2. The protonation pattern of proteins

Several among the 20 amino acids, which are the building blocks of all proteins, have a side
chain that can be protonated or not, depending on the pH. These amino acids are referred to as
titratable amino acids and usually the acidic groups glutamic acid, aspartic acid and cysteine as
well as the basic groups arginine, lysine and histidine are considered to belong to this group of
amino acids. The side chains of these amino acids exist in an acid-base equilibrium in solution.
The set of titratable groups of a protein is completed by the amino group of the first and the
carboxyl group of the last amino acid of a chain. They are not involved in a peptide bond and
therefore also capable of protonation and deprotonation.

Each of the mentioned titratable groups has a well understood standard behavior concerning
the acid-base equilibrium in aqueous solution. This is defined via the pKj value and can be found
in biophysical handbooks.

The acid-base properties of a titratable amino acid side chain in a protein can differ significantly
from its aqueous solution standard value. Each individual titratable group may show its own shifted
behavior in correspondence to the local structural situation within the protein. This is due to the
interaction of the titratable group with the partial charges of the protein atoms and the change of
the dielectric properties when going from aqueous solution to the protein interior. Moreover the
interaction between two charged titratable groups influences the energetics of the corresponding
acid-base equilibria mutually.

The knowledge of the electrostatic properties, including the positions of possible ionic charges
is crucial in understanding the function of proteins and especially enzymes. In this chapter, it will
be discussed how electrostatic models can be used to learn more about the protonation state of a
titratable group inside a protein and how it is even possible to establish the complete protonation
pattern of a protein. Therefore, we begin with a summary of the fundamental electrostatic
concepts that are important in the description of macromolecules.

2.1. Theory of electrostatic interactions in macromolecules

The basis of electrostatics is formulated with the Poisson equation:

V2Q(r) = —4mp(r). (2.1)

It relates the electrostatic potential @ at position r with the spatial charge density p. Both @ and
p are variable in space.

In principle all models that are used to investigate electrostatic properties of macromolecules
are derived from the Poisson equation. It is dependent from the considered problem how the
equation is used: If the charge distribution of a given system is homogeneous with € =1 and
can be described explicitly by point charges @, the solution of the Poisson equation becomes
Coulomb’s law:

o=y . (22)

= r—r;
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2. The protonation pattern of proteins

where r is the position and g the magnitude of the ith point charge. If all charges of a system
are represented explicitly, the system can be described by a homogeneous dielectric medium with
€ =1, such that all interactions can be considered to occur in free space and Coulomb’s law can
be applied straightforward to calculate for example the electrostatic energy of the system:

el =) @(ri)ai = %Z ) (23)
I 1]

ri—rjl

If the explicit representation of all charges and their positions is not feasible or not desired,
the Poisson equation can be varied to adopt this situation. If, for example a charge distribution
is present in an environment different from vacuum, the effect or response of the corresponding
medium (e.g. water) on the electrostatic potential @(r) has to be taken into account. The
medium can then be represented via a dielectric constant € # 1 and Eq. 2.1 becomes

oir) = 00, (24)

The corresponding Coulomb law is then

o=y (25)

—elr —ri|’

In a homogeneous medium like an aqueous solution, the dielectric constant can be considered
to be the same everywhere in the solution. A more complex situation exists for example, when
an aqueous solution of macromolecules shall be described. The system is then heterogeneous and
the dielectric constant, i. e. the response of the medium to a charge will be different in the bulk
water and inside the macromolecule. The dielectric constant varies through space. The Poisson
equation has to be modified and becomes:

V-E(r) v (r) = —4mp(r). (2.6)
Coulomb’s law cannot be formulated to adopt this situation and is not applicable when the
dielectric constant varies within the system.
2.1.1. The choice of the dielectric constant

Each method, that includes the calculation of electrostatic energies has to include an appropriate
description of the dielectric properties of the medium, in which the electrostatic interactions take
place. The choice of the dielectric constant is crucial for all results as can easily be seen from
Egs. 2.5 and 2.6.

