

the mitochondrial structure and function both are highly dynamic and adaptive (Picard & 

McEwen, 2018). The mitochondria can, for example, rapidly scale up their bioenergetic 
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work during physical activity, immune activation, to respond to acute psychosocial 

stressors, as well as in any other case of enhanced energy demands (Picard & McEwen, 

2018). Chronic exposure to psychological stress as opposed to acute stress episodes is 

accompanied by increased energy demand and can result in molecular and functional 

recalibrations among mitochondria causing mitochondrial allostatic load (Picard et al., 

2014; Picard & McEwen, 2018). Generally defined as the cumulative damage to the body 

caused by responses to chronic stress (McEwen & Stellar, 1993), when referring to the 

mitochondria, allostatic load characterizes “deleterious structural and functional changes 

that mitochondria undergo in response to elevated glucose levels and stress-related 

pathophysiology” (Picard et al., 2014). Mitochondrial allostatic load is closely linked to 

health and disease outcomes, particularly via a “three-stage temporal and causal 

sequence of biological damage” (Picard et al., 2014): “First, overactivation or 

underactivation of primary mediators, such as glucocorticoids, induces direct effects and 

outcomes on cellular processes. Next, secondary outcomes (metabolic, cardiovascular, 

neural and second-order immune biomarkers) become dysregulated as indicated by their 

abnormal patterns, including lack of adaptation, prolonged response or blunted response. 

Finally, this process culminates in tertiary outcomes or clinical end points” (Picard et al., 

2014). These clinical end points include but are not limited to hypertension, 

cardiovascular diseases, diabetes mellitus, neurodegeneration, physical and cognitive 

decline (Picard et al., 2014). 

Collectively, due to its role as the body’s energy supplier, its cellular signaling 

characteristics, and due to its sensitivity to environmental changes, the metabolic system 

is a major determinant of health and disease and, thus, a key somatic component to 

consider in risk evaluation and disease prevention. 

There are multiple ways to assess or measure aspects of the metabolic system such as 

mitochondrial parameters or aspects of glucose metabolism. However, to assess the first 

requires high expertise and analytic effort making it unsuitable to a routine clinical setting 

and the latter requires to be measured fasting because it is very sensitive to food intake 

(Gyllenhammer et al., 2020; Nakrani et al., 2022). In addition, fasting glucose levels are 

highly influenced by diseases related to the glucose metabolism; especially diabetes 

(Nakrani et al., 2022). To assess the status of the metabolic system in a global and stable 
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way, these measures are thus not the first choice as reliable, easily measurable 

biomarkers in routine clinical care. Instead, I have chosen creatinine to represent the 

metabolic system. It is becoming increasingly clear from recent research, that creatinine 

is more than an indicator of renal functioning or a biochemical compound that is left over 

from the energy metabolism. Rather, it occurs to be a promising indicator of current 

bioenergetic challenge that the body is confronted with, e.g., while coping with allostatic 

load  (Bonilla et al., 2021; Kashani et al., 2020; Kazak & Cohen, 2020; Kreider & Stout, 

2021). Although this research is still very young, a solid body of empirical work suggests 

creatinine and creatine metabolism in general as essential markers in the context of 

allostasis and, thus, in disease prediction (Bonilla et al., 2021; Kashani et al., 2020; Kazak 

& Cohen, 2020; Kreider & Stout, 2021). Creatinine can further be assessed relatively 

easy, reliable, and cost-efficient (Kashani et al., 2020). In addition, creatinine is known for 

its link to disease phenotypes. Specifically, altered levels of creatinine often co-occur with 

renal dysfunction (Perrone et al., 1992), hypertension (Coresh et al., 2001), diabetes, with 

high BMI and they are also known to increase with age (Culleton et al., 1999). 

 

1.2.2. The endocrine system 

Together with the immune system, the endocrine system is the most important regulation 

and communication system of the body. It uses hormones released into the blood stream 

as messengers to initiate its desired effects and reactions in the organism (Schandry, 

2016). More specifically, a particular hormone needs to reach one of its respective 

receptors, for example at the membrane of the target cell, to initiate a cellular reaction 

(Schandry, 2016). Hormones are built and released by eight endocrine glands that, taken 

together, built one functional system (Schandry, 2016). Some endocrine glands are in the 

brain such as the hypothalamus, the pituitary gland, and the pineal gland, others such as 

the thyroid and parathyroid glands can be found in the neck, the thymus is in the upper 

chest, the adrenals are located on top of the kidneys, and the pancreas is in the abdomen 

(Schandry, 2016).  

The endocrine glands produce 50 different hormones with multiple functions while, for the 

purposes of this dissertation, I will focus on one specific aspect of the endocrine system 
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and its respective operating hormones since they are crucial to human stress response 

and allostatic load processes; the hypothalamic–pituitary–adrenal (HPA) axis (Schandry, 

2016).  

The HPA axis is the major endocrine stress axis in the human body and regulates several 

physiological processes, including the metabolic system, immune responses, and the 

autonomic nervous system mediating the effects of stressors (Dedovic et al., 2009; Sheng 

et al., 2021). The HPA axis is a negative feedback system and its activation starts with 

the secretion of corticotropin releasing hormone (CRH) by the paraventricular nucleus in 

the hypothalamus which then is released into the blood stream and travels to the pituitary 

gland (Brown, 1994). Here, CRH yields the secretion of adrenocorticotropic hormone 

(ACTH) into the bloodstream by the pituitary gland (Brown, 1994). ACTH then binds to 

receptors in the adrenal gland which then initiate the secretion of cortisol (Brown, 1994). 

Most body cells have receptors for cortisol allowing it to have a range of effects on the 

metabolic system, the cardiovascular, and immune system (Buckingham, 2006; McEwen, 

1998). As part of the above-mentioned negative feedback loop that the HPA axis 

represents, once secreted into the bloodstream, cortisol regulates its further secretion by 

binding to receptors in the hippocampus, the amygdala, and in the prefrontal cortex 

(Feldman & Weidenfeld, 1995; Herman et al., 2005; Herman & Cullinan, 1997).  

Cortisol is one of the glucocorticoids and its effects include the increase of blood glucose 

levels, it also enhances the use of glucose in the brain as well as it scales up the 

availability of substances to repair cells and tissues (Kemeny, 2003; Wolkowitz & 

Rothschild, 2003). In addition, cortisol restrains all somatic functions that would be 

detrimental in an acute situation of fight-or-flight including the suppression of inflammatory 

and digestive activity, as well as it limits processes of reproduction and growth (Kemeny, 

2003; Wolkowitz & Rothschild, 2003). Thus, an adaptive and dynamic cortisol response 

in cases of acute stress is essential for survival and serves to facilitate adequate coping 

with acute threats. However, the exposure to chronic stress yield an excessive activation 

of the HPA axis and a prolonged cortisol release (i.e., hypercortisolism), going along with 

an increase in allostatic load that, as described above, enhances the risk for numerous 

disease states (McEwen, 2004). Specifically, hypercortisolism has previously been 

associated with an increased risk for cardiovascular and metabolic comorbidities such as 
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hypertension, impaired glucose metabolism and diabetes type 2, dyslipidemia, obesity, 

and metabolic syndrome because it often involves DNA, tissue, and organ damage (Min, 

2016; Pivonello et al., 2008; Steffensen et al., 2016). 

Collectively, the endocrine system is an intricate system whose sub systems are spread 

across the body. As a key player in human stress response and homeostasis, it is very 

reactive to changes in the environment as well as very interactive with other systems such 

as the immune and the metabolic system. Hence, it is considered another main 

determinant of health and disease across the lifespan.  

The endocrine system will be represented by cortisol in the context of this dissertation 

since cortisol is the end product of the HPA axis, making it an important player in health 

and disease. Furthermore, although there is no gold standard measure of allostatic load, 

cortisol is among the most used endocrinological measures representing some of the 

physiological adjustments of the system due to allostasis (Lee et al., 2015). In addition, 

cortisol can be measured reliably, easily, and in-expensively. 

 

1.2.3. The immune system 

The immune system is the body’s own protection system, and it defends us against 

pathogens and uncontrolled cell growth. The immune system consists of three defense 

lines; physical barriers, the innate and the acquired immune system (Wittchen & Hoyer, 

2011). The first includes the intact skin as well as mucous membranes that, together, 

manage to repel most pathogens. The innate immune system also protects from external 

pathogens, but it can also destroy degenerated body cells (Wittchen & Hoyer, 2011). To 

be able to detect a variety of pathogens, the innate immune system focuses on molecular 

structure patterns of pathogens, so-called Pathogen-Associated Molecular Patterns 

(PAMPs) which it can identify using Pattern Recognition Receptors (PRRs) such as 

phagocytes circulating in the blood stream (Wittchen & Hoyer, 2011). After binding to the 

PRRs, the process of phagocytosis begins. Here, the pathogen is first absorbed by the 

cell and then digested in the cell plasma (Wittchen & Hoyer, 2011). While the PRRs of 

the innate immune system are detective of a broad range of pathogens and can initiate a 

more unspecific defense reaction, the acquired immune system develops across the 
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lifespan learning to encounter pathogens with a more specific defense reaction (Wittchen 

& Hoyer, 2011). Because the organism encounters different viruses and bacteria, 

lymphocytes form particular memory cells that will detect and initiate a specific and 

effective defense reaction in case of a second contact with a specific irritant (Wittchen & 

Hoyer, 2011). Notably, once acquired, this specific immunity then can persist throughout 

the lifespan (Wittchen & Hoyer, 2011). 

The processes initiated whenever the immune system responds to an irritant are 

commonly summarized under the term inflammation. In the context of an inflammation 

process, the immune system utilizes different messenger substances, called cytokines, 

to communicate and to coordinate the immune reaction (Wittchen & Hoyer, 2011). For 

example, it uses Interleukin-6 (IL-6) to stimulate acute phase responses and immune 

reactions (M. Tanaka, 2020). Even faster than the secretion of IL-6 is the release of C-

reactive protein (CRP), an acute-phase reactant protein produced in the liver, 

accelerating “the removal of cellular debris and damaged or apoptotic cells and foreign 

pathogens” (Nehring et al., 2022). Another important actor in an acute-phase immune 

response to particularly tissue injury is fibrinogen (Budzynski & Shainoff, 1986; Luyendyk 

et al., 2019). Fibrinogen is a multifunctional glycoprotein and its role in driving acute 

inflammatory responses is two-folded: “The first phase is dominated by thrombin cleavage 

of fibrinogen integrated with an acute inflammatory response that functions to contain 

tissue damage, stop the loss of blood, and prevent microbial infection. The second phase 

is dominated by plasmin dissolution of fibrin and other matrix proteins integrated with 

reparative inflammatory cells working to remodel and repair damaged tissue” (Luyendyk 

et al., 2019). 

As mentioned above, inflammation can be triggered by harmful irritants that encounter 

the organism during an acute infection but there are further causes and factors that can 

contribute to an increase in inflammation such as stress, obesity, and age. For example, 

it has been shown that (psychosocial) stress can yield inflammatory responses in the 

brain and peripherally (Calcia et al., 2016; Rohleder, 2014). This mainly takes place via 

interactions between the endocrine and immune system, as will be described in more 

detail below. Obesity can also cause inflammation since adipose tissue is known to 

produce and release pro-inflammatory mediators, including IL-6 (Lafontan, 2005). The 
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specific processes that link obesity to inflammation will be discussed as interactions 

between the metabolic and the immune system, in section 1.2.4.  

An important question given the increasing risk for various disease states with age is 

whether inflammaging, i.e., chronic, low-grade inflammation occurring with age and in the 

absence of an acutely triggering infection or harmful stimuli (Franceschi et al., 2018; 

Kennedy et al., 2014), directly causes these pathological conditions or whether it acts 

more as a biological mediator between its etiology factors, that are being increasingly 

understood, and disease outcomes (for a review, see Ferrucci & Fabbri, 2018). 

Inflammaging goes along with a continuing activation of the innate immune system that 

is mainly initiated by endogenous signals (Franceschi et al., 2018; Kennedy et al., 2014). 

It is not yet fully understood what causes inflammaging and why it even exists. While, on 

the one hand, previous NCDs might be one reason for accelerated aging of the immune 

system, on the other hand, an established theory attempting to explain inflammaging is 

the antagonistic pleiotropy theory of ageing (Franceschi et al., 2017). This theory 

postulates that, because inflammation has been evolutionarily selected due to its 

protective effects in early life and adulthood, it may persist and have detrimental effects, 

however, throughout later adulthood when the principle of natural selection is not active 

anymore (Franceschi et al., 2017). Yet, inflammaging might not occur to the same extent 

as a determinative function of age. Instead, a comprehensive body suggests certain 

factors enhancing inflammaging such as “genetic susceptibility, central obesity, increased 

gut permeability, changes to microbiota composition, cellular senescence, oxidative 

stress caused by dysfunctional mitochondria, and immune cell dysregulation” (Ferrucci & 

Fabbri, 2018).  

Collectively, just like with the endocrine stress response described above, inflammation 

in response to a current threat is adaptive and essential to sustain life. However, by 

damaging DNA, tissue and organs, chronic inflammation has been shown to yield an 

increased risk of cardiovascular disease, cancer, chronic kidney disease, dementia, and 

depression as well as for premature death (for reviews, see Ferrucci & Fabbri, 2018; 

Furman et al., 2019). Hence, inflammation plays a crucial role maintaining health, but it 

is also one of the main biological processes underlying disease and dysfunction. 
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For the scope of this dissertation, inflammation will be represented by CRP, IL-6, and 

fibrinogen to get a maximum systemic perspective on inflammation; by involving 

mediators secreted directly in immune cells but also in peripheral organs such as the liver. 

CRP is an acute-phase reactant protein secreted by the liver in the scope of an 

inflammatory reaction (Nehring et al., 2022). Among the various functions of CRP is the 

identification and elimination of pathogens and injured cells (Nehring et al., 2022). 

