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Chapter 1

Introduction

A thousand valleys’ rustling pines resound.
My heart was cleansed, as if in flowing water.
In bells of frost I heard the resonance die.1

In the field of numerics, when solving partial differential equations on
an unbounded domain, one typically splits the unbounded domain into a
bounded interior and an unbounded exterior domain. Then the equation
is solved only on the bounded interior domain and transparent boundary
conditions are applied to the interface between the bounded interior and the
unbounded exterior domain.

This thesis deals with solving resonance problems of the Helmholtz equa-
tion on spatially unbounded domains. Here, the application of transparent
boundary conditions causes the existence of solutions that bear no physical
meaning but are discretization artifacts. These so called spurious solutions
are sometimes difficult to distinguish from the physical solutions of the prob-
lem without a priori knowledge of the expected eigenvalue spectrum or field
distributions. In this thesis we will derive a robust algorithm that allows for
the detection and removal of spurious solutions from the computed eigen-
value spectrum.

First we will derive the basic equation used throughout this thesis, Equa-
tion (2.17). Then we will briefly highlight the physical and technical back-
ground of the problem at hand. Following this introduction, we will de-
rive the central tool calculations, the pole condition [Sch02]. Following the
implementations of Hohage, Nannen [NS11, Nan08, HN09], Schädle and
Ruprecht [RSSZ08], we will obtain a formulation that allows for implemen-
tation in the one- and two-dimensional case and fits well in the finite element
context. The implementation of the pole condition will reduce to the imple-
mentation of two matrices given in Equation (3.45) in the one-dimensional

1Quotation originating from Vikram Seth’s translations of Li Bai’s poems [Set92], used
by D. Bindel and M. Zworski in the introduction of their review on scattering poles for
the Schrödinger equation http://www.cims.nyu.edu/~dbindel/resonant1d/theo2.html

B. Kettner 1

http://www.cims.nyu.edu/~dbindel/resonant1d/theo2.html


case and to the implementation of two products of sums of matrices in the
two-dimensional case, given in Equations (3.66) and (3.67).

We will then investigate the spurious solutions a bit closer and learn that
there exist spurious solutions that are caused by the transparent boundary
conditions. We will then derive an algorithm to detect the spurious solutions
and remove them from the computed eigenvalue spectrum. This algorithm
is the central result of this thesis and given in a flow-chart representation in
Figure 5.30. Its central building blocks are a formula to compute the reaction
of an eigenvalue to the perturbation of the matrix, given in Lemma 5.3, and a
convergence monitor that computes the rate of convergence of the transpar-
ent boundary condition for an eigenvalue, given in the one-dimensional case
by solving (5.20) for κ and in the two-dimensional case by evaluating (5.36)
at ω.

The perturbations we will use as input to compute the perturbation of
the eigenvalues are perturbations that affect only the exterior part of the
problem. These perturbations will be derived in Equations (5.12) and (5.13)
for the one-dimensional case and in Equations (5.14) and (5.15) for the two-
dimensional case.
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Chapter 2

Helmholtz Resonance

Problems: Background and

Basic Equations

In this introductory chapter we will set the stage for the investigations within
this thesis. The chapter is organized as follows: In Section 2.1 we will intro-
duce the Helmholtz equation that is the basic equation we wish to solve and
give some physical context. Section 2.2 will then give a problem statement of
the resonance mode setting of the Helmholtz equation. Also we will present
in short the problem of spurious solutions whose solution is the main result
of this thesis. Finally, Section 2.3 will give a brief introduction of the finite
element method and an overview of different types of transparent boundary
conditions used in the approximation of resonance problems for open res-
onators, thus introducing the numerical basics for this work. The sections
of this chapter bear many references to later chapters of this work as they
are supposed to serve as introduction rather than as in-depth explanations
or investigations.

2.1 The Helmholtz Equation

The Helmholtz equation is the governing equation of time-harmonic wave
propagation. It therefore serves as a simplified model equation for many
applications and will be the model equation we will use throughout this the-
sis. Dealing with the time harmonic case has the premise that our solutions
are in steady-state and we can neglect switching and transient effects. Us-
ing the circular frequency ω, we can assume that in the steady-state of the
time-dependent scalar field F (x, t) the time-dependence can be separated as
F (x, t) = f(x)e−iωt where f is a stationary function. There are several appli-
cation fields where the Helmholtz equation is the governing equation [Ihl98].
We will now highlight two of these fields, acoustic waves and electromagnetic

B. Kettner 3



2.1. THE HELMHOLTZ EQUATION

waves. Both of these fields will appear in the examples of this thesis and we
will derive the Helmholtz equation for both cases from physical principles
in the following sections.

Acoustic Waves

Sound is created by small oscillations of pressure in an acoustic medium
(acoustic waves). These oscillations cause energy to be propagated through
the medium and using the fundamental laws for compressible fluids, the
governing equations can be derived. Let p(x, t) be the pressure, ρ(x, t) be
the density and v(x, t) be the velocity of the particles in the fluid, let V be
a volume element and ∂V be its boundary, let n(x) be the exterior normal
unit vector of V at x ∈ ∂V . The velocity of the normal flux through ∂V is
v(x, t) · n(x). First we will derive two basic laws, from which we can derive
the desired equations. First, the law of conservation of mass given by

− ∂

∂t

∫

V
ρ(x, t)dV =

∮

∂V
ρ(x, t)(v(x, t) · n(x))dS.

Using the Gauss theorem, we can transform the surface integral into a vol-
ume integral and thus obtain

∫

V

(
∂ρ(x, t)

∂t
+ div(ρ(x, t)v(x, t))

)
dV = 0,

from which we can derive

∂ρ(x, t)

∂t
+ div(ρ(x, t)v(x, t)) = 0, (2.1)

the continuity equation describing the conservation of mass. Next we will
take into account the linearized equations of motion. Assume that V is sub-
ject to pressure p(x, t). Then the total force along ∂V is F = −

∮
p(x, t)n(x)dS.

From the second Newtonian law F = ma we get

−
∮

∂V
p(x, t)n(x)dS =

∫

V
ρ
dv(x, t)

dt
dV.

Expanding the total differential dV/dt, we get the nonlinear expression
dV/dt = ∂V/∂t + (V · ∇)V (cf. [LL87]). Under the assumption of small
oscillations, we can linearize this expression and replace the total differen-
tial with the partial differential: dv(x, t)/dt ≈ ∂v(x, t)/∂t. Applying the
Gauss theorem, we arrive at the linearized equation of motion, also called
the Euler equation

ρ
∂v(x, t)

∂t
= −∇p(x, t). (2.2)

4 B. Kettner



CHAPTER 2. HELMHOLTZ RESONANCE PROBLEMS

Returning to the mathematical question of sound waves, we recall that
acoustic waves are small oscillations of pressure in a compressible fluid. Such
an oscillation can be seen as a small perturbation in pressure and density
(p(x, t), ρ(x, t)) of a steady state (p0, ρ0). At any point x, the functions
p(x, t) and ρ(x, t) represent vibrations with a small amplitude. From the
Euler equation it follows that the velocities are also small. If we assume a
linear material law with the material constant c, we have

p(x, t) = c2ρ(x, t).

Deriving twice partially by t, assuming that the perturbations of ρ and
p(x, t) are small, hence that ρ(x, t) ≈ ρ0, and using the linearized Equa-
tions (2.1) and (2.2), we obtain

∂2

∂t2
p(x, t) = c2

∂2

∂t2
ρ(x, t) = −c2ρ0 div

(
∂

∂t
(v(x, t))

)

= c2 div(∇p(x, t)) = c2∆p(x, t).

(2.3)

Making a time-harmonic ansatz p(x, t) = p(x)e−iωt, we obtain from Equa-
tion (2.3) the Helmholtz equation:

∆p(x) + k2p(x) = 0 (2.4)

with k = ω
c called the wave number.

Electromagnetic Waves

We will now deduct the electromagnetic wave equations from Maxwell’s
equations, the equations that describe the interaction between the electric
and the magnetic field. Charges generate electric fields which, in conducting
media, enforce currents. The interaction of currents in turn, generates the
magnetic force field. We will see in this paragraph that both the electric
and the magnetic field satisfy a vector wave equation which under certain
assumptions yield a Helmholtz equation.

In order to derive Maxwell’s equations, we will first have to establish
the following constitutive relations connecting the electric field E with the
conductive current J and the electric displacement D and the magnetic field
H with the magnetic induction B. These relationships are

J = σE, (2.5a)

D = εE, (2.5b)

B = µH. (2.5c)

B. Kettner 5



2.1. THE HELMHOLTZ EQUATION

In order to derive Maxwell’s equations from physical principles, we first
state the dynamic Ampères law including Maxwell’s correction term:

∮

∂S
Hdl =

∫

S
Jds+

∫

S

∂

∂t
Dds. (2.6)

Here S is a surface and ∂S is its boundary. Ampères static law then states
that the integral of the magnetic field intensity around a closed path is
equal to the total current enclosed by the path, Maxwell’s correction term
includes the temporal change of the electric displacement through the surface
which adds to the total current. Furthermore, we require Faradays law of
induction:∮

∂S
Edl = − ∂

∂t

∫

S
Bds. (2.7)

It describes the interaction of a time-varying magnetic field that produces
an electric field. Further we will have to include Gauss’ law into our consid-
erations which states that the electric flux through the surface of a volume
V is equal to the total electric charge in the volume:

∮

∂V
εEds =

∫

V
ρdV. (2.8)

Finally we have to state that there are no magnetic monopoles, hence the
integral of the magnetic flux over any closed surface is zero:

∮

∂V
Bds = 0. (2.9)

Equations (2.6) to (2.9) together with the relations defined in Equations (2.5a)
to (2.5c) yield the full system of Maxwell’s equations in integral form:∮

∂V
Eds =

1

ε

∫

V
ρdV, (2.10a)

∮

∂V
Hds = 0, (2.10b)

∮

∂S
Edl = −µ ∂

∂t

∫

S
Hds, (2.10c)

∮

∂S
Hdl =

∫

S
Jds+ ε

∂

∂t

∫

S
Eds. (2.10d)

By applying the divergence theorem
∮
∂V Fds =

∫
V ∇·FdV and Stokes’ the-

orem
∮
∂S Fdl =

∫
S(∇× F)ds, we can transform the macroscopic Maxwell’s

Equations (2.10a)-(2.10d) to differential form

∇ ·E =
ρ

ε
, (2.11a)

∇ ·H = 0, (2.11b)

∇×E = −µ ∂
∂t

H, (2.11c)

∇×H = J+ ε
∂

∂t
E. (2.11d)

6 B. Kettner



CHAPTER 2. HELMHOLTZ RESONANCE PROBLEMS

Assuming that the electric field is free of charges, that is ρ ≡ 0 and that
there are no free currents, that ist J = 0, Equations (2.11a) - (2.11d) reduce
to the two coupled equations

∇×E+ µ
∂

∂t
H = 0, (2.12a)

∇×H− ε
∂

∂t
E = 0, (2.12b)

which are complemented by the condition that the vector fields have to
be divergence-free. Making a time-harmonic ansatz E(x, t) = E(x) exp(iωt)
andH(x, t) = H(x) exp(iωt), we obtain from Equations (2.12a) and (2.12b):

∇×E+ iµωH = 0, (2.13a)

∇×H− iωεE = 0. (2.13b)

By substitution, we have the curl-curl-equations

∇× ε−1∇×H− ω2µH = 0 (2.14a)

∇× µ−1∇×E− (ω2ε− iωσ)E = 0 (2.14b)

Assuming that the electric or magnetic fields are directed along the in-
variant z-direction, the curl-curl-equations simplify to the following scalar
Helmholtz equations for the fields Ez(x, y) and Hz(x, y) in two space dimen-
sions:

∆Ez(x, y) − ω2n(x, y)2Ez(x, y) = 0 and (2.15a)

∆Hz(x, y)− ω2n(x, y)2Hz(x, y) = 0, (2.15b)

where n(x, y) =
√
ε(x, y)µ(x, y) is the refractive index.

Radiation Conditions

To motivate the introduction of radiation conditions we will have a look at
the one-dimensional wave equation

∆P (x, t)− 1

c2
∂2

∂t2
P (x, t) = 0, with x ∈ R. (2.16)

It is easy to see that P (x, t) = f(kx− ωt) solves Equation (2.16) if k = ω
c ,

since ∆f(kx−ωt) = k2f ′′(kx−ωt) and ∂2

∂t2
f(kx−ωt) = ω2f ′′(kx−ωt). The

value of f does not change if the differential d(kx− ωt) = 0 or, equivalently
dx
dt = ω

k . The expression dx
dt is called the phase velocity of the solution

f(kx− ωt) and it depends solely on material properties.
The connection between the phase velocity and the wave number can

be illustrated by considering time harmonic solutions P (x, t) = p(x)e−iωt.

B. Kettner 7



2.2. RESONANCE PROBLEMS

Recalling that k = ω/c, the stationary part p(x) satisfies the Helmholtz
equation

p(x)′′ + k2p(x) = 0.

Its solutions are known to be periodic with p(x+λ) = p(x) for all x ∈ R with
λ = 2π

k and have the general form p(x) = Aeikx+Be−ikx. The corresponding
time-dependent solution is P (x, t) = p(x)e−iωt, hence

P (x, t) = Aei(kx−ωt) +Be−i(kx−ωt).

The phase velocities of the two terms of this solution can be evaluated to
be c for the first term and −c for the second term. Looking at an arbitrary
point x0, the first term therefore represents a wave traveling towards infinity,
hence called outgoing solution, while the second term represents a wave
approaching x0 from infinity, hence called incoming solution.

Considering wave propagation in free space, we postulate that no waves
are reflected from infinity. That means that we seek for a condition to
suppress incoming solutions. Such a condition, the Sommerfeld radiation
condition was defined by Sommerfeld [Som49]. Deriving it requires taking
into account the free space Green’s function in an exterior domain and for-
mulating an integral equation for u(r) where r is in the exterior domain.
When truncating the exterior domain by a circle and taking the circles ra-
dius to infinity, one obtains a condition ensuring that no incoming solutions
exist. This condition will be explicitly given in Chapter 3 when we derive
transparent boundary conditions for solving the Helmholtz equation numer-
ically.

2.2 Resonance Problems

The Helmholtz equation

∆u+ n2ω2u = 0, x ∈ R
d, d ∈ {1, 2, 3} (2.17)

where n is a material-dependent property and ω the frequency contained in
the exponential part of the time-harmonic ansatz, can be solved in different
ways yielding two basic problem classes:

� Scattering problems: The typical problem setting for scattering prob-
lems is sketched in Figure 2.1. In this setting, an incoming wave uin
is scattered off an obstacle S within a domain of interest Ω. This
generates scattered waves usc that satisfy a radiation condition and
leave the area of interest Ω ⊂ R

d, d ∈ {1, 2, 3}. The total field of
such a problem then is utot = uin + usc. By the introduction of the

8 B. Kettner



CHAPTER 2. HELMHOLTZ RESONANCE PROBLEMS

artificial domain of interest Ω with the boundary ∂Ω, we can rename
the solution within Ω to uint(x) := utot(x) for x ∈ Ω and reformulate

∆usc(x) + k2usc(x) = 0 for x ∈ R
d\Ω, (2.18e)

∆uint(x) + k2uint(x) = 0 for x ∈ Ω, (2.18f)

usc(x) + uin(x) = uint(x) for x ∈ ∂Ω, (2.18g)

∂nusc(x) + ∂nuin(x) = ∂nuint(x) for x ∈ ∂Ω. (2.18h)

where ∂n denotes the derivative in the outward normal direction on
∂Ω. Here, the material parameter n and the frequency of the fields, ω
are known and the resulting inner and scattered fields are computed.

� Resonance problems: For resonance problems the setting is different
since no sources are given, hence Equation (2.17) is reinterpreted as
eigenvalue problem where the eigenvector (eigenmode) u and the eigen-
value (eigenfrequency) ω of a structure are sought simultaneously. This
problem type is the basis of our considerations and will be investigated
in more detail in the subsequent chapters, focusing on transparent
boundary conditions and the numerical solution of the problem.

uin

usc

usc

usc

S

Ω

Figure 2.1: Scattering problem. The incoming wave uin is scattered off the ob-
stacle S, resulting in scattered waves usc.

Now we will first comment on the technological impact of resonance
problems before giving the outline of a justification for this problem type.
Computing the eigenfrequencies and eigenmodes of cavity resonators is an
important technological task with first attempts for solutions dating back
almost to the beginning of the computer age [Hoy65, HSR66]. Resonance

B. Kettner 9



2.2. RESONANCE PROBLEMS

problems are of central importance for a wide area of applications. In mod-
ern optical applications for example, the functionality of many devices built
depends strongly on their ability to respond stronger to incident light at
certain frequencies. The impact of these devices is manifold and they affect
a wide area of applications:

� In photovoltaics, optical resonators are used to achieve light trapping
in order to increase the efficiency of solar cells. The aim is to focus
the light within certain regions of the solar cell in order to increase the
number of free electrons produced in that region. A profound knowl-
edge of the resonances of a structure is required in order to optimize
the shape and size of the microstructures that are embedded in the
cells.

� In medicine, optical resonators can be used for detection of molecules
(”lab on a chip“) [Flö11, GSH+10]. Here, resonators are coated with
a functionalized surface that certain molecules can attach to. When
molecules attach to this surface, the volume of the resonator is in-
creased and the resonance frequency changes. Utilizing this effect for
molecule detection requires prediction of the fields and frequencies of
the resonant states in the highest possible quality-

� In lasers, resonators are often used for monochromatic light generation,
especially the functionality of vertical cavity surface emitting lasers
(VCSELs) depends centrally on the devices acting as optical cavities.

� In information technology, resonators are expected to become of cen-
tral importance for designing and building the envisioned quantum
computers. Their ability to store the information inherent in light
quanta is required to implement bits required for information process-
ing.

The wide spread of this problem type and significance for its applications
make for a high level of interest in solving this problem type numerically in
order to optimize structures, understand their physical properties and tailor
them to the requirements of the individual applications. However, we will
see that the numerical solution of resonance problems is a delicate matter
since it introduces unwanted solutions, also called spurious solutions, that
bear no physical meaning and pollute the solution spectra. We will discuss
their origin in Chapter 4 and devote this work to their detection in typical
simulation settings arising in modern applications.

The numerical simulation of resonance problems requires solving eigen-
value problems on unbounded domains. This implies that the eigenvalue,
that is the resonance frequency ω, is a complex number even for real-valued
coefficient matrices, which was early found to be useful since it enables tak-
ing into account radiation and decay properties [XZX89]. Yet the notion

10 B. Kettner



CHAPTER 2. HELMHOLTZ RESONANCE PROBLEMS

of a complex frequency is one that is not valid within the physical model
so a justification is required. Numerical justification was already given in
several papers by comparing the results obtained by solving the scattering
problem for a frequency range with the resonance frequencies computed by
solving the resonance problem [BPSZ11, BZS10, BSZ10]. From a practical
point of view, the complex frequencies can be interpreted as follows: the
real part ℜ(ω) describes the rest energy of a state, that is the wavelength
of the resonance while the imaginary part ℑ(ω) describes the rate of decay.
Consequently they should be understood in terms of long time behavior
of solutions to the wave equation. However, there is also a mathematical
justification for computing complex resonances. Using a ”black box“ for-
malism, Zworski and Tang showed that solutions to the wave equation in
R
d can be expanded in resonances [TZ00]. They stated that since an ex-

pansion in eigenfunctions is possible on bounded domains and resonances
are the equivalent to eigenfunctions when considering problems posed on
unbounded domains, an expansion involving resonances was to be expected
as anticipated by Lax and Phillips [LP89]. They showed that for odd space
dimensions n the solution u(x, t) to the wave equation can be expanded as

u(x, t) =
∑

ℑ(ωl)≤C

m(ωl)∑

k=1

uk(x)e
itωl tk−1 +O(e−(C−ε)t)., (2.19)

for x in the unbounded exterior domain where m(ωl) is the multiplicity of
ωl. The expansion given here and in [WMS88, MS84, Zwo99] shows that
even though the complex resonance frequencies and the associated field dis-
tributions seem unphysical and unintuitive at first they still bear a physical
meaning by acting as a basis that can be used for the approximation of
solutions to scattering problems.

2.3 Transparent Boundary Conditions

Many books have been written on the solution of partial differential equa-
tions using the finite element method. For in-depth literature on this topic
we refer to [Ihl98, Mon03, Bra10] and many more. We will however present
the most important implementations of transparent boundary conditions in
this section since our implementation of transparent boundary conditions,
the pole condition will be central for our work.

The necessity to formulate transparent boundary conditions stems from
numerics. In order to numerically solve a problem posed on an unbounded
domain, the objects of interest (scatterers or resonators) are enclosed in a
bounded domain Ωint and an unbounded exterior domain Ωext which acts
as computational domain. To account for light that radiates out of this
computational domain to infinity, transparent boundary conditions have to

B. Kettner 11



2.3. TRANSPARENT BOUNDARY CONDITIONS

be imposed on the boundary ∂Ω. The main different concepts for the real-
ization of transparent boundary conditions are

� Green’s tensor methods: This class of methods relies on the availabil-
ity of fundamental solutions to the equations that are investigated in
Ωext. A class of examples applying Green’s tensor methods are classi-
cal boundary integral methods [CK98, Néd01], techniques for certain
special cases such as layered materials are available [MP98, PM01]. All
these methods however share the downside, that for many applications
the Green’s tensor is not numerically feasible.

� Perfectly matched layers: The general idea behind the perfectly matched
layers is to surround Ωint with a layer of finite thickness with a ma-
terial that is specially designed to damp or slow down the radiating
solutions within the finite thickness so that they do not reflect back
when a zero boundary condition is applied to the end of the layer. This
method is very elaborate and can deal with all geometries arising in
current applications [Ber94, Zsc09]. The perfectly matched layers were
shown to be equivalent to an analytic continuation of the equation to
complex coordinates which replaces the propagating oscillating waves
by exponentially decaying waves.

� Infinite elements: The basic idea of the infinite element method is to
decompose Ωext into disjoint infinite patches similar to the patches
with ansatz functions similar to the finite patches and ansatz func-
tions used by the finite element method in the interior Ωint [Lei86,
CRD03]. These ansatz functions then span a subspace of the underly-
ing weighted Sobolev space. The drawback here is that the construc-
tion of conformal ansatz functions requires knowledge on the asymp-
totic behavior of the solution, thus rendering a treatment of heteroge-
neous exterior domains impossible.

� Mode matching methods: For mode matching methods, the solution
is expanded into resonances on infinite patches in the exterior. Then
matching conditions are enforced on the interfaces between two in-
finite patches and on ∂Ω to ensure the field continuity. This works
well for many applications including complex heterogeneous exterior
domains [Che95, Ham07]. However, the number of modes required
for an accurate approximation is quite high for some examples, giving
large dense blocks in the system matrices which drastically increase
the computational cost.

� Pole condition method: The pole condition method which we will use
in this thesis, will be explained in detail in Chapter 3. It can be
seen as a generalization of the infinite element method that makes the
consideration of heterogeneous exterior domains possible.

12 B. Kettner



CHAPTER 2. HELMHOLTZ RESONANCE PROBLEMS

For more in-depth discussion of the different types of transparent boundary
conditions, we refer to review papers such as [Tsy98, Hag99, Hag03].
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Chapter 3

Pole Condition and

Implementation

In this chapter, we will present the transparent boundary condition that will
be used in this thesis. It is a Hardy Space Infinite Element implementation
of the pole condition.
The central condition underlying this implementation, the pole condition,
was developed by F. Schmidt [Sch98, Sch02]. It defines outward radiat-
ing solutions by the location of the poles of their transform with respect
to a generalized distance variable in the complex plane. It is equivalent
to the PML [Ber94, HSZ03b] and its correspondence with the Sommer-
feld radiation condition for homogeneous exterior domains was shown by
Hohage et al. [HSZ03a]. In their review paper [AAB+07] Antoine et al.
discuss its relation with other concepts for transparent boundary condi-
tions for the Schrödinger equation. In contrast to earlier implementations
of the pole condition that were based on BDF and Runge-Kutta meth-
ods [HSZ02], our approach implements the Hardy Space Infinite Element
approach [NS11, Nan08, HN09]. It is based on a Galerkin method in the
Hardy space H+(D) of the complex unit disk. As we will see later in this
chapter, the approach chosen here does not change the structure of the un-
derlying eigenvalue problem since it is linear in the resonance frequency ω2.
Therefore the eigenvalue problems that will occur in our implementation can
be solved with standard sparse eigenvalue solvers.

In Section 3.1 we will motivate the pole condition by formulating it in
a one-dimensional resonance mode setting. It should be stressed here, that
this section serves to depict the method used and to ensure the confidence in
the method but is not required for the derivation of the method. Sections 3.2
and 3.3 will formalize this approach and give details on the implementation
we will use. Section 3.4 will briefly outline an alternative approach that
gives almost the same discretization but will be useful in Section 3.5 when
we deal with the implementation for two space dimensions.
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3.1 Derivation: The Pole Condition in 1D

In this section we aim at deriving the condition we will later refer to as the
pole condition in a simple one-dimensional setting. This section serves to de-
pict the method used. In order to derive the pole condition we will first con-
sider the Helmholtz resonance problem on an unbounded one-dimensional
domain. In order to obtain numerical solutions with the finite element
method, we will split that domain into a bounded interior domain Ωint

than can be dealt with by standard finite elements and two unbounded
exterior domains Ωext,l and Ωext,r. Then we will use the simplicity of the
one-dimensional case to derive special solutions for our equation in Ωext,l

and Ωext,r. Based on the Sommerfeld radiation condition, we can deduct
the explicit forms of these special solutions. By observing their behavior
under the Laplace transform, we can formulate a condition on the Laplace
transform that guarantees that the solutions satisfy the Sommerfeld radia-
tion condition and thus are outgoing.