Three physical processes determine the dielectric behavior of a medium:

1. Electronic polarization, that describes the reorientation of the electronic cloud around a
nucleus in the presence of an electric field.

2. Nuclear Polarization, i. e. the reorientation of permanent dipoles, e. g. the water molecules
or the dipoles within a macromolecule that reorient in response to an electric field.

3. Redistribution of charges, e. g. the movement of mobile ions in ionic solutions.
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2.1.  Theory of electrostatic interactions in macromolecules

The electrostatic models used today consider these effects, however sometimes only implicitly.
In standard empirical force fields used for Molecular Dynamics or Monte Carlo simulations all
atoms of a molecular system are represented in detail. All electrostatic interactions between the
corresponding point charges are then calculated explicitly, such that the electrostatic energy is
given by Eq. 2.1. If also all solvent molecules are represented explicitly the dielectric constant
can be set to € =1 throughout the whole system. This procedure has its disadvantages in high
computational costs, because many atom pair interactions have to be evaluated. To overcome this
problem, cutoffs are introduced that limit the distance up to which electrostatic interactions are
evaluated. This reduces the number of atom pairs, but causes also new problems as electrostatic
interactions have a long range nature due to which the usage of cutoffs has to be accompanied
by a treatment of long range interactions, that go beyond the chosen cutoff.

The electronic polarization is not handled explicitly in a treatment that ascribes each atom
a point charge as is done in most force fields until today. The electronic polarization is how-
ever accounted for within the reorientation of permanent dipoles by adjusting the values of the
permanent dipoles by the force field parameters. The redistribution of mobile ions is in general
neglected in force field simulations.

Using an explicit representation of all atoms causes problems in describing a macromolecule
in solution. The number of solvent molecules that can be incorporated into the solvent sphere or
box is naturally limited, such that boundary conditions have to be introduced, whose effects have
to be considered carefully.

Sometimes it is not possible to describe each solvent atom with its explicitly. Then the
dielectric constant is not unity anymore and in most cases it will not be constant throughout
the whole system. Water has a dielectric constant of 80 at room temperature. Experimental
and theoretical investigations suggest that proteins have an average dielectric response that can
be approximated with a dielectric constant of about 4. Therefore two dielectric constants have
to be used. In force field simulations this is done, when the solvent or a part of the solvent is
treated as a continuum. = > The usage of different dielectric constants within a molecular system
is also applied in electrostatic continuum models like the Poisson-Boltzmann model that will be
described in the next section.

2.1.2. The Poisson-Boltzmann equation

If one is not interested in the electrostatic properties of a large number of molecular configurations,
that have to be generated by a Molecular Dynamics (MD) or a Monte Carlo (MC) approach, it is
possible to use a dielectric continuum model, as for example the Poisson Boltzmann equation. The
computational costs of evaluating the Poisson-Boltzmann equation of a macromolecule preclude
its usage within an MD or MC simulation. In the Poisson-Boltzmann approach the solvent as well
as mobile ions are not treated explicitly. Instead a well chosen dielectric constant that accounts
for the less detailed description and an expression for the ionic strength is used. The entropic
and electrostatic contribution to the chemical potential of an ion in solution at a point r are
KT Indr) and q@(r) respectively, where c(r) is the local concentration, q its charge and @(r) the
electrostatic potential. The ionic concentration can be described with a Boltzmann expression:

c(r) = cb””‘exp<%> (2.7)
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2. The protonation pattern of proteins

where K is the Boltzmann constant and T the absolute temperature. This expression can be
incorporated into the Poisson equation (Eq. 2.6) leading to the Poisson-Boltzmann equation:

v-e(r) v @(r) = —4m <p(r) + cPUlkg exp( _‘;"’T(r) > ) (2.8)

Ris the gas constant. For small electrostatic potentials (e@(r)/RT < 1) Eq. 2.8 can be written
in its linearized form:

c —~Zieo@(r)
bulk—-. ~ |
i;c, Zi€ exp< RT )