Elevated CRP concentrations have previously been associated with acute infectious 

states (Nehring et al., 2022) but also with chronic conditions such as neurodegenerative 

disorders (Luan & Yao, 2018), renal disease (Panichi et al., 2001), and obstructive 

pulmonary disease (Lazovic, 2012). The main function of IL-6 is to support the organism 

in responding to infections by stimulating acute phase responses and immune reactions 

(Gabay, 2006; T. Tanaka et al., 2014). IL-6, thus, is a proinflammatory cytokine and 

echoes the acute, liver-induced inflammatory response by the highly sensitive CRP 

(Gabay, 2006). IL-6 has previously been linked to atherosclerotic cardiovascular disease, 

heart failure, and all-cause mortality (Cainzos-Achirica et al., 2018). Fibrinogen is a 

multifunctional glycoprotein released into the blood stream and completes the picture as 

a systemic moderator of the inflammatory cascade (Budzynski & Shainoff, 1986; 

Luyendyk et al., 2019). The main function of fibrinogen is the production of fibrin to bind 

together platelets and plasma proteins (Budzynski & Shainoff, 1986; Luyendyk et al., 

2019). As such, elevated concentrations of fibrinogen have previously been associated 

with pulmonary disease (Duvoix et al., 2013), cardiovascular disease (The Emerging Risk 

Factors Collaboration, 2012), and atherothrombotic disease (Green, 2006). CRP, IL-6, 

and fibrinogen are furthermore the most used measures of inflammation in the literature, 

and they can be assessed easily and robustly in a laboratory setting (Budzynski & 

Shainoff, 1986; Luyendyk et al., 2019; Nehring et al., 2022; M. Tanaka, 2020). 

 

1.2.4. How and why these systems interact 

Although the term “system” has been referred to the metabolic, the endocrine, and the 

immune system, it is important to note that they are rather “sub systems” making and 

sustaining a much more comprehensive and intricate system, that is, the human 
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organism. Each sub system has its respective tasks and, thus, takes on an essential role 

towards the aim of maintaining the organism’s global health. However, the interactions 

among the different sub systems are at least as important to this superior aim as each 

sub system considered separately. These intersystemic interactions are multi-facetted 

and complex; yet, in the following, I will address them in a very selective and limited 

fashion to fit the scope of this dissertation. 

Interactions between the metabolic and the endocrine system. The endocrine system not 

only influences gene expression and, with that, protein synthesis, but it also is the chief 

regulator of circadian alignment (Keay, 2017; Schandry, 2016). Consequently, the 

endocrine system represents an essential modulator of the metabolic system; more 

specifically, it regulates the synthesis of gut-peptides, glucose-insulin interactions, 

substrate oxidation, as well as leptin and ghrelin concentrations in blood (Keay, 2017; 

Schandry, 2016). These are, however, not unidirectional effect chains but they rather 

involve various feedback system loops in which, for example, the hypothalamus as a 

control center of the endocrine system receives feedback about initiated changes in the 

metabolism allowing the endocrine system to increase or decrease its stimulating effects 

on the metabolic system (Keay, 2017; Schandry, 2016). 

Metabo-endocrine interactions are also crucial in the context of chronic stress and 

allostatic load. In these cases, levels of oxidative stress tend to increase due to the excess 

production of ROS by the mitochondria (Sato et al., 2010). This oxidative stress is thought 

to cause an overactivation of the HPA axis yielding an increased secretion of cortisol and, 

more importantly, resulting in a further increase in oxidative stress (Sato et al., 2010). 

This modulation role of the endocrine system in oxidative stress is crucial to allow the 

metabolic and the endocrine system to orchestrate as the body responds to all types of 

stressors (Vitale et al., 2013). However, in some cases, these dynamics can also yield a 

vicious cycle of accelerating aging (Vitale et al., 2013).  

Interactions between the metabolic and the immune system. The mitochondria function 

as a central modulator of the immune system since they provide the energy for and 

regulate cell defense (for a review, see Meyer et al., 2018). The mitochondria are 

responsible for the initiation of cell responses to the activation of the innate immune 

system but also to cell stress or damage, e.g., due to allostatic load (for a review, see 
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Meyer et al., 2018). Here, mitochondrial components released to the cytoplasm or the 

extracellular space function as danger signals when identified by receptors of the innate 

immune system, activating the same (for a review, see Meyer et al., 2018). In turn, 

mitochondrial function can also be altered by immune activation (Yu et al., 2020). 

Another clinically relevant context of interaction between the metabolic and the immune 

system represents obesity (de Heredia et al., 2012; Larabee et al., 2020). The excessive 

amount of adipose tissue involved in cases of obesity are increasingly understood to 

trigger chronic systemic inflammation (de Heredia et al., 2012; Larabee et al., 2020). More 

specifically, this connection is thought to be mediated by alterations in fatty acid induced 

inflammation, adipokine secretion, oxidative stress, adipose tissue hypoxia, and 

endoplasmic reticulum stress (de Heredia et al., 2012; Larabee et al., 2020). In addition, 

adipocytes synthesize adipokines including proinflammatory leptin whose production is 

increased in cases of obesity (de Heredia et al., 2012; Larabee et al., 2020). Leptin 

initiates monocyte proliferation and differentiation into macrophages, influencing the 

stimulation of natural killer cells, and yielding the secretion of pro-inflammatory cytokines 

including IL-6, and interleukin-12 (IL-12) (de Heredia et al., 2012; Larabee et al., 2020). 

Collectively, metabo-immune interactions are not only crucial to maintain health but their 

coordination also plays a crucial role in allostatic load processes and, thus, in disease 

vulnerability and progression (for a review, see Meyer et al., 2018).  

Interactions between the endocrine and the immune system. The endocrine and the 

immune system both are systems distributed widely across the body and they 

communicate extensively and bi-directionally (for a review, see Klein, 2021). In particular, 

cortisol, the end product of the HPA axis, is known for its anti-inflammatory and 

immunosuppressive effects (Coutinho & Chapman, 2011). However, it has been found 

that a continuous activation or overstimulation of the HPA axis, e.g., in cases of chronic 

stress, can induce inflammation, since peripheral mononuclear cells that have been 

stimulated with CRH in the context of an HPA axis activation, also increase the secretion 

of IL-6 and, hence, yield an activation of the immune system (for a review, see Angioni et 

al., 1993). In response to an excess and continuous secretion of cortisol, the immune 

system can, in turn, loose its sensitivity to the immune-suppressing effect of 

glucocorticoids, yielding an accumulation of cortisol and an increased secretion of 



Introduction 19 

 

proinflammatory cytokines (Miller et al., 2002; Vitlic et al., 2014). Specifically, it is thought 

that white blood cells respond to the excessive expression of glucocorticoids with a 

counter-reaction, down-regulating the expression and/or function of receptors responsible 

for binding glucocorticoid hormones. This downregulation of receptors then reduces the 

ability of the immune system to respond to the anti-inflammatory effects of cortisol (Miller 

et al., 2002). 

Together, endocrine-immune crosstalk is essential to allow the organism to respond to 

environmental changes and stressors in a systemic manner but, again, might result in a 

detrimental cycle towards disease susceptibility in cases of allostatic load.  

Interplay of metabolic, endocrine, and immune system. As laid out above, all three sub 

systems stand in close communication and continuously interact to maintain homeostasis 

in the body (Angioni et al., 1993; Klein, 2021; McEwen, 1998, 2004; Straub, 2014; 

Wensveen et al., 2019). By initiating and potentiating each other’s effects, these 

intersystemic communications allow extremely fast and effective responses of the body 

to acute stressors in the short-term (Meyer et al., 2018; Sato et al., 2010; Vitale et al., 

2013). They also allow the body to adapt to longer-term environmental changes, perfectly 

tailoring its functioning to specific conditions. However, various risk factors such as 

chronic stress, obesity, substance abuse, or genetic predispositions might yield 

detrimental effects of these intersystemic interactions on disease risk (McEwen, 1998, 

2004; Straub, 2014; Wensveen et al., 2019).  

A specific context of interaction between the endocrine, the metabolic, and the immune 

system is represented by the Nuclear Factor-KappaB (NFKB) signaling pathway, a 

significant regulator of genes involved in development and progression of inflammatory 

processes. An activation of NFKB can involve two main pathways: the canonical and the 

noncanonical pathway (for a review, see Liu et al., 2017). The first can be activated by 

various stimuli, such as ligands of several cytokine receptors, PRRs, tumor necrosis 

factor receptor superfamily members, as well as T-cell and B-cell receptors, the latter is 

activated more selectively, by limited group of stimuli, such as ligands of a subset of tumor 

necrosis factor receptor superfamily members (for a review, see Liu et al., 2017). While 

the canonical NFKB is involved in most parts of the immune response, the noncanonical 

NFKB pathway represents as a supplementary signaling axis cooperating with the 



Introduction 20 

 

canonical NFKB pathway to modulate specific functions of the adaptive immune system 

(for a review, see Liu et al., 2017). In general, NFKB is considered a downstream effector 

of the endocrine response to stressful psychosocial events and connects changes in 

neuroendocrine axis activity to the cellular response (Bierhaus et al., 2003). 

Consequently, both NFKB pathways play important roles in translating an endocrine 

stress signal into a cellular response involving the induction of an inflammatory reaction 

(Bierhaus et al., 2003; Mehet, 2007). Furthermore, during sympathetic activation in the 

context of stressful events, NFKB is also activated, yielding an increased secretion of pro-

inflammatory cytokines (Bierhaus et al., 2003; De Bosscher et al., 2003; Mercurio & 

Manning, 1999). To downregulate this increase of inflammatory signaling in the system, 

the HPA axis enhances the secretion of cortisol (Bierhaus et al., 2003; De Bosscher et 

al., 2003; Mehet, 2007; Mercurio & Manning, 1999). In some cases, e.g., in cases of 

glucocorticoid resistance or insensitivity, these enhanced cortisol concentrations might, 

however, become chronical (Bierhaus et al., 2003; De Bosscher et al., 2003; Mercurio & 

Manning, 1999). Interestingly, NFKB is also activated by obesity and metabolic stress 

causing increased levels of uncontrolled inflammation observable in obese individuals 

(Catrysse & van Loo, 2017). At the same time, NFKB activation influences the metabolic 

system by contributing to insulin resistance in these cases (Catrysse & van Loo, 2017). 

Consequently, NFKB is a crucial mediator between the metabolic, the endocrine, and the 

immune system emphasizing again the close and inseparable connection of these three 

systems (Bierhaus et al., 2003; Catrysse & van Loo, 2017). 

 

1.3. A novel bioinformatics approach for risk evaluation 

Following the promising trend towards a more comprehensive and systemic perspective 

on risk evaluation as proposed by the Allostatic Load Index, I developed an innovative 

biomarker-based approach aimed at identifying individuals with a high burden of NCDs 

and at risk for premature mortality. The main objective here was to develop a sufficient 

measure that can reasonably be incorporated in routine diagnostics by involving as little 

effort as possible (Bertele et al., 2021). Here, dimension reduction is achieved through a 

multivariate approach. According to its conceptualization, the approach attempts to use 
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no more than five commonly and easily assessed biomarkers, i.e., CRP, IL-6, fibrinogen, 

cortisol, and creatinine to divide individuals into distinct clusters (Bertele et al., 2021). As 

described above, these five biomarkers cover a broad and diverse somatic functionality 

and are well-established representants of different systems, so that their combination 

allows a systemic view on the current somatic condition. In brief, the combination of CRP, 

fibrinogen, and IL-6 allow a consideration of systemic inflammation as a multi-level 

network. CRP as produced in the liver highly sensitive marker indicating the current 

degree of inflammation in the body, an additionally increased IL-6 from immune cells 

quantifies the level of manifestation of an inflammatory signal, and fibrinogen marks the 

extent to which repair processes of tissue damage have been initiated as a result of 

inflammation (Baumeister et al., 2016; Budzynski & Shainoff, 1986; Luyendyk et al., 2019; 

Nehring et al., 2022; Rückerl et al., 2007; M. Tanaka, 2020; Thompson et al., 2010). I 

thus expect that, if considered in combination, CRP, IL-6, and fibrinogen will allow to 

explain a maximum possible level of variance compared to a single inflammatory marker. 

The involvement of cortisol as the end product of the HPA axis allows conclusions about 

the endocrine allostatic load and creatinine adds information about the current global ATP 

demand (Kashani et al., 2020; Zorn et al., 2017). Employing a k-mean clustering 

approach based on these five biomarkers as opposed to their consideration as main 

factors furthermore allows to take linear and non-linear interactions among these 

biomarkers into account and to relate the resulting clusters to respective outcomes 

(Bertele et al., 2021). 

 

1.4. Aims  

Given the urgent need for innovative – sensitive and economic – tools for risk prediction 

and embracing the novel, systemic thinking in predictive, preventive, and personalized 

medicine, this thesis seeks to investigate the following aims in the Midlife in the United 

States (MIDUS) and the Midlife in Japan (MIDJA) study cohort, two large, prospective 

general population samples. 

1. To develop a novel, cluster-based tool for risk evaluation using k-mean clustering 
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Hypothesis: K-mean clustering approach based on concentrations of CRP, IL-6, 

fibrinogen, cortisol, and creatinine allows to identify and replicate a number of distinct 

biochemical clusters in a U.S. American and Japanese cohort. 

2. To identify risk/etiology factors of the identified biochemical clusters 

Hypothesis: Because the identified biochemical clusters likely have a considerable 

environmental component, a number of risk factors (e.g., sex, age, smoking habits, early-

life stress) related to the cluster assignment will be identifiable.   

3. To examine disease burden in the identified biochemical clusters 

Hypothesis: Current disease burden can be predicted based on the identified biochemical 

clusters. 

4. To investigate the predictive value of the identified biochemical clusters regarding 

mortality and inability to work 10 years following the biomarker assessment. 

Hypothesis: Mortality and inability to work (during the past 30 days) ten years after the 

biomarker assessment can be predicted based on the identified biochemical clusters. 

 

1.5. Contribution of this dissertation  

1.5.1. Contribution to the field of risk stratification, preventive, and personalized 

medicine 

In this work, a novel approach to risk stratification is presented that aims to take a more 

holistic and systemic view of risk. This perspective of the body as a comprehensive and 

interactive network is also reflected in the methodology of the thesis, since it represents 

a pioneering step toward establishing the use of multivariate statistics in the context of 

biomarker-based risk prediction. From a statistical point of view, it thus allows an 

enhanced degree of individual variation to be explained despite its parsimonious 

conceptualization as a result of the limitation to the five biomarkers considered most 

representative of the endocrine, the metabolic, and the immune system (Franklin, 2005). 

This parsimony feature could allow the actual implementation of the proposed tool in 

routine diagnostics and help to identify individuals at increased risk for health and 

mortality outcomes in need of targeted prevention. 
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By helping to identify individuals at risk, who should be targeted with preemptive 

interventions, the novel tool presented here helps to pave the way for effective and cost-

efficient prevention. First, by employing a multivariate network approach, it makes the 

identification of individuals at risk more precise, narrowing the number of individuals to be 

targeted with prevention, and thus, related costs. Second, the multivariate approach used 

here, advances the understanding of interactions among different biomarkers which might 

have valuable implications for the new and further development of preventive 

interventions. Third, the supplementary consideration of various risk factors including 

drug consumption, BMI, and physical activity in the context of the identified biochemical 

clusters might add to these implications for preventive medicine. Moreover, the 

consideration of environmental factors and their interplay with biochemical interactions in 

the context of health and mortality outcomes also advances the field of personalized 

medicine. 