In a one dimensional setting, we want to solve the scalar Helmholtz
equation on an unbounded domain Ω ⊆ R

∂xxu(x) + n(x)2ω2u(x) = 0 for x ∈ Ω. (3.1)

In a resonance mode setting, we search for a pair (u(x), ω) with u(x) ∈ C2(Ω)
and ω ∈ C. To tackle this task numerically, we divide the unbounded domain
of interest Ω into a bounded interior domain Ωint and an unbounded exterior
domain Ωext := Ω\Ωint. In the one-dimensional case, Ωext typically consists
of two components. We will choose the division such that the refractive
index n(x) is constant in each component of Ωext. In the one-dimensional
case we can think of Ωint as a finite interval, Ωint = [xl, xr], and of Ωext as
the domain

Ωext := R\[xl, xr] = {x ∈ R : x < xl} ∪ {x ∈ R : x > xr}.

First we do a change of variables and use distance variables ξl and ξr
instead of the variable x in both parts of the exterior domain. We refer to
the solution in the right hand component of the exterior domain as uext,r(ξr)
with ξr = x − xr > 0 for x > xr and in the left hand component of the
exterior domain as uext,l(ξl) with ξl = xl − x > 0 for x < xl. Let the
solution inside the computational domain be uint(x) and without restriction
of generality let xl < 0 and xr > 0. Since we chose xl and xr, the boundary
points of Ωint, so that n(x) is constant in each of the components of the
exterior domain, n(ξl) ≡ nl for ξl > 0 and n(ξr) ≡ nr for ξr > 0, the
solutions in these components are superpositions of complex exponential
functions

uext,l(ξl) = al exp(−inlωξl) + bl exp(inlωξl) and (3.2)

uext,r(ξr) = ar exp(inrωξr) + br exp(−inrωξr). (3.3)
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Of the two exponential functions, exp(−iξl,rnl,r) is a wave traveling in neg-
ative ξl,r-direction while exp(iξl,rnl,r) is a wave traveling in positive ξl,r-
direction. Since we defined ξl and ξr to be distance variables, the first of
the summands in each of the given superpositions is a wave traveling to the
right and the second is a wave traveling to the left.

In order to derive a physical solution of our problem, we have to ensure,
that there are no sources outside Ωint. That is we need to ensure, that
our solution in Ωext consists only of waves that are leaving Ωint. We refer to
such solutions as outgoing solutions and define them as follows. A solution is
called outgoing if it satisfies the Sommerfeld radiation condition. The formal
definition of the Sommerfeld radiation condition is given in Definition 3.1.

Definition 3.1.

For n(x) ≡ n constant, a solution to (∆+n2ω2)u(x) = 0, x ∈ R
d is called

radiating if it satisfies the Sommerfeld radiation condition

lim
|ξ|→∞

|ξ| d−1

2

(
∂

∂|ξ| − in2ω2

)
u(ξ) = 0

uniformly for all directions ξ
|ξ| .

As a direct consequence of the Sommerfeld radiation condition, we can
determine the coefficients al and br in Equations (3.2) and (3.3) to be zero.
In order to determine the missing coefficients ar and bl, we have to make
the further assumption that the solution u is continuous at xl and xr, the
boundary points of Ωint. This assumption is reasonable if n(x) = nl in a
neighborhood of xl and n(x) = nr in a neighborhood of xr. This assumption
is no restriction to generality since we are free to move the artificial boundary
points xl and xr to a suitable position. Taking the continuity into account,
we can derive the missing coefficients ar and bl:

al = 0, bl = uint(xl) and

ar = uint(xr), br = 0.

We have now explicitly derived uext,l(ξ) and uext,r(ξ) for the special
one-dimensional case. Next we wish to investigate them in order to find
a property that ensures that a solution satisfies the Sommerfeld radiation
condition. For this we will use the Laplace transform, a widely used inte-
gral transformation that maps a function f(t) with a real argument t onto
a function L{f(t)}(s) with a complex argument.

Definition 3.2.

The Laplace transform L{f(t)}(s) of a function f(t) : R+ → C is

L{f(t)}(s) :=
∫ ∞

0
e−stf(t)dt.
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We now form L{uext,l(ξ)} and L{uext,r(ξ)}, the Laplace transforms of
uext,l(ξ) and uext,r(ξ). Before inserting the coefficients al, bl, ar and br that
we derived before, they read

L{uext,l(ξ)}(s) =
∫ ∞

0
e−sξ

(
ale

−inlωξ + ble
inlωξ

)
dξ

=
al

s+ inlω
+

bl
s− inlω

and

L{uext,r(ξ)}(s) =
∫ ∞

0
e−sξ

(
are

inrωξ + bre
−inrωξ

)
dξ

=
ar

s− inrω
+

br
s+ inrω

.

Both Laplace transforms have holomorphic extensions to C except for two
poles at s = ±inlω and s = ±inrω respectively. Now we insert the coeffi-
cients al,r, bl,r derived for our specific case. Then L{uext,l}(s) and L{uext,r}(s)
simplify to

L{uext,l(ξ)}(s) =
uint(xl)

s− inlω
and (3.4a)

L{uext,r(ξ)}(s) =
uint(xr)

s− inrω
. (3.4b)

Now we can see, that uext,l and uext,r satisfy the Sommerfeld radiation condi-
tion if al = br = 0, which is equivalent to the absence of the poles s = −inlω
of L{uext,l(ξ)}(s) and s = −inrω of L{uext,r(ξ)}(s). Hence we have derived
the equivalence that both exterior solutions are outgoing if the holomorphic
extensions of their Laplace transforms to C have no poles with negative
imaginary part for our special problem setting. The case of poles with zero
imaginary part are special cases that correspond to solutions that are non-
oscillatory and are just exponentially increasing or decaying in ξ-direction.
These solutions are neither incoming nor outgoing.

We have thus split C in two parts Cin := {z ∈ C : ℑ(z) ≤ 0} and
Cout := {z ∈ C : ℑ(z) > 0} for each subset of Ωext and reformulated the
fact that a solution is outward radiating to the non-existence of poles of the
holomorphic extension of the Laplace transform in the subset Cin. We will
formalize this approach in the following section.

3.2 Formalization

We will now derive a formal formulation of the condition that was intuitively
derived in the previous section and bring it to the formal context required
for an implementation. We will start off with a variational formulation

18 B. Kettner
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of the one-dimensional Helmholtz equation on an unbounded domain. By
dividing the domain into a bounded interior and an unbounded exterior and
restricting the test functions to a suitable set, we will obtain a formulation
that contains the Laplace transforms of the solutions in the exterior parts.

We will then give a more general derivation of the condition on the
poles of the Laplace transform in terms of Cauchy’s integral formula and
a representation of the resulting path integral by Riemann sums. This will
yield our first formal definition of the pole condition. Further we will verify
that Cin and Cout from the previous section are valid for our equation in
this more general framework.

Our starting point is the resonance mode setting of the one-dimensional
Helmholtz equation (3.1) on a possibly unbounded domain Ω ⊆ R. Multi-
plying with a test function v ∈ H1

loc(Ω), the space of functions that restricted
to a compact subset ΩF ⊂ Ω are in H1(ΩF ), we obtain a variational formu-
lation: Find u ∈ H1

loc(Ω), such that
∫

Ω
∂xxu(x)v(x) + n(x)2ω2u(x)v(x)dx = 0 (3.5)

for all v ∈ H1
loc(Ω). Splitting Ω into Ωint and Ωext yields a splitting of the

integral and we obtain
∫

Ωint

∂xxu(x)v(x) + n(x)2ω2u(x)v(x)dx+ (3.6)

∫

Ωext

∂xxu(x)v(x) + n2l,rω
2u(x)v(x)dx = 0 ∀v ∈ H1

loc(Ω).

Integrating the exterior part of Equation (3.6) by parts, we have
∫

Ωint

∂xxu(x)v(x) + n(x)2ω2u(x)v(x)dx+ (3.7)

∫

Ωext

−∂xu(x)∂xv(x) + n2l,rω
2u(x)v(x)dx ± u′(xl,r)v(xl,r).

Next we insert the special forms Ωint = [xl, xr] and Ωext = (−∞, xl)∪(xr,∞)
in the one-dimensional case into Equation (3.7) and have

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx+ (3.8)

u′(xr)v(xr)− u′(xl)v(xl)+∫

x<xl

−∂xu(x)∂xv(x) + n2l ω
2u(x)v(x)dx + u′(xl)v(xl)+

∫

x>xr

−∂xu(x)∂xv(x) + n2rω
2u(x)v(x)dx − u′(xr)v(xr) = 0

∀v ∈ H1
loc(Ω).
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Since it is sufficient to test against all functions v in a dense subset
of H1

loc(Ω), we will restrict the set of test functions to the exponentially
decaying functions in H1

loc(Ω):

vl ∈ H1
loc(Ω) : vl(x) = ce−s(xl−x) for x < xl,ℜ(s) > 0, c ∈ C, (3.9)

vr ∈ H1
loc(Ω) : vr(x) = ce−s(x−xr) for x > xr,ℜ(s) > 0, c ∈ C. (3.10)

We can further restrict ourselves to using only functions with c = 1.
Now we insert the test functions from the set of functions defined in Equa-
tions (3.9) and (3.10) into Equation (3.8). After a coordinate transform,
the two infinite integrals yield the Laplace transforms of uext,l,r in the two
disjoint subsets of Ωext:

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx + u′(xr)− u′(xl)

+

∫

x<xl

−∂xu(x)∂xes(x−xl) + n2l ω
2u(x)es(x−xl)dx+ u′(xl)

+

∫

x>xr

−∂xu(x)∂xe−s(x−xr) + n2rω
2u(x)e−s(x−xr)dx− u′(xr)

⇔0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx + u′(xr)− u′(xl)

+

∫

x>0
∂xu(−x+ xl)se

−sx + n2l ω
2u(−x+ xl)e

−sxdx+ u′(xl)

+

∫

x>0
∂xu(x+ xr)se

−sx + n2rω
2u(x+ xr)e

−sxdx+ u′(xr).

The last two integrals correspond to the Laplace transform of the Helmholtz
equation in the left and right exterior domains so we can rewrite the above
equations in terms of L{∂xuext,l},L{∂xuext,r},L{uext,l} and L{uext,r}:

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx (3.11a)

+ sL{∂xuext,l}(s) + n2l ω
2L{uext,l}(s) + u′(xl) (3.11b)

+ sL{∂xuext,r}(s) + n2rω
2L{uext,r}(s) + u′(xr). (3.11c)

A central result of the Laplace transform is the Laplace transform of ∂xu(x).
It can be obtained by integration by parts and states that

L{∂xu}(s) = sL{u}(s)− u(0). (3.12)

We can now rewrite Equations (3.11a)-(3.11c) using (3.12):

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx (3.13a)

+ s2L{uext,l}(s)− suext,l(xl) + n2l ω
2L{uext,l}(s) + u′(xl) (3.13b)

+ s2L{uext,r}(s)− suext,r(xr) + n2rω
2L{uext,r}(s) + u′(xr). (3.13c)
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While equation (3.13a) is the variational formulation for the solution in Ωint,
Equations (3.13b) and (3.13c) are the Laplace transforms of the original
Helmholtz equation in the two sub-domains of Ωext.

We will now construct transparent boundary conditions by imposing con-
ditions on these Laplace transforms L{uext,l,r}(s). For an arbitrary function
u(x), its Laplace transform L{u}(s) as a function of s has some singularities
in the complex plane. By Cauchy’s integral formula

L{u}(s) = 1

2πi

∮

γ

L{u}(τ)
τ − s

dτ, (3.14)

where γ is a path enclosing the singularities of L{u}. Now we parametrize
γ with a bijective function r : [a, b] → γ. We obtain a partitioning of γ by
partitioning the interval [a, b] into n sub-intervals [τi−1, τi], each of the length
∆τ = (b − a)/n. We can use the set {r(τi), i = 1, ..., n} of points on γ to
approximate γ with a polygonal path by introducing straight lines between
r(τi−1) and r(τi). We denote the distance between the sample points on the
curve by ∆si. Now we can insert the Riemann sum for the path integral
in (3.14):

L{u}(s) =
1

2πi
lim

∆si→0

N∑

j=1

L{u}(r(τj))∆si
1

τj − s

= lim
N→∞

N∑

j=1

αj(N,L{u}(τj))
1

τj − s
. (3.15)

In Equation (3.15), αj(N,L{u}(τj)) can be seen as weights and the entire
sum may thus be reinterpreted as superposition of (τ − s)−1. Transforming
these summands back into the space domain, we get the correspondence

1

τ − s
↔ −eτx.

Depending on the location of τ in the complex plane C, − exp(τx) is moving
to the left/exponentially increasing or moving to the right/exponentially
decreasing. So for each disjoint subset of Ωext, the complex plane can be
divided into the two regions

Cin := {τ ∈ C : − exp(τx) is incoming or not oscillating} and

Cout := {τ ∈ C : − exp(τx) is outward radiating}.
This enables us to deform the path γ from (3.14) and then split it into
two paths γin ⊂ Cin and γout ⊂ Cout that each enclose all the singularities
of L{u}(s) in the respective region. Equation (3.14) then decomposes as
follows:

L{u}(s) =
∮

γin

L{u}(τ)
τ − s

dτ +

∮

γout

L{u}(τ)
τ − s

dτ. (3.16)
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Requiring that u is outward radiating then implies requiring that∮
γin

L{u}(τ)
τ−s dτ is zero. This corresponds to the condition that L{u}(s) is

analytic in Cin. The splitting into Cin and Cout is possible whenever it
is possible to distinguish between incoming and outgoing solutions, that is
when the problem is not degenerated. We are now in the position to sum-
marize the method in the following definition:

Definition 3.3.

A function u ∈ H1(Ω) is said to obey the pole condition if the complex
continuation of its Laplace transform L{u}(s) is analytic in Cin.

Now we will apply this to the one-dimensional Helmholtz resonance prob-
lem. Suppose that uint is given inside Ωint = [xl, xr]. Since the following
considerations are the same for the left and right exterior domains, we will
take into account only the right hand component of the exterior domain.
Then the equation for L{uext,r}(s) derived from Equation (3.13c) is then

0 = s2L{uext,r}(s)− suext,r(xr) + n2rω
2L{uext,r}(s) + u′(xr)

⇔L{uext,r} = (s2 + n2rω
2)−1(suext,r + u′(xr)). (3.17)

For fixed ω, (s2 + n2rω
2) has two roots

s+/− = ±i
√
n2rω

2. (3.18)

We can use the roots s+ and s− defined in Equation (3.18) to obtain a
partial fraction decomposition of L{uext,r} from (3.17):

L{uext,r}(s) =(s+ s+)
−1 1

2

(
suext,r(xr) + u′(xr)

)
+

(s+ s−)
−1 1

2

(
suext,r(xr) + u′(xr)

)
. (3.19)

Transforming the summands in Equation (3.19) back to the space domain,
they correspond to

1

2
e−s+x(u′(xr)− inrωuext,r(xr)) and

1

2
e−s−x(u′(xr)− inrωuext,r(xr)).

Depending on the location of s+/− in the complex plane, they are incoming,
exponentially increasing, outgoing or exponentially decreasing. For the left
boundary we can obtain a similar splitting by the same arguments. The
frequency ω takes values everywhere in the complex plane: ω ∈ C. Thus s+
and s−, the roots of (s2 + n2l,rω

2), split the complex plane into two parts,
Cin = {s ∈ C : ℑ(s) ≤ 0} and Cout = {s ∈ C : ℑ(s) > 0}. The imaginary
axis ℜ(s) = 0 is mapped to the real axis ℑ(s) = 0.
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3.3 Implementation

We will now develop an implementation of the pole condition. Our imple-
mentation follows the lines of [RSSZ08] and [HN09]. In order to reformulate
the boundary condition in a way that will allow for an easy implementation
within the context of a finite element formulation of the problem, we will
first map the domain Cin where L{u}(s) is required to be analytic to the
unit disc. The mapping that performs this coordinate change is a Möbius
transform that maps a half-space in the complex plane to the unit disc
D. On Cin and D we will use certain function spaces between which the
Möbius transform also forms a connection. On D we can then reformulate
the condition that L{uext} is analytic in Cin to the condition that its Möbius
transform lies in a certain function space on D, the Hardy space H+(D).
The functions of this space can then be expanded into a power series. In
order to obtain a discrete formulation, this power series is approximated
by a polynom. In order to obtain a formulation that fits well in the finite
element context, we will use well-chosen test functions that when testing
against them directly give the Laplace transform of uext and allow for an
easy coupling to the solution in the interior.

So in short the outline of what follows next is:

1. Define a mapping Ps0 := Cin → D.

2. From this obtain a mapping of the function spacesH−(Ps0) → H+(D).

3. Reformulate the pole condition in terms of these function spaces.

4. Approximate a function in H+(D) with a power series to obtain a
discrete formulation.

5. Choose a test-function for the exterior domain such that the previous
formulation can be embedded within a finite element context.

6. Derive the local element matrices this yields for each component of
the exterior domain.

For the first of these steps, we will now give a formal definition of the
Möbius transform. In its general formulation it is given as:

M(s) = s̃ :=
as+ b

cs+ d
.

For mapping the half space Ps0 := {z ∈ C : ℜ(z/s0) ≥ 0} below the line
connecting 0 and is0 to the unit disc, we set a = c = 1, b = s0 and c = −s0:

Ms0(s) = s̃ :=
s+ s0
s− s0

. (3.20)

B. Kettner 23



3.3. IMPLEMENTATION

The complex parameter s0 determines the position of the half-space and
acts as a tuning parameter. It will be used to identify the spurious modes
of the resonance problem at a later point. The Möbius transform with the
parameter s0 will be noted with a subscript s0: Ms0 , see Fig. 3.1.

Since we require L{u}(s) to be analytic in Cin, we can use the property
that an analytic function can be expanded into a power series that converges
inside some ball to obtain a formulation of the pole condition that can be
implemented. Ms0 maps the infinite point to 1 and s0 to zero, thus an
approximation of L{uext} ◦Ms0 by an power series expansion will be best
near s0. So choosing s0 in the region where one expects the resonances of
interest to be located is typically a good choice.

s0

is0

inω

−inω

ℜ(s)

ℑ(s)

Ps0

ℜ(s̃)

ℑ(s̃)

1

D

Ms0(s0) = 0

0

Ms0(s) =
s+s0
s−s0

M−1
s0 (s̃) = s0

s̃+1
s̃−1

Figure 3.1: The Möbius transform Ms0 and its inverse.

The inverse of the transform (3.20) for our choice of a, b, c and d is

M−1
s0 : s̃→ s = s0

s̃+ 1

s̃− 1
. (3.21)

In order to be able to give a formal definition of the pole condition in the
setting that is fit for implementation, we will have to give some definitions
of the function spaces on Ps0 and D.

Definition 3.4.

As before let Ps0 := {z ∈ C : ℜ(z/s0) ≥ 0} be the half space below the
line connecting 0 and is0. The Hardy Space H−(Ps0) is the space of all
functions u that are holomorphic in Ps0 such that

∫

R

|u(is0x− ǫ)|2dx
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is uniformly bounded for ǫ > 0.
Let D = {z ∈ C : |z| < 1} be the open unit disc in C. The Hardy Space
H+(D) is the space of all functions u that are holomorphic in D such
that ∫ 2π

0
|u(reit)|2dt

is uniformly bounded for r ∈ [0, 1).

According to [Har15, Dur70, Hof62], for ℜ(s0) = 0, i.e. for Ps0 being the
half-space below the real axis, functions in H−(Ps0) can be regarded as L2

boundary functions of functions that are holomorphic in Ps0 . Furthermore,
in [Nan08] Nannen showed that for s0 ∈ C,ℜ(s0) > 0 the Möbius transform
is an isomorphism connecting the function space H−(Ps0) and H

+(D).
These results allow us to identify functions in the Hardy Spaces H−(Ps0)

and H+(D) with their boundary functions in L2(Ps0) or L2(S1) respec-
tively. The connection that the Möbius transform forms between the func-
tion spaces H−(Ps0) and H

+(D) can be phrased as follows:

f ∈ H−(Ps0) → H+(D) ∋ (Ms0f)(s̃) := f
(
M−1

s0 (s̃)
) 1

s̃− 1
. (3.22)

We can now reformulate the pole condition from Definition 3.3 in terms of
the function spaces from Definition 3.4:

Definition 3.5.

Let s0 ∈ C with ℜ(s0) > 0. Then a solution to (3.1) is said to obey
the pole condition and is called outgoing if Ms0L{uext}(s̃), the Möbius
transform Ms0 of the holomorphic extension of the Laplace transform
of the exterior part, lies in H+(D).

We can use Equation (3.22) to define LD, the Laplace transform on the
unit disc D. Since this can be done in the same way for both uext,l and uext,r
we will give the formulation only for the right exterior domain.

LD{uext,r}(s̃) := (Ms0L{uext,r})(s̃) (3.23)

= L{uext,r}
(
M−1

s0 (s̃)
) 1

s̃− 1
.

Since we require the Laplace transform to be analytic in the unit disc, it can
be expanded into a power series, LD{uext}(s̃) =

∑∞
k=0 aks̃

k. Hence

L{uext,r}
(
M−1

s0 (s̃)
)
= (s̃− 1)

∞∑

k=0

aks̃
k. (3.24)
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The coefficients ak in Equation (3.24) contain the dependence on the para-
meter s0.

We will now describe the implementation of a transparent boundary
condition based on the pole condition within a finite element context. We
will describe the situation for the one-dimensional problem in some detail.
The discretization for higher space dimensions is typically done via Cartesian
products and will be detailed in the next sections.

As described in the derivation of Equations (3.13a)-(3.13c), we will use
ansatz functions that directly yield the Laplace transform in the exterior do-
main Ωext. These ansatz functions are called “boundary exp-elements” and
consist of the standard interior element coupled with a complex exponential
function that will result in a formulation of the Laplace transform in the
exterior. Such an element is sketched in Fig. 3.2 for a linear discretization
in the interior.

xr − h xr
x

Figure 3.2: Exp-element for the right hand side boundary with first order dis-
cretization in the interior.

The boundary exp-element test function for polynomial degree p = 1 in
the interior at the right artificial boundary xr is given by

ψ(r)
s (x) =

{
e−s(x−xr) : x ≥ xr,
x−(xr−h)

h : xr − h ≤ x ≤ xr.
(3.25)

The first line in Equations (3.25) is the exponential part, that for fixed
s gives the Laplace transform of uext,r. The second line is the interior part,
h is the mesh width in the interior.

The exp-element ψ
(r)
s (x) is not one function but a family of functions

parametrized by s ∈ C
+. They are globally continuous by definition and

their support is infinite: supp
(
ψ
(r)
x

)
= [xr − h,∞). By using ψs(x) as test

function in the variational formulation (3.5), we obtain

0 =

∫

R

∂xxu(x)ψs(x) + ω2n(x)2u(x)ψs(x)dx

Due to the definition of ψs(x) and assuming that n(x) ≡ ni for x ∈ [xr−h, xr]
and n(x) ≡ nr for x > xr, after integration by parts and neglecting zero
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boundary terms we obtain:

0 =

∫ xr

xr−h
−∂xuint(x)∂xψs(x) + ω2n2iuint(x)ψs(x)dx

+

∫ ∞

xr

−∂xuext,r(x)∂xψs(x) + ω2n2ruext,r(x)ψs(x)dx

⇔ 0 =−
∫ xr

xr−h
∂xuint(x)∂xψs(x) + ω2n2iuint(x)ψs(x)dx

+ sL{∂xuext,r}(s) + ω2n2rL{uext,r}(s)

⇔ 0 =−
∫ xr

xr−h
∂xuint(x)

1

h
dx+ ω2n2i

∫ xr

xr−h
uint(x)

x− (xr − h)

h
dx

+ s (sL{uext,r}(s)− uext,r(xr)) + ω2n2rL{uext,r}(s). (3.26)

The boundary Neumann terms occurring due to the integration by parts
are here given in weak form in the first integrals. We have now obtained
L{uext,r} but this does not yield a discrete formulation since we lack a
convenient orthonormal basis for H−(Ps0). To remedy this deficit, we will
make use of the continuity at xr and then transform Equation (3.26) to
H+(D) by applying (3.23) and inserting s̃ as defined in Equation (3.20):

0 =−
∫ xr

xr−h
∂xuint(x)

1

h
dx+ ω2n2i

∫ xr

xr−h
uint(x)

x− (xr − h)

h
dx

+s0
s̃+ 1

s̃− 1

(
s0
s̃+ 1

s̃− 1
(s̃− 1)LD{uext,r}(s̃)− uext,r(xr)

)

+ω2n2r(s̃− 1)LD{uext,r}(s̃). (3.27)

The next step is to insert a series expansion for LD{uext,r}(s̃). However, for
ease of implementation we will not use the direct power series approximation
from Equation (3.24) but reformulate it. To obtain an easy formulation for
the coupling of the transformed exterior to the interior problem, we take a
closer look at L{uext,l} and L{uext,r} by inserting their known form (3.4a)
and (3.4b) respectively:

L{uext,l,r}(s) =
uint(xl,r)

s− inl,rω

Ms0−−−→ LD{uext,l,r}(s̃) =
uint(xl,r)

s0(s̃+ 1)− inl,rω(s̃− 1)
.