< pulk & puky2,2 @)

o zlci“ Ziey — ZLCiu Z eé—RT (2.9)
i= i=

where Z; is the value of each charge and &y is the elementary charge. The first term in Eq. 2.9

vanishes because of the electroneutrality of the ionic solution. The expression can be simplified
by defining ionic strength | (Eq. 2.10) and the the inverse Debye length Kk (Eq. 2.11):

1 K

| = Ei;qukziz (2.10)
8redl (r)
2
=———" 211
(r) = 0 (211)
The linearized Poisson-Boltzmann equation (LPBE) is then:

v &(r) 7 o(r) = —4mp(r) + K*9(r) (2.12)

With this formulation at hand it is possible to calculate the three dimensional shape of the
electrostatic potential even of large molecules in solution. A prerequisite for this is to know the
structure of the molecule. However, analytical solutions of Eq. 2.12 are known only for systems
with an ideal spherical shape. This condition is not fulfilled by biological molecules. Therefore the
Poisson-Boltzmann equation has to be solved numerically, when dealing with proteins or nucleic
acids.

Several methods exist to obtain results of the LPBE. In most cases the finite difference method

is applied to solve the LPBE.""*” In this method, the space is divided into a regular grid and
derivatives are approximated as differences of the electrostatic potentials between neighbor grid
points. Alternatively finite element methods, "’ boundary element methods ®*” or multigrid

based methods~” can be applied.

In this work the LPBE is used to calculate electrostatic potentials that were used afterwards
to establish the protonation pattern of proteins. The protonation-deprotonation equilibrium of a
titratable group in a protein differs from the standard behavior in solution due to electrostatic
interactions. The next section describes the individual electrostatic contributions to this shifted
equilibria.

2.2. Acid-base behavior in solution and in proteins
The protonation equilibrium of a single titratable group is described by Eq. 2.13:

HA=A +H" (2.13)
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2.2.  Acid-base behavior in solution and in proteins

The equilibrium constant K; is defined as
Ka= ——-—= (2.14)

The Henderson Hasselbalch equation (Eq. 2.15) describes the pH dependence of the protonation
equilibrium:

A7
H= log———+ 2.1
The standard reaction free energy G is related to the pKy value by the following expression:

GZ = —RT pkiIn10, (2.16)

The probability, that a group is protonated is given by
X) = ——-— (2.17)

The pH dependent protonation probability reads then

~expg—In10(pH — pKy))
X = T exg—In10(pH — pKa))

(2.18)

To understand the different acid-base behavior of a titratable group in aqueous solution and
in a protein it is necessary to consider the energetics of the acid-base reactions in different media.
If one considers the pH dependence of the protonation energy of one titratable group in a protein
only, the thermodynamic cycle in Fig 2.1 contains all relevant energetic contributions. The Figure
shows the protonation equilibria in the gas phase, in aqueous solution and in the protein by
the horizontal equations. Additionally the free energy values of transferring the protonated or
deprotonated species from one medium to another are indicated by the vertical arrows. As the
energy of the protonation equilibrium in the protein is not directly accessible, on has to use a
thermodynamic cycle, starting from the experimentally or theoretically known energetics of the
reaction in solution or gas phase and calculate the energetics of the various solvation processes
like transferring the protonated and unprotonated group from aqueous solution to protein.

In a protein in general not only one but typically 100 or more titratable groups have to
be treated at the same time. As the interaction between two titratable groups in a protein is
also pH dependent, it is necessary to evaluate the acid base equilibria of all titratable groups
simultaneously. In such a situation the simple Henderson-Hasselbalch description (Eq. 2.15) of
the pH dependent protonation behavior is no longer valid, because it is not possible to ascribe a
unique pKj value to a titratable group and the protonation probability of one group depends also
on the protonation state of the other groups. So the whole protonation pattern of the protein
has to be established to obtain a meaningful energetic description.