 

1.5.2. Contribution to the field of medical psychology 

By including the exposure to childhood maltreatment (CM) such as child abuse and 

neglect as one of the risk factors examined in relation to the identified biochemical 

clusters, the thesis explores biochemical profiles as a potential somatic manifestation of 

early-life stress. If associations between CM exposure and cluster assignment will be 

found, it could improve our understanding of how CM can enhance the risk for detrimental 

longer-term outcomes, as has been demonstrated by a wide range of empirical studies 

(for a review, see Grummitt et al., 2021). Furthermore, a link between cluster assignments 

and CM exposure would also indicate that psychotherapy represents a leverage point in 

both prevention and intervention of biochemical profiles associated with disease and 

mortality, highlighting the necessity of involving interdisciplinary perspectives in this 

context, that is, those of medical psychology.  
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1.5.3. Contribution of this author  

I conducted a comprehensive literature review on biomarker-based risk predictions, the 

considered outcomes and risk factors, as well as on the previously used methodological 

approaches. I acquired the MIDUS and the MIDJA data set and prepared both data sets 

for the planned analyses. I conceptualized and computed a novel risk evaluation tool 

based on biochemical clusters using k-mean clustering, I defined the factors and 

outcomes to be tested in relation to the clusters, and I conducted all respective analyses. 

As the first author of both publications, I composed the initial drafts of the manuscripts 

and incorporated suggestions from coauthors and journal reviewers/editors throughout 

the revision process. Moreover, I presented the findings in poster presentations at 

conferences and colloquia. 

 

1.5.4. Contribution of this dissertation 

This work is based on two publications that I wrote as the first author (Bertele et al. 2021, 

2022). All instances in the following Methods and Results sections that include some 

extracts, tables, and figures from the publications related to this dissertation (Bertele et 

al., 2021, 2022), have been cited as such. This dissertation expands significantly on the 

work presented in the published articles. On top of a more profound and extensive review 

of the literature background laying the groundwork for the hypotheses tested in the 

articles and in the dissertation, several additional analyses and results are presented that 

are not included in the publications. The discussion integrates and addresses findings 

from both papers and, thus, is much more comprehensive than the discussions in the 

publications. Moreover, the discussion presented here includes a more extensive 

reflection of the clinical implications of the findings as well as their implications on other 

related fields such as public health, medical psychology as well as “3P Medicine” that is, 

personalized medicine, targeted prevention, and predictive diagnostics. Finally, the 

dissertation expands on the outlook for future research directions, that have been 

presented in the publications. 
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2. Methods  

2.1. Study design 

The study has cross-sectional and prospective elements. As depicted in Figure 1, the first 

step was to compute the k-mean cluster analysis based on CRP, IL-6, fibrinogen, cortisol, 

and creatinine in the U.S. American sample and to then validate the resulting biochemical 

clusters in the Japanese cohort. Second, I compared the distributions of biological sex, 

age, BMI, physical activity, alcohol consumption, smoking (lifetime) – all factors affecting 

risk for NCDs – among different clusters in the U.S. American cohort and did the same in 

the Japanese cohort, despite here, only information on sex, age, and BMI was available. 

Since information on the exposure to CM was available in the U.S. cohort, I compared 

the severities among biochemical clusters in this sample only. Next, in each cohort, the 

clusters were related to diagnoses of depression, heart disease, hypertension, peptic 

ulcer disease, stroke, and cancer at the time of biomarker assessment (T0) because 

these diseases represent highest prevalence worldwide, the fastest expansion in 

numbers, and the utmost comorbidities (Bertele et al., 2021; Global Burden of Disease 

Collaborative Network, 2018). Then, I investigated mortality rates as well as reported 

inability to work approximately ten years following the biomarker assessment (T1) 

between biochemical clusters in the U.S. American cohort.  
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Figure 1: Study workflow chart, CRP=C-reactive protein, IL-6=Interleukin-6, BMI=Body Mass 

Index, CM=Childhood maltreatment. Source: Adapted from “How biomarker patterns can be 

utilized to identify individuals with a high disease burden: a bioinformatics approach towards 

predictive, preventive, and personalized (3P) medicine” N. Bertele et al., 2021, EPMA Journal, 

12, p. 508 (https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

Considered diseases were depression, heart disease, hypertension, peptic ulcer disease, stroke, 

and cancer.  
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2.2. Data collection and participants 

 
Figure 2: MIDUS: Data collection flowchart, MIDUS=Midlife in the United States, BMI=Body Mass 

Index, CM=Childhood maltreatment. Source: Own representation. 

Irrelevant sub projects were crossed out. 

As can be seen in Figure 2, MIDUS study is a population-based, longitudinal study with 

many assessment points and multiple sub projects. In this study, I focused on the second 

(MIDUS 2) and the third assessment timepoint (MIDUS 3). Specifically, I analyzed the 

biomarker sub sample of MIDUS 2 that has been assessed between 2004 and 2009 and 

consists of 1,255 participants (Dienberg Love et al., 2010). This sub sample contains 

biomarker data of 1,054 of the more than 7,000 participants from the large survey study 

starting in 1995, i.e., MIDUS 1, and of 201 additionally recruited African American 

participants from Milwaukee, Wisconsin (Radler & Lavender, 2020). The demographics 

of the whole MIDUS 2 sample as well as the biomarker sub sample used here are 

summarized in Table 1.  
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Table 1: Comparison of MIDUS 2 biomarker sub sample and the overall MIDUS 2 cohort. 

Comparison of MIDUS 2 biomarker sub sample and the overall MIDUS 2 cohort. 

 MIDUS 2 Biomarker Sub Sample Whole MIDUS 2 Cohort 
Biological Sex 56.8% female 

(N=1,234) 

53.3 % female 

(N=4,963) 

Age Mean: 52.5 (St. Dev.: 11.7) 

(N=1,234) 

Mean: 54.4 (St. Dev.: 12.5) 

(N=4,963) 

Note: MIDUS=Midlife in the United States Study, St. Dev.= Standard deviation. Age was 

measured in years. Source: Own representation. 

 

The MIDUS 2 biomarker data contained CRP, IL-6, fibrinogen, cortisol, and creatinine 

concentrations on 1,234 participants, information on sex, age, BMI, physical activity, and 

smoking (lifetime) all of those participants, and information on alcohol consumption was 

available in 811 of those participants. Information on the exposure to CM was obtained 

for 1,225 of the participants with complete biomarker data (i.e., info on CRP, IL-6, 

fibrinogen, cortisol, and creatinine concentrations). Information on depression diagnosis 

was available in 1,217 of the participants with complete biomarker info (i.e., info on CRP, 

IL-6, fibrinogen, cortisol, and creatinine concentrations), on hypertension for 1,221 

participants, on heart disease for 1,228, on peptic ulcer disease for 1,222, on stroke for 

1230, and on cancer for 1,231 participants. The third wave of data collection (MIDUS 3) 

took place from 2013 to 2014 and included information on mortality of 1,234 participants 

and on the inability to work of 929 participants of the MIDUS 2 biomarker sample (Figure 

2).  

MIDJA is the Japanese equivalent to MIDUS and, in this dissertation and related 

publications, I only focused on the biomarker subsample and one timepoint (2009-2010) 

(Markus et al., 2020). Table 2 shows the demographics for the whole MIDJA cohort 

(N=1,027) compared to the biomarker sub sample. The MIDJA biomarker project 

contained information on CRP, IL-6, fibrinogen, cortisol, and creatinine concentrations in 

378 participants, information on sex, age, and BMI in all of those participants (Markus et 

al., 2020). Information on depression diagnosis was available in 378 of the participants 

with complete biomarker info (i.e., info on CRP, IL-6, fibrinogen, cortisol, and creatinine 

concentrations), on hypertension for 360 participants, on heart disease for 378, on peptic 
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ulcer disease for 355, on stroke for 360, and on cancer for 355 participants. Unfortunately, 

MIDJA includes no information regarding CM exposure nor any prospective data on 

mortality or the ability to work (Markus et al., 2020). 

 
Table 2: Comparison of MIDJA 1 biomarker sub sample and the overall MIDJA 1 cohort. 

Comparison of MIDJA 1 biomarker sub sample and the overall MIDJA 1 cohort. 

 MIDJA 1 Biomarker Sub Sample Whole MIDJA 1 Cohort 
Biological Sex 56.1% female 

(N=378) 

50.8 % female 

(N=1,027) 

Age Mean: 55.3 (St. Dev.: 14) 

(N=378) 

Mean: 54.4 (St. Dev.: 14.2) 

(N=1,027) 

Note: MIDJA=Midlife in the Japan Study, St. Dev.= Standard deviation. Age was measured in years. 

Source: Own representation. 

 

2.3. Biomarker assessment   

The following biomarker assessment methods are described similarly in Bertele et al. 

(2021). In MIDUS, overnight fasting serum samples were obtained to assess CRP, IL-6, 

and fibrinogen concentrations, according to the manufacturer guidelines (Dade Behring 

Inc., Deerfield, IL for CRP and fibrinogen; R&D Systems, Minneapolis, Minnesota for IL-

6) ( Bertele et al, 2021; Crimmins et al., 2008). Citrated plasma levels of CRP and 

fibrinogen were assayed using immunonephelometric assay; IL-6 was assayed using 

Enzyme-Linked Immunosorbent Assay (ELISA) (Bertele et al, 2021; Gruenewald et al., 

2012). The laboratory inter-assay coefficient of variance was 5.7% for CRP, 13% for IL-

6, 2.6% for fibrinogen, all below the 20% acceptable range (Bertele et al, 2021; 

Gruenewald et al., 2012). Aiming to obtain a cumulative cortisol and creatinine measure, 

12-hour overnight urine samples were collected between 7pm and 7am. Enzymatic 

Colorimetric Assays and Liquid Chromatography-Tandem Mass Spectrometry were 

performed at the Mayo Medical Laboratory in Rochester, Minnesota, U.S. (Bertele et al, 

2021; Gruenewald et al., 2012). Participants were excluded from this procedure if they 
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had a renal failure or severe renal decline according to glomerular filtration rate (Bertele 

et al, 2021; Gruenewald et al., 2012). 

In MIDJA, CRP, IL-6, and fibrinogen concentrations were assessed analogically to 

MIDUS, while cortisol was only available as assessed in saliva (three subsequent days, 

three times each day) (Bertele et al, 2021; Gruenewald et al., 2012). The resulting nine 

saliva measurements were averaged and used as a representative marker for an 

individual’s cortisol concentration (Bertele et al., 2021; Kobayashi & Miyazaki, 2015). 

Creatinine was assessed in blood. 

 

2.4. Assessment of biological sex, age, BMI, physical activity, alcohol 
consumption, lifetime smoking, and childhood maltreatment 

Biological sex was assessed via self-report (C. D. Ryff et al., 2010). Age was assessed 

by subtracting the self-reported date of birth from the date of assessment (T0) (C. D. Ryff 

et al., 2010). Weight and height were assessed during the study visit (T0) and BMI was 

then calculated “by dividing weight in pounds by height in inches squared and multiplying 

by a conversion factor of 703” (C. D. Ryff et al., 2010). Physical activity was assessed via 

self-report, by asking participants: “Do you engage in regular exercise, or activity, of any 

type for 20 minutes or more at least 3 times a week?” (0=No, 1=Yes) (Bertele et al., 2021; 

C. D. Ryff et al., 2010). Alcohol consumption was also assessed via self-report (“In the 

past month, how often did you drink any alcoholic beverages, on the average?”, 

1=everyday, 2=5 or 6 drinks a week, 3=3 or 4 drinks a week, 4=1 or 2 drinks a week, 

5=Less than one drink a week, 6=Never drinks) as well as smoking (“Have you ever 

smoked cigarettes regularly”, 0=No, 1=Yes) (Bertele et al., 2021; C. D. Ryff et al., 2010). 

CM was assessed only in MIDUS and by using the short form of the Childhood Trauma 

Questionnaire (CTQ), a retrospective self-reported measure (Bernstein & Fink, 1998). 

The CTQ is a well-established measure, and it covers five subtypes of CM, that is, 

childhood emotional abuse (e.g., “I thought that my parents wished I had never been 

born.”), physical abuse (e.g., “I was punished with a belt a board, a cord, or some other 

hard object.”), sexual abuse (e.g., “Someone tried to touch me in a sexual way or tried to 

make me touch them.”), emotional neglect (e.g., “There was someone in my family who 
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helped me feel that I was important or special”(R)), and physical neglect (e.g., “I didn't 

have enough to eat.”) (Bernstein & Fink, 1998). Each CM subtype is being assessed by 

five items and responses range from 1 (=Never true) to 5 (=Very often true) (Bernstein & 

Fink, 1998). The CTQ also contains a minimization/denial scale with three items (e.g., “I 

had the perfect childhood.”) (Bernstein & Fink, 1998). However, for the scope of this 

dissertation, only the subscales assessing the five different CM subtypes were 

considered. As suggested by Bernstein & Fink (1998), I built a sum score of all 25 items 

with higher values representing higher severities of CM. Consequently, the sum scores 

vary from 25 to 125 (Bernstein & Fink, 1998). According to Bernstein and Fink (1998) the 

CTQ was found to have high structural validity (via confirmatory factor analysis) and 

convergent validity (via correlations with therapists’ ratings). Furthermore, the CTQ has 

been shown to have high internal consistency, e.g., of 0.92 (Bernstein et al., 2003). 

Cronbach’s alpha in the current study was 0.95.  

 

2.5. Assessment of disease burden 

Since they represent highest prevalence worldwide, the fastest expansion in numbers, 

and utmost comorbidities, I focused on depression, heart disease, hypertension, 

stroke/Transient Ischemic Attack (TIA), peptic ulcer disease, and cancer (Global Burden 

of Disease Collaborative Network, 2018). Specifically, at T0, participants were asked if 

they were ever diagnosed with any of these diseases (0=No, 1=Yes) (Bertele et al., 2021). 

 

2.6. Follow-up assessment of mortality 

The MIDUS team used three different methods to obtain mortality data throughout 

October 2015. First, a National Death Index was conducted in 2009 that confirmed the 

death of 173 participants (Bertele et al., 2022; Elliot et al., 2018). Another 322 deaths 

were registered in the scope of tracing and mortality closeout interviews conducted by the 

University of Wisconsin Survey Center (UWSC) as part of MIDUS 3 (Bertele et al., 2022; 
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Elliot et al., 2018). Lastly, 57 deaths were confirmed via normal longitudinal sample 

maintenance (Bertele et al., 2022; Elliot et al., 2018). 