(3.28)

If we would attempt to do a power series approximation of Equation (3.28),
the boundary degree of freedom uint(xl,r) would couple with each degree of
freedom in the exterior. In order to obtain a local coupling, we note that
LD{uext,l,r}(1) = uint(xl,r)/2s0. To take advantage of this fact, we now
decompose

LD{uext,l,r}(s̃) =
1

2s0

(
uint(xl,r) + (s̃− 1)

2s0LD{uext}(s̃)− uint(xl,r)

s̃− 1

)
.
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(3.29)

Inserting the series representation (3.24) and rescaling its coefficients

ãk =

{
2a0 − uint(xl,r) : k = 0

2s0ak : k ≥ 1

we have

LD{uext,l,r}(s̃) =
uint(xl,r)

2s0
+ (s̃− 1)

1

2s0

∞∑

k=0

ãks̃
k. (3.30)

Inserting (3.30) into Equation (3.27), we get for the right hand side boundary

0 =−
∫ xr

xr−h
∂xuint(x)

1

h
dx+

∫ xr

xr−h
uint(x)

x− (xr − h)

h
dx (3.31a)

+ uint(xr)
s0
2
(s̃+ 1) +

s0
2
(s̃+ 1)2

∞∑

k=0

ãks̃
k (3.31b)

+ ω2n2r

(
uint(xr)

1

2s0
(s̃− 1) +

1

2s0
(s̃− 1)2

∞∑

k=0

ãks̃
k

)
. (3.31c)

Equation (3.31a) is the weak form of the Neumann data at the right hand
side boundary of Ωint. Equation (3.31b) is the term the exp-element adds
to the mass matrix for the right hand side boundary of Ωint and Equa-
tion (3.31c) is the stiffness-term for the exp-element at the right hand side
boundary of Ωint. The interior and exterior solutions are coupled at the
right hand side boundary via uint(xr).

In order to obtain the local element matrix for the exp-element, we
sort (3.31a)-(3.31c) by powers of s̃ and compare coefficients:

s̃0 : 0 = −
∫ xr

xr−h
∂xuint(x)

1

h
dx+ ω2n2i

∫ xr

xr−h
uint(x)

x− (xr − h)

h
dx

+
s0
2
(uint(xr) + ã0)− ω2n2r

1

2s0
(uint(xr)− ã0) (3.32a)

s̃1 : 0 =
s0
2
(uint(xr) + 2ã0 + ã1)− ω2n2r

1

2s0
(−uint(xr) + 2ã0 − ã1)

(3.32b)

s̃k : 0 =
s0
2
(ãk−2 + 2ãk−1 + ãk)− ω2n2r

1

2s0
(−ãk−2 + 2ãk−1 − ãk)

k ≥ 2. (3.32c)

Collecting these degrees of freedom, we get the following local element ma-
trices for the exterior part of the infinite exp-element:

Aloc
ext = s0

1

2




1 1 0 · · ·
1 2 1 0 · · ·
0 1 2 1 0 · · ·

. . .
. . .

. . .
. . .


 (3.33)
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and

Bloc
ext = n2l,r

1

2s0




1 −1 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·

. . .
. . .

. . .
. . .


 . (3.34)

The first degree of freedom in these local element matrices is uint(xl,r) that
is common to the interior and the exterior solution and thus provides the
coupling. The integral terms occurring for s̃0 are the weak formulation of
the Neumann data and can be assembled together with the interior degrees
of freedom. For implementation we truncate the series approximation of
LD{uext}(s̃) by setting ãk = 0 for k ≥ L, making Aloc

ext and B
loc
ext finite:

LD{uext,l,r}(s̃) ≈
uint(xl,r)

2s0
+ (s̃− 1)

1

2s0

L∑

k=0

ãks̃
k.

Discretization of Ωint with normal finite elements yields a sparse eigen-
value problem with stiffness matrix Aint, mass matrix Bint and vector of
unknowns uint:

(
Aint − ω2Bint

)
uint = 0. (3.35)

Choosing linear ansatz and test functions for an element with length hk and
refractive index n(x) ≡ nk yields the well known local element matrices

Aloc
int =

1

hk

(
1 −1
−1 1

)
and Bloc

int =
n2khk
6

(
2 1
1 2

)
.

For higher order ansatz functions Φi, i = 1, ..., p of degree p − 1, the entries
in the p× p local element matrices are

Aloc
int,(i,j) =

∫

I
∂xΦi(x)∂xΦj(x)dx and Bloc

int,(i,j) =

∫

I
n(x)2Φj(x)Φi(x)dx.

Combining the degrees of freedom ãk in the exterior with the degrees of
freedom uint in the interior and collecting them into one vector of unknowns
u, we arrive at a generalized sparse eigenvalue problem

(A− ω2B)u = 0 (3.36)

where the matrices A and B have the structure as sketched in Fig. 3.3.
In order to insert the exterior degrees of freedom into the global matrices

A and B, we need a mapping P that maps the local degrees of freedom of
a component of the exterior domain to the global degrees of freedom. Let
u1, ...un be the interior degrees of freedom and N = n + 2L be the total
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A =

Aint

Aloc
ext,l

Aloc
ext,r

Figure 3.3: Structure for sparse matrix A for a one-dimensional Helmholtz reso-
nance problem discretized with linear finite elements in the interior
and the pole condition implemented with first order exp-elements on
both boundaries. B has the same structure with coupling in only one
interior degree of freedom.

number of degrees of freedom. Then P is a L×N matrix that has an entry
Pj,k = 1 if the j-th local degree of freedom is mapped to the k-th global
degree of freedom. The N ×N matrices P⊤Aloc

ext,lP , P
⊤Aloc

ext,rP , P
⊤Bloc

ext,lP

and P⊤Bloc
ext,rP are the contributions of the left and right exterior domain

to the global system matrices A and B. If we call the mapping for the left
hand exterior domain degrees of freedom Pl and the mapping for the right
hand exterior domain degrees of freedom Pr, we can collect only the exterior
degrees of freedom we get the exterior parts Aext and Bext of A and B by:

Aext = (P⊤
l A

loc
ext,lPl + P⊤

r A
loc
ext,rPr) (3.37)

=
s0
2
P⊤
l

s0
2




1 1 0 ...
1 2 1 ...
0 1 2 1

. . .
. . .

0 1 1



Pl

+P⊤
r

s0
2




1 1 0 ...
1 2 1 ...
0 1 2 1

. . .
. . .

0 1 1



Pr and
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Bext = (n2l P
⊤
l B

loc
ext,lPl + n2rP

⊤
r A

loc
ext,rPr) (3.38)

= P⊤
l

n2l
2s0




1 −1 0 ...
−1 2 −1 ...
0 −1 2 −1

. . .
. . .

0 −1 1



Pl

+P⊤
r

n2r
2s0




1 −1 0 ...
−1 2 −1 ...
0 −1 2 −1

. . .
. . .

0 −1 1



Pr.

3.4 Alternative Approach: Variational Formulation in

H
1(Ωint)×H

+(D)

An alternative approach to derive almost the same matrices was presented
in [HN09, NS11]. Since it will prove to be useful when generalizing to higher
space dimensions we will sketch its outlines here. In this approach, we aim
at achieving local coupling in Equation (3.28) in a different way than before.
This will not only yield a different approach to the same implementation but
also give a more formal derivation of the exterior local element matrices and
a variational formulation of the coupled problem including the interior and
the exterior part.

The first step in this ansatz is to formalize the decomposition used
in Equation (3.29) in order to obtain local coupling between the bound-
ary degrees of freedom and the exterior degrees of freedom. For this we
define an operator T(−) that carries out the decomposition LD{f}(s̃) =
1
s0
T(−)(f0, F )

⊤ with F (s̃) = 2s0LD{f}(s̃)−f0
s̃−1 and

T(−)

(
f0
F

)
:=

1

2
(f0 + (s̃− 1)F (s̃)) (3.39)

for (f0, F )
⊤ ∈ C×H+(D) where f0 is the boundary degree of freedom.

Next we will make use of the identity
∫ ∞

0
f(τ)g(τ)dτ =

−s0
π

∫

S1

LD{f}(z)LD{g}(z)|dz|. (3.40)

To prove this equality, f and g are extended by zero to f0, g0 : R → C.
Then the left hand side integral is rewritten as Fourier transform. Using
the properties of the Fourier transform and a suitable integration path, it is
transformed to an integral along s0R, the line connecting 0 and is0. Then
this transformed integral is mapped to S1 using the Möbius transform. A
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full formal proof can be found at [Nan08, Lemma 5.3] and [HN09, Lemma
A.1]. Substituting A(F,G) := 1

2π

∫
S1 F (z)G(z)|dz| for F,G ∈ H+(D) for

brevity, Equation (3.40) reads
∫ ∞

0
f(τ)g(τ)dτ = −2s0A(LD{f},LD{g}). (3.41)

This holds for uext and suitable test functions vext as well as for the deriva-
tives u′ext and v′ext. In order to obtain simple formulas for the derivatives
u′ext and v

′
ext, we again use the basic property of the Laplace transform

L{f ′}(s) = sL{f}(s)− f0. (3.42)

By applying the Möbius transform to Equation (3.42), we have

Ms0L{f ′}(s̃) = s0
s̃+ 1

s̃− 1
LD{f}(s̃)−

f0
s̃− 1

=
1

2
(f0 + (s̃+ 1)F (s̃)) with F (s̃) =

2s0LD{f}(s̃)− f0
s̃− 1

=: T(+)

(
f0
F

)
(3.43)

Now we are able to deduce from the variational formulation (3.5) and the
identity (3.41) a variational formulation in H1(Ωint)×H+(D):

B

((
uint
U

)
,

(
vint
V

))
= 0 (3.44)

with

B

((
uint
U

)
,

(
vint
V

))
:=

∫

Ωint

u′int(x)v
′
int(x)− n(x)2ω2uint(x)vint(x)dx

−2s0A

(
T(+)

(
u0
U

)
,T(+)

(
v0
V

))
− 2n2ω2

s0
A

(
T(−)

(
u0
U

)
,T(−)

(
v0
V

))
.

Equation (3.44) is a variational formulation for (uint, U)⊤ ∈ H1(Ωint)×
H+(D) where H1(Ωint) is the Sobolev space of weakly differentiable func-
tions in Ωint. For the trigonometric monomials tk(z) := exp(ikz), A(tj , tk) =
δj,k. Thus, the implementation of the exterior part of B is reduced to the
implementation of the two operators T+ and T(−) : C×H+(D) → H+(D).

If the ansatz space {t0, t1, ..., tL} is used for H+(D), these operators can
be discretized by two matrices:

T ±
L :=

1

2




1 ±1
1 ±1

. . .
. . .

1 ±1
1



. (3.45)
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The implementation of
∫∞
xr
∂xuext(x)∂xvext(x)dx is then done by the sim-

ple matrix matrix multiplication 2s0T (+)⊤
L T (+)

L and the implementation of∫∞
xr
uext(x)vext(x)dx can be rephrased as 2

s0
T (−)⊤
L T (−)

L . These matrices are

easily verified to correspond to Aloc
ext and B

loc
ext that were derived in the previ-

ous section. However it will be useful in the next section to have the discrete
correspondence of T (−)

L to LD{uext}(s̃) and of T (+)
L to LD{∂xf}(s̃).

In terms of T ±
L , we can rewrite the equations for the exterior degrees of

freedom, Equation (3.37) and Equation (3.38) as

Aext = 2s0P
⊤
l (T (+)⊤

L T (+)
L )Pl + 2s0P

⊤
r (T (+)⊤

L T (+)
L )Pr and (3.46)

Bext =
2n2l
s0

P⊤
l (T (−)⊤

L T (−)
L )Pl +

2n2r
s0

P⊤
r (T (−)⊤

L T (−)
L )Pr. (3.47)

As before Pl and Pr are L×N matrices mapping the local degrees of freedom
for the exterior domain to the global degrees of freedom.

3.5 Generalization to Higher Space Dimensions

In the following section we aim at generalizing the concept we derived and
implemented for the one-dimensional case so far in higher space dimensions.
We will derive the implementation for the two dimensional case. The steps
towards such an implementation are:

1. Subdivide the exterior domain Ωext into trapezoids that have one edge
on Γ, the boundary of Ωint and one edge infinitely far from it,

2. Map these trapezoids onto a reference strip, to obtain a coordinate
transform,

3. Transform the variational formulation into the new coordinates,

4. Decouple the equations on the reference strip to obtain bounded in-
tegrals in the coordinate alongside the boundary of Ωint and infinite
integrals in the normal direction,

5. Treat bounded integrals with standard quadrature formulas,

6. Transform infinite integrals to H+(D) and use same discretization as
in the one-dimensional case.

The mapping onto the reference rectangle in step 2 will give us coordinates
(ξ, η), where ξ acts as a distance variable that measures the distance in the
outward normal direction of Ωint. Using this mapping we can transform the
integrals in the variational formulation of our equation on a trapezoid onto
a semi-infinite reference rectangle [0, 1]× [0,∞). Using Fubini’s theorem, we
can decouple the integrals on the reference strip in step 4. However, after
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decoupling the infinite integrals will contain multiplication with the integra-
tion variable ξ alongside the test and ansatz functions and their gradients
in the integrand. This is a situation that was not covered before and makes
step 6 more involved than the one-dimensional equivalent. It necessitates
the definition of a new operator D which we will derive at the end of this
section. Together with the operators T(+) and T(−) from the previous sec-
tion, we will then be able to express all the integral expressions that appear
in our formulation. We will also give the discrete form DL of D when us-

ing the trigonometric monomials as basis for H+(D). Together with T (+)
L

and T (−)
L defined in the previous section, this will enable us to discretize all

the integrals occurring in the two-dimensional implementation of the pole
condition.

As described by Ruprecht et al. [RSSZ08] and Nannen and Schädle [NS11],
the basic idea for an implementation in higher space dimensions is to use
tensor product elements. Equation (3.1) for higher space dimensions takes
the form

∆u(x) + n(x)2ω2u(x) = 0 for x ∈ Ω (3.48)

where Ω ⊆ R
n, n ∈ {2, 3}. Again, Ω is assumed to be unbounded and we

divide the domain of interest into a bounded interior Ωint and an unbounded
exterior part Ωext. Our approach is to assume a standard boundary condi-
tion at ∂Ω and the pole condition as radiation condition for the generalized
radial part of u. In [HN09] Hohage and Nannen used a ball Bρ with radius ρ
to split Ω into a bounded interior Ωint := Bρ∩Ω and a spherical unbounded
exterior Ωext := R

n\Bρ. By transformation to polar coordinates, they could
split the exterior part into the unbounded radial direction and the bounded
surface direction. Then they applied the one-dimensional Hardy Space In-
finite Element approach in the unbounded direction handled the bounded
surface direction with standard finite elements.

The approach used here works without the restriction to spherical ex-
terior domains. Instead an arbitrary convex polygon P is used to split the
domain into Ωint := Ω ∩ P and Ωext := Ω\P . Ωint and Ωext share the
common boundary Γ := ∂P . While in the interior, H1(Ωint) is treated
with standard finite elements, we apply a segmentation of Ωext into infi-
nite trapezoids in the two-dimensional case and infinite prismatoids in the
three-dimensional case, see Fig. 3.4. In order for such a segmentation to be
valid, we require n(x) to be constant within each trapezoid or prismatoid.
See [Ket06, KS08, Sch02] for details on obtaining such a segmentation. We
will stick to the two-dimensional case in the following paragraphs.

For the implementation we first need an affine bilinear mapping between
a reference strip and each trapezoid, see Fig. 3.5. This mapping is a com-
position of three mappings, a transformation T : (ξ, η) → (x, y) that takes
the reference strip to the right coordinate system, stretches and distorts
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ξ1

1

η

Ωint

S ◦R ◦ T

Figure 3.4: Discretization of the exterior with trapezoids. The dashed line is the
image of the line ξ = 1 under the mapping (R ◦ T ).

it appropriately. T is followed by a rotation R around (0, 0) and a shift
S : (x, y) → (x, y) + P1.

x

x

yy

ξ

η

hξ

hη

ab

TS ◦R

P1

P2

P3

P4

P 1 P 2

P 3P 4

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure 3.5: Mapping of the reference strip to a trapezoid. We have T (0, 0) = P 1,
T (0, 1) = P 2, T (1, 0) = P 4 and T (1, 1) = P 3 and R(P i) = Pi for
i = 1, ..., 4.

Given the points of a trapezoid T in our discretization Pi = (xi, yi) for
i = 1, ..., 4, we can compute hη := ‖P2 − P1‖2 =

√
(x2 − x1)2 + (y2 − y1)2.

Geometric calculations yield a := (P4 − P3)(P2 − P3)
⊤/‖P4 − P3‖2 and

b := (P3 − P4)(P1 − P4)
⊤/‖P4 − P3‖2 and hξ =

√
‖P3 − P2‖22 − a2. Hence,

the first mapping T is given by

(x, y) = T (ξ, η) =

(
hηη − bξ + (a+ b)ξη

hξξ

)
. (3.49)

It is noteworthy that a and b are signed distance variables. ξ will be used as
a generalized radial variable whereas η plays the role of the surface variable
on Γ. For our implementation to inherit the continuity of the solution in
the exterior domain, it is important, that the radial variable ξ on a ray of
the segmentation is independent of the neighboring infinite elements. That
is why we use a trapezoidal construction so that ξ is constant on parallels
to the segments of Γ. The rotation is given by

R :=
1

‖P2 − P1‖

(
x2 − x1 y2 − y1
y2 − y1 x1 − x2

)
. (3.50)

B. Kettner 35



3.5. GENERALIZATION TO HIGHER SPACE DIMENSIONS

Hence, the entire mapping is given by

(x, y) = (S ◦R ◦ T )(ξ, η) (3.51)

=
1

‖P2 − P1‖

(
x2 − x1 y1 − y2
y2 − y1 x2 − x1

)(
hηη − bξ + (a+ b)ξη

hξξ

)
+

(
x1
y1

)
.

The Jacobi matrix J of (3.51) and its determinant are

J =

(
hη + (a+ b)ξ −b+ (a+ b)η

0 hξ

)
, |J | = hξ(hη + (a+ b)ξ). (3.52)

Its inverse is

J−1 =

(
1

hη+(a+b)ξ
b−(a+b)η

hξ(hη+ξ(a+b))

0 1
hξ

)
(3.53)

We are now in a position to derive a suitable variational formulation of the
exterior part of our problem. First we will transform the integrals over T
onto the reference rectangle. On T the integrals read:

∫

T
(∇u(x, y)) · (∇v(x, y)) d(x, y)+ω2

∫

T
n(x, y)2u(x, y)v(x, y)d(x, y) = 0

Transforming to the reference rectangle, the test and ansatz function and
refractive index transform as follows: v(x, y) → v̂(ξ, η), u(x, y) → û(ξ, η)
and n(x, y) → n̂(ξ, η). Thus, the transformed integral terms read

∫

T
(∇u(x, y)) · (∇v(x, y)) d(x, y) (3.54)

=

∫

[0,1]×[0,∞)

(
J−⊤∇û(ξ, η)

)
·
(
J−⊤∇v̂(ξ, η)

)
|J |d(ξ, η) and

∫

T
n(x, y)2u(x, y)v(x, y)d(x, y) (3.55)

=

∫

[0,1]×[0,∞)
n̂(ξ, η)2û(ξ, η)v̂(ξ, η)|J |d(ξ, η).

Since we assume n(x, y) ≡ ni to be constant in each trapezoid Ti, we can
remove n(x, y) and n̂(ξ, η) from the integrals in (3.55):

n2i

∫

T
u(x, y)v(x, y)d(x, y) = n2i

∫

[0,1]×[0,∞)
û(ξ, η)v̂(ξ, η)|J(ξ)|d(ξ, η). (3.56)

If we choose û(ξ, η) and v̂(ξ, η) so that we can factorize û(ξ, η) = ûξ(ξ)ûη(η)
and v̂(ξ, η) = v̂ξ(ξ)v̂η(η), then the integrals over the trapezoids decouple to
independent integrals over ξ and η. Suppose that the interior Ωint is already
discretized with standard finite elements. Then the integrals alongside Γ,
that is the bounded η-integrals, can be discretized using the traces of the
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finite element basis functions in Ωint on Γ as basis functions. If we build
the elements for each infinite trapezoid by forming a tensor product of the
finite element space formed by the traces of the interior elements and the
trigonometric monomials as basis for the Hardy space in ξ-direction, then
for the combined basis functions the integrals decouple.

Since the determinant |J | is independent of η, by Fubini’s theorem, Equa-
tion (3.56) becomes

n2i

∫

T
u(x, y)v(x, y)d(x, y) = n2i

(∫ 1

0
ûη(η)v̂η(η)dη

)(∫ ∞

0
ûξ(ξ)v̂ξ(ξ)|J |dξ

)
.

(3.57)

Due to the presence of J−⊤, the situation for Equation (3.54) is more
involved. Inserting the definitions of J and the factorization of u and v
yields

∫

T
(∇u(x, y)) · (∇v(x, y)) d(x, y) (3.58)

=

(∫ 1

0
û′η(η)(h

2
ξ + (b− (a+ b)η)2)v̂′η(η)dη

)(∫ ∞

0

ûξ(ξ)v̂ξ(ξ)

hξ(hη + (a+ b)ξ)
dξ

)

+

(∫ 1

0
û′η(η)

b− (a+ b)η

hξ
v̂η(η)dη

)(∫ ∞

0
ûξ(ξ)v̂

′
ξ(ξ)dξ

)

+

(∫ 1

0
ûη(η)

b− (a+ b)η

hξ
v̂′η(η)dη

)(∫ ∞

0
û′ξ(ξ)v̂ξ(ξ)dξ

)

+

(∫ 1

0
ûη(η)v̂η(η)dη

)(∫ ∞

0
û′ξ(ξ)

hη + (a+ b)ξ

hξ
v̂′ξ(ξ)dξ

)
.

For the time being we will just take the finite integrals as given and refer
to the papers cited in Remark 3.1 (2) for more details on the implementation.
So we take the discretization of the finite integrals to be given and result in
matrices T ext

loc,i,1 to T ext
loc,i,5 in order of their appearance in Equations (3.57)

and (3.58):

∫ 1

0
ûη(η)v̂η(η)dη ≈ T ext

loc,i,1, (3.59a)

∫ 1

0
û′η(η)(h

2
ξ + (b− (a+ b)η)2)v̂′η(η)dη ≈ T ext

loc,i,2, (3.59b)

∫ 1

0
û′η(η)

b − (a+ b)η

hξ
v̂η(η)dη ≈ T ext

loc,i,3, (3.59c)

∫ 1

0
ûη(η)

b − (a+ b)η

hξ
v̂′η(η)dη ≈ T ext

loc,i,4 and (3.59d)

∫ 1

0
ûη(η)v̂η(η)dη ≈ T ext

loc,i,5. (3.59e)
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We will now tackle the infinite ξ-integrals by transforming them to the Hardy
space H+(D) using the techniques presented in the previous section. How-
ever, two of these integrals contain factors (ξ+ c) and (ξ+ c)−1 for constant
c > 0 that appear in the integrands. These factors are new in the higher-
dimensional implementation and have to be dealt with separately. The next
section will sketch a way to discretize the integrals containing these factors.

Including the argument s of f(s) for clarity, we know from the basic
properties of the Laplace transform that L{sf(s)}(s̃) = −(L{f(s)})′(s̃) and
L
{

f(s)
s

}
(s̃) =

∫∞
0 L{f}(σ)dσ. Using these properties, we can derive an

operator D : H+(D) → H+(D) for the factor ξ in Equation (3.58). Taking
the equations to H+(D), we can implicitly define the operator D by

D (Ms0L{f}) (s̃) = Ms0(−(L{f})′)(s̃) = Ms0L{sf}(s̃). (3.60)

For F ∈ H+(D), we can compute

(DF )(s̃) =
(s̃− 1)2

2s0
F ′(s̃) +

s̃− 1

2s0
F (s̃). (3.61)

As in the one-dimensional case, we use the trigonometric monomials tk(z) :=
exp(ikz) up to order L as basis of H+(D) then DL, the discrete form of D
reads 1

2s0
DL with the matrix

DL :=




−1 1
1 −3 2

2 −5 3
. . .

. . .
. . .

L −2L− 1



. (3.62)

A factor (ξ+c)f̂(ξ) in the integrand thus corresponds to the discrete ( 1
2s0

DL+

c id)(LD{f}). For the factors (ξ + c)−1, we use the fact that they are the

inverse of (ξ+c), hence they can be discretized as
(

1
2s0

DL + c id
)−1

(LD{f}).
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We are now in a position to give the matrices that are the discrete
implementations of the infinite ξ-integrals in (3.57) and (3.58):

∫ ∞

0
ûξ(ξ)v̂ξ(ξ)|J |dξ =

∫ ∞

0
ûξ(ξ)v̂ξ(ξ)hξ(hη + (a+ b)ξ)dξ

≈ −2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (−)
L ,

∫ ∞

0

ûξ(ξ)v̂ξ(ξ)

hξ(hη + (a+ b)ξ)
dξ ≈ − 2

s0hξ
T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)−1

T (−)
L ,

∫ ∞

0
ûξ(ξ)v̂

′
ξ(ξ)dξ ≈ −2T (−)⊤

L T (+)
L ,

∫ ∞

0
û′ξ(ξ)v̂ξ(ξ)dξ ≈ −2T (+)⊤

L T (−)
L and

∫ ∞

0
û′ξ(ξ)

hη + (a+ b)ξ

hξ
v̂′ξ(ξ)dξ ≈ −2s0

hξ
T (+)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (+)
L .