Each titratable group has two possible titration states: protonated or unprotonated. The
total number of possible titration states of a protein with N titratable groups sums up to 2V.
A useful description of the protein’s protonation state is then given by an N-component vector
X = (X1,X2,...Xn). The components X, adopt the value 1 or 0 denoting the protonated and
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2. The protonation pattern of proteins
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Figure 2.1.:  Thermodynamic cycle to calculate the protonation energy of a titratable
group in solution and in a protein from gas phase properties. The deprotonation reaction
is shown in three media: the gas phase (g), aqueous solution (s) and the protein (p).
The vertical arrows denote solvation processes (from gas phase to solution (g,s) and from
solution to protein (s,p)). The horizontal arrows denote the protonation processes, which
have a different energy in the various environments.

unprotonated state respectively. The protonation probability of the a single group X, is given by
the following thermodynamic average:

'Zzlx'uexr(—BG')
() =5 (2.19)
> exp—BG)

where B = (kgT)~! and i runs over all possible protonation states. G' is the energy of the ith
protonation state.

2.3. Protonation state energies from electrostatic potentials

In many cases electrostatic interactions are predominantly responsible for the shift in protonation
energy of a titratable group in a protein compared to the corresponding value in aqueous solution.
Fig. 2.2 shows a model compound of a titratable group in solution and in the protein. In both
environments this model compound has different electrostatic interactions.

The linearized Poisson Boltzmann equation is an ideal means to calculate the electrostatic
potentials at the individual titratable groups. These potentials can be used to calculate the
energies of in principle all protonation states of a protein. Due to the additivity of the solutions
of the LPBE it is possible to treat the individual contributions to the protonation energy of a
titratable group independently. The protonation energy of a titratable group in a protein can be
considered to consist of four parts: The first contribution is the chemical process to protonate
or deprotonate an isolated titratable group. This energy is represented by the pKy value of the
amino acid or an appropriate model compound in aqueous solution via Eq. 2.16. A selection of
experimental pKI"®®lvalues is given in the appendix E. Transferring this amino acid from aqueous
solution into a protein (Fig 2.2) will alter the protonation energy.

As the dielectric properties of the protein differ from that of aqueous solution, the so called
Born energy will also be different. This difference, AAGE’O”‘, arises from the interaction of the
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2.3.  Protonation state energies from electrostatic potentials
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Figure 2.2.: A model compound of a titratable group in aqueous solution and in a
protein. When the model compound is transferred from aqueous solution into the protein
its electrostatic interactions are altered. The dielectric constant and the ionic strength
differ in both media. Moreover, in the protein the titratable group interacts with other
titratable groups that maybe charged and with a large number of background charges of
all other amino acids of the protein.

21



2. The protonation pattern of proteins

partial charges of the titratable group W with its reaction field, which depends on the dielectric
medium. This energy difference can be expressed by the corresponding electrostatic potentials in
both media, which are accessible via the LPBE:

Ny
ANGE™ — % i;{QE“[(pp(ri : Q) — @n(ri; Q)]
Q150 — (s ) (220

The sum runs over the N, atoms of the titratable group U that have different charges in
the protonated (h)(Q,hu) and deprotonated (d) (Qﬂu) form. The terms (pm(ri;Q{]), (pm(ri;Qﬂ),
(pp(ri;QH) and (pp(ri;Qﬂ) denote the electrostatic potentials at the position r of atom i in the
protein (p) and in aqueous solution for the model compound (m) respectively. Eq. 2.20 reflects
the double difference of the changing born energy of the charged and uncharged group in aqueous
solution and in the protein respectively.

The next energy contribution to the shift in the protonation energy arises from the interaction
of the charges Qj, of the titratable group P with charges of the non titrating groups, and with
the charges of the uncharged form of all other titratable groups in the protein. Both groups are
referred to as the so called “background charges”.

Np
ANG[* = _ZLQi [p(ri; Q) — @p(ri; QY]

N
—‘;Qi [@n(ris Q) — @n(ri; Q)] (2.21)

The first sum in Eq. 2.21 runs over the Ny charges of the protein belonging to atoms of non-
titratable groups or to atoms of titratable groups (L# V) in their uncharged protonation state.
The second summation runs over the Ny, charges of the atoms of the model compound, whose
charges do not differ in both protonation states. The charges @ are the ones of non-titratable
groups and of titratable groups different from [ which are in their uncharged protonation form.