 

2.7. Follow-up assessment of the inability to work 

Participants’ inability to work, as a measure of current everyday functioning, was 

assessed by a single item asking: “In the past 30 days, how many days were you 

completely unable to go to work or carry out your normal household work activities 

because of your physical health or mental health?”(C. Ryff et al., 2015). 

 

2.8. Statistical analysis  

2.8.1. K-mean clustering 

The following content has been described similarly in Bertele et al. (2021). K-mean 

clustering is a commonly used approach to classify multidimensional data into groups 

with characteristic patterns, and has previously been used in analyses of phenotypes 

based on biomarkers (Bertele et al., 2021; Franklin, 2005). K-mean cluster analysis 

panels the data points into a number of (k) clusters. An observation is assigned to the 

nearest cluster measured by Euclidean distance (Bertele et al., 2021; Franklin, 2005). In 

the current study, k-mean cluster analytics were used to identify distinct biochemical 

patterns (Bertele et al., 2021). The reason to prefer a k-mean generated cluster variable 

before the original biochemical indicator variables include that k-mean generated clusters 

help reduce the data and provide discrete memberships of biochemical patterns, which 

was a primary goal of this study (Bertele et al., 2021). Moreover, k-mean generated 

cluster variables allow to alleviate multicollinearity issues faced by directly using the 

original biomarkers in a regression model and, as a multivariate approach, they allow to 

account for linear and non-linear interactions among the original variables (Bertele et al., 

2021; Franklin, 2005). 

Because k-mean clustering is dependent on the participants’ order in a data set (Bertele 

et al., 2021; Franklin, 2005), it is recommended to randomize the order before running 
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the k-mean clusters. After doing so, I performed a k-mean cluster analysis based on z-

standardized CRP, IL-6, fibrinogen, cortisol, and creatinine concentrations in the MIDUS 

sample using IBM SPSS Statistics 27 (Bertele et al., 2021). To ensure the stability of 

clusters, the clustering process was repeated in two large subsamples (Bertele et al., 

2021; Franklin, 2005): More specifically, I conducted a median-split based on age and 

performed the clustering for each group separately (Bertele et al., 2021). At the same 

time, this allowed me to test whether the clusters are age dependent. Further, validating 

k-mean cluster analysis were conducted for the whole MIDUS sample but after excluding 

participants with a BMI outside the health range (below 18 or above 35) (Bertele et al., 

2021). The final validation step included the k-mean clustering based on CRP, IL-6, 

fibrinogen, cortisol, and creatinine concentrations in the MIDJA cohort (Bertele et al., 

2021).  

 

2.8.2. Examining the characteristics of identified biochemical clusters 

In MIDUS, I first calculated means and standard deviations for age, BMI, alcohol 

consumption, and CM severity in each cluster. I also calculated the percentages of 

females/males, physical activity, and lifetime smoking in each cluster. Then, One-Way 

Analysis of Variance (ANOVA) models with multiple Bonferroni post-hoc tests were used 

to compare age, BMI, alcohol consumption, and CM exposure (represented by the total 

score of the CTQ). Pairwise c2-Tests adjusting for multiple comparisons were used to 

compare the distributions of biological sex, physical activity, and lifetime smoking 

between clusters. 

At first, CM was treated just like the other investigated factors in this dissertation. 

However, as it has been shown during the analyses for my first publication (Bertele et al., 

2021) that sex, age etc. differed significantly between clusters, in a second step, I created 

a General Linear Model (GLM) with pairwise comparisons including all other covariates 

(i.e., sex, age, BMI, physical activity, alcohol and smoking habits) to exactly reflect the 

analyses included in the publication (Bertele et al., 2021). To avoid issues resulting from 

heteroscedastic residual variances, here, I performed a bootstrapping procedure using 

10,000 samples. This is considered the gold standard approach in this case since (1) 
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bootstrapping allows to identify robust parameter estimates without requiring 

homoscedasticity of residual variances, (2) clusters have been found to be stable (Bertele 

et al., 2021), and (3) none of the covariates included in the GLM are involved in the k-

mean clustering process itself (Efron & Tibshirani, 1993).  

In MIDJA, I first calculated means and standard deviations for age and BMI in each 

cluster. I also calculated the percentages of females/males in each cluster. Then, general 

linear models with bootstrapping (10,000 samples) and multiple comparisons controlling 

for multiple testing were used to compare age and BMI between clusters. Pairwise c2-

Tests adjusting for multiple comparisons were used to compare the distributions of 

biological sex between clusters. 

IBM SPSS Statistics 27 was used for all analyses described above. 

 

2.8.3. Z-tests to compare the odds ratios for diseases between clusters 

In both MIDUS and MIDJA, I first calculated the percentages of depression, heart disease, 

hypertension, peptic ulcer disease, stroke, and cancer diagnosis in each cluster. Then, z-

tests using Bonferroni corrections for multiple testing were used to compare odds ratios 

(OR) for depression, heart disease, hypertension, peptic ulcer disease, stroke, and 

cancer between clusters. 

To exploratively compare the k-mean cluster-based approach at hand to a well-

established clinical biomarker that has previously been related to a broad range of NCDs, 

I evaluated and contrasted the number of diagnoses among individuals in the high-risk 

cluster to the number of diagnoses among individuals with CRP concentrations above the 

established clinical cut-off (>3mg/L) (Bertele et al., 2021; Pearson et al., 2003).  

 

2.8.4. Logistic Regression Models to compare the mortality between clusters (with age-

stratified analyses) 

Mortality analyses were only conducted for the MIDUS cohort as this data was not 

available in MIDJA. First, percentages of deceased individuals (at T1) in each cluster 

were calculated (Bertele et al., 2022). As a second step, I conducted a logistic regression 
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analysis predicting mortality (at T1, 0=No, 1=Yes) by the biochemical clusters resulting 

from 28.1. (Bertele et al., 2022).  In doing so, I applied the indicator method comparing 

each cluster to a reference cluster (defined based on its average levels on all considered 

biomarkers, as described in 2.1.) (Bertele et al., 2022). Also, I controlled for sex, age, and 

disease burden at T0 (Bertele et al., 2022). Regarding disease burden, I included 

diagnoses of depression, any cardio- or cerebrovascular disease (0=No diagnosis, 1=At 

least one diagnosis of heart disease, hypertension and/or stroke), peptic ulcer disease, 

and cancer as covariates (Bertele et al., 2022). Exploratively, the second step was 

repeated but this time separately in three different age groups (based on age at T0): 31-

50 years, 51-70 years, and 71-90 years and then again, but separately for males vs. 

females. 

IBM SPSS Statistics 27 was used for all analyses described above. 

 

2.8.5. General Linear Models to compare the inability to work between clusters (with 

age-stratified analyses) 

Analyses regarding the inability to work (at T1) were only conducted for the MIDUS cohort 

since this data was not available in MIDJA. First, the average days participants indicated 

that they were unable to work due to illness in the last 30 days (at T1) were calculated 

separately in each cluster (Bertele et al., 2022). Second, I performed a general linear 

model using Bonferroni pairwise comparisons and controlling for sex, age, and disease 

burden at T0 (as described in 2.8.4) to predict the days participants indicated that they 

were unable to work at T1 (Bertele et al., 2022). Exploratively, the second step was 

repeated but this time separately in two different age groups (based on age at T0): 31-50 

years, and 51-70 years. Individuals above 70 years of age were excluded from the 

analyses since they were mostly retired. I also repeated the second step separately in 

males vs. females. 

IBM SPSS Statistics 27 was used for all analyses described above.  
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3. Results 

This section includes the main results reported in the publications (k-mean clustering 

based on biomarkers, relations of clusters to CM, current disease diagnoses, later 

mortality, and inability to work) as well as additional results of analyses that were not 

included in the publications (relations of clusters to sex, age, BMI, physical activity, 

alcohol use, and smoking habits, age-stratified analyses of mortality in the clusters, 

supplemental tables). 

Some tables and graphs appeared in the publications upon which this dissertation is 

based, of which I am the sole first author (Bertele et al., 2021, 2022). Results reported in 

the publications are restated below in addition to results addressing additional patterns of 

relation investigated in this thesis.  

 

3.1. Aim 1: Develop novel cluster-based tool for risk evaluation 

3.1.1. U.S. American sample 

Most of the considered biomarkers were positively correlated in the MIDUS cohort (Table 

3).  
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Table 3: MIDUS: Descriptive statistics and correlations among biochemical markers. 

MIDUS: Descriptive statistics and correlations among biochemical markers. 
 

CRP IL-6 Fibrinogen Cortisol Creatinine 

Mean  

SD 

3.03  

4.78 

3.04 

3.05 

348.92 

87.85 

1.09 

1.13 

81.24 

53.7 

CRP  - 
    

IL-6 0.39*** - 
   

Fibrinogen 0.49*** 0.36** - 
  

Cortisol 0.08** -0.03 -0.02 - 
 

Creatinine 0.05 0.01 -0.06 0.38*** - 
Note: MIDUS=Midlife in the United States cohort, CRP=C-reactive protein (ug/mL), IL-6=Interleukin-6 

(pg/mL) and fibrinogen (mg/dL) were measured in blood, cortisol (ug/dL) and creatinine (mg/dL) were 

measured in urine. 
** p<0.01, *** p<0.001, p-values are controlled for multiple testing according to Bonferroni. 

All two-tailed. 

Source: “How biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. Bertele 

et al., 2021, EPMA Journal, 12, p. 5 (supplemental material) (https://doi.org/10.1007/s13167-021-

00255-0). Copyright 2021 by Springer Nature. 

 

I evaluated the initial k-mean clustering results from k = 2 to 6 clusters. When k = 2, the 

patterns of clusters were not distinct enough; when k = 4 or above, some clusters were 

very small in size (i.e., smallest cluster portion < 5%) (Bertele et al., 2021). Through a 

combination of the parsimonious principle and engineering meaningful difference among 

clusters, k = 3 were selected for the subsequent analyses (Bertele et al., 2021). Figure 3 

depicts the distributions of the three identified clusters with respect to the CRP, IL-6, 

fibrinogen, cortisol, and creatinine (all z-standardized).  
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Figure 3: MIDUS: Biochemical markers (z-scores) and resulting clusters 1-3, CRP=C-reactive 

protein (ug/mL), IL-6=Interleukin-6 (pg/mL) and FBN=Fibrinogen (mg/dL) were measured in 

blood, CORT=cortisol (ug/dL) and CREA=creatinine (mg/dL) were measured in urine. Source:  

“How biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 510 (https://doi.org/10.1007/s13167-021-00255-0). 

Copyright 2021 by Springer Nature  

Ncluster1 = 937, Ncluster2 = 102, Ncluster3 = 195. 

 

As depicted in Figure 3, cluster 1 is characterized by average levels in all biochemical 

measures and will thus be referred to as “reference cluster” in the following (Bertele et 

al., 2021). Cluster 2 was characterized by high and above-average levels of CRP, IL-6 

and fibrinogen and will thus be referred to as “high-risk cluster” in the following (Bertele 

et al., 2021). Cluster 3 was characterized by high and above-average levels of cortisol 

and creatinine but average CRP, fibrinogen, and IL-6 concentrations and will be referred 

to as “metabo-endocrine cluster” in the following (Bertele et al., 2021).  
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3.1.2. Median split by age and k-mean clustering in BMI-restricted cohort 

I replicated all three clusters in the younger MIDUS cohort (<54 years, Figure 4) as well 

as the reference and the endocrine-immune cluster in the older MIDUS cohort (>54 years, 

Figure 5) (Bertele et al., 2021). I further replicated all three clusters in the BMI-restricted 

MIDUS cohort (Figure 6) (Bertele et al., 2021). 

 

 
Figure 4: MIDUS young sample: biochemical markers (z-scores) by cluster, CRP=C-reactive 

protein (ug/mL), IL-6=interleukin-6 (pg/mL) and FBN=fibrinogen (mg/dL) were measured in blood, 

CORT=cortisol (ug/dL) and CREA=creatinine (mg/dL) were measured in urine. Source: Adapted 

from “How biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 6 (supplemental material) 

(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

Ntotal = 624, Ncluster1 = 435, Ncluster2 = 59, Ncluster3 = 130. Only participants below the age median (i.e., 

54 years) were included, 
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Figure 5: MIDUS old sample: Biochemical markers (z-scores) by cluster, CRP=C-reactive protein 

(ug/mL), IL-6=interleukin-6 (pg/mL) and FBN=fibrinogen (mg/dL) were measured in blood, 

CORT=cortisol (ug/dL) and CREA=creatinine (mg/dL) were measured in urine. Source: Adapted 

from “How biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 7 (supplemental material) 

(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature.  

Ntotal = 601, Ncluster1 = 370, Ncluster2 = 28, Ncluster3 = 203. Only participants above the age median (i.e., 

54 years) were included. Nine individuals were excluded due to CRP and/or cortisol levels more 

than 5 standard deviations above the mean. 
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Figure 6: MIDUS BMI-restricted sample: Biochemical markers (z-scores) by cluster, CRP=C-

reactive protein (ug/mL), IL-6=interleukin-6 (pg/mL) and FBN=fibrinogen (mg/dL) were measured 

in blood, CORT=cortisol (ug/dL) and CREA=creatinine (mg/dL) were measured in urine. Source: 

Adapted from “How biomarker patterns can be utilized to identify individuals with a high disease 

burden: a bioinformatics approach towards predictive, preventive, and personalized (3P) 

medicine”, by N. Bertele et al., 2021, EPMA Journal, 12, p. 8 (supplemental material) 

(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

Ntotal = 1,004, Ncluster1 = 737, Ncluster2 = 63, Ncluster3 = 204. Participants with a Body Mass Index (BMI) 

below 18 and above 35 were excluded. 

 

 

 
 
 
 

-1

-0.5

0

0.5

1

1.5

2

2.5

CRP FBN IL6 CORT CREA

z-
sc

or
es

1 2 3



 42 

 

3.1.3. Replication in Japanese sample 

In MIDJA, I also found significant intercorrelations between considered biomarkers (Table 

4). 

 
Table 4: MIDJA: Descriptive statistics and correlations among biochemical markers. 

MIDJA: Descriptive statistics and correlations among biochemical markers. 
 