Thus, on the ith prismatoid Ti, we have the following local stiffness
matrix Aext

loc,i and mass matrix Bext
loc,i:

Aext
loc,i := T ext

loc,i,2 ⊗
[
−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)−1

T (−)
L

]
(3.63)

+T ext
loc,i,3 ⊗

[
(−2)T (−)⊤

L T (−)
L

]

+T ext
loc,i,4 ⊗

[
(−2)T (+)⊤

L T (+)
L

]

+T ext
loc,i,5 ⊗

[−2s0
hξ

T (+)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (+)
L

]
and

Bext
loc,i := n2iT

ext
loc,i,1 ⊗

[−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (−)
L

]
. (3.64)

However, the inverse (DL+ c id)−1 gives a full block and thus a full local
stiffness matrix. Thus it may be reasonable to avoid inverting (DL + c id).
We can do so by choosing to double the number of unknowns by the following
scheme where it is suitable:

(M1 + F1M
−1
2 F2)u = 0 ⇔ F−1

1 M1u+M−1
2 F2u = 0

⇔ F−1
1 M1u+ w = 0 ∧ w =M−1

2 F2u

⇔M1u+ F1w = 0 ∧ F−1
2 M2w = u

⇔M1u+ F1w = 0 ∧ F2u−M2w = 0

⇔
(
M1 F1

F2 −M2

)(
u
w

)
= 0 (3.65)
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This will result in local element matrices for the infinite Hardy space el-
ements that do not have full blocks but a higher structure instead (see
Figure 3.6). Now we rename the components required to give the full local
stiffness and mass matrices for the infinite trapezoid arising from the infinite
ξ-integrals according to their order or appearance:

N ext
loc,i,1 = −2hξhη

s0
T (−)⊤
L T (−)

L − hξ(a+ b)

s20
T (−)⊤
L DLT (−)

L ,

N ext
loc,i,2 = −hη id+

a+ b

2s0
DL,

N ext
loc,i,3 = −2T (−)⊤

L T (+)
L ,

N ext
loc,i,4 = −2T (+)⊤

L T (−)
L , and

N ext
loc,i,5 = −2s0hη

hξ
T (+)⊤
L T (+)

L − a+ b

hξ
T (+)⊤
L DLT (+)

L .

Putting these parts together and multiplying with the matrices for the
tangential part T ext

loc,i,1, ..., T
ext
loc,i,5, the matrixM1 in Equation (3.65) becomes

Aext
loc,i,1 := T ext

loc,i,5 ⊗ N ext
loc,i,5 + T ext

loc,i,4 ⊗ N ext
loc,i,4 + T ext

loc,i,3 ⊗ N ext
loc,i,3 and M2

corresponds to 2N ext
loc,i,2 while the factors F1 and F2 are −2T ext

loc,i,1 ⊗ T − and

T −. The local element matrices for the infinite part of the i-th trapezoid
therefore read

Aext
loc,i =

(
Aext

loc,i,1 −2T ext
loc,i,1 ⊗ T (−)⊤

L

2T (−)
L −2N ext

loc,i,2

)
and

Bex
loc,i = n2i

(
T ext
loc.i,1 ⊗Nloc,i,1 0

0 0

)

where ni is the refractive index in the i-th trapezoid.

Since the Kronecker product is bilinear and associative, that is A⊗ (B+
kC) = A⊗B+ k(A⊗C), it is possible to sort Aext

loc,i and B
ext
loc,i by powers of
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s0.

Aext
loc,i = s0

2hη
hξ

(
(T (+)⊤

L T (+)
L )⊗ T ext

loc,i,5 0

0 0

)
(3.66)

+
1

s0
(a+ b)

(
0 0
0 −DL

)

+




−2
(
(T (−)⊤

L T (+)
L )⊗ T ext

loc,i,3 −2T ext
loc,i,1 ⊗ T (−)⊤

L
+(T (+)⊤

L T (−)
L )⊗ T ext

loc,i,4

)

2T (−)
L 2hη id




=: s0A
ext,(1)
loc,i +

1

s0
A

ext,(−1)
loc,i +A

ext,(0)
loc,i and

Bext
loc,i = n2i

1

s0

2hξ
hη

(
T (−)⊤
L T (−)

L ⊗ T ext
loc,i,1 0

0 0

)
(3.67)

+n2i
1

s20
hξ(a+ b)

(
T (−)⊤
L DLT (−)

L ⊗ T ext
loc,i,1 0

0 0

)

=: n2i
1

s0
B

ext,(−1)
loc,i + n2i

1

s20
B

ext,(−2)
loc,i .

If, as in the previous sections, Pi denotes the L by N matrix mapping
the local degrees of freedom to global degrees of freedom, we obtain the
exterior part Aext and Bext of the matrices A and B by summing over all
trapezoids:

Aext =
∑

Ti

P⊤
i A

ext
loc,iPi and (3.68)

Bext =
∑

Ti

P⊤
i B

ext
loc,iPi. (3.69)

Remark 3.1.

1. Since each segment in Ωext is treated separately, it is possible to
account for unbounded inhomogeneities such as waveguides. This
does not require any further implementation but can be dealt with
by the methods presented here.

2. The exact statement of the tensor product spaces and the right
test functions are quite technical and can be found in great detail
in [HN09] and [Nan08].
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Figure 3.6: Structure of local stiffness matrix Aext

loc,i (left) and local mass matrix

Bext

loc,i (right) for one trapezoid with L = 17.

Figure 3.7: Structure of global stiffness matrix A (left) and global mass matrix
B (right) for a two-dimensional problem with N = 3578 degrees of
freedom.
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Chapter 4

Spurious Solutions

In this chapter we will discuss the unphysical and thus unwanted spurious
solutions that pollute the numerical solutions of resonance problems. In
the first section we will give a brief overview of different types of spurious
solutions and the means that were found useful for avoiding them in the
case of resonators with Neumann boundaries. The second section will deal
with the issue of spurious solutions occurring when computing the spectra
of resonators in open space.

Finite element solutions of resonance problems for various equations have
the problem that due to discretization errors there exist solutions in the
discrete setting that do not correspond to a physically sensible solution of
the problem but are still within the spectral region of interest, sometimes
very close to the physically relevant solutions. That these spurious solutions
which are frequently branded “notorious”, are an issue to be treated can be
seen by the fact, that since their first mentioning in the late 1970ies, there
have been thousands of papers published mentioning them. 1 It is important
to distinguish between two different types of spurious solutions:

1. Spurious solutions in the interior, that also exist when computing
closed cavities. These solutions were historically the first to be dis-
covered and can be overcome by using the “correct” finite elements
for the discretization of the problem. They are an important issue but
to be distinguished from the second type of spurious solutions that we
aim at. Section 4.1 gives a brief overview of the first type of spurious
solutions and ways to avoid them.

2. Spurious solutions in the exterior. Since we are interested in comput-
ing solutions for open resonators, we couple an infinite exterior domain
to our interior problem and since we discretize this exterior domain

1The ISI-Database finds 1094 papers whose titles mention “spurious solutions” at the
beginning of 2012. This does not include equivalent formulations such as “vector para-
sites”, “spectral convergence” etc. so the actual number is even higher.
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with a finite number of degrees of freedom, there will always be so-
lutions where the discretization in the exterior is not sufficient which
will give rise to unphysical solutions. These unphysical solutions are
the spurious solutions, we aim at. We will shed some light on their
occurrence in Section 4.2

It should be noted that the problem of the first type of spurious solutions
is not exclusive to the finite element method, but was also reported in the
context of the finite difference method [CD72, SB84, Su85], the boundary
element method [GS77, SSA92] and the spectral method [FA76], however
since we apply the finite element method, we will focus on its spurious
solutions in the following section.

4.1 Spurious Solutions in Closed Cavities

Literature on spurious solutions of resonance problems is manifold as the
problem has always been a serious handicap for the simulation of electro-
magnetic resonators. The first steps towards the treatment of unwanted spu-
rious solutions dealt with resonance problems with closed resonators [PL91,
SMYC95, CHC99, BFGP99, BBG00, CFR01a, FR02b]. That is with prob-
lems having a perfectly conducting electric boundary in the electromagnetic
case or, mathematically speaking, having Neumann boundary conditions on
each boundary.

Early attempts at computing numerical approximations of resonance
problems, that is of computing approximations of frequencies and fields
of cavity resonators, showed very soon that the solutions of finite element
models that seemed reasonable were affected by solutions that lacked any
physical meaning. These solutions were dubbed spurious solutions [CS70,
DFP82, HWFK83, PCS88].

The severe drawback that the pollution of the eigenvalue spectra with
these unphysical spurious solutions presented, was overcome by the intro-
duction of specific finite elements and meshes [Bos90, Bos88, LSC91, Cen91,
CSJ88, DLW94, WC88]. From a practical viewpoint these special elements
and meshes offered solutions to the problems of spurious solutions in closed
cavities, however from a mathematical point of view the reasons for their
success was often given wrongly [CSJ88, WC88, FS92, WI91], as proved
in [DLW94, FS92, CFR95, CFR96, CFR97, BFLP99].

The mathematical theory for the convergence of finite element approx-
imations of resonance problems is highly involved and beyond the scope of
this work (see [Mon03, MD01, CFR01a, BFLP99, Bof01]). However, we
will briefly outline the generally accepted reason for spurious solutions in
the simulation of closed cavities and ways of avoiding them in the following
paragraphs.
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It was possible to consider the question of spurious solutions solved
from an users point of view when Nédélec introduced a new family of fi-
nite elements which also became known as edge elements [Néd80]. Even
though there were clear indications that the edge elements resolved the is-
sue of spurious solutions in the simulation of the electromagnetic fields in
closed cavities, a correct explanation of that behavior was only given much
later [CFR01b, FR02a].

For this explanation, Caorsi et al. defined an approximation to be
spurious-free, if it satisfies five conditions:

1. Completeness of the spectrum: For any eigenvalue ω of the original
problem we can find a sequence of approximated eigenvalues {ωh}
such that ωh → ω as h→ 0.

2. Non-pollution of the spectrum: For any bounded sequence {ωh}, the
distance of ωh from the exact spectrum vanishes as h→ 0.

3. Completeness of the eigenspace: For any eigenvector u of the original
problem we can find a sequence of approximated eigenvectors {uh}
such that uh → u as h→ 0.

4. Non-pollution of the eigenspaces: No sequence {uh} that consists of
normalized numerical eigenvectors corresponding to a bounded se-
quence of numerical eigenvalues can have a non-vanishing distance
from the union of all eigenspaces of the original problem.

5. No sequence of strictly positive eigenvalues {ωh}, ωh > 0 ∀h can
converge to ω = 0.

Given the function spaces V = H0(curl,Ω) := {v ∈ L2(Ω) : ∇ × v ∈
L2(Ω), n × v = 0 on Γ}, V0 := {v ∈ V : ∇ × v = 0} and V1 := {v ∈
V : ∇ · v = 0}, they found that there are three conditions on a sequence of
finite element spaces {Vh} generated on a regular family of triangulations
that make for a spurious-free approximation of a resonance:

1. “Completeness of the approximating subspace”:

∀v ∈ V : lim
h→0

‖v − vh‖V = 0,

2. “Completeness of the discrete kernel”:

∀v ∈ V0 : lim
h→0

inf
vh∈V0h

‖v − vh‖V = 0

and
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3. “Discrete compactness property”: Any sequence {vh} such that vh ∈
V1h, ‖vh‖V ≤ C ∀h contains a sub-sequence {uh} such that

∃v ∈ L2(Ω) : lim
h→0

‖uh − v‖L2 = 0.

These conditions contain the classical approximation condition 1 and the
“divergence free” condition (i.e. condition 2) that was often postulated
as sole condition for spurious-free approximation of resonances. However,
Caorsi et al. went beyond these classical conditions by introducing the third
condition and proved that all three conditions are necessary and sufficient
for an approximation of the resonances of a closed cavity to be spurious-
free [CFR01a, FR02a]. We will see in the next section that taking into
consideration open resonators with non perfectly conducting boundaries in-
troduces a new type of spurious solutions caused by the approximation in-
troduced by the necessary transparent boundary conditions.

4.2 Spurious Solutions in Open Resonators

When open resonators are taken into account, a second type of spurious
solution enters the stage. This second type of spurious solutions is caused
by the discretization of the exterior domain, as we will see later in this
section. The outline of this section is as follows: first we will introduce a
simple one-dimensional example that we can tackle analytically. Then we
will couple two different types of transparent boundary conditions, the per-
fectly matched layer method and the pole condition, to the analytic solution
in the interior which will show us, that both methods introduce spurious so-
lutions when the infinite exterior domain is discretized with a finite number
of degrees of freedom.

The issue of spurious solutions caused by transparent boundary condi-
tions was already addressed in the diploma thesis of M. Rechberger [Rec05].
Based on the observation that there are spurious solutions in open resonators
that are caused by the transparent boundary conditions, she aimed at identi-
fying these spurious solutions by computing their sensitivity towards changes
of the transparent boundary condition. She found that the sensitivity to-
wards the damping in the perfectly matched layers (PML) is not sufficient
as a criterion for the detection of spurious solutions and therefore used a
combination of the PML and a wave factorization in the exterior. For the
wave factorization, Rechberger factorized the outgoing wave into an expo-
nential term exp(iω|x|) and a term ũ. She combined both methods by first
factorizing the solution and then applying a PML for damping the radial
exponential term of the resulting problem. They found that by combining
both methods they were able to distinguish physical from spurious solutions
for several model problems in acoustics. The downside of this approach
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however is, that in the formulation given in [Rec05] it does not account for
heterogeneous exterior domains and requires special tuning for each prob-
lem. Both of these downsides are not present in the method for detecting
spurious solutions that we will present in Chapter 5.

Further attempts towards the detection of spurious solutions caused by
the boundary conditions were undertaken by Tischler et. al [Tis03, TH00].
They derived a criterion they called ”PPP (Power Part in PML) criterion“
that relates the energy flux in the PML layer to the energy flux of the free
field. The downside of this criterion is that it will only work if the energy
flux of the exterior domain can be directly computed and is very sensitive
towards the material composition in Ωext.

Before deriving our way of detecting this second type of spurious solu-
tions in the next chapter, we will make their existence plausible by investi-
gating thoroughly the following simple example.

Example 4.1.

We want to solve the Helmholtz resonance problem in one space di-
mension. As layout for our first example, we will use a symmetric one-
dimensional cavity layout. The cavity consists of an area with refractive
index ni that stretches from xl = −1 to xr = 1 is embedded in a mate-
rial with lower refractive index ne < ni. The layout of this example is
sketched in Figure 4.1.

n(x)

x

ni

ne ne

xl xr

ΩiΩext,l Ωext,r

Figure 4.1: One-dimensional cavity layout.
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Solution with Special Functions

We will now give an analytic solution for Example 4.1 using our knowledge
of the special form of the solution in the interior and the exterior. We
know that time-harmonic solutions to Equation (3.1) are superpositions of
waves uint,1,2(x) = c exp(±iωn(x)x) and that the solutions in the exterior
are supposed to be outgoing, hence uext,l(x) = exp(−iωnex) for x < xl and
uext,r(x) = exp(iωnex) for x > xr. Since the solutions themselves as well
as their derivatives have to be continuous at xl and xr, we can derive the
following system of equations which has to hold for a solution:

γuext,l(xl) = αuint,1(xl) + βuint,2(xl) (4.1a)

δuext,r(xr) = αuint,1(xr) + βuint,2(xr) (4.1b)

γ
d

dx
uext,l(xl) = α

d

dx
uint,1(xl) + β

d

dx
uint,2(xl) (4.1c)

δ
d

dx
uext,r(xr) = α

d

dx
uint,1(xr) + β

d

dx
uint,2(xr). (4.1d)

Equations (4.1a) and (4.1b) guarantee the continuity of the solution at
xl and xr and Equations (4.1c) and (4.1d) guarantee the continuity of the
derivatives. The parameters α, β, γ and δ need to be determined. Inserting
our known solutions uext,l,r and uint,1,2, we have

γe−iωnexl = αe−iωnixl + βeiωnixl (4.2a)

δeiωnexr = αe−iωnixr + βeiωnixr (4.2b)

−iωneγe−iωnexl = −iωniαe−iωnixl + iωniβe
iωnixl (4.2c)

iωneδe
iωnexr = −iωniαe−iωnixr + iωniβe

iωnixr . (4.2d)

We seek non-trivial solutions of the linear system of equations (4.2a)-(4.2d).
The existence of these solutions is dependent on the values of ω. Values
for which we may find such non-trivial solutions are the resonances of the
system. Without restriction of generality we can assume our problem to be
axially symmetric with respect to x = 0 and xl = −xr, we also seek for
symmetric solutions, that is either α = β and γ = δ or α = −β and γ = −δ.
We may tackle this problem by taking the coefficient matrix of the system
of equations to be dependent of ω. Non-trivial solutions to the system of
equations exist, if the determinant of the coefficient matrix is zero. For the
first type of symmetry, the coefficient matrix reads

M+
sym(ω) =

(
eiωnixr + e−iωnixr −eiωnexr

−iωni(e−iωnixr − eiωnixr) −iωneeiωnexr

)
, (4.3)

in the second case we have

M−
sym(ω) =

(
eiωnixr − e−iωnixr −eiωnexr

−iωni(eiωnixr + e−iωnixr) iωnee
iωnexr

)
. (4.4)

Now we can compute the values ω for which the system has a solution:
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Lemma 4.1.

In the symmetric case, the resonance frequencies, that is the values ω for
which the system of Equations (4.2a)-(4.2d) has a non-trivial solution,
all have the same imaginary part and are equidistantly distributed in the
direction of the real axis.

Proof.
Setting a := ni+ne and b := ni−ne the determinants of (4.3) and (4.4)
read:

det(M+
sym(ω)) = iωbeiωaxr − iωae−iωbxr

det(M−
sym(ω)) = −iωbeiωaxr − iωae−iωbxr .

We want to equate both determinants to zero. Since we are looking for
nontrivial solutions, ω 6= 0, we may cancel the iω factors and have:

det(M+
sym(ω)) = 0

⇔ b
ae

iℜ(ω)(a+b)xr−ℑ(ω)(a+b)xr = 1 and (4.5)

det(M−
sym(ω)) = 0

⇔ − b
ae

iℜ(ω)(a+b)xr−ℑ(ω)(a+b)xr = 1. (4.6)

From |eiℜ(ω)(a+b)xr | = 1 and (4.5) we can deduct

b
ae

−ℑ(ω)(a+b)xr = 1

⇒ ℑ(ω) = − 1

(a+ b)xr
ln
(a
b

)

= − 1

2nixr
ln

(
ni + ne
ni − ne

)
. (4.7)

The same argumentation holds for (4.6). We have shown that all val-
ues ω for which (4.2a)-(4.2d) has a non-trivial solution have the same
imaginary part. Inserting ℑ(ω) into (4.5), we obtain for ℜ(ω):

eiℜ(ω)a = e−iℜ(ω)b

⇒ ℜ(ω) =
2kπ

(a+ b)xr
, k ∈ N

=
2kπ

2nixr
. (4.8)

From (4.6) we obtain by the same argumentation

ℜ(ω) =
(2k + 1)π

(a+ b)xr
, k ∈ N

=
(2k + 1)π

2nixr
. (4.9)
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Putting together (4.8) and (4.9) yields

ℜ(ω) = kπ

2nixr
, k ∈ N. (4.10)

Remark 4.1.

1. The real part ℜ(ω) is what could be expected from physical reason-
ing. At resonance we expect an integer number of half wavelengths,
wl
2 , inside a cavity of length l. Hence we have kwl

2 = l for k ∈ N

which means wl = 2l
k . Inserting wl = 2π

nℜ(ω) , we can solve for ℜ(ω)
which gives ℜ(ω) = πk

ln for k ∈ N.

2. The same result can be reached by computing the determinant of
the full 4× 4 matrix derived from Equations (4.2a)-(4.2d)

M(ω) =




e−iωnexl 0 e−iωnixl eiωnixl

0 eiωnexr e−iωnixr eiωnixr

−iωnee−iωnexl 0 −iωnie−iωnixl iωnie
iωnixl

0 iωnee
iωnexr −iωnie−iωnixr iωnie

iωnixr


 .

Equating its determinant to zero gives the resonances without the
assumption of symmetry:

ω =
kπ

(xr − xl)ni
− i

1

(xr − xl)ni
ln

(
ni + ne
ni − ne

)
, k ∈ N. (4.11)

Solution with Perfectly Matched Layers

In this section, we wish to apply the perfectly matched layer (PML) method
to our problem [Ber94, Zsc09]. We will give a very brief introduction of the
method, which will just serve to justify the equations used in this section.
The basic idea is to replace the real variable x ∈ R with a complex variable
z(x) ∈ C and obtain an analytic continuation of the solution along z(x).
We choose z(x) such that z(x) = x for xl ≤ x ≤ xr and in the exterior
z(x) = x+ iσ(x−xr) for x ≥ xr and z(x) = x+ iσ(x−xl) for x ≤ xl where
0 < σ ≡ const. ∈ R.

Then our solutions in the interior remain unchanged,

u(z(x)) = u(x) = c exp(±inix) for xl ≤ x ≤ xr.

In the exterior, our solutions become

uext,l(z(x)) = e−iωne(x+iσ(x−xl)) = e−iωne[(1+iσ)x−iσxl ] and

uext,r(z(x)) = eiωne(x+iσ(x−xr)) = eiωne[(1+iσ)x−iσxr ].
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The derivatives of the exterior solutions then read

d

dz
uext,l(z(x)) = − 1

1 + iσ
iωne(1 + iσ)e−iωne[(1+iσ)x−iσxl ]

= −iωnee−iωne[(1+iσ)x−iσxl] and
d

dz
uext,r(z(x)) =

1

1 + iσ
iωne(1 + iσ)eiωne[(1+iσ)x−iσxr ]

= iωnee
iωne[(1+iσ)x−iσxr ].

Substituting these functions and their derivatives into Equations (4.1a)-
(4.1d), we obtain a coefficient matrix

MPML =




e−iωnixr eiωnixr −eiωnexr 0
e−iωnixl eiωnixl 0 −e−iωnexl

−iωnie−iωnixr iωnie
iωnixr −iωneeiωnexr 0

−iωnie−iωnixl iωnie
iωnixl 0 iωnee

−iωnexl


 .

It can be checked with computer algebra systems such as Maple, that

det(MPML) is zero for ω = kπ
(xr−xl)ni

− i 1
(xr−xl)ni

ln
(
ni+ne

ni−ne

)
, k ∈ N, the

resonances we derived from the ansatz using special functions in the previous
section.

In our next step, we will truncate the PML as it is done in typical algo-
rithms. This means, that we will have two additional equations, truncating
the PML at a distance ρ > 0 from the boundary of the computational do-
main. Further, truncating the system means that we will have to allow for
back-reflected waves in the exterior, which gives us the following coefficient
matrix

Mtrunc
PML =



Mint Mext

Md,int Md,ext

0 Mtrunc




with the sub-matrices

Mint =

(
e−iωnixr eiωnixr

e−iωnixl eiωnixl

)
,

Mext =

(
−eiωnexr −e−iωnexr 0 0

0 0 −eiωnexl −e−iωnexl

)
,

Md,int =

(
−iωnie−iωnixr iωnie

iωnixr

−iωnie−iωnixl iωnie
iωnixl

)
and

Md,ext =

(
−iωneeiωnexr iωnee

−iωnexr 0 0
0 0 −iωneeiωnexl iωnee

−iωnexl

)
,

Mtrunc =

(
eiωne(xr+(1+iσ)ρ) −e−iωne(xr+(1+iσ)ρ) 0 0

0 0 0 0

)

+

(
0 0 0 0

0 0 eiωne(xl−(1+iσ)ρ) −e−iωne(xl−(1+iσ)ρ)

)
.
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If we add the equations for truncating the PML, the 4×4-matrix MPML

becomes the 6× 6-matrix Mtrunc
PML. Its determinant is a polygon whose roots

can not be computed exactly any more with the help of Maple. Hence,
we resort to rasterizing the part of the complex plane containing the reso-
nances of interest with a rectangular mesh and computing the determinant
det
(
Mtrunc

PML

)
at each mesh point. Figure 4.2 shows a contour plot visualizing

the value of det(Mtrunc
PML for 0 ≤ ℜ(ω) ≤ 10 and −2 ≤ ℑ(ω) ≤ 2. As values

for the parameters we chose xl = −1, xr = 1, ni = 2, ne = 1, ρ = 1.3 and
σ = 0.6.

 

 

−0.5

−1

−1.5

−2 0

0 2 4 6 8

5

10

15

ℜ(ω)

ℑ
(ω

)

Figure 4.2: Value of det(MPML) (black squares) and color coded contour of
log(| det(Mtrunc

PML)|) for different values of ω. We can see dips of
| det(Mtrunc

PML)| at the verified physical resonances of the problem and
additional dips, which result in spurious solutions.