The pKjy value of a model compound, AAGE‘”” and AAGBaCk can be combined to yield the
so-called intrinsic pKy value:

L = PRy A8GE ™+ 0 @2

The fourth part responsible for the energy shift of a titratable group that is transferred from
aqueous solution into a protein is the interaction between two titratable groups Y and v in their
charged form. It is defined by

Ny
i=

Wy = Z[Qﬂ,i — Quill@o(ri, QD) — @p(ri, QY] (2.23)
With the definition of these four terms the energy of a protonation state n of a protein can

be described.
The intrinsic pKy value is the pK; that the titratable group W in a protein would have if all

other titratable groups are in their uncharged protonation form. Together with the interaction
energy W,y from Eq. 2.23 the energy of the protonation state n of a protein is
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2.4. Protonation energies in different protein conformations

N .
G"= z(<x[} x8)8—1|n10<pH—pK;i‘H>>
&

N
Z (Wi (X, +20) () +2)) (2.24)

NH

where the Xﬂ are 1 or 0 denoting that group M is protonated or not and Zﬁ is the unitless
formal charge of the deprotonated form of group W -1 for acids and O for bases. The sums run
over all N titratable groups. The additional Xﬁ term in the first sum refers to the uncharged
protonation state. By this expression it is accomplished that G" vanishes for the uncharged state,
which is accordingly the zero point of the system. The state, where all titratable groups are in
their uncharged protonation state is the reference state to which all electrostatic energies refer.
Eq. 2.24 is used in principal in all applications, that calculate protonation patterns of proteins
by solving the LPBE to get the electrostatic potentials. With the shown set of equations the
energies of all 2N protonation states of a protein are accessible, without solving the LPBE 2N
times. For each titratable group 4 numerical solutions of the LPBE are required: In the protein
and as a model compound in solution the electrostatic potentials have to be calculated for the
protonated and the unprotonated state. The energy of Eq. 2.24 can be used in Eq. 2.19 to
calculate the protonation probability of each titratable group . However, the exact summation
of the thermodynamic average in Eq. 2.19 is in practice not feasible due to the large number of
protonation states. For this reason an approximation method has to be applied as introduced in
section 2.5. This is necessary especially, when also several protein conformations are considered.
This case is discussed in the following section.

2.4. Protonation energies in different protein conformations

In many cases, it is not sufficient to calculate the protonation pattern of a protein only in one
conformation. Especially if one is interested in the protonation behavior over a wider pH range,
it is probable that the conformation of the protein varies with the pH, which has to be considered
in the titration calculations. Moreover, in principle a protein can also adopt two conformations
at one pH: the association between proteins or between a protein and a ligand can be viewed as
a conformational change, where the isolated protein and the isolated ligand are one conformation
and the the protein-ligand complex is the second conformation. The same holds for the association
of two protein monomers. The description of the energy of the protonation states (Eq. 2.24) has
to be modified to account also for several conformations:

N :
G = 3 (0g —xt)B~In10(pH — pig™))
V=1
22 Z (W O +22) (K +29)) +AGon (2.25)
p=1lv=1
where AGconf Gconf Gions is the energy difference between a fixed but arbitrary reference

conformation r and the actual conformation |. Eq. 2.25 requires the calculation of the relative
conformational energy AG! conf in addition to the terms required for the calculation of the protona-
tion pattern of a single conformation. This relative conformational energy consists of three parts:

AGl,, ¢ = AG5+ AGEE + AGh e (2.26)
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2. The protonation pattern of proteins