CRP IL-6 Fibrinogen Cortisol Creatinine 

Mean  

SD 

0.67 

1.28 

1.55 

1.68 

319.06 

64.2 

7.43 

2.78 

0.74 

0.17 

CRP  - 
    

IL-6 0.51*** - 
   

Fibrinogen 0.38*** 0.26** - 
  

Cortisol 0.12 0.08 0.05 - 
 

Creatinine 0.15* 0.2*** 0.09 0.07 - 
Note: MIDJA=Midlife in Japan cohort, CRP=C-reactive protein (ug/mL), IL-6=Interleukin-6 (pg/mL), 

fibrinogen (mg/dL) and creatinine (mg/dL) were measured in serum, cortisol was measured in saliva. 

** p<0.01, *** p<0.001, p-values are controlled for multiple testing according to Bonferroni. 
All two-tailed. 

Source: “How biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. Bertele 

et al., 2021, EPMA Journal, 12, p. 5 (supplemental material) (https://doi.org/10.1007/s13167-021-

00255-0). Copyright 2021 by Springer Nature. 

 
The 3-cluster solution from MIDUS was replicated in the MIDJA cohort and the results 

are shown in Figure 7. Again, cluster 1 is characterized by average levels in all 

biochemical measures and will thus be referred to as “reference cluster” in the following 

(Bertele et al., 2021). Cluster 2 was characterized by high and above-average levels of 

CRP, IL-6 and fibrinogen and will thus be referred to as “high-risk cluster” in the following 

(Bertele et al., 2021). Cluster 3 was characterized by high and above-average levels of 

cortisol and creatinine but average CRP, fibrinogen, and IL-6 concentrations and will be 

referred to as “metabo-endocrine cluster” in the following (Bertele et al., 2021). 
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Figure 7: MIDJA: Biochemical markers (z-scores) and resulting clusters 1-3, CRP=C-reactive 

protein (ug/mL), IL-6=Interleukin-6 (pg/mL) and FBN=Fibrinogen (mg/dL), and CREA=creatinine 

(mg/dL) were measured in blood, CORT=cortisol (ug/dL) was measured in saliva. Source: “How 

biomarker patterns can be utilized to identify individuals with a high disease burden: a 

bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 510 (https://doi.org/10.1007/s13167-021-00255-0). 

Copyright 2021 by Springer Nature. 

Ncluster1=233, Ncluster2=30, Ncluster3=115. 
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3.2. Aim 2: Identify risk/etiology factors of identified biochemical clusters 

Distributions regarding biological sex, age, BMI, physical activity, alcohol consumption, 

smoking habits, and childhood maltreatment exposure by cluster are summarized in 

Table 5 for MIDUS. Below, I listed only the significant results/differences between 

clusters. 

Regarding distributions of sex, after Bonferroni-correcting for multiple testing (i.e., 

multiplying p-values with three), I found that the high-risk cluster contained significantly 

less females compared to the reference cluster (c2=11.1, p<0.001), and so did the 

metabo-endocrine cluster (c2=52.1, p<0.001). Furthermore, the metabo-endocrine cluster 

involved significantly less females than the high-risk cluster (c2=54.9, p<0.001). 

Regarding age, Bonferroni pairwise comparisons in the scope of a One-Way ANOVA 

have shown that individuals in the reference cluster were significantly older than in the 

metabo-endocrine cluster (Mean Difference (MD)=4.6, SE=0.91, p<0.001) and so were 

individuals in the high-risk cluster (MD=-4.8, SE=1.42, p<0.001). 

Regarding BMI, Bonferroni pairwise comparisons in the scope of a One-Way ANOVA 

have shown that individuals in the high-risk cluster had a significantly higher BMI than 

individuals in the reference cluster (MD=-5.61, SE=0.66, p<0.001), as well as compared 

to individuals in the metabo-endocrine cluster (MD=3.5, SE=0.78, p<0.001). Furthermore, 

individuals in the metabo-endocrine cluster had significantly higher BMI compared to 

individuals in the reference cluster (MD=-2.11, SE=0.5, p<0.001). 

Regarding physical activity, after Bonferroni-correcting for multiple testing (i.e., 

multiplying p-values with three), I found that a significantly higher percentage of 

individuals in the reference cluster engaged regular physical activity compared to the 

high-risk cluster (c2=24.7, p<0.001). Furthermore, a higher percentage of individuals 

assigned to the metabo-endocrine cluster engaged in regular physical activity compared 

to individuals assigned to the high-risk cluster (c2=6.9, p=0.027). 

Regarding alcohol consumption, Bonferroni pairwise comparisons in the scope of a One-

Way ANOVA have shown that individuals in the high-risk cluster drink significantly less 

alcohol than individuals in the reference cluster (MD=-0.44, SE=0.18, p=0.044). 
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Regarding the exposure to CM, Bonferroni pairwise comparisons in the scope of a One-

Way ANOVA have shown that individuals in the high-risk cluster reported significantly 

higher CM severities compared to individuals in the reference cluster (MD=-4.55, 

SE=1.51, p=0.008) and compared to individuals in the metabo-endocrine cluster 

(MD=5.59, SE=1.76 p=0.005). 

 
Table 5: Risk factors by cluster in MIDUS. 

Risk factors by cluster in MIDUS. 

Cluster Reference High-risk Metabo-endocrine 

 

Biological sex 

 

76.2% 

female 

 

59.6% female 

 

31.3% female 

 

Age1 in years 

 

55.3 

(SD=11.6) 

 

55.4 (SD=12.1) 

 

50.6 (SD=11.2) 

 

Body mass index 

 

28.9 

(SD=5.8) 

 

34.5 (SD=9.3) 

 

30.9 (SD=7) 

 

Physical activity2 

 

79.5% 

 

57.8% 

 

72.8% 

 

Alcohol consumption3 

 

3.7 

(SD=1.4) 

 

4.2 (SD=1.3) 

 

3.8 (SD=1.3)  

 

Smoking regularly (lifetime) 

 

47% 

 

55.9% 

 

45.6% 

 

Exposure to childhood 

maltreatment4 

 

38 

(SD=13.9) 

 

42.5 (SD=18.4) 

 

36.9 (SD=13.4) 

Note: MIDUS=Midlife in the United States Study, SD=Standard deviation, 1=measured at the time of 

biomarker assessment, 2=Percentage of participants who responded with “yes” to: “Did you engage in 

regular exercise, or activity, of any type for 20 minutes or more at least 3 times/week?”, 3= Average 

response to the question “In the past month, how often did you drink any alcoholic beverages, on 

average?” (1=everyday, 2=5 or 6 days/week, 2=3 or 4 days/week, 4=1 or 2 days/week, 5=less than one 

*** 
*** *** 

*** 

*** 
*** *** 

***   * 

 

 **  ** 

*** 

  * 
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day/week, 6=never drinks), 4=Exposure to childhood maltreatment is represented by the sum score of 

the Childhood Trauma Questionnaire. 

* p<0.05, ** p<0.01, *** p<0.001.  

Pairwise comparisons of age, BMI, and alcohol consumption are based on One-Way Analyses of 
Variance with Bonferroni pairwise comparisons, pairwise comparisons of sex, physical activity, and 

smoking are based on Bonferroni-corrected c2 tests. 

Source: Adapted from “How biomarker patterns can be utilized to identify individuals with a high disease 

burden: a bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by 

N. Bertele et al., 2021, EPMA Journal, 12, p. 3 (supplemental material) (https://doi.org/10.1007/s13167-

021-00255-0). Copyright 2021 by Springer Nature. 

 

For the MIDJA cohort, only information in biological sex, age, and BMI was available 

and results by cluster are summarized in Table 6. Below, I list the significant 

results/differences. 

Regarding distributions of sex, after Bonferroni-correcting for multiple testing (i.e., 

multiplying p-values with three), I found that the high-risk cluster contained significantly 

less females compared to the reference cluster (c2=9.1, p=0.009). Furthermore, the 

metabo-endocrine cluster included significantly fewer females than the reference 

cluster (c2=90.8, p<0.001), and than the high-risk cluster (c2=7.1, p=0.024). 

Regarding age, Bonferroni pairwise comparisons in the scope of a One-Way ANOVA 

have shown that individuals in the high-risk cluster were significantly older than in the 

reference cluster (MD=-11.7, SE=2.8, p<0.001) and in the metabo-endocrine cluster 

(MD=-8.14, SE=2.91, p=0.016). 

Regarding BMI, Bonferroni pairwise comparisons in the scope of a One-Way ANOVA 

have shown that individuals in the high-risk cluster had a significantly higher BMI than 

individuals in the reference cluster (MD=-1.7, SE=0.59, p=0.012), as well as compared 

to individuals in the metabo-endocrine cluster (MD=-1.25, SE=0.32 p<0.001).  
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Table 6: Risk factors by cluster in MIDJA. 

Risk factors by cluster in MIDJA. 

Cluster Reference High-risk Metabo-endocrine 

 

Biological sex 

 

75.6% female 

 

48.1% female 

 

23% female 

 

Age1 in years 

 

53.3 (SD=13.5) 

 

65 (SD=11.9) 

 

56.9 (SD=14.4) 

 

Body mass index 

 

22.1 (SD=3) 

 

23.8 (SD=2.6) 

 

23.3 (SD=2.8) 
Note: MIDJA=Midlife in Japan Study, SD=Standard deviation, 1=measured at the time of biomarker 

assessment. No information on physical activity, alcohol consumption or smoking habits was available 

in MIDJA. 

* p<0.05, ** p<0.01, *** p<0.001.  
Pairwise comparisons of age and Body Mass Index are based on One-Way Analyses of Variance with 

Bonferroni pairwise comparisons, pairwise comparisons of sex are based on Bonferroni-corrected c2 

tests. 

Source: Adapted from “How biomarker patterns can be utilized to identify individuals with a high 

disease burden: a bioinformatics approach towards predictive, preventive, and personalized (3P) 

medicine”, by N. Bertele et al., 2021, EPMA Journal, 12, p. 3 (supplemental material) 
(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

 

3.2.1. Full-factorial model including CM and all covariates 

Full-factorial GLMs using the continuous CM score and controlling for sex, age, BMI, 

physical activity, alcohol use, and smoking habits indicated (Table 7 and 3.1) that CM 

exposure was the highest in the high-risk cluster, followed by the reference and the 

metabo-endocrine clusters (all ps<0.001). 

 

 

 

 

 

 

*** 
 ** * 

***   * 

  * *** 
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Table 7: MIDUS: General linear model predicting childhood maltreatment by cluster. 

MIDUS: General linear model predicting childhood maltreatment by cluster. 

Dependent variable: CTQ sum score   

Source 

Type III Sum of 

Squares df Mean Square F p 

Corrected 

Model 

1563901920.14a 709 2205785.5 123936.67 <0.001 

Intercept 241538242.56 1 241538242.56 13571331.2 <0.001 

Cluster 3019986.43 2 1509993.22 84842.13 <0.001 

Sex 116191.31 1 116191.31 6528.45 <0.001 

Age 96700306.77 49 1973475.65 110883.86 <0.001 

BMI 1327678509.49 650 2042582.32 114766.76 <0.001 

Physical 

activity 

484217.85 1 484217.85 27206.79 <0.001 

Alcohol 3254689.1 5 650937.82 36574.3 <0.001 

Smoking 28830.93 1 28830.93 1619.93 <0.001 

Error 143451028.84 8060096 17.8   

Total 13564939758.34 8060806    

Corrected 

Total 

1707352948.99 8060805 
   

a. R2= 0.92 (R2adjusted= 0.92) 

Note: Bootstrapping was performed using 10,000 samples. 

MIDUS=Midlife in the United States cohort, CTQ=Childhood Trauma Questionnaire. 

Source: Adapted from “How biomarker patterns can be utilized to identify individuals with a high disease 

burden: a bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 11 (supplemental material) (https://doi.org/10.1007/s13167-

021-00255-0). Copyright 2021 by Springer Nature. 
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Table 7.1: Pairwise comparisons of childhood maltreatment among clusters. 

Pairwise comparisons of childhood maltreatment among clusters.  
Dependent Variable:   CTQ sum score   

(I) Cluster (J) Cluster  

Mean 

Difference (I-J) 

Std. 

Error Sig. 

95% 

Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Reference High-risk -6.92 0.01 <0.001 -6.93 -6.9 

Metabo-endocrine 0.68 0.01 <0.001 0.67 0.69 

High-risk Reference 6.92 0.01 <0.001 6.9 6.93 

Metabo-endocrine 7.6 0.01 <0.001 7.59 7.61 

Metabo-endocrine Reference -0.68 0.01 <0.001 -0.69 -0.67 

High-risk -7.6 0.01 <0.001 -7.61 -7.58 

Note: Based on observed means. The error term is Mean Square (Error) = 17.7. 

p-values are corrected for multiple testing (Bonferroni, 

i.e., multiplied by three due to three pairwise comparisons).  

Bootstrapping was performed using 10,000 samples. 

CTQ = Childhood Trauma Questionnaire. 

Source: Adapted from “How biomarker patterns can be utilized to identify individuals with a high disease 
burden: a bioinformatics approach towards predictive, preventive, and personalized (3P) medicine”, by N. 

Bertele et al., 2021, EPMA Journal, 12, p. 11 (supplemental material) (https://doi.org/10.1007/s13167-

021-00255-0). Copyright 2021 by Springer Nature. 
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3.3. Aim 3: Examine disease burden in identified biochemical clusters 

In MIDUS, the high-risk cluster had the highest ORs for all considered diseases compared 

to the reference and the metabo-endocrine clusters (Figure 8). 

 

 
Figure 8: MIDUS: Odds ratios for diseases by cluster, MIDUS=Midlife in the United States sample, 

PUD=Peptic Ulcer Disease. Source: “How biomarker patterns can be utilized to identify 

individuals with a high disease burden: a bioinformatics approach towards predictive, preventive, 

and personalized (3P) medicine”, by N. Bertele et al., 2021, EPMA Journal, 12, p. 511 

(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

Error bars display 95% confidence intervals. Comparisons of odds ratios were conducted with log 

odds ratios using z-tests. * p<0.05, ** p<0.01, *** p<0.001, p-values are controlled for multiple 

testing according to Bonferroni. All two-tailed. 



 51 

 

In MIDJA, the metabo-endocrine cluster had the highest ORs for heart disease, 

hypertension, and PUD, the high-risk cluster had the highest ORs for stroke and cancer, 

and reference cluster had the highest ORs for depression (Figure 9).  

 
Figure 9: MIDJA: Odds ratios for diseases by cluster, MIDJA=Midlife in Japan sample, 

PUD=Peptic Ulcer Disease. Source: “How biomarker patterns can be utilized to identify 

individuals with a high disease burden: a bioinformatics approach towards predictive, preventive, 

and personalized (3P) medicine”, by N. Bertele et al., 2021, EPMA Journal, 12, p. 511 

(https://doi.org/10.1007/s13167-021-00255-0). Copyright 2021 by Springer Nature. 