Figure 4.2 shows that the truncated PML has resonances not only at the
location of the physical solutions of the system, which are marked with black
squares, but additional dips not corresponding to any physical solution, e.g.
at ω ≈ 2.7−1.3i. These dips are spurious solutions of the system introduced
by truncating the PML. This truncation translates into an approximation
of the infinite exterior domain with a finite PML, which in turn introduces
discretization errors, that result in spurious solutions that are not due to the
discretization of the interior but purely caused by the transparent boundary
condition.
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Solution with the Pole Condition

Since we have seen in the previous section that the truncation of the PML
causes a discretization error that results in spurious solutions, it suggests
itself to perform the same heuristic for the pole condition.

For the pole condition, the implementation however is not as straight-
forward as it was for the PML. However, Equations (3.32a) - (3.32c), show
the way to the desired implementation. We recall that the integral terms in
Equation (3.32a) are the weak form of the Neumann data on the boundary,
and thus combine them to u′int(xr) on the right hand side boundary. Insert-
ing this definition, we get the following set of equations for the right hand
side boundary:

0 = 2s0u
′(xr) + s20 (u(xr) + ã0)− ω2n2r (u(xr)− ã0) (4.12a)

0 = s20 (u(xr) + 2ã0 + ã1)− ω2n2r (−u(xr) + 2ã0 − ã1) (4.12b)

0 = s20 (ãk−2 + 2ãk−1 + ãk)− ω2n2r (−ãk−2 + 2ãk−1 − ãk) , (4.12c)

k ≥ 2.

Making the ansatz ãk = zk, Equation (4.12c) translates to a second order
equation which has two solutions

z1 =
nrω + is0
nrω − is0

and z2 =
nrω − is0
nrω + is0

. (4.13)

Next, we solve Equation (4.12b) for u(xr), and obtain

u(xr) = −ã0
(
2s20 − 2n2rω

2
) (
s20 + n2rω

2
)−1

ã0 − ã1. (4.14)

Inserting Equation (4.14) into Equation (4.12a), we can solve for u′(xr):

u′(xr) =
1

2s0

((
n2rω

2 − s20
)
ã0 −

(
n2rω

2 + s20
)
ã1

)
. (4.15)

The general solution to the recurrence relation in Equation (4.12c) is a su-
perposition (αz1 + βz2) of the roots of its characteristic polynomial given
in Equation (4.13). However, since one root corresponds to an outgoing
solution and the second one corresponds to an incoming solution, we can
set α = 0 at the right hand side boundary and β = 0 at the left hand side
boundary. Using Equations (4.14) and (4.15) and the equivalent formula-
tions for the left hand side boundary, we can couple to the Dirichlet and
Neumann data of the interior solution, as before and obtain the matrix

Mpc =




−e−iωnixl −eiωnixl neω−is0
neω+is0

0

−e−iωnixr −eiωnixr 0 neω+is0
neω−is0

iωnie
−iωnixl −iωnieiωnixl −ineω 0

iωnie
−iωnixr −iωnieiωnixr 0 ineω


 (4.16)
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Again, the resonances of the problem correspond to values of ω for which
the determinant of Mpc is zero. We can not compute the determinant of
Mpc directly, hence we resort to the same rastering technique we used for
Mtrunc

PML. Again we used the values ne = 1, ni = 2, xl = −1 and xr = 1. For
the pole condition we used a parameter of s0 = 0.1 − 0.3i. The result is
shown in Figure 4.3.
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Figure 4.3: Physical resonances of a one-dimensional cavity (black squares) and
color coded contour of log(| det(Mpc0)|) for different values of ω.

Next we will introduce a cutoff in the equations for the pole condition.
This means, that we set zk1 = 0 for k ≥ L or zk2 = 0 for k ≥ L respectively.
In order to achieve this cutoff, we can no longer set β = 0 or α = 0 in the
superposition in the exterior and we will have to set αzL1 = −βzL2 . Hence,
the matrix coupling the analytic interior to the truncated version of the pole
condition reads

Mtrunc
pc =



Mint Mext

Md,int Md,ext

0 Mtrunc


 .

Again we use the interior sub matrices Mint and Md,int from the previous
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sections. The remaining sub matrices are

Mext =

(
neω−is0
neω+is0

neω+is0
neω−is0

0 0

0 0 neω+is0
neω−is0

neω−is0
neω+is0

)
,

Md,ext =

(
−ineω ineω 0 0

0 0 ineω −ineω

)
and

Mtrunc =




(
neω−is0
neω+is0

)L
−
(
neω+is0
neω−is0

)L
0 0

0 0
(
neω+is0
neω−is0

)L
−
(
neω−is0
neω+is0

)L


 .

Again, we can not compute the determinant directly, so we resort to the ras-
tering technique again. Figure 4.4 shows a contour plot of log(|det(M trunc

pc )|)
using the same parameters as before and L = 15 degrees of freedom. We
can see again, that truncating the infinite series that implements the pole
condition introduces new minima in the contour. These new minima are
again eigenvalues of the truncated operator that do not correspond to any
physical solutions, which implies that they are spurious solutions.
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Figure 4.4: Physical resonances of a one-dimensional cavity (black squares) and
color coded contour of log(| det(Mtrunc

pc )|) for different values of ω.

We have seen in the last sections that independent of the transparent
boundary condition we use, whenever we make the infinite exterior domain
finite, we introduce a discretization error for our simple one-dimensional
problem. This discretization error results in new resonances that lack any
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physical meaning and thus are spurious solutions. Given the fact that the
cause for spurious solutions caused by the interior discretization has been
thoroughly investigated and solved, we will devote the following chapter
to distinguishing these spurious solutions from the physical solutions of a
problem. For this we will make use of the observation that the spurious
solutions are caused by the transparent boundary conditions and the further
assumption that they therefore are more sensitive to perturbations of the
boundary condition.
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Chapter 5

Detecting Spurious Solutions

Since our observation from the previous chapter is that spurious solutions are
caused by badly converged solutions in the exterior domain, they respond
more strongly to perturbations of this exterior domain than the physical
solutions of a problem. We will make use of these results by presenting a
method for detecting the spurious solutions within the computed eigenvalue
spectrum with a robust algorithm. Our basic idea is to investigate the
dependence of the eigenvalues on the pole condition parameter s0.

Since the reaction of quantities of interest to perturbations is typically
determined by condition numbers, we will first give a brief review of per-
turbation theory for generalized eigenvalue problems. In Section 5.1 we
will therefore give the basic definitions and derive the condition numbers
of eigenvalues. In the subsequent section, we will explore the usefulness
of these condition numbers for the detection of spurious solutions and their
limitations. In Section 5.3 we will make use of the fact that we need not deal
with an arbitrary perturbation but with a perturbation that is well-defined.
This will allow us to directly compute the reaction of the eigenvalues to
variations of the pole condition parameter s0.

Finally we will investigate the domains of convergence for our method
that will allow us to implement a convergence monitor that gives us regions
where the statements derived in this chapter produce reliable results.

Throughout this chapter we will make extensive use of the terms ”eigen-
value” and ”spectrum” of a generalized Eigenvalue problem which are de-
fined as follows:

Definition 5.1.

Let A,B ∈ C
n×n be complex n by n matrices. We call λ ∈ C an

eigenvalue, u ∈ C
n a (right) eigenvector and the pair (λ,u) a (right)

eigenpair of the matrix pair (A,B) if

� u 6= 0 and

� (A− λB)u = 0.
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v 6= 0 is called a left eigenvector, if vH(A−λB) = 0. We will refer to the
set of all eigenvalues of a matrix pair as the spectrum of the pair (A,B):
σ(A,B) := {λ ∈ C : λ is eigenvalue of (A,B)}.

5.1 Generalized Eigenvalue Problems

Even though the literature on perturbation of ordinary eigenvalue problems
and computing their condition numbers is manifold, the situation for gen-
eralized eigenvalue problems of the type (A − λB)u = 0 is more involved
and often restricted to special cases (see e.g. [SS90, GL96, Wil88, Ste01]).
More general approaches to the problem of the sensitivity of eigenvalues
of the generalized eigenvalue problem typically make use of deflating sub-
spaces [Ste72]. However, for our purposes, we may restrict ourselves to
regular matrix pairs (cf. Definition 5.2). In this section we will give an
overview on condition numbers for regular generalized eigenvalue problems.
It is mostly based on Stewart and Suns work on the sensitivity of eigenvalue
problems [SS90, pp. 271–324].

There are some reasons why generalized eigenvalue problems differ from
ordinary eigenvalue problems and why their perturbation theory is more
involved. In the first place, it is possible for det(A − λB) to be identically
zero independent of λ. We call such matrix pairs where each scalar λ can
be regarded as an eigenvalue singular matrix pairs.

Secondly it is possible for B to be singular in which case B has a null vec-
tor u0 6= 0. Rewriting the problem in the reciprocal form Bu0 = λ−1Au0, we
see that Bu0 = 0Au0, hence u0 is an eigenvector of the reciprocal problem
corresponding to the eigenvalue λ−1 = 0, i.e. λ = ∞.

For a formal definition of the eigenvalue of a generalized eigenvalue prob-
lem that also accounts for infinite eigenvalues, we switch from the asym-
metric treatment of A and B to an equivalent symmetric formulation by
replacing λ = α

β . We then have

(A− λB)u = 0 ⇔ (A− α

β
B)u = 0 ⇔ (βA− αB)u = 0.

Using this symmetric formulation, we can make the following definitions:

Definition 5.2.

Let A and B be square complex matrices of order n.

� The matrix pair (A,B) is called singular if for all (α, β), det(βA−
αB) = 0. Otherwise (A,B) is called regular matrix pair.

� If (A,B) is regular and βAu = αBu for (α, β) 6= (0, 0) and u 6=
0 then for τ ∈ C, τβAu = ταBu, hence we refer to the entire
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subspace spanned by (α, β)⊤ as the eigenvalue of (A,B) and write:
〈α, β〉 := {τ(α, β)⊤ : τ ∈ C}.

� To preserve the connection with the ordinary eigenvalue problem,
we write 〈λ〉 for 〈λ, 1〉. Furthermore we define 〈∞〉 := 〈1, 0〉.

Remark 5.1.

Two observations follow directly from these definitions:

1. Infinite eigenvalues are not just special cases that can be ignored in
perturbation theory. This can be seen by rewriting the eigenvalue
problem in the cross-product form βAu = αBu. In this form, an
infinite eigenvalue corresponds to a nonzero pair (α, β) with β = 0
which is not essentially different from the case α = 0, i.e. λ = 0.

2. Since u ∈ kerA∩kerB ⇔ (βA−αB)u = 0 ∀(α, β), the matrix pair
(A,B) is singular, if and only if kerA and kerB have a nonempty
intersection.

For a better understanding of the differences between ordinary and gen-
eralized eigenvalue problems and of the notion eigenvalue of the matrix pair
(A,B), we will consider the following comparison: if (λ,u) is a (right) eigen-
pair of the matrix A, then Au = λu. That means that the direction of u
remains invariant under multiplication by A provided we agree that the di-
rection of the zero vector matches that of any nonzero vector. On the other
hand if (λ,u) is an eigenpair of the matrix pair (A,B), then Au = λBu.
This means that the direction of u is not necessarily preserved by multipli-
cation with A and B. Instead, the direction of Au and Bu are the same.
This is illustrated in Figure 5.1.

As for the ordinary eigenvalue problem, we can define the characteristic
equation of (A,B) as det(A − λB) = 0. The eigenvalues of the pair (A,B)
satisfy the characteristic equation. When B is singular, the characteristic
equation will have degree less than n. The missing eigenvalues are the
infinite ones. Hence, if B is singular, the matrix pair (A,B) has infinite
eigenvalues. If B was non-singular, the eigenvalues of (A,B) would behave
like the eigenvalues of the ordinary eigenvalue problem B−1Au = λu making
it possible to apply the perturbation theory known from ordinary eigenvalue
problems. In our case, the matrix B that we have to compute is singular
or at least very ill-conditioned, thus we cannot resort to this simplification.
Consequently we will have to deal with the concept of infinite eigenvalues
and develop a perturbation theory for generalized eigenvalue problems.

However the matrix pairs that we will have to deal with are regular.
Thus the characteristic polynomial det(A−λB) is not identically zero. As a
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x x

y y
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λuy
(Au)y

(Bu)y

= λ(Bu)y
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(Au)x = λ(Bu)x

(Bu)x
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Bu

Au = λBu

= λu

Figure 5.1: Left: For the ordinary eigenvalue problem Au = λu, the direction of
u is invariant under multiplication by A, only the length is changed.
Right: For the generalized eigenvalue problem Au = λBu, the direc-
tion of Au (green) is equal to the direction of Bu (blue).

consequence, there is an established perturbation theory which is applicable
to our problem and which we will present in the following paragraphs.

Since the generalized eigenvalue in the cross-product form is a subspace
〈α, β〉 as mentioned in Definition 5.2, we have to introduce the distance
between two such subspaces 〈α1, β1〉 and 〈α2, β2〉. The chordal distance is
such a measure. It is required for a perturbation theory and defined as
follows:

Definition 5.3.

The chordal distance between 〈α1, β1〉 and 〈α2, β2〉 is the number

X (〈α1, β1〉, 〈α2, β2〉) := ρg(〈α1, β1〉, 〈α2, β2〉).

The function ρg is the gap metric defining the distance between the two
subspaces 〈α1, β1〉 and 〈α2, β2〉:

ρg(〈α1, β1〉, 〈α2, β2〉) := max





max
(α,β)∈〈α1,β1〉

|(α,β)|=1

|(α, β) − 〈α2, β2〉|,

max
(α,β)∈〈α2,β2〉

|(α,β)|=1

|〈α1, β1〉 − (α, β)|




.
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Inserting the definitions for 〈α1, β1〉 and 〈α2, β2〉, we can easily evaluate
X (〈α1, β1〉, 〈α2, β2〉) as

X (〈α1, β1〉, 〈α2, β2〉) =
|α1β2 − β1α2|√

|α1|2 + |β1|2
√

|α2|2 + |β2|2
.

In this notation, we can see that

X (〈∞〉, 〈λ〉) = X (〈1, 0〉, 〈λ, 1〉) = 1

1 +
√

|λ|2 + 1
.

Thus the chordal metric behaves counter-intuitive by regularizing the point
at infinity and making it no more than unit distance from any other point.
Returning to the conventional notation by setting λ1 =

α1

β1
and λ2 =

α2

β2
, we

have

X (〈λ1〉, 〈λ2〉) =
|λ1 − λ2|√

1 + |λ1|2 +
√

1 + |λ2|2
≤ 1.

The perturbation theory of our problem would be dramatically simpli-
fied, if we could rewrite Au = λBu in the form B−1Au = λu. Then
we would have reduced the generalized Eigenvalue problem to an ordinary
eigenvalue problem, however, since B is singular or ill-conditioned in our
application, this reduction is not possible. However, a way to deal with this
situation exists in the form of generalized shifting. The definition of this
shifting in Lemma 5.1 corresponds to that of [SS90, VI, Theorem 1.6].

Lemma 5.1.

Let W be a 2 × 2 nonsingular matrix W =

(
w1,1 w1,2

w2,1 w2,2

)
. Given the

matrix pair (A,B) set

(C,D) = (w1,1A+ w2,1B,w1,2A+ w2,2B) =: (A,B)(W ⊗ I). (5.1)

Given (α, β) 6= (0, 0), define

(
a
−b

)
=W−1

(
β
−α

)
. (5.2)

Then 〈α, β〉 is an eigenvalue of (A,B) if and only if 〈a, b〉 is an eigenvalue
of (C,D).

Proof.
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The proof is purely computational. Using W =

(
w1,1 w1,2

w2,1 w2,2

)
and its

inverseW−1 = (w1,1w2,2−w2,1w1,2)
−1

(
w2,2 −w1,2

−w2,1 w1,1

)
, we can compute

a =
1

w1,1w2,2 − w2,1w1,2
(w2,1β + w1,1α)

b =
1

w1,1w2,2 − w2,1w1,2
(w2,2β + w1,2α).

Now we can prove the equivalence of (βA−αB)u = 0 and (bC−aD)u = 0
by inserting C,D, a and b into the second equation and transforming
equivalently to obtain the first equation.

From this lemma we can directly deduct the following corollary:

Corollary 5.1.

If (A,B) is a regular pair, there exists a 2× 2 matrix W such that for C
and D defined as in Lemma 5.1 D is nonsingular.

Proof.

If (A,B) is a regular pair, there are constants σ and τ such that det(τA−
σB) 6= 0. That means, τA− σB is nonsingular. If we set

W =

(
σ τ
τ −σ

)
, (5.3)

thenW is nonsingular. That means, we can define (C,D) as in Lemma 5.1
such that the eigenvalues of (A,B) and (C,D) are in one-to-one corre-
spondence and D is nonsingular.

We are now in a position to treat the perturbation of the eigenval-
ues of matrix pairs. Let (A,B) be a complex matrix pair of order n and
(Ã, B̃) := (A+∆A,B +∆B) be the perturbed pair with perturbations ∆A
and ∆B. Our goal is to derive a first order expansion for the eigenvalues of
the perturbed system. First we will need a measure for the perturbation of
the pair (A,B). As such a measure we will fix ε :=

√
‖∆A‖22 + ‖∆B‖22.

First we will follow [SS90, IV, Theorem 2.1] and show the continuity of
the eigenvalues of a regular matrix pair under small perturbations, which will
then allow us to investigate the sensitivity of the eigenvalues with respect
to a perturbation of the matrix pair.
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Theorem 5.1.

Let (A,B) be a regular matrix pair of order n and let 〈λ1〉, ...〈λn〉 be its
eigenvalues. Then there exists an ordering 〈λ̃1〉, ...〈λ̃n〉 of the eigenvalues
of the perturbed matrix pair (Ã, B̃) such that

lim
ǫ→0

X (〈λ̃i〉, 〈λi〉) = 0, i = 1, ..., n.

Proof.

By Lemma 5.1 and Corollary 5.1 there is a 2 × 2 matrix W such that
the matrix D in (C,D) = (A,B)(W ⊗ I) is nonsingular. Let µ1, ..., µn
be the eigenvalues of D−1C and let (C̃, D̃) = (Ã, B̃)(W ⊗ I). For ε
sufficiently small, D̃ is nonsingular. By the continuity of the eigenvalues
of an ordinary eigenvalue problem (cf. [Ste01, pp. 37–38]) we know that
there is an ordering of µ̃1, ..., µ̃n, the eigenvalues of D̃−1C̃ such that
limǫ→0 µ̃i → µi for i = 1, ..., n.

Now we can proceed by analyzing the sensitivity of the eigenvalues with
respect to a perturbation of (A,B). We will do this by presenting a first
order perturbation theory. Let 〈α, β〉 be a simple eigenvalue of (A,B). We
will first show that a first order expansion exists. This is evident since by
Corollary 5.1 we may assume that B is nonsingular. If ε is sufficiently small,
the perturbed matrix B̃ = B + ∆B is also nonsingular and there exists an
eigenvalue λ̃ = λ + O(ε) of B̃−1Ã that corresponds to the eigenvalue λ
of B−1A. By the theory that holds for ordinary eigenvalue problems (cf.
e.g. [Ste01, p. 47]), λ̃ is differentiable in the elements of B̃−1Ã and thus
differentiable in the elements of A and B. It follows that 〈λ̃〉 is the required
first order expansion. To give a first order expansion for the perturbed
eigenvalue we need the following prerequisite:

Theorem 5.2.

Let 〈α, β〉 be a simple eigenvalue of the regular pair (A,B). If u and v

are the right and left eigenvectors corresponding to 〈α, β〉, then 〈α, β〉 =
〈vHAu,vHBu〉.

A proof for this theorem can be found e.g. at Stewart [Ste01, 2, Theorem
4.9]. For the desired first order expansion of 〈α̃, β̃〉 we require another result
that describes the effect of an O(ε) perturbation of 〈α̃, β̃〉 in the direction
of 〈α, β〉.

Lemma 5.2.
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Let 〈α̃, β̃〉 be an O(ε) perturbation of 〈α, β〉 in the chordal metric. Let
φ(ε) = O(ε). Then X (〈α̃ + φ(ε)α, β̃ + φ(ε)β〉, 〈α̃, β̃〉) = O(ε2).

Proof.

X (〈α̃, β̃〉, 〈α̃ + φ(ε)α, β̃ + φ(ε)β〉)

=
|α̃(β̃ + φ(ε)β) − β̃(α̃+ φ(ε)α|√

|α̃|2 + |β̃|2
√

|(α̃ + φ(ε)α|2 + |β̃ + φ(ε)β|2

=
|φ(ε)(α̃β − β̃α)|√

|α̃|2 + |β̃|2
√

|(α̃+ φ(ε)α|2 + |β̃ + φ(ε)β|2
,

the denominator of which is O(ε2).

With Lemma 5.2, we have assembled all the preliminaries required to
give a first order expansion for the perturbed eigenvalue 〈α̃, β̃〉, which will
then in turn yield the relative condition number of an eigenvalue in the
following theorem which is a slight modification of [SS90, IV, Theorem 2.2].

Theorem 5.3.

Let u and v be the right and left eigenvectors for the simple eigenvalue
〈α, β〉 = 〈vHAu,vHBu〉 of the regular matrix pair (A,B). Let (Ã, B̃) =
(A + ∆A,B + ∆B) be the perturbed pair, ε =

√
‖∆A‖22 + ‖∆B‖22 and

〈α̃, β̃〉 be the perturbed eigenvalue corresponding to 〈α, β〉. Then

〈α̃, β̃〉 = 〈α+ vH∆Au, β + vH∆Bu〉+O(ε2). (5.4)

Proof.

From [Ste01, Theorem 3.13, Chapter 1] we know that for an eigenvector
ξ of the ordinary eigenvalue problem there exists a perturbed eigenvec-
tor ξ̃ of the eigenvalue problem perturbed by O(ε) and that ξ̃ satisfies
sin(∠(ξ, ξ̃)) = O(ε). Normalizing ξ and ξ̃, this implies that ξ̃ = ξ+O(ε).

By Corollary 5.1 we may assume that B is nonsingular, hence we can
apply these results to B−1A and AB−1. Thus we can take ũ = u+∆u
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and ṽ = v + ∆v with ∆u,∆v = O(ε) as left and right eigenvectors
corresponding to 〈α̃, β̃〉. Using Theorem 5.2, we have

α̃ = ṽHÃx̃

= (vH +∆vH)(A+∆A)(u+∆u)

= vH(A+∆A)u+ vHA∆u+∆vHAu+O(ε2)

and

β̃ = ṽHB̃ũ

= (vH +∆vH)(B +∆B)(u+∆u)

= vH(B +∆B)u+ vHB∆u+∆vHBu+O(ε2).

Since (A,B) is regular, at least one of α or β must be nonzero, say β 6= 0.
Then

vHB∆u+∆vHBu = β
vHB∆u+∆vHBu

β

and because u and v are right and left eigenvectors of (A,B), βAu =
αBu and vHβA = vHαB, thus

vHA∆u+∆vHAu = α
vHB∆u+∆vHBu

β
.

That means, that (vHA∆u + ∆vHAu,vHB∆u + ∆vHBu) is an O(ε)
perturbation of 〈α̃, β̃〉. By Lemma 5.2, deleting these terms induces an
error of O(ε2) and we end up with 〈α̃, β̃〉 = 〈α + vH∆Au + O(ε2), β +
vH∆Bu + O(ε2)〉 or in a shorter notation 〈α̃, β̃〉 = 〈α + vH∆Au, β +
vH∆Bu〉+O(ε2).

The results we have derived so far allow us to compute the relative
condition number of an eigenvalue. First using α = vHAu, β = vHBu, α̃ =
α+ vH∆Au and β̃ = β + vH∆Bu, we may compute

X (〈α, β〉, 〈α̃, β̃〉) =
|αβ̃ − βα̃|√

|α|2 + |β|2
√

|α̃|2 + |β̃|2

≈ |αvH∆Bu− βvH∆Ax|
|α|2 + |β|2 (5.5)

The numerator in equation (5.5) can be rewritten as

|αvH∆Bu− βvH∆Au| =
∣∣∣∣(α, β)

(
vH∆Bu

−vH∆Au

)∣∣∣∣

≤ ε‖u‖2‖v‖2
√

|α|2 + |β|2.
(5.6)
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Inserting equation (5.6) into (5.5), we have

X (〈α, β〉, 〈α̃, β̃〉) . ‖u‖2‖v‖2√
|α|2 + |β|2

ε. (5.7)

Now, we will summarize these results in the following theorem giving the
relative condition number for a generalized eigenvalue problem, which is for
example also stated in [Ste01, 2, Theorem 4.12]:

Theorem 5.4.

Let 〈α, β〉 be a simple eigenvalue of (A,B) and let u and v be the right
and left eigenvectors corresponding to 〈α, β〉. Let Ã = A + ∆A, B̃ =

B+∆B be a perturbation of (A,B) and set ε =
√

‖∆A‖2F + ‖∆B‖2F . If

ε is sufficiently small, there is an eigenvalue 〈α̃, β̃〉 of (Ã, B̃) such that
for the chordal distance between 〈α, β〉 and 〈α̃, β̃〉 holds

X (〈α, β〉, 〈α̃, β̃〉) = κrel (〈α, β〉) ε+O(ε2)

with

κrel(〈α, β〉) =
‖u‖2‖v‖2√
|α|2 + |β|2

.