In Eq. 2.26 AG'S denotes the electrostatic contribution to the solvation energy difference of con-
formation | relative to the reference conformation r. AGj is the non electrostatic contribution to
this solvation energy difference. In AGLg the Coulomb energy differences between conformation
| and r corresponding to a classical molecular mechanics force field are summarized. For the
description of a molecular mechanics force field see appendix C. The theoretical basis for Eq. 2.26
is the thermodynamic cycle in Fig 2.3. The calculation of the electrostatic contribution to the
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Conforma- AG ont Conforma-
tionr E—— tion |
€p,ep, 1=0.0 EpEp, 1=0.0
|
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AGR R
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Figure 2.3.: Thermodynamic cycle to calculate the energy difference between the confor-
mations r and |. The conformation r is the reference conformation. Both conformations
exist in a homogeneous dielectric medium and in an inhomogeneous dielectric medium.
The transfer of each conformation between the media with different dielectric constants
is indicated by the vertical arrows. The horizontal arrows show the conformational change
in one dielectric medium.

solvation energy of the various conformations can be done from numerical results of the LPBE. It
is the energy required to transfer the protein in each conformation from a medium with the dielec-
tric of the protein and an ionic strength equal to zero to a medium with the dielectric constant
of water and an ionic strength % zero. As in the protein the dielectric constant stays the same,
the first state is referred to as homogeneous dielectric and the second case as inhomogeneous
dielectric. The corresponding energy is given by

Np .
AG) :%_Zlqi,p( 5o(rl, ap) — @11, ap)) (2.27)

This energy represents the interaction of the protein charges with their own induced reaction
field in the corresponding medium. The term (d{,‘hom(r!,qp) denotes the electrostatic potential at
position r} in the case of an inhomogeneous dielectric, whereas (ﬂgom(rg,qp) is the electrostatic
potential in the case of a homogeneous dielectric. In the homogeneous as well as in inhomogeneous
dielectric system the electrostatic potentials are calculated from all Ny protein charges @ p, when
all titratable groups are in the uncharged protonation state. Gp is calculated analogously. The
nonpolar contribution AG'NE in Eq.2.26 to the solvation energy of both conformations is assumed
to be proportional to the solvent accessible surface:

AGNg = y(A —A") (2.28)

where Al and A" are the solvent accessible surfaces of the reference conformation r and confor-
mation | respectively. The parameter y has to be determined empirically.
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2.5.  Monte Carlo sampling of protonation states

2.5. Monte Carlo sampling of protonation states

As stated before, the exact evaluation of Eq. 2.19 is not possible due to the large number of
possible protonation states. For a protein with N titratable groups 2V terms would have to be
summed up. In the case of different conformations this number increases to L x 2N, where L is
the number of different conformations.

To reduce the computational expense several approximate methods have been developed,
which all avoid the exact summation of Eq. 2.19: These methods include the Tanford-Roxby
approximation,~” the reduced-site approximation®’ and a hybrid statistical mechanical/Tanford-
Roxby approximation.=® < An overview and a discussion about these different methods can be
found in a review by Ullmann and Knapp.

A further method to calculate the protonation pattern of a protein from Eq. 2.19 without
summing up the terms of all states, is the so called Monte Carlo (MC) titration. | used this
method in my work and so it will be explained here in more detail. In the MC method, which was
developed by Beroza et al.,”” protonation states are sampled with the probability with which they
occur. This procedure is referred to as importance sampling. The protonation probability () of
a group W is then obtained by averaging X, over all sampled states.

To start the MC sampling the initial protonation state vector X is generated randomly. The
protonation of one randomly chosen group is then changed. This is defined as one MC move.
The energy change corresponding to one MC move is obtained from

] N
AG, = Ax(BHn10(pH — pKI) + 3 Wiy (%, +22)] (2.29)
v=1

where Ax, = X[}e""—xﬁ'd = 41 is the change in the protonation of group L. The Metropolis
criterion” is applied then to decide whether this MC move is accepted: if AG, < 0 the move is
always accepted, if AGy, > 0 the move is accepted with the probability exp—AG,f). When in
the statistical average the titration state of each group is changed once, then one MC scan is
complete. In the next section the definition of an MC scan will be given more elaborated.

If one applies a large enough number of MC scans and the sampling efficiency (i.e. the
number of accepted moves) is acceptable, a Boltzmann weighted ensemble is generated.