Error bars display 95% confidence intervals. Comparisons of odds ratios were conducted with log 

odds ratios using z-tests. * p<0.05, ** p<0.01, *** p<0.001, p-values are controlled for multiple 

testing according to Bonferroni. All two-tailed. 

To compare the k-mean cluster-based approach to a well-established clinical biomarker 

that is associated with a broad range of NCDs, the number of diagnoses among 

individuals in the high-risk cluster was compared to the number of diagnoses among 

individuals with CRP concentrations above the clinical cut-off (>3mg/L) (Bertele et al., 
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2021; Pearson et al., 2003). The disease burden in the high-risk cluster was higher with 

1.6 diagnoses (SD=1.16; 0.9 diagnoses for individuals not assigned to the high-risk 

cluster) compared to individuals above the CRP-Cutoff with 1.2 diagnoses (SD=1.07; 0.9 

diagnoses for individuals below the cutoff) (Bertele et al., 2021). 

 

3.4. Aim 4: Investigate predictive value of biochemical clusters 

3.4.1. Mortality 

Between T0 and T1, 9.8% of the individuals assigned to the reference cluster deceased 

(Ndeceased=92, Ntotal=937), 21.6% in the high-risk cluster (Ndeceased=22, Ntotal=102), and 

8.7% in the metabo-endocrine cluster (Ndeceased=17, Ntotal=195), respectively (Bertele et 

al., 2022).  

Logistic regression analyses using the indicator method and controlling for sex, age, and 

disease burden at T0 revealed a significant association between assignment to the 

clusters and mortality (p=0.043, see Table 8) (Bertele et al., 2022). The indicator 

comparison between the reference cluster and the high-risk cluster was significant 

(B=0.82, standard error (SE)=0.33, p=0.012); the comparison between the metabo-

endocrine and the reference cluster was not significant (B=0.18, SE=0.32, p=0.59) 

(Bertele et al., 2022). Likelihood ratio tests revealed that removing the cluster variable as 

a predictor, the model would explain significantly less variance in mortality (Model Log 

Likelihood: -316.16, Change in -2 Log Likelihood: c2(2)=5.95, p=0.048) (Bertele et al., 

2022). 
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Table 8: Logistic regression analyses predicting mortality. 

Logistic regression analyses predicting mortality. 

 

 

 

 
 
 

 

 

 

 

 

 

Note: Nagelkerke’s R2 = 0.29. Results of the group comparisons are based on the indicator method. Sex 

is coded as follows: 0=male, 1=female, chronological age was assessed at the time of biomarker 

assessment. Depression, cerebro- and cardiovascular disease, peptic ulcer disease, and cancer have 

been assessed via self-report (yes vs. no). Cerebro- and cardiovascular diseases include heart disease, 

hypertension, and stroke. 

Source: “Biochemical clusters predict mortality and reported inability to work 10 
years later”, by N. Bertele et al., 2022, Brain, Behavior, Immunity - Health, 21(100432), p. 3 

(https://doi.org/10.1016/j.bbih.2022.100432). Copyright 2022 by Elsevier Inc. 

 

 

 

 
 

 B Standard error Wald df p Exp(B) 
 Cluster (general)   6.3 2 0.043  
Reference vs. high-risk 
cluster 

0.82 0.33 6.24 1 0.012 2.27 

Reference vs. metabo-
endocrine  

0.18 0.32 0.3 1 0.59 1.19 

Sex -0.61 0.22 7.6 1 0.006 0.54 
Age  0.1 0.01 84.78 1 <0.001 1.1 
Depression  0.72 0.25 8.44 1 0.004 2.05 
Cerebro- and cardiovascluar 
disease  

0.74 0.23 10.54 1 0.001 2.1 

Peptic ulcer disease 0.01 0.45 0 1 0.98 1.01 
Cancer 0.27 0.26 1.1 1 0.29 1.3 
Constant -7.4 0.84 78.34 1 <0.001 0 
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3.4.2. Mortality in age-stratified sample and separately for each biological sex 

As described above, I divided each cluster into three age groups (31-50, 51-70, and 71-

90 years old) and repeated the primary mortality analysis to compare the outcomes 

between different clusters among each age group (see Table 9).  

 
Table 9: Sample sizes after splitting by cluster and by age group. 

Sample sizes after splitting by cluster and by age group. 

Cluster Age group N 

Reference 31-50y 352 

 51-70y 479 

 71-90y 106 

High-risk 31-50y 36 

 51-70y 55 

 71-90y 11 

Metabo-endocrine 31-50y 108 

 51-70y 78 

 71-90y 9 

Note: y=years. Source: Own representation. 

 

As shown in Figure 10, descriptively, the odds ratios were the highest in the high-risk 

cluster across all age groups. According to z-tests comparing the odds ratios between 

different clusters within each age group, the difference between the reference and the 

high-risk cluster among 51–70-year-old was significant (z=-2.45, p=0.021). The 

difference regarding mortality risk between the reference and the high-risk cluster 

among 71–90-year-old was marginally significant (z=-1.97, p=0.073). 
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Figure 10: Odds ratios for mortality by cluster in different age groups. Source: Own representation.  

Age has been assessed at the time of biomarker assessment. Mortality has been assessed over 

10 years following the biomarker assessment. * p<0.001. 

Odds ratios for mortality by cluster separately for males and females are depicted in 

Figure 11. Comparing the odds ratios between males and females ((Number of deceased 

males/number of non-deceased males)/(deceased females/non-deceased females)), 

there was a tendency towards higher mortality in males vs. females across clusters (odds 

ratio (OR)=1.96), but especially in the high-risk cluster (OR=2.29) (Bertele et al., 2022).  
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Figure 11: Bar chart Depicting odds ratios for mortality by sex and by cluster. Source: 

“Biochemical clusters predict mortality and reported inability to work 10 years later”, by N. Bertele 

et al., 2022, Brain, Behavior, Immunity - Health, 21(100432), p. 1 (supplemental material) 

(https://doi.org/10.1016/j.bbih.2022.100432). Copyright 2022 by Elsevier Inc.  

Odds ratios were calculated separately for each sex; e.g., odds ratio in females in the reference 

cluster equals odds for mortality in females in the reference cluster divided by the odds for 

mortality in all females (across clusters). Error bars display 95% confidence intervals. No 

significance tests were performed due to the small sample sizes. 

 

3.4.3. Inability to work 

The number of days participants reported that they were unable to work due to illness (in 

the last 30 days) varied across clusters (Bertele et al., 2022). While, on average, 

individuals in the reference cluster were 1.51 (SD=5.08, Nrespondents=745) days unable to 

work, individuals in the high-risk cluster were 3.36 (SD=7.68, Nrespondents=42) days unable 

to work, and individuals in the metabo-endocrine cluster were 0.99 (SD=4.52, 

Nrespondents=142) days unable to work (Bertele et al., 2022). 
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The GLM with pairwise comparisons controlling for sex, age, and disease burden at T0 

revealed a significant association between cluster assignment and the reported inability 

to work the last 30 days (F(2,790)=3.3, p=0.037, Table 10) (Bertele et al., 2022). Pairwise 

comparisons according to Bonferroni, indicated that the differences between the 

reference and the high-risk cluster (z=2.28, p=0.008) and between the high-risk and the 

metabo-endocrine cluster were significant (z=2.97, p=0.001) (Table 10.1) (Bertele et al., 

2022). The effect sizes (Cohen’s d) for the group differences were 0.35 (95% confidence 

interval: 0.04-0.66) for the high-risk cluster vs. the reference cluster and 0.1 for (95% 

confidence interval: -0.08-0.28) the metabo-endocrine cluster vs. the reference cluster 

(Bertele et al., 2022). 

 
Table 10: General linear models predicting inability to work. 

General linear models predicting inability to work. 

 

 
 
 
 

 
 

 

 

 

 

 

 

Note: R2 = 0.13 (Adjusted R2= 0.08). Sex is coded as follows: 0=male, 1=female, age was assessed at 

the time of biomarker assessment. Depression, cerebro- and cardiovascular disease, peptic ulcer 

disease, and cancer have been assessed via self-report (yes vs. no). Cerebro- and cardiovascular 

diseases include heart disease, hypertension, and stroke. At T1, participants’ functionality/ability to work 
was assessed by a single item by which information was obtained on the number of days the respondents 

had been unable to work during the last 30 days. 

Source: “Biochemical clusters predict mortality and reported inability to work 10 

Source 
Type III Sum of 

Squares df Mean Square F p 
Corrected Model 2377.81 43 55.3 2.62 <0.001 
Intercept 1226.84 1 1226.84 58.29 <0.001 
Cluster 139.05 2 69.53 3.3 0.037 
Sex 0.49 1 0.49 0.02 0.88 
Age 1033.58 36 28.71 1.36 0.08 
Depression 114.33 1 114.33 5.43 0.02 
Cerebro- and 
cardiovascular disease 

207.69 1 207.69 9.87 0.002 

Peptic ulcer disease 556.65 1 556.65 26.44 <0.001 
Cancer 7.48 1 7.48 0.36 0.55 
Error 16628.85 790 21.05   

Total 20484 834    

Corrected Total 19006.66 833    
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years later”, by N. Bertele et al., 2022, Brain, Behavior, Immunity - Health, 21(100432), p. 4 

(https://doi.org/10.1016/j.bbih.2022.100432). Copyright 2022 by Elsevier Inc. 

 
 

Table 10.1: General linear models predicting inability to work: Bonferroni pairwise comparisons 

between clusters. 

General linear models predicting inability to work: Bonferroni pairwise comparisons between 

clusters. 

 

 

 

 

 

 

 

 
 
 

 
Note: Source: “Biochemical clusters predict mortality and reported inability to work 10 

years later”, by N. Bertele et al., 2022, Brain, Behavior, Immunity - Health, 21(100432), p. 5 

(https://doi.org/10.1016/j.bbih.2022.100432). Copyright 2022 by Elsevier Inc. 

 

3.4.4. Inability to work in age-stratified sample and separately for each biological sex 

As depicted in Figure 12, the number of days participants indicated they were unable to 

work due to illness were the highest in the high-risk cluster compared to the other two 

clusters across both age groups. While the cluster variable exhibited a significant effect 

predicting the reported days participants between 31 and 50 years of age were unable to 

work (F(2,335)=6.34, p=0.002, Table 11) (Bertele et al., 2022). Bonferroni pairwise 

comparisons have shown that the difference between the reference and the high-risk 

cluster (z=4.42, p<0.001) and between the high-risk cluster and the metabo-endocrine 

cluster (z=4.29, p=0.001) were significant (Table 11.1) (Bertele et al., 2022). Among 

Cluster  vs. Cluster  
Z of mean 
difference 

Standard error of mean 
difference p 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Reference High-risk -2.28 0.76 0.008 -4.09 -0.47 
Metabo-

endocrine 
0.69 0.44 0.33 -0.35 1.74 

High-risk Reference 2.28 0.76 0.008 0.47 4.09 
Metabo-

endocrine 
2.97 0.84 0.001 0.97 4.98 

Metabo-
endocrine 

Reference -0.69 0.44 0.33 -1.74 0.35 
High-risk -2.97 0.84 0.001 -4.98 -0.97 
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individuals between 51 and 70 years of age, the cluster variable also exhibited a 

marginally significant effect predicting reported days participants were unable to work 

(F(2,448)=2.67, p=0.07, Table 11). Bonferroni pairwise comparisons have shown that the 

difference between the high-risk cluster and the metabo-endocrine cluster (z=2.73, 

p=0.054) was marginally significant (Table 11.1). 

 
Figure 12: Mean sick days by cluster in different age groups. Source: Own representation.  

Age has been assessed at the time of biomarker assessment. The inability to work has been 

assessed via self-report approximately 10 years following the biomarker assessment; that is, by 

asking participants: “How many days have you been unable to work due to illness in the last 30 

days?”. Participants over the age of 70 were excluded from the analysis 
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Table 11: General linear models predicting inability to work by age group. 

General linear models predicting inability to work by age group.

 
a. R Squared = 0.22 (Adjusted R Squared = 0.16) 

b. R Squared = 0.12 (Adjusted R Squared = 0.07) 

Note: y=years. Age has been assessed at the time of biomarker assessment. The inability to work has 

been assessed via self-report approximately 10 years following the biomarker assessment; that is, by 

asking participants: “How many days have you been unable to work due to illness in the last 30 days?”. 

Participants over the age of 70 were excluded from the analysis. Source: Own representation. 

 

Age 
group Source 

Type III Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

31-50y Corrected Model 1364.09a 23 59.31 3.99 <0.001 0.22 
Intercept 941.24 1 941.24 63.36 <0.001 0.16 
Cluster 188.28 2 94.14 6.34 0.002 0.04 
Sex 18.88 1 18.88 1.27 0.26 0 
Age 176.44 16 11.03 0.74 0.75 0.03 
Depression 181.11 1 181.11 12.19 <0.001 0.04 
Cerebro- and 
cardiovascular disease 

65.86 1 65.86 4.43 0.036 0.01 

Peptic ulcer disease 591.82 1 591.82 39.84 <0.001 0.11 
Cancer 0.11 1 0.11 0.01 0.93 0 
Error 4976.54 335 14.86    
Total 6832 359     
Corrected Total 6340.64 358     

51-70y Corrected Model 1449.23b 26 55.74 2.23 <0.001 0.12 
Intercept 379.85 1 379.85 15.19 <0.001 0.03 
Cluster 133.65 2 66.83 2.67 0.07 0.011 
Sex 13.12 1 13.12 0.53 0.47 0 
Age 921.86 19 48.52 1.94 0.01 0.08 
Depression 4.07 1 4.07 0.16 0.69 0 
Cerebro- and 
cardiovascular disease 

104.75 1 104.75 4.19 0.041 0.01 

Peptic ulcer disease 146.2 1 146.2 5.85 0.016 0.01 
Cancer 1.66 1 1.66 0.07 0.8 0 
Error 11200.45 448 25    
Total 13652 475     
Corrected Total 12649.69 474     
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Table 11.1: General linear models predicting inability to work: Bonferroni pairwise comparisons 

between clusters by age group. 

General linear models predicting inability to work: Bonferroni pairwise comparisons between 

clusters by age group. 

 
The average days of sickness by cluster and sex are illustrated in Figure 13. There was a 

descriptive tendency towards a higher number of sick days in males in the high-risk cluster 

compared to females assigned to the high-risk cluster. Own representation. 