Remark 5.2.
We would like to make the following remarks about Theorem 5.4:

1. The number κrel (〈α, β〉) defined in Theorem 5.4 is analogous to
the condition number κrel(λ) for the eigenvalue λ of the ordinary
eigenvalue problem defined e.g. by [SS90, IV.2.8]. It serves the role
of a relative condition number for its eigenvalue of the generalized
eigenvalue problem.

2. Since α = vHAu and β = vHBu, κrel (〈α, β〉), a rescaling of u and
v is cancelled. Therefore κrel (〈α, β〉) is independent of the scaling
of u and v.

3. The first order bound on the perturbation of an eigenvalue does not
reduce to the first order bound for the ordinary eigenvalue problem
for B = I and ∆B = 0. However, for a parametrization A =
τA, λ = τλ and ∆A = τ∆A it can be shown that the condition
number κrel,τ (〈α, β〉) → ‖u‖2‖v‖2/|vHu| as τ → 0 which gives the
usual bound for ordinary eigenvalue problems.

4. If ‖u‖2 = ‖v‖2 = 1, κrel is large when α and β are small. This was
to be expected from the first order expansion

〈α̃, β̃〉 ≈ 〈α+ vH∆Au, β + vH∆Bu〉.
Hence, if both α and β are small, they are sensitive to the pertur-
bation ∆A and ∆B, i.e. ill-conditioned.
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5. In order to obtain an implementation of this method, we solve
the generalized eigenvalue problem (A − λB)u = 0 with the stan-
dard generalized sparse eigenvalue solver in Matlab, which is an
implementation of the Arnoldi method with spectral deformation
(see [GL96, Saa80]). This produces the spectrum σ(A,B) together
with the right eigenvectors. Since a left eigenvector v satisfies
vH(A− λB) = 0, we can obtain v by solving the hermitian conju-
gate of the problem (AH − λBH)v = 0.

In the next section we will see how the condition number for a generalized
eigenvalue problem may be used for detecting spurious solutions and what
limitations this method is subjected to.

5.2 Use and Limitations of Condition Numbers

We will now cover the detection of spurious solutions of the Helmholtz res-
onance problem on unbounded domains via the condition number. We will
see in the next paragraphs that this method is error-prone and we will an-
alyze its problems. This sets the stage for the computation of the exact
perturbation which we will develop in Section 5.3. This section is based
on two one-dimensional examples for the detection of spurious solutions via
their condition number. While this works well for the first example, we will
run into some difficulties for the more complicated second example.

For our examples we will revert to using ω as eigenvalue instead of λ.
This will make the distinction between general statements for eigenvalues,
that were given in terms of λ and results for the Helmholtz equation that
will be given in terms of ω easier. Since κrel is a relative condition number,
we can expect higher eigenvalues to have lower condition numbers. This
may seem unintuitive from a physical point of view since the approximation
of higher eigenvalues is typically worse for a fixed grid. However from a
purely algebraic viewpoint, this is in good agreement with the notion relative
condition number since we cannot expect the effect of a small perturbation
to increase for bigger eigenvalues. This means that lower physical modes
may have higher condition numbers than higher order spurious solutions.
The comparison of condition numbers in order to detect spurious solutions
is therefore not reliable in a global setting. In order to obtain a global
criterion, we have to compare condition numbers of eigenvalues that have a
similar distance from the origin. We achieve that by re-scaling our condition
numbers with a factor |ω|.

Geometrically speaking we could say that we draw concentric rings around
0 within which we expect all eigenvalues to have similar condition numbers.
We will see in the next section that some eigenvalues within a circle have
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significantly larger condition numbers than others, these eigenvalues corre-
spond to spurious solutions.

We will start off with the simple one-dimensional Example 4.1 introduced
in Chapter 3. It illustrates how condition numbers can be utilized to separate
spurious solutions from physical solutions. For this example we will compare
the numerical solution with the analytic solution derived in Chapter 3.
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Figure 5.2: Resonances computed for Example 4.1. Red squares mark the an-
alytic resonances computed by Lemma 4.1, blue crosses mark the
approximated resonances.

In order to compute condition numbers we need to set the values for nint
and next in Example 4.1 and the left and right points of the cavity, xl and
xr. For first computations we set nint =

√
2, next = 1, xl = −1 and xr = 1.

By Equations (4.10) and (4.7) this leads to analytic solutions

ω =
kπ

2
√
2
− i

1

2
√
2
ln

(√
2 + 1√
2− 1

)
.

These solutions are marked with red squares in Figure 5.2.
To obtain an numerical solution, we split R into Ωint = [−2, 2] which

contains the cavity and some surrounding air and Ωext = R\Ωint. The inte-
rior Ωint was discretized with first order finite elements with an equidistant
mesh with a mesh width h = 1

45 ≈ 0.022. The cavity that stretches from
−1 to 1 was thus discretized with 90 degrees of freedom. Since as noted in
Remark 4.1, we have integer multiples of half wavelengths inside the cavity,

l = k
wavelengths

2 for k ∈ N, that means that for k = 1 we have 180 degrees
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of freedom per wavelength which is a very good resolution. However, the
resolution is fixed, so for larger values of k, the number of degrees of freedom
per wavelength reduces, so the larger k, the worse the approximation of the
solution in the interior. This is also reflected by the fact that in Figure 5.2
the computed resonances with a real part over ℜ(ω) ∼ 10 are not perfectly
aligned with the analytic resonances any more. For the exterior we used
the pole condition with L = 15 terms of the series expansion in the exterior
and a parameter value s0 = 0.4 − 1.0i. The resonances computed by our
algorithm are marked with blue crosses in Figure 5.2.

We will now compute the weighted condition numbers for each com-
puted resonance for this example. In order to visualize the distribution of
the condition numbers, we partition the set of partition numbers by using
the k-means clustering algorithm included in Matlab [Seb04, Spä85]. The
partitioning of the weighted condition numbers for Example 4.1 is plotted
in Figure 5.3. We make the following observations:
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Figure 5.3: Distribution of the weighted condition numbers for Example 4.1. We
can see several clusters of condition numbers. Most eigenvalues are
contained in three clusters located below κrel|ω| ≈ 300 (the value is
marked by a vertical dotted line) and separated from the rest by a
gap in the weighted condition numbers.

1. The clusters for Example 4.1 are centered around κrel|ω| ≈ 98.85,
κrel|ω| ≈ 174.94, κrel|ω| ≈ 231.15, κrel|ω| ≈ 466.47, κrel|ω| ≈ 2208.43
and κrel|ω| ≈ 7569.03.

2. The locations of these cluster centroids may vary slightly due to the
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random element in the initial guess of the Arnoldi algorithm we used
for the computation of the spectrum σ(A,B), however this variation
is not in a relevant order of magnitude to change the clusters.

3. The clusters above κrel|ω| ≈ 300 are well separated from the rest of the
eigenvalues, indicating that they contain good candidates for spurious
solutions.

4. Roughly two thirds of the computed eigenvalues have a weighted con-
dition number below that threshold.

With these foundations we can now identify the spurious solutions within
our spectrum. Figure 5.4 shows the computed eigenvalue spectrum of the
discrete problem with blue crosses. The colored circles around the computed
eigenvalue spectrummark the cluster each eigenvalue belongs to. The cluster
with the lowest weighted condition number is marked with green circles, the
second lowest weighted condition number is marked with magenta circles,
the third one is marked with cyan circles. The fourth cluster, the first one
with a centroid above κrel|ω| ≈ 300 is marked with yellow circles, the cluster
centered at κrel|ω| ≈ 1694 is marked with red circles and the cluster with
the highest center is marked with black circles. In Figure 5.4 we can see
that the eigenvalues corresponding to physical solutions are all within the
first three clusters, thus all have weighted condition numbers well below 300.
Thus the comparison of the weighted condition numbers gives a means of
distinction between physical and spurious solutions. However, this detection
is not always reliable as we will see in the next example.

Now we will turn to a second simple example in two space dimensions.
Again, we will see, that the detection of spurious solutions via their condition
number works well in this case. However, following this, will be two more
complicated examples where this bold approach does not work so well any
more. This necessitates a new approach which we will develop in Sections 5.3
and 5.4.

Example 5.1.

The geometry for this example is similar to that of Example 4.1 taken
to two space dimensions. We wish to solve the Helmholtz resonance
problem on a two-dimensional square cavity with side length d embedded
in air. Its refractive index nint(x, y) = const. for (x, y) ∈ Ωint. Its
geometry is sketched on the left hand side picture of Figure 5.5. For our
example we use nint = 2.5 and d = 1.

In order to obtain a reference solution for this problem, we use the com-
mercial FEM software package JCMsuite [PBZS07, ZBKS06]. In order to
ensure the quality of the calculations, we make use of its high order finite el-
ements, adaptive refinement and sophisticated PML implementation [Zsc09]
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Figure 5.4: The spectrum σ(A,B) of Example 4.1 where the eigenvalues are
marked corresponding to their weighted condition numbers.

as transparent boundary condition. To obtain the reference solution for Ex-
ample 5.1, we use second order finite elements and three adaptive refinement
steps. Both solutions, the reference solution and our solution are computed
on the same grid which is generated with JCMgeo, the triangulation tool
included in JCMsuite. We use it since it creates high quality mixed meshes
for two-dimensional geometries including the prismatoids we require for the
implementation of the pole condition in the exterior. We chose not to at-
tach the prismatiods for the exterior directly to the resonator but instead
added a buffer layer of air to Ωint. This increases the speed and precision of
JCMsuite (see right-hand side image of Figure 5.5).

The comparison of the solution of our algorithm compared with the
JCMsuite reference solution is shown in Figure 5.6. The fact that the
agreement of both methods is not perfect stems from the fact that we com-
puted the solutions with considerably higher accuracy for the reference so-
lution using three adaptive refinement steps and a finite element order 3 as
opposed to linear finite elements in the interior.

Next we will compute the condition numbers associated with the eigen-
values computed for Example 5.1. Figure 5.6 already suggests that the
eigenvalues with imaginary parts ℑ(ω) ≈ −1 are the physical resonances of
the problem.

Figure 5.7 shows the distribution of the eigenvalues, computed as for
Example 4.1. The centroids of the clusters computed by the kmeans algo-
rithm are located at κrel|ω| ≈ 987.67, κrel|ω| ≈ 1302.02, κrel|ω| ≈ 1765.07,
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Figure 5.5: Left: Sketch of the structure for Example 5.1 Right: Mixed grid
generated with JCMgeo that is used for both pole condition and
JCMsuite reference calculations. The interior is discretized with
triangles, the exterior with trapezes.

κrel|ω| ≈ 2161.12, κrel|ω| ≈ 3062.56 and κrel|ω| ≈ 14656.09. Again, it is
possible to find a threshold that separates the physical from the spurious
solutions of the problem. This threshold is even clearer for this example
than for the previous example, since the last cluster is well apart from the
rest. The threshold is marked with a dotted vertical line in Figure 5.7. In
Figure 5.8 we again marked the eigenvalues in the spectrum computed for
Example 5.1 by the cluster computed by kmeans they belong to. We see that
this confirms our threshold and that the eigenvalues belonging to the first
three clusters are the physical solutions of the problem while the eigenvalues
with a higher condition number are spurious solutions.

The third example is again a one-dimensional example. Its layout is
only slightly more complicated, its eigenmode structure however is far more
involved due to leakage into the exterior cladding and the extra layers in-
volved. It resembles an air-filled cavity surrounded by two materials with a
higher refractive indices. It resembles the kind of cavity that can be found
in photonic crystals.

Example 5.2.

Again we want to solve the Helmholtz resonance problem in one space
dimension. The air-filled cavity stretches from x = −1 to x = 1. It is
surrounded by a cladding with a material with refractive index n = 3.5
and a thickness of d = 1 on each side which again is embedded in an
infinitely thick material with refractive index n = 2.5. The layout of this
example is sketched in Figure 5.9.
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Figure 5.6: Eigenvalue spectrum computed for Example 5.1 with the pole con-
dition (blue crosses) and reference solution obained with JCMsuite

(green triangles).

As before we use JCMsuite to obtain a reference solution. For the
reference solutions for Example 5.2 we use a finite element degree of 5 and
two adaptive refinement steps. Figure 5.10 shows a comparison of the cal-
culations using our implementation of the pole condition in the exterior and
linear finite elements in the interior and the reference solutions obtained
with JCMsuite. One can see that some of the eigenvalues computed with
our implementation are in good agreement with the reference solution while
others have no correspondence. By manual inspection it is possible to con-
firm that the solutions where both methods are in good agreement are the
physical resonances of the problem. However this implies that even for this
allegedly simple example, a commercial FEM package also outputs a signif-
icant number of spurious solutions that pollute the computed spectrum.

We will now compute the condition numbers for the modes computed
with the pole condition. The distribution of the weighted condition numbers
κrel|ω| is plotted in Figure 5.11. For the interior we use again first order
finite elements on a grid with a step size of h = 0.003. In the exterior we
use L = 25 Hardy modes and a parameter value s0 = 0.87 − 1.14i

The eigenvalue clusters computed for this example with kmeans are
centered around the values κrel|ω| ≈ 0.0377 · 105, κrel|ω| ≈ 0.1247 · 105,
κrel|ω| ≈ 0.2231 · 105, κrel|ω| ≈ 0.5382 · 105, κrel|ω| ≈ 0.9171 · 105 and
κrel|ω| ≈ 2.1416 · 105. Again we can see that roughly two thirds of the so-
lutions have a weighted condition number that is below a certain threshold.
This time, however, this contains the eigenvalues in the first cluster and,
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Figure 5.7: Distribution of the weighted condition numbers κrel|ω| for Exam-
ple 5.1. The vertical dotted line marks the threshold separating the
physical from the spurious solutions.
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Figure 5.8: Eigenvalue spectrum σ(A,B) for Example 5.1 with eigenvalues
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Figure 5.9: Sketch of the layout of the air-filled cavity used in Example 5.2.

as Figure 5.12 shows, this cluster already contains some spurious solutions
and not all physical solutions. If we want to include all physical solutions,
we will have to separate the spectrum at a weighted condition number of
κrel|ω| ≈ 0.3 · 105, which will also lead to almost all solutions, spurious or
not, being below the threshold.

This means that Example 5.2 is an example that shows, that the bold
approach of utilizing condition numbers is not satisfactory for the detection
of spurious solutions. A fact that can be accounted to the ignorance of the
condition numbers to the nature of the perturbation which does not reflect
the fact that we made out the discretization in the exterior as the cause for
spurious solutions. We will choose a related, yet alternative approach in the
following section. This approach will take into account the perturbation we
apply and then compute the perturbations of the solution directly without
having to solve the entire problem twice or running into any identification
issues when modes are close to each other.

Finally we will give another two-dimensional example. It has an exterior
domain that is heterogeneous. This means that it contains multiple materi-
als, making it more difficult than Example 5.1. It resembles a slot waveguide
that is used for in many physical applications. We will model this air-filled
resonator which is a slot cut into a highly conductive substrate. See the left
hand side image of Figure 5.13 for a sketch of such a layout.

Example 5.3.

We will model a resonator in two space dimensions. The resonator itself
given by an air-filled slot in a highly conductive substrate. It has a deptgh
of d = 0.8 and a width of w = 0.5. For the computational domain, we
add a padding of px = 0.5 in x-direction and a padding of py = 0, 7 in

B. Kettner 75



5.2. USE AND LIMITATIONS OF CONDITION NUMBERS

 

 

ℜ(ω)

ℑ
(ω

)

0 2 4 6 8 10 12

−1

−2

−3

−4

−5

−6

Pole condition

JCMsuite

Figure 5.10: Eigenvalue spectrum computed for Example 5.2 with the pole con-
dition (blue crosses) and reference solution obained with JCMsuite

(green triangles).
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Figure 5.11: Distribution of the weighted condition numbers for Example 5.2.
The dotted vertical line indicates the threshold for distinguishing
between spurious and physical solutions.
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Figure 5.12: The spectrum σ(A,B) of Example 5.2 where the eigenvalues are
marked corresponding to their weighted condition numbers.

y-direction to each side of the waveguide. In order to make our material
lossy, we use a complex refractive index of nsub = 0.01 + 3i for the
substrate. See the left hand side image of Figure 5.13 for a schematic
of this setup and the right hand side image for the finite element mesh
used for the solution.

Figure 5.15 shows the comparison of the spectrum computed with our
Matlab-code compared with a reference solution obtained with JCMsuite.
Again we used second order finite elements and three adaptive refinement
steps for the reference solution. The interior solution for the pole condition
was again computed with linear finite elements. We chose s0 = 2.05 − 0.6i
and L = 10 as pole condition parameters. Again, the eigenvalues that occur
in both solutions and can be identified as physical solutions in the spectral
region in question by manual inspection. The left-hand side image of Fig-
ure 5.14 shows the field distribution for such a physical solution while the
right-hand side image of Figure 5.14 shows the field distribution of a solution
we consider to be spurious since it does not reflect the basic properties of the
underlying geometry such as the symmetry. For the field distribution shown
here, it is straightforward to distinguish between physical and spurious solu-
tions however, there are also field distributions where this distinction is not
so easy, especially when it comes to more complex resonator geometries.

Now we will again compute the condition numbers for the eigenvalues
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Figure 5.13: Left: Sketch of the structure for Example 5.3 Right: Mixed grid
generated with JCMgeo that is used for both pole condition and
JCMsuite reference calculations. The interior is discretized with
triangles, the exterior with trapezes.

and group them in clusters, using the kmeans algorithm. This yields clus-
ters centered around κrel|ω| ≈ 379.00, κrel|ω| ≈ 475.34, κrel|ω| ≈ 895.48,
κrel|ω| ≈ 1555.42, κrel|ω| ≈ 2787.85 and κrel|ω| ≈ 4533.88. In Figure 5.16
we colored the eigenvalues corresponding to the cluster they belong to. It
can be seen that similar to Example 5.2 there are clusters that contain both
physical and spurious solutions making a distinction by condition number a
very delicate, if not impossible issue for this example.

5.3 Exact Perturbation

We have already seen that the fact that the condition number is a purely
algebraic feature that disregards all knowledge about the physics of the
problem and about the nature of the perturbation, makes an identification
of spurious solutions difficult. This suggests that there might be a better
way to distinguish between physical and spurious solutions of a problem
when including this knowledge in our considerations. We will now aim at
deriving a condition that is void of the generality of the condition number
but includes the special kind of perturbation we cause when changing the
parameter s0 in the pole condition used to discretize the exterior domain.
Again, in order to differentiate between the eigenvalue that is computed of
a concrete example and closely related to our problem statement, we will
use ω for the eigenvalues of the Helmholtz equation and λ for eigenvalues
that are not related to our equation.

Instead of utilizing condition numbers it might be a good idea to check
the sensitivity of the eigenvalues with respect to changes of a parameter ρ.
The problems connected with the use of condition numbers may be overcome
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Figure 5.14: Left: Field distribution for the eigenvalue at ω ≈ 7.02− 0.97i which
we consider a physical solution of the problem. Right: Field distri-
bution for the eigenvalue at ω ≈ 6.97 − 2.26i which we consider a
spurious solution of the problem.
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Figure 5.15: Comparison of JCMsuite reference solution with the solution com-
puted with the pole condition and linear finite elements in the inte-
rior for Example 5.3.
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Figure 5.16: The spectrum σ(A,B) of Example 5.3 where the eigenvalues are
marked corresponding to their weighted condition numbers.

by directly computing the change of λ(ρ̃) for perturbation ρ̃ = ρ + ∆ρ. A
way to obtain such a direct approximation stems from the backwards error
analysis for the generalized eigenvalue problem [HH98].

Given the generalized eigenvalue problem from Definition 5.1, if we per-
turb the matrices A and B by ∆A and ∆B, this results in perturbed eigen-
value ∆λ, right eigenvector ∆u and left eigenvector ∆v. Since ∆A and ∆B
arise from a variation of the pole condition parameter s0, we know them
explicitly, which will allow us to compute ∆λ directly.

Lemma 5.3.

Let u and v be the left and right eigenvectors for the eigenvalue λ of
the generalized eigenvalue problem (A − λB)u = 0. Let ∆A and ∆B be
perturbations of A and B. This leads to perturbed eigenvalue λ+∆λ and
eigenvectors u+∆u and v +∆v.

Then in first order we can approximate ∆λ by

∆λ =
vH∆Au− λvH∆Bu

vHBu
+O(ε2). (5.8)

Proof.
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Using the perturbed left and right eigenvectors arising from a pertur-
bation of A and B and the perturbed eigenvalue, we rewrite the entire
perturbed problem as

(A+∆A)(u+∆u) = (λ+∆λ)(B +∆B)(u+∆u). (5.9)

Next, we expand equation (5.9) and premultiply with vH , the left eigen-
vector for λ. Since vHA = λvHB, we can cancel some of the resulting
terms and get

vH∆Au+ vH∆A∆u = λvH∆Bu+ λvH∆B∆u (5.10)

+∆λvHBu+∆λvHB∆u+∆λvH∆Bu+∆λvH∆B∆u.

Isolating ∆λ in (5.10), we have

∆λ =
vH∆Au− λvH∆Bu+ vH∆A∆u− λvH∆B∆u

vHBu+ vHB∆u+ vH∆Bu+ vH∆B∆u
.

Neglecting the higher order terms we arrive at the first order approxi-
mation of ∆λ:

∆λ =
vH∆Au− λvH∆Bu

vHBu
+O(ε2). (5.11)

Remark 5.3.

If we would not know ∆A and ∆B explicitly, we could bound them
by the tolerance matrices E and F and derive an absolute norm-wise
condition number:

Lemma 5.4.

Let λ be a simple, finite, nonzero eigenvalue of the pair (A,B) with left
eigenvector v and right eigenvector u. If ∆x → 0 for ε → 0, then the
absolute condition number of λ, κabs(λ) is

κabs(λ) = lim
ε→0

sup

{ |∆λ|
ε|λ| : (Ã− λ̃B̃)(ũ) = 0,

Ã = A+∆A, B̃ = B +∆B,

λ̃ = λ+∆λ, ũ = u+∆u,

‖∆A‖2 ≤ ε‖E‖2, ‖∆B‖2 ≤ ε‖F‖2
}

=
‖u‖2‖v‖2(‖E‖2 + |λ|‖F‖2)

|λ||vHBu| .
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Proof.

For a proof, see [HH98].

We would again, however, sacrifice the specific knowledge of ∆A and
∆B in order to obtain this more general result.

Using the formula for ∆λ, we can directly compute the effect of a per-
turbation of the pole condition parameter on an eigenvalue λ ∈ σ(A,B). We
know that the matrices A and B are dependent on s0, the pole condition
parameter. Our task is to find out the perturbed eigenvalue ∆λ for a per-
turbation s0 → s0 + ∆s0. That means, we need to compute the change in
the matrices A and B, ∆A and ∆B. Since A(s0 +∆s0) := Ã = A+∆A =:
A(s0) + ∆A and B(s0 + ∆s0) := B̃ = B + ∆B =: B(s0) + ∆B, we can
compute ∆A = A(s0 +∆s0)−A(s0) and ∆B = B(s0 +∆s0)−B(s0).

Since only the entries of the exterior, Aext and Bext, depend on s0, all
other entries cancel, if we compute ∆A and ∆B, hence the perturbations
∆A and ∆B of A and B will have the same structure as Aext and Bext,
the entries of A and B for the exterior degrees of freedom (cf. Sections 3.4
and 3.5).

We recall that for the one-dimensional case

Aext = 2s0P
⊤
l (T (+)⊤

L T (+)
L )Pl + 2s0P

⊤
r (T (+)⊤

L T (+)
L )Pr and

Bext =
2n2l
s0

P⊤
l (T (−)⊤

L T (−)
L )Pl +

2n2r
s0

P⊤
r (T (−)⊤

L T (−)
L )Pr.

(cf. Equations (3.46) and (3.47)) and for the two-dimensional case

Aext =
∑

Ti

P⊤
i A

ext
loc,iPi and

Bext =
∑

Ti

P⊤
i B

ext
loc,iPi.

(cf. Equations (3.68) and (3.69)) with the local element matrices described
in Equations (3.66) and (3.67):

Aext
loc,i = s0A

ext,(1)
loc,i +

1

s0
A

ext,(−1)
loc,i +A

ext,(0)
loc,i

Bext
loc,i = n2i

1

s0
B

ext,(−1)
loc,i + n2i

1

s20
B

ext,(−2)
loc,i .
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So for the one-dimensional case, we can directly compute

∆A = A(s0 +∆s0)−A(s0) (5.12)

= 2(s0 +∆s0)
(
P⊤
l (T (+)⊤

L T (+)
L )Pl + P⊤

r (T (+)⊤
L T (+)

L )Pr

)

−2(s0)
(
P⊤
l (T (+)⊤

L T (+)
L )Pl + P⊤

r (T (+)⊤
L T (+)

L )Pr

)

= 2∆s0

(
P⊤
l (T (+)⊤

L T (+)
L )Pl + P⊤

r (T (+)⊤
L T (+)

L )Pr

)
and

∆B = B(s0 +∆s0)−B(s0) (5.13)

=
2

s0 +∆s0

(
n2l P

⊤
l (T (−)⊤

L T (−)
L )Pl + n2rP

⊤
r (T (−)⊤

L T (−)
L )Pr

)

− 2

s0

(
n2l P

⊤
l (T (−)⊤

L T (−)
L )Pl + n2rP

⊤
r (T (−)⊤

L T (−)
L )Pr

)

= − 2∆s0
s0(s0 +∆s0)

(
n2l P

⊤
l (T (−)⊤

L T (−)
L )Pl + n2rP

⊤
r (T (−)⊤

L T (−)
L )Pr

)
.