This method is easily extended to the sampling of titration states of a protein in different
conformations: In addition to the titration moves, attempts to switch from one conformation to
another have to be inserted. These conformation moves are then accepted or refused by the same
criteria as the titration moves. In general one or two conformation moves are made per one MC
scan.

2.5.1. Methods to improve the sampling efficiency
Double and triple moves

A problem with the Monte Carlo Metropolis procedure applied to the sampling of protonation
states can arise, if two or three titratable groups do not change their protonation state indepen-
dently but only strongly correlated. The change of the protonation state of just one of the two
or three groups will then always be rejected, whereas the simultaneous change of the states of
all groups may succeed. For this reason also double and triple moves are made to treat strongly
coupled groups correctly (Fig. 2.4). The decision, for which groups double or triple moves are
necessary, is made based on the interaction energy of their charged protonation state.
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2. The protonation pattern of proteins
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Figure 2.4.: The protonation states (1,0) and (0,1) of two coupled titratable groups are
separated by a high energy barrier ((1,1) and (0,0)). A change of the protonation state of
just one group would lead to a state with high energy. In a double move the protonation
state of both groups is changed at the same time.

One MC scan is defined as the number of MC moves necessary to change the protonation
state of each titratable group in a protein in average once. For a protein with N titratable groups
this is N. A scan should also include all necessary double and triple moves, such that an MC scan
comprises in general more than N moves. The protonation state of all scans are accumulated to
obtain the protonation probability () of each group L.

Parallel tempering

Sometimes the system will get stuck in a region of the protonation pattern landscape or at one
conformation due to large energy barriers. Only small parts of the total phase space of protonation
patterns and conformations are then sampled and the protonation probability of each group as well
as the distribution between several conformations cannot be calculated accurately. This problem
can be overcome with the parallel tempering algorithm.

In the parallel tempering approach an artificial system built up of N non interacting copies of
a molecule is constructed. In our case a molecule is a protein with a large number of possible
protonation states that probably exists in several conformations. Each copy exists at a different
temperature T. A state of the artificial system is described by S= {C;,Cy,...,Cn}, where each C;
is a configuration of the real system, that describes the protonation state and the conformational
state. The N copies of the system do not interact. Therefore one can assign a weight w to a
state Sof the compound system:

N
W(S) = exp(— 3 BG(C) (230)

One can assume that 1 <2 < --- < Bn. A numerical simulation of the system has to yield the
corresponding equilibrium distribution of the total artificial system. This can be accomplished by
the following two sets of moves.

1. standard MC moves that effect only the ith copy. These moves are called local moves, be-
cause they change one coordinate (the protonation state of one group or the conformation)
of the configuration solely in one copy. Since the copies are not interacting, the transition
probability of such a local move depends only on the change of the potential energy in
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2.5.  Monte Carlo sampling of protonation states

the ith copy. Such local MC moves are accepted or rejected according to the Metropolis
criterion with the probability exp—AG;i3;) (see section 2.5).

2. Exchange of configurations between two copiesi and j=i+1

CineW: CJQId

cpew=cpd (2.31)

Such an exchange is called a global move in the sense that for the ith copy (and the jth
copy) the whole configuration changes. Since this move introduces configurational changes
in two copies of the molecule it follows from Eq. 2.30 that the exchange is accepted or
rejected according to the Metropolis criterion with probability:

w(S — g = min(1,e P CCH-BGC)+BIGC)+BG(C))
= min(1,ePi—P(G(C)=C(G))y
—  min(1,e*PA%)
= min(1,€") (2.32)

where A = ABAG, AB = Bj —Bi and AG = G(C;) —G(Ci)

It is not necessary to restrict the exchange to pairs of copies associated with neighboring
inverse temperatures B and (Bjy1. But this choice would be optimal, since the acceptance ratio
will decrease exponentially with the difference AR = j — [Bj. Parallel tempering realizes for each
copy of the real system a canonical simulation at corresponding temperature T;. The exchange of
configurations is an improved move which decreases the correlations between the conformations
and increases the thermalization of the canonical simulation for each copy. This means that each
copy will reach its equilibrium distribution faster than without global moves.
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2. The protonation pattern of proteins
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