Age 
group Cluster  vs. Cluster  

Z of mean 
difference 

Standard error 
of mean 

difference Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

31-50y Reference High-risk -4.42 1.14 <0.001 -7.16 -1.69 
Metabo-
endocrine 

-0.13 0.51 1 -1.36 1.10 

High-risk Reference 4.42 1.14 <0.001 1.69 7.16 
Metabo-
endocrine 

4.29 1.2 0.001 1.40 7.18 

Metabo-
endocrine 

Reference 0.13 0.51 1 -1.10 1.36 
High-risk -4.29 1.2 0.001 -7.18 -1.40 

51-70y Reference High-risk -1.24 0.99 0.64 -3.63 1.15 
Metabo-
endocrine 

1.50 0.68 0.087 -0.15 3.14 

High-risk Reference 1.24 0.99 0.64 -1.15 3.63 
Metabo-
endocrine 

2.73 1.15 0.054 -0.04 5.50 

Metabo-
endocrine 

Reference -1.50 0.69 0.087 -3.14 0.15 
High-risk -2.73 1.15 0.054 -5.50 0.04 

Note: y=years. Age has been assessed at the time of biomarker assessment. The inability to work has 

been assessed via self-report approximately 10 years following the biomarker assessment; that is, by 

asking participants: “How many days have you been unable to work due to illness in the last 30 days?”. 

Participants over the age of 70 were excluded from the analysis. Source: Own representation. 
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Figure 13: Bar chart depicting the number of sick days by sex and by cluster. Source: 

“Biochemical clusters predict mortality and reported inability to work 10 years later”, by N. 

Bertele et al., 2022, Brain, Behavior, Immunity - Health, 21(100432), p. 2 (supplemental 

material) (https://doi.org/10.1016/j.bbih.2022.100432). Copyright 2022 by Elsevier Inc. 

The inability to work has been assessed via self-report approximately 10 years following the 

biomarker assessment; that is, by asking participants: “How many days have you been unable to 

work due to illness in the last 30 days?”. Participants over the age of 70 were excluded from the 

analysis. Error bars display 95% confidence intervals. No significance tests were performed due 

to the small sample sizes. 
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4. Discussion 

The study on which this dissertation is based is, to the author’s knowledge, the first to use 

a multivariate cluster-based approach to study the prevalence, correlates, and predictive 

value of biomarker profiles in the general population and, therefore, represents an 

important, novel contribution to the field of risk assessment and prediction. Previous 

research has been preoccupied investigating the value of single biomarkers in health and 

disease states (e.g., Li et al., 2017; Nowakowski, 2014). This study hence offers a novel 

avenue embedding the emerging systemic perspective in medicine into risk prediction as 

well. These and other strengths of the study, as well as its limitations, are outlined below, 

along with further evaluation of the results. 

Beyond this, the findings have significant implications for public health disciplines, 

predictive, preventive, and personalized (3P) medicine, medical psychology, and clinical 

practice. The findings also point to important directions for future research, including the 

need to longitudinally study potential risk factors for the emergence of a high-risk 

biochemical profile such as biological sex, age, BMI, physical activity, and the exposure 

to early life stress such as CM. These practical implications and future directions are also 

discussed in the following. 

 

4.1. Study contribution and strengths 

4.1.1. Discovery of an advanced, cost-efficient risk indicator  

Findings revealed three distinct and interculturally stable biochemical clusters observable 

in the general population of the United States and Japan (Bertele et al., 2021). The 

reference cluster is characterized by average levels of all biomarkers, the high-risk cluster 

by high inflammation-related mediators coupled with average concentrations of cortisol 

and creatinine, and the metabo-endocrine cluster by above-average levels of cortisol and 

creatinine (Bertele et al., 2021). The stability of clusters is supported by their replication 

in the MIDJA sample as well as in the BMI-restricted, in the younger (below age median) 

and in the older MIDUS cohort (above age median; here only the reference and the high-

risk cluster were replicated) (Bertele et al., 2021). Notably, this novel, cluster-based tool 
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allowed to identify individuals with a high disease burden more precisely than established 

measures such as the CRP-cutoff (Bertele et al., 2021). Beyond this additional precision 

in discovering individuals with a current disease burden, the clusters efficiently predicted 

mortality and inability to work approximately 10 years after biomarker assessment, over 

and above prior disease burden (Bertele et al., 2022). Specifically, a biochemical profile 

of enhanced systemic inflammation coupled with low cortisol and creatinine like in the 

high-risk cluster, seems to be of high predictive value indicating doubled mortality rates 

in the decade following the biomarker assessment and substantially increased sick days 

reported in the working population previously assigned to this cluster (Bertele et al., 

2022). I discuss potential mechanisms linking the presence of a high-risk biochemical 

profile and these detrimental outcomes in 4.1.2.  

In addition to the predictive value of the high-risk cluster as suggested by the findings of 

this study, analyses regarding potential correlates and risk factors revealed valuable 

knowledge gain and implications for further research. First, in both the U.S. and the 

Japanese cohort, the odds for a biochemical high-risk profile seem to be significantly 

higher in men compared to women suggesting the male sex as a possible risk factor for 

potentially detrimental biochemical profiles. A finding worth to be investigated further, 

since it could reveal one potential pathway linking male sex to earlier mortality, as 

suggested by several lines of evidence (for a review, see Zhang et al., 2021). The finding 

that individuals assigned to the high-risk cluster were significantly older than in the other 

two clusters could further reveal a contributing role of age to the emergence of systemic 

inflammation together with average concentrations of cortisol and creatinine, i.e., high-

risk biochemical profile, which would be in line with the large body of literature suggesting 

an increase in systemic inflammation with age (Chung et al., 2019). However, the age-

stratified analyses suggest caution by interpreting these findings as I discuss in sections 

4.1.2 and 4.1.3. Another important finding is that BMI was significantly higher in the high-

risk cluster compared to the reference cluster in both the U.S. and the Japanese cohort, 

adding to the empirical evidence suggesting a BMI above the health range and obesity 

as central contributors to chronic systemic inflammation and further detrimental conditions 

(e.g., Ellulu et al., 2016). Important mechanisms in this pattern of relation and, thus, 

potential targets for intervention might be the above-described NFKB signaling pathway 
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(Bierhaus et al., 2003; Catrysse & van Loo, 2017). Further research, ideally in prospective 

longitudinal studies, is necessary to better understand the role of BMI in the emergence 

of a biomarker profile as in the metabo-endocrine cluster. In the U.S. cohort, I could further 

identify the absence of regular physical activity as a potential risk factor for the emergence 

of a high-risk biochemical profile. Although this cross-sectional finding is supported by 

various studies suggesting physical activity as a protective factor for inflammation (e.g., 

Mathur & Pedersen, 2008), further, longitudinal studies are needed to support the causal 

contribution of (lacking) physical activity to the emergence of “risky” biochemical profiles. 

Interestingly, individuals assigned to the high-risk cluster indicated to drink significantly 

less alcohol than individuals assigned to the reference cluster. One explanation for this 

finding could be the increased and salient disease burden in individuals in the high-risk 

cluster (already at T0), causing them to limit their alcohol consumption. To make ultimate 

conclusions about the directions of these effects, however, it would be necessary to 

assess alcohol consumption prior to the emergence of the biochemical risk profile. Finally, 

a valuable finding of this study is that the exposure to CM was significantly higher in the 

high-risk biochemical cluster as compared to both other clusters. This underlines the 

previously suggested relation of CM to systemic inflammation as well as various disease 

and mortality outcomes (Danese et al., 2007; Grummitt et al., 2021). Additionally, the 

present findings contribute the idea of the identified high-risk profile as a potential 

mediator in the pattern of relation between CM and disease outcomes. 

Relating clusters to disease diagnoses at the time of biomarker assessment, in MIDUS, 

the high-risk cluster showed the highest ORs for depression, heart disease, hypertension, 

stroke, and cancer (Bertele et al., 2021). These findings are in line with previous literature 

postulating that CRP, IL-6, and fibrinogen are associated with depression (Gimeno et al., 

2009; Toker et al., 2005), coronary heart disease (Danesh, 2000; Danesh et al., 1998, 

2004; Luc et al., 2003), blood pressure (Piché et al., 2005), stroke (Di Napoli et al., 2001; 

Welsh et al., 2008; Zhou et al., 2016), and cancer (Allin & Nordestgaard, 2011; Qian et 

al., 2019). Yet, as opposed to these previous studies, the clustering approach used in this 

study accounted for well-known collinearities between biomarkers and thus lends weight 

to a more holistic perspective (Bertele et al., 2021). While findings lend support for the 

results of previous studies suggesting a link between inflammation and disease states 
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(Chung et al., 2009), they also demonstrate that it might not be one specific biomarker 

but a specific biochemical pattern (i.e., high CRP, IL-6, fibrinogen coupled with low cortisol 

and creatinine) that is associated with diseases (Bertele et al., 2021). The observation 

that individuals in the high-risk cluster, descriptively, indicated a higher disease burden 

than individuals above the clinically well-established CRP cutoff lends further support to 

this multivariate, cluster-based viewpoint (Bertele et al., 2021). Notably, no differences in 

the ORs for peptic ulcer disease are observed between clusters despite the role of 

inflammation in its pathology (Bertele et al., 2021; Lanas & Chan, 2017). Future research 

may aim to further investigate the role of inflammation in the pathology of peptic ulcer 

disease (Bertele et al., 2021). 

While the high-risk cluster can be considered as being associated with higher disease 

burden, being assigned to the metabo-endocrine cluster may potentially be protective 

against developing disease in MIDUS (Bertele et al., 2021). I found that the ORs for most 

diseases were lower in the metabo-endocrine cluster compared to the high-risk cluster 

but also compared to the reference cluster (Bertele et al., 2021). Concerning cancer, this 

difference became significant. In 4.1.4, I will discuss potential biological mechanisms 

underlying this pattern of relation. Nonetheless, longitudinal studies may examine the 

consequences of this specific biochemical pattern that is the metabo-endocrine cluster. 

Additionally, these longitudinal studies will help to better understand to what extent 

biochemical profiles are dynamic vs. stable in different individuals across the lifespan and 

especially during disease states. Here, the ultimate aim should be to identify factors that 

influence “risky” biochemical profiles that could then be targeted to prevent the 

manifestation in form of a pathological state. 

In MIDJA, however, the high-risk cluster only seems to be a vulnerable cluster regarding 

stroke and cancer, whereas for the other diseases considered, the reference cluster or 

the metabo-endocrine cluster indicated the highest burden (Bertele et al., 2021). One 

relevant and possibly limiting aspect here might be the fact that the MIDJA cohort (N=378) 

and especially the high-risk cluster were very small in size (N=30) (Bertele et al., 2021). 

Hence, these findings bear the risk of compromised reliability (Bertele et al., 2021). 

However, if replicated in further studies, these findings could be attributed to cross-

cultural differences, that is, that specific biochemical profiles may be linked to different 
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comorbidities and outcomes in Japan than in the U.S. since certain moderating 

mechanisms (e.g., BMI, nutrition, medication etc.) vary between cultures (Bertele et al., 

2021; Kalat, 2009). The fact that disease burden in MIDJA was much lower compared to 

MIDUS despite approximately 8% of participants were assigned to the high-risk cluster in 

each cohort, lends additional weight to this perspective (Bertele et al., 2021). Moreover, 

the different results in the two cohorts underline the significance of individual 

characteristics in disease susceptibility noted above and the role of interactions between 

these cultural, lifestyle, and biochemical factors; while a U.S. American individual with the 

biochemical risk profile might present with a high disease burden, this might not be the 

case for a Japanese individual despite similar biochemical profile (Bertele et al., 2021).  

 

4.1.2. Replication of the finding that chronic systemic inflammation predicts premature 

mortality under consideration of additional contributors 

The findings of this study replicate the well-established link between chronic systemic 

inflammation and the risk for premature mortality in a large, community-based sample 

(Kantor et al., 2019; Weber et al., 2021). Mechanisms linking systemic inflammation to 

premature mortality might not only be the disease susceptibility directly associated with 

systemic inflammation (for a review, see Furman et al., 2019) and accelerated aging 

processes caused by inflammation (for a review, see Ferrucci & Fabbri, 2018) but also 

the fact that inflammation is often linked to other temporally preceding factors augmenting 

disease susceptibility and aging processes across the lifespan such as early life stress 

(e.g., Danese et al., 2007), diet (e.g., Navarro et al., 2016), and obesity (e.g., Ellulu et al., 

2016), as also underlined by the findings of the current study. However, due to the cross-

sectional character of the current study, it remains unclear whether lifestyle factors such 

as diet and obesity have influenced cluster assignments. Future studies should assess 

these factors and control for them in the clustering process to clarify the direction of the 

identified effects. 

Previous literature particularly studied the role of separate inflammatory markers in 

predicting mortality and functionality without taking other biomarkers under consideration 

(Bertele et al., 2021, 2022; Li et al., 2017; Nowakowski, 2014). Moreover, previous studies 
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particularly considered clinical samples presenting with a given pathological burden to 

examine the link between inflammation and mortality (e.g., individuals suffering from 

chronic obstructive pulmonary disease (Mendy et al., 2018), HIV-infected patients (Tien 

et al., 2010), or kidney disease patients (Alves et al., 2018)) making it challenging to 

differentiate influences by inflammation from effects caused by disease states themselves 

(Bertele et al., 2022). The current study elaborates on these previous findings by using 

biochemical clusters based on multiple biomarkers, that cover a broad range of somatic 

functionality, as predictors for mortality; all while controlling for disease burden at the time 

of biomarker assessment (Bertele et al., 2021). Relating these biochemical clusters to 

mortality, I found that the most detrimental biomarker profile is characterized by systemic 

inflammation paired with average cortisol and creatinine, that is, when inflammation 

persists in an uncontrolled and unresolved manner (Bertele et al., 2021; Chung et al., 

2019).  

Interestingly, an assignment to the metabo-endocrine cluster (characterized by high 

concentrations of cortisol and creatinine and average levels of inflammation), did not 

imply higher subsequent mortality when compared to the reference cluster (Bertele et al., 

2022). This is consistent with the findings regarding baseline disease burden, where the 

metabo-endocrine cluster did not present with a higher disease burden than the reference 

cluster (Bertele et al., 2021).  

Analyses in each age group separately suggest that an assignment to the high-risk cluster 

might be especially unfavorable between 51-70 years of age (at the time of biomarker 

assessment) with respect to mortality risk, potentially suggesting an association of the 

high-risk cluster to premature death. This is underlined by the finding that the odds ratio 

for mortality among 51–70-year-old in the high-risk cluster was even higher than in the 

other two clusters at the age of 71-90 years. To further investigate this observation, future 

studies involving a larger sample size are needed. 