For the two-dimensional case, we have by the same computation

∆A = A(s0 +∆s0)−A(s0) (5.14)

= ∆s0
∑

Ti

P⊤
i A

ext,(1)
loc,i Pi

− ∆s0
s0(s0 +∆s0)

∑

Ti

P⊤
i A

ext,(2)
loc,i Pi and

∆B = B(s0 +∆s0)−B(s0) (5.15)

= − ∆s0
s0(s0 +∆s0)

n2i
∑

Ti

P⊤
i B

ext,(−1)
loc,i Pi

−∆s0 (2s0 +∆s0)

(s0 +∆s0)
2 s02

n2i
∑

Ti

P⊤
i B

ext,(−2)
loc,i Pi.

Since ∆s0
s0(s0+∆s0)

→ 0 for ∆s0 → 0 and ∆s0(2s0+∆s0)
(s0+∆s0)2s20

→ 0 for ∆s0 → 0,

a small perturbation of s0 causes small perturbations ∆A and ∆B, as one
would expect.

Again, we will have to introduce a scaling of ∆λ, the quantity we will use
to identify the spurious solutions. However, the scaling we will use differs
from the scaling we introduced in Section 5.2 for the relative condition num-
ber κrel, since it takes into account the problem we are solving and the type
of our perturbation. We established in Section 3.3, that the approximation
of the Laplace transform of the exterior solution L{uext}◦Ms0 by an power
series expansion will be best near s0. Thus, it is reasonable to expect the
resonances to be more sensitive to perturbations of s0 with increasing dis-
tance to the parameter. Thus, we will take the distance |s0 − ω| as scaling
for the perturbation ∆ω.
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We will now apply these findings to the examples from the previous
section and revert to the notion of ω which is part of the problem state-
ment. First we will revisit the simple one-dimensional cavity layout from
Example 4.1 and assure ourselves that the perturbations ∆ω really hold.
For this we will solve the problem twice. As in the previous section, we
will choose a value of s0 = 0.4 − 0.8i and then we will perturb s0 to
s̃0 = 0.4+5 ·10−3− (0.8+5 ·10−3)i, that is ∆s0 ≈ 7 ·10−3. We will compute
the eigenvalue spectrum of the ω2 eigenvalue problem for each value s0 and
then compute ∆exactω = ω(s0) − ω(s̃0) and evaluate the formula given in
Lemma (5.3) to compute the first order approximation ∆approxω from ω,
A,B,∆A and ∆B. Comparing the values for ∆ω of both calculations, as
expected, yields

max
ω∈σ(A,B)

(∆exactω −∆approxω) ≈ −1.5907 · 10−6 − 9.3504 · 10−7i . (∆s0)
2.

Figure 5.17 shows the distribution of the weighted perturbations 1
|s0−ω| |∆ω|.

Again we use the k-means algorithm to compute clusters of weighted
perturbations. The centroids of the clusters computed for this example are
positioned at 1/|s0 − ω||∆ω| ≈ 0.0001, 1/|s0 − ω||∆ω| ≈ 0.0006, 1/|s0 − ω||∆ω| ≈
0.0012, 1/|s0 − ω||∆ω| ≈ 0.0019, 1/|s0 − ω||∆ω| ≈ 0.0032 and 1/|s0 − ω||∆ω| ≈
0.0080. We can see that the clusters at 1/|s0 − ω| ≤ 0.0012 that correspond to
a relative perturbation of the order of ∆s0 contain most resonances. Hence,
we have divided the spectrum σ(A,B) into two sets of eigenvalues. Those
reacting to perturbations of the exterior with a reaction that is at most
in the order of the perturbation and those that react stronger than the
perturbation. Since we expect the physical solutions to be well-converged
in the interior and in the exterior, it is plausible to expect them to respond
less strongly to perturbations of the exterior. Hence, we expect the first set,
that is the resonances with ∆ω = O(∆s0), to contain the physical solutions
and the second set, that responds more strongly, to contain the spurious
solutions.

In Figure 5.18 we marked eigenvalues that have a response of the order
of magnitude of the perturbation with red circles. We can see that they
correspond to the physical solutions of the problem.

The same mechanism works well for Example 5.2. Again we can use the
order of magnitude of the perturbation ∆s0 as measure for the perturbation
of the eigenvalues that we allow. On the left hand side plot of Figure 5.20
we see the distribution of the computed perturbations, on the right hand
side plot again those eigenvalues whose perturbation is in the same order
of magnitude as ∆s0 are marked with red circles. We can see that for
wide parts of the spectrum they correspond to the physical solutions that
can be seen in Figure 5.10. However as ℜ(ω) increases, as expected the
identification is less precise and some spurious solutions fullfill our criterion.
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Figure 5.17: Distribution of the perturbations (1/|s0 − ω|)|∆ω| for Example 4.1.
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Figure 5.18: The spectrum of Example 4.1 (blue crosses) σ(A,B) where the eigen-
values with ∆ω = O(∆s0) or more precisely ∆ω ≤ 0.001 are marked
with red circles.
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In the next section we will deal with the problem of identifying the region
of the complex plane where we can rely on the perturbations we compute
this way.

We will now turn to the two-dimensional examples of the previous sec-
tion. For the simple square cavity of Example 5.1, the computed perturba-
tions are given in Table 5.1. We can see that again, the modes we identified
as physical solutions respond to a perturbation of the exterior with a rela-
tively low perturbation while the response of the spurious solutions is sig-
nificantly larger than the magnitude of the perturbation of s0. Figure 5.21
visualizes this, having the modes whose perturbation is at most in the order
of magnitude of ∆s0 marked with red circles.

For Example 5.3 we have the same situation. Here, we perturb the pole
condition parameter s0 with ∆s0 = 0.05−0.05i, hence we expect the physical
resonances to respond with a perturbation in the order of |∆s0|. Figure 5.22
shows the eigenvalue spectrum for this problem where the eigenvalues whose
perturbation is O(∆s0) are marked with red circles. We can see that these
are exactly the eigenvalues that the spectrum computed with our method
had in common with the spectrum of the reference solution computed with
JCMsolve.

5.4 A Convergence Monitor for Resonances

The methods we derived in the previous sections for the detection of spuri-
ous solutions all suffer from the major drawback, that it is not possible to
distinguish between solutions that react strongly to perturbations (i.e. are
ill-conditioned) because they are spurious solutions and modes, that react
strongly to perturbations because their approximation is not good enough
in the exterior domain Ωext. In order to overcome this problem, we will com-
plement the methods from the previous sections with a convergence monitor.
This will give us a region in the complex plane in which the eigenvalues are
well-converged for our choice of s0 and the number of degrees of freedom L
used in the computation.

First we will analyze the situation in the one-dimensional case. For this
analysis we discard all other information and just look at one part of the
exterior domain. Discarding the matrices Pl and Pr that map the local
degrees of freedom to global degrees of freedom, the matrices in each part
of Ωext, according to Equations (3.46) and (3.47) are

Aext = 2s0T (+)⊤
L T (+)

L

Bext =
2n2ext
s0

T (−)⊤
L T (−)

L ,
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Figure 5.19: Distribution of the perturbations computed for Example 5.2. The
perturbation of the exterior is ∆s0 ≈ 0.007.
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Figure 5.20: Spectrum for Example 5.2 (blue crosses) with eigenvalues whose per-
turbation is below a threshold marked (red circles).
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ω ∆ω (|s0 − ω|)−1|∆ω|
0.9879 − 0.8783i −0.1293 + 0.2056i4 0.0865
2.4653 − 0.8112i −0.3676 − 0.1974i 0.0595
3.6017 − 0.6714i −0.0330 − 0.4275i 0.0321
4.1717 − 0.7518i −0.0375 − 0.6301i 0.0353
4.3646 − 0.9219i 0.5716 − 0.2886i 0.0322
5.1199 − 0.6245i 0.2352 − 0.1327i 0.0102
4.7418 − 2.3434i −6.2911 + 9.9605i 0.4134
4.7142 − 3.1680i 2.3877 + 5.3463i 0.1772
6.2217 − 0.9224i 0.7460 + 0.7706i 0.0273
6.3881 − 0.5147i 0.0291 + 0.1300i 0.0033
6.7526 − 0.5452i 0.5148 − 0.0535i 0.0114
6.6171 − 2.3360i −4.3000 + 12.1518i 0.2605
6.9928 − 0.8666i −0.1614 + 0.3781i 0.0083

Table 5.1: Computed perturbations of the eigenvalues of Example 5.1 for a per-
turbation in the exterior with |∆s0| ≈ 0.07. Eigenvalues whose pertur-
bation is larger than ∆s0 (that is: spurious solutions) are marked red.
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Figure 5.21: Spectrum for Example 5.1 (blue crosses) with eigenvalues whose per-
turbation is below a threshold marked with red circles.
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Figure 5.22: Spectrum for Example 5.3 (blue crosses) with eigenvalues whose per-
turbation is below a threshold marked with red circles.

thus in the exterior it holds that

2s0T (+)⊤
L T (+)

L uext − ω2 2n
2
ext

s0
T (−)⊤
L T (−)

L uext = 0, (5.16)

where uext are the degrees of freedom for the respective part of the exterior
domain and next is the refractive index therein. Inserting the definitions

of T (+)
L and T (−)

L from Equation (3.45), and naming the entries of uext =
(z0, z1, . . . zL)

⊤, the matrix form of Equation (5.16) reads:

s0




1
2

1
2

1
2 1 1

2
1
2 1

. . .







z0
z1
z2
...


− ω2n

2
ext

s0




1
2 −1

2
−1

2 1 −1
2

−1
2 1

. . .







z0
z1
z2
...


 = 0.

For l ≥ 3, the matrix equation corresponds to a linear second order re-
currence with coefficients depending on ω2. Using general coefficients, the
l + 2nd line of this second order recurrence reads

ã2(ω
2)zl−2 + ã1(ω

2)zl−1 + ã0(ω
2)zl = 0. (5.17)

We will now establish a lemma about linear recurrence relations. Its
proof can be easily found by direct calculations.
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Lemma 5.5.

Given a second order linear recurrence relation a0xk = a1xk−1 + a2xk−2

with the characteristic polynomial

χ(t) = a0t
2 − a1t− a2.

Let t1 and t2 be the roots of χ(t). Then t
k
1 and tk2 each solve the recurrence

relation. The convergence rate of the solution corresponding to tki is given

by |tk+1
i | = κ|tki |, hence κ =

|tk+1
i |

|tki |
= |ti|.

The stability of the solution of a linear second order recurrence relation
therefore depends on the roots of its characteristic polynomial and the con-
vergence rate on their modulus. We therefore have a closer look at the char-
acteristic polynomial of the second order linear recurrence relation (5.17)
arising in our implementation. Its characteristic polynomial is

χω2(z) = ã0(ω
2)z2 − ã1(ω

2)z − ã2(ω
2). (5.18)

The subscript ω2 indicates that we see ω2 as parameter in this setting.
Inserting the known coefficients, Equation (5.18) reads

χω2(z) =

(
s0
2

+ ω2n
2
ext

2s0

)
z2+

(
s0 − ω2n

2
ext

s0

)
z+

(
s0
2

+ ω2n
2
ext

2s0

)
. (5.19)

The roots of Equation (5.19) are

z1 =
nextω + is0
nextω − is0

and z2 =
nextω − is0
nextω + is0

.

Clearly it holds that z1z2 = 1, hence, if the solution corresponding to
z1 is asymptotically stable, the solution corresponding to z2 diverges and
vice versa. Similar to the argumentation used for Equation (3.18), we can
identify one of the roots, z1 with an outgoing solution and the other root,
z2 with an incoming solution.

We can therefore restrict ourselves to investigating the convergence be-
havior of the solution connected with z2. In order that the solution converges
with a convergence rate 0 < κ < 1, we require that |z2| = κ, hence

|nextω − is0| = κ|nextω + is0| (5.20)

and

|nextω − is0|2 = κ2|nextω + is0|2.
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This can be reformulated

(nextω − is0)(nextω − is0) = κ2(nextω + is0)(nextω + is0)(
nextω

is0
− 1

)(
nextω

is0
− 1

)
= κ2

(
nextω

is0
+ 1

)(
nextω

is0
+ 1

)

Splitting by real and imaginary part of nextω/is0, we get:

(
ℜ
(
nextω

is0

)
− 1

)2

+ℑ
(
nextω

is0

)2

= κ2

[(
ℜ
(
nextω

is0

)
+ 1

)2

+ ℑ
(
nextω

is0

)2
]
.

By expanding the quadratic terms, dividing by 1 − κ2 and completing the
square, we can isolate ℜ(nextω/is0) and ℑ(nextω/is0). We then obtain

[
ℜ
(
nextω

is0

)
− 1 + κ2

1− κ2

]2
+ ℑ

(
nextω

is0

)2

=

(
1 + κ2

1− κ2

)2

− 1. (5.21)

Since (ℜ(a)−b)2+ℑ(a)2 = (ℜ(a)−b)2−(iℑ(a))2 = (ℜ(a)+iℑ(a)−b)(ℜ(a)−
iℑ(a) − b), we can isolate ω in Equation (5.21) and derive the domain C
where the series converges with a convergence rate of κ to be

C =



ω ∈ C :

∣∣∣∣ωnext − is0
1 + κ2

1− κ2

∣∣∣∣ ≤ |is0|

√(
1 + κ2

1− κ2

)2

− 1



 . (5.22)

Now we will revisit Example 4.1 and apply the results of the previous section
before deriving a higher-dimensional version. In Figure 5.23 the spectrum of
the cavity is plotted again with blue crosses. The red box marks the value
of s0. The grey circles, where the outermost, darkest circle corresponds to
a rate of convergence of κ = 0.9 and the radius of the circles decreases for
decreasing values of κ up to the innermost (lightest) circle which corresponds
to a rate of convergence of κ = 0.3.

We can see that for a rate of convergence of κ = 0.6, the circle contains
only physical and no spurious solutions. Since, as before, we chose L = 15
terms in the power series that approximates Ms0L{uext}, this gives a value
of approximately 4 · 10−4 times the boundary value, which for our setting is
in the order of one. This means it is reasonable to take these solutions to
be converged.

For Example 5.2 the domains of convergence are displayed in Figure 5.24
for our choice of s0. The circles correspond to rates of convergence of κ = 0.5
to κ = 0.8. So by setting a rate of convergence that seems reasonable, e.g.
for κ = 0.7, L = 25 degrees of freedom give about 1.45 · 10−4 times the
boundary value, which we consider well-converged. As expected, we can see
that there are only solutions that we identified as physical solutions within
the circle corresponding to κ = 0.7.
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Figure 5.23: The spectrum (blue crosses) σ(A,B) of Example 4.1. The shaded
gray circles are the regions of convergence of the linear second or-
der recurrence relation in the exterior domain for different rates of
convergence κ = 0.3 (lightest, innermost circle) to κ = 0.9 (darkest,
outermost circle). The circles are cropped to the area of interest.
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Figure 5.24: The spectrum (blue crosses) σ(A,B) of Example 5.2. The gray cir-
cles are the regions of convergence of the linear second order re-
currence relation in the exterior domain for different rates of con-
vergence κ = 0.5 (lightest, innermost circle) to κ = 0.8 (darkest,
outermost circle). The circles are cropped to the area of interest.
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We will now try to generalize the reasoning that gave the regions of
convergence in the one-dimensional case to higher space dimensions. As
we have already established in Equations (3.63) and (3.64), in the two-
dimensional case the matrices in the exterior are

Aext
loc,i := T ext

loc,i,2 ⊗
[
−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)−1

T (−)
L

]
(5.23)

+T ext
loc,i,3 ⊗

[
(−2)T (−)⊤

L T (−)
L

]

+T ext
loc,i,4 ⊗

[
(−2)T (+)⊤

L T (+)
L

]

+T ext
loc,i,5 ⊗

[−2s0
hξ

T (+)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (+)
L

]
and

Bext
loc,i := n2iT

ext
loc,i,1 ⊗

[−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

s0
DL

)
T (−)
L

]
. (5.24)

In order to obtain a formulation that we are able to deal with, we will
investigate the simpler case where the infinite edges of the prismatoid are
parallel and perpendicular to the boundary of Ωint, that is a = b = 0.

This will give us the simpler local stiffness and mass matrices

Aext
loc,i = T ext

loc,i,2 ⊗
[−2hξ

s0
T (−)⊤
L (hη id)

−1 T (−)
L

]

+T ext
loc,i,3 ⊗

[
(−2)T (−)⊤

L T (+)
L

]

+T ext
loc,i,4 ⊗

[
(−2)T (+)⊤

L T (−)
L

]

+T ext
loc,i,5 ⊗

[−2s0
hξ

T (+)⊤
L (hη id)T (+)

L

]

= T ext
loc,i,2 ⊗

[−2hξ
hηs0

T (−)⊤
L T (−)

L

]
(5.25)

+T ext
loc,i,3 ⊗

[
(−2)T (−)⊤

L T (+)
L

]

+T ext
loc,i,4 ⊗

[
(−2)T (+)⊤

L T (−)
L

]

+T ext
loc,i,5 ⊗

[−2hηs0
hξ

T (+)⊤
L T (+)

L

]
and

Bext
loc,i = n2iT

ext
loc,i,1 ⊗

[−2hξ
s0

T (−)⊤
L (hη id) T (−)

L

]

= n2iT
ext
loc,i,1 ⊗

[−2hξhη
s0

T (−)⊤
L T (−)

L

]
. (5.26)
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Due to the absence of the tridiagonal DL which caused Aext
loc,i and B

ext
loc,i to

have more nonzero diagonals, both matrices now have a tridiagonal struc-
ture. Moreover, for our simplified setting the finite integrals T ext

loc,i,3 and

T ext
loc,i,4 (defined in Equations (3.59c) and (3.59d)) are zero. Also in order

for our discretization with prismatiods to be valid for the case of parallel
infinite sides, we require, that hξ is equal for each prismatoid, without re-
striction of generality we can therefore set hξ = 1, leaving hη, which on the
ith prismatoid we will index as hη,i, to determine the coupling of the two
infinite sides of each prismatoid. Putting it all together, we can give discrete
ξ-directional part of the local infinite element stiffness matrix Aext

loc,i as

Aext
loc,i = T ext

loc,i,2 ⊗
[
(−2)

hη,is0
T (−)⊤
L T (−)

L

]
+

T ext
loc,i,5 ⊗

[
(−2)hη,is0T (+)⊤

L T (+)
L

]
.

and the local infinite element mass matrix Bext
loc,i as

Bext
loc,i = n2iT

ext
loc,i,1 ⊗

[
(−2)hη,i

s0
T (−)⊤
L T (−)

L

]
.

If we choose standard finite elements to discretize the interior Ωint, then
the traces of these elements on the boundary Γ between Ωint and Ωext are
standard one-dimensional finite elements and T ext

loc,i,1, T
ext
loc,i.2 and T ext

loc,i,5 are
the standard one-dimensional finite element matrices. Using linear finite
edge elements in the interior and inserting the well-known one-dimensional
matrices for the boundary integrals, the local infinite element stiffness matrix
Aext

loc,i is

Aext
loc,i =

(
1 −1
−1 1

)
⊗
[
(−2)

hη,is0
T (−)⊤
L T (−)

L

]
+

1

6

(
2 1
1 2

)
⊗
[
(−2)hη,is0T (+)⊤

L T (+)
L

]

=
1

hη,is0


(−2)

[
T (−)⊤
L T (−)

L

]
2
[
T (−)⊤
L T (−)

L

]

2
[
T (−)⊤
L T (−)

L

]
(−2)

[
T (−)⊤
L T (−)

L

]

+

hη,is0
6


(−4)

[
T (+)⊤
L T (+)

]
(−2)

[
T (+)⊤
L T (+)

L

]

(−2)
[
T (+)⊤
L T (+)

L

]
(−4)

[
T (+)⊤
L T (+)

L

]

 . (5.27)

The local infinite element mass matrix Bext
loc,i is

Bext
loc,i =

n2i
6

(
2 1
1 2

)
⊗
[
(−2)hη,i

s0
T (−)⊤
L T (−)

L

]

=
n2ihη,i
6s0


(−4)

[
T (−)⊤
L T (−)

]
(−2)

[
T (−)⊤
L T (−)

L

]

(−2)
[
T (−)⊤
L T (−)

L

]
(−4)

[
T (−)⊤
L T (−)

L

]

 . (5.28)
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In order to carry out a convergence analysis that is similar to the one-
dimensional approach, we will now reformulate the two-dimensional problem
as linear second order matrix recurrence relation. As in the one-dimensional
case, we will first discard the discretization in the interior Ωint and assume
that it is discretized using N degrees of freedom. Furthermore, we will
discard the first Hardy modes that couple to the interior and only look at
the modes k for k ∈ {2, ..., L} on each infinite trapezoid of the exterior
domain Ωext. We will assume that there are k such trapezoids and reference
them using the index j.

We will now explore the way these exterior degrees of freedom enter the
global stiffness and mass matrices. We have established before in Equa-
tions (5.27) and (5.28) that they both consist of two coupled tri-diagonal
block matrices for each trapezoid, dividing the corresponding vector of un-
knowns into two blocks. Each of these blocks corresponds to one infinite
side of the trapezoid. Since each infinite ray is the boundary of two pris-
matoids, each of these tri-diagonal block matrices couples with two other
blocks, giving the global layout that is sketched in Figure 5.25 in the right-
hand side plot. In order to obtain a second order linear recurrence, we
will assume the interior degrees of freedom to be well converged and only
take into account the exterior degrees of freedom. In the global vector of
unknowns u they are located at the indices N, ...,N + kL. The unknowns
uN+iL, ...uN+(i+1)L−1, i ∈ {0, ..., k} correspond to the Hardy modes on one
infinite ray.

10

10

20

20

N

N

N+L

N+L

N+kL

N+kL

. . .
...

...

...

. . .

. . .

. . .

Figure 5.25: Left: The structure of the local infinite element stiffness matrix
for one infinite trapezoid in the simplified case. We can see two
coupled second order recurrence relations, one for each infinite side
of the trapezoid. The discretization is done with L = 10 degrees of
freedom. Right: coupling of the local element matrices in the global
stiffness matrix, zoom into the structure for the exterior degrees of
freedom.

In order to obtain a formulation that allows for a similar treatment as
in the one-dimensional situation and allows for computation of a domain of
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convergence, we will now collect the degrees of freedom that correspond to
the same Hardy mode on each ray. That is, for m ∈ {0, ..., L − 1} we will
create a vector that collects the unknowns corresponding to the mth Hardy
modes on each ray:

u
(m)
ext = (uN+m,uN+L+m,uN+2L+m, ...,uN+kL+m)⊤ . (5.29)

Discarding the interior discretization and coupling with it which only af-
fects the first degree of freedom, in each of the tri-diagonal blocks, the
unknown uN+iL+m is related with two neighboring unknowns uN+iL+m−1

and uN+iL+m+1 where i ∈ {0, ..., k} and m ∈ {0, ..., L − 1}. Naming the
entries of the global stiffness matrix αi,j and of the global mass matrix βi,j ,
this relation is given by

(αN+iL+m,N+iL+m−1 − n2iω
2βN+iL+m,N+iL+m−1) uN+iL+m−1

+(αN+iL+m,N+iL+m − n2iω
2βN+iL+m,N+iL+m) uN+iL+m

+(αN+iL+m,N+iL+m+1 − n2iω
2βN+iL+m,N+iL+m+1) uN+iL+m+1 = 0.

Ti Tjni nj

ri rjrl

hη,i hη,j

Ωint

Figure 5.26: The situation in the exterior domain for our simplified problem. The
ith and jth infinite trapezoids Ti and Tj with the refractive indices
ni and nj share one infinite side ri. The infinite rays to the right
and to the left of ri are labeled rj and rl.

However, since each infinite ray ri couples with two other rays, rj and rl
as depicted in Figure 5.26, we have such a relation for three different values

of i in each row. Using the vectors u
(m)
ext defined in Equation (5.29), we have

a linear second order matrix recurrence relation

M (0)
ω u

(m−1)
ext +M (1)

ω u
(m)
ext +M (2)

ω u
(m+1)
ext = 0. (5.30)

The coefficient matrices M
(0)
ω ,M

(1)
ω and M

(2)
ω are complex k × k matrices

that depend on ω2 and contain three nonzero entries composed of αi,j and

βi,j per row. In the following paragraph we will determine M
(0)
ω ,M

(1)
ω and

96 B. Kettner



CHAPTER 5. DETECTING SPURIOUS SOLUTIONS

M
(2)
ω . For this we will insert the known forms of Aext

loc,i and Bext
loc,i from

Equations (5.27) and (5.28) and recall that

2T (+)⊤
L T (+)

L =




1
2

1
2

1
2 1 1

2
. . .

. . .
1
2 1


 and

2T (−)⊤
L T (−)

L =




1
2 −1

2
−1

2 1 −1
2

. . .
. . .

−1
2 1


 .