When comparing mortality outcomes of the biochemical clusters in males vs. females, I 

observed a tendency towards higher mortality in males potentially suggesting that an 

assignment to the high-risk cluster is more unfavorable in males than in females (Bertele 

et al., 2022). If replicated in larger studies, future studies should examine the moderating 

role of sex steroids in these observed patterns of relation (Bertele et al., 2022). 
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4.1.3. Chronic systemic inflammation as an eminent risk factor for everyday functioning  

Relating the biochemical clusters to the reported inability to work the last 30 days in the 

decade following the biomarker assessment, I found that individuals with high 

inflammation coupled with cortisol and creatinine concentrations below average, that is, 

individuals assigned to the high-risk cluster, reported the highest number of sick days 

(Bertele et al., 2022). Importantly, this finding regarding the high-risk biochemical profile, 

that was associated with higher disease burden at baseline, was independent of sex, age 

and different disease states at baseline (Bertele et al., 2022). Still, the biochemical risk 

profile may have yielded an accelerated disease progression in individuals assigned to 

this cluster, causing the observed high number of sick days (Bertele et al., 2022). 

Unfortunately, examining whether biochemical profiles might play a moderating role in the 

link between baseline disease states and sick days 10 years later was not possible in the 

current study due to the limited sample size (Bertele et al., 2022). I thus recommend for 

future studies to focus on these potential moderating effects using larger, population-

based samples (Bertele et al., 2022). 

Among 31–50-year-old, an assignment to the high-risk cluster was associated with a 

significantly higher number of days individuals were unable to work due to illness 10 years 

following the biomarker assessment; independently from the disease burden at the time 

of biomarker assessment. Thus, systemic inflammation starting at a relatively young age 

might be especially detrimental with respect to the future ability to work. Furthermore, the 

increased number of sick days at a relatively young age (31-50 years) in individuals in the 

high-risk cluster might be an early indicator for the susceptibility of severe diseases as 

well as later (premature) mortality outcomes. 

Comparing the number of sick days between the biochemical clusters in males and 

females, a descriptive tendency towards a higher number of sick days in females 

compared to males was observed, as opposed to the higher OR for mortality in males 

than in females in this cluster. This could point to differential effects of the high-risk 

biochemical profile in males vs. females and underlines the importance to investigate 

gender-specific factors of the biochemical risk profile as well as its longer-term effects.  
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4.1.4. Biological mechanisms underlying the link between biochemical risk profiles and 

disease burden, mortality, and inability to work 

The biological mechanisms linking the identified biochemical risk profile to various 

adverse outcomes are intricate and of multifaceted, dynamic, and especially of 

continuous character (Bertele et al., 2022; Wang, 2021). First, uncontrolled systemic 

inflammation might result in multiple detrimental but pre-pathological conditions (Wang, 

2021). These include the manifestation of a chronic state of allostatic load involving 

excessive levels of oxidative stress, and, therefore, impaired stem cell reproductivity, 

immunosenesence (i.e., aging of the immune system), as well as functional and structural 

damage of cellular DNA (Bertele et al., 2021, 2022; Wang, 2021). Certain lifestyle and 

environmental factors (i.e., poor diet, obesity, psychological stress) that are often present 

in individuals with elevated systemic inflammation might further contribute to same (Ellulu 

et al., 2016; Navarro et al., 2016). Second, these pre-disease states might then manifest 

with time, spreading across the organism, augmenting, and yielding other unfavorable 

processes such as an increased biomolecular entropy and accelerated cellular aging 

(Wang, 2021). The result might be a vicious cycle resulting in manifest disease states 

that then impact the subjective quality of life, the ability to work, and ultimately, increase 

the risk for (premature) mortality, as suggested by the current findings (Bertele et al., 

2021, 2022).  

 Regarding the metabo-endocrine cluster and its potential protective character, it 

remains unclear what the underlying biological mechanisms might be, if the current 

findings are replicated in larger, longitudinal studies. Generally, solid lines of previous 

literature suggest a link between hypercortisolism as in the metabo-endocrine cluster and 

both disease burden and mortality (Min, 2016; Steffensen et al., 2016). Yet, this 

discrepancy with some of the present findings might further highlight the significance of 

considering cortisol in interaction with other biomarkers and somatic processes as a 

matter of principle when examining its longer-term outcomes (Bertele et al., 2021, 2022). 

Specifically, a biochemical profile characterized by low inflammation and high cortisol and 

creatinine, like the metabo-endocrine cluster, might represent an indicator of integrity of 

the glucocorticoid negative feedback system, protecting from negative outcomes (Bertele 

et al., 2021, 2022; Kalat, 2009). 
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4.2. Study limitations 

This work has a number of strengths including the validation of the clusters in an 

independent, Japanese sample and the representative character of cohorts. However, 

the findings have some limitations. First, the part of the study investigating correlates and 

comorbidities of the identified biochemical clusters is cross-sectional which prohibits 

causal inferences. Second, the Japanese cohort was relatively small in size. It is, 

therefore, possible that ORs with respect to disease diagnoses lack reliability. Third, some 

given methodological inconsistencies (urine cortisol and creatinine levels in MIDUS, 

average saliva levels of cortisol and blood levels of creatinine in MIDJA) between cohorts 

may have compromised the k-mean clustering process. Forth, diseases were assessed 

via self-report, which bears the risk of a report bias. Moreover, CM has been assessed 

retrospectively bearing the potential of report and memory biases. This said, the 

significance of self-reported assessment of CM when investigating its correlates and 

longer-term effects has recently been demonstrated (Danese & Widom, 2020). Because 

information on CM severities was not available in the Japanese sample, the association 

between CM and the biochemical clusters observed in the U.S. sample must be 

interpreted with caution until replicated in other, independent cohorts. Fifth, the sample 

size for the mortality analysis was relatively small, which may have affected the power to 

determine the impact of each cluster on mortality, particularly in different age groups. The 

small sample sizes resulting from the splitting into three age groups also disallowed to 

test for potential interactions between the biochemical clusters and different diseases 

over the lifespan. Sixth, inability to work in the past 30 days has been assessed by a 

single item and via self-report, bearing the risk of reporting and memory bias. While 

previous literature lends support to this assessment method (Cunny & Perri, 1991; Fisher 

et al., 2016), using only one item disallows to monitor the psychometric properties of the 

measurement. Seventh, mortality analyses and the analysis of the inability to work 

considered disease burden in a limited fashion concentrating on diagnoses of depression, 

heart disease, stroke, hypertension, peptic ulcer disease and cancer. Despite these six 

diseases cover pathology in multiple somatic systems, other covariates and diseases that 

may also be relevant might not have been included, which could limit the power of the 

results.  
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4.3. Public health implications  

4.3.1. Implications for Personalized Medicine, Targeted Prevention, and Predictive 

Diagnostics 

It is increasingly becoming clear from recent literature, that many well-established risk 

factors such as a BMI outside the normal range (Golubnitschaja et al., 2021), genetic risk 

factors (Huang & Hu, 2015; Lopizzo et al., 2015), etc., that are expected to help identify 

individuals at an enhanced risk for certain diseases, are not independent from the 

individual environment and do not behave the same way in different individuals (Bertele 

et al., 2021). More specifically, the presence of a particular risk factor may have little 

predictive value for adverse outcomes unless it is considered systemically, that is, in the 

context of other physiological, environmental, psychological, and biochemical parameters 

and processes (Bertele et al., 2021; Golubnitschaja et al., 2021; Huang & Hu, 2015; 

Lopizzo et al., 2015).  

The approach presented here combines this systemic perspective with the necessary 

scientific parsimony. The presented results advance our understanding of the interplay of 

diverse risk factors and hence, provide valuable implications on Personalized Medicine, 

Targeted Prevention, and Predictive Diagnostics (i.e., 3PM). In particular, the assessment 

of CRP, IL-6, fibrinogen, cortisol, and creatinine should be assessed as a matter of 

principle in all 3PM disciplines to provide a systemic insight into an individual’s current 

health condition (Bertele et al., 2021). High inflammatory signaling (CRP, IL-6, and 

fibrinogen approximately 1.5 SDs above the general population average) coupled with 

low compensation (average cortisol and creatinine), is a detrimental biochemical profile 

associated with unfavorable longer-term outcomes, especially when prevalent in younger 

individuals (Bertele et al., 2022). Hence, if observed in a patient, this profile should be 

taken as a reason for further investigation (especially with respect to artery health/stroke 

and cancer) and for offering personalized treatment options (Bertele et al., 2021, 2022). 

Depending on the patient’s condition, these treatments may involve anti-inflammatory 

drugs, nutrient substitutions, and treatment supplements, for example, nutrition and 

exercise plans (Bertele et al., 2021, 2022).  
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4.3.2. Implications for Medical Psychology  

A crucial question relevant to clinical and preventative targets refers to the etiology of the 

clusters that have been identified. The finding that individuals in the high-risk cluster 

reported higher CM exposure than the other two clusters, could provide initial evidence 

for early-life stress as a potential factor in the etiology of this cluster (Bertele et al., 2021). 

Recent findings suggesting CM as a leading cause of a number of diseases and mortality 

lend weight to this perspective (for a review, see Grummitt et al., 2021), while the link 

between CM and morbidity/mortality may, in part, be mediated by systemic inflammation 

observable in adults that have been exposed to CM (Bertele et al., 2021, 2022). Since 

CM exposure has also been shown to be linked to telomere shortening (Shalev, 2012; 

Shalev & Belsky, 2016), to cognitive decline (Barnes et al., 2009; Pesonen et al., 2013), 

and to accelerate age-induced effects on neurogenesis (Ruiz et al., 2018), individuals 

assigned to the high-risk cluster might be particularly susceptible to accelerated aging 

processes (Bertele et al., 2021, 2022). This may then yield high levels of oxidative stress 

and hence, cell damage and tissue injury, but also other age-accelerating processes yet 

to be studied (Bertele et al., 2021, 2022; Calder et al., 2013; Chatterjee, 2016; Straub, 

2017).  

 

4.4. Clinical implications  

Individuals assigned to the biochemical risk profile should be examined with a special 

focus on stress including early-life stress and especially CM (Bertele et al., 2021). In 

cases where CM is prevalent, health care providers should study its role in the patient’s 

individual condition pattern thoroughly and offer psychotherapy (Bertele et al., 2021). On 

the one hand, doing so could help to advance the understanding of the etiology factors of 

the identified biochemical clusters, and, on the other hand, it could provide valuable 

implications with regard to tailored, personalized (preemptive) interventions (Bertele et 

al., 2021, 2022). Specifically, trauma and stress focused psychotherapy might play a 

crucial role in these interventions (Bertele et al., 2021, 2022). Furthermore, it might be 

essential to monitor the nutrient balance (micronutrients, minerals and vitamins, in 
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particular) of at-risk individuals since it has been shown that an anti-inflammatory diet can 

buffer age-accelerating processes (Bertele et al., 2021, 2022; Cheng et al., 2010; 

Stromsnes et al., 2021). If needed, nutritional supplements should be administered 

(Bertele et al., 2021, 2022). Ultimately, such studies would be of highest clinical value as 

they would help to better understand whether certain interventions can influence 

biochemical profiles and, consequently, disease burden and other negative outcomes. 

 

4.5. Future research directions  

While the selection of CRP, IL-6, fibrinogen, cortisol and creatinine was mainly led by a 

conceptual perspective, aiming to keep the number of required parameters to a minimum 

and after studying the endocrine, the metabolic, the immune system, and their 

interactions in the literature. In the end, however, the five biomarkers chosen here are 

only one option to approach the clustering process and future studies might as well 

involve additional biomarkers tested in routine care settings. Doing so, it would be 

interesting to employ a more empirical approach for the selection of the most relevant 

biomarkers; more specifically, to start the clustering process with a high number of 

different biomarkers and narrow them down by investigating how many biomarkers it 

takes to still distinguish the clusters precisely with respect to disease burden and 

outcomes. This approach could not only help to further precise this novel tool, but it might 

also help to gain additional knowledge about the role of different somatic systems, their 

interactions, and their role in health and disease. Future research should employ 

longitudinal designs including multiple assessment time-points to further examine the 

predictive value of the identified biochemical clusters with respect to long-term well-being, 

mental and physical health, and mortality as well as to identify the most effective point of 

intervention. Additionally, longitudinal designs would help to better understand the way 

biochemical profiles behave along the lifespan, in the context of critical events, disease 

states, and ultimately, they might reveal ways to influence these trajectories. Ideally, 

future research should study different cultures enabling to better understand the 

generalizability of the predictive power of the identified biochemical clusters. Moreover, 

future studies may identify additional factors to be considered in combination with the 
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biochemical clusters presented here, helping to improve and precise disease prediction 

and, hence, to improve both targeted prevention and personalized interventions (Bertele 

et al., 2021, 2022). For these future, more comprehensive studies, I would suggest to 

examine the role of perceived stress, early-life stress, sex steroids, genetic and epigenetic 

factors, and mitochondrial function in the context of biochemical risk profiles and their 

longer-term effects. 
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5. Conclusion  

This work identified three biochemical clusters in two independent population-based 

cohorts and then tested and validated their predictive character regarding mortality and 

inability to work the last 30 days in the decade following the biomarker assessment. 

Results suggest that a specific inflammatory-endocrine biochemical pattern represents a 

valuable risk indicator for mortality and a proficient predictor for functionality a decade 

later; over and above the disease burden reported at baseline and particularly in younger 

adults (Bertele et al., 2021, 2022). Since the herein presented biochemical clustering 

method is relatively in-expensive, it might as well be incorporated into routine care and 

diagnostics to help identify individuals at risk for premature mortality and other detrimental 

subsequent outcomes (Bertele et al., 2021, 2022). Individuals identified in this way could 

then be provided with tailored, early-on treatments targeting biological alterations 

manifesting after the exposure to early-life stress and to other vulnerability factors, that 

are being increasingly understood, avoiding the development of a biochemical risk profile 

in the first place (Bertele et al., 2021, 2022).  

Accordingly, future research should further validate the predictive power of the identified 

biochemical profiles regarding other subsequent outcomes. Simultaneously, preventive 

medical research should concentrate on developing early-on interventions that can be 

flexibly tailored according to a patient’s biochemical profile and other individual 

characteristics (Bertele et al., 2021, 2022). Furthermore, research should focus on 

identifying etiology factors of the biochemical profiles, advancing the understanding of the 

role of early-life stress and other life history factors, as well as (epi-)genetic factors in this 

context (Bertele et al., 2021, 2022). On the other hand, future research should also 

dedicate considerable attention to the identification of potentially protecting, that is, 

resilience, factors occurring in the context of biochemical (risk) profiles and their 

outcomes (Bertele et al., 2021, 2022).  
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