We will now compute the nonzero entries forM
(0)
ω ,M

(1)
ω andM

(2)
ω . First,

we will deal with M
(1)
ω which is the entry arising due to the main diagonals

of the tri-diagonal blocks in the local element matrices. One of the entries

for M
(1)
ω is caused by the main diagonal the local element matrices for each

trapezoid the ray belongs to. We index them Ti and Tj , hence A
ext
loc,i and

Aext
loc,j both contribute to this entry in M

(1)
ω which therefore reads

−
(
1

3
hη,i +

1

3
hη,j

)
s0 −

(
1

hη,i
+

1

hη,j

)
s−1
0 . (5.31)

In the same way, the main diagonals of Bext
loc,i and Bext

loc,j add to the same

entry of M
(1)
ω :

−
(
1

3
hη,in

2
i +

1

3
hη,jn

2
j

)
s−1
0 . (5.32)

The upper right and lower left blocks of Aext
loc,i, A

ext
loc,j, B

ext
loc,i and Bext

loc,j

contribute two entry to each row of M
(1)
ω . Put together, the entries from

the local element stiffness matrices read

1

hη,is0
− 1

6
hη,is0 and

1

hη,js0
− 1

6
hη,js0, (5.33)

and the entries from the local mass matrices read

−n2i
hη,i
6s0

and − n2j
hη,j
6s0

. (5.34)

So the diagonal entries of M
(1)
ω that correspond to the infinite ray ri are

made up of the summands computed in Equations (5.31) and (5.32) and are

−
(
1

3
hη,i +

1

3
hη,j

)
s0 −

(
1

hη,i
+

1

hη,j

)
s−1
0 + ω2

(
1

3
hη,in

2
i +

1

3
hη,jn

2
j

)
s−1
0
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while Equations (5.33) and (5.34) give the two off-diagonal entries in the
columns corresponding to the infinite rays rj and rl of the trapezoids Ti and
Tj , to the left and to the right of the ith ray. These entries are

1

hη,is0
− 1

6
hη,is0 + ω2n2i

hη,i
6s0

and
1

hη,js0
− 1

6
hη,is0 + ω2n2j

hη,j
6s0

.

The entries in M
(0)
ω and M

(2)
ω can be computed in the same way and differ

from the entries of M
(1)
ω by a factor ±1/2 and read

−
(
1

6
hη,i +

1

6
hη,j

)
s0 +

1

2

(
1

hη,i
+

1

hη,j

)
s−1
0 − ω2

(
1

6
hη,i +

1

6
hη,j

)
s−1
0

on the diagonal and

− 1

2hη,is0
− hη,is0

1

12
− ω2n2i

hη,i
12s0

and

− 1

2hη,js0
− hη,js0

1

12
− ω2n2j

hη,j
12s0

for the off-diagonal entries. Since in Section 3.5 we assumed the boundary
Γ between Ωint and Ωext to be an arbitrary convex polygon, we can now
reorder the unknowns in a way that the trapezoid to the left of Ti is Ti−1

and the trapezoid to the right of Ti is Ti+1 for 2 ≤ i ≤ k − 1. The k × k

matrices M
(0)
ω , M

(1)
ω and M

(2)
ω for the linear second order matrix recurrence

relation then are tri-diagonal matrices. Since T1 couples with Tk, they have
one off-diagonal entry at (1, k) and one at (k, 1).

Hence, we can compute the k × k coefficient matrices M
(0)
ω ,M

(1)
ω and

M
(2)
ω of the linear second order matrix recurrence relation

M (0)
ω u

(m−1)
ext +M (1)

ω u
(m)
ext +M (2)

ω u
(m+1)
ext = 0. (5.35)

In order to be able to gain some insight about the stability of its solutions,
we will transform it to a more convenient form by rephrasing it as linear first
order matrix recurrence relation with a 2k × 2k coefficient matrix. This is
done by solving Equation (5.35) for u

(m+1)
ext and then concatenating the two
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vectors u
(j+1)
ext and u

(j)
ext into a vector:

0 =M (0)
ω u

(m−1)
ext +M (1)

ω u
(m)
ext +M (2)

ω u
(m+1)
ext (5.36)

⇔ u
(m+1)
ext =

(
−M (2)

ω

)−1
M (1)

ω u
(m)
ext +

(
−M (2)

ω

)−1
M (0)

ω u
(m−1)
ext

⇔
(
u
(m+1)
ext

u
(m)
ext

)
=

((
−M (2)

ω

)−1
M

(1)
ω

(
−M (2)

ω

)−1
M

(0)
ω

id 0

)

︸ ︷︷ ︸
=:C

(
u
(m)
ext

u
(m−1)
ext

)

Remark 5.4.

The existence of
(
M

(2)
ω

)−1
can be deducted from the structure of M

(2)
ω .

To see this, we partition M
(2)
ω as

M (2)
ω =

(
M1 M2

M3 M4

)
.

Then M1 and M4 are tri-diagonal matrices and thus invertible. That
means that their Schur complements SM1

and SM4
exist. Using these

Schur complements, we can give the inverse of M
(2)
ω . Direct calcula-

tions [Ber09] then show that
(
M

(2)
ω

)−1
reads

(
M (2)

ω

)−1
=

(
(SM4

)−1 −M−1
1 M2 (SM1

)−1

−M−1
4 M3 (SM4

)−1 (SM1
)−1

)
.

As in the one-dimensional case, it is an established fact, that the stability
of the solutions of a linear vector iteration xn+1 = Cxn with C ∈ C

n×n

depends on the corresponding eigenvalues of the coefficient matrix C (see

e.g. [DB02, Theorem 3.33]). However, due to the inversion of M
(2)
ω and the

computation of the eigenvalues of C, it is not possible to find a closed formula
for the computation of the domain of convergence in the two-dimensional
case. Instead, we will have to do a sampling for different values of ω and
compute the eigenvalues of C for each ω. That means for each value of ω,
we compute the matrix C and its eigenvalues. This gives 2k eigenvalues
for each ω. It can be seen however, that these 2k eigenvalues are clustered
around two centers c1 and c2, one corresponding to an outgoing solution
and one corresponding to an incoming solution. The two centers and the
mean deviation from them can be computed using a kmeans algorithm. As
in the one-dimensional case, the modulus of the eigenvalue corresponding to
the outgoing solution determines the convergence rate of the solution. The
steps for computing the clusters on a grid in the complex plane are given in
Algorithm 1. Even though Algorithm 1 requires one matrix inversion and
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1: for 0 ≤ ℜ(ω) ≤ ℜmax do

2: for ℑmin ≤ ℑ(ω) ≤ 0 do

3: compute M
(2)
ω , M

(1)
ω and M

(0)
ω

4: assemble C =

((
−M (2)

ω

)−1
M

(1)
ω

(
−M (2)

ω

)−1
M

(0)
ω

id 0

)

5: e = eigenvalues of C # This gives 2k eigenvalues
6: if partitioning of e with kmeans possible then

7: c1, c2 = centers of partitions
8: store modulus of center corresponding to outgoing solution in

map M
9: else

10: return Error: Computation failed
11: end if

12: end for

13: end for

14: return M

Algorithm 1: Computing the convergence rate in the exterior on a grid in the
complex plane.

the computation of the eigenvalues of a matrix for each value of ω, its costs
are moderate since the size of the matrices involved, k, corresponds to the
number of prismatoids used for the discretization of the exterior which is
modest for typical applications.

Figure 5.27 shows the convergence rate computed for a homogeneous two-
dimensional exterior domain with k = 25 prismatoids. The complex plane
is discretized for 0 ≤ ℜ(ω) ≤ 10 and −10 ≤ ℑ(ω) ≤ 0 with a rectangular
mesh with step size h = 0.1. The 10201 calculations done for computing the
convergence rate in this area were done on a standard PC in t = 129s. For
typical applications the region that is scanned can be reduced and the step
size increased, yielding much lower computation times.

We will now apply this to the two-dimensional examples introduced in
Section 5.2. First we will cover Example 5.1. We use Algorithm 1 to compute
the regions of the complex plane, where the exterior converges with certain
rates of convergence. The result can be seen in Figure 5.28. We can see that
for a rate of convergence of κ = 0.6 no spurious solutions are within the
region where we can expect convergence, if we relax the admissible rate of
convergence to κ = 0.7 then the first spurious solution enters the spectrum.
The shape and position of the plateaus for the different values of κ can be
adjusted by altering the choice of s0. For the final Example 5.3, the result
can be seen in Figure 5.29. For this example for a rate of convergence of
κ = 0.5, no spurious solutions are considered to be converged. If we allow
for a rate of convergence that is lower than κ = 0.5, spurious solutions are
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Figure 5.27: The computed convergence rate color coded for a region in the com-
plex plane.

considered to be converged for this example.

We conclude that we have presented a method for the detection of spuri-
ous solutions. Contrary to condition numbers, the method of computing the
perturbation of the eigenvalues directly is dependent on the precise pertur-
bation we apply to the pole condition parameter, making it sensitive only
to the transparent boundary condition and not to the solution of the inner
problem. This makes for a good way of detecting spurious solutions that
are caused by the transparent boundary condition. To obtain statements on
the validity of these predictions, we have demonstrated how to complement
it with a convergence monitor.

5.5 Putting All Together: An Algorithm for Removing

Spurious Solutions

Now we have assembled all the tools required to formulate the central result
of this thesis: an algorithm that solves an eigenvalue problem and uses the
methods derived in this thesis to remove the spurious solutions from the
computed eigenvalue spectrum. The steps this algorithm performs are as
follows

1. Input: Read the problem geometry together with the discretization
parameters such as finite element degree for the solution in Ωint, pole
condition parameter s0, its perturbation ∆s0 and the number of Hardy
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1 2 3 4 5 6 7 8 9 100

−1

−2

−3

−4

0.5
0.5

0.5

0
.5

0
.5

0.6

0.6

0.6

0.
6

0
.6

0
.6

0.7

0.7

0.7

0
.7

0
.7

0.8

0.8

0.8

ℜ(ω)

ℑ
(ω

)
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rate of convergence of κ = 0.5 we can see that no spurious solutions
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the first spurious solutions are included in the spectrum.

102 B. Kettner



CHAPTER 5. DETECTING SPURIOUS SOLUTIONS

modes L used for the pole condition.

2. Assemble: Use standard finite element assembly for the degrees of
freedom in Ωint and the techniques described in Chapter 3 to assem-
ble the problem matrices A and B for the pole condition parame-
ter s0, compute the perturbed matrices ∆A and ∆B according to
Equations (5.12) and (5.13) in the one-dimensional case and (5.14)
and (5.15) in the two-dimensional case.

3. Solve: Use an out of the box sparse Arnoldi algorithm to compute
the spectrum σ(A,B).

4. Detect: For each eigenvalue ω ∈ σ(A,B), compute the left and right
eigenvectors. Use them to compute the perturbation ∆ω by the for-
mula given in Lemma 5.3. If ∆ω = O(∆s0), find out if it is reasonable
to assume the eigenvalue to be converged by evaluating the formula
for the convergence monitor at ω. That is, in the one-dimensional case
solve (5.20) for κ and in the two-dimensional case evaluate (5.36).

5. Decide: If the eigenvalue passes both tests in the previous step, it
is considered a physical solution of the problem and included in the
output, if it fails one of the tests, it is considered a spurious solution
and removed from the spectrum.

The entire process is depicted in the flow-chart clearly arranged in Fig-
ure 5.30, where the out of the box algorithms are marked green, the com-
putational steps for the detection are marked in dark red and the decisions
to be taken for each eigenvalue are marked in magenta.
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Start

End

Input

Problem description (n(x, y), region of interest for ω)

Pole condition parameters s0, L, ∆s0

Assemble A, B, ∆A, ∆B

Solve

no

no
yes

yes

compute ∆ω

compute u and vSolve eigenvalue

problem with

Sparse Arnoldi

for ω ∈ σ(A,B)

compute κ

Left and right eigenvector

1D: Solve (5.20) for κ

2D: Evaluate (5.36)

∆ω=O(∆s0)

Cf. Lemma 5.3

σp ∪ {ω}

κ< threshold

σp = ∅

return σp

Figure 5.30: The algorithm for removing spurious solutions from the computed
eigenvalue spectrum. Green color denotes out of the box algorithms,
the central computations for the detection are marked in dark red
and the decisions for determining spurious solutions are marked ma-
genta.
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Chapter 6

Summary and Outlook

In this thesis we have presented a robust algorithm for detecting spurious
solutions within the computed eigenvalue spectrum of a resonance problem.
The outline of the work performed here was as follows:

1. After an introduction, deriving the equations in question and briefly
highlighting the physical and technical background of the problem,
we derived the central tool for our considerations, the pole condi-
tion [Sch02] in Chapter 3. We followed the outline of Hohage, Nan-
nen [NS11, Nan08, HN09], Schädle and Ruprecht [RSSZ08] to obtain
a formulation that fits well into the finite element context. We gave
an implementation in one and two space dimensions.

2. We reviewed the issue of spurious solutions and based on a one-dimen-
sional example verified the hypothesis that there are spurious solutions
that are caused by the implementation of transparent boundary con-
ditions. We saw that these spurious solutions appear for both the
perfectly matched layers and the pole condition. We concluded that
the spurious solutions that are caused by the boundary condition are
not an artifact of the particular method used but a systematic dis-
cretization error.

3. Based on these findings, we dedicated Chapter 5 to the detection of
spurious solutions that are caused by the transparent boundary con-
ditions. For this means, we first highlighted the perturbation theory
for generalized eigenvalue problems.

4. We found, however, that the perturbation theory for generalized eigen-
value problems is too general to be a useful tool for the detection of
spurious solutions. This is due to the fact, that this theory is a gen-
eral purpose theory that can not take into account any special kind of
perturbations. The perturbations we cause in order to detect spurious
solutions are however very well defined, so a better detection means
needed to be derived.
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5. We then derived a formula for computing the exact effect a pertur-
bation of the system matrices has on an eigenvalue of the generalized
eigenvalue problem. Since our perturbations only affect the exterior
parts of the system matrices, the formula can be easily evaluated in
order to compute the perturbation of the eigenvalues.

6. In order to obtain statements concerning the validity of these pertur-
bations, we complemented the formula for the perturbation with a
convergence monitor for the resonances. Under some simplifications
we were able to construct such a convergence monitor for the one- and
the two-dimensional case. This convergence monitor together with the
perturbation formula makes it possible for the first time to robustly
detect spurious solutions in resonance spectra without a priori knowl-
edge of the expected field distributions or spectral distributions of the
eigenvalues.

We will now summarize the central results we obtained:

The Pole Condition - Hardy Space Infinite Elements

The pole condition detects outgoing solutions by the location of the poles of
their Laplace transform in the complex plane. In the one-dimensional case
the Helmholtz equation reads

∂xxu(x)n(x)
2ω2u(x) = 0 for x ∈ R

Dividing R into a bounded interior domain Ωint and an unbounded exterior
domain Ωext and applying the Laplace transform to the solution in Ωext,
we found that the continuation of the Laplace transform in the exterior
has poles and that the location of these poles is different for incoming and
outgoing solutions. This enabled us to split the complex plane C into two
sub-domains, Cin and Cout where the corresponding solutions are incoming
or outgoing. Requiring of solutions that they are outward radiating then is
equivalent to demanding that the continuation of the Laplace transform of
the solution is analytic in Cin

Using the Möbius transformMs0 , we could map the half-space Cin to the
unit disc D and form a connection between their function spaces H−(Cin)
and H+(D). The Möbius transform Ms0 depends on a parameter that
we will use later on. An implementation of a series expansion in H+(D)
could be given using the trigonometric monomials as ansatz functions. The
implementation of the pole condition in the one-dimensional case was then

reduced to the implementation of two bidiagonal L× L matrices T (±)
L .

In the two-dimensional case, a tensor product ansatz was chosen, using

T (±)
L in the radial direction away from the boundary ∂Ω and the traces of

the finite elements in the interior alongside ∂Ω. The implementation of the
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radial parts then reduced to the known matrices T (±)
L and an additional

tridiagonal matrix DL.

Condition Numbers and Direct Perturbation of Eigenvalues

The discretization of Helmholtz resonance problems results in generalized
eigenvalue problem (A − λB)u = 0 with large sparse complex matrices A
and B. They can be rewritten as (βA−αB)u = 0. The solution u is called
the (right) eigenvector, v is a left eigenvector, if vH(A− λB) = 0. Given a
left eigenvector v and a right eigenvector u for the eigenvalue λ = β/α, the
relative condition number κrel(λ) is

κrel(λ) =
‖u‖2‖v‖2√
|α|2 + |β|2

.

This number, however, is of limited use when detecting spurious solutions of
a resonance problem. Due to the fact that it is a purely algebraic feature of
the problem, it disregards all knowledge about the physics of the underlying
problem and the nature of the perturbation in question. This suggests that
there are better ways for detecting the spurious solutions within a given
spectrum. Such a better way was found by computing the direct reaction of
the eigenvalues to the well-defined perturbation caused by a change of the
pole condition parameter.

This led to the following formula

∆λ ≈ vH∆Au− λvH∆Bu

vHBu
.

The perturbations ∆A of A and ∆B of B are caused by perturbing the
pole condition parameter s0 with a perturbation ∆s0. Due to the explicit
knowledge of ∆s0, the perturbations ∆A and ∆B can be directly computed.
Since s0 is only present in the matrix entries that are due to degrees of
freedom in the exterior, the perturbations have zero entries for all interior
degrees of freedom which means that they are indifferent to the discretization
in the exterior and only take into account the sensitivity of the eigenvalues
towards s0. For detecting the spurious solutions we now only had to compute
∆A and ∆B and evaluate the formula for each λ. It was seen that the
physical solutions reacted to a perturbation of s0 with a perturbation that
was O(∆s0) while the spurious solutions reacted much stronger.

Convergence Monitor for the Pole Condition

It was however necessary to complement the detection method described
above with a convergence monitor for it is possible for physical solutions to
react strongly to perturbations of s0 when they are not well-converged in
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the exterior. For that end, we made the observation that the pole condi-
tion corresponds to a linear second order recurrence relation ã2(ω

2)zl−2 +
ã1zl−1 + ã0zl = 0. The stability conditions for such a relation depend on
the roots of its characteristic polynomial and are well-known. We were able
to apply them to the relation we obtained when applying the pole condition
to the exterior domain of a one-dimensional problem. This enabled us to
compute regions of the complex plane where we expect the discretization of
the exterior domain to converge with a predefined convergence rate κ as

C(κ) =



ω ∈ C :

∣∣∣∣ωnext − is0
1 + κ2

1− κ2

∣∣∣∣ ≤ |is0

√(
1 + κ2

1− κ2

)2

− 1



 .

Outside these circles we cannot expect the solution to be converged and
therefore not rely on the results of the perturbation described above. For
an extension to two-dimensional problems, we derived under some simplifi-
cations a vector valued linear second order recurrence relation. Its rate of
convergence could not be computed directly as in the one-dimensional case,
however, it is possible to compute the regions of convergence numerically.
This requires recasting the vector valued linear second order recurrence rela-
tion to a linear first order recurrence relation and computing the eigenvalues
of the resulting coefficient matrix. An algorithm for obtaining the regions
of convergence for such a problem was presented.

Outlook and Final Example

An interesting continuation of this work would be to investigate the pos-
sibility of including the conditions for the detection of spurious solutions
directly into an iterative eigenvalue solver thus avoiding the computation of
spurious solutions right at the step of solving the eigenvalue problem instead
of filtering the results at a later stage. Furthermore, the combination of a
convergence monitor and its extension to other equations for which imple-
mentations of the pole condition exist, would be a good starting point for
thinking about an adaptive pole condition where the parameter s0 and the
number of degrees of freedom L are chosen automatically in a way such that
the resulting eigenvalue spectrum contains as many of the eigenvalues of
interest as possible.

After most of the examples in this thesis so far being purely academic
or stemming from the area of optics, we will conclude by giving an example
from the field of acoustics and model the resonances of the bell mentioned in
the introductory poem. Figure 6.1 shows the computational mesh used for
this example alongside a false color plot of the field distribution we would
expect for a resonance. Our question is what frequencies make up for the
special chime of such a bell.
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Figure 6.1: Left: Unstructured grid used to compute the resonances of a church
bell. Right: Exemplary field distribution of a resonant state. The
field distribution seems uneven due to linear interpolation in the plot-
routines.

To answer this question we solve the resonance problem on the mesh
depicted in Figure 6.1. The resulting resonance spectrum can be seen in
the left-hand side image of Figure 6.2. Now we expect the occurrence of
spurious solutions which pollute the spectrum of the bell. The right-hand
side image of Figure 6.2 shows the full spectrum of the problem. As pole
condition parameters we used s0 = and L = 15 and for the interior problem
we used a finite element degree of n = 3. If we would add all the computed
frequencies into the expected spectrum of the bell and mimic an analysis
of the resulting sound with an oscilloscope, we would obtain the waveform
shown in the left-hand side image of Figure 6.2. The sound we could expect
from such a waveform void of regular patterns is just noise.
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Figure 6.2: Left: Spectrum computed for the bell. Right: Oscilloscope plot of
the spectrum resulting in an excitation of all computed modes simul-
taneously.

However, after applying the algorithms for the detection of the spurious
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solutions that we presented in this thesis, we see that only the frequencies
shown in Figure 6.3 qualify as physical solutions, which can again be verified
by manual inspection. The resulting waveform has a clear recurring pattern
and is shown in the left-hand side image of Figure 6.3. This corresponds to a
chime with one fundamental frequency and two harmonics together making
for the clear sound of the bell described in the introductory poem.
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Figure 6.3: Left: Spectrum computed for the bell after removing spurious so-
lutions. Right: Oscilloscope plot of the spectrum resulting in an
excitation of the physical modes simultaneously.
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Chapter 7

Zusammenfassung

Um partielle Differentialgleichungen auf unbeschränkten Gebieten nume-
risch zu lösen, wird das unbeschränkte Gebiet üblicherweise in einen be-
schränkten Innenraum und einen unbeschränkten Außenraum zerteilt. Die
Gleichung wird dann nur auf dem beschränkten Innenraum gelöst und am
Übergang zwischen Innenraum und Außenraum werden transparente Rand-
bedingungen verwendet, die das Verhalten der Lösung im unbeschränkten
Außenraum approximieren.

In der vorliegenden Arbeit wird die Helmholtz-Gleichung als Resonanz-
problem auf unbeschränkten Gebieten gelöst. Dabei verursachen die transpa-
renten Randbedingungen unphysikalische Lösungen, die das berechnete Fre-
quenzspektrum verunreinigen. Diese Lösungen sind Artefakte, die durch die
Diskretisierung mit transparenten Randbedingungen zurückzuführen sind.
In der Praxis ist es oftmals schwierig, diese von den physikalischen Lösungen
des Problems zu unterscheiden, wenn man kein a priori Wissen über das
erwartete Eigenwertspektrum des untersuchten Objekts oder die Feldver-
teilung in seinem Inneren hat. Dabei gibt es zwei Klassen von unphysika-
lischen Lösungen: solche, die durch die Diskretisierung im Innenraum ver-
ursacht werden und für deren Vermeidung geeignete Strategien existieren
und solche, die durch die transparenten Randbedingungen verursacht wer-
den. Für die zweite Klasse von unphysikalischen Lösungen existiert bislang
keine einheitliche Theorie und kein globaler Ansatz zu ihrer Vermeidung.
In der vorliegenden Arbeit wurde ein Algorithmus entwickelt, der auf zu-
verlässige Art und Weise die zweite Art von unphysikalischen Lösungen im
Frequenzspektrum erkennt und sie daraus entfernt.

Dieser Algorithmus verwendet als transparente Randbedingung die Pol-
bedingung [Sch02], insbesondere ihre Implementierung als infinite Hardy-
Raum Elemente [HN09, Nan08, NS11, RSSZ08]. Diese Methode hat den
Vorteil, dass ein Parameter existiert, der in einem gewissen Rahmen frei
gewählt werden kann. Da die zweite Art von unphysikalischen Lösungen
von der Randbedingung verursacht werden, hängen sie auch stärker von der
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Variation dieses Parameters ab als die physikalischen Lösungen des Pro-
blems. In der Arbeit wurde diese Abhängigkeit zunächst auf der algebrai-
schen Seite mit Hilfe von Konditionszahlen für allgemeine Eigenwertpro-
bleme untersucht. Die Konditionszahl erwies sich aber als zu allgemeines
Werkzeug, um das Problem zuverlässig zu lösen, weshalb eine geschlossene
Formel hergeleitet wurde, die aus der Variation des Polbedingungsparamters
direkt die Reaktion der Eigenwerte berechnet. Diese Formel ist unabhängig
von der Diskretisierung im Innenraum und deshalb besser geeignet, um die
Problemstellung zu behandeln.

Diese Methode kann aber nur funktionieren, wenn die Lösung im Au-
ßenraum konvergiert ist, weshalb die Methode um einen neu entwickelten
Konvergenz-Monitor ergänzt wurde, der es ermöglicht, zu jeder Resonanz-
frequenz die Konvergenzrate der Polbedingung zu bestimmen. Die Kombina-
tion beider Methoden ermöglicht so eine zuverlässige und robuste Identifizie-
rung der unphysikalischen Lösungen in den berechneten Spektralbereichen.
Der Algorithmus, der beide Methoden vereint, wurde in der Arbeit auf eine
Reihe von Beispielen aus der Nano-Optik und der Akustik angewendet.
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